iVOD / 16618

Field Value
IVOD_ID 16618
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16618
日期 2025-04-24
會議資料.會議代碼 委員會-11-3-26-7
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議
影片種類 Full
開始時間 2025-04-24T08:31:00+08:00
結束時間 2025-04-24T13:47:00+08:00
影片長度 05:16:00
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a685730853615cfad272ce1f9dc46489d241bd9360bdedb0852207effc1ce8bf22065ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-04-24T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議(事由:邀請衛生福利部部長、農業部次長、經濟部次長、外交部次長、行政院經貿談判辦公室副總談判代表、行政院食品安全辦公室主任針對「美豬、美牛進口零關稅且如何保障國人食品安全及農民權益」進行專題報告,並備質詢。 【4月23日及24日二天一次會】)
委員名稱 完整會議
委員發言時間 08:31:00 - 13:47:00
transcript.pyannote[0].speaker SPEAKER_26
transcript.pyannote[0].start 206.96909375
transcript.pyannote[0].end 207.57659375
transcript.pyannote[1].speaker SPEAKER_18
transcript.pyannote[1].start 271.46534375
transcript.pyannote[1].end 273.57471875
transcript.pyannote[2].speaker SPEAKER_29
transcript.pyannote[2].start 274.46909375
transcript.pyannote[2].end 275.27909375
transcript.pyannote[3].speaker SPEAKER_18
transcript.pyannote[3].start 274.85721875
transcript.pyannote[3].end 278.77221875
transcript.pyannote[4].speaker SPEAKER_29
transcript.pyannote[4].start 279.32909375
transcript.pyannote[4].end 279.34596875
transcript.pyannote[5].speaker SPEAKER_18
transcript.pyannote[5].start 279.34596875
transcript.pyannote[5].end 284.67846875
transcript.pyannote[6].speaker SPEAKER_29
transcript.pyannote[6].start 279.37971875
transcript.pyannote[6].end 280.37534375
transcript.pyannote[7].speaker SPEAKER_29
transcript.pyannote[7].start 284.86409375
transcript.pyannote[7].end 288.67784375
transcript.pyannote[8].speaker SPEAKER_18
transcript.pyannote[8].start 287.15909375
transcript.pyannote[8].end 290.02784375
transcript.pyannote[9].speaker SPEAKER_18
transcript.pyannote[9].start 290.53409375
transcript.pyannote[9].end 297.13221875
transcript.pyannote[10].speaker SPEAKER_29
transcript.pyannote[10].start 297.18284375
transcript.pyannote[10].end 306.05909375
transcript.pyannote[11].speaker SPEAKER_18
transcript.pyannote[11].start 299.14034375
transcript.pyannote[11].end 301.87409375
transcript.pyannote[12].speaker SPEAKER_18
transcript.pyannote[12].start 304.97909375
transcript.pyannote[12].end 316.55534375
transcript.pyannote[13].speaker SPEAKER_29
transcript.pyannote[13].start 307.15596875
transcript.pyannote[13].end 307.51034375
transcript.pyannote[14].speaker SPEAKER_18
transcript.pyannote[14].start 316.99409375
transcript.pyannote[14].end 320.04846875
transcript.pyannote[15].speaker SPEAKER_18
transcript.pyannote[15].start 320.20034375
transcript.pyannote[15].end 337.22721875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 330.86534375
transcript.pyannote[16].end 330.88221875
transcript.pyannote[17].speaker SPEAKER_29
transcript.pyannote[17].start 330.88221875
transcript.pyannote[17].end 331.38846875
transcript.pyannote[18].speaker SPEAKER_29
transcript.pyannote[18].start 337.37909375
transcript.pyannote[18].end 348.78659375
transcript.pyannote[19].speaker SPEAKER_18
transcript.pyannote[19].start 342.00284375
transcript.pyannote[19].end 342.03659375
transcript.pyannote[20].speaker SPEAKER_26
transcript.pyannote[20].start 342.03659375
transcript.pyannote[20].end 342.18846875
transcript.pyannote[21].speaker SPEAKER_18
transcript.pyannote[21].start 342.18846875
transcript.pyannote[21].end 342.77909375
transcript.pyannote[22].speaker SPEAKER_26
transcript.pyannote[22].start 348.71909375
transcript.pyannote[22].end 349.09034375
transcript.pyannote[23].speaker SPEAKER_29
transcript.pyannote[23].start 349.03971875
transcript.pyannote[23].end 351.18284375
transcript.pyannote[24].speaker SPEAKER_26
transcript.pyannote[24].start 1237.89659375
transcript.pyannote[24].end 1239.14534375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 1765.02096875
transcript.pyannote[25].end 1767.51846875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 1768.14284375
transcript.pyannote[26].end 1770.04971875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 1770.97784375
transcript.pyannote[27].end 1773.69471875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 1774.11659375
transcript.pyannote[28].end 1777.05284375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 1777.86284375
transcript.pyannote[29].end 1783.80284375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 1784.61284375
transcript.pyannote[30].end 1785.47346875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 1785.89534375
transcript.pyannote[31].end 1804.49159375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 1804.94721875
transcript.pyannote[32].end 1811.88284375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 1814.75159375
transcript.pyannote[33].end 1818.22784375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 1820.89409375
transcript.pyannote[34].end 1823.81346875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 1824.13409375
transcript.pyannote[35].end 1824.45471875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 1825.97346875
transcript.pyannote[36].end 1826.59784375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 1827.74534375
transcript.pyannote[37].end 1829.78721875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 1831.69409375
transcript.pyannote[38].end 1833.82034375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 1836.38534375
transcript.pyannote[39].end 1837.80284375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 1842.61221875
transcript.pyannote[40].end 1844.48534375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 1845.39659375
transcript.pyannote[41].end 1845.76784375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 1846.52721875
transcript.pyannote[42].end 1847.84346875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 1848.28221875
transcript.pyannote[43].end 1854.67784375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 1855.70721875
transcript.pyannote[44].end 1858.57596875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 1859.30159375
transcript.pyannote[45].end 1860.21284375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 1861.00596875
transcript.pyannote[46].end 1863.89159375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 1864.65096875
transcript.pyannote[47].end 1865.68034375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 1866.74346875
transcript.pyannote[48].end 1869.02159375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 1869.54471875
transcript.pyannote[49].end 1870.43909375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 1871.26596875
transcript.pyannote[50].end 1874.18534375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 1874.55659375
transcript.pyannote[51].end 1875.60284375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 1876.66596875
transcript.pyannote[52].end 1879.19721875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 1880.29409375
transcript.pyannote[53].end 1881.91409375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 1882.58909375
transcript.pyannote[54].end 1885.59284375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 1886.94284375
transcript.pyannote[55].end 1887.71909375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 1888.54596875
transcript.pyannote[56].end 1891.02659375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 1891.97159375
transcript.pyannote[57].end 1892.68034375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 1894.24971875
transcript.pyannote[58].end 1898.87346875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 1899.61596875
transcript.pyannote[59].end 1900.39221875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 1901.15159375
transcript.pyannote[60].end 1903.91909375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 1904.94846875
transcript.pyannote[61].end 1905.30284375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 1905.79221875
transcript.pyannote[62].end 1908.00284375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 1910.23034375
transcript.pyannote[63].end 1913.01471875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 1915.90034375
transcript.pyannote[64].end 1917.85784375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 1918.38096875
transcript.pyannote[65].end 1929.43409375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 1932.10034375
transcript.pyannote[66].end 1934.39534375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 1934.68221875
transcript.pyannote[67].end 1935.76221875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 1937.87159375
transcript.pyannote[68].end 1939.62659375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 1940.03159375
transcript.pyannote[69].end 1941.02721875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 1941.51659375
transcript.pyannote[70].end 1942.49534375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 1943.17034375
transcript.pyannote[71].end 1945.53284375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 1946.37659375
transcript.pyannote[72].end 1951.52346875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 1952.02971875
transcript.pyannote[73].end 1953.27846875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 1953.54846875
transcript.pyannote[74].end 1954.74659375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 1954.96596875
transcript.pyannote[75].end 1958.71221875
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 1965.64784375
transcript.pyannote[76].end 1967.20034375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 1968.83721875
transcript.pyannote[77].end 1969.88346875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 1971.01409375
transcript.pyannote[78].end 1978.84409375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 1980.19409375
transcript.pyannote[79].end 1983.11346875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 1983.50159375
transcript.pyannote[80].end 1985.17221875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 1985.52659375
transcript.pyannote[81].end 1985.89784375
transcript.pyannote[82].speaker SPEAKER_21
transcript.pyannote[82].start 1992.88409375
transcript.pyannote[82].end 1993.45784375
transcript.pyannote[83].speaker SPEAKER_21
transcript.pyannote[83].start 1993.74471875
transcript.pyannote[83].end 1995.24659375
transcript.pyannote[84].speaker SPEAKER_21
transcript.pyannote[84].start 1995.87096875
transcript.pyannote[84].end 2002.31721875
transcript.pyannote[85].speaker SPEAKER_21
transcript.pyannote[85].start 2002.78971875
transcript.pyannote[85].end 2005.62471875
transcript.pyannote[86].speaker SPEAKER_21
transcript.pyannote[86].start 2005.94534375
transcript.pyannote[86].end 2016.76221875
transcript.pyannote[87].speaker SPEAKER_21
transcript.pyannote[87].start 2016.86346875
transcript.pyannote[87].end 2020.18784375
transcript.pyannote[88].speaker SPEAKER_21
transcript.pyannote[88].start 2020.50846875
transcript.pyannote[88].end 2026.48221875
transcript.pyannote[89].speaker SPEAKER_21
transcript.pyannote[89].start 2027.07284375
transcript.pyannote[89].end 2032.37159375
transcript.pyannote[90].speaker SPEAKER_21
transcript.pyannote[90].start 2032.79346875
transcript.pyannote[90].end 2035.24034375
transcript.pyannote[91].speaker SPEAKER_21
transcript.pyannote[91].start 2035.54409375
transcript.pyannote[91].end 2036.43846875
transcript.pyannote[92].speaker SPEAKER_21
transcript.pyannote[92].start 2036.97846875
transcript.pyannote[92].end 2038.09221875
transcript.pyannote[93].speaker SPEAKER_21
transcript.pyannote[93].start 2038.90221875
transcript.pyannote[93].end 2041.99034375
transcript.pyannote[94].speaker SPEAKER_21
transcript.pyannote[94].start 2042.12534375
transcript.pyannote[94].end 2044.94346875
transcript.pyannote[95].speaker SPEAKER_21
transcript.pyannote[95].start 2045.66909375
transcript.pyannote[95].end 2049.68534375
transcript.pyannote[96].speaker SPEAKER_21
transcript.pyannote[96].start 2050.37721875
transcript.pyannote[96].end 2050.79909375
transcript.pyannote[97].speaker SPEAKER_21
transcript.pyannote[97].start 2051.17034375
transcript.pyannote[97].end 2053.60034375
transcript.pyannote[98].speaker SPEAKER_21
transcript.pyannote[98].start 2053.66784375
transcript.pyannote[98].end 2060.18159375
transcript.pyannote[99].speaker SPEAKER_21
transcript.pyannote[99].start 2060.62034375
transcript.pyannote[99].end 2061.32909375
transcript.pyannote[100].speaker SPEAKER_21
transcript.pyannote[100].start 2061.97034375
transcript.pyannote[100].end 2067.04971875
transcript.pyannote[101].speaker SPEAKER_21
transcript.pyannote[101].start 2068.19721875
transcript.pyannote[101].end 2075.89221875
transcript.pyannote[102].speaker SPEAKER_21
transcript.pyannote[102].start 2076.53346875
transcript.pyannote[102].end 2077.73159375
transcript.pyannote[103].speaker SPEAKER_21
transcript.pyannote[103].start 2078.91284375
transcript.pyannote[103].end 2081.34284375
transcript.pyannote[104].speaker SPEAKER_21
transcript.pyannote[104].start 2082.16971875
transcript.pyannote[104].end 2084.21159375
transcript.pyannote[105].speaker SPEAKER_21
transcript.pyannote[105].start 2085.20721875
transcript.pyannote[105].end 2085.78096875
transcript.pyannote[106].speaker SPEAKER_21
transcript.pyannote[106].start 2086.06784375
transcript.pyannote[106].end 2090.33721875
transcript.pyannote[107].speaker SPEAKER_21
transcript.pyannote[107].start 2090.67471875
transcript.pyannote[107].end 2091.92346875
transcript.pyannote[108].speaker SPEAKER_21
transcript.pyannote[108].start 2092.86846875
transcript.pyannote[108].end 2095.83846875
transcript.pyannote[109].speaker SPEAKER_21
transcript.pyannote[109].start 2096.31096875
transcript.pyannote[109].end 2098.92659375
transcript.pyannote[110].speaker SPEAKER_21
transcript.pyannote[110].start 2099.55096875
transcript.pyannote[110].end 2101.52534375
transcript.pyannote[111].speaker SPEAKER_21
transcript.pyannote[111].start 2102.09909375
transcript.pyannote[111].end 2103.24659375
transcript.pyannote[112].speaker SPEAKER_21
transcript.pyannote[112].start 2103.82034375
transcript.pyannote[112].end 2106.62159375
transcript.pyannote[113].speaker SPEAKER_21
transcript.pyannote[113].start 2107.12784375
transcript.pyannote[113].end 2110.97534375
transcript.pyannote[114].speaker SPEAKER_21
transcript.pyannote[114].start 2111.66721875
transcript.pyannote[114].end 2115.05909375
transcript.pyannote[115].speaker SPEAKER_21
transcript.pyannote[115].start 2115.61596875
transcript.pyannote[115].end 2117.03346875
transcript.pyannote[116].speaker SPEAKER_21
transcript.pyannote[116].start 2117.33721875
transcript.pyannote[116].end 2120.99909375
transcript.pyannote[117].speaker SPEAKER_21
transcript.pyannote[117].start 2121.77534375
transcript.pyannote[117].end 2128.42409375
transcript.pyannote[118].speaker SPEAKER_21
transcript.pyannote[118].start 2129.04846875
transcript.pyannote[118].end 2131.91721875
transcript.pyannote[119].speaker SPEAKER_21
transcript.pyannote[119].start 2132.08596875
transcript.pyannote[119].end 2134.44846875
transcript.pyannote[120].speaker SPEAKER_21
transcript.pyannote[120].start 2134.92096875
transcript.pyannote[120].end 2140.92846875
transcript.pyannote[121].speaker SPEAKER_21
transcript.pyannote[121].start 2141.18159375
transcript.pyannote[121].end 2141.89034375
transcript.pyannote[122].speaker SPEAKER_21
transcript.pyannote[122].start 2142.31221875
transcript.pyannote[122].end 2142.63284375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 2145.70409375
transcript.pyannote[123].end 2146.73346875
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 2147.20596875
transcript.pyannote[124].end 2149.18034375
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 2149.80471875
transcript.pyannote[125].end 2151.49221875
transcript.pyannote[126].speaker SPEAKER_10
transcript.pyannote[126].start 2158.29284375
transcript.pyannote[126].end 2161.51596875
transcript.pyannote[127].speaker SPEAKER_10
transcript.pyannote[127].start 2161.88721875
transcript.pyannote[127].end 2165.02596875
transcript.pyannote[128].speaker SPEAKER_10
transcript.pyannote[128].start 2165.49846875
transcript.pyannote[128].end 2169.56534375
transcript.pyannote[129].speaker SPEAKER_10
transcript.pyannote[129].start 2170.35846875
transcript.pyannote[129].end 2177.63159375
transcript.pyannote[130].speaker SPEAKER_10
transcript.pyannote[130].start 2177.96909375
transcript.pyannote[130].end 2179.85909375
transcript.pyannote[131].speaker SPEAKER_10
transcript.pyannote[131].start 2180.11221875
transcript.pyannote[131].end 2182.39034375
transcript.pyannote[132].speaker SPEAKER_10
transcript.pyannote[132].start 2182.66034375
transcript.pyannote[132].end 2183.09909375
transcript.pyannote[133].speaker SPEAKER_10
transcript.pyannote[133].start 2183.21721875
transcript.pyannote[133].end 2184.46596875
transcript.pyannote[134].speaker SPEAKER_10
transcript.pyannote[134].start 2184.55034375
transcript.pyannote[134].end 2189.34284375
transcript.pyannote[135].speaker SPEAKER_10
transcript.pyannote[135].start 2189.84909375
transcript.pyannote[135].end 2196.93659375
transcript.pyannote[136].speaker SPEAKER_10
transcript.pyannote[136].start 2197.81409375
transcript.pyannote[136].end 2200.76721875
transcript.pyannote[137].speaker SPEAKER_10
transcript.pyannote[137].start 2201.77971875
transcript.pyannote[137].end 2206.85909375
transcript.pyannote[138].speaker SPEAKER_10
transcript.pyannote[138].start 2207.41596875
transcript.pyannote[138].end 2211.43221875
transcript.pyannote[139].speaker SPEAKER_10
transcript.pyannote[139].start 2212.19159375
transcript.pyannote[139].end 2220.98346875
transcript.pyannote[140].speaker SPEAKER_10
transcript.pyannote[140].start 2221.28721875
transcript.pyannote[140].end 2228.17221875
transcript.pyannote[141].speaker SPEAKER_10
transcript.pyannote[141].start 2228.56034375
transcript.pyannote[141].end 2231.10846875
transcript.pyannote[142].speaker SPEAKER_10
transcript.pyannote[142].start 2231.71596875
transcript.pyannote[142].end 2239.44471875
transcript.pyannote[143].speaker SPEAKER_10
transcript.pyannote[143].start 2239.73159375
transcript.pyannote[143].end 2242.93784375
transcript.pyannote[144].speaker SPEAKER_10
transcript.pyannote[144].start 2243.91659375
transcript.pyannote[144].end 2246.00909375
transcript.pyannote[145].speaker SPEAKER_10
transcript.pyannote[145].start 2246.27909375
transcript.pyannote[145].end 2249.65409375
transcript.pyannote[146].speaker SPEAKER_10
transcript.pyannote[146].start 2249.87346875
transcript.pyannote[146].end 2251.10534375
transcript.pyannote[147].speaker SPEAKER_10
transcript.pyannote[147].start 2251.34159375
transcript.pyannote[147].end 2262.10784375
transcript.pyannote[148].speaker SPEAKER_10
transcript.pyannote[148].start 2262.25971875
transcript.pyannote[148].end 2270.12346875
transcript.pyannote[149].speaker SPEAKER_10
transcript.pyannote[149].start 2270.24159375
transcript.pyannote[149].end 2274.71346875
transcript.pyannote[150].speaker SPEAKER_10
transcript.pyannote[150].start 2275.43909375
transcript.pyannote[150].end 2288.48346875
transcript.pyannote[151].speaker SPEAKER_10
transcript.pyannote[151].start 2288.63534375
transcript.pyannote[151].end 2291.33534375
transcript.pyannote[152].speaker SPEAKER_10
transcript.pyannote[152].start 2291.50409375
transcript.pyannote[152].end 2292.83721875
transcript.pyannote[153].speaker SPEAKER_10
transcript.pyannote[153].start 2293.73159375
transcript.pyannote[153].end 2294.82846875
transcript.pyannote[154].speaker SPEAKER_10
transcript.pyannote[154].start 2295.33471875
transcript.pyannote[154].end 2299.70534375
transcript.pyannote[155].speaker SPEAKER_10
transcript.pyannote[155].start 2300.56596875
transcript.pyannote[155].end 2302.00034375
transcript.pyannote[156].speaker SPEAKER_10
transcript.pyannote[156].start 2302.57409375
transcript.pyannote[156].end 2305.40909375
transcript.pyannote[157].speaker SPEAKER_10
transcript.pyannote[157].start 2306.20221875
transcript.pyannote[157].end 2307.07971875
transcript.pyannote[158].speaker SPEAKER_10
transcript.pyannote[158].start 2307.38346875
transcript.pyannote[158].end 2313.64409375
transcript.pyannote[159].speaker SPEAKER_10
transcript.pyannote[159].start 2313.89721875
transcript.pyannote[159].end 2316.79971875
transcript.pyannote[160].speaker SPEAKER_10
transcript.pyannote[160].start 2317.17096875
transcript.pyannote[160].end 2320.83284375
transcript.pyannote[161].speaker SPEAKER_10
transcript.pyannote[161].start 2321.13659375
transcript.pyannote[161].end 2324.59596875
transcript.pyannote[162].speaker SPEAKER_10
transcript.pyannote[162].start 2324.79846875
transcript.pyannote[162].end 2327.07659375
transcript.pyannote[163].speaker SPEAKER_10
transcript.pyannote[163].start 2327.43096875
transcript.pyannote[163].end 2330.95784375
transcript.pyannote[164].speaker SPEAKER_10
transcript.pyannote[164].start 2331.05909375
transcript.pyannote[164].end 2333.37096875
transcript.pyannote[165].speaker SPEAKER_10
transcript.pyannote[165].start 2333.92784375
transcript.pyannote[165].end 2347.88346875
transcript.pyannote[166].speaker SPEAKER_10
transcript.pyannote[166].start 2347.90034375
transcript.pyannote[166].end 2350.93784375
transcript.pyannote[167].speaker SPEAKER_10
transcript.pyannote[167].start 2351.22471875
transcript.pyannote[167].end 2355.42659375
transcript.pyannote[168].speaker SPEAKER_10
transcript.pyannote[168].start 2355.98346875
transcript.pyannote[168].end 2361.58596875
transcript.pyannote[169].speaker SPEAKER_10
transcript.pyannote[169].start 2361.95721875
transcript.pyannote[169].end 2363.17221875
transcript.pyannote[170].speaker SPEAKER_10
transcript.pyannote[170].start 2363.59409375
transcript.pyannote[170].end 2363.98221875
transcript.pyannote[171].speaker SPEAKER_10
transcript.pyannote[171].start 2364.35346875
transcript.pyannote[171].end 2367.61034375
transcript.pyannote[172].speaker SPEAKER_10
transcript.pyannote[172].start 2367.94784375
transcript.pyannote[172].end 2373.56721875
transcript.pyannote[173].speaker SPEAKER_10
transcript.pyannote[173].start 2374.19159375
transcript.pyannote[173].end 2376.58784375
transcript.pyannote[174].speaker SPEAKER_10
transcript.pyannote[174].start 2376.92534375
transcript.pyannote[174].end 2381.26221875
transcript.pyannote[175].speaker SPEAKER_10
transcript.pyannote[175].start 2381.51534375
transcript.pyannote[175].end 2384.08034375
transcript.pyannote[176].speaker SPEAKER_10
transcript.pyannote[176].start 2384.63721875
transcript.pyannote[176].end 2395.08284375
transcript.pyannote[177].speaker SPEAKER_10
transcript.pyannote[177].start 2395.26846875
transcript.pyannote[177].end 2401.74846875
transcript.pyannote[178].speaker SPEAKER_10
transcript.pyannote[178].start 2402.27159375
transcript.pyannote[178].end 2424.27659375
transcript.pyannote[179].speaker SPEAKER_10
transcript.pyannote[179].start 2424.37784375
transcript.pyannote[179].end 2429.35596875
transcript.pyannote[180].speaker SPEAKER_10
transcript.pyannote[180].start 2429.64284375
transcript.pyannote[180].end 2438.23221875
transcript.pyannote[181].speaker SPEAKER_10
transcript.pyannote[181].start 2438.92409375
transcript.pyannote[181].end 2447.09159375
transcript.pyannote[182].speaker SPEAKER_10
transcript.pyannote[182].start 2447.51346875
transcript.pyannote[182].end 2451.39471875
transcript.pyannote[183].speaker SPEAKER_10
transcript.pyannote[183].start 2451.74909375
transcript.pyannote[183].end 2452.55909375
transcript.pyannote[184].speaker SPEAKER_10
transcript.pyannote[184].start 2453.63909375
transcript.pyannote[184].end 2457.45284375
transcript.pyannote[185].speaker SPEAKER_10
transcript.pyannote[185].start 2457.94221875
transcript.pyannote[185].end 2461.94159375
transcript.pyannote[186].speaker SPEAKER_10
transcript.pyannote[186].start 2462.11034375
transcript.pyannote[186].end 2478.41159375
transcript.pyannote[187].speaker SPEAKER_10
transcript.pyannote[187].start 2478.69846875
transcript.pyannote[187].end 2484.92534375
transcript.pyannote[188].speaker SPEAKER_10
transcript.pyannote[188].start 2485.33034375
transcript.pyannote[188].end 2490.83159375
transcript.pyannote[189].speaker SPEAKER_10
transcript.pyannote[189].start 2491.67534375
transcript.pyannote[189].end 2496.48471875
transcript.pyannote[190].speaker SPEAKER_10
transcript.pyannote[190].start 2496.72096875
transcript.pyannote[190].end 2498.61096875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 2501.49659375
transcript.pyannote[191].end 2503.03221875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 2503.42034375
transcript.pyannote[192].end 2506.39034375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 2506.54221875
transcript.pyannote[193].end 2507.18346875
transcript.pyannote[194].speaker SPEAKER_12
transcript.pyannote[194].start 2513.95034375
transcript.pyannote[194].end 2517.61221875
transcript.pyannote[195].speaker SPEAKER_12
transcript.pyannote[195].start 2517.86534375
transcript.pyannote[195].end 2521.86471875
transcript.pyannote[196].speaker SPEAKER_12
transcript.pyannote[196].start 2522.15159375
transcript.pyannote[196].end 2524.41284375
transcript.pyannote[197].speaker SPEAKER_12
transcript.pyannote[197].start 2524.63221875
transcript.pyannote[197].end 2528.49659375
transcript.pyannote[198].speaker SPEAKER_12
transcript.pyannote[198].start 2528.96909375
transcript.pyannote[198].end 2533.82909375
transcript.pyannote[199].speaker SPEAKER_12
transcript.pyannote[199].start 2534.01471875
transcript.pyannote[199].end 2536.91721875
transcript.pyannote[200].speaker SPEAKER_12
transcript.pyannote[200].start 2537.49096875
transcript.pyannote[200].end 2539.81971875
transcript.pyannote[201].speaker SPEAKER_12
transcript.pyannote[201].start 2540.12346875
transcript.pyannote[201].end 2543.63346875
transcript.pyannote[202].speaker SPEAKER_12
transcript.pyannote[202].start 2543.93721875
transcript.pyannote[202].end 2546.16471875
transcript.pyannote[203].speaker SPEAKER_12
transcript.pyannote[203].start 2546.50221875
transcript.pyannote[203].end 2551.75034375
transcript.pyannote[204].speaker SPEAKER_12
transcript.pyannote[204].start 2551.98659375
transcript.pyannote[204].end 2554.55159375
transcript.pyannote[205].speaker SPEAKER_12
transcript.pyannote[205].start 2555.05784375
transcript.pyannote[205].end 2556.17159375
transcript.pyannote[206].speaker SPEAKER_12
transcript.pyannote[206].start 2556.49221875
transcript.pyannote[206].end 2561.58846875
transcript.pyannote[207].speaker SPEAKER_12
transcript.pyannote[207].start 2561.79096875
transcript.pyannote[207].end 2563.25909375
transcript.pyannote[208].speaker SPEAKER_12
transcript.pyannote[208].start 2563.88346875
transcript.pyannote[208].end 2568.47346875
transcript.pyannote[209].speaker SPEAKER_12
transcript.pyannote[209].start 2568.70971875
transcript.pyannote[209].end 2573.46846875
transcript.pyannote[210].speaker SPEAKER_12
transcript.pyannote[210].start 2573.80596875
transcript.pyannote[210].end 2576.67471875
transcript.pyannote[211].speaker SPEAKER_12
transcript.pyannote[211].start 2576.97846875
transcript.pyannote[211].end 2581.43346875
transcript.pyannote[212].speaker SPEAKER_12
transcript.pyannote[212].start 2581.97346875
transcript.pyannote[212].end 2583.81284375
transcript.pyannote[213].speaker SPEAKER_12
transcript.pyannote[213].start 2583.94784375
transcript.pyannote[213].end 2586.31034375
transcript.pyannote[214].speaker SPEAKER_12
transcript.pyannote[214].start 2586.41159375
transcript.pyannote[214].end 2588.45346875
transcript.pyannote[215].speaker SPEAKER_12
transcript.pyannote[215].start 2588.58846875
transcript.pyannote[215].end 2591.72721875
transcript.pyannote[216].speaker SPEAKER_12
transcript.pyannote[216].start 2592.25034375
transcript.pyannote[216].end 2595.57471875
transcript.pyannote[217].speaker SPEAKER_12
transcript.pyannote[217].start 2595.70971875
transcript.pyannote[217].end 2596.16534375
transcript.pyannote[218].speaker SPEAKER_12
transcript.pyannote[218].start 2596.50284375
transcript.pyannote[218].end 2599.21971875
transcript.pyannote[219].speaker SPEAKER_12
transcript.pyannote[219].start 2599.57409375
transcript.pyannote[219].end 2603.86034375
transcript.pyannote[220].speaker SPEAKER_12
transcript.pyannote[220].start 2604.13034375
transcript.pyannote[220].end 2607.28596875
transcript.pyannote[221].speaker SPEAKER_12
transcript.pyannote[221].start 2607.67409375
transcript.pyannote[221].end 2616.88784375
transcript.pyannote[222].speaker SPEAKER_12
transcript.pyannote[222].start 2617.14096875
transcript.pyannote[222].end 2621.22471875
transcript.pyannote[223].speaker SPEAKER_12
transcript.pyannote[223].start 2621.54534375
transcript.pyannote[223].end 2626.89471875
transcript.pyannote[224].speaker SPEAKER_12
transcript.pyannote[224].start 2627.75534375
transcript.pyannote[224].end 2631.88971875
transcript.pyannote[225].speaker SPEAKER_12
transcript.pyannote[225].start 2632.19346875
transcript.pyannote[225].end 2641.10346875
transcript.pyannote[226].speaker SPEAKER_12
transcript.pyannote[226].start 2641.44096875
transcript.pyannote[226].end 2642.11596875
transcript.pyannote[227].speaker SPEAKER_12
transcript.pyannote[227].start 2642.70659375
transcript.pyannote[227].end 2658.80534375
transcript.pyannote[228].speaker SPEAKER_12
transcript.pyannote[228].start 2659.05846875
transcript.pyannote[228].end 2661.96096875
transcript.pyannote[229].speaker SPEAKER_12
transcript.pyannote[229].start 2662.26471875
transcript.pyannote[229].end 2665.33596875
transcript.pyannote[230].speaker SPEAKER_12
transcript.pyannote[230].start 2665.55534375
transcript.pyannote[230].end 2668.49159375
transcript.pyannote[231].speaker SPEAKER_12
transcript.pyannote[231].start 2668.77846875
transcript.pyannote[231].end 2670.48284375
transcript.pyannote[232].speaker SPEAKER_12
transcript.pyannote[232].start 2670.70221875
transcript.pyannote[232].end 2675.47784375
transcript.pyannote[233].speaker SPEAKER_12
transcript.pyannote[233].start 2675.66346875
transcript.pyannote[233].end 2677.40159375
transcript.pyannote[234].speaker SPEAKER_12
transcript.pyannote[234].start 2677.51971875
transcript.pyannote[234].end 2688.45471875
transcript.pyannote[235].speaker SPEAKER_12
transcript.pyannote[235].start 2688.53909375
transcript.pyannote[235].end 2692.85909375
transcript.pyannote[236].speaker SPEAKER_12
transcript.pyannote[236].start 2692.94346875
transcript.pyannote[236].end 2695.99784375
transcript.pyannote[237].speaker SPEAKER_12
transcript.pyannote[237].start 2696.25096875
transcript.pyannote[237].end 2698.42784375
transcript.pyannote[238].speaker SPEAKER_12
transcript.pyannote[238].start 2698.63034375
transcript.pyannote[238].end 2701.78596875
transcript.pyannote[239].speaker SPEAKER_12
transcript.pyannote[239].start 2702.22471875
transcript.pyannote[239].end 2706.17346875
transcript.pyannote[240].speaker SPEAKER_12
transcript.pyannote[240].start 2706.35909375
transcript.pyannote[240].end 2708.87346875
transcript.pyannote[241].speaker SPEAKER_12
transcript.pyannote[241].start 2709.36284375
transcript.pyannote[241].end 2712.99096875
transcript.pyannote[242].speaker SPEAKER_12
transcript.pyannote[242].start 2713.14284375
transcript.pyannote[242].end 2715.06659375
transcript.pyannote[243].speaker SPEAKER_12
transcript.pyannote[243].start 2715.70784375
transcript.pyannote[243].end 2724.01034375
transcript.pyannote[244].speaker SPEAKER_12
transcript.pyannote[244].start 2724.17909375
transcript.pyannote[244].end 2731.51971875
transcript.pyannote[245].speaker SPEAKER_12
transcript.pyannote[245].start 2731.97534375
transcript.pyannote[245].end 2732.39721875
transcript.pyannote[246].speaker SPEAKER_12
transcript.pyannote[246].start 2732.88659375
transcript.pyannote[246].end 2736.12659375
transcript.pyannote[247].speaker SPEAKER_12
transcript.pyannote[247].start 2736.54846875
transcript.pyannote[247].end 2744.53034375
transcript.pyannote[248].speaker SPEAKER_12
transcript.pyannote[248].start 2745.30659375
transcript.pyannote[248].end 2751.11159375
transcript.pyannote[249].speaker SPEAKER_12
transcript.pyannote[249].start 2751.39846875
transcript.pyannote[249].end 2761.20284375
transcript.pyannote[250].speaker SPEAKER_12
transcript.pyannote[250].start 2761.75971875
transcript.pyannote[250].end 2767.69971875
transcript.pyannote[251].speaker SPEAKER_12
transcript.pyannote[251].start 2768.07096875
transcript.pyannote[251].end 2772.01971875
transcript.pyannote[252].speaker SPEAKER_12
transcript.pyannote[252].start 2772.28971875
transcript.pyannote[252].end 2775.86721875
transcript.pyannote[253].speaker SPEAKER_12
transcript.pyannote[253].start 2776.05284375
transcript.pyannote[253].end 2777.58846875
transcript.pyannote[254].speaker SPEAKER_12
transcript.pyannote[254].start 2777.80784375
transcript.pyannote[254].end 2780.30534375
transcript.pyannote[255].speaker SPEAKER_12
transcript.pyannote[255].start 2780.59221875
transcript.pyannote[255].end 2782.68471875
transcript.pyannote[256].speaker SPEAKER_12
transcript.pyannote[256].start 2783.00534375
transcript.pyannote[256].end 2792.65784375
transcript.pyannote[257].speaker SPEAKER_12
transcript.pyannote[257].start 2793.11346875
transcript.pyannote[257].end 2796.96096875
transcript.pyannote[258].speaker SPEAKER_12
transcript.pyannote[258].start 2797.16346875
transcript.pyannote[258].end 2810.81534375
transcript.pyannote[259].speaker SPEAKER_12
transcript.pyannote[259].start 2811.05159375
transcript.pyannote[259].end 2814.74721875
transcript.pyannote[260].speaker SPEAKER_12
transcript.pyannote[260].start 2814.88221875
transcript.pyannote[260].end 2825.02409375
transcript.pyannote[261].speaker SPEAKER_12
transcript.pyannote[261].start 2825.26034375
transcript.pyannote[261].end 2829.68159375
transcript.pyannote[262].speaker SPEAKER_12
transcript.pyannote[262].start 2829.79971875
transcript.pyannote[262].end 2842.84409375
transcript.pyannote[263].speaker SPEAKER_12
transcript.pyannote[263].start 2842.94534375
transcript.pyannote[263].end 2845.89846875
transcript.pyannote[264].speaker SPEAKER_12
transcript.pyannote[264].start 2845.99971875
transcript.pyannote[264].end 2847.90659375
transcript.pyannote[265].speaker SPEAKER_12
transcript.pyannote[265].start 2848.46346875
transcript.pyannote[265].end 2858.01471875
transcript.pyannote[266].speaker SPEAKER_12
transcript.pyannote[266].start 2858.13284375
transcript.pyannote[266].end 2865.38909375
transcript.pyannote[267].speaker SPEAKER_12
transcript.pyannote[267].start 2865.54096875
transcript.pyannote[267].end 2869.35471875
transcript.pyannote[268].speaker SPEAKER_12
transcript.pyannote[268].start 2869.67534375
transcript.pyannote[268].end 2870.87346875
transcript.pyannote[269].speaker SPEAKER_12
transcript.pyannote[269].start 2871.43034375
transcript.pyannote[269].end 2877.13409375
transcript.pyannote[270].speaker SPEAKER_12
transcript.pyannote[270].start 2877.79221875
transcript.pyannote[270].end 2884.35659375
transcript.pyannote[271].speaker SPEAKER_12
transcript.pyannote[271].start 2884.82909375
transcript.pyannote[271].end 2889.77346875
transcript.pyannote[272].speaker SPEAKER_12
transcript.pyannote[272].start 2890.04346875
transcript.pyannote[272].end 2893.03034375
transcript.pyannote[273].speaker SPEAKER_12
transcript.pyannote[273].start 2893.21596875
transcript.pyannote[273].end 2900.60721875
transcript.pyannote[274].speaker SPEAKER_12
transcript.pyannote[274].start 2901.11346875
transcript.pyannote[274].end 2909.17971875
transcript.pyannote[275].speaker SPEAKER_12
transcript.pyannote[275].start 2910.14159375
transcript.pyannote[275].end 2918.10659375
transcript.pyannote[276].speaker SPEAKER_12
transcript.pyannote[276].start 2918.44409375
transcript.pyannote[276].end 2921.26221875
transcript.pyannote[277].speaker SPEAKER_12
transcript.pyannote[277].start 2921.41409375
transcript.pyannote[277].end 2925.29534375
transcript.pyannote[278].speaker SPEAKER_12
transcript.pyannote[278].start 2925.51471875
transcript.pyannote[278].end 2926.27409375
transcript.pyannote[279].speaker SPEAKER_12
transcript.pyannote[279].start 2926.32471875
transcript.pyannote[279].end 2927.64096875
transcript.pyannote[280].speaker SPEAKER_12
transcript.pyannote[280].start 2928.09659375
transcript.pyannote[280].end 2933.10846875
transcript.pyannote[281].speaker SPEAKER_12
transcript.pyannote[281].start 2933.24346875
transcript.pyannote[281].end 2935.55534375
transcript.pyannote[282].speaker SPEAKER_12
transcript.pyannote[282].start 2935.72409375
transcript.pyannote[282].end 2938.37346875
transcript.pyannote[283].speaker SPEAKER_12
transcript.pyannote[283].start 2938.93034375
transcript.pyannote[283].end 2942.55846875
transcript.pyannote[284].speaker SPEAKER_12
transcript.pyannote[284].start 2943.55409375
transcript.pyannote[284].end 2945.56221875
transcript.pyannote[285].speaker SPEAKER_12
transcript.pyannote[285].start 2945.88284375
transcript.pyannote[285].end 2948.38034375
transcript.pyannote[286].speaker SPEAKER_12
transcript.pyannote[286].start 2948.51534375
transcript.pyannote[286].end 2952.58221875
transcript.pyannote[287].speaker SPEAKER_12
transcript.pyannote[287].start 2952.88596875
transcript.pyannote[287].end 2954.48909375
transcript.pyannote[288].speaker SPEAKER_12
transcript.pyannote[288].start 2954.64096875
transcript.pyannote[288].end 2957.86409375
transcript.pyannote[289].speaker SPEAKER_12
transcript.pyannote[289].start 2958.13409375
transcript.pyannote[289].end 2962.21784375
transcript.pyannote[290].speaker SPEAKER_12
transcript.pyannote[290].start 2962.52159375
transcript.pyannote[290].end 2965.20471875
transcript.pyannote[291].speaker SPEAKER_12
transcript.pyannote[291].start 2965.66034375
transcript.pyannote[291].end 2966.72346875
transcript.pyannote[292].speaker SPEAKER_12
transcript.pyannote[292].start 2967.02721875
transcript.pyannote[292].end 2967.63471875
transcript.pyannote[293].speaker SPEAKER_12
transcript.pyannote[293].start 2967.75284375
transcript.pyannote[293].end 2971.33034375
transcript.pyannote[294].speaker SPEAKER_12
transcript.pyannote[294].start 2971.54971875
transcript.pyannote[294].end 2976.02159375
transcript.pyannote[295].speaker SPEAKER_12
transcript.pyannote[295].start 2976.17346875
transcript.pyannote[295].end 2978.26596875
transcript.pyannote[296].speaker SPEAKER_12
transcript.pyannote[296].start 2979.02534375
transcript.pyannote[296].end 2983.44659375
transcript.pyannote[297].speaker SPEAKER_12
transcript.pyannote[297].start 2983.90221875
transcript.pyannote[297].end 2984.39159375
transcript.pyannote[298].speaker SPEAKER_03
transcript.pyannote[298].start 2988.35721875
transcript.pyannote[298].end 2996.18721875
transcript.pyannote[299].speaker SPEAKER_05
transcript.pyannote[299].start 3004.60784375
transcript.pyannote[299].end 3006.76784375
transcript.pyannote[300].speaker SPEAKER_05
transcript.pyannote[300].start 3006.90284375
transcript.pyannote[300].end 3011.27346875
transcript.pyannote[301].speaker SPEAKER_05
transcript.pyannote[301].start 3011.47596875
transcript.pyannote[301].end 3014.63159375
transcript.pyannote[302].speaker SPEAKER_05
transcript.pyannote[302].start 3014.83409375
transcript.pyannote[302].end 3018.98534375
transcript.pyannote[303].speaker SPEAKER_05
transcript.pyannote[303].start 3019.15409375
transcript.pyannote[303].end 3020.16659375
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 3020.21721875
transcript.pyannote[304].end 3023.44034375
transcript.pyannote[305].speaker SPEAKER_05
transcript.pyannote[305].start 3023.77784375
transcript.pyannote[305].end 3028.26659375
transcript.pyannote[306].speaker SPEAKER_05
transcript.pyannote[306].start 3028.46909375
transcript.pyannote[306].end 3030.32534375
transcript.pyannote[307].speaker SPEAKER_05
transcript.pyannote[307].start 3030.42659375
transcript.pyannote[307].end 3031.92846875
transcript.pyannote[308].speaker SPEAKER_05
transcript.pyannote[308].start 3032.09721875
transcript.pyannote[308].end 3037.15971875
transcript.pyannote[309].speaker SPEAKER_05
transcript.pyannote[309].start 3037.32846875
transcript.pyannote[309].end 3039.37034375
transcript.pyannote[310].speaker SPEAKER_05
transcript.pyannote[310].start 3039.45471875
transcript.pyannote[310].end 3043.87596875
transcript.pyannote[311].speaker SPEAKER_05
transcript.pyannote[311].start 3044.14596875
transcript.pyannote[311].end 3047.92596875
transcript.pyannote[312].speaker SPEAKER_05
transcript.pyannote[312].start 3048.24659375
transcript.pyannote[312].end 3051.67221875
transcript.pyannote[313].speaker SPEAKER_05
transcript.pyannote[313].start 3051.97596875
transcript.pyannote[313].end 3058.00034375
transcript.pyannote[314].speaker SPEAKER_05
transcript.pyannote[314].start 3058.30409375
transcript.pyannote[314].end 3086.36721875
transcript.pyannote[315].speaker SPEAKER_05
transcript.pyannote[315].start 3086.60346875
transcript.pyannote[315].end 3089.06721875
transcript.pyannote[316].speaker SPEAKER_05
transcript.pyannote[316].start 3089.10096875
transcript.pyannote[316].end 3101.74034375
transcript.pyannote[317].speaker SPEAKER_05
transcript.pyannote[317].start 3101.77409375
transcript.pyannote[317].end 3105.40221875
transcript.pyannote[318].speaker SPEAKER_05
transcript.pyannote[318].start 3105.72284375
transcript.pyannote[318].end 3116.64096875
transcript.pyannote[319].speaker SPEAKER_05
transcript.pyannote[319].start 3116.82659375
transcript.pyannote[319].end 3127.81221875
transcript.pyannote[320].speaker SPEAKER_05
transcript.pyannote[320].start 3127.96409375
transcript.pyannote[320].end 3148.61909375
transcript.pyannote[321].speaker SPEAKER_05
transcript.pyannote[321].start 3149.39534375
transcript.pyannote[321].end 3156.98909375
transcript.pyannote[322].speaker SPEAKER_05
transcript.pyannote[322].start 3157.32659375
