iVOD / 166249

Field Value
IVOD_ID 166249
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166249
日期 2025-12-08
會議資料.會議代碼 委員會-11-4-19-15
會議資料.會議代碼:str 第11屆第4會期經濟委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-12-08T10:55:36+08:00
結束時間 2025-12-08T11:07:05+08:00
影片長度 00:11:29
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/e238918248e277b38af6cbfa178cd5b946ee6dd7c9e9cb52e205c0f991a2210e40c3ce8f2effcf9c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 10:55:36 - 11:07:05
會議時間 2025-12-08T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第15次全體委員會議(事由:審查: 一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。 二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。 三、本院委員蔡易餘等20人擬具「農民退休儲金條例第二條及第七條條文修正草案」案。 四、本院委員陳亭妃等19人擬具「農民退休儲金條例第二條及第七條條文修正草案」案。 (第四案如未接獲院會交付審查之議事處來文,則不予審查) (詢答及處理) 【12月8日及10日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 13.21034375
transcript.pyannote[0].end 15.70784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 21.83346875
transcript.pyannote[1].end 24.24659375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 24.28034375
transcript.pyannote[2].end 26.28846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 26.54159375
transcript.pyannote[3].end 26.99721875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 26.99721875
transcript.pyannote[4].end 27.01409375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 27.75659375
transcript.pyannote[5].end 30.23721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 30.96284375
transcript.pyannote[6].end 33.56159375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 34.08471875
transcript.pyannote[7].end 34.82721875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 35.65409375
transcript.pyannote[8].end 52.95096875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 46.89284375
transcript.pyannote[9].end 47.38221875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 47.77034375
transcript.pyannote[10].end 47.93909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 48.02346875
transcript.pyannote[11].end 48.12471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 50.23409375
transcript.pyannote[12].end 51.22971875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 52.37721875
transcript.pyannote[13].end 52.84971875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 53.49096875
transcript.pyannote[14].end 61.55721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 62.46846875
transcript.pyannote[15].end 67.88534375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 68.39159375
transcript.pyannote[16].end 70.29846875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 71.37846875
transcript.pyannote[17].end 76.22159375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 76.69409375
transcript.pyannote[18].end 82.83659375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 82.33034375
transcript.pyannote[19].end 82.98846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 82.98846875
transcript.pyannote[20].end 83.07284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 83.07284375
transcript.pyannote[21].end 83.44409375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 83.44409375
transcript.pyannote[22].end 86.49846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 83.51159375
transcript.pyannote[23].end 85.14846875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 86.12721875
transcript.pyannote[24].end 86.48159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 86.49846875
transcript.pyannote[25].end 86.51534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 86.51534375
transcript.pyannote[26].end 86.56596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 86.68409375
transcript.pyannote[27].end 88.75971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 89.24909375
transcript.pyannote[28].end 90.73409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 91.15596875
transcript.pyannote[29].end 97.26471875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 97.88909375
transcript.pyannote[30].end 107.59221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 103.69409375
transcript.pyannote[31].end 104.03159375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 107.94659375
transcript.pyannote[32].end 111.18659375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 111.50721875
transcript.pyannote[33].end 117.91971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 118.96596875
transcript.pyannote[34].end 119.96159375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 119.28659375
transcript.pyannote[35].end 123.15096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 123.60659375