transcript.pyannote[322].end 3190.26659375
transcript.pyannote[323].speaker SPEAKER_05
transcript.pyannote[323].start 3190.73909375
transcript.pyannote[323].end 3198.24846875
transcript.pyannote[324].speaker SPEAKER_05
transcript.pyannote[324].start 3198.87284375
transcript.pyannote[324].end 3208.06971875
transcript.pyannote[325].speaker SPEAKER_05
transcript.pyannote[325].start 3208.47471875
transcript.pyannote[325].end 3210.19596875
transcript.pyannote[326].speaker SPEAKER_05
transcript.pyannote[326].start 3210.31409375
transcript.pyannote[326].end 3211.30971875
transcript.pyannote[327].speaker SPEAKER_05
transcript.pyannote[327].start 3211.79909375
transcript.pyannote[327].end 3214.29659375
transcript.pyannote[328].speaker SPEAKER_05
transcript.pyannote[328].start 3214.38096875
transcript.pyannote[328].end 3216.27096875
transcript.pyannote[329].speaker SPEAKER_05
transcript.pyannote[329].start 3216.37221875
transcript.pyannote[329].end 3221.85659375
transcript.pyannote[330].speaker SPEAKER_05
transcript.pyannote[330].start 3222.12659375
transcript.pyannote[330].end 3224.67471875
transcript.pyannote[331].speaker SPEAKER_05
transcript.pyannote[331].start 3225.23159375
transcript.pyannote[331].end 3226.56471875
transcript.pyannote[332].speaker SPEAKER_05
transcript.pyannote[332].start 3227.00346875
transcript.pyannote[332].end 3228.94409375
transcript.pyannote[333].speaker SPEAKER_05
transcript.pyannote[333].start 3229.19721875
transcript.pyannote[333].end 3248.85659375
transcript.pyannote[334].speaker SPEAKER_05
transcript.pyannote[334].start 3248.99159375
transcript.pyannote[334].end 3250.12221875
transcript.pyannote[335].speaker SPEAKER_05
transcript.pyannote[335].start 3250.39221875
transcript.pyannote[335].end 3250.83096875
transcript.pyannote[336].speaker SPEAKER_05
transcript.pyannote[336].start 3251.82659375
transcript.pyannote[336].end 3252.41721875
transcript.pyannote[337].speaker SPEAKER_05
transcript.pyannote[337].start 3252.68721875
transcript.pyannote[337].end 3254.57721875
transcript.pyannote[338].speaker SPEAKER_05
transcript.pyannote[338].start 3254.81346875
transcript.pyannote[338].end 3256.41659375
transcript.pyannote[339].speaker SPEAKER_05
transcript.pyannote[339].start 3256.63596875
transcript.pyannote[339].end 3258.47534375
transcript.pyannote[340].speaker SPEAKER_05
transcript.pyannote[340].start 3258.69471875
transcript.pyannote[340].end 3259.48784375
transcript.pyannote[341].speaker SPEAKER_05
transcript.pyannote[341].start 3260.11221875
transcript.pyannote[341].end 3265.47846875
transcript.pyannote[342].speaker SPEAKER_05
transcript.pyannote[342].start 3265.59659375
transcript.pyannote[342].end 3266.87909375
transcript.pyannote[343].speaker SPEAKER_03
transcript.pyannote[343].start 3271.33409375
transcript.pyannote[343].end 3273.96659375
transcript.pyannote[344].speaker SPEAKER_03
transcript.pyannote[344].start 3274.28721875
transcript.pyannote[344].end 3275.13096875
transcript.pyannote[345].speaker SPEAKER_03
transcript.pyannote[345].start 3277.98284375
transcript.pyannote[345].end 3278.37096875
transcript.pyannote[346].speaker SPEAKER_03
transcript.pyannote[346].start 3279.94034375
transcript.pyannote[346].end 3283.50096875
transcript.pyannote[347].speaker SPEAKER_03
transcript.pyannote[347].start 3283.68659375
transcript.pyannote[347].end 3285.05346875
transcript.pyannote[348].speaker SPEAKER_03
transcript.pyannote[348].start 3286.55534375
transcript.pyannote[348].end 3288.95159375
transcript.pyannote[349].speaker SPEAKER_03
transcript.pyannote[349].start 3289.30596875
transcript.pyannote[349].end 3293.71034375
transcript.pyannote[350].speaker SPEAKER_03
transcript.pyannote[350].start 3295.12784375
transcript.pyannote[350].end 3302.04659375
transcript.pyannote[351].speaker SPEAKER_03
transcript.pyannote[351].start 3302.31659375
transcript.pyannote[351].end 3314.34846875
transcript.pyannote[352].speaker SPEAKER_03
transcript.pyannote[352].start 3317.60534375
transcript.pyannote[352].end 3317.63909375
transcript.pyannote[353].speaker SPEAKER_11
transcript.pyannote[353].start 3317.63909375
transcript.pyannote[353].end 3317.68971875
transcript.pyannote[354].speaker SPEAKER_03
transcript.pyannote[354].start 3317.68971875
transcript.pyannote[354].end 3318.04409375
transcript.pyannote[355].speaker SPEAKER_11
transcript.pyannote[355].start 3318.04409375
transcript.pyannote[355].end 3318.11159375
transcript.pyannote[356].speaker SPEAKER_03
transcript.pyannote[356].start 3318.11159375
transcript.pyannote[356].end 3318.12846875
transcript.pyannote[357].speaker SPEAKER_11
transcript.pyannote[357].start 3319.61346875
transcript.pyannote[357].end 3321.55409375
transcript.pyannote[358].speaker SPEAKER_11
transcript.pyannote[358].start 3321.89159375
transcript.pyannote[358].end 3325.21596875
transcript.pyannote[359].speaker SPEAKER_21
transcript.pyannote[359].start 3329.67096875
transcript.pyannote[359].end 3330.27846875
transcript.pyannote[360].speaker SPEAKER_11
transcript.pyannote[360].start 3330.51471875
transcript.pyannote[360].end 3332.52284375
transcript.pyannote[361].speaker SPEAKER_11
transcript.pyannote[361].start 3332.89409375
transcript.pyannote[361].end 3337.36596875
transcript.pyannote[362].speaker SPEAKER_11
transcript.pyannote[362].start 3337.73721875
transcript.pyannote[362].end 3358.07159375
transcript.pyannote[363].speaker SPEAKER_21
transcript.pyannote[363].start 3359.55659375
transcript.pyannote[363].end 3360.13034375
transcript.pyannote[364].speaker SPEAKER_21
transcript.pyannote[364].start 3361.09221875
transcript.pyannote[364].end 3362.76284375
transcript.pyannote[365].speaker SPEAKER_21
transcript.pyannote[365].start 3363.30284375
transcript.pyannote[365].end 3366.44159375
transcript.pyannote[366].speaker SPEAKER_21
transcript.pyannote[366].start 3367.48784375
transcript.pyannote[366].end 3369.32721875
transcript.pyannote[367].speaker SPEAKER_21
transcript.pyannote[367].start 3369.74909375
transcript.pyannote[367].end 3378.20346875
transcript.pyannote[368].speaker SPEAKER_11
transcript.pyannote[368].start 3376.90409375
transcript.pyannote[368].end 3377.37659375
transcript.pyannote[369].speaker SPEAKER_11
transcript.pyannote[369].start 3377.49471875
transcript.pyannote[369].end 3382.42221875
transcript.pyannote[370].speaker SPEAKER_21
transcript.pyannote[370].start 3378.33846875
transcript.pyannote[370].end 3378.96284375
transcript.pyannote[371].speaker SPEAKER_11
transcript.pyannote[371].start 3382.69221875
transcript.pyannote[371].end 3384.24471875
transcript.pyannote[372].speaker SPEAKER_21
transcript.pyannote[372].start 3385.18971875
transcript.pyannote[372].end 3391.09596875
transcript.pyannote[373].speaker SPEAKER_21
transcript.pyannote[373].start 3391.16346875
transcript.pyannote[373].end 3394.90971875
transcript.pyannote[374].speaker SPEAKER_21
transcript.pyannote[374].start 3395.19659375
transcript.pyannote[374].end 3401.33909375
transcript.pyannote[375].speaker SPEAKER_11
transcript.pyannote[375].start 3401.33909375
transcript.pyannote[375].end 3411.51471875
transcript.pyannote[376].speaker SPEAKER_21
transcript.pyannote[376].start 3402.25034375
transcript.pyannote[376].end 3404.05596875
transcript.pyannote[377].speaker SPEAKER_11
transcript.pyannote[377].start 3411.63284375
transcript.pyannote[377].end 3430.02659375
transcript.pyannote[378].speaker SPEAKER_05
transcript.pyannote[378].start 3431.05596875
transcript.pyannote[378].end 3450.24284375
transcript.pyannote[379].speaker SPEAKER_05
transcript.pyannote[379].start 3450.46221875
transcript.pyannote[379].end 3452.57159375
transcript.pyannote[380].speaker SPEAKER_05
transcript.pyannote[380].start 3452.80784375
transcript.pyannote[380].end 3467.18534375
transcript.pyannote[381].speaker SPEAKER_11
transcript.pyannote[381].start 3467.57346875
transcript.pyannote[381].end 3475.70721875
transcript.pyannote[382].speaker SPEAKER_11
transcript.pyannote[382].start 3475.97721875
transcript.pyannote[382].end 3486.28784375
transcript.pyannote[383].speaker SPEAKER_11
transcript.pyannote[383].start 3486.77721875
transcript.pyannote[383].end 3514.72221875
transcript.pyannote[384].speaker SPEAKER_11
transcript.pyannote[384].start 3515.07659375
transcript.pyannote[384].end 3520.76346875
transcript.pyannote[385].speaker SPEAKER_11
transcript.pyannote[385].start 3520.88159375
transcript.pyannote[385].end 3522.09659375
transcript.pyannote[386].speaker SPEAKER_11
transcript.pyannote[386].start 3522.41721875
transcript.pyannote[386].end 3525.16784375
transcript.pyannote[387].speaker SPEAKER_21
transcript.pyannote[387].start 3525.48846875
transcript.pyannote[387].end 3526.55159375
transcript.pyannote[388].speaker SPEAKER_21
transcript.pyannote[388].start 3527.27721875
transcript.pyannote[388].end 3529.03221875
transcript.pyannote[389].speaker SPEAKER_21
transcript.pyannote[389].start 3529.84221875
transcript.pyannote[389].end 3542.22846875
transcript.pyannote[390].speaker SPEAKER_21
transcript.pyannote[390].start 3542.76846875
transcript.pyannote[390].end 3546.34596875
transcript.pyannote[391].speaker SPEAKER_21
transcript.pyannote[391].start 3546.59909375
transcript.pyannote[391].end 3547.89846875
transcript.pyannote[392].speaker SPEAKER_11
transcript.pyannote[392].start 3547.86471875
transcript.pyannote[392].end 3620.79846875
transcript.pyannote[393].speaker SPEAKER_21
transcript.pyannote[393].start 3548.35409375
transcript.pyannote[393].end 3548.50596875
transcript.pyannote[394].speaker SPEAKER_21
transcript.pyannote[394].start 3620.79846875
transcript.pyannote[394].end 3626.35034375
transcript.pyannote[395].speaker SPEAKER_26
transcript.pyannote[395].start 3626.90721875
transcript.pyannote[395].end 3629.16846875
transcript.pyannote[396].speaker SPEAKER_21
transcript.pyannote[396].start 3627.26159375
transcript.pyannote[396].end 3633.87659375
transcript.pyannote[397].speaker SPEAKER_26
transcript.pyannote[397].start 3629.60721875
transcript.pyannote[397].end 3631.75034375
transcript.pyannote[398].speaker SPEAKER_26
transcript.pyannote[398].start 3632.86409375
transcript.pyannote[398].end 3634.90596875
transcript.pyannote[399].speaker SPEAKER_21
transcript.pyannote[399].start 3634.48409375
transcript.pyannote[399].end 3643.37721875
transcript.pyannote[400].speaker SPEAKER_26
transcript.pyannote[400].start 3636.86346875
transcript.pyannote[400].end 3638.34846875
transcript.pyannote[401].speaker SPEAKER_26
transcript.pyannote[401].start 3640.30596875
transcript.pyannote[401].end 3640.81221875
transcript.pyannote[402].speaker SPEAKER_21
transcript.pyannote[402].start 3643.69784375
transcript.pyannote[402].end 3649.92471875
transcript.pyannote[403].speaker SPEAKER_11
transcript.pyannote[403].start 3643.71471875
transcript.pyannote[403].end 3644.11971875
transcript.pyannote[404].speaker SPEAKER_11
transcript.pyannote[404].start 3646.43159375
transcript.pyannote[404].end 3646.75221875
transcript.pyannote[405].speaker SPEAKER_11
transcript.pyannote[405].start 3649.09784375
transcript.pyannote[405].end 3678.34221875
transcript.pyannote[406].speaker SPEAKER_21
transcript.pyannote[406].start 3649.94159375
transcript.pyannote[406].end 3650.88659375
transcript.pyannote[407].speaker SPEAKER_21
transcript.pyannote[407].start 3652.06784375
transcript.pyannote[407].end 3652.45596875
transcript.pyannote[408].speaker SPEAKER_11
transcript.pyannote[408].start 3678.81471875
transcript.pyannote[408].end 3681.39659375
transcript.pyannote[409].speaker SPEAKER_11
transcript.pyannote[409].start 3683.11784375
transcript.pyannote[409].end 3689.15909375
transcript.pyannote[410].speaker SPEAKER_11
transcript.pyannote[410].start 3689.29409375
transcript.pyannote[410].end 3691.85909375
transcript.pyannote[411].speaker SPEAKER_21
transcript.pyannote[411].start 3692.34846875
transcript.pyannote[411].end 3692.38221875
transcript.pyannote[412].speaker SPEAKER_20
transcript.pyannote[412].start 3692.38221875
transcript.pyannote[412].end 3692.61846875
transcript.pyannote[413].speaker SPEAKER_21
transcript.pyannote[413].start 3692.61846875
transcript.pyannote[413].end 3692.63534375
transcript.pyannote[414].speaker SPEAKER_11
transcript.pyannote[414].start 3692.71971875
transcript.pyannote[414].end 3699.26721875
transcript.pyannote[415].speaker SPEAKER_16
transcript.pyannote[415].start 3699.48659375
transcript.pyannote[415].end 3699.50346875
transcript.pyannote[416].speaker SPEAKER_11
transcript.pyannote[416].start 3699.50346875
transcript.pyannote[416].end 3699.58784375
transcript.pyannote[417].speaker SPEAKER_16
transcript.pyannote[417].start 3699.58784375
transcript.pyannote[417].end 3699.67221875
transcript.pyannote[418].speaker SPEAKER_11
transcript.pyannote[418].start 3699.67221875
transcript.pyannote[418].end 3699.68909375
transcript.pyannote[419].speaker SPEAKER_11
transcript.pyannote[419].start 3699.90846875
transcript.pyannote[419].end 3700.43159375
transcript.pyannote[420].speaker SPEAKER_11
transcript.pyannote[420].start 3700.66784375
transcript.pyannote[420].end 3711.04596875
transcript.pyannote[421].speaker SPEAKER_21
transcript.pyannote[421].start 3711.23159375
transcript.pyannote[421].end 3715.50096875
transcript.pyannote[422].speaker SPEAKER_11
transcript.pyannote[422].start 3715.50096875
transcript.pyannote[422].end 3716.00721875
transcript.pyannote[423].speaker SPEAKER_21
transcript.pyannote[423].start 3715.51784375
transcript.pyannote[423].end 3715.53471875
transcript.pyannote[424].speaker SPEAKER_21
transcript.pyannote[424].start 3715.55159375
transcript.pyannote[424].end 3717.05346875
transcript.pyannote[425].speaker SPEAKER_21
transcript.pyannote[425].start 3717.20534375
transcript.pyannote[425].end 3721.03596875
transcript.pyannote[426].speaker SPEAKER_11
transcript.pyannote[426].start 3718.25159375
transcript.pyannote[426].end 3719.51721875
transcript.pyannote[427].speaker SPEAKER_11
transcript.pyannote[427].start 3720.37784375
transcript.pyannote[427].end 3720.79971875
transcript.pyannote[428].speaker SPEAKER_33
transcript.pyannote[428].start 3721.03596875
transcript.pyannote[428].end 3722.18346875
transcript.pyannote[429].speaker SPEAKER_21
transcript.pyannote[429].start 3721.45784375
transcript.pyannote[429].end 3721.47471875
transcript.pyannote[430].speaker SPEAKER_11
transcript.pyannote[430].start 3721.47471875
transcript.pyannote[430].end 3724.19159375
transcript.pyannote[431].speaker SPEAKER_33
transcript.pyannote[431].start 3722.53784375
transcript.pyannote[431].end 3723.88784375
transcript.pyannote[432].speaker SPEAKER_33
transcript.pyannote[432].start 3724.37721875
transcript.pyannote[432].end 3736.56096875
transcript.pyannote[433].speaker SPEAKER_33
transcript.pyannote[433].start 3736.61159375
transcript.pyannote[433].end 3752.25471875
transcript.pyannote[434].speaker SPEAKER_11
transcript.pyannote[434].start 3749.28471875
transcript.pyannote[434].end 3749.60534375
transcript.pyannote[435].speaker SPEAKER_11
transcript.pyannote[435].start 3751.02284375
transcript.pyannote[435].end 3787.75971875
transcript.pyannote[436].speaker SPEAKER_11
transcript.pyannote[436].start 3788.08034375
transcript.pyannote[436].end 3804.22971875
transcript.pyannote[437].speaker SPEAKER_11
transcript.pyannote[437].start 3804.75284375
transcript.pyannote[437].end 3831.90471875
transcript.pyannote[438].speaker SPEAKER_11
transcript.pyannote[438].start 3832.68096875
transcript.pyannote[438].end 3835.88721875
transcript.pyannote[439].speaker SPEAKER_11
transcript.pyannote[439].start 3836.57909375
transcript.pyannote[439].end 3839.71784375
transcript.pyannote[440].speaker SPEAKER_11
transcript.pyannote[440].start 3840.13971875
transcript.pyannote[440].end 3849.82596875
transcript.pyannote[441].speaker SPEAKER_11
transcript.pyannote[441].start 3850.39971875
transcript.pyannote[441].end 3851.68221875
transcript.pyannote[442].speaker SPEAKER_11
transcript.pyannote[442].start 3852.13784375
transcript.pyannote[442].end 3852.86346875
transcript.pyannote[443].speaker SPEAKER_21
transcript.pyannote[443].start 3852.40784375
transcript.pyannote[443].end 3852.71159375
transcript.pyannote[444].speaker SPEAKER_21
transcript.pyannote[444].start 3852.86346875
transcript.pyannote[444].end 3867.37596875
transcript.pyannote[445].speaker SPEAKER_21
transcript.pyannote[445].start 3867.89909375
transcript.pyannote[445].end 3876.53909375
transcript.pyannote[446].speaker SPEAKER_11
transcript.pyannote[446].start 3875.77971875
transcript.pyannote[446].end 3880.04909375
transcript.pyannote[447].speaker SPEAKER_21
transcript.pyannote[447].start 3877.12971875
transcript.pyannote[447].end 3904.21409375
transcript.pyannote[448].speaker SPEAKER_11
transcript.pyannote[448].start 3903.26909375
transcript.pyannote[448].end 3928.66596875
transcript.pyannote[449].speaker SPEAKER_11
transcript.pyannote[449].start 3929.17221875
transcript.pyannote[449].end 3955.12596875
transcript.pyannote[450].speaker SPEAKER_11
transcript.pyannote[450].start 3955.53096875
transcript.pyannote[450].end 3963.74909375
transcript.pyannote[451].speaker SPEAKER_11
transcript.pyannote[451].start 3964.01909375
transcript.pyannote[451].end 3981.70409375
transcript.pyannote[452].speaker SPEAKER_11
transcript.pyannote[452].start 3981.73784375
transcript.pyannote[452].end 3988.31909375
transcript.pyannote[453].speaker SPEAKER_11
transcript.pyannote[453].start 3988.69034375
transcript.pyannote[453].end 3991.32284375
transcript.pyannote[454].speaker SPEAKER_21
transcript.pyannote[454].start 3991.55909375
transcript.pyannote[454].end 3991.76159375
transcript.pyannote[455].speaker SPEAKER_21
transcript.pyannote[455].start 3992.79096875
transcript.pyannote[455].end 3997.71846875
transcript.pyannote[456].speaker SPEAKER_21
transcript.pyannote[456].start 3998.03909375
transcript.pyannote[456].end 3999.15284375
transcript.pyannote[457].speaker SPEAKER_21
transcript.pyannote[457].start 3999.57471875
transcript.pyannote[457].end 4005.97034375
transcript.pyannote[458].speaker SPEAKER_11
transcript.pyannote[458].start 4005.76784375
transcript.pyannote[458].end 4005.91971875
transcript.pyannote[459].speaker SPEAKER_11
transcript.pyannote[459].start 4005.97034375
transcript.pyannote[459].end 4006.03784375
transcript.pyannote[460].speaker SPEAKER_21
transcript.pyannote[460].start 4006.03784375
transcript.pyannote[460].end 4007.79284375
transcript.pyannote[461].speaker SPEAKER_11
transcript.pyannote[461].start 4006.67909375
transcript.pyannote[461].end 4008.70409375
transcript.pyannote[462].speaker SPEAKER_21
transcript.pyannote[462].start 4007.92784375
transcript.pyannote[462].end 4013.10846875
transcript.pyannote[463].speaker SPEAKER_11
transcript.pyannote[463].start 4009.04159375
transcript.pyannote[463].end 4010.15534375
transcript.pyannote[464].speaker SPEAKER_21
transcript.pyannote[464].start 4013.37846875
transcript.pyannote[464].end 4016.24721875
transcript.pyannote[465].speaker SPEAKER_11
transcript.pyannote[465].start 4016.24721875
transcript.pyannote[465].end 4027.77284375
transcript.pyannote[466].speaker SPEAKER_03
transcript.pyannote[466].start 4024.65096875
transcript.pyannote[466].end 4025.07284375
transcript.pyannote[467].speaker SPEAKER_03
transcript.pyannote[467].start 4026.03471875
transcript.pyannote[467].end 4030.20284375
transcript.pyannote[468].speaker SPEAKER_03
transcript.pyannote[468].start 4030.40534375
transcript.pyannote[468].end 4030.72596875
transcript.pyannote[469].speaker SPEAKER_03
transcript.pyannote[469].start 4031.85659375
transcript.pyannote[469].end 4034.10096875
transcript.pyannote[470].speaker SPEAKER_13
transcript.pyannote[470].start 4041.69471875
transcript.pyannote[470].end 4046.08221875
transcript.pyannote[471].speaker SPEAKER_21
transcript.pyannote[471].start 4051.75221875
transcript.pyannote[471].end 4052.35971875
transcript.pyannote[472].speaker SPEAKER_13
transcript.pyannote[472].start 4052.35971875
transcript.pyannote[472].end 4052.86596875
transcript.pyannote[473].speaker SPEAKER_13
transcript.pyannote[473].start 4053.32159375
transcript.pyannote[473].end 4077.19971875
transcript.pyannote[474].speaker SPEAKER_21
transcript.pyannote[474].start 4079.54534375
transcript.pyannote[474].end 4091.44221875
transcript.pyannote[475].speaker SPEAKER_13
transcript.pyannote[475].start 4088.35409375
transcript.pyannote[475].end 4088.75909375
transcript.pyannote[476].speaker SPEAKER_13
transcript.pyannote[476].start 4090.04159375
transcript.pyannote[476].end 4090.68284375
transcript.pyannote[477].speaker SPEAKER_13
transcript.pyannote[477].start 4091.25659375
transcript.pyannote[477].end 4094.41221875
transcript.pyannote[478].speaker SPEAKER_13
transcript.pyannote[478].start 4094.96909375
transcript.pyannote[478].end 4100.33534375
transcript.pyannote[479].speaker SPEAKER_13
transcript.pyannote[479].start 4100.62221875
transcript.pyannote[479].end 4101.93846875
transcript.pyannote[480].speaker SPEAKER_13
transcript.pyannote[480].start 4102.49534375
transcript.pyannote[480].end 4103.49096875
transcript.pyannote[481].speaker SPEAKER_13
transcript.pyannote[481].start 4104.73971875
transcript.pyannote[481].end 4117.76721875
transcript.pyannote[482].speaker SPEAKER_13
transcript.pyannote[482].start 4117.91909375
transcript.pyannote[482].end 4124.12909375
transcript.pyannote[483].speaker SPEAKER_13
transcript.pyannote[483].start 4125.19221875
transcript.pyannote[483].end 4126.50846875
transcript.pyannote[484].speaker SPEAKER_21
transcript.pyannote[484].start 4127.57159375
transcript.pyannote[484].end 4127.60534375
transcript.pyannote[485].speaker SPEAKER_13
transcript.pyannote[485].start 4127.60534375
transcript.pyannote[485].end 4128.43221875
transcript.pyannote[486].speaker SPEAKER_21
transcript.pyannote[486].start 4127.63909375
transcript.pyannote[486].end 4127.65596875
transcript.pyannote[487].speaker SPEAKER_21
transcript.pyannote[487].start 4127.67284375
transcript.pyannote[487].end 4127.68971875
transcript.pyannote[488].speaker SPEAKER_21
transcript.pyannote[488].start 4128.16221875
transcript.pyannote[488].end 4129.03971875
transcript.pyannote[489].speaker SPEAKER_21
transcript.pyannote[489].start 4129.05659375
transcript.pyannote[489].end 4129.10721875
transcript.pyannote[490].speaker SPEAKER_13
transcript.pyannote[490].start 4129.10721875
transcript.pyannote[490].end 4132.83659375
transcript.pyannote[491].speaker SPEAKER_21
transcript.pyannote[491].start 4129.12409375
transcript.pyannote[491].end 4129.25909375
transcript.pyannote[492].speaker SPEAKER_13
transcript.pyannote[492].start 4133.19096875
transcript.pyannote[492].end 4153.67721875
transcript.pyannote[493].speaker SPEAKER_13
transcript.pyannote[493].start 4154.36909375
transcript.pyannote[493].end 4154.70659375
transcript.pyannote[494].speaker SPEAKER_13
transcript.pyannote[494].start 4155.51659375
transcript.pyannote[494].end 4158.30096875
transcript.pyannote[495].speaker SPEAKER_13
transcript.pyannote[495].start 4159.58346875
transcript.pyannote[495].end 4161.70971875
transcript.pyannote[496].speaker SPEAKER_13
transcript.pyannote[496].start 4162.01346875
transcript.pyannote[496].end 4162.04721875
transcript.pyannote[497].speaker SPEAKER_13
transcript.pyannote[497].start 4162.11471875
transcript.pyannote[497].end 4164.83159375
transcript.pyannote[498].speaker SPEAKER_13
transcript.pyannote[498].start 4165.08471875
transcript.pyannote[498].end 4166.87346875
transcript.pyannote[499].speaker SPEAKER_13
transcript.pyannote[499].start 4167.29534375
transcript.pyannote[499].end 4169.03346875
transcript.pyannote[500].speaker SPEAKER_21
transcript.pyannote[500].start 4169.26971875
transcript.pyannote[500].end 4172.30721875
transcript.pyannote[501].speaker SPEAKER_21
transcript.pyannote[501].start 4172.74596875
transcript.pyannote[501].end 4184.22096875
transcript.pyannote[502].speaker SPEAKER_13
transcript.pyannote[502].start 4184.22096875
transcript.pyannote[502].end 4213.65096875
transcript.pyannote[503].speaker SPEAKER_21
transcript.pyannote[503].start 4185.14909375
transcript.pyannote[503].end 4185.87471875
transcript.pyannote[504].speaker SPEAKER_13
transcript.pyannote[504].start 4214.08971875
transcript.pyannote[504].end 4218.03846875
transcript.pyannote[505].speaker SPEAKER_20
transcript.pyannote[505].start 4217.76846875
transcript.pyannote[505].end 4218.42659375
transcript.pyannote[506].speaker SPEAKER_13
transcript.pyannote[506].start 4219.13534375
transcript.pyannote[506].end 4258.23471875
transcript.pyannote[507].speaker SPEAKER_13
transcript.pyannote[507].start 4259.14596875
transcript.pyannote[507].end 4279.42971875
transcript.pyannote[508].speaker SPEAKER_21
transcript.pyannote[508].start 4279.63221875
transcript.pyannote[508].end 4294.54971875
transcript.pyannote[509].speaker SPEAKER_21
transcript.pyannote[509].start 4295.29221875
transcript.pyannote[509].end 4296.33846875
transcript.pyannote[510].speaker SPEAKER_13
transcript.pyannote[510].start 4297.11471875
transcript.pyannote[510].end 4301.82284375
transcript.pyannote[511].speaker SPEAKER_33
transcript.pyannote[511].start 4301.82284375
transcript.pyannote[511].end 4302.14346875
transcript.pyannote[512].speaker SPEAKER_13
transcript.pyannote[512].start 4302.14346875
transcript.pyannote[512].end 4302.21096875
transcript.pyannote[513].speaker SPEAKER_33
transcript.pyannote[513].start 4302.21096875
transcript.pyannote[513].end 4302.24471875
transcript.pyannote[514].speaker SPEAKER_33
transcript.pyannote[514].start 4302.46409375
transcript.pyannote[514].end 4316.36909375
transcript.pyannote[515].speaker SPEAKER_33
transcript.pyannote[515].start 4317.02721875
transcript.pyannote[515].end 4318.51221875
transcript.pyannote[516].speaker SPEAKER_33
transcript.pyannote[516].start 4318.96784375
transcript.pyannote[516].end 4327.67534375
transcript.pyannote[517].speaker SPEAKER_33
transcript.pyannote[517].start 4328.85659375
transcript.pyannote[517].end 4332.31596875
transcript.pyannote[518].speaker SPEAKER_33
transcript.pyannote[518].start 4332.43409375
transcript.pyannote[518].end 4334.37471875
transcript.pyannote[519].speaker SPEAKER_33
transcript.pyannote[519].start 4334.88096875
transcript.pyannote[519].end 4353.42659375
transcript.pyannote[520].speaker SPEAKER_33
transcript.pyannote[520].start 4353.54471875
transcript.pyannote[520].end 4357.88159375
transcript.pyannote[521].speaker SPEAKER_33
transcript.pyannote[521].start 4358.33721875
transcript.pyannote[521].end 4362.23534375
transcript.pyannote[522].speaker SPEAKER_13
transcript.pyannote[522].start 4360.37909375
transcript.pyannote[522].end 4361.08784375
transcript.pyannote[523].speaker SPEAKER_13
transcript.pyannote[523].start 4361.57721875
transcript.pyannote[523].end 4366.25159375
transcript.pyannote[524].speaker SPEAKER_13
transcript.pyannote[524].start 4366.84221875
transcript.pyannote[524].end 4373.37284375
transcript.pyannote[525].speaker SPEAKER_13
transcript.pyannote[525].start 4373.87909375
transcript.pyannote[525].end 4376.47784375
transcript.pyannote[526].speaker SPEAKER_13
transcript.pyannote[526].start 4377.10221875
transcript.pyannote[526].end 4388.76284375
transcript.pyannote[527].speaker SPEAKER_13
transcript.pyannote[527].start 4388.99909375
transcript.pyannote[527].end 4399.86659375
transcript.pyannote[528].speaker SPEAKER_13
transcript.pyannote[528].start 4400.49096875
transcript.pyannote[528].end 4402.73534375
transcript.pyannote[529].speaker SPEAKER_21
transcript.pyannote[529].start 4407.10596875
transcript.pyannote[529].end 4423.44096875
transcript.pyannote[530].speaker SPEAKER_21
transcript.pyannote[530].start 4423.60971875
transcript.pyannote[530].end 4429.04346875
transcript.pyannote[531].speaker SPEAKER_21
transcript.pyannote[531].start 4429.14471875
transcript.pyannote[531].end 4431.87846875
transcript.pyannote[532].speaker SPEAKER_13
transcript.pyannote[532].start 4431.59159375
transcript.pyannote[532].end 4431.76034375
transcript.pyannote[533].speaker SPEAKER_13
transcript.pyannote[533].start 4431.87846875
transcript.pyannote[533].end 4431.89534375
transcript.pyannote[534].speaker SPEAKER_21
transcript.pyannote[534].start 4431.89534375
transcript.pyannote[534].end 4431.91221875
transcript.pyannote[535].speaker SPEAKER_13
transcript.pyannote[535].start 4431.91221875
transcript.pyannote[535].end 4431.94596875
transcript.pyannote[536].speaker SPEAKER_21
transcript.pyannote[536].start 4431.94596875
transcript.pyannote[536].end 4431.96284375
transcript.pyannote[537].speaker SPEAKER_21
transcript.pyannote[537].start 4432.28346875
transcript.pyannote[537].end 4436.41784375
transcript.pyannote[538].speaker SPEAKER_13
transcript.pyannote[538].start 4434.03846875
transcript.pyannote[538].end 4434.17346875
transcript.pyannote[539].speaker SPEAKER_13
transcript.pyannote[539].start 4435.59096875
transcript.pyannote[539].end 4437.70034375
transcript.pyannote[540].speaker SPEAKER_13
transcript.pyannote[540].start 4438.51034375
transcript.pyannote[540].end 4464.31221875
transcript.pyannote[541].speaker SPEAKER_21
transcript.pyannote[541].start 4467.45096875
transcript.pyannote[541].end 4477.52534375
transcript.pyannote[542].speaker SPEAKER_21
transcript.pyannote[542].start 4477.99784375
transcript.pyannote[542].end 4478.92596875
transcript.pyannote[543].speaker SPEAKER_13
transcript.pyannote[543].start 4478.65596875
transcript.pyannote[543].end 4512.62534375
transcript.pyannote[544].speaker SPEAKER_21
transcript.pyannote[544].start 4514.38034375
transcript.pyannote[544].end 4517.06346875
transcript.pyannote[545].speaker SPEAKER_10
transcript.pyannote[545].start 4517.83971875
transcript.pyannote[545].end 4525.88909375
transcript.pyannote[546].speaker SPEAKER_13
transcript.pyannote[546].start 4526.34471875
transcript.pyannote[546].end 4526.36159375
transcript.pyannote[547].speaker SPEAKER_10
transcript.pyannote[547].start 4526.36159375
transcript.pyannote[547].end 4526.37846875
transcript.pyannote[548].speaker SPEAKER_13
transcript.pyannote[548].start 4526.37846875
transcript.pyannote[548].end 4529.02784375
transcript.pyannote[549].speaker SPEAKER_10
transcript.pyannote[549].start 4527.67784375
transcript.pyannote[549].end 4531.66034375
transcript.pyannote[550].speaker SPEAKER_10
transcript.pyannote[550].start 4531.86284375
transcript.pyannote[550].end 4532.03159375
transcript.pyannote[551].speaker SPEAKER_13
transcript.pyannote[551].start 4532.21721875
transcript.pyannote[551].end 4534.09034375
transcript.pyannote[552].speaker SPEAKER_13
transcript.pyannote[552].start 4535.01846875
transcript.pyannote[552].end 4539.08534375
transcript.pyannote[553].speaker SPEAKER_13
transcript.pyannote[553].start 4539.89534375
transcript.pyannote[553].end 4544.31659375
transcript.pyannote[554].speaker SPEAKER_13
transcript.pyannote[554].start 4544.95784375
transcript.pyannote[554].end 4569.98346875
transcript.pyannote[555].speaker SPEAKER_13
transcript.pyannote[555].start 4570.08471875
transcript.pyannote[555].end 4573.40909375
transcript.pyannote[556].speaker SPEAKER_13
transcript.pyannote[556].start 4573.45971875
transcript.pyannote[556].end 4574.08409375
transcript.pyannote[557].speaker SPEAKER_21
transcript.pyannote[557].start 4573.71284375
transcript.pyannote[557].end 4573.98284375
transcript.pyannote[558].speaker SPEAKER_21
transcript.pyannote[558].start 4574.08409375
transcript.pyannote[558].end 4574.11784375
transcript.pyannote[559].speaker SPEAKER_21
transcript.pyannote[559].start 4574.23596875
transcript.pyannote[559].end 4577.08784375
transcript.pyannote[560].speaker SPEAKER_21
transcript.pyannote[560].start 4577.12159375
transcript.pyannote[560].end 4581.08721875
transcript.pyannote[561].speaker SPEAKER_21
transcript.pyannote[561].start 4581.72846875
transcript.pyannote[561].end 4592.25846875
transcript.pyannote[562].speaker SPEAKER_13
transcript.pyannote[562].start 4586.48721875
transcript.pyannote[562].end 4586.84159375
transcript.pyannote[563].speaker SPEAKER_13
transcript.pyannote[563].start 4588.14096875
transcript.pyannote[563].end 4588.54596875
transcript.pyannote[564].speaker SPEAKER_13
transcript.pyannote[564].start 4589.96346875
transcript.pyannote[564].end 4600.88159375
transcript.pyannote[565].speaker SPEAKER_13
transcript.pyannote[565].start 4601.43846875
transcript.pyannote[565].end 4610.29784375
transcript.pyannote[566].speaker SPEAKER_13
transcript.pyannote[566].start 4611.56346875
transcript.pyannote[566].end 4612.30596875
transcript.pyannote[567].speaker SPEAKER_21
transcript.pyannote[567].start 4614.83721875
transcript.pyannote[567].end 4630.04159375
transcript.pyannote[568].speaker SPEAKER_13
transcript.pyannote[568].start 4626.48096875
transcript.pyannote[568].end 4627.10534375
transcript.pyannote[569].speaker SPEAKER_13
transcript.pyannote[569].start 4629.65346875
transcript.pyannote[569].end 4641.34784375
transcript.pyannote[570].speaker SPEAKER_13
transcript.pyannote[570].start 4641.58409375
transcript.pyannote[570].end 4657.02471875
transcript.pyannote[571].speaker SPEAKER_13
transcript.pyannote[571].start 4657.58159375
transcript.pyannote[571].end 4679.51909375
transcript.pyannote[572].speaker SPEAKER_13
transcript.pyannote[572].start 4679.85659375
transcript.pyannote[572].end 4682.32034375
transcript.pyannote[573].speaker SPEAKER_13
transcript.pyannote[573].start 4682.86034375
transcript.pyannote[573].end 4685.49284375
transcript.pyannote[574].speaker SPEAKER_33
transcript.pyannote[574].start 4686.79221875
transcript.pyannote[574].end 4687.07909375
transcript.pyannote[575].speaker SPEAKER_33
transcript.pyannote[575].start 4687.68659375
transcript.pyannote[575].end 4690.60596875
transcript.pyannote[576].speaker SPEAKER_33
transcript.pyannote[576].start 4691.01096875
transcript.pyannote[576].end 4737.18096875
transcript.pyannote[577].speaker SPEAKER_00
transcript.pyannote[577].start 4706.36721875
transcript.pyannote[577].end 4706.72159375
transcript.pyannote[578].speaker SPEAKER_00
transcript.pyannote[578].start 4707.22784375
transcript.pyannote[578].end 4707.27846875
transcript.pyannote[579].speaker SPEAKER_26
transcript.pyannote[579].start 4707.27846875
transcript.pyannote[579].end 4707.61596875
transcript.pyannote[580].speaker SPEAKER_00
transcript.pyannote[580].start 4707.61596875
transcript.pyannote[580].end 4707.64971875
transcript.pyannote[581].speaker SPEAKER_13
transcript.pyannote[581].start 4733.99159375
transcript.pyannote[581].end 4734.21096875
transcript.pyannote[582].speaker SPEAKER_13
transcript.pyannote[582].start 4736.99534375
transcript.pyannote[582].end 4778.87909375
transcript.pyannote[583].speaker SPEAKER_13
transcript.pyannote[583].start 4779.35159375
transcript.pyannote[583].end 4783.13159375
transcript.pyannote[584].speaker SPEAKER_21
transcript.pyannote[584].start 4785.96659375
transcript.pyannote[584].end 4798.55534375
transcript.pyannote[585].speaker SPEAKER_21
transcript.pyannote[585].start 4799.21346875
transcript.pyannote[585].end 4809.13596875
transcript.pyannote[586].speaker SPEAKER_21
transcript.pyannote[586].start 4809.70971875
transcript.pyannote[586].end 4822.80471875
transcript.pyannote[587].speaker SPEAKER_21
transcript.pyannote[587].start 4823.34471875
transcript.pyannote[587].end 4828.89659375
transcript.pyannote[588].speaker SPEAKER_13
transcript.pyannote[588].start 4827.34409375
transcript.pyannote[588].end 4827.44534375
transcript.pyannote[589].speaker SPEAKER_13
transcript.pyannote[589].start 4827.49596875
transcript.pyannote[589].end 4827.58034375
transcript.pyannote[590].speaker SPEAKER_13
transcript.pyannote[590].start 4828.89659375
transcript.pyannote[590].end 4831.54596875
transcript.pyannote[591].speaker SPEAKER_13
transcript.pyannote[591].start 4832.74409375
transcript.pyannote[591].end 4876.16346875
transcript.pyannote[592].speaker SPEAKER_13
transcript.pyannote[592].start 4876.43346875
transcript.pyannote[592].end 4888.92096875
transcript.pyannote[593].speaker SPEAKER_13
transcript.pyannote[593].start 4889.46096875
transcript.pyannote[593].end 4902.01596875
transcript.pyannote[594].speaker SPEAKER_13
transcript.pyannote[594].start 4902.42096875
transcript.pyannote[594].end 4922.68784375
transcript.pyannote[595].speaker SPEAKER_13
transcript.pyannote[595].start 4923.34596875
transcript.pyannote[595].end 4925.05034375
transcript.pyannote[596].speaker SPEAKER_13
transcript.pyannote[596].start 4925.52284375
transcript.pyannote[596].end 4926.07971875
transcript.pyannote[597].speaker SPEAKER_21
transcript.pyannote[597].start 4926.55221875
transcript.pyannote[597].end 4936.18784375
transcript.pyannote[598].speaker SPEAKER_13
transcript.pyannote[598].start 4936.18784375
transcript.pyannote[598].end 4975.03409375
transcript.pyannote[599].speaker SPEAKER_21
transcript.pyannote[599].start 4937.03159375
transcript.pyannote[599].end 4937.58846875
transcript.pyannote[600].speaker SPEAKER_21
transcript.pyannote[600].start 4938.63471875
transcript.pyannote[600].end 4940.13659375
transcript.pyannote[601].speaker SPEAKER_21
transcript.pyannote[601].start 4975.15221875
transcript.pyannote[601].end 4979.30346875
transcript.pyannote[602].speaker SPEAKER_13
transcript.pyannote[602].start 4975.55721875
transcript.pyannote[602].end 4977.05909375
transcript.pyannote[603].speaker SPEAKER_03
transcript.pyannote[603].start 4980.11346875
transcript.pyannote[603].end 4986.27284375
transcript.pyannote[604].speaker SPEAKER_03
transcript.pyannote[604].start 4987.36971875
transcript.pyannote[604].end 4989.74909375
transcript.pyannote[605].speaker SPEAKER_00
transcript.pyannote[605].start 4998.01784375
transcript.pyannote[605].end 4998.96284375
transcript.pyannote[606].speaker SPEAKER_00
transcript.pyannote[606].start 4999.58721875
transcript.pyannote[606].end 5001.64596875
transcript.pyannote[607].speaker SPEAKER_00
transcript.pyannote[607].start 5001.78096875
transcript.pyannote[607].end 5002.50659375
transcript.pyannote[608].speaker SPEAKER_22
transcript.pyannote[608].start 5011.61909375
transcript.pyannote[608].end 5017.67721875
transcript.pyannote[609].speaker SPEAKER_22
transcript.pyannote[609].start 5018.28471875
transcript.pyannote[609].end 5018.84159375
transcript.pyannote[610].speaker SPEAKER_22
transcript.pyannote[610].start 5019.71909375
transcript.pyannote[610].end 5054.90346875
transcript.pyannote[611].speaker SPEAKER_22
transcript.pyannote[611].start 5055.67971875
transcript.pyannote[611].end 5057.62034375
transcript.pyannote[612].speaker SPEAKER_22
transcript.pyannote[612].start 5058.53159375
transcript.pyannote[612].end 5059.30784375
transcript.pyannote[613].speaker SPEAKER_22
transcript.pyannote[613].start 5059.71284375
transcript.pyannote[613].end 5060.79284375
transcript.pyannote[614].speaker SPEAKER_22
transcript.pyannote[614].start 5061.21471875
transcript.pyannote[614].end 5065.50096875
transcript.pyannote[615].speaker SPEAKER_22
transcript.pyannote[615].start 5066.31096875
transcript.pyannote[615].end 5074.81596875
transcript.pyannote[616].speaker SPEAKER_22
transcript.pyannote[616].start 5075.52471875
transcript.pyannote[616].end 5076.82409375
transcript.pyannote[617].speaker SPEAKER_22
transcript.pyannote[617].start 5077.16159375
transcript.pyannote[617].end 5090.77971875
transcript.pyannote[618].speaker SPEAKER_33
transcript.pyannote[618].start 5093.24346875
transcript.pyannote[618].end 5097.10784375
transcript.pyannote[619].speaker SPEAKER_22
transcript.pyannote[619].start 5093.76659375
transcript.pyannote[619].end 5094.23909375
transcript.pyannote[620].speaker SPEAKER_33
transcript.pyannote[620].start 5097.42846875
transcript.pyannote[620].end 5103.36846875
transcript.pyannote[621].speaker SPEAKER_33
transcript.pyannote[621].start 5103.50346875
transcript.pyannote[621].end 5116.09221875
transcript.pyannote[622].speaker SPEAKER_33
transcript.pyannote[622].start 5116.41284375
transcript.pyannote[622].end 5131.02659375
transcript.pyannote[623].speaker SPEAKER_33
transcript.pyannote[623].start 5131.27971875
transcript.pyannote[623].end 5134.24971875
transcript.pyannote[624].speaker SPEAKER_33
transcript.pyannote[624].start 5134.30034375
transcript.pyannote[624].end 5156.50784375
transcript.pyannote[625].speaker SPEAKER_33
transcript.pyannote[625].start 5156.79471875
transcript.pyannote[625].end 5162.65034375
transcript.pyannote[626].speaker SPEAKER_33
transcript.pyannote[626].start 5163.49409375
transcript.pyannote[626].end 5171.17221875
transcript.pyannote[627].speaker SPEAKER_26
transcript.pyannote[627].start 5171.17221875
transcript.pyannote[627].end 5171.45909375
transcript.pyannote[628].speaker SPEAKER_33
transcript.pyannote[628].start 5171.45909375
transcript.pyannote[628].end 5195.28659375
transcript.pyannote[629].speaker SPEAKER_33
transcript.pyannote[629].start 5195.40471875
transcript.pyannote[629].end 5198.20596875
transcript.pyannote[630].speaker SPEAKER_33
transcript.pyannote[630].start 5198.66159375
transcript.pyannote[630].end 5207.31846875
transcript.pyannote[631].speaker SPEAKER_26
transcript.pyannote[631].start 5207.31846875
transcript.pyannote[631].end 5207.53784375
transcript.pyannote[632].speaker SPEAKER_33
transcript.pyannote[632].start 5207.53784375
transcript.pyannote[632].end 5213.12346875
transcript.pyannote[633].speaker SPEAKER_33
transcript.pyannote[633].start 5213.49471875
transcript.pyannote[633].end 5217.15659375
transcript.pyannote[634].speaker SPEAKER_33
transcript.pyannote[634].start 5218.05096875
transcript.pyannote[634].end 5238.40221875
transcript.pyannote[635].speaker SPEAKER_33
transcript.pyannote[635].start 5238.85784375
transcript.pyannote[635].end 5241.40596875
transcript.pyannote[636].speaker SPEAKER_33
transcript.pyannote[636].start 5241.67596875
transcript.pyannote[636].end 5244.39284375
transcript.pyannote[637].speaker SPEAKER_33
transcript.pyannote[637].start 5245.00034375
transcript.pyannote[637].end 5246.51909375
transcript.pyannote[638].speaker SPEAKER_33
transcript.pyannote[638].start 5246.97471875
transcript.pyannote[638].end 5274.48096875
transcript.pyannote[639].speaker SPEAKER_33
transcript.pyannote[639].start 5275.27409375
transcript.pyannote[639].end 5276.15159375
transcript.pyannote[640].speaker SPEAKER_33
transcript.pyannote[640].start 5276.50596875
transcript.pyannote[640].end 5278.80096875
transcript.pyannote[641].speaker SPEAKER_33
transcript.pyannote[641].start 5279.30721875
transcript.pyannote[641].end 5281.23096875
transcript.pyannote[642].speaker SPEAKER_33
transcript.pyannote[642].start 5281.53471875
transcript.pyannote[642].end 5283.03659375
transcript.pyannote[643].speaker SPEAKER_33
transcript.pyannote[643].start 5283.34034375
transcript.pyannote[643].end 5284.45409375
transcript.pyannote[644].speaker SPEAKER_33
transcript.pyannote[644].start 5284.84221875
transcript.pyannote[644].end 5287.35659375
transcript.pyannote[645].speaker SPEAKER_33
transcript.pyannote[645].start 5287.69409375
transcript.pyannote[645].end 5289.61784375
transcript.pyannote[646].speaker SPEAKER_33
transcript.pyannote[646].start 5290.00596875
transcript.pyannote[646].end 5299.72596875
transcript.pyannote[647].speaker SPEAKER_33
transcript.pyannote[647].start 5299.86096875
transcript.pyannote[647].end 5301.02534375
transcript.pyannote[648].speaker SPEAKER_33
transcript.pyannote[648].start 5301.63284375
transcript.pyannote[648].end 5314.03596875
transcript.pyannote[649].speaker SPEAKER_33
transcript.pyannote[649].start 5314.93034375
transcript.pyannote[649].end 5317.51221875
transcript.pyannote[650].speaker SPEAKER_33
transcript.pyannote[650].start 5318.27159375
transcript.pyannote[650].end 5320.70159375
transcript.pyannote[651].speaker SPEAKER_33
transcript.pyannote[651].start 5320.90409375
transcript.pyannote[651].end 5340.64784375
transcript.pyannote[652].speaker SPEAKER_22
transcript.pyannote[652].start 5339.58471875
transcript.pyannote[652].end 5344.54596875
transcript.pyannote[653].speaker SPEAKER_22
transcript.pyannote[653].start 5345.18721875
transcript.pyannote[653].end 5351.31284375
transcript.pyannote[654].speaker SPEAKER_22
transcript.pyannote[654].start 5351.39721875
transcript.pyannote[654].end 5352.96659375
transcript.pyannote[655].speaker SPEAKER_22
transcript.pyannote[655].start 5353.55721875
transcript.pyannote[655].end 5357.13471875
transcript.pyannote[656].speaker SPEAKER_22
transcript.pyannote[656].start 5358.04596875
transcript.pyannote[656].end 5361.72471875
transcript.pyannote[657].speaker SPEAKER_22
transcript.pyannote[657].start 5362.06221875
transcript.pyannote[657].end 5365.09971875
transcript.pyannote[658].speaker SPEAKER_22
transcript.pyannote[658].start 5365.35284375
transcript.pyannote[658].end 5367.96846875
transcript.pyannote[659].speaker SPEAKER_22
transcript.pyannote[659].start 5368.71096875
transcript.pyannote[659].end 5369.79096875
transcript.pyannote[660].speaker SPEAKER_33
transcript.pyannote[660].start 5370.39846875
transcript.pyannote[660].end 5370.43221875
transcript.pyannote[661].speaker SPEAKER_22
transcript.pyannote[661].start 5370.43221875
transcript.pyannote[661].end 5370.97221875
transcript.pyannote[662].speaker SPEAKER_33
transcript.pyannote[662].start 5370.97221875
transcript.pyannote[662].end 5382.29534375
transcript.pyannote[663].speaker SPEAKER_22
transcript.pyannote[663].start 5371.47846875
transcript.pyannote[663].end 5372.67659375
transcript.pyannote[664].speaker SPEAKER_33
transcript.pyannote[664].start 5382.61596875
transcript.pyannote[664].end 5386.53096875
transcript.pyannote[665].speaker SPEAKER_22
transcript.pyannote[665].start 5384.15159375
transcript.pyannote[665].end 5391.10409375
transcript.pyannote[666].speaker SPEAKER_22
transcript.pyannote[666].start 5392.36971875
transcript.pyannote[666].end 5393.71971875
transcript.pyannote[667].speaker SPEAKER_22
transcript.pyannote[667].start 5394.69846875
transcript.pyannote[667].end 5402.25846875
transcript.pyannote[668].speaker SPEAKER_22
transcript.pyannote[668].start 5402.66346875
transcript.pyannote[668].end 5428.76909375
transcript.pyannote[669].speaker SPEAKER_22
transcript.pyannote[669].start 5429.44409375
transcript.pyannote[669].end 5432.76846875
transcript.pyannote[670].speaker SPEAKER_22
transcript.pyannote[670].start 5433.59534375
transcript.pyannote[670].end 5436.68346875
transcript.pyannote[671].speaker SPEAKER_22
transcript.pyannote[671].start 5437.47659375
transcript.pyannote[671].end 5442.74159375
transcript.pyannote[672].speaker SPEAKER_22
transcript.pyannote[672].start 5442.79221875
transcript.pyannote[672].end 5443.77096875
transcript.pyannote[673].speaker SPEAKER_22
transcript.pyannote[673].start 5444.54721875
transcript.pyannote[673].end 5447.01096875
transcript.pyannote[674].speaker SPEAKER_33
transcript.pyannote[674].start 5447.83784375
transcript.pyannote[674].end 5448.29346875
transcript.pyannote[675].speaker SPEAKER_33
transcript.pyannote[675].start 5448.64784375
transcript.pyannote[675].end 5473.97721875
transcript.pyannote[676].speaker SPEAKER_33
transcript.pyannote[676].start 5474.24721875
transcript.pyannote[676].end 5475.85034375
transcript.pyannote[677].speaker SPEAKER_33
transcript.pyannote[677].start 5476.37346875
transcript.pyannote[677].end 5476.69409375
transcript.pyannote[678].speaker SPEAKER_33
transcript.pyannote[678].start 5476.89659375
transcript.pyannote[678].end 5479.66409375
transcript.pyannote[679].speaker SPEAKER_33
transcript.pyannote[679].start 5480.22096875
transcript.pyannote[679].end 5481.99284375
transcript.pyannote[680].speaker SPEAKER_33
transcript.pyannote[680].start 5482.53284375
transcript.pyannote[680].end 5483.41034375
transcript.pyannote[681].speaker SPEAKER_33
transcript.pyannote[681].start 5483.73096875
transcript.pyannote[681].end 5485.19909375
transcript.pyannote[682].speaker SPEAKER_33
transcript.pyannote[682].start 5485.65471875
transcript.pyannote[682].end 5489.31659375
transcript.pyannote[683].speaker SPEAKER_33
transcript.pyannote[683].start 5489.68784375
transcript.pyannote[683].end 5495.12159375
transcript.pyannote[684].speaker SPEAKER_33
transcript.pyannote[684].start 5495.64471875
transcript.pyannote[684].end 5496.52221875
transcript.pyannote[685].speaker SPEAKER_33
transcript.pyannote[685].start 5496.70784375
transcript.pyannote[685].end 5501.07846875
transcript.pyannote[686].speaker SPEAKER_33
transcript.pyannote[686].start 5501.97284375
transcript.pyannote[686].end 5518.78034375
transcript.pyannote[687].speaker SPEAKER_33
transcript.pyannote[687].start 5519.08409375
transcript.pyannote[687].end 5526.81284375
transcript.pyannote[688].speaker SPEAKER_33
transcript.pyannote[688].start 5527.15034375
transcript.pyannote[688].end 5533.05659375
transcript.pyannote[689].speaker SPEAKER_33
transcript.pyannote[689].start 5533.37721875
transcript.pyannote[689].end 5536.19534375
transcript.pyannote[690].speaker SPEAKER_33
transcript.pyannote[690].start 5536.68471875
transcript.pyannote[690].end 5556.86721875
transcript.pyannote[691].speaker SPEAKER_33
transcript.pyannote[691].start 5557.39034375
transcript.pyannote[691].end 5565.96284375
transcript.pyannote[692].speaker SPEAKER_22
transcript.pyannote[692].start 5565.96284375
transcript.pyannote[692].end 5588.59221875
transcript.pyannote[693].speaker SPEAKER_22
transcript.pyannote[693].start 5588.79471875
transcript.pyannote[693].end 5608.09971875
transcript.pyannote[694].speaker SPEAKER_22
transcript.pyannote[694].start 5608.58909375
transcript.pyannote[694].end 5609.53409375
transcript.pyannote[695].speaker SPEAKER_22
transcript.pyannote[695].start 5610.83346875
transcript.pyannote[695].end 5623.27034375
transcript.pyannote[696].speaker SPEAKER_22
transcript.pyannote[696].start 5623.40534375
transcript.pyannote[696].end 5624.02971875
transcript.pyannote[697].speaker SPEAKER_22
transcript.pyannote[697].start 5624.48534375
transcript.pyannote[697].end 5631.52221875
transcript.pyannote[698].speaker SPEAKER_22
transcript.pyannote[698].start 5632.21409375
transcript.pyannote[698].end 5632.87221875
transcript.pyannote[699].speaker SPEAKER_22
transcript.pyannote[699].start 5633.44596875
transcript.pyannote[699].end 5635.16721875
transcript.pyannote[700].speaker SPEAKER_22
transcript.pyannote[700].start 5636.24721875
transcript.pyannote[700].end 5640.39846875
transcript.pyannote[701].speaker SPEAKER_22
transcript.pyannote[701].start 5640.82034375
transcript.pyannote[701].end 5642.86221875
transcript.pyannote[702].speaker SPEAKER_33
transcript.pyannote[702].start 5641.88346875
transcript.pyannote[702].end 5642.18721875
transcript.pyannote[703].speaker SPEAKER_33
transcript.pyannote[703].start 5643.14909375
transcript.pyannote[703].end 5649.73034375
transcript.pyannote[704].speaker SPEAKER_33
transcript.pyannote[704].start 5650.25346875
transcript.pyannote[704].end 5665.94721875
transcript.pyannote[705].speaker SPEAKER_33
transcript.pyannote[705].start 5666.25096875
transcript.pyannote[705].end 5692.39034375
transcript.pyannote[706].speaker SPEAKER_22
transcript.pyannote[706].start 5672.78159375
transcript.pyannote[706].end 5673.06846875
transcript.pyannote[707].speaker SPEAKER_33
transcript.pyannote[707].start 5692.69409375
transcript.pyannote[707].end 5694.02721875
transcript.pyannote[708].speaker SPEAKER_33
transcript.pyannote[708].start 5694.24659375
transcript.pyannote[708].end 5714.76659375
transcript.pyannote[709].speaker SPEAKER_33
transcript.pyannote[709].start 5715.28971875
transcript.pyannote[709].end 5742.03659375
transcript.pyannote[710].speaker SPEAKER_33
transcript.pyannote[710].start 5742.52596875
transcript.pyannote[710].end 5743.77471875
transcript.pyannote[711].speaker SPEAKER_33
transcript.pyannote[711].start 5743.97721875
transcript.pyannote[711].end 5747.79096875
transcript.pyannote[712].speaker SPEAKER_33
transcript.pyannote[712].start 5749.09034375
transcript.pyannote[712].end 5749.95096875
transcript.pyannote[713].speaker SPEAKER_33
transcript.pyannote[713].start 5750.13659375
transcript.pyannote[713].end 5751.23346875
transcript.pyannote[714].speaker SPEAKER_33
transcript.pyannote[714].start 5751.28409375
transcript.pyannote[714].end 5758.96221875
transcript.pyannote[715].speaker SPEAKER_33
transcript.pyannote[715].start 5759.90721875
transcript.pyannote[715].end 5763.99096875
transcript.pyannote[716].speaker SPEAKER_33
transcript.pyannote[716].start 5764.46346875
transcript.pyannote[716].end 5771.97284375
transcript.pyannote[717].speaker SPEAKER_22
transcript.pyannote[717].start 5771.97284375
transcript.pyannote[717].end 5793.48846875
transcript.pyannote[718].speaker SPEAKER_33
transcript.pyannote[718].start 5792.07096875
transcript.pyannote[718].end 5792.30721875
transcript.pyannote[719].speaker SPEAKER_33
transcript.pyannote[719].start 5793.64034375
transcript.pyannote[719].end 5798.28096875
transcript.pyannote[720].speaker SPEAKER_22
transcript.pyannote[720].start 5796.61034375
transcript.pyannote[720].end 5796.91409375
transcript.pyannote[721].speaker SPEAKER_33
transcript.pyannote[721].start 5799.17534375
transcript.pyannote[721].end 5820.04971875
transcript.pyannote[722].speaker SPEAKER_33
transcript.pyannote[722].start 5820.20159375
transcript.pyannote[722].end 5822.90159375
transcript.pyannote[723].speaker SPEAKER_33
transcript.pyannote[723].start 5823.35721875
transcript.pyannote[723].end 5825.26409375
transcript.pyannote[724].speaker SPEAKER_33
transcript.pyannote[724].start 5825.73659375
transcript.pyannote[724].end 5850.71159375
transcript.pyannote[725].speaker SPEAKER_22
transcript.pyannote[725].start 5850.42471875
transcript.pyannote[725].end 5886.09846875
transcript.pyannote[726].speaker SPEAKER_03
transcript.pyannote[726].start 5886.48659375
transcript.pyannote[726].end 5886.84096875
transcript.pyannote[727].speaker SPEAKER_03
transcript.pyannote[727].start 5887.97159375
transcript.pyannote[727].end 5892.47721875
transcript.pyannote[728].speaker SPEAKER_03
transcript.pyannote[728].start 5892.71346875
transcript.pyannote[728].end 5893.23659375
transcript.pyannote[729].speaker SPEAKER_03
transcript.pyannote[729].start 5894.97471875
transcript.pyannote[729].end 5897.15159375
transcript.pyannote[730].speaker SPEAKER_31
transcript.pyannote[730].start 5902.18034375
transcript.pyannote[730].end 5902.19721875
transcript.pyannote[731].speaker SPEAKER_20
transcript.pyannote[731].start 5902.19721875
transcript.pyannote[731].end 5902.34909375
transcript.pyannote[732].speaker SPEAKER_31
transcript.pyannote[732].start 5902.34909375
transcript.pyannote[732].end 5902.43346875
transcript.pyannote[733].speaker SPEAKER_31
transcript.pyannote[733].start 5902.51784375
transcript.pyannote[733].end 5907.14159375
transcript.pyannote[734].speaker SPEAKER_30
transcript.pyannote[734].start 5915.88284375
transcript.pyannote[734].end 5916.59159375
transcript.pyannote[735].speaker SPEAKER_31
transcript.pyannote[735].start 5916.15284375
transcript.pyannote[735].end 5934.31034375
transcript.pyannote[736].speaker SPEAKER_31
transcript.pyannote[736].start 5934.90096875
transcript.pyannote[736].end 6004.40909375
transcript.pyannote[737].speaker SPEAKER_31
transcript.pyannote[737].start 6004.94909375
transcript.pyannote[737].end 6025.65471875
transcript.pyannote[738].speaker SPEAKER_10
transcript.pyannote[738].start 6026.12721875
transcript.pyannote[738].end 6042.37784375
transcript.pyannote[739].speaker SPEAKER_10
transcript.pyannote[739].start 6042.46221875
transcript.pyannote[739].end 6046.22534375
transcript.pyannote[740].speaker SPEAKER_10
transcript.pyannote[740].start 6046.76534375
transcript.pyannote[740].end 6049.66784375
transcript.pyannote[741].speaker SPEAKER_10
transcript.pyannote[741].start 6049.92096875
transcript.pyannote[741].end 6055.06784375
transcript.pyannote[742].speaker SPEAKER_10
transcript.pyannote[742].start 6055.81034375
transcript.pyannote[742].end 6061.48034375
transcript.pyannote[743].speaker SPEAKER_10
transcript.pyannote[743].start 6061.90221875
transcript.pyannote[743].end 6070.18784375
transcript.pyannote[744].speaker SPEAKER_10
transcript.pyannote[744].start 6070.30596875
transcript.pyannote[744].end 6072.90471875
transcript.pyannote[745].speaker SPEAKER_10
transcript.pyannote[745].start 6073.41096875
transcript.pyannote[745].end 6078.25409375
transcript.pyannote[746].speaker SPEAKER_10
transcript.pyannote[746].start 6078.55784375
transcript.pyannote[746].end 6081.46034375
transcript.pyannote[747].speaker SPEAKER_10
transcript.pyannote[747].start 6082.00034375
transcript.pyannote[747].end 6096.59721875
transcript.pyannote[748].speaker SPEAKER_10
transcript.pyannote[748].start 6097.44096875
transcript.pyannote[748].end 6112.64534375
transcript.pyannote[749].speaker SPEAKER_10
transcript.pyannote[749].start 6112.94909375
transcript.pyannote[749].end 6118.68659375
transcript.pyannote[750].speaker SPEAKER_10
transcript.pyannote[750].start 6118.88909375
transcript.pyannote[750].end 6127.81596875
transcript.pyannote[751].speaker SPEAKER_10
transcript.pyannote[751].start 6128.23784375
transcript.pyannote[751].end 6129.53721875
transcript.pyannote[752].speaker SPEAKER_10
transcript.pyannote[752].start 6129.79034375
transcript.pyannote[752].end 6132.08534375
transcript.pyannote[753].speaker SPEAKER_10
transcript.pyannote[753].start 6132.92909375
transcript.pyannote[753].end 6134.02596875
transcript.pyannote[754].speaker SPEAKER_10
transcript.pyannote[754].start 6134.09346875
transcript.pyannote[754].end 6137.13096875
transcript.pyannote[755].speaker SPEAKER_10
transcript.pyannote[755].start 6137.24909375
transcript.pyannote[755].end 6143.05409375
transcript.pyannote[756].speaker SPEAKER_10
transcript.pyannote[756].start 6143.69534375
transcript.pyannote[756].end 6146.98596875
transcript.pyannote[757].speaker SPEAKER_10
transcript.pyannote[757].start 6147.49221875
transcript.pyannote[757].end 6148.57221875
transcript.pyannote[758].speaker SPEAKER_10
transcript.pyannote[758].start 6148.87596875
transcript.pyannote[758].end 6152.72346875
transcript.pyannote[759].speaker SPEAKER_31
transcript.pyannote[759].start 6152.84159375
transcript.pyannote[759].end 6181.54596875
transcript.pyannote[760].speaker SPEAKER_10
transcript.pyannote[760].start 6181.78221875
transcript.pyannote[760].end 6188.68409375
transcript.pyannote[761].speaker SPEAKER_10
transcript.pyannote[761].start 6188.80221875
transcript.pyannote[761].end 6193.84784375
transcript.pyannote[762].speaker SPEAKER_10
transcript.pyannote[762].start 6194.10096875
transcript.pyannote[762].end 6199.66971875
transcript.pyannote[763].speaker SPEAKER_10
transcript.pyannote[763].start 6200.05784375
transcript.pyannote[763].end 6201.32346875
transcript.pyannote[764].speaker SPEAKER_10
transcript.pyannote[764].start 6201.47534375
transcript.pyannote[764].end 6207.63471875
transcript.pyannote[765].speaker SPEAKER_10
transcript.pyannote[765].start 6208.07346875
transcript.pyannote[765].end 6211.90409375
transcript.pyannote[766].speaker SPEAKER_10
transcript.pyannote[766].start 6212.41034375
transcript.pyannote[766].end 6213.92909375
transcript.pyannote[767].speaker SPEAKER_10
transcript.pyannote[767].start 6214.08096875
transcript.pyannote[767].end 6217.15221875
transcript.pyannote[768].speaker SPEAKER_10
transcript.pyannote[768].start 6217.47284375
transcript.pyannote[768].end 6221.70846875
transcript.pyannote[769].speaker SPEAKER_10
transcript.pyannote[769].start 6222.31596875
transcript.pyannote[769].end 6224.34096875
transcript.pyannote[770].speaker SPEAKER_10
transcript.pyannote[770].start 6225.01596875
transcript.pyannote[770].end 6234.02721875
transcript.pyannote[771].speaker SPEAKER_10
transcript.pyannote[771].start 6234.49971875
transcript.pyannote[771].end 6242.38034375
transcript.pyannote[772].speaker SPEAKER_31
transcript.pyannote[772].start 6242.63346875
transcript.pyannote[772].end 6290.99721875
transcript.pyannote[773].speaker SPEAKER_00
transcript.pyannote[773].start 6252.99471875
transcript.pyannote[773].end 6254.42909375
transcript.pyannote[774].speaker SPEAKER_31
transcript.pyannote[774].start 6291.97596875
transcript.pyannote[774].end 6293.41034375
transcript.pyannote[775].speaker SPEAKER_31
transcript.pyannote[775].start 6294.23721875
transcript.pyannote[775].end 6319.63409375
transcript.pyannote[776].speaker SPEAKER_10
transcript.pyannote[776].start 6319.73534375
transcript.pyannote[776].end 6327.51471875
transcript.pyannote[777].speaker SPEAKER_10
transcript.pyannote[777].start 6327.71721875
transcript.pyannote[777].end 6332.49284375
transcript.pyannote[778].speaker SPEAKER_10
transcript.pyannote[778].start 6332.76284375
transcript.pyannote[778].end 6337.15034375
transcript.pyannote[779].speaker SPEAKER_10
transcript.pyannote[779].start 6337.52159375
transcript.pyannote[779].end 6340.49159375
transcript.pyannote[780].speaker SPEAKER_10
transcript.pyannote[780].start 6340.93034375
transcript.pyannote[780].end 6344.67659375
transcript.pyannote[781].speaker SPEAKER_10
transcript.pyannote[781].start 6344.81159375
transcript.pyannote[781].end 6348.16971875
transcript.pyannote[782].speaker SPEAKER_10
transcript.pyannote[782].start 6348.49034375
transcript.pyannote[782].end 6352.21971875
transcript.pyannote[783].speaker SPEAKER_10
transcript.pyannote[783].start 6352.82721875
transcript.pyannote[783].end 6354.49784375
transcript.pyannote[784].speaker SPEAKER_10
transcript.pyannote[784].start 6354.88596875
transcript.pyannote[784].end 6359.03721875
transcript.pyannote[785].speaker SPEAKER_10
transcript.pyannote[785].start 6359.10471875
transcript.pyannote[785].end 6361.63596875
transcript.pyannote[786].speaker SPEAKER_10
transcript.pyannote[786].start 6361.93971875
transcript.pyannote[786].end 6365.55096875
transcript.pyannote[787].speaker SPEAKER_10
transcript.pyannote[787].start 6365.83784375
transcript.pyannote[787].end 6368.65596875
transcript.pyannote[788].speaker SPEAKER_10
transcript.pyannote[788].start 6369.43221875
transcript.pyannote[788].end 6386.39159375
transcript.pyannote[789].speaker SPEAKER_10
transcript.pyannote[789].start 6386.88096875
transcript.pyannote[789].end 6392.60159375
transcript.pyannote[790].speaker SPEAKER_10
transcript.pyannote[790].start 6392.73659375
transcript.pyannote[790].end 6397.64721875
transcript.pyannote[791].speaker SPEAKER_31
transcript.pyannote[791].start 6397.69784375
transcript.pyannote[791].end 6432.12284375
transcript.pyannote[792].speaker SPEAKER_31
transcript.pyannote[792].start 6432.46034375
transcript.pyannote[792].end 6434.21534375
transcript.pyannote[793].speaker SPEAKER_31
transcript.pyannote[793].start 6435.66659375
transcript.pyannote[793].end 6452.99721875
transcript.pyannote[794].speaker SPEAKER_10
transcript.pyannote[794].start 6453.16596875
transcript.pyannote[794].end 6463.05471875
transcript.pyannote[795].speaker SPEAKER_10
transcript.pyannote[795].start 6463.13909375
transcript.pyannote[795].end 6467.18909375
transcript.pyannote[796].speaker SPEAKER_10
transcript.pyannote[796].start 6467.40846875
transcript.pyannote[796].end 6469.09596875
transcript.pyannote[797].speaker SPEAKER_10
transcript.pyannote[797].start 6469.58534375
transcript.pyannote[797].end 6470.04096875
transcript.pyannote[798].speaker SPEAKER_10
transcript.pyannote[798].start 6470.54721875
transcript.pyannote[798].end 6476.84159375
transcript.pyannote[799].speaker SPEAKER_10
transcript.pyannote[799].start 6476.89221875
transcript.pyannote[799].end 6480.08159375
transcript.pyannote[800].speaker SPEAKER_10
transcript.pyannote[800].start 6480.45284375
transcript.pyannote[800].end 6482.62971875
transcript.pyannote[801].speaker SPEAKER_10
transcript.pyannote[801].start 6482.93346875
transcript.pyannote[801].end 6498.52596875
transcript.pyannote[802].speaker SPEAKER_10
transcript.pyannote[802].start 6499.28534375
transcript.pyannote[802].end 6501.91784375
transcript.pyannote[803].speaker SPEAKER_10
transcript.pyannote[803].start 6502.13721875
transcript.pyannote[803].end 6503.90909375
transcript.pyannote[804].speaker SPEAKER_10
transcript.pyannote[804].start 6504.06096875
transcript.pyannote[804].end 6506.44034375
transcript.pyannote[805].speaker SPEAKER_10
transcript.pyannote[805].start 6506.62596875
transcript.pyannote[805].end 6510.67596875
transcript.pyannote[806].speaker SPEAKER_10
transcript.pyannote[806].start 6510.91221875
transcript.pyannote[806].end 6513.71346875
transcript.pyannote[807].speaker SPEAKER_10
transcript.pyannote[807].start 6513.88221875
transcript.pyannote[807].end 6517.99971875
transcript.pyannote[808].speaker SPEAKER_31
transcript.pyannote[808].start 6517.81409375
transcript.pyannote[808].end 6518.38784375
transcript.pyannote[809].speaker SPEAKER_31
transcript.pyannote[809].start 6519.78846875
transcript.pyannote[809].end 6524.90159375
transcript.pyannote[810].speaker SPEAKER_31
transcript.pyannote[810].start 6524.93534375
transcript.pyannote[810].end 6524.95221875
transcript.pyannote[811].speaker SPEAKER_03
transcript.pyannote[811].start 6524.95221875
transcript.pyannote[811].end 6528.74909375
transcript.pyannote[812].speaker SPEAKER_03
transcript.pyannote[812].start 6529.28909375
transcript.pyannote[812].end 6531.21284375
transcript.pyannote[813].speaker SPEAKER_18
transcript.pyannote[813].start 6541.64159375
transcript.pyannote[813].end 6549.74159375
transcript.pyannote[814].speaker SPEAKER_18
transcript.pyannote[814].start 6549.89346875
transcript.pyannote[814].end 6553.31909375
transcript.pyannote[815].speaker SPEAKER_18
transcript.pyannote[815].start 6553.99409375
transcript.pyannote[815].end 6554.68596875
transcript.pyannote[816].speaker SPEAKER_05
transcript.pyannote[816].start 6556.52534375
transcript.pyannote[816].end 6557.06534375
transcript.pyannote[817].speaker SPEAKER_18
transcript.pyannote[817].start 6557.18346875
transcript.pyannote[817].end 6570.83534375
transcript.pyannote[818].speaker SPEAKER_05
transcript.pyannote[818].start 6572.15159375
transcript.pyannote[818].end 6577.39971875
transcript.pyannote[819].speaker SPEAKER_05
transcript.pyannote[819].start 6577.51784375
transcript.pyannote[819].end 6578.29409375
transcript.pyannote[820].speaker SPEAKER_05
transcript.pyannote[820].start 6578.47971875
transcript.pyannote[820].end 6590.05596875
transcript.pyannote[821].speaker SPEAKER_18
transcript.pyannote[821].start 6590.05596875
transcript.pyannote[821].end 6597.37971875
transcript.pyannote[822].speaker SPEAKER_05
transcript.pyannote[822].start 6590.07284375
transcript.pyannote[822].end 6590.39346875
transcript.pyannote[823].speaker SPEAKER_18
transcript.pyannote[823].start 6598.10534375
transcript.pyannote[823].end 6598.96596875
transcript.pyannote[824].speaker SPEAKER_05
transcript.pyannote[824].start 6599.72534375
transcript.pyannote[824].end 6601.10909375
transcript.pyannote[825].speaker SPEAKER_05
transcript.pyannote[825].start 6601.48034375
transcript.pyannote[825].end 6615.80721875
transcript.pyannote[826].speaker SPEAKER_05
transcript.pyannote[826].start 6616.27971875
transcript.pyannote[826].end 6617.96721875
transcript.pyannote[827].speaker SPEAKER_18
transcript.pyannote[827].start 6617.96721875
transcript.pyannote[827].end 6624.17721875
transcript.pyannote[828].speaker SPEAKER_18
transcript.pyannote[828].start 6624.53159375
transcript.pyannote[828].end 6624.95346875
transcript.pyannote[829].speaker SPEAKER_05
transcript.pyannote[829].start 6626.01659375
transcript.pyannote[829].end 6628.75034375
transcript.pyannote[830].speaker SPEAKER_18
transcript.pyannote[830].start 6629.20596875
transcript.pyannote[830].end 6646.95846875
transcript.pyannote[831].speaker SPEAKER_18
transcript.pyannote[831].start 6647.12721875
transcript.pyannote[831].end 6676.99596875
transcript.pyannote[832].speaker SPEAKER_18
transcript.pyannote[832].start 6678.02534375
transcript.pyannote[832].end 6682.10909375
transcript.pyannote[833].speaker SPEAKER_26
transcript.pyannote[833].start 6683.02034375
transcript.pyannote[833].end 6683.17221875
transcript.pyannote[834].speaker SPEAKER_18
transcript.pyannote[834].start 6683.17221875
transcript.pyannote[834].end 6692.70659375
transcript.pyannote[835].speaker SPEAKER_26
transcript.pyannote[835].start 6683.18909375
transcript.pyannote[835].end 6683.47596875
transcript.pyannote[836].speaker SPEAKER_10
transcript.pyannote[836].start 6693.70221875
transcript.pyannote[836].end 6694.90034375
transcript.pyannote[837].speaker SPEAKER_10
transcript.pyannote[837].start 6695.10284375
transcript.pyannote[837].end 6705.66659375
transcript.pyannote[838].speaker SPEAKER_26
transcript.pyannote[838].start 6701.93721875
transcript.pyannote[838].end 6702.51096875
transcript.pyannote[839].speaker SPEAKER_26
transcript.pyannote[839].start 6704.95784375
transcript.pyannote[839].end 6706.51034375
transcript.pyannote[840].speaker SPEAKER_10
transcript.pyannote[840].start 6705.98721875
transcript.pyannote[840].end 6717.20909375
transcript.pyannote[841].speaker SPEAKER_10
transcript.pyannote[841].start 6717.46221875
transcript.pyannote[841].end 6729.25784375
transcript.pyannote[842].speaker SPEAKER_18
transcript.pyannote[842].start 6729.66284375
transcript.pyannote[842].end 6771.85034375
transcript.pyannote[843].speaker SPEAKER_18
transcript.pyannote[843].start 6772.13721875
transcript.pyannote[843].end 6774.73596875
transcript.pyannote[844].speaker SPEAKER_10
transcript.pyannote[844].start 6775.15784375
transcript.pyannote[844].end 6786.76784375
transcript.pyannote[845].speaker SPEAKER_18
transcript.pyannote[845].start 6784.60784375
transcript.pyannote[845].end 6792.47159375
transcript.pyannote[846].speaker SPEAKER_10
transcript.pyannote[846].start 6792.42096875
transcript.pyannote[846].end 6794.07471875
transcript.pyannote[847].speaker SPEAKER_18
transcript.pyannote[847].start 6794.07471875
transcript.pyannote[847].end 6794.12534375
transcript.pyannote[848].speaker SPEAKER_10
transcript.pyannote[848].start 6794.12534375
transcript.pyannote[848].end 6794.15909375
transcript.pyannote[849].speaker SPEAKER_18
transcript.pyannote[849].start 6794.15909375
transcript.pyannote[849].end 6794.20971875
transcript.pyannote[850].speaker SPEAKER_10
transcript.pyannote[850].start 6794.20971875
transcript.pyannote[850].end 6794.29409375
transcript.pyannote[851].speaker SPEAKER_18
transcript.pyannote[851].start 6794.29409375
transcript.pyannote[851].end 6794.41221875
transcript.pyannote[852].speaker SPEAKER_18
transcript.pyannote[852].start 6794.42909375
transcript.pyannote[852].end 6800.36909375
transcript.pyannote[853].speaker SPEAKER_18
transcript.pyannote[853].start 6800.43659375
transcript.pyannote[853].end 6806.84909375
transcript.pyannote[854].speaker SPEAKER_18
transcript.pyannote[854].start 6808.70534375
transcript.pyannote[854].end 6809.14409375
transcript.pyannote[855].speaker SPEAKER_18
transcript.pyannote[855].start 6809.93721875
transcript.pyannote[855].end 6811.13534375
transcript.pyannote[856].speaker SPEAKER_18
transcript.pyannote[856].start 6811.52346875
transcript.pyannote[856].end 6812.31659375
transcript.pyannote[857].speaker SPEAKER_26
transcript.pyannote[857].start 6812.48534375
transcript.pyannote[857].end 6812.83971875
transcript.pyannote[858].speaker SPEAKER_18
transcript.pyannote[858].start 6812.97471875
transcript.pyannote[858].end 6815.32034375
transcript.pyannote[859].speaker SPEAKER_26
transcript.pyannote[859].start 6812.99159375
transcript.pyannote[859].end 6813.76784375
transcript.pyannote[860].speaker SPEAKER_18
transcript.pyannote[860].start 6815.43846875
transcript.pyannote[860].end 6815.84346875
transcript.pyannote[861].speaker SPEAKER_18
transcript.pyannote[861].start 6816.33284375
transcript.pyannote[861].end 6821.05784375
transcript.pyannote[862].speaker SPEAKER_10
transcript.pyannote[862].start 6822.25596875
transcript.pyannote[862].end 6827.33534375
transcript.pyannote[863].speaker SPEAKER_18
transcript.pyannote[863].start 6823.99409375
transcript.pyannote[863].end 6825.68159375
transcript.pyannote[864].speaker SPEAKER_18
transcript.pyannote[864].start 6827.36909375
transcript.pyannote[864].end 6845.25659375
transcript.pyannote[865].speaker SPEAKER_10
transcript.pyannote[865].start 6845.37471875
transcript.pyannote[865].end 6851.71971875
transcript.pyannote[866].speaker SPEAKER_18
transcript.pyannote[866].start 6851.75346875
transcript.pyannote[866].end 6872.77971875
transcript.pyannote[867].speaker SPEAKER_10
transcript.pyannote[867].start 6873.26909375
transcript.pyannote[867].end 6882.06096875
transcript.pyannote[868].speaker SPEAKER_18
transcript.pyannote[868].start 6880.60971875
transcript.pyannote[868].end 6881.25096875
transcript.pyannote[869].speaker SPEAKER_18
transcript.pyannote[869].start 6881.62221875
transcript.pyannote[869].end 6901.99034375
transcript.pyannote[870].speaker SPEAKER_18
transcript.pyannote[870].start 6902.34471875
transcript.pyannote[870].end 6902.88471875
transcript.pyannote[871].speaker SPEAKER_18
transcript.pyannote[871].start 6902.90159375
transcript.pyannote[871].end 6902.91846875
transcript.pyannote[872].speaker SPEAKER_26
transcript.pyannote[872].start 6902.91846875
transcript.pyannote[872].end 6903.18846875
transcript.pyannote[873].speaker SPEAKER_18
transcript.pyannote[873].start 6903.27284375
transcript.pyannote[873].end 6920.21534375
transcript.pyannote[874].speaker SPEAKER_18
transcript.pyannote[874].start 6920.55284375
transcript.pyannote[874].end 6920.94096875
transcript.pyannote[875].speaker SPEAKER_18
transcript.pyannote[875].start 6921.39659375
transcript.pyannote[875].end 6940.04346875
transcript.pyannote[876].speaker SPEAKER_18
transcript.pyannote[876].start 6940.33034375
transcript.pyannote[876].end 6955.48409375
transcript.pyannote[877].speaker SPEAKER_18
transcript.pyannote[877].start 6956.02409375
transcript.pyannote[877].end 6959.65221875
transcript.pyannote[878].speaker SPEAKER_10
transcript.pyannote[878].start 6960.00659375
transcript.pyannote[878].end 6961.12034375
transcript.pyannote[879].speaker SPEAKER_18
transcript.pyannote[879].start 6961.12034375
transcript.pyannote[879].end 6965.62596875
transcript.pyannote[880].speaker SPEAKER_18
transcript.pyannote[880].start 6967.00971875
transcript.pyannote[880].end 6969.23721875
transcript.pyannote[881].speaker SPEAKER_18
transcript.pyannote[881].start 6970.36784375
transcript.pyannote[881].end 6979.61534375
transcript.pyannote[882].speaker SPEAKER_18
transcript.pyannote[882].start 6980.00346875
transcript.pyannote[882].end 6993.82409375
transcript.pyannote[883].speaker SPEAKER_21
transcript.pyannote[883].start 6994.26284375
transcript.pyannote[883].end 6997.31721875
transcript.pyannote[884].speaker SPEAKER_21
transcript.pyannote[884].start 6997.45221875
transcript.pyannote[884].end 6997.51971875
transcript.pyannote[885].speaker SPEAKER_18
transcript.pyannote[885].start 6997.51971875
transcript.pyannote[885].end 6998.46471875
transcript.pyannote[886].speaker SPEAKER_21
transcript.pyannote[886].start 6997.53659375
transcript.pyannote[886].end 6997.82346875
transcript.pyannote[887].speaker SPEAKER_33
transcript.pyannote[887].start 6998.90346875
transcript.pyannote[887].end 7000.64159375
transcript.pyannote[888].speaker SPEAKER_33
transcript.pyannote[888].start 7000.94534375
transcript.pyannote[888].end 7006.69971875
transcript.pyannote[889].speaker SPEAKER_33
transcript.pyannote[889].start 7007.25659375
transcript.pyannote[889].end 7010.51346875
transcript.pyannote[890].speaker SPEAKER_18
transcript.pyannote[890].start 7010.51346875
transcript.pyannote[890].end 7021.46534375
transcript.pyannote[891].speaker SPEAKER_33
transcript.pyannote[891].start 7022.12346875
transcript.pyannote[891].end 7029.54846875
transcript.pyannote[892].speaker SPEAKER_33
transcript.pyannote[892].start 7029.83534375
transcript.pyannote[892].end 7045.61346875
transcript.pyannote[893].speaker SPEAKER_33
transcript.pyannote[893].start 7045.96784375
transcript.pyannote[893].end 7066.20096875
transcript.pyannote[894].speaker SPEAKER_18
transcript.pyannote[894].start 7064.96909375
transcript.pyannote[894].end 7065.44159375
transcript.pyannote[895].speaker SPEAKER_18
transcript.pyannote[895].start 7066.38659375
transcript.pyannote[895].end 7067.60159375
transcript.pyannote[896].speaker SPEAKER_18
transcript.pyannote[896].start 7067.75346875
transcript.pyannote[896].end 7081.74284375
transcript.pyannote[897].speaker SPEAKER_33
transcript.pyannote[897].start 7082.08034375
transcript.pyannote[897].end 7090.14659375
transcript.pyannote[898].speaker SPEAKER_18
transcript.pyannote[898].start 7089.85971875
transcript.pyannote[898].end 7091.76659375
transcript.pyannote[899].speaker SPEAKER_33
transcript.pyannote[899].start 7090.58534375
transcript.pyannote[899].end 7090.70346875
transcript.pyannote[900].speaker SPEAKER_33
transcript.pyannote[900].start 7090.92284375
transcript.pyannote[900].end 7096.12034375
transcript.pyannote[901].speaker SPEAKER_33
transcript.pyannote[901].start 7096.72784375
transcript.pyannote[901].end 7104.38909375
transcript.pyannote[902].speaker SPEAKER_18
transcript.pyannote[902].start 7104.18659375
transcript.pyannote[902].end 7107.02159375
transcript.pyannote[903].speaker SPEAKER_33
transcript.pyannote[903].start 7106.93721875
transcript.pyannote[903].end 7107.62909375
transcript.pyannote[904].speaker SPEAKER_18
transcript.pyannote[904].start 7107.62909375
transcript.pyannote[904].end 7109.24909375
transcript.pyannote[905].speaker SPEAKER_33
transcript.pyannote[905].start 7109.24909375
transcript.pyannote[905].end 7109.63721875
transcript.pyannote[906].speaker SPEAKER_18
transcript.pyannote[906].start 7109.63721875
transcript.pyannote[906].end 7125.88784375
transcript.pyannote[907].speaker SPEAKER_33
transcript.pyannote[907].start 7109.87346875
transcript.pyannote[907].end 7110.86909375
transcript.pyannote[908].speaker SPEAKER_33
transcript.pyannote[908].start 7112.52284375
transcript.pyannote[908].end 7112.55659375
transcript.pyannote[909].speaker SPEAKER_33
transcript.pyannote[909].start 7112.77596875
transcript.pyannote[909].end 7114.04159375
transcript.pyannote[910].speaker SPEAKER_33
transcript.pyannote[910].start 7123.44096875
transcript.pyannote[910].end 7130.46096875
transcript.pyannote[911].speaker SPEAKER_33
transcript.pyannote[911].start 7130.88284375
transcript.pyannote[911].end 7139.94471875
transcript.pyannote[912].speaker SPEAKER_33
transcript.pyannote[912].start 7140.51846875
transcript.pyannote[912].end 7153.56284375
transcript.pyannote[913].speaker SPEAKER_18
transcript.pyannote[913].start 7153.78221875
transcript.pyannote[913].end 7192.57784375
transcript.pyannote[914].speaker SPEAKER_33
transcript.pyannote[914].start 7153.98471875
transcript.pyannote[914].end 7154.17034375
transcript.pyannote[915].speaker SPEAKER_33
transcript.pyannote[915].start 7193.35409375
transcript.pyannote[915].end 7219.22346875
transcript.pyannote[916].speaker SPEAKER_18
transcript.pyannote[916].start 7193.89409375
transcript.pyannote[916].end 7195.85159375
transcript.pyannote[917].speaker SPEAKER_00
transcript.pyannote[917].start 7208.98034375
transcript.pyannote[917].end 7209.41909375
transcript.pyannote[918].speaker SPEAKER_18
transcript.pyannote[918].start 7218.37971875
transcript.pyannote[918].end 7239.94596875
transcript.pyannote[919].speaker SPEAKER_33
transcript.pyannote[919].start 7240.24971875
transcript.pyannote[919].end 7250.08784375
transcript.pyannote[920].speaker SPEAKER_33
transcript.pyannote[920].start 7250.27346875
transcript.pyannote[920].end 7253.73284375
transcript.pyannote[921].speaker SPEAKER_28
transcript.pyannote[921].start 7253.86784375
transcript.pyannote[921].end 7254.22221875
transcript.pyannote[922].speaker SPEAKER_33
transcript.pyannote[922].start 7254.22221875
transcript.pyannote[922].end 7254.23909375
transcript.pyannote[923].speaker SPEAKER_33
transcript.pyannote[923].start 7254.32346875
transcript.pyannote[923].end 7262.65971875
transcript.pyannote[924].speaker SPEAKER_33
transcript.pyannote[924].start 7263.09846875
transcript.pyannote[924].end 7270.43909375
transcript.pyannote[925].speaker SPEAKER_18
transcript.pyannote[925].start 7269.74721875
transcript.pyannote[925].end 7308.94784375
transcript.pyannote[926].speaker SPEAKER_00
transcript.pyannote[926].start 7289.05221875
transcript.pyannote[926].end 7289.60909375
transcript.pyannote[927].speaker SPEAKER_33
transcript.pyannote[927].start 7309.65659375
transcript.pyannote[927].end 7317.23346875
transcript.pyannote[928].speaker SPEAKER_33
transcript.pyannote[928].start 7317.52034375
transcript.pyannote[928].end 7330.59846875
transcript.pyannote[929].speaker SPEAKER_18
transcript.pyannote[929].start 7330.71659375
transcript.pyannote[929].end 7369.74846875
transcript.pyannote[930].speaker SPEAKER_18
transcript.pyannote[930].start 7370.23784375
transcript.pyannote[930].end 7384.75034375
transcript.pyannote[931].speaker SPEAKER_18
transcript.pyannote[931].start 7385.00346875
transcript.pyannote[931].end 7388.91846875
transcript.pyannote[932].speaker SPEAKER_33
transcript.pyannote[932].start 7387.31534375
transcript.pyannote[932].end 7390.31909375
transcript.pyannote[933].speaker SPEAKER_18
transcript.pyannote[933].start 7389.67784375
transcript.pyannote[933].end 7411.51409375
transcript.pyannote[934].speaker SPEAKER_18
transcript.pyannote[934].start 7411.85159375
transcript.pyannote[934].end 7426.85346875
transcript.pyannote[935].speaker SPEAKER_21
transcript.pyannote[935].start 7427.08971875
transcript.pyannote[935].end 7433.01284375
transcript.pyannote[936].speaker SPEAKER_18
transcript.pyannote[936].start 7433.04659375
transcript.pyannote[936].end 7436.77596875
transcript.pyannote[937].speaker SPEAKER_21
transcript.pyannote[937].start 7436.70846875
transcript.pyannote[937].end 7436.75909375
transcript.pyannote[938].speaker SPEAKER_03
transcript.pyannote[938].start 7436.75909375
transcript.pyannote[938].end 7439.54346875
transcript.pyannote[939].speaker SPEAKER_21
transcript.pyannote[939].start 7436.77596875
transcript.pyannote[939].end 7436.79284375
transcript.pyannote[940].speaker SPEAKER_03
transcript.pyannote[940].start 7440.72471875
transcript.pyannote[940].end 7447.44096875
transcript.pyannote[941].speaker SPEAKER_08
transcript.pyannote[941].start 7455.27096875
transcript.pyannote[941].end 7469.26034375
transcript.pyannote[942].speaker SPEAKER_08
transcript.pyannote[942].start 7472.53409375
transcript.pyannote[942].end 7478.54159375
transcript.pyannote[943].speaker SPEAKER_24
transcript.pyannote[943].start 7479.14909375
transcript.pyannote[943].end 7479.67221875
transcript.pyannote[944].speaker SPEAKER_08
transcript.pyannote[944].start 7479.67221875
transcript.pyannote[944].end 7479.72284375
transcript.pyannote[945].speaker SPEAKER_08
transcript.pyannote[945].start 7479.82409375
transcript.pyannote[945].end 7480.22909375
transcript.pyannote[946].speaker SPEAKER_08
transcript.pyannote[946].start 7481.24159375
transcript.pyannote[946].end 7540.03409375
transcript.pyannote[947].speaker SPEAKER_10
transcript.pyannote[947].start 7540.03409375
transcript.pyannote[947].end 7540.37159375
transcript.pyannote[948].speaker SPEAKER_08
transcript.pyannote[948].start 7540.37159375
transcript.pyannote[948].end 7540.40534375
transcript.pyannote[949].speaker SPEAKER_08
transcript.pyannote[949].start 7541.35034375
transcript.pyannote[949].end 7541.36721875
transcript.pyannote[950].speaker SPEAKER_10
transcript.pyannote[950].start 7541.36721875
transcript.pyannote[950].end 7548.67409375
transcript.pyannote[951].speaker SPEAKER_10
transcript.pyannote[951].start 7548.84284375
transcript.pyannote[951].end 7552.62284375
transcript.pyannote[952].speaker SPEAKER_10
transcript.pyannote[952].start 7552.70721875
transcript.pyannote[952].end 7554.81659375