transcript.pyannote[36].end 131.97659375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 132.33096875
transcript.pyannote[37].end 141.32534375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 141.74721875
transcript.pyannote[38].end 142.67534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 143.19846875
transcript.pyannote[39].end 143.51909375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 143.60346875
transcript.pyannote[40].end 145.34159375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 145.79721875
transcript.pyannote[41].end 153.57659375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 154.28534375
transcript.pyannote[42].end 157.20471875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 158.14971875
transcript.pyannote[43].end 159.78659375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 160.14096875
transcript.pyannote[44].end 161.89596875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 162.55409375
transcript.pyannote[45].end 169.92846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 170.77221875
transcript.pyannote[46].end 172.47659375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 172.99971875
transcript.pyannote[47].end 179.90159375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 180.52596875
transcript.pyannote[48].end 184.82909375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 185.38596875
transcript.pyannote[49].end 187.76534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 188.08596875
transcript.pyannote[50].end 192.22034375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 192.69284375
transcript.pyannote[51].end 198.24471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 198.75096875
transcript.pyannote[52].end 200.23596875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 200.92784375
transcript.pyannote[53].end 202.76721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 203.03721875
transcript.pyannote[54].end 205.55159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 206.58096875
transcript.pyannote[55].end 206.74971875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 207.30659375
transcript.pyannote[56].end 228.83909375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 229.36221875
transcript.pyannote[57].end 230.45909375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 230.88096875
transcript.pyannote[58].end 232.92284375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 233.66534375
transcript.pyannote[59].end 234.91409375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 234.96471875
transcript.pyannote[60].end 236.11221875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 236.56784375
transcript.pyannote[61].end 239.75721875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 240.34784375
transcript.pyannote[62].end 240.66846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 240.88784375
transcript.pyannote[63].end 246.60846875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 247.24971875
transcript.pyannote[64].end 248.11034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 248.76846875
transcript.pyannote[65].end 252.97034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 254.25284375
transcript.pyannote[66].end 256.68284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 256.86846875
transcript.pyannote[67].end 257.81346875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 257.96534375
transcript.pyannote[68].end 261.39096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 263.09534375
transcript.pyannote[69].end 265.59284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 266.20034375
transcript.pyannote[70].end 268.34346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 268.90034375
transcript.pyannote[71].end 281.21909375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 281.64096875
transcript.pyannote[72].end 288.12096875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 288.49221875
transcript.pyannote[73].end 295.27596875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 295.78221875
transcript.pyannote[74].end 296.27159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 296.55846875
transcript.pyannote[75].end 298.04346875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 298.87034375
transcript.pyannote[76].end 299.86596875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 300.38909375
transcript.pyannote[77].end 301.33409375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 301.50284375
transcript.pyannote[78].end 303.03846875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 303.13971875