transcript.pyannote[953].speaker SPEAKER_10
transcript.pyannote[953].start 7555.25534375
transcript.pyannote[953].end 7564.89096875
transcript.pyannote[954].speaker SPEAKER_10
transcript.pyannote[954].start 7565.09346875
transcript.pyannote[954].end 7568.92409375
transcript.pyannote[955].speaker SPEAKER_10
transcript.pyannote[955].start 7569.24471875
transcript.pyannote[955].end 7579.53846875
transcript.pyannote[956].speaker SPEAKER_08
transcript.pyannote[956].start 7579.53846875
transcript.pyannote[956].end 7579.62284375
transcript.pyannote[957].speaker SPEAKER_08
transcript.pyannote[957].start 7579.67346875
transcript.pyannote[957].end 7579.72409375
transcript.pyannote[958].speaker SPEAKER_10
transcript.pyannote[958].start 7579.72409375
transcript.pyannote[958].end 7580.97284375
transcript.pyannote[959].speaker SPEAKER_08
transcript.pyannote[959].start 7580.97284375
transcript.pyannote[959].end 7595.01284375
transcript.pyannote[960].speaker SPEAKER_10
transcript.pyannote[960].start 7581.15846875
transcript.pyannote[960].end 7583.85846875
transcript.pyannote[961].speaker SPEAKER_05
transcript.pyannote[961].start 7596.83534375
transcript.pyannote[961].end 7597.05471875
transcript.pyannote[962].speaker SPEAKER_08
transcript.pyannote[962].start 7597.05471875
transcript.pyannote[962].end 7598.28659375
transcript.pyannote[963].speaker SPEAKER_05
transcript.pyannote[963].start 7598.67471875
transcript.pyannote[963].end 7614.65534375
transcript.pyannote[964].speaker SPEAKER_05
transcript.pyannote[964].start 7614.80721875
transcript.pyannote[964].end 7621.33784375
transcript.pyannote[965].speaker SPEAKER_08
transcript.pyannote[965].start 7621.08471875
transcript.pyannote[965].end 7627.76721875
transcript.pyannote[966].speaker SPEAKER_05
transcript.pyannote[966].start 7628.39159375
transcript.pyannote[966].end 7632.93096875
transcript.pyannote[967].speaker SPEAKER_08
transcript.pyannote[967].start 7628.52659375
transcript.pyannote[967].end 7629.31971875
transcript.pyannote[968].speaker SPEAKER_08
transcript.pyannote[968].start 7632.54284375
transcript.pyannote[968].end 7639.24221875
transcript.pyannote[969].speaker SPEAKER_08
transcript.pyannote[969].start 7639.95096875
transcript.pyannote[969].end 7660.21784375
transcript.pyannote[970].speaker SPEAKER_08
transcript.pyannote[970].start 7660.65659375
transcript.pyannote[970].end 7669.78596875
transcript.pyannote[971].speaker SPEAKER_05
transcript.pyannote[971].start 7670.49471875
transcript.pyannote[971].end 7686.67784375
transcript.pyannote[972].speaker SPEAKER_08
transcript.pyannote[972].start 7686.67784375
transcript.pyannote[972].end 7686.71159375
transcript.pyannote[973].speaker SPEAKER_05
transcript.pyannote[973].start 7686.71159375
transcript.pyannote[973].end 7686.93096875
transcript.pyannote[974].speaker SPEAKER_08
transcript.pyannote[974].start 7686.93096875
transcript.pyannote[974].end 7705.03784375
transcript.pyannote[975].speaker SPEAKER_05
transcript.pyannote[975].start 7706.13471875
transcript.pyannote[975].end 7719.93846875
transcript.pyannote[976].speaker SPEAKER_08
transcript.pyannote[976].start 7719.71909375
transcript.pyannote[976].end 7722.16596875
transcript.pyannote[977].speaker SPEAKER_05
transcript.pyannote[977].start 7722.70596875
transcript.pyannote[977].end 7722.79034375
transcript.pyannote[978].speaker SPEAKER_08
transcript.pyannote[978].start 7723.43159375
transcript.pyannote[978].end 7724.93346875
transcript.pyannote[979].speaker SPEAKER_10
transcript.pyannote[979].start 7724.93346875
transcript.pyannote[979].end 7724.95034375
transcript.pyannote[980].speaker SPEAKER_08
transcript.pyannote[980].start 7725.60846875
transcript.pyannote[980].end 7725.65909375
transcript.pyannote[981].speaker SPEAKER_10
transcript.pyannote[981].start 7725.65909375
transcript.pyannote[981].end 7726.84034375
transcript.pyannote[982].speaker SPEAKER_10
transcript.pyannote[982].start 7728.17346875
transcript.pyannote[982].end 7731.56534375
transcript.pyannote[983].speaker SPEAKER_08
transcript.pyannote[983].start 7731.32909375
transcript.pyannote[983].end 7798.52534375
transcript.pyannote[984].speaker SPEAKER_08
transcript.pyannote[984].start 7799.13284375
transcript.pyannote[984].end 7800.95534375
transcript.pyannote[985].speaker SPEAKER_08
transcript.pyannote[985].start 7801.36034375
transcript.pyannote[985].end 7802.03534375
transcript.pyannote[986].speaker SPEAKER_21
transcript.pyannote[986].start 7802.91284375
transcript.pyannote[986].end 7805.78159375
transcript.pyannote[987].speaker SPEAKER_21
transcript.pyannote[987].start 7806.52409375
transcript.pyannote[987].end 7834.31721875
transcript.pyannote[988].speaker SPEAKER_08
transcript.pyannote[988].start 7834.21596875
transcript.pyannote[988].end 7837.38846875
transcript.pyannote[989].speaker SPEAKER_08
transcript.pyannote[989].start 7838.02971875
transcript.pyannote[989].end 7840.78034375
transcript.pyannote[990].speaker SPEAKER_08
transcript.pyannote[990].start 7841.35409375
transcript.pyannote[990].end 7886.98409375
transcript.pyannote[991].speaker SPEAKER_21
transcript.pyannote[991].start 7889.24534375
transcript.pyannote[991].end 7890.29159375
transcript.pyannote[992].speaker SPEAKER_21
transcript.pyannote[992].start 7890.47721875
transcript.pyannote[992].end 7905.10784375
transcript.pyannote[993].speaker SPEAKER_08
transcript.pyannote[993].start 7904.29784375
transcript.pyannote[993].end 7917.39284375
transcript.pyannote[994].speaker SPEAKER_21
transcript.pyannote[994].start 7919.38409375
transcript.pyannote[994].end 7919.40096875
transcript.pyannote[995].speaker SPEAKER_03
transcript.pyannote[995].start 7919.40096875
transcript.pyannote[995].end 7920.04221875
transcript.pyannote[996].speaker SPEAKER_03
transcript.pyannote[996].start 7921.56096875
transcript.pyannote[996].end 7923.45096875
transcript.pyannote[997].speaker SPEAKER_03
transcript.pyannote[997].start 7924.90221875
transcript.pyannote[997].end 7926.20159375
transcript.pyannote[998].speaker SPEAKER_03
transcript.pyannote[998].start 7926.62346875
transcript.pyannote[998].end 7927.36596875
transcript.pyannote[999].speaker SPEAKER_17
transcript.pyannote[999].start 7934.68971875
transcript.pyannote[999].end 7936.30971875
transcript.pyannote[1000].speaker SPEAKER_17
transcript.pyannote[1000].start 7936.57971875
transcript.pyannote[1000].end 7936.81596875
transcript.pyannote[1001].speaker SPEAKER_17
transcript.pyannote[1001].start 7936.96784375
transcript.pyannote[1001].end 7936.98471875
transcript.pyannote[1002].speaker SPEAKER_17
transcript.pyannote[1002].start 7937.20409375
transcript.pyannote[1002].end 7938.50346875
transcript.pyannote[1003].speaker SPEAKER_17
transcript.pyannote[1003].start 7938.90846875
transcript.pyannote[1003].end 7939.78596875
transcript.pyannote[1004].speaker SPEAKER_17
transcript.pyannote[1004].start 7939.88721875
transcript.pyannote[1004].end 7939.95471875
transcript.pyannote[1005].speaker SPEAKER_16
transcript.pyannote[1005].start 7940.78159375
transcript.pyannote[1005].end 7944.27471875
transcript.pyannote[1006].speaker SPEAKER_16
transcript.pyannote[1006].start 7944.66284375
transcript.pyannote[1006].end 7946.13096875
transcript.pyannote[1007].speaker SPEAKER_17
transcript.pyannote[1007].start 7951.86846875
transcript.pyannote[1007].end 7951.93596875
transcript.pyannote[1008].speaker SPEAKER_16
transcript.pyannote[1008].start 7951.93596875
transcript.pyannote[1008].end 7952.42534375
transcript.pyannote[1009].speaker SPEAKER_17
transcript.pyannote[1009].start 7952.64471875
transcript.pyannote[1009].end 7974.86909375
transcript.pyannote[1010].speaker SPEAKER_16
transcript.pyannote[1010].start 7972.30409375
transcript.pyannote[1010].end 7972.62471875
transcript.pyannote[1011].speaker SPEAKER_17
transcript.pyannote[1011].start 7975.08846875
transcript.pyannote[1011].end 7987.98096875
transcript.pyannote[1012].speaker SPEAKER_17
transcript.pyannote[1012].start 7988.45346875
transcript.pyannote[1012].end 7997.95409375
transcript.pyannote[1013].speaker SPEAKER_17
transcript.pyannote[1013].start 7998.35909375
transcript.pyannote[1013].end 8017.59659375
transcript.pyannote[1014].speaker SPEAKER_17
transcript.pyannote[1014].start 8019.95909375
transcript.pyannote[1014].end 8028.36284375
transcript.pyannote[1015].speaker SPEAKER_17
transcript.pyannote[1015].start 8028.81846875
transcript.pyannote[1015].end 8050.01346875
transcript.pyannote[1016].speaker SPEAKER_17
transcript.pyannote[1016].start 8050.43534375
transcript.pyannote[1016].end 8082.09284375
transcript.pyannote[1017].speaker SPEAKER_17
transcript.pyannote[1017].start 8082.53159375
transcript.pyannote[1017].end 8151.82034375
transcript.pyannote[1018].speaker SPEAKER_17
transcript.pyannote[1018].start 8152.63034375
transcript.pyannote[1018].end 8223.21846875
transcript.pyannote[1019].speaker SPEAKER_21
transcript.pyannote[1019].start 8224.34909375
transcript.pyannote[1019].end 8226.69471875
transcript.pyannote[1020].speaker SPEAKER_17
transcript.pyannote[1020].start 8226.20534375
transcript.pyannote[1020].end 8228.46659375
transcript.pyannote[1021].speaker SPEAKER_33
transcript.pyannote[1021].start 8228.46659375
transcript.pyannote[1021].end 8228.51721875
transcript.pyannote[1022].speaker SPEAKER_33
transcript.pyannote[1022].start 8228.70284375
transcript.pyannote[1022].end 8249.88096875
transcript.pyannote[1023].speaker SPEAKER_17
transcript.pyannote[1023].start 8248.88534375
transcript.pyannote[1023].end 8251.21409375
transcript.pyannote[1024].speaker SPEAKER_33
transcript.pyannote[1024].start 8250.80909375
transcript.pyannote[1024].end 8251.90596875
transcript.pyannote[1025].speaker SPEAKER_17
transcript.pyannote[1025].start 8251.28159375
transcript.pyannote[1025].end 8255.14596875
transcript.pyannote[1026].speaker SPEAKER_33
transcript.pyannote[1026].start 8255.14596875
transcript.pyannote[1026].end 8262.46971875
transcript.pyannote[1027].speaker SPEAKER_17
transcript.pyannote[1027].start 8261.94659375
transcript.pyannote[1027].end 8265.06846875
transcript.pyannote[1028].speaker SPEAKER_17
transcript.pyannote[1028].start 8265.20346875
transcript.pyannote[1028].end 8265.64221875
transcript.pyannote[1029].speaker SPEAKER_33
transcript.pyannote[1029].start 8266.68846875
transcript.pyannote[1029].end 8269.10159375
transcript.pyannote[1030].speaker SPEAKER_17
transcript.pyannote[1030].start 8269.10159375
transcript.pyannote[1030].end 8276.30721875
transcript.pyannote[1031].speaker SPEAKER_33
transcript.pyannote[1031].start 8276.67846875
transcript.pyannote[1031].end 8284.00221875
transcript.pyannote[1032].speaker SPEAKER_33
transcript.pyannote[1032].start 8284.22159375
transcript.pyannote[1032].end 8286.82034375
transcript.pyannote[1033].speaker SPEAKER_33
transcript.pyannote[1033].start 8287.41096875
transcript.pyannote[1033].end 8293.24971875
transcript.pyannote[1034].speaker SPEAKER_17
transcript.pyannote[1034].start 8293.24971875
transcript.pyannote[1034].end 8297.90721875
transcript.pyannote[1035].speaker SPEAKER_33
transcript.pyannote[1035].start 8298.61596875
transcript.pyannote[1035].end 8299.35846875
transcript.pyannote[1036].speaker SPEAKER_17
transcript.pyannote[1036].start 8298.97034375
transcript.pyannote[1036].end 8311.77846875
transcript.pyannote[1037].speaker SPEAKER_17
transcript.pyannote[1037].start 8312.31846875
transcript.pyannote[1037].end 8318.44409375
transcript.pyannote[1038].speaker SPEAKER_33
transcript.pyannote[1038].start 8318.44409375
transcript.pyannote[1038].end 8318.52846875
transcript.pyannote[1039].speaker SPEAKER_17
transcript.pyannote[1039].start 8318.52846875
transcript.pyannote[1039].end 8319.27096875
transcript.pyannote[1040].speaker SPEAKER_33
transcript.pyannote[1040].start 8319.81096875
transcript.pyannote[1040].end 8328.83909375
transcript.pyannote[1041].speaker SPEAKER_33
transcript.pyannote[1041].start 8329.36221875
transcript.pyannote[1041].end 8337.19221875
transcript.pyannote[1042].speaker SPEAKER_33
transcript.pyannote[1042].start 8337.64784375
transcript.pyannote[1042].end 8346.06846875
transcript.pyannote[1043].speaker SPEAKER_33
transcript.pyannote[1043].start 8346.94596875
transcript.pyannote[1043].end 8352.54846875
transcript.pyannote[1044].speaker SPEAKER_17
transcript.pyannote[1044].start 8350.65846875
transcript.pyannote[1044].end 8407.66221875
transcript.pyannote[1045].speaker SPEAKER_16
transcript.pyannote[1045].start 8363.77034375
transcript.pyannote[1045].end 8364.17534375
transcript.pyannote[1046].speaker SPEAKER_17
transcript.pyannote[1046].start 8408.45534375
transcript.pyannote[1046].end 8408.92784375
transcript.pyannote[1047].speaker SPEAKER_33
transcript.pyannote[1047].start 8409.50159375
transcript.pyannote[1047].end 8409.99096875
transcript.pyannote[1048].speaker SPEAKER_33
transcript.pyannote[1048].start 8410.42971875
transcript.pyannote[1048].end 8413.43346875
transcript.pyannote[1049].speaker SPEAKER_17
transcript.pyannote[1049].start 8413.78784375
transcript.pyannote[1049].end 8423.03534375
transcript.pyannote[1050].speaker SPEAKER_17
transcript.pyannote[1050].start 8423.18721875
transcript.pyannote[1050].end 8427.27096875
transcript.pyannote[1051].speaker SPEAKER_17
transcript.pyannote[1051].start 8428.65471875
transcript.pyannote[1051].end 8439.40409375
transcript.pyannote[1052].speaker SPEAKER_17
transcript.pyannote[1052].start 8439.60659375
transcript.pyannote[1052].end 8444.58471875
transcript.pyannote[1053].speaker SPEAKER_17
transcript.pyannote[1053].start 8445.29346875
transcript.pyannote[1053].end 8451.94221875
transcript.pyannote[1054].speaker SPEAKER_17
transcript.pyannote[1054].start 8452.17846875
transcript.pyannote[1054].end 8478.14909375
transcript.pyannote[1055].speaker SPEAKER_17
transcript.pyannote[1055].start 8478.41909375
transcript.pyannote[1055].end 8499.44534375
transcript.pyannote[1056].speaker SPEAKER_17
transcript.pyannote[1056].start 8499.78284375
transcript.pyannote[1056].end 8512.99596875
transcript.pyannote[1057].speaker SPEAKER_33
transcript.pyannote[1057].start 8514.12659375
transcript.pyannote[1057].end 8530.41096875
transcript.pyannote[1058].speaker SPEAKER_17
transcript.pyannote[1058].start 8529.11159375
transcript.pyannote[1058].end 8536.26659375
transcript.pyannote[1059].speaker SPEAKER_17
transcript.pyannote[1059].start 8536.62096875
transcript.pyannote[1059].end 8539.69221875
transcript.pyannote[1060].speaker SPEAKER_33
transcript.pyannote[1060].start 8539.77659375
transcript.pyannote[1060].end 8550.84659375
transcript.pyannote[1061].speaker SPEAKER_17
transcript.pyannote[1061].start 8542.12221875
transcript.pyannote[1061].end 8543.08409375
transcript.pyannote[1062].speaker SPEAKER_17
transcript.pyannote[1062].start 8550.57659375
transcript.pyannote[1062].end 8552.55096875
transcript.pyannote[1063].speaker SPEAKER_17
transcript.pyannote[1063].start 8552.68596875
transcript.pyannote[1063].end 8559.53721875
transcript.pyannote[1064].speaker SPEAKER_33
transcript.pyannote[1064].start 8558.25471875
transcript.pyannote[1064].end 8572.09221875
transcript.pyannote[1065].speaker SPEAKER_17
transcript.pyannote[1065].start 8560.27971875
transcript.pyannote[1065].end 8562.28784375
transcript.pyannote[1066].speaker SPEAKER_16
transcript.pyannote[1066].start 8565.49409375
transcript.pyannote[1066].end 8565.52784375
transcript.pyannote[1067].speaker SPEAKER_17
transcript.pyannote[1067].start 8565.52784375
transcript.pyannote[1067].end 8566.45596875
transcript.pyannote[1068].speaker SPEAKER_17
transcript.pyannote[1068].start 8570.80971875
transcript.pyannote[1068].end 8573.81346875
transcript.pyannote[1069].speaker SPEAKER_33
transcript.pyannote[1069].start 8574.10034375
transcript.pyannote[1069].end 8580.63096875
transcript.pyannote[1070].speaker SPEAKER_17
transcript.pyannote[1070].start 8579.24721875
transcript.pyannote[1070].end 8581.94721875
transcript.pyannote[1071].speaker SPEAKER_33
transcript.pyannote[1071].start 8582.55471875
transcript.pyannote[1071].end 8585.54159375
transcript.pyannote[1072].speaker SPEAKER_17
transcript.pyannote[1072].start 8585.74409375
transcript.pyannote[1072].end 8592.22409375
transcript.pyannote[1073].speaker SPEAKER_33
transcript.pyannote[1073].start 8592.39284375
transcript.pyannote[1073].end 8597.62409375
transcript.pyannote[1074].speaker SPEAKER_17
transcript.pyannote[1074].start 8596.29096875
transcript.pyannote[1074].end 8598.01221875
transcript.pyannote[1075].speaker SPEAKER_33
transcript.pyannote[1075].start 8599.04159375
transcript.pyannote[1075].end 8600.18909375
transcript.pyannote[1076].speaker SPEAKER_17
transcript.pyannote[1076].start 8599.31159375
transcript.pyannote[1076].end 8602.19721875
transcript.pyannote[1077].speaker SPEAKER_33
transcript.pyannote[1077].start 8601.50534375
transcript.pyannote[1077].end 8602.58534375
transcript.pyannote[1078].speaker SPEAKER_17
transcript.pyannote[1078].start 8602.58534375
transcript.pyannote[1078].end 8602.88909375
transcript.pyannote[1079].speaker SPEAKER_33
transcript.pyannote[1079].start 8602.88909375
transcript.pyannote[1079].end 8605.92659375
transcript.pyannote[1080].speaker SPEAKER_17
transcript.pyannote[1080].start 8604.39096875
transcript.pyannote[1080].end 8608.42409375
transcript.pyannote[1081].speaker SPEAKER_33
transcript.pyannote[1081].start 8608.42409375
transcript.pyannote[1081].end 8611.49534375
transcript.pyannote[1082].speaker SPEAKER_17
transcript.pyannote[1082].start 8610.76971875
transcript.pyannote[1082].end 8611.79909375
transcript.pyannote[1083].speaker SPEAKER_17
transcript.pyannote[1083].start 8611.86659375
transcript.pyannote[1083].end 8611.88346875
transcript.pyannote[1084].speaker SPEAKER_33
transcript.pyannote[1084].start 8611.88346875
transcript.pyannote[1084].end 8615.61284375
transcript.pyannote[1085].speaker SPEAKER_17
transcript.pyannote[1085].start 8612.32221875
transcript.pyannote[1085].end 8613.36846875
transcript.pyannote[1086].speaker SPEAKER_17
transcript.pyannote[1086].start 8614.41471875
transcript.pyannote[1086].end 8622.80159375
transcript.pyannote[1087].speaker SPEAKER_17
transcript.pyannote[1087].start 8623.30784375
transcript.pyannote[1087].end 8624.74221875
transcript.pyannote[1088].speaker SPEAKER_33
transcript.pyannote[1088].start 8624.74221875
transcript.pyannote[1088].end 8633.12909375
transcript.pyannote[1089].speaker SPEAKER_17
transcript.pyannote[1089].start 8631.57659375
transcript.pyannote[1089].end 8643.13596875
transcript.pyannote[1090].speaker SPEAKER_17
transcript.pyannote[1090].start 8643.37221875
transcript.pyannote[1090].end 8657.49659375
transcript.pyannote[1091].speaker SPEAKER_17
transcript.pyannote[1091].start 8658.35721875
transcript.pyannote[1091].end 8662.50846875
transcript.pyannote[1092].speaker SPEAKER_17
transcript.pyannote[1092].start 8662.72784375
transcript.pyannote[1092].end 8665.37721875
transcript.pyannote[1093].speaker SPEAKER_17
transcript.pyannote[1093].start 8666.33909375
transcript.pyannote[1093].end 8681.79659375
transcript.pyannote[1094].speaker SPEAKER_17
transcript.pyannote[1094].start 8682.38721875
transcript.pyannote[1094].end 8684.91846875
transcript.pyannote[1095].speaker SPEAKER_17
transcript.pyannote[1095].start 8685.81284375
transcript.pyannote[1095].end 8687.39909375
transcript.pyannote[1096].speaker SPEAKER_17
transcript.pyannote[1096].start 8687.98971875
transcript.pyannote[1096].end 8688.69846875
transcript.pyannote[1097].speaker SPEAKER_17
transcript.pyannote[1097].start 8689.10346875
transcript.pyannote[1097].end 8703.53159375
transcript.pyannote[1098].speaker SPEAKER_17
transcript.pyannote[1098].start 8704.05471875
transcript.pyannote[1098].end 8704.93221875
transcript.pyannote[1099].speaker SPEAKER_17
transcript.pyannote[1099].start 8705.77596875
transcript.pyannote[1099].end 8708.08784375
transcript.pyannote[1100].speaker SPEAKER_17
transcript.pyannote[1100].start 8708.49284375
transcript.pyannote[1100].end 8714.93909375
transcript.pyannote[1101].speaker SPEAKER_17
transcript.pyannote[1101].start 8714.97284375
transcript.pyannote[1101].end 8719.05659375
transcript.pyannote[1102].speaker SPEAKER_33
transcript.pyannote[1102].start 8719.59659375
transcript.pyannote[1102].end 8727.52784375
transcript.pyannote[1103].speaker SPEAKER_17
transcript.pyannote[1103].start 8721.04784375
transcript.pyannote[1103].end 8721.16596875
transcript.pyannote[1104].speaker SPEAKER_17
transcript.pyannote[1104].start 8726.76846875
transcript.pyannote[1104].end 8736.57284375
transcript.pyannote[1105].speaker SPEAKER_33
transcript.pyannote[1105].start 8729.45159375
transcript.pyannote[1105].end 8730.27846875
transcript.pyannote[1106].speaker SPEAKER_17
transcript.pyannote[1106].start 8737.16346875
transcript.pyannote[1106].end 8740.13346875
transcript.pyannote[1107].speaker SPEAKER_33
transcript.pyannote[1107].start 8737.21409375
transcript.pyannote[1107].end 8744.33534375
transcript.pyannote[1108].speaker SPEAKER_17
transcript.pyannote[1108].start 8742.74909375
transcript.pyannote[1108].end 8747.08596875
transcript.pyannote[1109].speaker SPEAKER_17
transcript.pyannote[1109].start 8748.09846875
transcript.pyannote[1109].end 8749.02659375
transcript.pyannote[1110].speaker SPEAKER_17
transcript.pyannote[1110].start 8749.49909375
transcript.pyannote[1110].end 8750.47784375
transcript.pyannote[1111].speaker SPEAKER_17
transcript.pyannote[1111].start 8751.13596875
transcript.pyannote[1111].end 8753.83596875
transcript.pyannote[1112].speaker SPEAKER_33
transcript.pyannote[1112].start 8751.25409375
transcript.pyannote[1112].end 8751.57471875
transcript.pyannote[1113].speaker SPEAKER_33
transcript.pyannote[1113].start 8752.94159375
transcript.pyannote[1113].end 8763.84284375
transcript.pyannote[1114].speaker SPEAKER_17
transcript.pyannote[1114].start 8758.03784375
transcript.pyannote[1114].end 8761.81784375
transcript.pyannote[1115].speaker SPEAKER_17
transcript.pyannote[1115].start 8762.49284375
transcript.pyannote[1115].end 8780.48159375
transcript.pyannote[1116].speaker SPEAKER_17
transcript.pyannote[1116].start 8780.85284375
transcript.pyannote[1116].end 8792.07471875
transcript.pyannote[1117].speaker SPEAKER_17
transcript.pyannote[1117].start 8792.46284375
transcript.pyannote[1117].end 8800.12409375
transcript.pyannote[1118].speaker SPEAKER_17
transcript.pyannote[1118].start 8800.63034375
transcript.pyannote[1118].end 8805.99659375
transcript.pyannote[1119].speaker SPEAKER_17
transcript.pyannote[1119].start 8809.30409375
transcript.pyannote[1119].end 8811.97034375
transcript.pyannote[1120].speaker SPEAKER_17
transcript.pyannote[1120].start 8812.45971875
transcript.pyannote[1120].end 8817.52221875
transcript.pyannote[1121].speaker SPEAKER_17
transcript.pyannote[1121].start 8817.87659375
transcript.pyannote[1121].end 8823.37784375
transcript.pyannote[1122].speaker SPEAKER_17
transcript.pyannote[1122].start 8824.10346875
transcript.pyannote[1122].end 8835.44346875
transcript.pyannote[1123].speaker SPEAKER_17
transcript.pyannote[1123].start 8836.30409375
transcript.pyannote[1123].end 8838.27846875
transcript.pyannote[1124].speaker SPEAKER_17
transcript.pyannote[1124].start 8838.63284375
transcript.pyannote[1124].end 8847.08721875
transcript.pyannote[1125].speaker SPEAKER_17
transcript.pyannote[1125].start 8848.36971875
transcript.pyannote[1125].end 8849.21346875
transcript.pyannote[1126].speaker SPEAKER_17
transcript.pyannote[1126].start 8849.58471875
transcript.pyannote[1126].end 8851.59284375
transcript.pyannote[1127].speaker SPEAKER_17
transcript.pyannote[1127].start 8851.96409375
transcript.pyannote[1127].end 8854.15784375
transcript.pyannote[1128].speaker SPEAKER_17
transcript.pyannote[1128].start 8854.64721875
transcript.pyannote[1128].end 8860.23284375
transcript.pyannote[1129].speaker SPEAKER_17
transcript.pyannote[1129].start 8860.53659375
transcript.pyannote[1129].end 8873.93534375
transcript.pyannote[1130].speaker SPEAKER_17
transcript.pyannote[1130].start 8874.37409375
transcript.pyannote[1130].end 8878.17096875
transcript.pyannote[1131].speaker SPEAKER_17
transcript.pyannote[1131].start 8878.79534375
transcript.pyannote[1131].end 8881.88346875
transcript.pyannote[1132].speaker SPEAKER_17
transcript.pyannote[1132].start 8882.60909375
transcript.pyannote[1132].end 8893.18971875
transcript.pyannote[1133].speaker SPEAKER_17
transcript.pyannote[1133].start 8893.86471875
transcript.pyannote[1133].end 8899.60221875
transcript.pyannote[1134].speaker SPEAKER_17
transcript.pyannote[1134].start 8899.88909375
transcript.pyannote[1134].end 8919.48096875
transcript.pyannote[1135].speaker SPEAKER_17
transcript.pyannote[1135].start 8920.59471875
transcript.pyannote[1135].end 8923.27784375
transcript.pyannote[1136].speaker SPEAKER_17
transcript.pyannote[1136].start 8923.71659375
transcript.pyannote[1136].end 8927.00721875
transcript.pyannote[1137].speaker SPEAKER_17
transcript.pyannote[1137].start 8928.12096875
transcript.pyannote[1137].end 8931.19221875
transcript.pyannote[1138].speaker SPEAKER_17
transcript.pyannote[1138].start 8931.24284375
transcript.pyannote[1138].end 8933.33534375
transcript.pyannote[1139].speaker SPEAKER_17
transcript.pyannote[1139].start 8933.58846875
transcript.pyannote[1139].end 8935.10721875
transcript.pyannote[1140].speaker SPEAKER_17
transcript.pyannote[1140].start 8935.76534375
transcript.pyannote[1140].end 8941.75596875
transcript.pyannote[1141].speaker SPEAKER_17
transcript.pyannote[1141].start 8942.26221875
transcript.pyannote[1141].end 8944.87784375
transcript.pyannote[1142].speaker SPEAKER_17
transcript.pyannote[1142].start 8945.31659375
transcript.pyannote[1142].end 8964.14909375
transcript.pyannote[1143].speaker SPEAKER_33
transcript.pyannote[1143].start 8966.02221875
transcript.pyannote[1143].end 8969.38034375
transcript.pyannote[1144].speaker SPEAKER_17
transcript.pyannote[1144].start 8968.03034375
transcript.pyannote[1144].end 8969.49846875
transcript.pyannote[1145].speaker SPEAKER_17
transcript.pyannote[1145].start 8970.27471875
transcript.pyannote[1145].end 8972.97471875
transcript.pyannote[1146].speaker SPEAKER_17
transcript.pyannote[1146].start 8975.62409375
transcript.pyannote[1146].end 8976.38346875
transcript.pyannote[1147].speaker SPEAKER_17
transcript.pyannote[1147].start 8976.67034375
transcript.pyannote[1147].end 8983.15034375
transcript.pyannote[1148].speaker SPEAKER_17
transcript.pyannote[1148].start 8983.79159375
transcript.pyannote[1148].end 8987.67284375
transcript.pyannote[1149].speaker SPEAKER_17
transcript.pyannote[1149].start 8987.92596875
transcript.pyannote[1149].end 8993.47784375
transcript.pyannote[1150].speaker SPEAKER_17
transcript.pyannote[1150].start 8993.83221875
transcript.pyannote[1150].end 8997.20721875
transcript.pyannote[1151].speaker SPEAKER_17
transcript.pyannote[1151].start 8997.47721875
transcript.pyannote[1151].end 9002.92784375
transcript.pyannote[1152].speaker SPEAKER_17
transcript.pyannote[1152].start 9003.51846875
transcript.pyannote[1152].end 9005.83034375
transcript.pyannote[1153].speaker SPEAKER_17
transcript.pyannote[1153].start 9006.42096875
transcript.pyannote[1153].end 9007.33221875
transcript.pyannote[1154].speaker SPEAKER_17
transcript.pyannote[1154].start 9007.65284375
transcript.pyannote[1154].end 9009.42471875
transcript.pyannote[1155].speaker SPEAKER_17
transcript.pyannote[1155].start 9010.08284375
transcript.pyannote[1155].end 9019.58346875
transcript.pyannote[1156].speaker SPEAKER_17
transcript.pyannote[1156].start 9020.49471875
transcript.pyannote[1156].end 9023.09346875
transcript.pyannote[1157].speaker SPEAKER_17
transcript.pyannote[1157].start 9023.46471875
transcript.pyannote[1157].end 9026.75534375
transcript.pyannote[1158].speaker SPEAKER_17
transcript.pyannote[1158].start 9027.54846875
transcript.pyannote[1158].end 9034.23096875
transcript.pyannote[1159].speaker SPEAKER_17
transcript.pyannote[1159].start 9034.82159375
transcript.pyannote[1159].end 9046.38096875
transcript.pyannote[1160].speaker SPEAKER_17
transcript.pyannote[1160].start 9047.29221875
transcript.pyannote[1160].end 9049.92471875
transcript.pyannote[1161].speaker SPEAKER_17
transcript.pyannote[1161].start 9050.71784375
transcript.pyannote[1161].end 9052.64159375
transcript.pyannote[1162].speaker SPEAKER_17
transcript.pyannote[1162].start 9052.92846875
transcript.pyannote[1162].end 9064.28534375
transcript.pyannote[1163].speaker SPEAKER_17
transcript.pyannote[1163].start 9066.54659375
transcript.pyannote[1163].end 9069.36471875
transcript.pyannote[1164].speaker SPEAKER_17
transcript.pyannote[1164].start 9070.12409375
transcript.pyannote[1164].end 9074.89971875
transcript.pyannote[1165].speaker SPEAKER_17
transcript.pyannote[1165].start 9075.59159375
transcript.pyannote[1165].end 9079.55721875
transcript.pyannote[1166].speaker SPEAKER_17
transcript.pyannote[1166].start 9080.16471875
transcript.pyannote[1166].end 9085.78409375
transcript.pyannote[1167].speaker SPEAKER_17
transcript.pyannote[1167].start 9086.71221875
transcript.pyannote[1167].end 9089.17596875
transcript.pyannote[1168].speaker SPEAKER_17
transcript.pyannote[1168].start 9089.59784375
transcript.pyannote[1168].end 9090.30659375
transcript.pyannote[1169].speaker SPEAKER_17
transcript.pyannote[1169].start 9091.09971875
transcript.pyannote[1169].end 9107.70471875
transcript.pyannote[1170].speaker SPEAKER_17
transcript.pyannote[1170].start 9108.56534375
transcript.pyannote[1170].end 9109.49346875
transcript.pyannote[1171].speaker SPEAKER_17
transcript.pyannote[1171].start 9110.62409375
transcript.pyannote[1171].end 9112.69971875
transcript.pyannote[1172].speaker SPEAKER_17
transcript.pyannote[1172].start 9113.02034375
transcript.pyannote[1172].end 9121.22159375
transcript.pyannote[1173].speaker SPEAKER_17
transcript.pyannote[1173].start 9121.37346875
transcript.pyannote[1173].end 9128.84909375
transcript.pyannote[1174].speaker SPEAKER_17
transcript.pyannote[1174].start 9129.54096875
transcript.pyannote[1174].end 9140.62784375
transcript.pyannote[1175].speaker SPEAKER_17
transcript.pyannote[1175].start 9141.28596875
transcript.pyannote[1175].end 9146.82096875
transcript.pyannote[1176].speaker SPEAKER_33
transcript.pyannote[1176].start 9147.64784375
transcript.pyannote[1176].end 9157.33409375
transcript.pyannote[1177].speaker SPEAKER_17
transcript.pyannote[1177].start 9155.57909375
transcript.pyannote[1177].end 9164.08409375
transcript.pyannote[1178].speaker SPEAKER_17
transcript.pyannote[1178].start 9164.59034375
transcript.pyannote[1178].end 9167.83034375
transcript.pyannote[1179].speaker SPEAKER_17
transcript.pyannote[1179].start 9168.11721875
transcript.pyannote[1179].end 9172.23471875
transcript.pyannote[1180].speaker SPEAKER_17
transcript.pyannote[1180].start 9172.85909375
transcript.pyannote[1180].end 9173.90534375
transcript.pyannote[1181].speaker SPEAKER_17
transcript.pyannote[1181].start 9174.95159375
transcript.pyannote[1181].end 9177.33096875
transcript.pyannote[1182].speaker SPEAKER_17
transcript.pyannote[1182].start 9177.80346875
transcript.pyannote[1182].end 9180.33471875
transcript.pyannote[1183].speaker SPEAKER_17
transcript.pyannote[1183].start 9180.68909375
transcript.pyannote[1183].end 9182.15721875
transcript.pyannote[1184].speaker SPEAKER_17
transcript.pyannote[1184].start 9183.23721875
transcript.pyannote[1184].end 9185.46471875
transcript.pyannote[1185].speaker SPEAKER_17
transcript.pyannote[1185].start 9186.22409375
transcript.pyannote[1185].end 9186.79784375
transcript.pyannote[1186].speaker SPEAKER_17
transcript.pyannote[1186].start 9187.40534375
transcript.pyannote[1186].end 9200.66909375
transcript.pyannote[1187].speaker SPEAKER_24
transcript.pyannote[1187].start 9200.02784375
transcript.pyannote[1187].end 9201.12471875
transcript.pyannote[1188].speaker SPEAKER_24
transcript.pyannote[1188].start 9201.31034375
transcript.pyannote[1188].end 9204.26346875
transcript.pyannote[1189].speaker SPEAKER_26
transcript.pyannote[1189].start 9202.03596875
transcript.pyannote[1189].end 9202.89659375
transcript.pyannote[1190].speaker SPEAKER_24
transcript.pyannote[1190].start 9205.02284375
transcript.pyannote[1190].end 9208.27971875
transcript.pyannote[1191].speaker SPEAKER_29
transcript.pyannote[1191].start 9208.27971875
transcript.pyannote[1191].end 9208.39784375
transcript.pyannote[1192].speaker SPEAKER_24
transcript.pyannote[1192].start 9210.35534375
transcript.pyannote[1192].end 9213.15659375
transcript.pyannote[1193].speaker SPEAKER_30
transcript.pyannote[1193].start 9210.45659375
transcript.pyannote[1193].end 9210.96284375
transcript.pyannote[1194].speaker SPEAKER_29
transcript.pyannote[1194].start 9210.96284375
transcript.pyannote[1194].end 9211.43534375
transcript.pyannote[1195].speaker SPEAKER_29
transcript.pyannote[1195].start 9211.48596875
transcript.pyannote[1195].end 9211.53659375
transcript.pyannote[1196].speaker SPEAKER_26
transcript.pyannote[1196].start 9249.97784375
transcript.pyannote[1196].end 9250.83846875
transcript.pyannote[1197].speaker SPEAKER_24
transcript.pyannote[1197].start 9594.64971875
transcript.pyannote[1197].end 9599.17221875
transcript.pyannote[1198].speaker SPEAKER_03
transcript.pyannote[1198].start 9620.43471875
transcript.pyannote[1198].end 9622.52721875
transcript.pyannote[1199].speaker SPEAKER_03
transcript.pyannote[1199].start 9624.29909375
transcript.pyannote[1199].end 9624.99096875
transcript.pyannote[1200].speaker SPEAKER_03
transcript.pyannote[1200].start 9626.22284375
transcript.pyannote[1200].end 9626.89784375
transcript.pyannote[1201].speaker SPEAKER_03
transcript.pyannote[1201].start 9627.43784375
transcript.pyannote[1201].end 9627.91034375
transcript.pyannote[1202].speaker SPEAKER_03
transcript.pyannote[1202].start 9627.97784375
transcript.pyannote[1202].end 9629.02409375
transcript.pyannote[1203].speaker SPEAKER_00
transcript.pyannote[1203].start 9628.06221875
transcript.pyannote[1203].end 9628.82159375
transcript.pyannote[1204].speaker SPEAKER_03
transcript.pyannote[1204].start 9629.59784375
transcript.pyannote[1204].end 9630.32346875
transcript.pyannote[1205].speaker SPEAKER_03
transcript.pyannote[1205].start 9631.53846875
transcript.pyannote[1205].end 9632.23034375
transcript.pyannote[1206].speaker SPEAKER_03
transcript.pyannote[1206].start 9632.33159375
transcript.pyannote[1206].end 9633.47909375
transcript.pyannote[1207].speaker SPEAKER_03
transcript.pyannote[1207].start 9640.46534375
transcript.pyannote[1207].end 9640.90409375
transcript.pyannote[1208].speaker SPEAKER_03
transcript.pyannote[1208].start 9642.00096875
transcript.pyannote[1208].end 9643.41846875
transcript.pyannote[1209].speaker SPEAKER_03
transcript.pyannote[1209].start 9643.95846875
transcript.pyannote[1209].end 9644.65034375
transcript.pyannote[1210].speaker SPEAKER_03
transcript.pyannote[1210].start 9645.52784375
transcript.pyannote[1210].end 9647.16471875
transcript.pyannote[1211].speaker SPEAKER_03
transcript.pyannote[1211].start 9647.70471875
transcript.pyannote[1211].end 9649.93221875
transcript.pyannote[1212].speaker SPEAKER_03
transcript.pyannote[1212].start 9650.50596875
transcript.pyannote[1212].end 9653.25659375
transcript.pyannote[1213].speaker SPEAKER_03
transcript.pyannote[1213].start 9655.02846875
transcript.pyannote[1213].end 9658.20096875
transcript.pyannote[1214].speaker SPEAKER_03
transcript.pyannote[1214].start 9658.79159375
transcript.pyannote[1214].end 9661.05284375
transcript.pyannote[1215].speaker SPEAKER_03
transcript.pyannote[1215].start 9661.35659375
transcript.pyannote[1215].end 9664.91721875
transcript.pyannote[1216].speaker SPEAKER_03
transcript.pyannote[1216].start 9665.67659375
transcript.pyannote[1216].end 9667.90409375
transcript.pyannote[1217].speaker SPEAKER_03
transcript.pyannote[1217].start 9669.03471875
transcript.pyannote[1217].end 9670.11471875
transcript.pyannote[1218].speaker SPEAKER_03
transcript.pyannote[1218].start 9670.65471875
transcript.pyannote[1218].end 9674.38409375
transcript.pyannote[1219].speaker SPEAKER_03
transcript.pyannote[1219].start 9674.72159375
transcript.pyannote[1219].end 9677.97846875
transcript.pyannote[1220].speaker SPEAKER_03
transcript.pyannote[1220].start 9678.29909375
transcript.pyannote[1220].end 9679.91909375
transcript.pyannote[1221].speaker SPEAKER_03
transcript.pyannote[1221].start 9680.77971875
transcript.pyannote[1221].end 9681.80909375
transcript.pyannote[1222].speaker SPEAKER_03
transcript.pyannote[1222].start 9682.38284375
transcript.pyannote[1222].end 9683.51346875
transcript.pyannote[1223].speaker SPEAKER_03
transcript.pyannote[1223].start 9683.86784375
transcript.pyannote[1223].end 9686.01096875
transcript.pyannote[1224].speaker SPEAKER_03
transcript.pyannote[1224].start 9686.92221875
transcript.pyannote[1224].end 9689.68971875
transcript.pyannote[1225].speaker SPEAKER_03
transcript.pyannote[1225].start 9690.04409375
transcript.pyannote[1225].end 9698.56596875
transcript.pyannote[1226].speaker SPEAKER_03
transcript.pyannote[1226].start 9699.88221875
transcript.pyannote[1226].end 9702.46409375
transcript.pyannote[1227].speaker SPEAKER_03
transcript.pyannote[1227].start 9703.32471875
transcript.pyannote[1227].end 9705.06284375
transcript.pyannote[1228].speaker SPEAKER_03
transcript.pyannote[1228].start 9705.85596875
transcript.pyannote[1228].end 9707.35784375
transcript.pyannote[1229].speaker SPEAKER_03
transcript.pyannote[1229].start 9708.64034375
transcript.pyannote[1229].end 9710.04096875
transcript.pyannote[1230].speaker SPEAKER_03
transcript.pyannote[1230].start 9710.66534375
transcript.pyannote[1230].end 9713.24721875
transcript.pyannote[1231].speaker SPEAKER_03
transcript.pyannote[1231].start 9714.83346875
transcript.pyannote[1231].end 9718.93409375
transcript.pyannote[1232].speaker SPEAKER_03
transcript.pyannote[1232].start 9719.60909375
transcript.pyannote[1232].end 9721.60034375
transcript.pyannote[1233].speaker SPEAKER_03
transcript.pyannote[1233].start 9723.30471875
transcript.pyannote[1233].end 9723.77721875
transcript.pyannote[1234].speaker SPEAKER_03
transcript.pyannote[1234].start 9724.87409375
transcript.pyannote[1234].end 9727.92846875
transcript.pyannote[1235].speaker SPEAKER_03
transcript.pyannote[1235].start 9728.97471875
transcript.pyannote[1235].end 9732.80534375
transcript.pyannote[1236].speaker SPEAKER_03
transcript.pyannote[1236].start 9733.27784375
transcript.pyannote[1236].end 9733.95284375
transcript.pyannote[1237].speaker SPEAKER_03
transcript.pyannote[1237].start 9734.52659375
transcript.pyannote[1237].end 9736.70346875
transcript.pyannote[1238].speaker SPEAKER_03
transcript.pyannote[1238].start 9737.59784375
transcript.pyannote[1238].end 9740.04471875
transcript.pyannote[1239].speaker SPEAKER_03
transcript.pyannote[1239].start 9740.19659375
transcript.pyannote[1239].end 9742.17096875
transcript.pyannote[1240].speaker SPEAKER_03
transcript.pyannote[1240].start 9742.66034375
transcript.pyannote[1240].end 9745.47846875
transcript.pyannote[1241].speaker SPEAKER_03
transcript.pyannote[1241].start 9745.79909375
transcript.pyannote[1241].end 9752.66721875
transcript.pyannote[1242].speaker SPEAKER_03
transcript.pyannote[1242].start 9753.88221875
transcript.pyannote[1242].end 9754.99596875
transcript.pyannote[1243].speaker SPEAKER_03
transcript.pyannote[1243].start 9755.23221875
transcript.pyannote[1243].end 9756.24471875
transcript.pyannote[1244].speaker SPEAKER_03
transcript.pyannote[1244].start 9756.66659375
transcript.pyannote[1244].end 9757.22346875
transcript.pyannote[1245].speaker SPEAKER_03
transcript.pyannote[1245].start 9757.54409375
transcript.pyannote[1245].end 9759.75471875
transcript.pyannote[1246].speaker SPEAKER_10
transcript.pyannote[1246].start 9757.72971875
transcript.pyannote[1246].end 9760.76721875
transcript.pyannote[1247].speaker SPEAKER_03
transcript.pyannote[1247].start 9760.81784375
transcript.pyannote[1247].end 9762.57284375
transcript.pyannote[1248].speaker SPEAKER_10
transcript.pyannote[1248].start 9762.55596875
transcript.pyannote[1248].end 9763.21409375
transcript.pyannote[1249].speaker SPEAKER_03
transcript.pyannote[1249].start 9763.39971875
transcript.pyannote[1249].end 9764.98596875
transcript.pyannote[1250].speaker SPEAKER_03
transcript.pyannote[1250].start 9765.34034375
transcript.pyannote[1250].end 9767.41596875
transcript.pyannote[1251].speaker SPEAKER_03
transcript.pyannote[1251].start 9768.00659375
transcript.pyannote[1251].end 9768.42846875
transcript.pyannote[1252].speaker SPEAKER_10
transcript.pyannote[1252].start 9770.09909375
transcript.pyannote[1252].end 9779.95409375
transcript.pyannote[1253].speaker SPEAKER_10
transcript.pyannote[1253].start 9780.27471875
transcript.pyannote[1253].end 9785.16846875
transcript.pyannote[1254].speaker SPEAKER_10
transcript.pyannote[1254].start 9785.32034375
transcript.pyannote[1254].end 9786.80534375
transcript.pyannote[1255].speaker SPEAKER_10
transcript.pyannote[1255].start 9787.44659375
transcript.pyannote[1255].end 9793.15034375
transcript.pyannote[1256].speaker SPEAKER_10
transcript.pyannote[1256].start 9793.50471875
transcript.pyannote[1256].end 9794.26409375
transcript.pyannote[1257].speaker SPEAKER_10
transcript.pyannote[1257].start 9794.56784375
transcript.pyannote[1257].end 9802.95471875
transcript.pyannote[1258].speaker SPEAKER_03
transcript.pyannote[1258].start 9803.29221875
transcript.pyannote[1258].end 9814.73346875
transcript.pyannote[1259].speaker SPEAKER_03
transcript.pyannote[1259].start 9815.07096875
transcript.pyannote[1259].end 9818.14221875
transcript.pyannote[1260].speaker SPEAKER_03
transcript.pyannote[1260].start 9818.53034375
transcript.pyannote[1260].end 9820.99409375
transcript.pyannote[1261].speaker SPEAKER_03
transcript.pyannote[1261].start 9821.36534375
transcript.pyannote[1261].end 9832.99221875
transcript.pyannote[1262].speaker SPEAKER_03
transcript.pyannote[1262].start 9833.16096875
transcript.pyannote[1262].end 9842.22284375
transcript.pyannote[1263].speaker SPEAKER_03
transcript.pyannote[1263].start 9843.48846875
transcript.pyannote[1263].end 9853.78221875
transcript.pyannote[1264].speaker SPEAKER_10
transcript.pyannote[1264].start 9854.03534375
transcript.pyannote[1264].end 9856.80284375
transcript.pyannote[1265].speaker SPEAKER_10
transcript.pyannote[1265].start 9856.93784375
transcript.pyannote[1265].end 9862.57409375
transcript.pyannote[1266].speaker SPEAKER_03
transcript.pyannote[1266].start 9863.94096875
transcript.pyannote[1266].end 9872.88471875
transcript.pyannote[1267].speaker SPEAKER_03
transcript.pyannote[1267].start 9873.08721875
transcript.pyannote[1267].end 9874.45409375
transcript.pyannote[1268].speaker SPEAKER_03
transcript.pyannote[1268].start 9875.17971875
transcript.pyannote[1268].end 9877.55909375
transcript.pyannote[1269].speaker SPEAKER_03
transcript.pyannote[1269].start 9877.91346875
transcript.pyannote[1269].end 9879.31409375
transcript.pyannote[1270].speaker SPEAKER_03
transcript.pyannote[1270].start 9879.88784375
transcript.pyannote[1270].end 9880.56284375
transcript.pyannote[1271].speaker SPEAKER_03
transcript.pyannote[1271].start 9881.28846875
transcript.pyannote[1271].end 9889.13534375
transcript.pyannote[1272].speaker SPEAKER_03
transcript.pyannote[1272].start 9889.42221875
transcript.pyannote[1272].end 9892.62846875
transcript.pyannote[1273].speaker SPEAKER_03
transcript.pyannote[1273].start 9894.21471875
transcript.pyannote[1273].end 9896.81346875
transcript.pyannote[1274].speaker SPEAKER_03
transcript.pyannote[1274].start 9897.42096875
transcript.pyannote[1274].end 9899.15909375
transcript.pyannote[1275].speaker SPEAKER_03
transcript.pyannote[1275].start 9899.71596875
transcript.pyannote[1275].end 9900.34034375
transcript.pyannote[1276].speaker SPEAKER_03
transcript.pyannote[1276].start 9900.84659375
transcript.pyannote[1276].end 9903.12471875
transcript.pyannote[1277].speaker SPEAKER_03
transcript.pyannote[1277].start 9903.79971875
transcript.pyannote[1277].end 9904.62659375
transcript.pyannote[1278].speaker SPEAKER_03
transcript.pyannote[1278].start 9904.82909375
transcript.pyannote[1278].end 9905.65596875
transcript.pyannote[1279].speaker SPEAKER_03
transcript.pyannote[1279].start 9906.61784375
transcript.pyannote[1279].end 9908.37284375
transcript.pyannote[1280].speaker SPEAKER_03
transcript.pyannote[1280].start 9908.96346875
transcript.pyannote[1280].end 9909.26721875
transcript.pyannote[1281].speaker SPEAKER_10
transcript.pyannote[1281].start 9909.46971875
transcript.pyannote[1281].end 9910.12784375
transcript.pyannote[1282].speaker SPEAKER_03
transcript.pyannote[1282].start 9911.30909375
transcript.pyannote[1282].end 9911.71409375
transcript.pyannote[1283].speaker SPEAKER_03
transcript.pyannote[1283].start 9912.00096875
transcript.pyannote[1283].end 9913.01346875
transcript.pyannote[1284].speaker SPEAKER_03
transcript.pyannote[1284].start 9913.43534375
transcript.pyannote[1284].end 9914.54909375
transcript.pyannote[1285].speaker SPEAKER_03
transcript.pyannote[1285].start 9915.37596875
transcript.pyannote[1285].end 9916.69221875
transcript.pyannote[1286].speaker SPEAKER_03
transcript.pyannote[1286].start 9917.18159375
transcript.pyannote[1286].end 9918.16034375
transcript.pyannote[1287].speaker SPEAKER_03
transcript.pyannote[1287].start 9918.19409375
transcript.pyannote[1287].end 9918.21096875
transcript.pyannote[1288].speaker SPEAKER_10
transcript.pyannote[1288].start 9918.21096875
transcript.pyannote[1288].end 9918.88596875
transcript.pyannote[1289].speaker SPEAKER_03
transcript.pyannote[1289].start 9918.78471875
transcript.pyannote[1289].end 9921.51846875
transcript.pyannote[1290].speaker SPEAKER_03
transcript.pyannote[1290].start 9921.90659375
transcript.pyannote[1290].end 9922.73346875
transcript.pyannote[1291].speaker SPEAKER_03
transcript.pyannote[1291].start 9923.37471875
transcript.pyannote[1291].end 9925.06221875
transcript.pyannote[1292].speaker SPEAKER_03
transcript.pyannote[1292].start 9925.46721875
transcript.pyannote[1292].end 9929.23034375
transcript.pyannote[1293].speaker SPEAKER_10
transcript.pyannote[1293].start 9928.09971875
transcript.pyannote[1293].end 9928.11659375
transcript.pyannote[1294].speaker SPEAKER_10
transcript.pyannote[1294].start 9928.84221875
transcript.pyannote[1294].end 9932.95971875
transcript.pyannote[1295].speaker SPEAKER_03
transcript.pyannote[1295].start 9929.41596875
transcript.pyannote[1295].end 9930.54659375
transcript.pyannote[1296].speaker SPEAKER_03
transcript.pyannote[1296].start 9932.50409375
transcript.pyannote[1296].end 9933.98909375
transcript.pyannote[1297].speaker SPEAKER_10
transcript.pyannote[1297].start 9934.07346875
transcript.pyannote[1297].end 9939.49034375
transcript.pyannote[1298].speaker SPEAKER_03
transcript.pyannote[1298].start 9940.11471875
transcript.pyannote[1298].end 9940.43534375
transcript.pyannote[1299].speaker SPEAKER_03
transcript.pyannote[1299].start 9940.95846875
transcript.pyannote[1299].end 9942.37596875
transcript.pyannote[1300].speaker SPEAKER_03
transcript.pyannote[1300].start 9942.71346875
transcript.pyannote[1300].end 9946.15596875
transcript.pyannote[1301].speaker SPEAKER_03
transcript.pyannote[1301].start 9946.52721875
transcript.pyannote[1301].end 9951.13409375
transcript.pyannote[1302].speaker SPEAKER_10
transcript.pyannote[1302].start 9950.59409375
transcript.pyannote[1302].end 9951.92721875
transcript.pyannote[1303].speaker SPEAKER_03
transcript.pyannote[1303].start 9951.92721875
transcript.pyannote[1303].end 9959.47034375
transcript.pyannote[1304].speaker SPEAKER_10
transcript.pyannote[1304].start 9959.26784375
transcript.pyannote[1304].end 9960.48284375
transcript.pyannote[1305].speaker SPEAKER_03
transcript.pyannote[1305].start 9961.14096875
transcript.pyannote[1305].end 9963.60471875
transcript.pyannote[1306].speaker SPEAKER_03
transcript.pyannote[1306].start 9964.61721875
transcript.pyannote[1306].end 9970.00034375
transcript.pyannote[1307].speaker SPEAKER_26
transcript.pyannote[1307].start 9966.97971875
transcript.pyannote[1307].end 9970.13534375
transcript.pyannote[1308].speaker SPEAKER_03
transcript.pyannote[1308].start 9970.47284375
transcript.pyannote[1308].end 9971.68784375
transcript.pyannote[1309].speaker SPEAKER_03
transcript.pyannote[1309].start 9972.17721875
transcript.pyannote[1309].end 9974.64096875
transcript.pyannote[1310].speaker SPEAKER_03
transcript.pyannote[1310].start 9974.82659375
transcript.pyannote[1310].end 9979.72034375
transcript.pyannote[1311].speaker SPEAKER_03
transcript.pyannote[1311].start 9980.46284375
transcript.pyannote[1311].end 9984.56346875
transcript.pyannote[1312].speaker SPEAKER_03
transcript.pyannote[1312].start 9985.03596875
transcript.pyannote[1312].end 9986.47034375
transcript.pyannote[1313].speaker SPEAKER_10
transcript.pyannote[1313].start 9987.93846875
transcript.pyannote[1313].end 9990.16596875
transcript.pyannote[1314].speaker SPEAKER_03
transcript.pyannote[1314].start 9990.43596875
transcript.pyannote[1314].end 9990.82409375
transcript.pyannote[1315].speaker SPEAKER_03
transcript.pyannote[1315].start 9992.39346875
transcript.pyannote[1315].end 9993.35534375
transcript.pyannote[1316].speaker SPEAKER_03
transcript.pyannote[1316].start 9993.65909375
transcript.pyannote[1316].end 9993.74346875
transcript.pyannote[1317].speaker SPEAKER_03
transcript.pyannote[1317].start 9994.30034375
transcript.pyannote[1317].end 9996.15659375
transcript.pyannote[1318].speaker SPEAKER_03
transcript.pyannote[1318].start 9996.86534375
transcript.pyannote[1318].end 9999.24471875
transcript.pyannote[1319].speaker SPEAKER_03
transcript.pyannote[1319].start 9999.48096875
transcript.pyannote[1319].end 9999.88596875
transcript.pyannote[1320].speaker SPEAKER_10
transcript.pyannote[1320].start 9999.98721875
transcript.pyannote[1320].end 10002.06284375
transcript.pyannote[1321].speaker SPEAKER_03
transcript.pyannote[1321].start 10002.48471875
transcript.pyannote[1321].end 10002.85596875
transcript.pyannote[1322].speaker SPEAKER_10
transcript.pyannote[1322].start 10002.85596875
transcript.pyannote[1322].end 10003.12596875
transcript.pyannote[1323].speaker SPEAKER_03
transcript.pyannote[1323].start 10003.90221875
transcript.pyannote[1323].end 10004.20596875
transcript.pyannote[1324].speaker SPEAKER_03
transcript.pyannote[1324].start 10004.81346875
transcript.pyannote[1324].end 10013.72346875
transcript.pyannote[1325].speaker SPEAKER_03
transcript.pyannote[1325].start 10013.97659375
transcript.pyannote[1325].end 10015.63034375
transcript.pyannote[1326].speaker SPEAKER_03
transcript.pyannote[1326].start 10016.60909375
transcript.pyannote[1326].end 10019.47784375
transcript.pyannote[1327].speaker SPEAKER_03
transcript.pyannote[1327].start 10020.49034375
transcript.pyannote[1327].end 10022.68409375
transcript.pyannote[1328].speaker SPEAKER_03
transcript.pyannote[1328].start 10023.42659375
transcript.pyannote[1328].end 10036.09971875
transcript.pyannote[1329].speaker SPEAKER_03
transcript.pyannote[1329].start 10036.58909375
transcript.pyannote[1329].end 10038.20909375
transcript.pyannote[1330].speaker SPEAKER_03
transcript.pyannote[1330].start 10038.56346875
transcript.pyannote[1330].end 10040.57159375
transcript.pyannote[1331].speaker SPEAKER_03
transcript.pyannote[1331].start 10041.31409375
transcript.pyannote[1331].end 10043.65971875
transcript.pyannote[1332].speaker SPEAKER_03
transcript.pyannote[1332].start 10043.96346875
transcript.pyannote[1332].end 10045.19534375
transcript.pyannote[1333].speaker SPEAKER_03
transcript.pyannote[1333].start 10046.07284375
transcript.pyannote[1333].end 10047.97971875
transcript.pyannote[1334].speaker SPEAKER_03
transcript.pyannote[1334].start 10048.55346875
transcript.pyannote[1334].end 10049.93721875
transcript.pyannote[1335].speaker SPEAKER_03
transcript.pyannote[1335].start 10050.42659375
transcript.pyannote[1335].end 10051.59096875
transcript.pyannote[1336].speaker SPEAKER_03
transcript.pyannote[1336].start 10051.69221875
transcript.pyannote[1336].end 10058.02034375
transcript.pyannote[1337].speaker SPEAKER_03
transcript.pyannote[1337].start 10058.49284375
transcript.pyannote[1337].end 10059.16784375
transcript.pyannote[1338].speaker SPEAKER_03
transcript.pyannote[1338].start 10059.94409375
transcript.pyannote[1338].end 10060.31534375
transcript.pyannote[1339].speaker SPEAKER_03
transcript.pyannote[1339].start 10060.88909375
transcript.pyannote[1339].end 10061.31096875
transcript.pyannote[1340].speaker SPEAKER_03
transcript.pyannote[1340].start 10062.22221875
transcript.pyannote[1340].end 10064.56784375
transcript.pyannote[1341].speaker SPEAKER_03
transcript.pyannote[1341].start 10065.09096875
transcript.pyannote[1341].end 10065.98534375
transcript.pyannote[1342].speaker SPEAKER_03
transcript.pyannote[1342].start 10066.96409375
transcript.pyannote[1342].end 10071.45284375
transcript.pyannote[1343].speaker SPEAKER_03
transcript.pyannote[1343].start 10071.70596875
transcript.pyannote[1343].end 10073.52846875
transcript.pyannote[1344].speaker SPEAKER_03
transcript.pyannote[1344].start 10074.28784375
transcript.pyannote[1344].end 10077.00471875
transcript.pyannote[1345].speaker SPEAKER_03
transcript.pyannote[1345].start 10077.46034375
transcript.pyannote[1345].end 10090.97721875
transcript.pyannote[1346].speaker SPEAKER_03
transcript.pyannote[1346].start 10091.17971875
transcript.pyannote[1346].end 10093.03596875
transcript.pyannote[1347].speaker SPEAKER_03
transcript.pyannote[1347].start 10093.37346875
transcript.pyannote[1347].end 10094.26784375
transcript.pyannote[1348].speaker SPEAKER_05
transcript.pyannote[1348].start 10094.77409375
transcript.pyannote[1348].end 10119.98534375
transcript.pyannote[1349].speaker SPEAKER_05
transcript.pyannote[1349].start 10120.13721875
transcript.pyannote[1349].end 10143.39096875
transcript.pyannote[1350].speaker SPEAKER_03
transcript.pyannote[1350].start 10144.45409375
transcript.pyannote[1350].end 10145.51721875
transcript.pyannote[1351].speaker SPEAKER_03
transcript.pyannote[1351].start 10145.82096875
transcript.pyannote[1351].end 10153.53284375
transcript.pyannote[1352].speaker SPEAKER_03
transcript.pyannote[1352].start 10154.29221875
transcript.pyannote[1352].end 10155.38909375
transcript.pyannote[1353].speaker SPEAKER_03
transcript.pyannote[1353].start 10155.54096875
transcript.pyannote[1353].end 10157.97096875
transcript.pyannote[1354].speaker SPEAKER_03
transcript.pyannote[1354].start 10158.76409375
transcript.pyannote[1354].end 10160.97471875
transcript.pyannote[1355].speaker SPEAKER_03
transcript.pyannote[1355].start 10161.41346875
transcript.pyannote[1355].end 10176.12846875
transcript.pyannote[1356].speaker SPEAKER_03
transcript.pyannote[1356].start 10176.53346875
transcript.pyannote[1356].end 10177.44471875
transcript.pyannote[1357].speaker SPEAKER_03
transcript.pyannote[1357].start 10178.13659375
transcript.pyannote[1357].end 10180.41471875
transcript.pyannote[1358].speaker SPEAKER_03
transcript.pyannote[1358].start 10180.90409375
transcript.pyannote[1358].end 10183.01346875
transcript.pyannote[1359].speaker SPEAKER_03
transcript.pyannote[1359].start 10183.53659375
transcript.pyannote[1359].end 10184.31284375
transcript.pyannote[1360].speaker SPEAKER_03
transcript.pyannote[1360].start 10184.51534375
transcript.pyannote[1360].end 10187.50221875
transcript.pyannote[1361].speaker SPEAKER_03
transcript.pyannote[1361].start 10188.05909375
transcript.pyannote[1361].end 10191.36659375
transcript.pyannote[1362].speaker SPEAKER_10
transcript.pyannote[1362].start 10191.24846875
transcript.pyannote[1362].end 10195.92284375
transcript.pyannote[1363].speaker SPEAKER_03
transcript.pyannote[1363].start 10195.92284375
transcript.pyannote[1363].end 10196.78346875
transcript.pyannote[1364].speaker SPEAKER_10
transcript.pyannote[1364].start 10195.95659375
transcript.pyannote[1364].end 10199.33159375
transcript.pyannote[1365].speaker SPEAKER_03
transcript.pyannote[1365].start 10197.72846875
transcript.pyannote[1365].end 10198.85909375
transcript.pyannote[1366].speaker SPEAKER_03
transcript.pyannote[1366].start 10199.38221875
transcript.pyannote[1366].end 10203.97221875
transcript.pyannote[1367].speaker SPEAKER_30
transcript.pyannote[1367].start 10203.97221875
transcript.pyannote[1367].end 10204.39409375
transcript.pyannote[1368].speaker SPEAKER_03
transcript.pyannote[1368].start 10204.88346875
transcript.pyannote[1368].end 10207.33034375
transcript.pyannote[1369].speaker SPEAKER_30
transcript.pyannote[1369].start 10205.59221875
transcript.pyannote[1369].end 10205.87909375
transcript.pyannote[1370].speaker SPEAKER_26
transcript.pyannote[1370].start 10205.87909375
transcript.pyannote[1370].end 10205.89596875
transcript.pyannote[1371].speaker SPEAKER_30
transcript.pyannote[1371].start 10207.19534375
transcript.pyannote[1371].end 10207.21221875
transcript.pyannote[1372].speaker SPEAKER_26
transcript.pyannote[1372].start 10207.21221875
transcript.pyannote[1372].end 10207.97159375
transcript.pyannote[1373].speaker SPEAKER_03
transcript.pyannote[1373].start 10207.41471875
transcript.pyannote[1373].end 10224.39096875
transcript.pyannote[1374].speaker SPEAKER_30
transcript.pyannote[1374].start 10207.97159375
transcript.pyannote[1374].end 10208.03909375
transcript.pyannote[1375].speaker SPEAKER_10
transcript.pyannote[1375].start 10224.39096875
transcript.pyannote[1375].end 10225.89284375
transcript.pyannote[1376].speaker SPEAKER_03
transcript.pyannote[1376].start 10225.89284375
transcript.pyannote[1376].end 10232.96346875
transcript.pyannote[1377].speaker SPEAKER_03
transcript.pyannote[1377].start 10233.30096875
transcript.pyannote[1377].end 10238.54909375
transcript.pyannote[1378].speaker SPEAKER_10
transcript.pyannote[1378].start 10237.14846875
transcript.pyannote[1378].end 10237.70534375
transcript.pyannote[1379].speaker SPEAKER_10
transcript.pyannote[1379].start 10238.26221875
transcript.pyannote[1379].end 10241.50221875
transcript.pyannote[1380].speaker SPEAKER_03
transcript.pyannote[1380].start 10241.40096875
transcript.pyannote[1380].end 10245.09659375
transcript.pyannote[1381].speaker SPEAKER_03
transcript.pyannote[1381].start 10245.97409375
transcript.pyannote[1381].end 10250.78346875
transcript.pyannote[1382].speaker SPEAKER_10
transcript.pyannote[1382].start 10251.08721875
transcript.pyannote[1382].end 10258.93409375
transcript.pyannote[1383].speaker SPEAKER_10
transcript.pyannote[1383].start 10259.47409375
transcript.pyannote[1383].end 10262.88284375
transcript.pyannote[1384].speaker SPEAKER_10
transcript.pyannote[1384].start 10263.00096875
transcript.pyannote[1384].end 10265.61659375
transcript.pyannote[1385].speaker SPEAKER_10
transcript.pyannote[1385].start 10266.37596875
transcript.pyannote[1385].end 10271.42159375
transcript.pyannote[1386].speaker SPEAKER_03
transcript.pyannote[1386].start 10271.11784375
transcript.pyannote[1386].end 10274.30721875
transcript.pyannote[1387].speaker SPEAKER_10
transcript.pyannote[1387].start 10272.56909375
transcript.pyannote[1387].end 10274.12159375
transcript.pyannote[1388].speaker SPEAKER_10
transcript.pyannote[1388].start 10274.45909375
transcript.pyannote[1388].end 10274.88096875
transcript.pyannote[1389].speaker SPEAKER_03
transcript.pyannote[1389].start 10274.74596875
transcript.pyannote[1389].end 10275.35346875
transcript.pyannote[1390].speaker SPEAKER_10
transcript.pyannote[1390].start 10275.45471875
transcript.pyannote[1390].end 10277.36159375
transcript.pyannote[1391].speaker SPEAKER_03
transcript.pyannote[1391].start 10276.06221875
transcript.pyannote[1391].end 10277.44596875
transcript.pyannote[1392].speaker SPEAKER_10
transcript.pyannote[1392].start 10277.66534375
transcript.pyannote[1392].end 10278.91409375
transcript.pyannote[1393].speaker SPEAKER_03
transcript.pyannote[1393].start 10278.91409375
transcript.pyannote[1393].end 10284.75284375
transcript.pyannote[1394].speaker SPEAKER_10
transcript.pyannote[1394].start 10281.31034375
transcript.pyannote[1394].end 10286.08596875
transcript.pyannote[1395].speaker SPEAKER_03
transcript.pyannote[1395].start 10286.54159375
transcript.pyannote[1395].end 10292.16096875
transcript.pyannote[1396].speaker SPEAKER_03
transcript.pyannote[1396].start 10292.32971875
transcript.pyannote[1396].end 10295.33346875
transcript.pyannote[1397].speaker SPEAKER_03
transcript.pyannote[1397].start 10295.77221875
transcript.pyannote[1397].end 10298.35409375
transcript.pyannote[1398].speaker SPEAKER_03
transcript.pyannote[1398].start 10298.96159375
transcript.pyannote[1398].end 10302.15096875
transcript.pyannote[1399].speaker SPEAKER_03
transcript.pyannote[1399].start 10302.62346875
transcript.pyannote[1399].end 10302.97784375
transcript.pyannote[1400].speaker SPEAKER_03
transcript.pyannote[1400].start 10303.55159375
transcript.pyannote[1400].end 10306.53846875
transcript.pyannote[1401].speaker SPEAKER_03
transcript.pyannote[1401].start 10307.26409375
transcript.pyannote[1401].end 10308.61409375
transcript.pyannote[1402].speaker SPEAKER_03
transcript.pyannote[1402].start 10308.68159375
transcript.pyannote[1402].end 10308.71534375
transcript.pyannote[1403].speaker SPEAKER_26
transcript.pyannote[1403].start 10308.71534375
transcript.pyannote[1403].end 10310.55471875
transcript.pyannote[1404].speaker SPEAKER_03
transcript.pyannote[1404].start 10308.88409375
transcript.pyannote[1404].end 10311.21284375
transcript.pyannote[1405].speaker SPEAKER_03
transcript.pyannote[1405].start 10311.71909375
transcript.pyannote[1405].end 10313.05221875
transcript.pyannote[1406].speaker SPEAKER_03
transcript.pyannote[1406].start 10313.65971875
transcript.pyannote[1406].end 10315.38096875
transcript.pyannote[1407].speaker SPEAKER_03
transcript.pyannote[1407].start 10315.65096875
transcript.pyannote[1407].end 10317.33846875
transcript.pyannote[1408].speaker SPEAKER_03
transcript.pyannote[1408].start 10317.72659375
transcript.pyannote[1408].end 10328.02034375
transcript.pyannote[1409].speaker SPEAKER_03
transcript.pyannote[1409].start 10328.40846875
transcript.pyannote[1409].end 10328.59409375
transcript.pyannote[1410].speaker SPEAKER_03
transcript.pyannote[1410].start 10330.26471875
transcript.pyannote[1410].end 10330.68659375
transcript.pyannote[1411].speaker SPEAKER_26
transcript.pyannote[1411].start 10330.85534375
transcript.pyannote[1411].end 10330.88909375
transcript.pyannote[1412].speaker SPEAKER_14
transcript.pyannote[1412].start 10330.88909375
transcript.pyannote[1412].end 10331.98596875
transcript.pyannote[1413].speaker SPEAKER_26
transcript.pyannote[1413].start 10331.34471875
transcript.pyannote[1413].end 10331.58096875
transcript.pyannote[1414].speaker SPEAKER_26
transcript.pyannote[1414].start 10331.76659375
transcript.pyannote[1414].end 10332.01971875
transcript.pyannote[1415].speaker SPEAKER_14
transcript.pyannote[1415].start 10332.01971875
transcript.pyannote[1415].end 10332.39096875
transcript.pyannote[1416].speaker SPEAKER_24
transcript.pyannote[1416].start 10333.50471875
transcript.pyannote[1416].end 10335.29346875
transcript.pyannote[1417].speaker SPEAKER_24
transcript.pyannote[1417].start 10335.74909375
transcript.pyannote[1417].end 10338.02721875
transcript.pyannote[1418].speaker SPEAKER_02
transcript.pyannote[1418].start 10352.84346875
transcript.pyannote[1418].end 10353.61971875
transcript.pyannote[1419].speaker SPEAKER_02
transcript.pyannote[1419].start 10353.97409375
transcript.pyannote[1419].end 10358.14221875
transcript.pyannote[1420].speaker SPEAKER_16
transcript.pyannote[1420].start 10358.64846875
transcript.pyannote[1420].end 10359.03659375
transcript.pyannote[1421].speaker SPEAKER_21
transcript.pyannote[1421].start 10363.89659375
transcript.pyannote[1421].end 10364.03159375
transcript.pyannote[1422].speaker SPEAKER_02
transcript.pyannote[1422].start 10364.03159375
transcript.pyannote[1422].end 10364.47034375
transcript.pyannote[1423].speaker SPEAKER_02
transcript.pyannote[1423].start 10368.45284375
transcript.pyannote[1423].end 10369.85346875
transcript.pyannote[1424].speaker SPEAKER_02
transcript.pyannote[1424].start 10370.00534375
transcript.pyannote[1424].end 10396.33034375
transcript.pyannote[1425].speaker SPEAKER_02
transcript.pyannote[1425].start 10396.87034375
transcript.pyannote[1425].end 10405.32471875
transcript.pyannote[1426].speaker SPEAKER_02
transcript.pyannote[1426].start 10405.88159375
transcript.pyannote[1426].end 10416.91784375
transcript.pyannote[1427].speaker SPEAKER_02
transcript.pyannote[1427].start 10417.10346875
transcript.pyannote[1427].end 10422.68909375
transcript.pyannote[1428].speaker SPEAKER_02
transcript.pyannote[1428].start 10422.80721875
transcript.pyannote[1428].end 10424.89971875
transcript.pyannote[1429].speaker SPEAKER_21
transcript.pyannote[1429].start 10425.86159375
transcript.pyannote[1429].end 10434.72096875
transcript.pyannote[1430].speaker SPEAKER_21
transcript.pyannote[1430].start 10435.17659375
transcript.pyannote[1430].end 10440.03659375
transcript.pyannote[1431].speaker SPEAKER_21
transcript.pyannote[1431].start 10440.50909375
transcript.pyannote[1431].end 10446.41534375
transcript.pyannote[1432].speaker SPEAKER_21
transcript.pyannote[1432].start 10446.97221875
transcript.pyannote[1432].end 10465.48409375
transcript.pyannote[1433].speaker SPEAKER_21
transcript.pyannote[1433].start 10466.14221875
transcript.pyannote[1433].end 10478.14034375
transcript.pyannote[1434].speaker SPEAKER_02
transcript.pyannote[1434].start 10478.14034375
transcript.pyannote[1434].end 10488.60284375
transcript.pyannote[1435].speaker SPEAKER_21
transcript.pyannote[1435].start 10488.68721875
transcript.pyannote[1435].end 10501.02284375
transcript.pyannote[1436].speaker SPEAKER_02
transcript.pyannote[1436].start 10501.02284375
transcript.pyannote[1436].end 10502.45721875
transcript.pyannote[1437].speaker SPEAKER_02
transcript.pyannote[1437].start 10503.09846875
transcript.pyannote[1437].end 10505.52846875
transcript.pyannote[1438].speaker SPEAKER_02
transcript.pyannote[1438].start 10506.37221875
transcript.pyannote[1438].end 10509.42659375
transcript.pyannote[1439].speaker SPEAKER_02
transcript.pyannote[1439].start 10509.51096875
transcript.pyannote[1439].end 10512.31221875
transcript.pyannote[1440].speaker SPEAKER_02
transcript.pyannote[1440].start 10512.98721875
transcript.pyannote[1440].end 10523.88846875
transcript.pyannote[1441].speaker SPEAKER_02
transcript.pyannote[1441].start 10523.97284375
transcript.pyannote[1441].end 10533.65909375
transcript.pyannote[1442].speaker SPEAKER_21
transcript.pyannote[1442].start 10534.78971875
transcript.pyannote[1442].end 10535.73471875
transcript.pyannote[1443].speaker SPEAKER_33
transcript.pyannote[1443].start 10536.00471875
transcript.pyannote[1443].end 10542.41721875
transcript.pyannote[1444].speaker SPEAKER_33
transcript.pyannote[1444].start 10542.46784375
transcript.pyannote[1444].end 10550.29784375
transcript.pyannote[1445].speaker SPEAKER_33
transcript.pyannote[1445].start 10550.77034375
transcript.pyannote[1445].end 10601.02409375
transcript.pyannote[1446].speaker SPEAKER_02
transcript.pyannote[1446].start 10601.02409375
transcript.pyannote[1446].end 10622.50596875
transcript.pyannote[1447].speaker SPEAKER_02
transcript.pyannote[1447].start 10622.57346875
transcript.pyannote[1447].end 10639.31346875
transcript.pyannote[1448].speaker SPEAKER_02
transcript.pyannote[1448].start 10640.56221875
transcript.pyannote[1448].end 10651.02471875
transcript.pyannote[1449].speaker SPEAKER_21
transcript.pyannote[1449].start 10652.76284375
transcript.pyannote[1449].end 10658.92221875
transcript.pyannote[1450].speaker SPEAKER_21
transcript.pyannote[1450].start 10659.73221875
transcript.pyannote[1450].end 10663.03971875
transcript.pyannote[1451].speaker SPEAKER_21
transcript.pyannote[1451].start 10663.63034375
transcript.pyannote[1451].end 10683.42471875
transcript.pyannote[1452].speaker SPEAKER_02
transcript.pyannote[1452].start 10673.02971875
transcript.pyannote[1452].end 10673.87346875
transcript.pyannote[1453].speaker SPEAKER_02
transcript.pyannote[1453].start 10681.46721875
transcript.pyannote[1453].end 10717.95096875
transcript.pyannote[1454].speaker SPEAKER_21
transcript.pyannote[1454].start 10719.28409375
transcript.pyannote[1454].end 10720.06034375
transcript.pyannote[1455].speaker SPEAKER_33
transcript.pyannote[1455].start 10720.31346875
transcript.pyannote[1455].end 10763.02409375
transcript.pyannote[1456].speaker SPEAKER_02
transcript.pyannote[1456].start 10763.02409375
transcript.pyannote[1456].end 10775.22471875
transcript.pyannote[1457].speaker SPEAKER_33
transcript.pyannote[1457].start 10763.12534375
transcript.pyannote[1457].end 10764.52596875
transcript.pyannote[1458].speaker SPEAKER_02
transcript.pyannote[1458].start 10775.41034375
transcript.pyannote[1458].end 10787.42534375
transcript.pyannote[1459].speaker SPEAKER_33
transcript.pyannote[1459].start 10787.42534375
transcript.pyannote[1459].end 10787.47596875
transcript.pyannote[1460].speaker SPEAKER_26
transcript.pyannote[1460].start 10788.08346875
transcript.pyannote[1460].end 10788.10034375
transcript.pyannote[1461].speaker SPEAKER_33
transcript.pyannote[1461].start 10788.10034375
transcript.pyannote[1461].end 10788.31971875
transcript.pyannote[1462].speaker SPEAKER_02
transcript.pyannote[1462].start 10788.89346875
transcript.pyannote[1462].end 10788.91034375
transcript.pyannote[1463].speaker SPEAKER_33
transcript.pyannote[1463].start 10788.91034375
transcript.pyannote[1463].end 10792.97721875
transcript.pyannote[1464].speaker SPEAKER_33
transcript.pyannote[1464].start 10793.46659375
transcript.pyannote[1464].end 10823.99346875
transcript.pyannote[1465].speaker SPEAKER_00
transcript.pyannote[1465].start 10800.33471875
transcript.pyannote[1465].end 10800.38534375
transcript.pyannote[1466].speaker SPEAKER_02
transcript.pyannote[1466].start 10823.99346875
transcript.pyannote[1466].end 10835.94096875
transcript.pyannote[1467].speaker SPEAKER_02
transcript.pyannote[1467].start 10836.68346875
transcript.pyannote[1467].end 10837.67909375
transcript.pyannote[1468].speaker SPEAKER_33
transcript.pyannote[1468].start 10837.67909375
transcript.pyannote[1468].end 10884.64221875
transcript.pyannote[1469].speaker SPEAKER_02
transcript.pyannote[1469].start 10883.64659375
transcript.pyannote[1469].end 10892.99534375
transcript.pyannote[1470].speaker SPEAKER_02
transcript.pyannote[1470].start 10894.10909375
transcript.pyannote[1470].end 10895.56034375
transcript.pyannote[1471].speaker SPEAKER_10
transcript.pyannote[1471].start 10901.63534375
transcript.pyannote[1471].end 10902.47909375
transcript.pyannote[1472].speaker SPEAKER_02
transcript.pyannote[1472].start 10902.47909375
transcript.pyannote[1472].end 10903.87971875
transcript.pyannote[1473].speaker SPEAKER_02
transcript.pyannote[1473].start 10904.23409375
transcript.pyannote[1473].end 10911.03471875
transcript.pyannote[1474].speaker SPEAKER_02
transcript.pyannote[1474].start 10911.76034375
transcript.pyannote[1474].end 10924.39971875
transcript.pyannote[1475].speaker SPEAKER_10
transcript.pyannote[1475].start 10924.53471875
transcript.pyannote[1475].end 10932.01034375
transcript.pyannote[1476].speaker SPEAKER_10
transcript.pyannote[1476].start 10932.26346875
transcript.pyannote[1476].end 10937.32596875
transcript.pyannote[1477].speaker SPEAKER_10
transcript.pyannote[1477].start 10937.51159375
transcript.pyannote[1477].end 10955.65221875
transcript.pyannote[1478].speaker SPEAKER_10
transcript.pyannote[1478].start 10956.04034375
transcript.pyannote[1478].end 10962.06471875
transcript.pyannote[1479].speaker SPEAKER_10
transcript.pyannote[1479].start 10962.41909375
transcript.pyannote[1479].end 10964.69721875
transcript.pyannote[1480].speaker SPEAKER_10
transcript.pyannote[1480].start 10965.10221875
transcript.pyannote[1480].end 10968.46034375
transcript.pyannote[1481].speaker SPEAKER_02
transcript.pyannote[1481].start 10968.91596875
transcript.pyannote[1481].end 10991.49471875
transcript.pyannote[1482].speaker SPEAKER_10
transcript.pyannote[1482].start 10991.08971875
transcript.pyannote[1482].end 11011.79534375
transcript.pyannote[1483].speaker SPEAKER_10
transcript.pyannote[1483].start 11012.16659375
transcript.pyannote[1483].end 11023.65846875
transcript.pyannote[1484].speaker SPEAKER_02
transcript.pyannote[1484].start 11023.65846875
transcript.pyannote[1484].end 11047.89096875
transcript.pyannote[1485].speaker SPEAKER_26
transcript.pyannote[1485].start 11027.65784375
transcript.pyannote[1485].end 11027.69159375
transcript.pyannote[1486].speaker SPEAKER_10
transcript.pyannote[1486].start 11027.69159375
transcript.pyannote[1486].end 11027.86034375
transcript.pyannote[1487].speaker SPEAKER_26
transcript.pyannote[1487].start 11027.86034375
transcript.pyannote[1487].end 11028.01221875
transcript.pyannote[1488].speaker SPEAKER_10
transcript.pyannote[1488].start 11028.01221875
transcript.pyannote[1488].end 11028.31596875
transcript.pyannote[1489].speaker SPEAKER_02
transcript.pyannote[1489].start 11047.92471875
transcript.pyannote[1489].end 11057.83034375
transcript.pyannote[1490].speaker SPEAKER_10
transcript.pyannote[1490].start 11058.16784375
transcript.pyannote[1490].end 11066.72346875
transcript.pyannote[1491].speaker SPEAKER_10
transcript.pyannote[1491].start 11067.06096875
transcript.pyannote[1491].end 11073.57471875
transcript.pyannote[1492].speaker SPEAKER_10
transcript.pyannote[1492].start 11073.94596875
transcript.pyannote[1492].end 11079.17721875
transcript.pyannote[1493].speaker SPEAKER_02
transcript.pyannote[1493].start 11075.54909375
transcript.pyannote[1493].end 11075.88659375
transcript.pyannote[1494].speaker SPEAKER_02
transcript.pyannote[1494].start 11078.16471875
transcript.pyannote[1494].end 11102.88659375
transcript.pyannote[1495].speaker SPEAKER_10
transcript.pyannote[1495].start 11082.45096875
transcript.pyannote[1495].end 11083.26096875
transcript.pyannote[1496].speaker SPEAKER_10
transcript.pyannote[1496].start 11084.20596875
transcript.pyannote[1496].end 11085.18471875
transcript.pyannote[1497].speaker SPEAKER_10
transcript.pyannote[1497].start 11102.61659375
transcript.pyannote[1497].end 11104.92846875
transcript.pyannote[1498].speaker SPEAKER_02
transcript.pyannote[1498].start 11104.40534375
transcript.pyannote[1498].end 11106.31221875
transcript.pyannote[1499].speaker SPEAKER_03
transcript.pyannote[1499].start 11108.42159375
transcript.pyannote[1499].end 11110.34534375
transcript.pyannote[1500].speaker SPEAKER_03
transcript.pyannote[1500].start 11110.93596875
transcript.pyannote[1500].end 11113.36596875
transcript.pyannote[1501].speaker SPEAKER_24
transcript.pyannote[1501].start 11120.43659375
transcript.pyannote[1501].end 11121.55034375
transcript.pyannote[1502].speaker SPEAKER_24
transcript.pyannote[1502].start 11121.73596875
transcript.pyannote[1502].end 11123.06909375
transcript.pyannote[1503].speaker SPEAKER_24
transcript.pyannote[1503].start 11128.63784375
transcript.pyannote[1503].end 11129.14409375
transcript.pyannote[1504].speaker SPEAKER_24
transcript.pyannote[1504].start 11129.46471875
transcript.pyannote[1504].end 11130.47721875
transcript.pyannote[1505].speaker SPEAKER_24
transcript.pyannote[1505].start 11131.35471875
transcript.pyannote[1505].end 11139.01596875
transcript.pyannote[1506].speaker SPEAKER_24
transcript.pyannote[1506].start 11139.52221875
transcript.pyannote[1506].end 11142.12096875
transcript.pyannote[1507].speaker SPEAKER_24
transcript.pyannote[1507].start 11142.39096875
transcript.pyannote[1507].end 11161.08846875
transcript.pyannote[1508].speaker SPEAKER_21
transcript.pyannote[1508].start 11162.74221875
transcript.pyannote[1508].end 11163.78846875
transcript.pyannote[1509].speaker SPEAKER_21
transcript.pyannote[1509].start 11165.15534375
transcript.pyannote[1509].end 11172.44534375
transcript.pyannote[1510].speaker SPEAKER_21
transcript.pyannote[1510].start 11173.17096875
transcript.pyannote[1510].end 11176.29284375
transcript.pyannote[1511].speaker SPEAKER_24
transcript.pyannote[1511].start 11176.29284375
transcript.pyannote[1511].end 11179.83659375
transcript.pyannote[1512].speaker SPEAKER_21
transcript.pyannote[1512].start 11176.30971875
transcript.pyannote[1512].end 11178.40221875
transcript.pyannote[1513].speaker SPEAKER_21
transcript.pyannote[1513].start 11179.12784375
transcript.pyannote[1513].end 11182.19909375
transcript.pyannote[1514].speaker SPEAKER_24
transcript.pyannote[1514].start 11181.60846875
transcript.pyannote[1514].end 11199.93471875
transcript.pyannote[1515].speaker SPEAKER_24
transcript.pyannote[1515].start 11200.30596875
transcript.pyannote[1515].end 11204.59221875
transcript.pyannote[1516].speaker SPEAKER_24
transcript.pyannote[1516].start 11205.31784375
transcript.pyannote[1516].end 11219.96534375
transcript.pyannote[1517].speaker SPEAKER_24
transcript.pyannote[1517].start 11222.22659375
transcript.pyannote[1517].end 11230.83284375
transcript.pyannote[1518].speaker SPEAKER_21
transcript.pyannote[1518].start 11232.30096875
transcript.pyannote[1518].end 11234.81534375
transcript.pyannote[1519].speaker SPEAKER_21
transcript.pyannote[1519].start 11235.08534375
transcript.pyannote[1519].end 11236.33409375
transcript.pyannote[1520].speaker SPEAKER_24
transcript.pyannote[1520].start 11236.33409375
transcript.pyannote[1520].end 11244.88971875
transcript.pyannote[1521].speaker SPEAKER_24
transcript.pyannote[1521].start 11244.97409375
transcript.pyannote[1521].end 11248.82159375
transcript.pyannote[1522].speaker SPEAKER_24
transcript.pyannote[1522].start 11249.07471875
transcript.pyannote[1522].end 11253.07409375
transcript.pyannote[1523].speaker SPEAKER_24
transcript.pyannote[1523].start 11253.96846875
transcript.pyannote[1523].end 11264.27909375
transcript.pyannote[1524].speaker SPEAKER_24
transcript.pyannote[1524].start 11265.13971875
transcript.pyannote[1524].end 11270.59034375
transcript.pyannote[1525].speaker SPEAKER_21
transcript.pyannote[1525].start 11271.82221875
transcript.pyannote[1525].end 11273.23971875
transcript.pyannote[1526].speaker SPEAKER_21
transcript.pyannote[1526].start 11273.84721875
transcript.pyannote[1526].end 11275.51784375
transcript.pyannote[1527].speaker SPEAKER_21
transcript.pyannote[1527].start 11276.10846875
transcript.pyannote[1527].end 11278.53846875
transcript.pyannote[1528].speaker SPEAKER_21
transcript.pyannote[1528].start 11279.26409375
transcript.pyannote[1528].end 11282.03159375
transcript.pyannote[1529].speaker SPEAKER_21
transcript.pyannote[1529].start 11282.41971875
transcript.pyannote[1529].end 11286.63846875
transcript.pyannote[1530].speaker SPEAKER_21
transcript.pyannote[1530].start 11287.19534375
transcript.pyannote[1530].end 11306.77034375
transcript.pyannote[1531].speaker SPEAKER_24
transcript.pyannote[1531].start 11290.82346875
transcript.pyannote[1531].end 11292.56159375
transcript.pyannote[1532].speaker SPEAKER_24
transcript.pyannote[1532].start 11293.05096875
transcript.pyannote[1532].end 11295.21096875
transcript.pyannote[1533].speaker SPEAKER_21
transcript.pyannote[1533].start 11307.20909375
transcript.pyannote[1533].end 11312.69346875
transcript.pyannote[1534].speaker SPEAKER_21
transcript.pyannote[1534].start 11313.55409375
transcript.pyannote[1534].end 11318.83596875
transcript.pyannote[1535].speaker SPEAKER_24
transcript.pyannote[1535].start 11315.08971875
transcript.pyannote[1535].end 11322.16034375
transcript.pyannote[1536].speaker SPEAKER_21
transcript.pyannote[1536].start 11319.66284375
transcript.pyannote[1536].end 11328.38721875
transcript.pyannote[1537].speaker SPEAKER_21
transcript.pyannote[1537].start 11329.06221875
transcript.pyannote[1537].end 11341.73534375
transcript.pyannote[1538].speaker SPEAKER_24
transcript.pyannote[1538].start 11340.70596875
transcript.pyannote[1538].end 11342.91659375
transcript.pyannote[1539].speaker SPEAKER_21
transcript.pyannote[1539].start 11347.13534375
transcript.pyannote[1539].end 11347.89471875
transcript.pyannote[1540].speaker SPEAKER_24
transcript.pyannote[1540].start 11348.04659375
transcript.pyannote[1540].end 11349.36284375
transcript.pyannote[1541].speaker SPEAKER_24
transcript.pyannote[1541].start 11350.49346875
transcript.pyannote[1541].end 11351.59034375
transcript.pyannote[1542].speaker SPEAKER_21
transcript.pyannote[1542].start 11351.94471875
transcript.pyannote[1542].end 11357.68221875
transcript.pyannote[1543].speaker SPEAKER_24
transcript.pyannote[1543].start 11356.82159375
transcript.pyannote[1543].end 11361.79971875
transcript.pyannote[1544].speaker SPEAKER_24
transcript.pyannote[1544].start 11362.35659375
transcript.pyannote[1544].end 11364.02721875
transcript.pyannote[1545].speaker SPEAKER_01
transcript.pyannote[1545].start 11364.02721875
transcript.pyannote[1545].end 11364.41534375
transcript.pyannote[1546].speaker SPEAKER_01
transcript.pyannote[1546].start 11365.22534375
transcript.pyannote[1546].end 11380.98659375
transcript.pyannote[1547].speaker SPEAKER_01
transcript.pyannote[1547].start 11381.39159375
transcript.pyannote[1547].end 11385.08721875
transcript.pyannote[1548].speaker SPEAKER_24
transcript.pyannote[1548].start 11385.08721875
transcript.pyannote[1548].end 11388.27659375
transcript.pyannote[1549].speaker SPEAKER_24
transcript.pyannote[1549].start 11389.22159375
transcript.pyannote[1549].end 11393.23784375
transcript.pyannote[1550].speaker SPEAKER_01
transcript.pyannote[1550].start 11392.00596875
transcript.pyannote[1550].end 11396.96721875
transcript.pyannote[1551].speaker SPEAKER_24
transcript.pyannote[1551].start 11396.29221875
transcript.pyannote[1551].end 11397.50721875
transcript.pyannote[1552].speaker SPEAKER_01
transcript.pyannote[1552].start 11397.50721875
transcript.pyannote[1552].end 11398.31721875
transcript.pyannote[1553].speaker SPEAKER_24
transcript.pyannote[1553].start 11398.35096875
transcript.pyannote[1553].end 11403.21096875
transcript.pyannote[1554].speaker SPEAKER_24
transcript.pyannote[1554].start 11404.02096875
transcript.pyannote[1554].end 11407.86846875
transcript.pyannote[1555].speaker SPEAKER_26
transcript.pyannote[1555].start 11409.38721875
transcript.pyannote[1555].end 11409.75846875
transcript.pyannote[1556].speaker SPEAKER_24
transcript.pyannote[1556].start 11409.75846875
transcript.pyannote[1556].end 11412.34034375
transcript.pyannote[1557].speaker SPEAKER_26
transcript.pyannote[1557].start 11409.77534375
transcript.pyannote[1557].end 11409.82596875
transcript.pyannote[1558].speaker SPEAKER_24
transcript.pyannote[1558].start 11412.50909375
transcript.pyannote[1558].end 11425.51971875
transcript.pyannote[1559].speaker SPEAKER_01
transcript.pyannote[1559].start 11426.76846875
transcript.pyannote[1559].end 11427.74721875
transcript.pyannote[1560].speaker SPEAKER_01
transcript.pyannote[1560].start 11427.83159375
transcript.pyannote[1560].end 11431.18971875
transcript.pyannote[1561].speaker SPEAKER_24
transcript.pyannote[1561].start 11431.20659375
transcript.pyannote[1561].end 11438.46284375
transcript.pyannote[1562].speaker SPEAKER_24
transcript.pyannote[1562].start 11438.54721875
transcript.pyannote[1562].end 11445.11159375
transcript.pyannote[1563].speaker SPEAKER_24
transcript.pyannote[1563].start 11445.17909375
transcript.pyannote[1563].end 11447.08596875
transcript.pyannote[1564].speaker SPEAKER_24
transcript.pyannote[1564].start 11448.41909375
transcript.pyannote[1564].end 11449.22909375
transcript.pyannote[1565].speaker SPEAKER_24
transcript.pyannote[1565].start 11449.61721875
transcript.pyannote[1565].end 11451.22034375
transcript.pyannote[1566].speaker SPEAKER_01
transcript.pyannote[1566].start 11451.86159375