transcript.pyannote[79].end 304.03409375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 304.23659375
transcript.pyannote[80].end 305.45159375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 306.19409375
transcript.pyannote[81].end 307.34159375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 308.40471875
transcript.pyannote[82].end 309.34971875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 309.82221875
transcript.pyannote[83].end 310.61534375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 311.23971875
transcript.pyannote[84].end 313.46721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 314.00721875
transcript.pyannote[85].end 315.22221875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 315.89721875
transcript.pyannote[86].end 316.84221875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 317.24721875
transcript.pyannote[87].end 317.77034375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 318.41159375
transcript.pyannote[88].end 319.05284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 319.45784375
transcript.pyannote[89].end 319.69409375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 319.86284375
transcript.pyannote[90].end 320.67284375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 322.22534375
transcript.pyannote[91].end 322.84971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 322.93409375
transcript.pyannote[92].end 324.48659375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 325.63409375
transcript.pyannote[93].end 325.95471875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 326.27534375
transcript.pyannote[94].end 329.61659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 330.27471875
transcript.pyannote[95].end 334.03784375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 334.79721875
transcript.pyannote[96].end 335.52284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 336.65346875
transcript.pyannote[97].end 338.29034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 338.67846875
transcript.pyannote[98].end 339.62346875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 340.53471875
transcript.pyannote[99].end 342.10409375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 342.81284375
transcript.pyannote[100].end 348.68534375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 349.39409375
transcript.pyannote[101].end 353.86596875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 354.91221875
transcript.pyannote[102].end 356.56596875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 357.52784375
transcript.pyannote[103].end 359.14784375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 359.85659375
transcript.pyannote[104].end 360.02534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 360.02534375
transcript.pyannote[105].end 367.51784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 360.05909375
transcript.pyannote[106].end 361.39221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 368.00721875
transcript.pyannote[107].end 374.47034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 370.26846875
transcript.pyannote[108].end 372.02346875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 375.21284375
transcript.pyannote[109].end 396.77909375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 395.12534375
transcript.pyannote[110].end 395.78346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 396.77909375
transcript.pyannote[111].end 396.84659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 396.84659375
transcript.pyannote[112].end 396.96471875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 396.96471875
transcript.pyannote[113].end 422.46284375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 398.61846875
transcript.pyannote[114].end 399.04034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 423.01971875
transcript.pyannote[115].end 425.02784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 425.02784375
transcript.pyannote[116].end 435.16971875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 425.12909375
transcript.pyannote[117].end 425.92221875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 435.54096875
transcript.pyannote[118].end 439.32096875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 439.77659375
transcript.pyannote[119].end 440.40096875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 440.70471875
transcript.pyannote[120].end 445.59846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 446.02034375
transcript.pyannote[121].end 452.88846875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 453.02346875