transcript.pyannote[1566].end 11462.50971875
transcript.pyannote[1567].speaker SPEAKER_24
transcript.pyannote[1567].start 11462.61096875
transcript.pyannote[1567].end 11474.55846875
transcript.pyannote[1568].speaker SPEAKER_24
transcript.pyannote[1568].start 11474.98034375
transcript.pyannote[1568].end 11477.57909375
transcript.pyannote[1569].speaker SPEAKER_21
transcript.pyannote[1569].start 11477.91659375
transcript.pyannote[1569].end 11478.10221875
transcript.pyannote[1570].speaker SPEAKER_21
transcript.pyannote[1570].start 11478.59159375
transcript.pyannote[1570].end 11484.53159375
transcript.pyannote[1571].speaker SPEAKER_21
transcript.pyannote[1571].start 11485.08846875
transcript.pyannote[1571].end 11487.38346875
transcript.pyannote[1572].speaker SPEAKER_21
transcript.pyannote[1572].start 11487.72096875
transcript.pyannote[1572].end 11506.33409375
transcript.pyannote[1573].speaker SPEAKER_24
transcript.pyannote[1573].start 11503.54971875
transcript.pyannote[1573].end 11504.37659375
transcript.pyannote[1574].speaker SPEAKER_24
transcript.pyannote[1574].start 11505.52409375
transcript.pyannote[1574].end 11505.86159375
transcript.pyannote[1575].speaker SPEAKER_24
transcript.pyannote[1575].start 11506.33409375
transcript.pyannote[1575].end 11519.09159375
transcript.pyannote[1576].speaker SPEAKER_21
transcript.pyannote[1576].start 11523.59721875
transcript.pyannote[1576].end 11526.61784375
transcript.pyannote[1577].speaker SPEAKER_24
transcript.pyannote[1577].start 11527.10721875
transcript.pyannote[1577].end 11527.47846875
transcript.pyannote[1578].speaker SPEAKER_24
transcript.pyannote[1578].start 11528.38971875
transcript.pyannote[1578].end 11555.81159375
transcript.pyannote[1579].speaker SPEAKER_26
transcript.pyannote[1579].start 11535.56159375
transcript.pyannote[1579].end 11536.03409375
transcript.pyannote[1580].speaker SPEAKER_26
transcript.pyannote[1580].start 11537.77221875
transcript.pyannote[1580].end 11537.82284375
transcript.pyannote[1581].speaker SPEAKER_20
transcript.pyannote[1581].start 11537.82284375
transcript.pyannote[1581].end 11538.68346875
transcript.pyannote[1582].speaker SPEAKER_20
transcript.pyannote[1582].start 11555.98034375
transcript.pyannote[1582].end 11556.67221875
transcript.pyannote[1583].speaker SPEAKER_24
transcript.pyannote[1583].start 11556.60471875
transcript.pyannote[1583].end 11566.44284375
transcript.pyannote[1584].speaker SPEAKER_24
transcript.pyannote[1584].start 11569.22721875
transcript.pyannote[1584].end 11570.29034375
transcript.pyannote[1585].speaker SPEAKER_21
transcript.pyannote[1585].start 11570.83034375
transcript.pyannote[1585].end 11571.85971875
transcript.pyannote[1586].speaker SPEAKER_24
transcript.pyannote[1586].start 11571.97784375
transcript.pyannote[1586].end 11571.99471875
transcript.pyannote[1587].speaker SPEAKER_21
transcript.pyannote[1587].start 11571.99471875
transcript.pyannote[1587].end 11572.02846875
transcript.pyannote[1588].speaker SPEAKER_24
transcript.pyannote[1588].start 11572.02846875
transcript.pyannote[1588].end 11575.13346875
transcript.pyannote[1589].speaker SPEAKER_24
transcript.pyannote[1589].start 11576.26409375
transcript.pyannote[1589].end 11577.22596875
transcript.pyannote[1590].speaker SPEAKER_21
transcript.pyannote[1590].start 11579.06534375
transcript.pyannote[1590].end 11585.59596875
transcript.pyannote[1591].speaker SPEAKER_24
transcript.pyannote[1591].start 11585.59596875
transcript.pyannote[1591].end 11600.42909375
transcript.pyannote[1592].speaker SPEAKER_21
transcript.pyannote[1592].start 11592.16034375
transcript.pyannote[1592].end 11595.13034375
transcript.pyannote[1593].speaker SPEAKER_24
transcript.pyannote[1593].start 11600.93534375
transcript.pyannote[1593].end 11603.55096875
transcript.pyannote[1594].speaker SPEAKER_24
transcript.pyannote[1594].start 11603.92221875
transcript.pyannote[1594].end 11614.63784375
transcript.pyannote[1595].speaker SPEAKER_24
transcript.pyannote[1595].start 11615.09346875
transcript.pyannote[1595].end 11617.92846875
transcript.pyannote[1596].speaker SPEAKER_24
transcript.pyannote[1596].start 11618.13096875
transcript.pyannote[1596].end 11623.19346875
transcript.pyannote[1597].speaker SPEAKER_24
transcript.pyannote[1597].start 11624.77971875
transcript.pyannote[1597].end 11629.70721875
transcript.pyannote[1598].speaker SPEAKER_21
transcript.pyannote[1598].start 11631.04034375
transcript.pyannote[1598].end 11631.71534375
transcript.pyannote[1599].speaker SPEAKER_21
transcript.pyannote[1599].start 11632.08659375
transcript.pyannote[1599].end 11640.99659375
transcript.pyannote[1600].speaker SPEAKER_21
transcript.pyannote[1600].start 11641.43534375
transcript.pyannote[1600].end 11661.41534375
transcript.pyannote[1601].speaker SPEAKER_19
transcript.pyannote[1601].start 11651.84721875
transcript.pyannote[1601].end 11653.24784375
transcript.pyannote[1602].speaker SPEAKER_24
transcript.pyannote[1602].start 11661.41534375
transcript.pyannote[1602].end 11676.97409375
transcript.pyannote[1603].speaker SPEAKER_24
transcript.pyannote[1603].start 11677.44659375
transcript.pyannote[1603].end 11683.42034375
transcript.pyannote[1604].speaker SPEAKER_24
transcript.pyannote[1604].start 11683.79159375
transcript.pyannote[1604].end 11685.63096875
transcript.pyannote[1605].speaker SPEAKER_24
transcript.pyannote[1605].start 11687.48721875
transcript.pyannote[1605].end 11688.02721875
transcript.pyannote[1606].speaker SPEAKER_21
transcript.pyannote[1606].start 11687.77409375
transcript.pyannote[1606].end 11690.64284375
transcript.pyannote[1607].speaker SPEAKER_33
transcript.pyannote[1607].start 11688.02721875
transcript.pyannote[1607].end 11688.82034375
transcript.pyannote[1608].speaker SPEAKER_24
transcript.pyannote[1608].start 11688.82034375
transcript.pyannote[1608].end 11688.85409375
transcript.pyannote[1609].speaker SPEAKER_33
transcript.pyannote[1609].start 11690.81159375
transcript.pyannote[1609].end 11696.90346875
transcript.pyannote[1610].speaker SPEAKER_33
transcript.pyannote[1610].start 11697.39284375
transcript.pyannote[1610].end 11716.96784375
transcript.pyannote[1611].speaker SPEAKER_24
transcript.pyannote[1611].start 11698.48971875
transcript.pyannote[1611].end 11698.81034375
transcript.pyannote[1612].speaker SPEAKER_24
transcript.pyannote[1612].start 11699.02971875
transcript.pyannote[1612].end 11700.58221875
transcript.pyannote[1613].speaker SPEAKER_26
transcript.pyannote[1613].start 11700.58221875
transcript.pyannote[1613].end 11700.59909375
transcript.pyannote[1614].speaker SPEAKER_24
transcript.pyannote[1614].start 11716.96784375
transcript.pyannote[1614].end 11735.91846875
transcript.pyannote[1615].speaker SPEAKER_24
transcript.pyannote[1615].start 11737.15034375
transcript.pyannote[1615].end 11738.33159375
transcript.pyannote[1616].speaker SPEAKER_24
transcript.pyannote[1616].start 11742.26346875
transcript.pyannote[1616].end 11745.57096875
transcript.pyannote[1617].speaker SPEAKER_10
transcript.pyannote[1617].start 11744.60909375
transcript.pyannote[1617].end 11744.76096875
transcript.pyannote[1618].speaker SPEAKER_10
transcript.pyannote[1618].start 11744.84534375
transcript.pyannote[1618].end 11744.87909375
transcript.pyannote[1619].speaker SPEAKER_10
transcript.pyannote[1619].start 11745.28409375
transcript.pyannote[1619].end 11745.55409375
transcript.pyannote[1620].speaker SPEAKER_10
transcript.pyannote[1620].start 11745.57096875
transcript.pyannote[1620].end 11746.21221875
transcript.pyannote[1621].speaker SPEAKER_10
transcript.pyannote[1621].start 11748.01784375
transcript.pyannote[1621].end 11748.84471875
transcript.pyannote[1622].speaker SPEAKER_24
transcript.pyannote[1622].start 11748.89534375
transcript.pyannote[1622].end 11752.94534375
transcript.pyannote[1623].speaker SPEAKER_10
transcript.pyannote[1623].start 11753.97471875
transcript.pyannote[1623].end 11757.72096875
transcript.pyannote[1624].speaker SPEAKER_24
transcript.pyannote[1624].start 11758.44659375
transcript.pyannote[1624].end 11759.52659375
transcript.pyannote[1625].speaker SPEAKER_10
transcript.pyannote[1625].start 11759.61096875
transcript.pyannote[1625].end 11762.95221875
transcript.pyannote[1626].speaker SPEAKER_24
transcript.pyannote[1626].start 11762.95221875
transcript.pyannote[1626].end 11781.22784375
transcript.pyannote[1627].speaker SPEAKER_10
transcript.pyannote[1627].start 11766.34409375
transcript.pyannote[1627].end 11767.93034375
transcript.pyannote[1628].speaker SPEAKER_05
transcript.pyannote[1628].start 11784.01221875
transcript.pyannote[1628].end 11795.95971875
transcript.pyannote[1629].speaker SPEAKER_24
transcript.pyannote[1629].start 11796.31409375
transcript.pyannote[1629].end 11805.44346875
transcript.pyannote[1630].speaker SPEAKER_05
transcript.pyannote[1630].start 11800.19534375
transcript.pyannote[1630].end 11801.44409375
transcript.pyannote[1631].speaker SPEAKER_21
transcript.pyannote[1631].start 11801.44409375
transcript.pyannote[1631].end 11801.46096875
transcript.pyannote[1632].speaker SPEAKER_03
transcript.pyannote[1632].start 11804.61659375
transcript.pyannote[1632].end 11804.90346875
transcript.pyannote[1633].speaker SPEAKER_03
transcript.pyannote[1633].start 11805.44346875
transcript.pyannote[1633].end 11805.46034375
transcript.pyannote[1634].speaker SPEAKER_24
transcript.pyannote[1634].start 11806.86096875
transcript.pyannote[1634].end 11806.96221875
transcript.pyannote[1635].speaker SPEAKER_03
transcript.pyannote[1635].start 11806.96221875
transcript.pyannote[1635].end 11808.36284375
transcript.pyannote[1636].speaker SPEAKER_03
transcript.pyannote[1636].start 11808.91971875
transcript.pyannote[1636].end 11810.74221875
transcript.pyannote[1637].speaker SPEAKER_03
transcript.pyannote[1637].start 11811.34971875
transcript.pyannote[1637].end 11813.02034375
transcript.pyannote[1638].speaker SPEAKER_03
transcript.pyannote[1638].start 11813.25659375
transcript.pyannote[1638].end 11813.86409375
transcript.pyannote[1639].speaker SPEAKER_03
transcript.pyannote[1639].start 11814.03284375
transcript.pyannote[1639].end 11815.48409375
transcript.pyannote[1640].speaker SPEAKER_28
transcript.pyannote[1640].start 11820.44534375
transcript.pyannote[1640].end 11821.86284375
transcript.pyannote[1641].speaker SPEAKER_20
transcript.pyannote[1641].start 11827.85346875
transcript.pyannote[1641].end 11827.87034375
transcript.pyannote[1642].speaker SPEAKER_26
transcript.pyannote[1642].start 11827.87034375
transcript.pyannote[1642].end 11828.32596875
transcript.pyannote[1643].speaker SPEAKER_28
transcript.pyannote[1643].start 11828.61284375
transcript.pyannote[1643].end 11854.07721875
transcript.pyannote[1644].speaker SPEAKER_28
transcript.pyannote[1644].start 11854.21221875
transcript.pyannote[1644].end 11854.92096875
transcript.pyannote[1645].speaker SPEAKER_28
transcript.pyannote[1645].start 11856.00096875
transcript.pyannote[1645].end 11870.14221875
transcript.pyannote[1646].speaker SPEAKER_28
transcript.pyannote[1646].start 11870.42909375
transcript.pyannote[1646].end 11871.67784375
transcript.pyannote[1647].speaker SPEAKER_28
transcript.pyannote[1647].start 11871.82971875
transcript.pyannote[1647].end 11879.13659375
transcript.pyannote[1648].speaker SPEAKER_28
transcript.pyannote[1648].start 11879.47409375
transcript.pyannote[1648].end 11883.89534375
transcript.pyannote[1649].speaker SPEAKER_28
transcript.pyannote[1649].start 11884.65471875
transcript.pyannote[1649].end 11892.23159375
transcript.pyannote[1650].speaker SPEAKER_28
transcript.pyannote[1650].start 11892.41721875
transcript.pyannote[1650].end 11897.37846875
transcript.pyannote[1651].speaker SPEAKER_28
transcript.pyannote[1651].start 11897.68221875
transcript.pyannote[1651].end 11899.06596875
transcript.pyannote[1652].speaker SPEAKER_28
transcript.pyannote[1652].start 11899.43721875
transcript.pyannote[1652].end 11914.99596875
transcript.pyannote[1653].speaker SPEAKER_21
transcript.pyannote[1653].start 11915.46846875
transcript.pyannote[1653].end 11915.77221875
transcript.pyannote[1654].speaker SPEAKER_21
transcript.pyannote[1654].start 11916.64971875
transcript.pyannote[1654].end 11923.73721875
transcript.pyannote[1655].speaker SPEAKER_21
transcript.pyannote[1655].start 11923.82159375
transcript.pyannote[1655].end 11926.35284375
transcript.pyannote[1656].speaker SPEAKER_21
transcript.pyannote[1656].start 11926.63971875
transcript.pyannote[1656].end 11927.55096875
transcript.pyannote[1657].speaker SPEAKER_21
transcript.pyannote[1657].start 11928.32721875
transcript.pyannote[1657].end 11932.05659375
transcript.pyannote[1658].speaker SPEAKER_21
transcript.pyannote[1658].start 11932.52909375
transcript.pyannote[1658].end 11935.58346875
transcript.pyannote[1659].speaker SPEAKER_21
transcript.pyannote[1659].start 11936.03909375
transcript.pyannote[1659].end 11944.10534375
transcript.pyannote[1660].speaker SPEAKER_21
transcript.pyannote[1660].start 11944.96596875
transcript.pyannote[1660].end 11965.36784375
transcript.pyannote[1661].speaker SPEAKER_28
transcript.pyannote[1661].start 11946.55221875
transcript.pyannote[1661].end 11947.05846875
transcript.pyannote[1662].speaker SPEAKER_28
transcript.pyannote[1662].start 11948.91471875
transcript.pyannote[1662].end 11950.58534375
transcript.pyannote[1663].speaker SPEAKER_21
transcript.pyannote[1663].start 11965.70534375
transcript.pyannote[1663].end 11973.67034375
transcript.pyannote[1664].speaker SPEAKER_21
transcript.pyannote[1664].start 11974.32846875
transcript.pyannote[1664].end 11989.02659375
transcript.pyannote[1665].speaker SPEAKER_28
transcript.pyannote[1665].start 11988.90846875
transcript.pyannote[1665].end 11990.79846875
transcript.pyannote[1666].speaker SPEAKER_28
transcript.pyannote[1666].start 11991.43971875
transcript.pyannote[1666].end 11994.91596875
transcript.pyannote[1667].speaker SPEAKER_21
transcript.pyannote[1667].start 11995.42221875
transcript.pyannote[1667].end 11996.58659375
transcript.pyannote[1668].speaker SPEAKER_21
transcript.pyannote[1668].start 11996.82284375
transcript.pyannote[1668].end 11996.83971875
transcript.pyannote[1669].speaker SPEAKER_28
transcript.pyannote[1669].start 11996.83971875
transcript.pyannote[1669].end 11998.42596875
transcript.pyannote[1670].speaker SPEAKER_21
transcript.pyannote[1670].start 11997.49784375
transcript.pyannote[1670].end 12004.87221875
transcript.pyannote[1671].speaker SPEAKER_28
transcript.pyannote[1671].start 12003.03284375
transcript.pyannote[1671].end 12006.15471875
transcript.pyannote[1672].speaker SPEAKER_21
transcript.pyannote[1672].start 12006.23909375
transcript.pyannote[1672].end 12008.36534375
transcript.pyannote[1673].speaker SPEAKER_28
transcript.pyannote[1673].start 12008.36534375
transcript.pyannote[1673].end 12013.51221875
transcript.pyannote[1674].speaker SPEAKER_21
transcript.pyannote[1674].start 12009.54659375
transcript.pyannote[1674].end 12011.90909375
transcript.pyannote[1675].speaker SPEAKER_21
transcript.pyannote[1675].start 12012.38159375
transcript.pyannote[1675].end 12015.35159375
transcript.pyannote[1676].speaker SPEAKER_28
transcript.pyannote[1676].start 12013.78221875
transcript.pyannote[1676].end 12014.13659375
transcript.pyannote[1677].speaker SPEAKER_28
transcript.pyannote[1677].start 12014.86221875
transcript.pyannote[1677].end 12015.13221875
transcript.pyannote[1678].speaker SPEAKER_28
transcript.pyannote[1678].start 12015.72284375
transcript.pyannote[1678].end 12024.24471875
transcript.pyannote[1679].speaker SPEAKER_21
transcript.pyannote[1679].start 12025.91534375
transcript.pyannote[1679].end 12030.91034375
transcript.pyannote[1680].speaker SPEAKER_21
transcript.pyannote[1680].start 12030.96096875
transcript.pyannote[1680].end 12030.97784375
transcript.pyannote[1681].speaker SPEAKER_28
transcript.pyannote[1681].start 12030.97784375
transcript.pyannote[1681].end 12037.50846875
transcript.pyannote[1682].speaker SPEAKER_21
transcript.pyannote[1682].start 12031.02846875
transcript.pyannote[1682].end 12031.21409375
transcript.pyannote[1683].speaker SPEAKER_20
transcript.pyannote[1683].start 12038.45346875
transcript.pyannote[1683].end 12039.97221875
transcript.pyannote[1684].speaker SPEAKER_21
transcript.pyannote[1684].start 12039.97221875
transcript.pyannote[1684].end 12040.46159375
transcript.pyannote[1685].speaker SPEAKER_28
transcript.pyannote[1685].start 12041.11971875
transcript.pyannote[1685].end 12042.43596875
transcript.pyannote[1686].speaker SPEAKER_21
transcript.pyannote[1686].start 12042.62159375
transcript.pyannote[1686].end 12042.67221875
transcript.pyannote[1687].speaker SPEAKER_21
transcript.pyannote[1687].start 12043.21221875
transcript.pyannote[1687].end 12043.22909375
transcript.pyannote[1688].speaker SPEAKER_28
transcript.pyannote[1688].start 12043.22909375
transcript.pyannote[1688].end 12043.60034375
transcript.pyannote[1689].speaker SPEAKER_21
transcript.pyannote[1689].start 12043.31346875
transcript.pyannote[1689].end 12045.03471875
transcript.pyannote[1690].speaker SPEAKER_21
transcript.pyannote[1690].start 12045.77721875
transcript.pyannote[1690].end 12049.69221875
transcript.pyannote[1691].speaker SPEAKER_28
transcript.pyannote[1691].start 12047.66721875
transcript.pyannote[1691].end 12048.03846875
transcript.pyannote[1692].speaker SPEAKER_00
transcript.pyannote[1692].start 12048.03846875
transcript.pyannote[1692].end 12048.07221875
transcript.pyannote[1693].speaker SPEAKER_28
transcript.pyannote[1693].start 12049.86096875
transcript.pyannote[1693].end 12053.45534375
transcript.pyannote[1694].speaker SPEAKER_28
transcript.pyannote[1694].start 12054.13034375
transcript.pyannote[1694].end 12055.10909375
transcript.pyannote[1695].speaker SPEAKER_21
transcript.pyannote[1695].start 12056.05409375
transcript.pyannote[1695].end 12060.82971875
transcript.pyannote[1696].speaker SPEAKER_21
transcript.pyannote[1696].start 12061.43721875
transcript.pyannote[1696].end 12065.72346875
transcript.pyannote[1697].speaker SPEAKER_28
transcript.pyannote[1697].start 12066.09471875
transcript.pyannote[1697].end 12066.56721875
transcript.pyannote[1698].speaker SPEAKER_21
transcript.pyannote[1698].start 12066.56721875
transcript.pyannote[1698].end 12068.77784375
transcript.pyannote[1699].speaker SPEAKER_28
transcript.pyannote[1699].start 12069.16596875
transcript.pyannote[1699].end 12071.52846875
transcript.pyannote[1700].speaker SPEAKER_21
transcript.pyannote[1700].start 12072.77721875
transcript.pyannote[1700].end 12073.65471875
transcript.pyannote[1701].speaker SPEAKER_28
transcript.pyannote[1701].start 12073.08096875
transcript.pyannote[1701].end 12079.72971875
transcript.pyannote[1702].speaker SPEAKER_21
transcript.pyannote[1702].start 12079.72971875
transcript.pyannote[1702].end 12082.68284375
transcript.pyannote[1703].speaker SPEAKER_28
transcript.pyannote[1703].start 12080.20221875
transcript.pyannote[1703].end 12080.62409375
transcript.pyannote[1704].speaker SPEAKER_21
transcript.pyannote[1704].start 12083.67846875
transcript.pyannote[1704].end 12086.34471875
transcript.pyannote[1705].speaker SPEAKER_01
transcript.pyannote[1705].start 12086.34471875
transcript.pyannote[1705].end 12087.45846875
transcript.pyannote[1706].speaker SPEAKER_01
transcript.pyannote[1706].start 12087.71159375
transcript.pyannote[1706].end 12090.46221875
transcript.pyannote[1707].speaker SPEAKER_01
transcript.pyannote[1707].start 12090.76596875
transcript.pyannote[1707].end 12128.17784375
transcript.pyannote[1708].speaker SPEAKER_21
transcript.pyannote[1708].start 12092.97659375
transcript.pyannote[1708].end 12093.41534375
transcript.pyannote[1709].speaker SPEAKER_28
transcript.pyannote[1709].start 12093.41534375
transcript.pyannote[1709].end 12093.44909375
transcript.pyannote[1710].speaker SPEAKER_21
transcript.pyannote[1710].start 12093.44909375
transcript.pyannote[1710].end 12093.46596875
transcript.pyannote[1711].speaker SPEAKER_20
transcript.pyannote[1711].start 12095.71034375
transcript.pyannote[1711].end 12095.77784375
transcript.pyannote[1712].speaker SPEAKER_28
transcript.pyannote[1712].start 12095.77784375
transcript.pyannote[1712].end 12096.11534375
transcript.pyannote[1713].speaker SPEAKER_00
transcript.pyannote[1713].start 12096.11534375
transcript.pyannote[1713].end 12096.16596875
transcript.pyannote[1714].speaker SPEAKER_00
transcript.pyannote[1714].start 12110.76284375
transcript.pyannote[1714].end 12112.04534375
transcript.pyannote[1715].speaker SPEAKER_00
transcript.pyannote[1715].start 12116.90534375
transcript.pyannote[1715].end 12117.02346875
transcript.pyannote[1716].speaker SPEAKER_30
transcript.pyannote[1716].start 12117.02346875
transcript.pyannote[1716].end 12117.12471875
transcript.pyannote[1717].speaker SPEAKER_00
transcript.pyannote[1717].start 12117.12471875
transcript.pyannote[1717].end 12117.32721875
transcript.pyannote[1718].speaker SPEAKER_28
transcript.pyannote[1718].start 12128.00909375
transcript.pyannote[1718].end 12140.09159375
transcript.pyannote[1719].speaker SPEAKER_01
transcript.pyannote[1719].start 12140.66534375
transcript.pyannote[1719].end 12147.11159375
transcript.pyannote[1720].speaker SPEAKER_28
transcript.pyannote[1720].start 12147.11159375
transcript.pyannote[1720].end 12149.38971875
transcript.pyannote[1721].speaker SPEAKER_28
transcript.pyannote[1721].start 12149.84534375
transcript.pyannote[1721].end 12155.54909375
transcript.pyannote[1722].speaker SPEAKER_01
transcript.pyannote[1722].start 12150.73971875
transcript.pyannote[1722].end 12151.26284375
transcript.pyannote[1723].speaker SPEAKER_28
transcript.pyannote[1723].start 12155.95409375
transcript.pyannote[1723].end 12157.37159375
transcript.pyannote[1724].speaker SPEAKER_01
transcript.pyannote[1724].start 12157.21971875
transcript.pyannote[1724].end 12169.97721875
transcript.pyannote[1725].speaker SPEAKER_28
transcript.pyannote[1725].start 12167.24346875
transcript.pyannote[1725].end 12167.73284375
transcript.pyannote[1726].speaker SPEAKER_28
transcript.pyannote[1726].start 12169.62284375
transcript.pyannote[1726].end 12175.46159375
transcript.pyannote[1727].speaker SPEAKER_01
transcript.pyannote[1727].start 12175.37721875
transcript.pyannote[1727].end 12176.54159375
transcript.pyannote[1728].speaker SPEAKER_28
transcript.pyannote[1728].start 12175.61346875
transcript.pyannote[1728].end 12176.40659375
transcript.pyannote[1729].speaker SPEAKER_01
transcript.pyannote[1729].start 12176.59221875
transcript.pyannote[1729].end 12202.27596875
transcript.pyannote[1730].speaker SPEAKER_00
transcript.pyannote[1730].start 12189.92346875
transcript.pyannote[1730].end 12190.51409375
transcript.pyannote[1731].speaker SPEAKER_00
transcript.pyannote[1731].start 12191.17221875
transcript.pyannote[1731].end 12191.67846875
transcript.pyannote[1732].speaker SPEAKER_28
transcript.pyannote[1732].start 12201.93846875
transcript.pyannote[1732].end 12227.41971875
transcript.pyannote[1733].speaker SPEAKER_28
transcript.pyannote[1733].start 12227.62221875
transcript.pyannote[1733].end 12238.94534375
transcript.pyannote[1734].speaker SPEAKER_28
transcript.pyannote[1734].start 12239.36721875
transcript.pyannote[1734].end 12250.35284375
transcript.pyannote[1735].speaker SPEAKER_28
transcript.pyannote[1735].start 12250.75784375
transcript.pyannote[1735].end 12267.02534375
transcript.pyannote[1736].speaker SPEAKER_28
transcript.pyannote[1736].start 12267.54846875
transcript.pyannote[1736].end 12273.70784375
transcript.pyannote[1737].speaker SPEAKER_01
transcript.pyannote[1737].start 12274.43346875
transcript.pyannote[1737].end 12290.44784375
transcript.pyannote[1738].speaker SPEAKER_28
transcript.pyannote[1738].start 12289.97534375
transcript.pyannote[1738].end 12293.67096875
transcript.pyannote[1739].speaker SPEAKER_01
transcript.pyannote[1739].start 12292.54034375
transcript.pyannote[1739].end 12296.15159375
transcript.pyannote[1740].speaker SPEAKER_01
transcript.pyannote[1740].start 12296.69159375
transcript.pyannote[1740].end 12307.47471875
transcript.pyannote[1741].speaker SPEAKER_28
transcript.pyannote[1741].start 12296.74221875
transcript.pyannote[1741].end 12297.18096875
transcript.pyannote[1742].speaker SPEAKER_28
transcript.pyannote[1742].start 12303.13784375
transcript.pyannote[1742].end 12303.23909375
transcript.pyannote[1743].speaker SPEAKER_28
transcript.pyannote[1743].start 12307.66034375
transcript.pyannote[1743].end 12308.36909375
transcript.pyannote[1744].speaker SPEAKER_01
transcript.pyannote[1744].start 12308.36909375
transcript.pyannote[1744].end 12308.79096875
transcript.pyannote[1745].speaker SPEAKER_28
transcript.pyannote[1745].start 12308.79096875
transcript.pyannote[1745].end 12311.62596875
transcript.pyannote[1746].speaker SPEAKER_01
transcript.pyannote[1746].start 12311.71034375
transcript.pyannote[1746].end 12322.89846875
transcript.pyannote[1747].speaker SPEAKER_28
transcript.pyannote[1747].start 12315.99659375
transcript.pyannote[1747].end 12316.50284375
transcript.pyannote[1748].speaker SPEAKER_28
transcript.pyannote[1748].start 12319.25346875
transcript.pyannote[1748].end 12320.16471875
transcript.pyannote[1749].speaker SPEAKER_28
transcript.pyannote[1749].start 12320.26596875
transcript.pyannote[1749].end 12320.89034375
transcript.pyannote[1750].speaker SPEAKER_28
transcript.pyannote[1750].start 12322.86471875
transcript.pyannote[1750].end 12334.57596875
transcript.pyannote[1751].speaker SPEAKER_01
transcript.pyannote[1751].start 12329.69909375
transcript.pyannote[1751].end 12329.76659375
transcript.pyannote[1752].speaker SPEAKER_21
transcript.pyannote[1752].start 12329.76659375
transcript.pyannote[1752].end 12329.85096875
transcript.pyannote[1753].speaker SPEAKER_01
transcript.pyannote[1753].start 12329.96909375
transcript.pyannote[1753].end 12330.05346875
transcript.pyannote[1754].speaker SPEAKER_21
transcript.pyannote[1754].start 12332.50034375
transcript.pyannote[1754].end 12353.03721875
transcript.pyannote[1755].speaker SPEAKER_28
transcript.pyannote[1755].start 12352.71659375
transcript.pyannote[1755].end 12353.10471875
transcript.pyannote[1756].speaker SPEAKER_21
transcript.pyannote[1756].start 12353.10471875
transcript.pyannote[1756].end 12354.87659375
transcript.pyannote[1757].speaker SPEAKER_28
transcript.pyannote[1757].start 12354.04971875
transcript.pyannote[1757].end 12357.94784375
transcript.pyannote[1758].speaker SPEAKER_21
transcript.pyannote[1758].start 12356.20971875
transcript.pyannote[1758].end 12362.95971875
transcript.pyannote[1759].speaker SPEAKER_28
transcript.pyannote[1759].start 12361.87971875
transcript.pyannote[1759].end 12372.67971875
transcript.pyannote[1760].speaker SPEAKER_21
transcript.pyannote[1760].start 12363.97221875
transcript.pyannote[1760].end 12367.27971875
transcript.pyannote[1761].speaker SPEAKER_21
transcript.pyannote[1761].start 12367.48221875
transcript.pyannote[1761].end 12368.54534375
transcript.pyannote[1762].speaker SPEAKER_21
transcript.pyannote[1762].start 12373.11846875
transcript.pyannote[1762].end 12384.93096875
transcript.pyannote[1763].speaker SPEAKER_21
transcript.pyannote[1763].start 12385.30221875
transcript.pyannote[1763].end 12388.03596875
transcript.pyannote[1764].speaker SPEAKER_21
transcript.pyannote[1764].start 12388.39034375
transcript.pyannote[1764].end 12389.04846875
transcript.pyannote[1765].speaker SPEAKER_21
transcript.pyannote[1765].start 12389.36909375
transcript.pyannote[1765].end 12392.28846875
transcript.pyannote[1766].speaker SPEAKER_26
transcript.pyannote[1766].start 12392.30534375
transcript.pyannote[1766].end 12392.74409375
transcript.pyannote[1767].speaker SPEAKER_21
transcript.pyannote[1767].start 12392.71034375
transcript.pyannote[1767].end 12394.06034375
transcript.pyannote[1768].speaker SPEAKER_21
transcript.pyannote[1768].start 12394.48221875
transcript.pyannote[1768].end 12396.10221875
transcript.pyannote[1769].speaker SPEAKER_21
transcript.pyannote[1769].start 12396.18659375
transcript.pyannote[1769].end 12396.20346875
transcript.pyannote[1770].speaker SPEAKER_28
transcript.pyannote[1770].start 12396.20346875
transcript.pyannote[1770].end 12396.65909375
transcript.pyannote[1771].speaker SPEAKER_21
transcript.pyannote[1771].start 12396.37221875
transcript.pyannote[1771].end 12398.26221875
transcript.pyannote[1772].speaker SPEAKER_28
transcript.pyannote[1772].start 12398.26221875
transcript.pyannote[1772].end 12429.56534375
transcript.pyannote[1773].speaker SPEAKER_21
transcript.pyannote[1773].start 12404.28659375
transcript.pyannote[1773].end 12406.15971875
transcript.pyannote[1774].speaker SPEAKER_12
transcript.pyannote[1774].start 12406.15971875
transcript.pyannote[1774].end 12406.24409375
transcript.pyannote[1775].speaker SPEAKER_21
transcript.pyannote[1775].start 12428.41784375
transcript.pyannote[1775].end 12433.81784375
transcript.pyannote[1776].speaker SPEAKER_28
transcript.pyannote[1776].start 12429.90284375
transcript.pyannote[1776].end 12437.51346875
transcript.pyannote[1777].speaker SPEAKER_21
transcript.pyannote[1777].start 12437.51346875
transcript.pyannote[1777].end 12438.59346875
transcript.pyannote[1778].speaker SPEAKER_28
transcript.pyannote[1778].start 12438.17159375
transcript.pyannote[1778].end 12438.77909375
transcript.pyannote[1779].speaker SPEAKER_21
transcript.pyannote[1779].start 12438.67784375
transcript.pyannote[1779].end 12438.72846875
transcript.pyannote[1780].speaker SPEAKER_21
transcript.pyannote[1780].start 12438.77909375
transcript.pyannote[1780].end 12439.09971875
transcript.pyannote[1781].speaker SPEAKER_21
transcript.pyannote[1781].start 12440.01096875
transcript.pyannote[1781].end 12446.25471875
transcript.pyannote[1782].speaker SPEAKER_28
transcript.pyannote[1782].start 12446.25471875
transcript.pyannote[1782].end 12446.79471875
transcript.pyannote[1783].speaker SPEAKER_21
transcript.pyannote[1783].start 12446.79471875
transcript.pyannote[1783].end 12447.01409375
transcript.pyannote[1784].speaker SPEAKER_28
transcript.pyannote[1784].start 12447.01409375
transcript.pyannote[1784].end 12453.64596875
transcript.pyannote[1785].speaker SPEAKER_21
transcript.pyannote[1785].start 12451.53659375
transcript.pyannote[1785].end 12452.44784375
transcript.pyannote[1786].speaker SPEAKER_21
transcript.pyannote[1786].start 12453.64596875
transcript.pyannote[1786].end 12460.34534375
transcript.pyannote[1787].speaker SPEAKER_28
transcript.pyannote[1787].start 12454.16909375
transcript.pyannote[1787].end 12454.55721875
transcript.pyannote[1788].speaker SPEAKER_28
transcript.pyannote[1788].start 12460.26096875
transcript.pyannote[1788].end 12478.09784375
transcript.pyannote[1789].speaker SPEAKER_28
transcript.pyannote[1789].start 12478.84034375
transcript.pyannote[1789].end 12489.30284375
transcript.pyannote[1790].speaker SPEAKER_28
transcript.pyannote[1790].start 12489.48846875
transcript.pyannote[1790].end 12508.23659375
transcript.pyannote[1791].speaker SPEAKER_28
transcript.pyannote[1791].start 12508.72596875
transcript.pyannote[1791].end 12546.22221875
transcript.pyannote[1792].speaker SPEAKER_28
transcript.pyannote[1792].start 12546.76221875
transcript.pyannote[1792].end 12560.49846875
transcript.pyannote[1793].speaker SPEAKER_21
transcript.pyannote[1793].start 12560.68409375
transcript.pyannote[1793].end 12570.11721875
transcript.pyannote[1794].speaker SPEAKER_21
transcript.pyannote[1794].start 12570.69096875
transcript.pyannote[1794].end 12580.96784375
transcript.pyannote[1795].speaker SPEAKER_28
transcript.pyannote[1795].start 12580.34346875
transcript.pyannote[1795].end 12583.14471875
transcript.pyannote[1796].speaker SPEAKER_21
transcript.pyannote[1796].start 12581.42346875
transcript.pyannote[1796].end 12582.99284375
transcript.pyannote[1797].speaker SPEAKER_21
transcript.pyannote[1797].start 12583.63409375
transcript.pyannote[1797].end 12606.60096875
transcript.pyannote[1798].speaker SPEAKER_00
transcript.pyannote[1798].start 12604.69409375
transcript.pyannote[1798].end 12605.04846875
transcript.pyannote[1799].speaker SPEAKER_21
transcript.pyannote[1799].start 12606.83721875
transcript.pyannote[1799].end 12648.04596875
transcript.pyannote[1800].speaker SPEAKER_00
transcript.pyannote[1800].start 12634.78221875
transcript.pyannote[1800].end 12634.91721875
transcript.pyannote[1801].speaker SPEAKER_21
transcript.pyannote[1801].start 12648.06284375
transcript.pyannote[1801].end 12652.36596875
transcript.pyannote[1802].speaker SPEAKER_21
transcript.pyannote[1802].start 12652.70346875
transcript.pyannote[1802].end 12682.09971875
transcript.pyannote[1803].speaker SPEAKER_20
transcript.pyannote[1803].start 12663.68909375
transcript.pyannote[1803].end 12663.99284375
transcript.pyannote[1804].speaker SPEAKER_28
transcript.pyannote[1804].start 12676.81784375
transcript.pyannote[1804].end 12677.13846875
transcript.pyannote[1805].speaker SPEAKER_28
transcript.pyannote[1805].start 12682.06596875
transcript.pyannote[1805].end 12697.23659375
transcript.pyannote[1806].speaker SPEAKER_21
transcript.pyannote[1806].start 12690.43596875
transcript.pyannote[1806].end 12690.50346875
transcript.pyannote[1807].speaker SPEAKER_21
transcript.pyannote[1807].start 12696.19034375
transcript.pyannote[1807].end 12704.91471875
transcript.pyannote[1808].speaker SPEAKER_28
transcript.pyannote[1808].start 12704.91471875
transcript.pyannote[1808].end 12710.34846875
transcript.pyannote[1809].speaker SPEAKER_21
transcript.pyannote[1809].start 12706.78784375
transcript.pyannote[1809].end 12707.49659375
transcript.pyannote[1810].speaker SPEAKER_21
transcript.pyannote[1810].start 12709.50471875
transcript.pyannote[1810].end 12710.11221875
transcript.pyannote[1811].speaker SPEAKER_27
transcript.pyannote[1811].start 12710.34846875
transcript.pyannote[1811].end 12711.76596875
transcript.pyannote[1812].speaker SPEAKER_21
transcript.pyannote[1812].start 12712.57596875
transcript.pyannote[1812].end 12714.92159375
transcript.pyannote[1813].speaker SPEAKER_28
transcript.pyannote[1813].start 12712.69409375
transcript.pyannote[1813].end 12713.13284375
transcript.pyannote[1814].speaker SPEAKER_21
transcript.pyannote[1814].start 12714.93846875
transcript.pyannote[1814].end 12714.98909375
transcript.pyannote[1815].speaker SPEAKER_21
transcript.pyannote[1815].start 12715.14096875
transcript.pyannote[1815].end 12719.02221875
transcript.pyannote[1816].speaker SPEAKER_03
transcript.pyannote[1816].start 12719.69721875
transcript.pyannote[1816].end 12721.30034375
transcript.pyannote[1817].speaker SPEAKER_21
transcript.pyannote[1817].start 12721.30034375
transcript.pyannote[1817].end 12733.85534375
transcript.pyannote[1818].speaker SPEAKER_03
transcript.pyannote[1818].start 12721.31721875
transcript.pyannote[1818].end 12722.21159375
transcript.pyannote[1819].speaker SPEAKER_00
transcript.pyannote[1819].start 12725.02971875
transcript.pyannote[1819].end 12725.23221875
transcript.pyannote[1820].speaker SPEAKER_03
transcript.pyannote[1820].start 12725.23221875
transcript.pyannote[1820].end 12725.29971875
transcript.pyannote[1821].speaker SPEAKER_00
transcript.pyannote[1821].start 12725.29971875
transcript.pyannote[1821].end 12725.46846875
transcript.pyannote[1822].speaker SPEAKER_03
transcript.pyannote[1822].start 12733.75409375
transcript.pyannote[1822].end 12735.20534375
transcript.pyannote[1823].speaker SPEAKER_21
transcript.pyannote[1823].start 12734.04096875
transcript.pyannote[1823].end 12734.26034375
transcript.pyannote[1824].speaker SPEAKER_21
transcript.pyannote[1824].start 12735.12096875
transcript.pyannote[1824].end 12742.76534375
transcript.pyannote[1825].speaker SPEAKER_03
transcript.pyannote[1825].start 12735.22221875
transcript.pyannote[1825].end 12735.23909375
transcript.pyannote[1826].speaker SPEAKER_26
transcript.pyannote[1826].start 12742.76534375
transcript.pyannote[1826].end 12743.15346875
transcript.pyannote[1827].speaker SPEAKER_21
transcript.pyannote[1827].start 12743.15346875
transcript.pyannote[1827].end 12745.78596875
transcript.pyannote[1828].speaker SPEAKER_26
transcript.pyannote[1828].start 12743.27159375
transcript.pyannote[1828].end 12743.96346875
transcript.pyannote[1829].speaker SPEAKER_26
transcript.pyannote[1829].start 12744.16596875
transcript.pyannote[1829].end 12744.36846875
transcript.pyannote[1830].speaker SPEAKER_03
transcript.pyannote[1830].start 12746.14034375
transcript.pyannote[1830].end 12748.99221875
transcript.pyannote[1831].speaker SPEAKER_03
transcript.pyannote[1831].start 12750.03846875
transcript.pyannote[1831].end 12753.53159375
transcript.pyannote[1832].speaker SPEAKER_03
transcript.pyannote[1832].start 12754.29096875
transcript.pyannote[1832].end 12756.77159375
transcript.pyannote[1833].speaker SPEAKER_07
transcript.pyannote[1833].start 12768.51659375
transcript.pyannote[1833].end 12770.22096875
transcript.pyannote[1834].speaker SPEAKER_07
transcript.pyannote[1834].start 12772.00971875
transcript.pyannote[1834].end 12773.19096875
transcript.pyannote[1835].speaker SPEAKER_07
transcript.pyannote[1835].start 12774.79409375
transcript.pyannote[1835].end 12786.92721875
transcript.pyannote[1836].speaker SPEAKER_07
transcript.pyannote[1836].start 12787.26471875
transcript.pyannote[1836].end 12789.35721875
transcript.pyannote[1837].speaker SPEAKER_03
transcript.pyannote[1837].start 12789.69471875
transcript.pyannote[1837].end 12792.12471875
transcript.pyannote[1838].speaker SPEAKER_03
transcript.pyannote[1838].start 12792.24284375
transcript.pyannote[1838].end 12793.28909375
transcript.pyannote[1839].speaker SPEAKER_03
transcript.pyannote[1839].start 12795.22971875
transcript.pyannote[1839].end 12795.26346875
transcript.pyannote[1840].speaker SPEAKER_07
transcript.pyannote[1840].start 12795.26346875
transcript.pyannote[1840].end 12795.33096875
transcript.pyannote[1841].speaker SPEAKER_03
transcript.pyannote[1841].start 12795.33096875
transcript.pyannote[1841].end 12796.59659375
transcript.pyannote[1842].speaker SPEAKER_07
transcript.pyannote[1842].start 12799.70159375
transcript.pyannote[1842].end 12832.25346875
transcript.pyannote[1843].speaker SPEAKER_07
transcript.pyannote[1843].start 12832.40534375
transcript.pyannote[1843].end 12834.56534375
transcript.pyannote[1844].speaker SPEAKER_07
transcript.pyannote[1844].start 12834.70034375
transcript.pyannote[1844].end 12838.64909375
transcript.pyannote[1845].speaker SPEAKER_07
transcript.pyannote[1845].start 12838.69971875
transcript.pyannote[1845].end 12846.88409375
transcript.pyannote[1846].speaker SPEAKER_07
transcript.pyannote[1846].start 12846.96846875
transcript.pyannote[1846].end 12852.58784375
transcript.pyannote[1847].speaker SPEAKER_05
transcript.pyannote[1847].start 12854.69721875
transcript.pyannote[1847].end 12875.74034375
transcript.pyannote[1848].speaker SPEAKER_05
transcript.pyannote[1848].start 12875.99346875
transcript.pyannote[1848].end 12891.63659375
transcript.pyannote[1849].speaker SPEAKER_07
transcript.pyannote[1849].start 12891.83909375
transcript.pyannote[1849].end 12893.67846875
transcript.pyannote[1850].speaker SPEAKER_12
transcript.pyannote[1850].start 12894.23534375
transcript.pyannote[1850].end 12894.92721875
transcript.pyannote[1851].speaker SPEAKER_12
transcript.pyannote[1851].start 12895.26471875
transcript.pyannote[1851].end 12896.20971875
transcript.pyannote[1852].speaker SPEAKER_12
transcript.pyannote[1852].start 12896.59784375
transcript.pyannote[1852].end 12905.27159375
transcript.pyannote[1853].speaker SPEAKER_12
transcript.pyannote[1853].start 12905.57534375
transcript.pyannote[1853].end 12913.72596875
transcript.pyannote[1854].speaker SPEAKER_07
transcript.pyannote[1854].start 12913.72596875
transcript.pyannote[1854].end 12913.84409375
transcript.pyannote[1855].speaker SPEAKER_07
transcript.pyannote[1855].start 12914.06346875
transcript.pyannote[1855].end 12921.82596875
transcript.pyannote[1856].speaker SPEAKER_07
transcript.pyannote[1856].start 12922.11284375
transcript.pyannote[1856].end 12924.54284375
transcript.pyannote[1857].speaker SPEAKER_07
transcript.pyannote[1857].start 12924.67784375
transcript.pyannote[1857].end 12929.99346875
transcript.pyannote[1858].speaker SPEAKER_07
transcript.pyannote[1858].start 12930.14534375
transcript.pyannote[1858].end 12963.94596875
transcript.pyannote[1859].speaker SPEAKER_07
transcript.pyannote[1859].start 12964.67159375
transcript.pyannote[1859].end 12965.00909375
transcript.pyannote[1860].speaker SPEAKER_10
transcript.pyannote[1860].start 12965.00909375
transcript.pyannote[1860].end 12970.93221875
transcript.pyannote[1861].speaker SPEAKER_10
transcript.pyannote[1861].start 12971.33721875
transcript.pyannote[1861].end 12983.45346875
transcript.pyannote[1862].speaker SPEAKER_10
transcript.pyannote[1862].start 12983.77409375
transcript.pyannote[1862].end 12994.50659375
transcript.pyannote[1863].speaker SPEAKER_07
transcript.pyannote[1863].start 12993.13971875
transcript.pyannote[1863].end 12994.79346875
transcript.pyannote[1864].speaker SPEAKER_07
transcript.pyannote[1864].start 12995.33346875
transcript.pyannote[1864].end 12999.13034375
transcript.pyannote[1865].speaker SPEAKER_10
transcript.pyannote[1865].start 12999.11346875
transcript.pyannote[1865].end 13009.84596875
transcript.pyannote[1866].speaker SPEAKER_07
transcript.pyannote[1866].start 13010.04846875
transcript.pyannote[1866].end 13016.14034375
transcript.pyannote[1867].speaker SPEAKER_07
transcript.pyannote[1867].start 13016.47784375
transcript.pyannote[1867].end 13023.05909375
transcript.pyannote[1868].speaker SPEAKER_07
transcript.pyannote[1868].start 13023.49784375
transcript.pyannote[1868].end 13024.71284375
transcript.pyannote[1869].speaker SPEAKER_10
transcript.pyannote[1869].start 13025.96159375
transcript.pyannote[1869].end 13038.80346875
transcript.pyannote[1870].speaker SPEAKER_10