transcript.pyannote[122].end 454.55909375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 454.79534375
transcript.pyannote[123].end 458.28846875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 458.59221875
transcript.pyannote[124].end 459.26721875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 460.39784375
transcript.pyannote[125].end 460.41471875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 460.41471875
transcript.pyannote[126].end 476.02409375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 466.54034375
transcript.pyannote[127].end 466.97909375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 473.37471875
transcript.pyannote[128].end 473.74596875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 476.02409375
transcript.pyannote[129].end 476.91846875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 477.64409375
transcript.pyannote[130].end 483.22971875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 481.94721875
transcript.pyannote[131].end 485.74409375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 485.37284375
transcript.pyannote[132].end 485.84534375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 485.84534375
transcript.pyannote[133].end 485.87909375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 485.89596875
transcript.pyannote[134].end 489.84471875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 490.06409375
transcript.pyannote[135].end 495.10971875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 494.68784375
transcript.pyannote[136].end 495.00846875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 495.27846875
transcript.pyannote[137].end 498.70409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 499.21034375
transcript.pyannote[138].end 499.54784375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 499.73346875
transcript.pyannote[139].end 508.40721875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 509.82471875
transcript.pyannote[140].end 513.48659375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 513.92534375
transcript.pyannote[141].end 519.51096875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 518.44784375
transcript.pyannote[142].end 539.60909375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 538.73159375
transcript.pyannote[143].end 541.66784375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 540.90846875
transcript.pyannote[144].end 541.26284375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 541.98846875
transcript.pyannote[145].end 544.62096875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 545.24534375
transcript.pyannote[146].end 548.06346875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 548.06346875
transcript.pyannote[147].end 548.09721875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 548.31659375
transcript.pyannote[148].end 548.38409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 548.38409375
transcript.pyannote[149].end 548.43471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 549.32909375
transcript.pyannote[150].end 549.34596875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 549.34596875
transcript.pyannote[151].end 602.43471875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 554.49284375
transcript.pyannote[152].end 554.88096875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 558.98159375
transcript.pyannote[153].end 559.30221875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 562.25534375
transcript.pyannote[154].end 562.96409375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 572.00909375
transcript.pyannote[155].end 572.07659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 572.27909375
transcript.pyannote[156].end 572.31284375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 576.07596875
transcript.pyannote[157].end 576.10971875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 592.44471875
transcript.pyannote[158].end 592.68096875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 602.65409375
transcript.pyannote[159].end 602.68784375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 602.68784375
transcript.pyannote[160].end 602.77221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 602.77221875
transcript.pyannote[161].end 617.28471875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 605.67471875
transcript.pyannote[162].end 606.38346875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 613.94346875
transcript.pyannote[163].end 614.56784375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 617.99346875
transcript.pyannote[164].end 623.35971875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 623.69721875
transcript.pyannote[165].end 624.99659375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 625.48596875
transcript.pyannote[166].end 631.47659375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 631.47659375
transcript.pyannote[167].end 632.57346875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 632.57346875
transcript.pyannote[168].end 632.59034375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 632.59034375
transcript.pyannote[169].end 640.20096875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 632.60721875
transcript.pyannote[170].end 634.09221875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 640.47096875
transcript.pyannote[171].end 646.46159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 646.46159375
transcript.pyannote[172].end 646.47846875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 647.20409375
transcript.pyannote[173].end 648.87471875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 647.49096875
transcript.pyannote[174].end 647.52471875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 647.54159375
transcript.pyannote[175].end 648.23346875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 649.22909375
transcript.pyannote[176].end 649.24596875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 649.24596875
transcript.pyannote[177].end 649.73534375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 649.68471875
transcript.pyannote[178].end 650.14034375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 651.15284375
transcript.pyannote[179].end 656.58659375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 651.22034375
transcript.pyannote[180].end 651.91221875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 652.75596875
transcript.pyannote[181].end 653.68409375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 655.79346875
transcript.pyannote[182].end 656.48534375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 656.78909375
transcript.pyannote[183].end 657.68346875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 658.54409375
transcript.pyannote[184].end 659.21909375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 658.54409375
transcript.pyannote[185].end 661.69971875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 662.30721875
transcript.pyannote[186].end 679.68846875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 662.42534375
transcript.pyannote[187].end 662.93159375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 669.07409375
transcript.pyannote[188].end 670.25534375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 679.85721875
transcript.pyannote[189].end 681.57846875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 681.67971875
transcript.pyannote[190].end 683.97471875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 684.83534375
transcript.pyannote[191].end 685.05471875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 685.81409375
transcript.pyannote[192].end 686.42159375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 686.96159375
transcript.pyannote[193].end 689.05409375
transcript.whisperx[0].start 13.548
transcript.whisperx[0].end 15.609
transcript.whisperx[0].text 好 謝謝請農業部陳部長恭喜部長 謝謝委員好部長 今天針對第7條有四個文版本 但是有兩個方向這個第一個方向是蟹鳳跟郭國文的版本就是提高比例 政府出資
transcript.whisperx[1].start 42.609
transcript.whisperx[1].end 70.186
transcript.whisperx[1].text 增加0.5就是农民跟政府比例是1比1.5是这样会增加大概15.5亿对那这个部分也是过来一个方式它造成的效果就是说我们是增加预算但是它每年以后假如30年之后农民可以在30年之后可以每个月大概多领比限制多领7000块左右
transcript.whisperx[2].start 71.448
transcript.whisperx[2].end 95.808
transcript.whisperx[2].text 如果按照限制不改的話大概30年之後大概每個月可以領3萬8如果按照這個1比1.5如果修正通過他每個月可以多領7千塊沒有錯嗎4萬545431限制多7千塊左右對好如果按照第二個方向我們調整政府跟農民的負擔比例農民市政府6就是40% 60%
transcript.whisperx[3].start 97.95
transcript.whisperx[3].end 102.696
transcript.whisperx[3].text 那正午出12% 農民出8%不管是4比6或者3比73比7的話就是農民出6% 正午出14%以4比6這個負擔比來看正午增加多少 6.2億
transcript.whisperx[4].start 120.052
transcript.whisperx[4].end 143.685
transcript.whisperx[4].text 對 6.2億好 那你如果變成3比7的話政府出7成然後農民負擔這個3成的話大概增加10億左右嗎差不多好 差不多10億好 以這個方式來看30年之後保障還是一樣是維持這個3萬8是但是呢 這個過程中啊它每年大概可以少繳1萬到1萬5我這樣算沒有錯嗎差不多
transcript.whisperx[5].start 146.208
transcript.whisperx[5].end 167.948
transcript.whisperx[5].text 我覺得這兩種方式各有利弊一方面這個農民可以有更大的誘因如果按照第二個版本比例如果農民負擔比例降低到三成政府出七成的話還每個月繳的金額很少會增加誘因那剩下22萬人有資格現在投保參加的只有11萬只有50%對不對
transcript.whisperx[6].start 170.851
transcript.whisperx[6].end 200.02
transcript.whisperx[6].text 那已經實行四年了我們目標是涵蓋力要越高越好 對不對來保障這個農民退休的權益嘛我們現在是雙軌制除了老農今天之外這個最重要的這個農退這個部分最重要嘛所以我們要怎麼樣讓這個投保率參加的這個農民能夠增加你要訂到一個目標值比如說五年之後你要提升到這個15萬 16萬甚至到七成