transcript.pyannote[1870].start 13038.93846875
transcript.pyannote[1870].end 13040.94659375
transcript.pyannote[1871].speaker SPEAKER_10
transcript.pyannote[1871].start 13041.16596875
transcript.pyannote[1871].end 13057.56846875
transcript.pyannote[1872].speaker SPEAKER_10
transcript.pyannote[1872].start 13057.66971875
transcript.pyannote[1872].end 13060.33596875
transcript.pyannote[1873].speaker SPEAKER_10
transcript.pyannote[1873].start 13060.57221875
transcript.pyannote[1873].end 13068.03096875
transcript.pyannote[1874].speaker SPEAKER_07
transcript.pyannote[1874].start 13068.03096875
transcript.pyannote[1874].end 13070.83221875
transcript.pyannote[1875].speaker SPEAKER_10
transcript.pyannote[1875].start 13068.57096875
transcript.pyannote[1875].end 13068.82409375
transcript.pyannote[1876].speaker SPEAKER_07
transcript.pyannote[1876].start 13071.22034375
transcript.pyannote[1876].end 13113.99846875
transcript.pyannote[1877].speaker SPEAKER_10
transcript.pyannote[1877].start 13114.80846875
transcript.pyannote[1877].end 13123.51596875
transcript.pyannote[1878].speaker SPEAKER_10
transcript.pyannote[1878].start 13123.90409375
transcript.pyannote[1878].end 13154.70096875
transcript.pyannote[1879].speaker SPEAKER_00
transcript.pyannote[1879].start 13138.04534375
transcript.pyannote[1879].end 13138.46721875
transcript.pyannote[1880].speaker SPEAKER_07
transcript.pyannote[1880].start 13155.66284375
transcript.pyannote[1880].end 13163.03721875
transcript.pyannote[1881].speaker SPEAKER_10
transcript.pyannote[1881].start 13163.66159375
transcript.pyannote[1881].end 13170.36096875
transcript.pyannote[1882].speaker SPEAKER_10
transcript.pyannote[1882].start 13170.71534375
transcript.pyannote[1882].end 13176.84096875
transcript.pyannote[1883].speaker SPEAKER_07
transcript.pyannote[1883].start 13176.40221875
transcript.pyannote[1883].end 13184.43471875
transcript.pyannote[1884].speaker SPEAKER_10
transcript.pyannote[1884].start 13184.72159375
transcript.pyannote[1884].end 13201.54596875
transcript.pyannote[1885].speaker SPEAKER_07
transcript.pyannote[1885].start 13201.86659375
transcript.pyannote[1885].end 13219.73721875
transcript.pyannote[1886].speaker SPEAKER_07
transcript.pyannote[1886].start 13219.82159375
transcript.pyannote[1886].end 13225.42409375
transcript.pyannote[1887].speaker SPEAKER_07
transcript.pyannote[1887].start 13225.59284375
transcript.pyannote[1887].end 13241.92784375
transcript.pyannote[1888].speaker SPEAKER_10
transcript.pyannote[1888].start 13242.90659375
transcript.pyannote[1888].end 13250.39909375
transcript.pyannote[1889].speaker SPEAKER_10
transcript.pyannote[1889].start 13250.63534375
transcript.pyannote[1889].end 13254.39846875
transcript.pyannote[1890].speaker SPEAKER_10
transcript.pyannote[1890].start 13254.66846875
transcript.pyannote[1890].end 13257.65534375
transcript.pyannote[1891].speaker SPEAKER_10
transcript.pyannote[1891].start 13257.73971875
transcript.pyannote[1891].end 13265.90721875
transcript.pyannote[1892].speaker SPEAKER_10
transcript.pyannote[1892].start 13266.68346875
transcript.pyannote[1892].end 13267.03784375
transcript.pyannote[1893].speaker SPEAKER_07
transcript.pyannote[1893].start 13267.03784375
transcript.pyannote[1893].end 13268.89409375
transcript.pyannote[1894].speaker SPEAKER_10
transcript.pyannote[1894].start 13268.89409375
transcript.pyannote[1894].end 13271.79659375
transcript.pyannote[1895].speaker SPEAKER_07
transcript.pyannote[1895].start 13272.92721875
transcript.pyannote[1895].end 13273.23096875
transcript.pyannote[1896].speaker SPEAKER_07
transcript.pyannote[1896].start 13273.99034375
transcript.pyannote[1896].end 13283.08596875
transcript.pyannote[1897].speaker SPEAKER_07
transcript.pyannote[1897].start 13283.72721875
transcript.pyannote[1897].end 13288.70534375
transcript.pyannote[1898].speaker SPEAKER_05
transcript.pyannote[1898].start 13289.68409375
transcript.pyannote[1898].end 13307.08221875
transcript.pyannote[1899].speaker SPEAKER_05
transcript.pyannote[1899].start 13307.48721875
transcript.pyannote[1899].end 13308.34784375
transcript.pyannote[1900].speaker SPEAKER_05
transcript.pyannote[1900].start 13308.46596875
transcript.pyannote[1900].end 13326.64034375
transcript.pyannote[1901].speaker SPEAKER_05
transcript.pyannote[1901].start 13326.80909375
transcript.pyannote[1901].end 13339.24596875
transcript.pyannote[1902].speaker SPEAKER_07
transcript.pyannote[1902].start 13339.49909375
transcript.pyannote[1902].end 13339.88721875
transcript.pyannote[1903].speaker SPEAKER_07
transcript.pyannote[1903].start 13339.97159375
transcript.pyannote[1903].end 13340.00534375
transcript.pyannote[1904].speaker SPEAKER_07
transcript.pyannote[1904].start 13340.34284375
transcript.pyannote[1904].end 13349.57346875
transcript.pyannote[1905].speaker SPEAKER_07
transcript.pyannote[1905].start 13349.75909375
transcript.pyannote[1905].end 13352.52659375
transcript.pyannote[1906].speaker SPEAKER_07
transcript.pyannote[1906].start 13352.56034375
transcript.pyannote[1906].end 13378.53096875
transcript.pyannote[1907].speaker SPEAKER_07
transcript.pyannote[1907].start 13378.54784375
transcript.pyannote[1907].end 13378.56471875
transcript.pyannote[1908].speaker SPEAKER_07
transcript.pyannote[1908].start 13378.66596875
transcript.pyannote[1908].end 13393.48221875
transcript.pyannote[1909].speaker SPEAKER_05
transcript.pyannote[1909].start 13394.27534375
transcript.pyannote[1909].end 13411.77471875
transcript.pyannote[1910].speaker SPEAKER_05
transcript.pyannote[1910].start 13412.12909375
transcript.pyannote[1910].end 13416.31409375
transcript.pyannote[1911].speaker SPEAKER_05
transcript.pyannote[1911].start 13416.51659375
transcript.pyannote[1911].end 13435.36596875
transcript.pyannote[1912].speaker SPEAKER_07
transcript.pyannote[1912].start 13435.45034375
transcript.pyannote[1912].end 13438.26846875
transcript.pyannote[1913].speaker SPEAKER_07
transcript.pyannote[1913].start 13438.50471875
transcript.pyannote[1913].end 13441.01909375
transcript.pyannote[1914].speaker SPEAKER_07
transcript.pyannote[1914].start 13441.30596875
transcript.pyannote[1914].end 13444.37721875
transcript.pyannote[1915].speaker SPEAKER_07
transcript.pyannote[1915].start 13444.52909375
transcript.pyannote[1915].end 13445.25471875
transcript.pyannote[1916].speaker SPEAKER_07
transcript.pyannote[1916].start 13445.37284375
transcript.pyannote[1916].end 13447.33034375
transcript.pyannote[1917].speaker SPEAKER_10
transcript.pyannote[1917].start 13448.24159375
transcript.pyannote[1917].end 13454.62034375
transcript.pyannote[1918].speaker SPEAKER_10
transcript.pyannote[1918].start 13455.22784375
transcript.pyannote[1918].end 13459.26096875
transcript.pyannote[1919].speaker SPEAKER_07
transcript.pyannote[1919].start 13460.76284375
transcript.pyannote[1919].end 13461.77534375
transcript.pyannote[1920].speaker SPEAKER_12
transcript.pyannote[1920].start 13463.39534375
transcript.pyannote[1920].end 13463.74971875
transcript.pyannote[1921].speaker SPEAKER_12
transcript.pyannote[1921].start 13463.81721875
transcript.pyannote[1921].end 13471.07346875
transcript.pyannote[1922].speaker SPEAKER_07
transcript.pyannote[1922].start 13472.37284375
transcript.pyannote[1922].end 13485.65346875
transcript.pyannote[1923].speaker SPEAKER_07
transcript.pyannote[1923].start 13485.72096875
transcript.pyannote[1923].end 13492.20096875
transcript.pyannote[1924].speaker SPEAKER_07
transcript.pyannote[1924].start 13493.31471875
transcript.pyannote[1924].end 13495.18784375
transcript.pyannote[1925].speaker SPEAKER_03
transcript.pyannote[1925].start 13495.18784375
transcript.pyannote[1925].end 13495.23846875
transcript.pyannote[1926].speaker SPEAKER_03
transcript.pyannote[1926].start 13498.27596875
transcript.pyannote[1926].end 13500.30096875
transcript.pyannote[1927].speaker SPEAKER_03
transcript.pyannote[1927].start 13503.70971875
transcript.pyannote[1927].end 13505.16096875
transcript.pyannote[1928].speaker SPEAKER_03
transcript.pyannote[1928].start 13510.29096875
transcript.pyannote[1928].end 13511.52284375
transcript.pyannote[1929].speaker SPEAKER_25
transcript.pyannote[1929].start 13522.15409375
transcript.pyannote[1929].end 13523.36909375
transcript.pyannote[1930].speaker SPEAKER_25
transcript.pyannote[1930].start 13530.86159375
transcript.pyannote[1930].end 13532.14409375
transcript.pyannote[1931].speaker SPEAKER_25
transcript.pyannote[1931].start 13532.31284375
transcript.pyannote[1931].end 13533.91596875
transcript.pyannote[1932].speaker SPEAKER_25
transcript.pyannote[1932].start 13534.27034375
transcript.pyannote[1932].end 13536.80159375
transcript.pyannote[1933].speaker SPEAKER_25
transcript.pyannote[1933].start 13539.18096875
transcript.pyannote[1933].end 13543.12971875
transcript.pyannote[1934].speaker SPEAKER_25
transcript.pyannote[1934].start 13543.51784375
transcript.pyannote[1934].end 13549.12034375
transcript.pyannote[1935].speaker SPEAKER_21
transcript.pyannote[1935].start 13547.29784375
transcript.pyannote[1935].end 13547.34846875
transcript.pyannote[1936].speaker SPEAKER_21
transcript.pyannote[1936].start 13547.36534375
transcript.pyannote[1936].end 13547.56784375
transcript.pyannote[1937].speaker SPEAKER_21
transcript.pyannote[1937].start 13548.58034375
transcript.pyannote[1937].end 13551.48284375
transcript.pyannote[1938].speaker SPEAKER_25
transcript.pyannote[1938].start 13551.49971875
transcript.pyannote[1938].end 13559.21159375
transcript.pyannote[1939].speaker SPEAKER_25
transcript.pyannote[1939].start 13561.00034375
transcript.pyannote[1939].end 13562.97471875
transcript.pyannote[1940].speaker SPEAKER_25
transcript.pyannote[1940].start 13563.49784375
transcript.pyannote[1940].end 13576.37346875
transcript.pyannote[1941].speaker SPEAKER_25
transcript.pyannote[1941].start 13576.67721875
transcript.pyannote[1941].end 13579.84971875
transcript.pyannote[1942].speaker SPEAKER_25
transcript.pyannote[1942].start 13580.27159375
transcript.pyannote[1942].end 13581.45284375
transcript.pyannote[1943].speaker SPEAKER_25
transcript.pyannote[1943].start 13581.87471875
transcript.pyannote[1943].end 13582.24596875
transcript.pyannote[1944].speaker SPEAKER_21
transcript.pyannote[1944].start 13583.89971875
transcript.pyannote[1944].end 13586.76846875
transcript.pyannote[1945].speaker SPEAKER_33
transcript.pyannote[1945].start 13587.57846875
transcript.pyannote[1945].end 13605.61784375
transcript.pyannote[1946].speaker SPEAKER_33
transcript.pyannote[1946].start 13605.97221875
transcript.pyannote[1946].end 13633.96784375
transcript.pyannote[1947].speaker SPEAKER_25
transcript.pyannote[1947].start 13617.80159375
transcript.pyannote[1947].end 13619.25284375
transcript.pyannote[1948].speaker SPEAKER_25
transcript.pyannote[1948].start 13633.96784375
transcript.pyannote[1948].end 13639.53659375
transcript.pyannote[1949].speaker SPEAKER_33
transcript.pyannote[1949].start 13639.99221875
transcript.pyannote[1949].end 13648.02471875
transcript.pyannote[1950].speaker SPEAKER_25
transcript.pyannote[1950].start 13643.82284375
transcript.pyannote[1950].end 13644.71721875
transcript.pyannote[1951].speaker SPEAKER_25
transcript.pyannote[1951].start 13648.29471875
transcript.pyannote[1951].end 13651.04534375
transcript.pyannote[1952].speaker SPEAKER_33
transcript.pyannote[1952].start 13649.18909375
transcript.pyannote[1952].end 13650.57284375
transcript.pyannote[1953].speaker SPEAKER_25
transcript.pyannote[1953].start 13651.73721875
transcript.pyannote[1953].end 13652.29409375
transcript.pyannote[1954].speaker SPEAKER_25
transcript.pyannote[1954].start 13652.74971875
transcript.pyannote[1954].end 13654.04909375
transcript.pyannote[1955].speaker SPEAKER_25
transcript.pyannote[1955].start 13654.31909375
transcript.pyannote[1955].end 13662.08159375
transcript.pyannote[1956].speaker SPEAKER_33
transcript.pyannote[1956].start 13662.53721875
transcript.pyannote[1956].end 13662.82409375
transcript.pyannote[1957].speaker SPEAKER_33
transcript.pyannote[1957].start 13663.02659375
transcript.pyannote[1957].end 13688.37284375
transcript.pyannote[1958].speaker SPEAKER_33
transcript.pyannote[1958].start 13688.89596875
transcript.pyannote[1958].end 13690.29659375
transcript.pyannote[1959].speaker SPEAKER_25
transcript.pyannote[1959].start 13688.89596875
transcript.pyannote[1959].end 13695.84846875
transcript.pyannote[1960].speaker SPEAKER_25
transcript.pyannote[1960].start 13695.91596875
transcript.pyannote[1960].end 13699.88159375
transcript.pyannote[1961].speaker SPEAKER_33
transcript.pyannote[1961].start 13700.06721875
transcript.pyannote[1961].end 13704.67409375
transcript.pyannote[1962].speaker SPEAKER_25
transcript.pyannote[1962].start 13703.61096875
transcript.pyannote[1962].end 13708.77471875
transcript.pyannote[1963].speaker SPEAKER_33
transcript.pyannote[1963].start 13709.01096875
transcript.pyannote[1963].end 13716.58784375
transcript.pyannote[1964].speaker SPEAKER_25
transcript.pyannote[1964].start 13717.51596875
transcript.pyannote[1964].end 13724.31659375
transcript.pyannote[1965].speaker SPEAKER_25
transcript.pyannote[1965].start 13724.46846875
transcript.pyannote[1965].end 13737.93471875
transcript.pyannote[1966].speaker SPEAKER_25
transcript.pyannote[1966].start 13738.77846875
transcript.pyannote[1966].end 13746.74346875
transcript.pyannote[1967].speaker SPEAKER_25
transcript.pyannote[1967].start 13747.26659375
transcript.pyannote[1967].end 13748.83596875
transcript.pyannote[1968].speaker SPEAKER_25
transcript.pyannote[1968].start 13749.05534375
transcript.pyannote[1968].end 13761.93096875
transcript.pyannote[1969].speaker SPEAKER_33
transcript.pyannote[1969].start 13762.47096875
transcript.pyannote[1969].end 13782.82221875
transcript.pyannote[1970].speaker SPEAKER_25
transcript.pyannote[1970].start 13781.47221875
transcript.pyannote[1970].end 13792.74471875
transcript.pyannote[1971].speaker SPEAKER_33
transcript.pyannote[1971].start 13783.83471875
transcript.pyannote[1971].end 13784.18909375
transcript.pyannote[1972].speaker SPEAKER_33
transcript.pyannote[1972].start 13784.88096875
transcript.pyannote[1972].end 13785.30284375
transcript.pyannote[1973].speaker SPEAKER_33
transcript.pyannote[1973].start 13788.12096875
transcript.pyannote[1973].end 13788.40784375
transcript.pyannote[1974].speaker SPEAKER_25
transcript.pyannote[1974].start 13793.21721875
transcript.pyannote[1974].end 13794.43221875
transcript.pyannote[1975].speaker SPEAKER_33
transcript.pyannote[1975].start 13793.74034375
transcript.pyannote[1975].end 13797.67221875
transcript.pyannote[1976].speaker SPEAKER_25
transcript.pyannote[1976].start 13795.91721875
transcript.pyannote[1976].end 13798.43159375
transcript.pyannote[1977].speaker SPEAKER_25
transcript.pyannote[1977].start 13798.60034375
transcript.pyannote[1977].end 13799.27534375
transcript.pyannote[1978].speaker SPEAKER_25
transcript.pyannote[1978].start 13799.30909375
transcript.pyannote[1978].end 13802.83596875
transcript.pyannote[1979].speaker SPEAKER_33
transcript.pyannote[1979].start 13802.83596875
transcript.pyannote[1979].end 13806.80159375
transcript.pyannote[1980].speaker SPEAKER_25
transcript.pyannote[1980].start 13806.80159375
transcript.pyannote[1980].end 13807.91534375
transcript.pyannote[1981].speaker SPEAKER_33
transcript.pyannote[1981].start 13806.95346875
transcript.pyannote[1981].end 13807.89846875
transcript.pyannote[1982].speaker SPEAKER_33
transcript.pyannote[1982].start 13807.91534375
transcript.pyannote[1982].end 13807.93221875
transcript.pyannote[1983].speaker SPEAKER_25
transcript.pyannote[1983].start 13807.93221875
transcript.pyannote[1983].end 13807.96596875
transcript.pyannote[1984].speaker SPEAKER_33
transcript.pyannote[1984].start 13807.96596875
transcript.pyannote[1984].end 13808.87721875
transcript.pyannote[1985].speaker SPEAKER_25
transcript.pyannote[1985].start 13808.87721875
transcript.pyannote[1985].end 13825.66784375
transcript.pyannote[1986].speaker SPEAKER_25
transcript.pyannote[1986].start 13825.93784375
transcript.pyannote[1986].end 13831.43909375
transcript.pyannote[1987].speaker SPEAKER_25
transcript.pyannote[1987].start 13832.16471875
transcript.pyannote[1987].end 13834.69596875
transcript.pyannote[1988].speaker SPEAKER_25
transcript.pyannote[1988].start 13835.38784375
transcript.pyannote[1988].end 13837.56471875
transcript.pyannote[1989].speaker SPEAKER_33
transcript.pyannote[1989].start 13838.03721875
transcript.pyannote[1989].end 13857.27471875
transcript.pyannote[1990].speaker SPEAKER_25
transcript.pyannote[1990].start 13838.27346875
transcript.pyannote[1990].end 13839.74159375
transcript.pyannote[1991].speaker SPEAKER_25
transcript.pyannote[1991].start 13856.78534375
transcript.pyannote[1991].end 13871.70284375
transcript.pyannote[1992].speaker SPEAKER_25
transcript.pyannote[1992].start 13872.20909375
transcript.pyannote[1992].end 13876.76534375
transcript.pyannote[1993].speaker SPEAKER_25
transcript.pyannote[1993].start 13877.79471875
transcript.pyannote[1993].end 13878.26721875
transcript.pyannote[1994].speaker SPEAKER_25
transcript.pyannote[1994].start 13879.02659375
transcript.pyannote[1994].end 13881.05159375
transcript.pyannote[1995].speaker SPEAKER_25
transcript.pyannote[1995].start 13881.27096875
transcript.pyannote[1995].end 13883.59971875
transcript.pyannote[1996].speaker SPEAKER_25
transcript.pyannote[1996].start 13883.92034375
transcript.pyannote[1996].end 13884.78096875
transcript.pyannote[1997].speaker SPEAKER_25
transcript.pyannote[1997].start 13884.88221875
transcript.pyannote[1997].end 13885.47284375
transcript.pyannote[1998].speaker SPEAKER_25
transcript.pyannote[1998].start 13886.23221875
transcript.pyannote[1998].end 13886.35034375
transcript.pyannote[1999].speaker SPEAKER_25
transcript.pyannote[1999].start 13887.43034375
transcript.pyannote[1999].end 13888.83096875
transcript.pyannote[2000].speaker SPEAKER_25
transcript.pyannote[2000].start 13893.91034375
transcript.pyannote[2000].end 13894.72034375
transcript.pyannote[2001].speaker SPEAKER_25
transcript.pyannote[2001].start 13897.62284375
transcript.pyannote[2001].end 13901.33534375
transcript.pyannote[2002].speaker SPEAKER_25
transcript.pyannote[2002].start 13902.11159375
transcript.pyannote[2002].end 13904.30534375
transcript.pyannote[2003].speaker SPEAKER_25
transcript.pyannote[2003].start 13904.81159375
transcript.pyannote[2003].end 13906.31346875
transcript.pyannote[2004].speaker SPEAKER_25
transcript.pyannote[2004].start 13906.81971875
transcript.pyannote[2004].end 13909.89096875
transcript.pyannote[2005].speaker SPEAKER_25
transcript.pyannote[2005].start 13910.53221875
transcript.pyannote[2005].end 13910.92034375
transcript.pyannote[2006].speaker SPEAKER_25
transcript.pyannote[2006].start 13911.27471875
transcript.pyannote[2006].end 13912.23659375
transcript.pyannote[2007].speaker SPEAKER_33
transcript.pyannote[2007].start 13912.81034375
transcript.pyannote[2007].end 13921.85534375
transcript.pyannote[2008].speaker SPEAKER_25
transcript.pyannote[2008].start 13921.11284375
transcript.pyannote[2008].end 13924.38659375
transcript.pyannote[2009].speaker SPEAKER_25
transcript.pyannote[2009].start 13924.89284375
transcript.pyannote[2009].end 13925.78721875
transcript.pyannote[2010].speaker SPEAKER_33
transcript.pyannote[2010].start 13925.93909375
transcript.pyannote[2010].end 13956.09471875
transcript.pyannote[2011].speaker SPEAKER_25
transcript.pyannote[2011].start 13955.92596875
transcript.pyannote[2011].end 13972.83471875
transcript.pyannote[2012].speaker SPEAKER_25
transcript.pyannote[2012].start 13973.29034375
transcript.pyannote[2012].end 13976.09159375
transcript.pyannote[2013].speaker SPEAKER_25
transcript.pyannote[2013].start 13976.24346875
transcript.pyannote[2013].end 13981.64346875
transcript.pyannote[2014].speaker SPEAKER_25
transcript.pyannote[2014].start 13982.13284375
transcript.pyannote[2014].end 13982.79096875
transcript.pyannote[2015].speaker SPEAKER_33
transcript.pyannote[2015].start 13984.24221875
transcript.pyannote[2015].end 14010.16221875
transcript.pyannote[2016].speaker SPEAKER_25
transcript.pyannote[2016].start 14010.16221875
transcript.pyannote[2016].end 14010.19596875
transcript.pyannote[2017].speaker SPEAKER_33
transcript.pyannote[2017].start 14010.19596875
transcript.pyannote[2017].end 14010.85409375
transcript.pyannote[2018].speaker SPEAKER_33
transcript.pyannote[2018].start 14011.56284375
transcript.pyannote[2018].end 14011.59659375
transcript.pyannote[2019].speaker SPEAKER_25
transcript.pyannote[2019].start 14011.59659375
transcript.pyannote[2019].end 14030.91846875
transcript.pyannote[2020].speaker SPEAKER_33
transcript.pyannote[2020].start 14011.71471875
transcript.pyannote[2020].end 14012.45721875
transcript.pyannote[2021].speaker SPEAKER_25
transcript.pyannote[2021].start 14031.40784375
transcript.pyannote[2021].end 14033.87159375
transcript.pyannote[2022].speaker SPEAKER_25
transcript.pyannote[2022].start 14034.49596875
transcript.pyannote[2022].end 14035.25534375
transcript.pyannote[2023].speaker SPEAKER_33
transcript.pyannote[2023].start 14035.64346875
transcript.pyannote[2023].end 14037.65159375
transcript.pyannote[2024].speaker SPEAKER_25
transcript.pyannote[2024].start 14036.01471875
transcript.pyannote[2024].end 14036.28471875
transcript.pyannote[2025].speaker SPEAKER_25
transcript.pyannote[2025].start 14037.65159375
transcript.pyannote[2025].end 14039.10284375
transcript.pyannote[2026].speaker SPEAKER_25
transcript.pyannote[2026].start 14039.22096875
transcript.pyannote[2026].end 14042.32596875
transcript.pyannote[2027].speaker SPEAKER_25
transcript.pyannote[2027].start 14044.21596875
transcript.pyannote[2027].end 14044.92471875
transcript.pyannote[2028].speaker SPEAKER_25
transcript.pyannote[2028].start 14045.81909375
transcript.pyannote[2028].end 14078.03346875
transcript.pyannote[2029].speaker SPEAKER_25
transcript.pyannote[2029].start 14078.05034375
transcript.pyannote[2029].end 14079.06284375
transcript.pyannote[2030].speaker SPEAKER_25
transcript.pyannote[2030].start 14079.48471875
transcript.pyannote[2030].end 14080.51409375
transcript.pyannote[2031].speaker SPEAKER_25
transcript.pyannote[2031].start 14081.29034375
transcript.pyannote[2031].end 14082.43784375
transcript.pyannote[2032].speaker SPEAKER_12
transcript.pyannote[2032].start 14082.69096875
transcript.pyannote[2032].end 14088.52971875
transcript.pyannote[2033].speaker SPEAKER_12
transcript.pyannote[2033].start 14088.86721875
transcript.pyannote[2033].end 14089.40721875
transcript.pyannote[2034].speaker SPEAKER_12
transcript.pyannote[2034].start 14089.93034375
transcript.pyannote[2034].end 14095.02659375
transcript.pyannote[2035].speaker SPEAKER_12
transcript.pyannote[2035].start 14095.24596875
transcript.pyannote[2035].end 14100.13971875
transcript.pyannote[2036].speaker SPEAKER_25
transcript.pyannote[2036].start 14100.13971875
transcript.pyannote[2036].end 14106.83909375
transcript.pyannote[2037].speaker SPEAKER_25
transcript.pyannote[2037].start 14107.58159375
transcript.pyannote[2037].end 14110.43346875
transcript.pyannote[2038].speaker SPEAKER_25
transcript.pyannote[2038].start 14111.05784375
transcript.pyannote[2038].end 14112.54284375
transcript.pyannote[2039].speaker SPEAKER_25
transcript.pyannote[2039].start 14112.61034375
transcript.pyannote[2039].end 14112.62721875
transcript.pyannote[2040].speaker SPEAKER_20
transcript.pyannote[2040].start 14112.62721875
transcript.pyannote[2040].end 14114.33159375
transcript.pyannote[2041].speaker SPEAKER_25
transcript.pyannote[2041].start 14112.79596875
transcript.pyannote[2041].end 14124.10221875
transcript.pyannote[2042].speaker SPEAKER_25
transcript.pyannote[2042].start 14124.37221875
transcript.pyannote[2042].end 14131.03784375
transcript.pyannote[2043].speaker SPEAKER_25
transcript.pyannote[2043].start 14131.15596875
transcript.pyannote[2043].end 14132.55659375
transcript.pyannote[2044].speaker SPEAKER_25
transcript.pyannote[2044].start 14132.75909375
transcript.pyannote[2044].end 14146.88346875
transcript.pyannote[2045].speaker SPEAKER_12
transcript.pyannote[2045].start 14146.61346875
transcript.pyannote[2045].end 14154.51096875
transcript.pyannote[2046].speaker SPEAKER_25
transcript.pyannote[2046].start 14153.34659375
transcript.pyannote[2046].end 14158.34159375
transcript.pyannote[2047].speaker SPEAKER_12
transcript.pyannote[2047].start 14154.83159375
transcript.pyannote[2047].end 14155.57409375
transcript.pyannote[2048].speaker SPEAKER_25
transcript.pyannote[2048].start 14158.59471875
transcript.pyannote[2048].end 14159.75909375
transcript.pyannote[2049].speaker SPEAKER_25
transcript.pyannote[2049].start 14160.23159375
transcript.pyannote[2049].end 14169.81659375
transcript.pyannote[2050].speaker SPEAKER_25
transcript.pyannote[2050].start 14170.08659375
transcript.pyannote[2050].end 14176.19534375
transcript.pyannote[2051].speaker SPEAKER_25
transcript.pyannote[2051].start 14176.48221875
transcript.pyannote[2051].end 14177.42721875
transcript.pyannote[2052].speaker SPEAKER_25
transcript.pyannote[2052].start 14179.18221875
transcript.pyannote[2052].end 14180.58284375
transcript.pyannote[2053].speaker SPEAKER_25
transcript.pyannote[2053].start 14180.61659375
transcript.pyannote[2053].end 14182.20284375
transcript.pyannote[2054].speaker SPEAKER_25
transcript.pyannote[2054].start 14182.65846875
transcript.pyannote[2054].end 14183.33346875
transcript.pyannote[2055].speaker SPEAKER_25
transcript.pyannote[2055].start 14183.89034375
transcript.pyannote[2055].end 14192.54721875
transcript.pyannote[2056].speaker SPEAKER_25
transcript.pyannote[2056].start 14193.45846875
transcript.pyannote[2056].end 14194.50471875
transcript.pyannote[2057].speaker SPEAKER_25
transcript.pyannote[2057].start 14195.06159375
transcript.pyannote[2057].end 14208.49409375
transcript.pyannote[2058].speaker SPEAKER_25
transcript.pyannote[2058].start 14208.86534375
transcript.pyannote[2058].end 14213.94471875
transcript.pyannote[2059].speaker SPEAKER_25
transcript.pyannote[2059].start 14214.23159375
transcript.pyannote[2059].end 14221.40346875
transcript.pyannote[2060].speaker SPEAKER_25
transcript.pyannote[2060].start 14221.80846875
transcript.pyannote[2060].end 14222.65221875
transcript.pyannote[2061].speaker SPEAKER_25
transcript.pyannote[2061].start 14222.98971875
transcript.pyannote[2061].end 14224.99784375
transcript.pyannote[2062].speaker SPEAKER_25
transcript.pyannote[2062].start 14225.53784375
transcript.pyannote[2062].end 14227.09034375
transcript.pyannote[2063].speaker SPEAKER_12
transcript.pyannote[2063].start 14228.49096875
transcript.pyannote[2063].end 14231.20784375
transcript.pyannote[2064].speaker SPEAKER_12
transcript.pyannote[2064].start 14231.29221875
transcript.pyannote[2064].end 14236.79346875
transcript.pyannote[2065].speaker SPEAKER_12
transcript.pyannote[2065].start 14236.87784375
transcript.pyannote[2065].end 14248.97721875
transcript.pyannote[2066].speaker SPEAKER_25
transcript.pyannote[2066].start 14247.94784375
transcript.pyannote[2066].end 14249.06159375
transcript.pyannote[2067].speaker SPEAKER_12
transcript.pyannote[2067].start 14249.01096875
transcript.pyannote[2067].end 14261.97096875
transcript.pyannote[2068].speaker SPEAKER_25
transcript.pyannote[2068].start 14249.07846875
transcript.pyannote[2068].end 14249.09534375
transcript.pyannote[2069].speaker SPEAKER_12
transcript.pyannote[2069].start 14262.07221875
transcript.pyannote[2069].end 14265.61596875
transcript.pyannote[2070].speaker SPEAKER_25
transcript.pyannote[2070].start 14265.61596875
transcript.pyannote[2070].end 14267.55659375
transcript.pyannote[2071].speaker SPEAKER_12
transcript.pyannote[2071].start 14267.62409375
transcript.pyannote[2071].end 14267.94471875
transcript.pyannote[2072].speaker SPEAKER_25
transcript.pyannote[2072].start 14268.51846875
transcript.pyannote[2072].end 14269.00784375
transcript.pyannote[2073].speaker SPEAKER_12
transcript.pyannote[2073].start 14269.14284375
transcript.pyannote[2073].end 14269.54784375
transcript.pyannote[2074].speaker SPEAKER_25
transcript.pyannote[2074].start 14270.29034375
transcript.pyannote[2074].end 14272.93971875
transcript.pyannote[2075].speaker SPEAKER_25
transcript.pyannote[2075].start 14272.97346875
transcript.pyannote[2075].end 14276.88846875
transcript.pyannote[2076].speaker SPEAKER_25
transcript.pyannote[2076].start 14277.37784375
transcript.pyannote[2076].end 14284.07721875
transcript.pyannote[2077].speaker SPEAKER_00
transcript.pyannote[2077].start 14284.63409375
transcript.pyannote[2077].end 14284.70159375
transcript.pyannote[2078].speaker SPEAKER_25
transcript.pyannote[2078].start 14284.70159375
transcript.pyannote[2078].end 14292.44721875
transcript.pyannote[2079].speaker SPEAKER_00
transcript.pyannote[2079].start 14284.75221875
transcript.pyannote[2079].end 14285.71409375
transcript.pyannote[2080].speaker SPEAKER_26
transcript.pyannote[2080].start 14285.71409375
transcript.pyannote[2080].end 14285.73096875
transcript.pyannote[2081].speaker SPEAKER_25
transcript.pyannote[2081].start 14292.58221875
transcript.pyannote[2081].end 14295.18096875
transcript.pyannote[2082].speaker SPEAKER_25
transcript.pyannote[2082].start 14295.40034375
transcript.pyannote[2082].end 14295.80534375
transcript.pyannote[2083].speaker SPEAKER_25
transcript.pyannote[2083].start 14296.04159375
transcript.pyannote[2083].end 14297.45909375
transcript.pyannote[2084].speaker SPEAKER_25
transcript.pyannote[2084].start 14297.71221875
transcript.pyannote[2084].end 14299.01159375
transcript.pyannote[2085].speaker SPEAKER_25
transcript.pyannote[2085].start 14299.24784375
transcript.pyannote[2085].end 14300.63159375
transcript.pyannote[2086].speaker SPEAKER_25
transcript.pyannote[2086].start 14300.90159375
transcript.pyannote[2086].end 14301.76221875
transcript.pyannote[2087].speaker SPEAKER_12
transcript.pyannote[2087].start 14301.98159375
transcript.pyannote[2087].end 14302.33596875
transcript.pyannote[2088].speaker SPEAKER_25
transcript.pyannote[2088].start 14302.55534375
transcript.pyannote[2088].end 14303.85471875
transcript.pyannote[2089].speaker SPEAKER_12
transcript.pyannote[2089].start 14303.53409375
transcript.pyannote[2089].end 14304.44534375
transcript.pyannote[2090].speaker SPEAKER_25
transcript.pyannote[2090].start 14304.79971875
transcript.pyannote[2090].end 14305.69409375
transcript.pyannote[2091].speaker SPEAKER_12
transcript.pyannote[2091].start 14305.96409375
transcript.pyannote[2091].end 14315.68409375
transcript.pyannote[2092].speaker SPEAKER_25
transcript.pyannote[2092].start 14315.54909375
transcript.pyannote[2092].end 14318.02971875
transcript.pyannote[2093].speaker SPEAKER_25
transcript.pyannote[2093].start 14318.75534375
transcript.pyannote[2093].end 14320.69596875
transcript.pyannote[2094].speaker SPEAKER_25
transcript.pyannote[2094].start 14321.25284375
transcript.pyannote[2094].end 14323.07534375
transcript.pyannote[2095].speaker SPEAKER_25
transcript.pyannote[2095].start 14323.39596875
transcript.pyannote[2095].end 14325.40409375
transcript.pyannote[2096].speaker SPEAKER_25
transcript.pyannote[2096].start 14325.77534375
transcript.pyannote[2096].end 14328.18846875
transcript.pyannote[2097].speaker SPEAKER_25
transcript.pyannote[2097].start 14328.76221875
transcript.pyannote[2097].end 14343.57846875
transcript.pyannote[2098].speaker SPEAKER_25
transcript.pyannote[2098].start 14343.96659375
transcript.pyannote[2098].end 14345.29971875
transcript.pyannote[2099].speaker SPEAKER_25
transcript.pyannote[2099].start 14345.75534375
transcript.pyannote[2099].end 14349.19784375
transcript.pyannote[2100].speaker SPEAKER_25
transcript.pyannote[2100].start 14349.56909375
transcript.pyannote[2100].end 14351.25659375
transcript.pyannote[2101].speaker SPEAKER_25
transcript.pyannote[2101].start 14351.72909375
transcript.pyannote[2101].end 14352.80909375
transcript.pyannote[2102].speaker SPEAKER_25
transcript.pyannote[2102].start 14352.87659375
transcript.pyannote[2102].end 14354.63159375
transcript.pyannote[2103].speaker SPEAKER_25
transcript.pyannote[2103].start 14354.86784375
transcript.pyannote[2103].end 14372.55284375
transcript.pyannote[2104].speaker SPEAKER_25
transcript.pyannote[2104].start 14373.32909375
transcript.pyannote[2104].end 14375.23596875
transcript.pyannote[2105].speaker SPEAKER_25
transcript.pyannote[2105].start 14375.94471875
transcript.pyannote[2105].end 14378.56034375
transcript.pyannote[2106].speaker SPEAKER_25
transcript.pyannote[2106].start 14379.58971875
transcript.pyannote[2106].end 14380.83846875
transcript.pyannote[2107].speaker SPEAKER_25
transcript.pyannote[2107].start 14381.41221875
transcript.pyannote[2107].end 14383.47096875
transcript.pyannote[2108].speaker SPEAKER_25
transcript.pyannote[2108].start 14384.09534375
transcript.pyannote[2108].end 14384.61846875
transcript.pyannote[2109].speaker SPEAKER_25
transcript.pyannote[2109].start 14385.37784375
transcript.pyannote[2109].end 14386.13721875
transcript.pyannote[2110].speaker SPEAKER_12
transcript.pyannote[2110].start 14388.36471875
transcript.pyannote[2110].end 14388.46596875
transcript.pyannote[2111].speaker SPEAKER_25
transcript.pyannote[2111].start 14388.88784375
transcript.pyannote[2111].end 14389.69784375
transcript.pyannote[2112].speaker SPEAKER_12
transcript.pyannote[2112].start 14390.22096875
transcript.pyannote[2112].end 14399.65409375
transcript.pyannote[2113].speaker SPEAKER_12
transcript.pyannote[2113].start 14399.89034375
transcript.pyannote[2113].end 14406.16784375
transcript.pyannote[2114].speaker SPEAKER_12
transcript.pyannote[2114].start 14406.37034375
transcript.pyannote[2114].end 14411.14596875
transcript.pyannote[2115].speaker SPEAKER_25
transcript.pyannote[2115].start 14410.90971875
transcript.pyannote[2115].end 14431.54784375
transcript.pyannote[2116].speaker SPEAKER_12
transcript.pyannote[2116].start 14431.56471875
transcript.pyannote[2116].end 14431.68284375
transcript.pyannote[2117].speaker SPEAKER_26
transcript.pyannote[2117].start 14431.68284375
transcript.pyannote[2117].end 14431.81784375
transcript.pyannote[2118].speaker SPEAKER_12
transcript.pyannote[2118].start 14431.81784375
transcript.pyannote[2118].end 14431.83471875
transcript.pyannote[2119].speaker SPEAKER_25
transcript.pyannote[2119].start 14432.10471875
transcript.pyannote[2119].end 14432.72909375
transcript.pyannote[2120].speaker SPEAKER_25
transcript.pyannote[2120].start 14432.89784375
transcript.pyannote[2120].end 14433.85971875
transcript.pyannote[2121].speaker SPEAKER_03
transcript.pyannote[2121].start 14435.00721875
transcript.pyannote[2121].end 14436.05346875
transcript.pyannote[2122].speaker SPEAKER_03
transcript.pyannote[2122].start 14436.94784375
transcript.pyannote[2122].end 14437.80846875
transcript.pyannote[2123].speaker SPEAKER_03
transcript.pyannote[2123].start 14438.51721875
transcript.pyannote[2123].end 14441.16659375
transcript.pyannote[2124].speaker SPEAKER_32
transcript.pyannote[2124].start 14452.23659375
transcript.pyannote[2124].end 14462.59784375
transcript.pyannote[2125].speaker SPEAKER_32
transcript.pyannote[2125].start 14462.69909375
transcript.pyannote[2125].end 14463.44159375
transcript.pyannote[2126].speaker SPEAKER_32
transcript.pyannote[2126].start 14463.72846875
transcript.pyannote[2126].end 14466.86721875
transcript.pyannote[2127].speaker SPEAKER_10
transcript.pyannote[2127].start 14469.41534375
transcript.pyannote[2127].end 14470.22534375
transcript.pyannote[2128].speaker SPEAKER_32
transcript.pyannote[2128].start 14471.57534375
transcript.pyannote[2128].end 14479.05096875
transcript.pyannote[2129].speaker SPEAKER_32
transcript.pyannote[2129].start 14479.77659375
transcript.pyannote[2129].end 14486.57721875
transcript.pyannote[2130].speaker SPEAKER_32
transcript.pyannote[2130].start 14487.20159375
transcript.pyannote[2130].end 14489.20971875
transcript.pyannote[2131].speaker SPEAKER_12
transcript.pyannote[2131].start 14489.27721875
transcript.pyannote[2131].end 14500.48221875
transcript.pyannote[2132].speaker SPEAKER_32
transcript.pyannote[2132].start 14499.52034375
transcript.pyannote[2132].end 14502.70971875
transcript.pyannote[2133].speaker SPEAKER_12
transcript.pyannote[2133].start 14503.40159375
transcript.pyannote[2133].end 14505.17346875
transcript.pyannote[2134].speaker SPEAKER_12
transcript.pyannote[2134].start 14505.40971875
transcript.pyannote[2134].end 14514.47159375
transcript.pyannote[2135].speaker SPEAKER_32
transcript.pyannote[2135].start 14505.47721875
transcript.pyannote[2135].end 14506.06784375
transcript.pyannote[2136].speaker SPEAKER_32
transcript.pyannote[2136].start 14513.62784375
transcript.pyannote[2136].end 14514.45471875
transcript.pyannote[2137].speaker SPEAKER_32
transcript.pyannote[2137].start 14514.47159375
transcript.pyannote[2137].end 14514.57284375
transcript.pyannote[2138].speaker SPEAKER_32
transcript.pyannote[2138].start 14514.72471875
transcript.pyannote[2138].end 14517.22221875
transcript.pyannote[2139].speaker SPEAKER_12
transcript.pyannote[2139].start 14514.91034375
transcript.pyannote[2139].end 14515.95659375
transcript.pyannote[2140].speaker SPEAKER_32
transcript.pyannote[2140].start 14517.96471875
transcript.pyannote[2140].end 14518.36971875
transcript.pyannote[2141].speaker SPEAKER_32
transcript.pyannote[2141].start 14519.41596875
transcript.pyannote[2141].end 14521.67721875
transcript.pyannote[2142].speaker SPEAKER_32
transcript.pyannote[2142].start 14521.94721875
transcript.pyannote[2142].end 14522.48721875
transcript.pyannote[2143].speaker SPEAKER_32
transcript.pyannote[2143].start 14522.99346875
transcript.pyannote[2143].end 14528.91659375
transcript.pyannote[2144].speaker SPEAKER_05
transcript.pyannote[2144].start 14529.50721875
transcript.pyannote[2144].end 14532.15659375
transcript.pyannote[2145].speaker SPEAKER_32
transcript.pyannote[2145].start 14531.48159375
transcript.pyannote[2145].end 14532.61221875
transcript.pyannote[2146].speaker SPEAKER_32
transcript.pyannote[2146].start 14533.10159375
transcript.pyannote[2146].end 14533.59096875
transcript.pyannote[2147].speaker SPEAKER_32
transcript.pyannote[2147].start 14533.87784375
transcript.pyannote[2147].end 14536.56096875
transcript.pyannote[2148].speaker SPEAKER_05
transcript.pyannote[2148].start 14536.35846875
transcript.pyannote[2148].end 14536.54409375
transcript.pyannote[2149].speaker SPEAKER_05
transcript.pyannote[2149].start 14536.56096875
transcript.pyannote[2149].end 14536.66221875
transcript.pyannote[2150].speaker SPEAKER_32
transcript.pyannote[2150].start 14537.01659375
transcript.pyannote[2150].end 14537.70846875
transcript.pyannote[2151].speaker SPEAKER_32
transcript.pyannote[2151].start 14537.91096875
transcript.pyannote[2151].end 14540.02034375
transcript.pyannote[2152].speaker SPEAKER_32
transcript.pyannote[2152].start 14540.30721875
transcript.pyannote[2152].end 14541.96096875
transcript.pyannote[2153].speaker SPEAKER_32
transcript.pyannote[2153].start 14542.77096875
transcript.pyannote[2153].end 14543.02409375
transcript.pyannote[2154].speaker SPEAKER_32
transcript.pyannote[2154].start 14543.37846875
transcript.pyannote[2154].end 14547.31034375
transcript.pyannote[2155].speaker SPEAKER_20
transcript.pyannote[2155].start 14547.36096875
transcript.pyannote[2155].end 14547.66471875
transcript.pyannote[2156].speaker SPEAKER_32
transcript.pyannote[2156].start 14547.93471875
transcript.pyannote[2156].end 14553.38534375
transcript.pyannote[2157].speaker SPEAKER_05
transcript.pyannote[2157].start 14553.50346875
transcript.pyannote[2157].end 14556.57471875
transcript.pyannote[2158].speaker SPEAKER_32
transcript.pyannote[2158].start 14553.73971875
transcript.pyannote[2158].end 14554.31346875
transcript.pyannote[2159].speaker SPEAKER_32
transcript.pyannote[2159].start 14556.57471875
transcript.pyannote[2159].end 14563.93221875
transcript.pyannote[2160].speaker SPEAKER_32
transcript.pyannote[2160].start 14565.18096875
transcript.pyannote[2160].end 14566.19346875
transcript.pyannote[2161].speaker SPEAKER_32
transcript.pyannote[2161].start 14566.44659375
transcript.pyannote[2161].end 14568.99471875
transcript.pyannote[2162].speaker SPEAKER_32
transcript.pyannote[2162].start 14569.55159375
transcript.pyannote[2162].end 14572.70721875
transcript.pyannote[2163].speaker SPEAKER_10
transcript.pyannote[2163].start 14574.41159375
transcript.pyannote[2163].end 14575.12034375
transcript.pyannote[2164].speaker SPEAKER_32
transcript.pyannote[2164].start 14575.22159375
transcript.pyannote[2164].end 14575.72784375
transcript.pyannote[2165].speaker SPEAKER_32
transcript.pyannote[2165].start 14576.25096875
transcript.pyannote[2165].end 14577.63471875
transcript.pyannote[2166].speaker SPEAKER_32
transcript.pyannote[2166].start 14578.25909375
transcript.pyannote[2166].end 14584.06409375
transcript.pyannote[2167].speaker SPEAKER_32
transcript.pyannote[2167].start 14584.28346875
transcript.pyannote[2167].end 14588.67096875
transcript.pyannote[2168].speaker SPEAKER_32
transcript.pyannote[2168].start 14589.14346875
transcript.pyannote[2168].end 14593.05846875
transcript.pyannote[2169].speaker SPEAKER_26
transcript.pyannote[2169].start 14593.24409375
transcript.pyannote[2169].end 14593.48034375
transcript.pyannote[2170].speaker SPEAKER_32
transcript.pyannote[2170].start 14593.96971875
transcript.pyannote[2170].end 14597.41221875
transcript.pyannote[2171].speaker SPEAKER_26
transcript.pyannote[2171].start 14597.63159375
transcript.pyannote[2171].end 14598.01971875
transcript.pyannote[2172].speaker SPEAKER_32
transcript.pyannote[2172].start 14598.08721875
transcript.pyannote[2172].end 14598.76221875
transcript.pyannote[2173].speaker SPEAKER_26
transcript.pyannote[2173].start 14598.76221875
transcript.pyannote[2173].end 14599.04909375