transcript.whisperx[7].start 200.99
transcript.whisperx[7].end 205.442
transcript.whisperx[7].text 那要达到这个目标你的所用的途径你的approach是什么
transcript.whisperx[8].start 207.366
transcript.whisperx[8].end 232.713
transcript.whisperx[8].text 我看你們好像這兩種版本這兩種方式你們都覺得好像會跟其他的這個產業跟其他的這個退休的這個體系來比較會有些不公平我不這麼認為我覺得農民是相對弱勢相對弱勢政府對他們照顧越多或者更多本來就是應該的所以你看就整體政府的預算來看
transcript.whisperx[9].start 233.775
transcript.whisperx[9].end 261.222
transcript.whisperx[9].text 你如果用1比1.5 政府多出0.5 這才增加15.5億那你如果把這個農民跟政府負擔把它調整成3比7 也增加10億3比7的話 當初因為沒有加入 最主要原因是因為他的經濟負擔不起假設政府出資到七成 每個月繳的金額已經大幅降低了 他有沒有意願 他會有意願
transcript.whisperx[10].start 263.197
transcript.whisperx[10].end 279.406
transcript.whisperx[10].text 所以我個人覺得啦這個不管是第一個途徑或第二個途徑我覺得這個農業部都應該要考慮的不是說以現有的這個制度就僵固化在那邊那我認為這個
transcript.whisperx[11].start 281.747
transcript.whisperx[11].end 306.739
transcript.whisperx[11].text 今天排這個法案審查固然重要我們希望說立法院如果達成共識給農業部更大的支持我們希望說這個經費這個預算對農業部大概不是問題那我們是要說服說所有全體國人相對的弱勢是農民對農民多一點的照顧福利是應當的
transcript.whisperx[12].start 308.484
transcript.whisperx[12].end 333.553
transcript.whisperx[12].text 所以我個人覺得 你如果要嘛要把這個政府提交的比例 把1比1變成1比1.5我覺得乾脆1比21比2啦 1比2你才增加30億 對不對好 如果你要調整政府跟農民負擔比例現在4比6 我認為還太過保守 我覺得3比7
transcript.whisperx[13].start 337.004
transcript.whisperx[13].end 358.824
transcript.whisperx[13].text 這樣子農民才有意願才有能力去參加這個制度我們當初這個修法我們立法通過就是為了讓這個所有農民都可以參加嘛可是14年才只有50%就代表問題出在哪裡就誘因不夠所以從這兩個方向我想請教一下陳部長
transcript.whisperx[14].start 360.072
transcript.whisperx[14].end 373.813
transcript.whisperx[14].text 我跟委員報告就是這兩個版本最大的差異一個是1比1.5的部分是對於未來他的退休以後的領的會比較多我了解我剛剛不是講過了嗎那我的重點就是說我們希望說
transcript.whisperx[15].start 375.65
transcript.whisperx[15].end 391.075
transcript.whisperx[15].text 保障不變的話政府多繳一點我們現在初步的送到行政院的規劃是60比40但是我們會另外設計一個誘因就是說你只要參加農民退休除禁的部分的時候相對的農業的相關的補助我可以加碼
transcript.whisperx[16].start 391.815
transcript.whisperx[16].end 410.507
transcript.whisperx[16].text 那因為現在的青農他的收入不是很穩定你講到重點了就是加碼還要加上彈性也就是說單方面的加碼你要保持一個彈性的制度比如說有重農 實際重農但是初期他無力提繳你給他一個遞延期或者農業生產他有週期
transcript.whisperx[17].start 411.387
transcript.whisperx[17].end 439.069
transcript.whisperx[17].text 他如果欠收的時候你是不是可以讓他遞延提繳或者是這個豐年補繳不要說一欠收年他就可以遞延提繳那豐收年再補繳解決他有現金流的問題我覺得委員講這個彈性的部分我們倒是可以去設計就是說像有時候遇到天災的時候他沒辦法繳的時候我是不是可以延後繳那這個部分現在是用六個月我們現在是六個月
transcript.whisperx[18].start 440.13
transcript.whisperx[18].end 458.888
transcript.whisperx[18].text 6個月補繳的方式那未來我們會看實際的狀況那我剛才講的一個重點就是退休儲金你如果參加退休儲金我所有的其他的農業的補助我可以加碼的話其實對農民是更有誘因的因為那個部分的一個加碼讓他減少的負擔會比較低一點
transcript.whisperx[19].start 460.524
transcript.whisperx[19].end 476.673
transcript.whisperx[19].text 所以这两个途径我觉得应该说是你们农业部要仔细去思考而且不是说只是说说而已真的是你送到院的版本是四十六十嘛对不对就监测这个大概是蔡玉玉的版本嘛
transcript.whisperx[20].start 478.031
transcript.whisperx[20].end 492.316
transcript.whisperx[20].text 是我們先送到行政院的後來委員要陸陸續續所以你原先送到行政院就是40、60那我建議是不是可以再前進一點因為物價你要繳到30年30年之後他才領3萬8所以30年之後物價是怎麼變化這個很難去預估
transcript.whisperx[21].start 499.246
transcript.whisperx[21].end 505.638
transcript.whisperx[21].text 對不對 你現在這個10年前股價還才1萬多少這個3年前股價才1萬3現在已經3萬7 2萬7了
transcript.whisperx[22].start 510.098
transcript.whisperx[22].end 533.317
transcript.whisperx[22].text 所以這個物價是非常高 變化非常大所以我覺得應該要超前部署的話是不是可以一次就到位掉30 70我跟您報告因為我們這次調整除了退休儲金以外我們對老農今天也做了一些調整那這個部分其實加起來然後再加上我們剛才說的就是你有參加退休儲金我的補助有加碼的部分那個加碼的額度
transcript.whisperx[23].start 535.878
transcript.whisperx[23].end 547.903
transcript.whisperx[23].text 會對農民有更多的誘因我們希望說委員能夠支持這樣的一個方式如果這兩個制度加起來老農今天在你做一些調整你這個相關的機制調整調整的方向是如何
transcript.whisperx[24].start 549.383
transcript.whisperx[24].end 565.07
transcript.whisperx[24].text 老農津貼老農津貼基本上分三個部分第一個部分是額度的部分現在是四年一次嘛那我們希望因為四年可能像CBI可能變成八九去了像今年到現在為止已經五點多了嘛所以我們希望說四年之中如果說
transcript.whisperx[25].start 566.31
transcript.whisperx[25].end 587.521
transcript.whisperx[25].text 兩年的過程中我們檢視一次如果說他CPI超過某個百分比我們就啟動調整但是四年做起來不變這第一個第二個部分就是排富的部分土地公告限值到目前為止過去一直沒有調整已經累積已經增加了64.78%然後我們一次會把它補到足然後同時我也一直跟行政院
transcript.whisperx[26].start 588.381
transcript.whisperx[26].end 616.935
transcript.whisperx[26].text 建议就是说农民的房子他是辛苦一辈子才去买的他不容易去做变现他当然有生活所以我们希望说能够还有一个更好的一个设计的一个机制让这个排付条款能够再拉高一点你说是按照CPI调整或者按照这个COV就是土地公告限制好这些制度什么时候可以上路我们也已经送到行政院去了也跟院长报告过然后我们现在在合订之后就可以实施等没有等立法院
transcript.whisperx[27].start 618.055
transcript.whisperx[27].end 644.681
transcript.whisperx[27].text 通過院會送到立法沒有 行政院通過院會送到立法院來的話就可以進到排審還是要修法對 現在已經修完了只是還沒有經過立法沒有 行政院的院會通過還要送到立法院嘛然後再送到立法院 對所以這兩個方向彌補這兩個方向補足之後未來30年之後這兩個制度加起來你預估農民退休一個月可以領多少錢大概3萬8左右
transcript.whisperx[28].start 647.845
transcript.whisperx[28].end 661.116
transcript.whisperx[28].text 現在還是3萬8嗎調整之後喔老農今天又調了喔老農今天又調了可能會到4萬去了喔30年後如果勞退呢勞退才3萬3而已農退如果再調呢
transcript.whisperx[29].start 662.852
transcript.whisperx[29].end 688.139
transcript.whisperx[29].text 因為勞退的部分我們並沒有去了解他未來他的CPI不是 我說農退 農退你如果農退如果再調的話農退調還有那個老農經驗也調的話那相關的30年後大概會將近4萬4萬左右啦現在算起來是3萬8嘛那未來可能會增加到4萬左右好 謝謝謝謝我們邱志偉委員