transcript.pyannote[2174].speaker SPEAKER_32
transcript.pyannote[2174].start 14599.04909375
transcript.pyannote[2174].end 14599.31909375
transcript.pyannote[2175].speaker SPEAKER_32
transcript.pyannote[2175].start 14599.63971875
transcript.pyannote[2175].end 14600.55096875
transcript.pyannote[2176].speaker SPEAKER_32
transcript.pyannote[2176].start 14601.00659375
transcript.pyannote[2176].end 14603.21721875
transcript.pyannote[2177].speaker SPEAKER_32
transcript.pyannote[2177].start 14603.43659375
transcript.pyannote[2177].end 14604.93846875
transcript.pyannote[2178].speaker SPEAKER_32
transcript.pyannote[2178].start 14605.73159375
transcript.pyannote[2178].end 14609.22471875
transcript.pyannote[2179].speaker SPEAKER_32
transcript.pyannote[2179].start 14609.49471875
transcript.pyannote[2179].end 14611.70534375
transcript.pyannote[2180].speaker SPEAKER_32
transcript.pyannote[2180].start 14612.24534375
transcript.pyannote[2180].end 14613.89909375
transcript.pyannote[2181].speaker SPEAKER_32
transcript.pyannote[2181].start 14614.48971875
transcript.pyannote[2181].end 14619.01221875
transcript.pyannote[2182].speaker SPEAKER_32
transcript.pyannote[2182].start 14619.33284375
transcript.pyannote[2182].end 14627.04471875
transcript.pyannote[2183].speaker SPEAKER_32
transcript.pyannote[2183].start 14627.63534375
transcript.pyannote[2183].end 14635.88721875
transcript.pyannote[2184].speaker SPEAKER_32
transcript.pyannote[2184].start 14636.34284375
transcript.pyannote[2184].end 14636.96721875
transcript.pyannote[2185].speaker SPEAKER_26
transcript.pyannote[2185].start 14636.93346875
transcript.pyannote[2185].end 14637.30471875
transcript.pyannote[2186].speaker SPEAKER_32
transcript.pyannote[2186].start 14637.54096875
transcript.pyannote[2186].end 14639.81909375
transcript.pyannote[2187].speaker SPEAKER_32
transcript.pyannote[2187].start 14639.85284375
transcript.pyannote[2187].end 14640.76409375
transcript.pyannote[2188].speaker SPEAKER_32
transcript.pyannote[2188].start 14640.98346875
transcript.pyannote[2188].end 14643.66659375
transcript.pyannote[2189].speaker SPEAKER_32
transcript.pyannote[2189].start 14644.03784375
transcript.pyannote[2189].end 14649.25221875
transcript.pyannote[2190].speaker SPEAKER_26
transcript.pyannote[2190].start 14647.56471875
transcript.pyannote[2190].end 14647.63221875
transcript.pyannote[2191].speaker SPEAKER_32
transcript.pyannote[2191].start 14649.89346875
transcript.pyannote[2191].end 14651.12534375
transcript.pyannote[2192].speaker SPEAKER_32
transcript.pyannote[2192].start 14652.20534375
transcript.pyannote[2192].end 14653.80846875
transcript.pyannote[2193].speaker SPEAKER_32
transcript.pyannote[2193].start 14653.82534375
transcript.pyannote[2193].end 14654.28096875
transcript.pyannote[2194].speaker SPEAKER_32
transcript.pyannote[2194].start 14654.93909375
transcript.pyannote[2194].end 14658.19596875
transcript.pyannote[2195].speaker SPEAKER_32
transcript.pyannote[2195].start 14658.51659375
transcript.pyannote[2195].end 14660.30534375
transcript.pyannote[2196].speaker SPEAKER_32
transcript.pyannote[2196].start 14661.30096875
transcript.pyannote[2196].end 14663.62971875
transcript.pyannote[2197].speaker SPEAKER_32
transcript.pyannote[2197].start 14665.95846875
transcript.pyannote[2197].end 14667.07221875
transcript.pyannote[2198].speaker SPEAKER_10
transcript.pyannote[2198].start 14666.00909375
transcript.pyannote[2198].end 14666.41409375
transcript.pyannote[2199].speaker SPEAKER_10
transcript.pyannote[2199].start 14666.61659375
transcript.pyannote[2199].end 14667.79784375
transcript.pyannote[2200].speaker SPEAKER_32
transcript.pyannote[2200].start 14668.13534375
transcript.pyannote[2200].end 14671.34159375
transcript.pyannote[2201].speaker SPEAKER_10
transcript.pyannote[2201].start 14671.81409375
transcript.pyannote[2201].end 14673.90659375
transcript.pyannote[2202].speaker SPEAKER_32
transcript.pyannote[2202].start 14673.78846875
transcript.pyannote[2202].end 14675.03721875
transcript.pyannote[2203].speaker SPEAKER_10
transcript.pyannote[2203].start 14674.04159375
transcript.pyannote[2203].end 14674.12596875
transcript.pyannote[2204].speaker SPEAKER_10
transcript.pyannote[2204].start 14675.39159375
transcript.pyannote[2204].end 14677.02846875
transcript.pyannote[2205].speaker SPEAKER_32
transcript.pyannote[2205].start 14676.35346875
transcript.pyannote[2205].end 14678.09159375
transcript.pyannote[2206].speaker SPEAKER_32
transcript.pyannote[2206].start 14678.66534375
transcript.pyannote[2206].end 14679.42471875
transcript.pyannote[2207].speaker SPEAKER_32
transcript.pyannote[2207].start 14679.77909375
transcript.pyannote[2207].end 14682.14159375
transcript.pyannote[2208].speaker SPEAKER_32
transcript.pyannote[2208].start 14682.56346875
transcript.pyannote[2208].end 14686.73159375
transcript.pyannote[2209].speaker SPEAKER_32
transcript.pyannote[2209].start 14687.69346875
transcript.pyannote[2209].end 14690.69721875
transcript.pyannote[2210].speaker SPEAKER_32
transcript.pyannote[2210].start 14691.20346875
transcript.pyannote[2210].end 14691.94596875
transcript.pyannote[2211].speaker SPEAKER_26
transcript.pyannote[2211].start 14692.63784375
transcript.pyannote[2211].end 14693.00909375
transcript.pyannote[2212].speaker SPEAKER_32
transcript.pyannote[2212].start 14693.00909375
transcript.pyannote[2212].end 14694.91596875
transcript.pyannote[2213].speaker SPEAKER_32
transcript.pyannote[2213].start 14695.81034375
transcript.pyannote[2213].end 14699.38784375
transcript.pyannote[2214].speaker SPEAKER_32
transcript.pyannote[2214].start 14699.72534375
transcript.pyannote[2214].end 14701.36221875
transcript.pyannote[2215].speaker SPEAKER_10
transcript.pyannote[2215].start 14701.44659375
transcript.pyannote[2215].end 14701.85159375
transcript.pyannote[2216].speaker SPEAKER_32
transcript.pyannote[2216].start 14702.35784375
transcript.pyannote[2216].end 14703.26909375
transcript.pyannote[2217].speaker SPEAKER_32
transcript.pyannote[2217].start 14703.94409375
transcript.pyannote[2217].end 14704.82159375
transcript.pyannote[2218].speaker SPEAKER_32
transcript.pyannote[2218].start 14705.26034375
transcript.pyannote[2218].end 14707.23471875
transcript.pyannote[2219].speaker SPEAKER_32
transcript.pyannote[2219].start 14707.55534375
transcript.pyannote[2219].end 14708.98971875
transcript.pyannote[2220].speaker SPEAKER_32
transcript.pyannote[2220].start 14709.52971875
transcript.pyannote[2220].end 14710.96409375
transcript.pyannote[2221].speaker SPEAKER_10
transcript.pyannote[2221].start 14711.84159375
transcript.pyannote[2221].end 14714.01846875
transcript.pyannote[2222].speaker SPEAKER_32
transcript.pyannote[2222].start 14714.20409375
transcript.pyannote[2222].end 14714.92971875
transcript.pyannote[2223].speaker SPEAKER_10
transcript.pyannote[2223].start 14715.35159375
transcript.pyannote[2223].end 14716.78596875
transcript.pyannote[2224].speaker SPEAKER_32
transcript.pyannote[2224].start 14716.90409375
transcript.pyannote[2224].end 14717.81534375
transcript.pyannote[2225].speaker SPEAKER_10
transcript.pyannote[2225].start 14717.71409375
transcript.pyannote[2225].end 14717.89971875
transcript.pyannote[2226].speaker SPEAKER_32
transcript.pyannote[2226].start 14718.06846875
transcript.pyannote[2226].end 14723.06346875
transcript.pyannote[2227].speaker SPEAKER_32
transcript.pyannote[2227].start 14723.41784375
transcript.pyannote[2227].end 14724.59909375
transcript.pyannote[2228].speaker SPEAKER_32
transcript.pyannote[2228].start 14725.45971875
transcript.pyannote[2228].end 14727.88971875
transcript.pyannote[2229].speaker SPEAKER_32
transcript.pyannote[2229].start 14728.44659375
transcript.pyannote[2229].end 14730.01596875
transcript.pyannote[2230].speaker SPEAKER_32
transcript.pyannote[2230].start 14730.77534375
transcript.pyannote[2230].end 14733.54284375
transcript.pyannote[2231].speaker SPEAKER_32
transcript.pyannote[2231].start 14733.96471875
transcript.pyannote[2231].end 14738.95971875
transcript.pyannote[2232].speaker SPEAKER_32
transcript.pyannote[2232].start 14739.41534375
transcript.pyannote[2232].end 14740.09034375
transcript.pyannote[2233].speaker SPEAKER_00
transcript.pyannote[2233].start 14739.65159375
transcript.pyannote[2233].end 14739.75284375
transcript.pyannote[2234].speaker SPEAKER_32
transcript.pyannote[2234].start 14740.30971875
transcript.pyannote[2234].end 14740.93409375
transcript.pyannote[2235].speaker SPEAKER_32
transcript.pyannote[2235].start 14741.52471875
transcript.pyannote[2235].end 14748.35909375
transcript.pyannote[2236].speaker SPEAKER_26
transcript.pyannote[2236].start 14748.35909375
transcript.pyannote[2236].end 14748.69659375
transcript.pyannote[2237].speaker SPEAKER_26
transcript.pyannote[2237].start 14748.71346875
transcript.pyannote[2237].end 14748.73034375
transcript.pyannote[2238].speaker SPEAKER_32
transcript.pyannote[2238].start 14748.73034375
transcript.pyannote[2238].end 14754.88971875
transcript.pyannote[2239].speaker SPEAKER_32
transcript.pyannote[2239].start 14755.00784375
transcript.pyannote[2239].end 14756.47596875
transcript.pyannote[2240].speaker SPEAKER_32
transcript.pyannote[2240].start 14757.01596875
transcript.pyannote[2240].end 14759.20971875
transcript.pyannote[2241].speaker SPEAKER_10
transcript.pyannote[2241].start 14759.88471875
transcript.pyannote[2241].end 14761.11659375
transcript.pyannote[2242].speaker SPEAKER_32
transcript.pyannote[2242].start 14761.15034375
transcript.pyannote[2242].end 14769.30096875
transcript.pyannote[2243].speaker SPEAKER_10
transcript.pyannote[2243].start 14762.48346875
transcript.pyannote[2243].end 14762.77034375
transcript.pyannote[2244].speaker SPEAKER_26
transcript.pyannote[2244].start 14769.30096875
transcript.pyannote[2244].end 14769.43596875
transcript.pyannote[2245].speaker SPEAKER_32
transcript.pyannote[2245].start 14769.43596875
transcript.pyannote[2245].end 14771.79846875
transcript.pyannote[2246].speaker SPEAKER_32
transcript.pyannote[2246].start 14772.43971875
transcript.pyannote[2246].end 14775.98346875
transcript.pyannote[2247].speaker SPEAKER_10
transcript.pyannote[2247].start 14776.72596875
transcript.pyannote[2247].end 14778.12659375
transcript.pyannote[2248].speaker SPEAKER_32
transcript.pyannote[2248].start 14777.63721875
transcript.pyannote[2248].end 14779.74659375
transcript.pyannote[2249].speaker SPEAKER_32
transcript.pyannote[2249].start 14780.26971875
transcript.pyannote[2249].end 14783.40846875
transcript.pyannote[2250].speaker SPEAKER_10
transcript.pyannote[2250].start 14784.18471875
transcript.pyannote[2250].end 14784.77534375
transcript.pyannote[2251].speaker SPEAKER_32
transcript.pyannote[2251].start 14785.07909375
transcript.pyannote[2251].end 14786.36159375
transcript.pyannote[2252].speaker SPEAKER_32
transcript.pyannote[2252].start 14786.86784375
transcript.pyannote[2252].end 14791.54221875
transcript.pyannote[2253].speaker SPEAKER_10
transcript.pyannote[2253].start 14791.96409375
transcript.pyannote[2253].end 14792.89221875
transcript.pyannote[2254].speaker SPEAKER_32
transcript.pyannote[2254].start 14792.89221875
transcript.pyannote[2254].end 14794.24221875
transcript.pyannote[2255].speaker SPEAKER_10
transcript.pyannote[2255].start 14794.20846875
transcript.pyannote[2255].end 14794.41096875
transcript.pyannote[2256].speaker SPEAKER_32
transcript.pyannote[2256].start 14794.84971875
transcript.pyannote[2256].end 14801.38034375
transcript.pyannote[2257].speaker SPEAKER_32
transcript.pyannote[2257].start 14801.39721875
transcript.pyannote[2257].end 14803.67534375
transcript.pyannote[2258].speaker SPEAKER_32
transcript.pyannote[2258].start 14804.67096875
transcript.pyannote[2258].end 14810.08784375
transcript.pyannote[2259].speaker SPEAKER_10
transcript.pyannote[2259].start 14807.64096875
transcript.pyannote[2259].end 14808.26534375
transcript.pyannote[2260].speaker SPEAKER_10
transcript.pyannote[2260].start 14808.43409375
transcript.pyannote[2260].end 14811.18471875
transcript.pyannote[2261].speaker SPEAKER_32
transcript.pyannote[2261].start 14810.94846875
transcript.pyannote[2261].end 14813.09159375
transcript.pyannote[2262].speaker SPEAKER_32
transcript.pyannote[2262].start 14813.68221875
transcript.pyannote[2262].end 14815.13346875
transcript.pyannote[2263].speaker SPEAKER_32
transcript.pyannote[2263].start 14817.73221875
transcript.pyannote[2263].end 14818.18784375
transcript.pyannote[2264].speaker SPEAKER_10
transcript.pyannote[2264].start 14819.72346875
transcript.pyannote[2264].end 14825.37659375
transcript.pyannote[2265].speaker SPEAKER_32
transcript.pyannote[2265].start 14823.84096875
transcript.pyannote[2265].end 14825.41034375
transcript.pyannote[2266].speaker SPEAKER_10
transcript.pyannote[2266].start 14825.41034375
transcript.pyannote[2266].end 14825.42721875
transcript.pyannote[2267].speaker SPEAKER_32
transcript.pyannote[2267].start 14825.42721875
transcript.pyannote[2267].end 14825.49471875
transcript.pyannote[2268].speaker SPEAKER_32
transcript.pyannote[2268].start 14825.66346875
transcript.pyannote[2268].end 14827.46909375
transcript.pyannote[2269].speaker SPEAKER_10
transcript.pyannote[2269].start 14827.28346875
transcript.pyannote[2269].end 14827.77284375
transcript.pyannote[2270].speaker SPEAKER_32
transcript.pyannote[2270].start 14827.89096875
transcript.pyannote[2270].end 14830.74284375
transcript.pyannote[2271].speaker SPEAKER_10
transcript.pyannote[2271].start 14829.07221875
transcript.pyannote[2271].end 14830.97909375
transcript.pyannote[2272].speaker SPEAKER_32
transcript.pyannote[2272].start 14830.89471875
transcript.pyannote[2272].end 14832.61596875
transcript.pyannote[2273].speaker SPEAKER_10
transcript.pyannote[2273].start 14832.81846875
transcript.pyannote[2273].end 14833.24034375
transcript.pyannote[2274].speaker SPEAKER_32
transcript.pyannote[2274].start 14832.90284375
transcript.pyannote[2274].end 14834.28659375
transcript.pyannote[2275].speaker SPEAKER_10
transcript.pyannote[2275].start 14834.28659375
transcript.pyannote[2275].end 14836.26096875
transcript.pyannote[2276].speaker SPEAKER_32
transcript.pyannote[2276].start 14835.29909375
transcript.pyannote[2276].end 14835.78846875
transcript.pyannote[2277].speaker SPEAKER_32
transcript.pyannote[2277].start 14836.10909375
transcript.pyannote[2277].end 14837.32409375
transcript.pyannote[2278].speaker SPEAKER_32
transcript.pyannote[2278].start 14837.83034375
transcript.pyannote[2278].end 14839.72034375
transcript.pyannote[2279].speaker SPEAKER_32
transcript.pyannote[2279].start 14839.90596875
transcript.pyannote[2279].end 14840.96909375
transcript.pyannote[2280].speaker SPEAKER_32
transcript.pyannote[2280].start 14843.53409375
transcript.pyannote[2280].end 14845.37346875
transcript.pyannote[2281].speaker SPEAKER_32
transcript.pyannote[2281].start 14845.84596875
transcript.pyannote[2281].end 14847.41534375
transcript.pyannote[2282].speaker SPEAKER_32
transcript.pyannote[2282].start 14847.95534375
transcript.pyannote[2282].end 14857.06784375
transcript.pyannote[2283].speaker SPEAKER_32
transcript.pyannote[2283].start 14857.35471875
transcript.pyannote[2283].end 14859.34596875
transcript.pyannote[2284].speaker SPEAKER_32
transcript.pyannote[2284].start 14859.76784375
transcript.pyannote[2284].end 14865.75846875
transcript.pyannote[2285].speaker SPEAKER_32
transcript.pyannote[2285].start 14865.84284375
transcript.pyannote[2285].end 14868.49221875
transcript.pyannote[2286].speaker SPEAKER_32
transcript.pyannote[2286].start 14869.13346875
transcript.pyannote[2286].end 14871.71534375
transcript.pyannote[2287].speaker SPEAKER_26
transcript.pyannote[2287].start 14872.06971875
transcript.pyannote[2287].end 14872.81221875
transcript.pyannote[2288].speaker SPEAKER_32
transcript.pyannote[2288].start 14872.35659375
transcript.pyannote[2288].end 14874.31409375
transcript.pyannote[2289].speaker SPEAKER_26
transcript.pyannote[2289].start 14873.70659375
transcript.pyannote[2289].end 14874.78659375
transcript.pyannote[2290].speaker SPEAKER_32
transcript.pyannote[2290].start 14874.73596875
transcript.pyannote[2290].end 14877.48659375
transcript.pyannote[2291].speaker SPEAKER_32
transcript.pyannote[2291].start 14877.73971875
transcript.pyannote[2291].end 14879.57909375
transcript.pyannote[2292].speaker SPEAKER_32
transcript.pyannote[2292].start 14880.06846875
transcript.pyannote[2292].end 14883.47721875
transcript.pyannote[2293].speaker SPEAKER_32
transcript.pyannote[2293].start 14883.64596875
transcript.pyannote[2293].end 14889.78846875
transcript.pyannote[2294].speaker SPEAKER_03
transcript.pyannote[2294].start 14888.92784375
transcript.pyannote[2294].end 14889.67034375
transcript.pyannote[2295].speaker SPEAKER_32
transcript.pyannote[2295].start 14890.24409375
transcript.pyannote[2295].end 14891.98221875
transcript.pyannote[2296].speaker SPEAKER_32
transcript.pyannote[2296].start 14892.52221875
transcript.pyannote[2296].end 14894.02409375
transcript.pyannote[2297].speaker SPEAKER_32
transcript.pyannote[2297].start 14894.34471875
transcript.pyannote[2297].end 14902.19159375
transcript.pyannote[2298].speaker SPEAKER_10
transcript.pyannote[2298].start 14903.18721875
transcript.pyannote[2298].end 14905.68471875
transcript.pyannote[2299].speaker SPEAKER_32
transcript.pyannote[2299].start 14905.46534375
transcript.pyannote[2299].end 14908.65471875
transcript.pyannote[2300].speaker SPEAKER_32
transcript.pyannote[2300].start 14908.82346875
transcript.pyannote[2300].end 14910.79784375
transcript.pyannote[2301].speaker SPEAKER_10
transcript.pyannote[2301].start 14908.95846875
transcript.pyannote[2301].end 14910.46034375
transcript.pyannote[2302].speaker SPEAKER_10
transcript.pyannote[2302].start 14910.61221875
transcript.pyannote[2302].end 14911.86096875
transcript.pyannote[2303].speaker SPEAKER_32
transcript.pyannote[2303].start 14911.72596875
transcript.pyannote[2303].end 14914.69596875
transcript.pyannote[2304].speaker SPEAKER_10
transcript.pyannote[2304].start 14914.69596875
transcript.pyannote[2304].end 14915.65784375
transcript.pyannote[2305].speaker SPEAKER_32
transcript.pyannote[2305].start 14915.57346875
transcript.pyannote[2305].end 14923.33596875
transcript.pyannote[2306].speaker SPEAKER_32
transcript.pyannote[2306].start 14923.77471875
transcript.pyannote[2306].end 14931.30096875
transcript.pyannote[2307].speaker SPEAKER_10
transcript.pyannote[2307].start 14932.04346875
transcript.pyannote[2307].end 14933.41034375
transcript.pyannote[2308].speaker SPEAKER_32
transcript.pyannote[2308].start 14933.41034375
transcript.pyannote[2308].end 14935.75596875
transcript.pyannote[2309].speaker SPEAKER_32
transcript.pyannote[2309].start 14936.05971875
transcript.pyannote[2309].end 14937.49409375
transcript.pyannote[2310].speaker SPEAKER_32
transcript.pyannote[2310].start 14938.01721875
transcript.pyannote[2310].end 14940.44721875
transcript.pyannote[2311].speaker SPEAKER_32
transcript.pyannote[2311].start 14940.80159375
transcript.pyannote[2311].end 14941.81409375
transcript.pyannote[2312].speaker SPEAKER_32
transcript.pyannote[2312].start 14942.20221875
transcript.pyannote[2312].end 14950.70721875
transcript.pyannote[2313].speaker SPEAKER_10
transcript.pyannote[2313].start 14951.75346875
transcript.pyannote[2313].end 14956.66409375
transcript.pyannote[2314].speaker SPEAKER_32
transcript.pyannote[2314].start 14956.27596875
transcript.pyannote[2314].end 14962.08096875
transcript.pyannote[2315].speaker SPEAKER_32
transcript.pyannote[2315].start 14962.16534375
transcript.pyannote[2315].end 14964.29159375
transcript.pyannote[2316].speaker SPEAKER_10
transcript.pyannote[2316].start 14964.27471875
transcript.pyannote[2316].end 14965.18596875
transcript.pyannote[2317].speaker SPEAKER_32
transcript.pyannote[2317].start 14965.10159375
transcript.pyannote[2317].end 14972.69534375
transcript.pyannote[2318].speaker SPEAKER_32
transcript.pyannote[2318].start 14973.40409375
transcript.pyannote[2318].end 14979.32721875
transcript.pyannote[2319].speaker SPEAKER_21
transcript.pyannote[2319].start 14979.93471875
transcript.pyannote[2319].end 14980.12034375
transcript.pyannote[2320].speaker SPEAKER_32
transcript.pyannote[2320].start 14980.12034375
transcript.pyannote[2320].end 14983.61346875
transcript.pyannote[2321].speaker SPEAKER_10
transcript.pyannote[2321].start 14983.61346875
transcript.pyannote[2321].end 14984.47409375
transcript.pyannote[2322].speaker SPEAKER_32
transcript.pyannote[2322].start 14984.03534375
transcript.pyannote[2322].end 14985.72284375
transcript.pyannote[2323].speaker SPEAKER_10
transcript.pyannote[2323].start 14985.50346875
transcript.pyannote[2323].end 14986.68471875
transcript.pyannote[2324].speaker SPEAKER_32
transcript.pyannote[2324].start 14986.21221875
transcript.pyannote[2324].end 14991.84846875
transcript.pyannote[2325].speaker SPEAKER_10
transcript.pyannote[2325].start 14990.51534375
transcript.pyannote[2325].end 14991.03846875
transcript.pyannote[2326].speaker SPEAKER_03
transcript.pyannote[2326].start 14991.03846875
transcript.pyannote[2326].end 14991.15659375
transcript.pyannote[2327].speaker SPEAKER_21
transcript.pyannote[2327].start 14992.28721875
transcript.pyannote[2327].end 14992.89471875
transcript.pyannote[2328].speaker SPEAKER_03
transcript.pyannote[2328].start 14994.98721875
transcript.pyannote[2328].end 14996.69159375
transcript.pyannote[2329].speaker SPEAKER_03
transcript.pyannote[2329].start 14997.70409375
transcript.pyannote[2329].end 14999.29034375
transcript.pyannote[2330].speaker SPEAKER_30
transcript.pyannote[2330].start 15004.52159375
transcript.pyannote[2330].end 15004.99409375
transcript.pyannote[2331].speaker SPEAKER_30
transcript.pyannote[2331].start 15005.68596875
transcript.pyannote[2331].end 15006.58034375
transcript.pyannote[2332].speaker SPEAKER_30
transcript.pyannote[2332].start 15006.86721875
transcript.pyannote[2332].end 15010.34346875
transcript.pyannote[2333].speaker SPEAKER_30
transcript.pyannote[2333].start 15011.01846875
transcript.pyannote[2333].end 15011.03534375
transcript.pyannote[2334].speaker SPEAKER_30
transcript.pyannote[2334].start 15011.05221875
transcript.pyannote[2334].end 15011.28846875
transcript.pyannote[2335].speaker SPEAKER_17
transcript.pyannote[2335].start 15015.70971875
transcript.pyannote[2335].end 15016.03034375
transcript.pyannote[2336].speaker SPEAKER_05
transcript.pyannote[2336].start 15016.03034375
transcript.pyannote[2336].end 15016.72221875
transcript.pyannote[2337].speaker SPEAKER_30
transcript.pyannote[2337].start 15016.50284375
transcript.pyannote[2337].end 15017.90346875
transcript.pyannote[2338].speaker SPEAKER_17
transcript.pyannote[2338].start 15016.72221875
transcript.pyannote[2338].end 15017.04284375
transcript.pyannote[2339].speaker SPEAKER_30
transcript.pyannote[2339].start 15018.64596875
transcript.pyannote[2339].end 15019.67534375
transcript.pyannote[2340].speaker SPEAKER_30
transcript.pyannote[2340].start 15020.63721875
transcript.pyannote[2340].end 15024.36659375
transcript.pyannote[2341].speaker SPEAKER_30
transcript.pyannote[2341].start 15024.70409375
transcript.pyannote[2341].end 15031.43721875
transcript.pyannote[2342].speaker SPEAKER_05
transcript.pyannote[2342].start 15032.60159375
transcript.pyannote[2342].end 15046.65846875
transcript.pyannote[2343].speaker SPEAKER_30
transcript.pyannote[2343].start 15038.13659375
transcript.pyannote[2343].end 15038.44034375
transcript.pyannote[2344].speaker SPEAKER_30
transcript.pyannote[2344].start 15046.79346875
transcript.pyannote[2344].end 15049.83096875
transcript.pyannote[2345].speaker SPEAKER_30
transcript.pyannote[2345].start 15058.77471875
transcript.pyannote[2345].end 15070.03034375
transcript.pyannote[2346].speaker SPEAKER_26
transcript.pyannote[2346].start 15059.02784375
transcript.pyannote[2346].end 15059.70284375
transcript.pyannote[2347].speaker SPEAKER_00
transcript.pyannote[2347].start 15059.70284375
transcript.pyannote[2347].end 15059.80409375
transcript.pyannote[2348].speaker SPEAKER_30
transcript.pyannote[2348].start 15070.70534375
transcript.pyannote[2348].end 15072.08909375
transcript.pyannote[2349].speaker SPEAKER_30
transcript.pyannote[2349].start 15072.47721875
transcript.pyannote[2349].end 15072.84846875
transcript.pyannote[2350].speaker SPEAKER_30
transcript.pyannote[2350].start 15073.05096875
transcript.pyannote[2350].end 15075.91971875
transcript.pyannote[2351].speaker SPEAKER_30
transcript.pyannote[2351].start 15075.95346875
transcript.pyannote[2351].end 15075.97034375
transcript.pyannote[2352].speaker SPEAKER_30
transcript.pyannote[2352].start 15077.01659375
transcript.pyannote[2352].end 15078.87284375
transcript.pyannote[2353].speaker SPEAKER_12
transcript.pyannote[2353].start 15078.87284375
transcript.pyannote[2353].end 15079.21034375
transcript.pyannote[2354].speaker SPEAKER_12
transcript.pyannote[2354].start 15079.34534375
transcript.pyannote[2354].end 15084.25596875
transcript.pyannote[2355].speaker SPEAKER_30
transcript.pyannote[2355].start 15082.95659375
transcript.pyannote[2355].end 15083.39534375
transcript.pyannote[2356].speaker SPEAKER_26
transcript.pyannote[2356].start 15083.39534375
transcript.pyannote[2356].end 15083.41221875
transcript.pyannote[2357].speaker SPEAKER_12
transcript.pyannote[2357].start 15084.34034375
transcript.pyannote[2357].end 15088.54221875
transcript.pyannote[2358].speaker SPEAKER_12
transcript.pyannote[2358].start 15088.72784375
transcript.pyannote[2358].end 15091.17471875
transcript.pyannote[2359].speaker SPEAKER_12
transcript.pyannote[2359].start 15091.47846875
transcript.pyannote[2359].end 15095.95034375
transcript.pyannote[2360].speaker SPEAKER_30
transcript.pyannote[2360].start 15095.46096875
transcript.pyannote[2360].end 15113.61846875
transcript.pyannote[2361].speaker SPEAKER_00
transcript.pyannote[2361].start 15109.04534375
transcript.pyannote[2361].end 15109.06221875
transcript.pyannote[2362].speaker SPEAKER_12
transcript.pyannote[2362].start 15109.06221875
transcript.pyannote[2362].end 15109.66971875
transcript.pyannote[2363].speaker SPEAKER_12
transcript.pyannote[2363].start 15109.90596875
transcript.pyannote[2363].end 15110.39534375
transcript.pyannote[2364].speaker SPEAKER_12
transcript.pyannote[2364].start 15114.37784375
transcript.pyannote[2364].end 15132.48471875
transcript.pyannote[2365].speaker SPEAKER_30
transcript.pyannote[2365].start 15131.96159375
transcript.pyannote[2365].end 15149.54534375
transcript.pyannote[2366].speaker SPEAKER_20
transcript.pyannote[2366].start 15147.41909375
transcript.pyannote[2366].end 15148.00971875
transcript.pyannote[2367].speaker SPEAKER_30
transcript.pyannote[2367].start 15153.44346875
transcript.pyannote[2367].end 15154.21971875
transcript.pyannote[2368].speaker SPEAKER_30
transcript.pyannote[2368].start 15154.67534375
transcript.pyannote[2368].end 15156.53159375
transcript.pyannote[2369].speaker SPEAKER_30
transcript.pyannote[2369].start 15159.13034375
transcript.pyannote[2369].end 15159.72096875
transcript.pyannote[2370].speaker SPEAKER_30
transcript.pyannote[2370].start 15160.66596875
transcript.pyannote[2370].end 15170.30159375
transcript.pyannote[2371].speaker SPEAKER_26
transcript.pyannote[2371].start 15163.07909375
transcript.pyannote[2371].end 15163.56846875
transcript.pyannote[2372].speaker SPEAKER_26
transcript.pyannote[2372].start 15166.42034375
transcript.pyannote[2372].end 15166.82534375
transcript.pyannote[2373].speaker SPEAKER_04
transcript.pyannote[2373].start 15172.20846875
transcript.pyannote[2373].end 15182.50221875
transcript.pyannote[2374].speaker SPEAKER_30
transcript.pyannote[2374].start 15181.08471875
transcript.pyannote[2374].end 15197.31846875
transcript.pyannote[2375].speaker SPEAKER_30
transcript.pyannote[2375].start 15198.11159375
transcript.pyannote[2375].end 15200.76096875
transcript.pyannote[2376].speaker SPEAKER_30
transcript.pyannote[2376].start 15201.01409375
transcript.pyannote[2376].end 15204.03471875
transcript.pyannote[2377].speaker SPEAKER_30
transcript.pyannote[2377].start 15204.79409375
transcript.pyannote[2377].end 15206.09346875
transcript.pyannote[2378].speaker SPEAKER_00
transcript.pyannote[2378].start 15204.87846875
transcript.pyannote[2378].end 15205.06409375
transcript.pyannote[2379].speaker SPEAKER_30
transcript.pyannote[2379].start 15206.66721875
transcript.pyannote[2379].end 15211.57784375
transcript.pyannote[2380].speaker SPEAKER_30
transcript.pyannote[2380].start 15211.89846875
transcript.pyannote[2380].end 15214.41284375
transcript.pyannote[2381].speaker SPEAKER_04
transcript.pyannote[2381].start 15215.10471875
transcript.pyannote[2381].end 15231.38909375
transcript.pyannote[2382].speaker SPEAKER_30
transcript.pyannote[2382].start 15230.15721875
transcript.pyannote[2382].end 15257.17409375
transcript.pyannote[2383].speaker SPEAKER_26
transcript.pyannote[2383].start 15254.59221875
transcript.pyannote[2383].end 15256.14471875
transcript.pyannote[2384].speaker SPEAKER_30
transcript.pyannote[2384].start 15258.76034375
transcript.pyannote[2384].end 15259.14846875
transcript.pyannote[2385].speaker SPEAKER_30
transcript.pyannote[2385].start 15261.17346875
transcript.pyannote[2385].end 15279.90471875
transcript.pyannote[2386].speaker SPEAKER_30
transcript.pyannote[2386].start 15280.10721875
transcript.pyannote[2386].end 15281.45721875
transcript.pyannote[2387].speaker SPEAKER_30
transcript.pyannote[2387].start 15282.08159375
transcript.pyannote[2387].end 15282.57096875
transcript.pyannote[2388].speaker SPEAKER_30
transcript.pyannote[2388].start 15284.30909375
transcript.pyannote[2388].end 15294.61971875
transcript.pyannote[2389].speaker SPEAKER_30
transcript.pyannote[2389].start 15294.97409375
transcript.pyannote[2389].end 15315.00471875
transcript.pyannote[2390].speaker SPEAKER_21
transcript.pyannote[2390].start 15315.20721875
transcript.pyannote[2390].end 15319.30784375
transcript.pyannote[2391].speaker SPEAKER_33
transcript.pyannote[2391].start 15318.86909375
transcript.pyannote[2391].end 15319.39221875
transcript.pyannote[2392].speaker SPEAKER_21
transcript.pyannote[2392].start 15319.39221875
transcript.pyannote[2392].end 15319.42596875
transcript.pyannote[2393].speaker SPEAKER_33
transcript.pyannote[2393].start 15320.06721875
transcript.pyannote[2393].end 15320.30346875
transcript.pyannote[2394].speaker SPEAKER_33
transcript.pyannote[2394].start 15320.60721875
transcript.pyannote[2394].end 15330.49596875
transcript.pyannote[2395].speaker SPEAKER_33
transcript.pyannote[2395].start 15330.71534375
transcript.pyannote[2395].end 15333.11159375
transcript.pyannote[2396].speaker SPEAKER_30
transcript.pyannote[2396].start 15330.86721875
transcript.pyannote[2396].end 15335.50784375
transcript.pyannote[2397].speaker SPEAKER_33
transcript.pyannote[2397].start 15335.50784375
transcript.pyannote[2397].end 15348.31596875
transcript.pyannote[2398].speaker SPEAKER_30
transcript.pyannote[2398].start 15346.27409375
transcript.pyannote[2398].end 15355.90971875
transcript.pyannote[2399].speaker SPEAKER_33
transcript.pyannote[2399].start 15355.90971875
transcript.pyannote[2399].end 15381.69471875
transcript.pyannote[2400].speaker SPEAKER_30
transcript.pyannote[2400].start 15379.72034375
transcript.pyannote[2400].end 15383.09534375
transcript.pyannote[2401].speaker SPEAKER_33
transcript.pyannote[2401].start 15383.09534375
transcript.pyannote[2401].end 15389.72721875
transcript.pyannote[2402].speaker SPEAKER_30
transcript.pyannote[2402].start 15387.95534375
transcript.pyannote[2402].end 15399.70034375
transcript.pyannote[2403].speaker SPEAKER_33
transcript.pyannote[2403].start 15390.26721875
transcript.pyannote[2403].end 15391.11096875
transcript.pyannote[2404].speaker SPEAKER_33
transcript.pyannote[2404].start 15399.70034375
transcript.pyannote[2404].end 15399.71721875
transcript.pyannote[2405].speaker SPEAKER_33
transcript.pyannote[2405].start 15400.12221875
transcript.pyannote[2405].end 15407.27721875
transcript.pyannote[2406].speaker SPEAKER_30
transcript.pyannote[2406].start 15404.40846875
transcript.pyannote[2406].end 15404.64471875
transcript.pyannote[2407].speaker SPEAKER_30
transcript.pyannote[2407].start 15406.14659375
transcript.pyannote[2407].end 15410.01096875
transcript.pyannote[2408].speaker SPEAKER_33
transcript.pyannote[2408].start 15409.03221875
transcript.pyannote[2408].end 15414.29721875
transcript.pyannote[2409].speaker SPEAKER_30
transcript.pyannote[2409].start 15411.20909375
transcript.pyannote[2409].end 15411.58034375
transcript.pyannote[2410].speaker SPEAKER_30
transcript.pyannote[2410].start 15412.15409375
transcript.pyannote[2410].end 15413.72346875
transcript.pyannote[2411].speaker SPEAKER_33
transcript.pyannote[2411].start 15415.14096875
transcript.pyannote[2411].end 15427.98284375
transcript.pyannote[2412].speaker SPEAKER_30
transcript.pyannote[2412].start 15427.25721875
transcript.pyannote[2412].end 15438.17534375
transcript.pyannote[2413].speaker SPEAKER_33
transcript.pyannote[2413].start 15438.49596875
transcript.pyannote[2413].end 15444.03096875
transcript.pyannote[2414].speaker SPEAKER_30
transcript.pyannote[2414].start 15443.20409375
transcript.pyannote[2414].end 15443.65971875
transcript.pyannote[2415].speaker SPEAKER_30
transcript.pyannote[2415].start 15444.03096875
transcript.pyannote[2415].end 15444.04784375
transcript.pyannote[2416].speaker SPEAKER_33
transcript.pyannote[2416].start 15444.04784375
transcript.pyannote[2416].end 15447.76034375
transcript.pyannote[2417].speaker SPEAKER_30
transcript.pyannote[2417].start 15445.56659375
transcript.pyannote[2417].end 15449.43096875
transcript.pyannote[2418].speaker SPEAKER_33
transcript.pyannote[2418].start 15449.43096875
transcript.pyannote[2418].end 15449.48159375
transcript.pyannote[2419].speaker SPEAKER_30
transcript.pyannote[2419].start 15449.48159375
transcript.pyannote[2419].end 15450.10596875
transcript.pyannote[2420].speaker SPEAKER_33
transcript.pyannote[2420].start 15449.58284375
transcript.pyannote[2420].end 15461.31096875
transcript.pyannote[2421].speaker SPEAKER_30
transcript.pyannote[2421].start 15460.34909375
transcript.pyannote[2421].end 15462.81284375
transcript.pyannote[2422].speaker SPEAKER_30
transcript.pyannote[2422].start 15462.86346875
transcript.pyannote[2422].end 15468.87096875
transcript.pyannote[2423].speaker SPEAKER_30
transcript.pyannote[2423].start 15470.20409375
transcript.pyannote[2423].end 15470.86221875
transcript.pyannote[2424].speaker SPEAKER_30
transcript.pyannote[2424].start 15473.27534375
transcript.pyannote[2424].end 15473.39346875
transcript.pyannote[2425].speaker SPEAKER_30
transcript.pyannote[2425].start 15473.88284375
transcript.pyannote[2425].end 15475.48596875
transcript.pyannote[2426].speaker SPEAKER_30
transcript.pyannote[2426].start 15475.92471875
transcript.pyannote[2426].end 15476.68409375
transcript.pyannote[2427].speaker SPEAKER_30
transcript.pyannote[2427].start 15477.07221875
transcript.pyannote[2427].end 15483.58596875
transcript.pyannote[2428].speaker SPEAKER_30
transcript.pyannote[2428].start 15484.02471875
transcript.pyannote[2428].end 15486.89346875
transcript.pyannote[2429].speaker SPEAKER_30
transcript.pyannote[2429].start 15487.48409375
transcript.pyannote[2429].end 15490.15034375
transcript.pyannote[2430].speaker SPEAKER_30
transcript.pyannote[2430].start 15490.79159375
transcript.pyannote[2430].end 15496.07346875
transcript.pyannote[2431].speaker SPEAKER_30
transcript.pyannote[2431].start 15497.03534375
transcript.pyannote[2431].end 15500.08971875
transcript.pyannote[2432].speaker SPEAKER_30
transcript.pyannote[2432].start 15500.35971875
transcript.pyannote[2432].end 15502.55346875
transcript.pyannote[2433].speaker SPEAKER_30
transcript.pyannote[2433].start 15502.58721875
transcript.pyannote[2433].end 15508.57784375
transcript.pyannote[2434].speaker SPEAKER_21
transcript.pyannote[2434].start 15509.50596875
transcript.pyannote[2434].end 15512.35784375
transcript.pyannote[2435].speaker SPEAKER_21
transcript.pyannote[2435].start 15512.49284375
transcript.pyannote[2435].end 15530.70096875
transcript.pyannote[2436].speaker SPEAKER_30
transcript.pyannote[2436].start 15526.00971875
transcript.pyannote[2436].end 15530.19471875
transcript.pyannote[2437].speaker SPEAKER_30
transcript.pyannote[2437].start 15530.66721875
transcript.pyannote[2437].end 15537.56909375
transcript.pyannote[2438].speaker SPEAKER_26
transcript.pyannote[2438].start 15539.27346875
transcript.pyannote[2438].end 15541.01159375
transcript.pyannote[2439].speaker SPEAKER_30
transcript.pyannote[2439].start 15540.99471875
transcript.pyannote[2439].end 15544.21784375
transcript.pyannote[2440].speaker SPEAKER_21
transcript.pyannote[2440].start 15541.01159375
transcript.pyannote[2440].end 15541.02846875
transcript.pyannote[2441].speaker SPEAKER_21
transcript.pyannote[2441].start 15543.17159375
transcript.pyannote[2441].end 15543.27284375
transcript.pyannote[2442].speaker SPEAKER_27
transcript.pyannote[2442].start 15543.27284375
transcript.pyannote[2442].end 15545.21346875
transcript.pyannote[2443].speaker SPEAKER_21
transcript.pyannote[2443].start 15545.21346875
transcript.pyannote[2443].end 15546.04034375
transcript.pyannote[2444].speaker SPEAKER_27
transcript.pyannote[2444].start 15546.04034375
transcript.pyannote[2444].end 15555.76034375
transcript.pyannote[2445].speaker SPEAKER_30
transcript.pyannote[2445].start 15556.38471875
transcript.pyannote[2445].end 15558.61221875
transcript.pyannote[2446].speaker SPEAKER_27
transcript.pyannote[2446].start 15558.20721875
transcript.pyannote[2446].end 15559.20284375
transcript.pyannote[2447].speaker SPEAKER_30
transcript.pyannote[2447].start 15559.20284375
transcript.pyannote[2447].end 15560.19846875
transcript.pyannote[2448].speaker SPEAKER_27
transcript.pyannote[2448].start 15561.07596875
transcript.pyannote[2448].end 15561.70034375
transcript.pyannote[2449].speaker SPEAKER_20
transcript.pyannote[2449].start 15561.70034375
transcript.pyannote[2449].end 15561.80159375
transcript.pyannote[2450].speaker SPEAKER_20
transcript.pyannote[2450].start 15561.95346875
transcript.pyannote[2450].end 15562.22346875
transcript.pyannote[2451].speaker SPEAKER_03
transcript.pyannote[2451].start 15562.42596875
transcript.pyannote[2451].end 15562.64534375
transcript.pyannote[2452].speaker SPEAKER_30
transcript.pyannote[2452].start 15562.64534375
transcript.pyannote[2452].end 15562.67909375
transcript.pyannote[2453].speaker SPEAKER_03
transcript.pyannote[2453].start 15562.67909375
transcript.pyannote[2453].end 15565.66596875
transcript.pyannote[2454].speaker SPEAKER_03
transcript.pyannote[2454].start 15566.77971875
transcript.pyannote[2454].end 15569.41221875
transcript.pyannote[2455].speaker SPEAKER_15
transcript.pyannote[2455].start 15575.75721875
transcript.pyannote[2455].end 15601.27221875
transcript.pyannote[2456].speaker SPEAKER_15
transcript.pyannote[2456].start 15601.69409375
transcript.pyannote[2456].end 15630.78659375
transcript.pyannote[2457].speaker SPEAKER_15
transcript.pyannote[2457].start 15635.27534375
transcript.pyannote[2457].end 15646.12596875
transcript.pyannote[2458].speaker SPEAKER_15
transcript.pyannote[2458].start 15646.71659375
transcript.pyannote[2458].end 15674.81346875
transcript.pyannote[2459].speaker SPEAKER_15
transcript.pyannote[2459].start 15675.04971875
transcript.pyannote[2459].end 15683.26784375
transcript.pyannote[2460].speaker SPEAKER_15
transcript.pyannote[2460].start 15683.36909375
transcript.pyannote[2460].end 15690.97971875
transcript.pyannote[2461].speaker SPEAKER_15
transcript.pyannote[2461].start 15692.49846875
transcript.pyannote[2461].end 15692.88659375
transcript.pyannote[2462].speaker SPEAKER_15
transcript.pyannote[2462].start 15695.21534375
transcript.pyannote[2462].end 15706.40346875
transcript.pyannote[2463].speaker SPEAKER_21
transcript.pyannote[2463].start 15706.40346875
transcript.pyannote[2463].end 15725.26971875
transcript.pyannote[2464].speaker SPEAKER_15
transcript.pyannote[2464].start 15712.54596875
transcript.pyannote[2464].end 15712.73159375
transcript.pyannote[2465].speaker SPEAKER_15
transcript.pyannote[2465].start 15713.89596875
transcript.pyannote[2465].end 15714.52034375
transcript.pyannote[2466].speaker SPEAKER_15
transcript.pyannote[2466].start 15715.56659375
transcript.pyannote[2466].end 15716.37659375
transcript.pyannote[2467].speaker SPEAKER_15
transcript.pyannote[2467].start 15719.24534375
transcript.pyannote[2467].end 15721.65846875
transcript.pyannote[2468].speaker SPEAKER_15
transcript.pyannote[2468].start 15723.59909375
transcript.pyannote[2468].end 15742.49909375
transcript.pyannote[2469].speaker SPEAKER_15
transcript.pyannote[2469].start 15743.22471875
transcript.pyannote[2469].end 15759.44159375
transcript.pyannote[2470].speaker SPEAKER_15
transcript.pyannote[2470].start 15759.98159375
transcript.pyannote[2470].end 15791.23409375
transcript.pyannote[2471].speaker SPEAKER_15
transcript.pyannote[2471].start 15791.36909375
transcript.pyannote[2471].end 15852.87846875
transcript.pyannote[2472].speaker SPEAKER_15
transcript.pyannote[2472].start 15853.03034375
transcript.pyannote[2472].end 15878.07284375
transcript.pyannote[2473].speaker SPEAKER_15
transcript.pyannote[2473].start 15879.00096875
transcript.pyannote[2473].end 15911.28284375
transcript.pyannote[2474].speaker SPEAKER_15
transcript.pyannote[2474].start 15912.26159375
transcript.pyannote[2474].end 15930.18284375
transcript.pyannote[2475].speaker SPEAKER_15
transcript.pyannote[2475].start 15930.63846875
transcript.pyannote[2475].end 15932.24159375
transcript.pyannote[2476].speaker SPEAKER_21
transcript.pyannote[2476].start 15933.06846875
transcript.pyannote[2476].end 15934.06409375
transcript.pyannote[2477].speaker SPEAKER_21
transcript.pyannote[2477].start 15934.35096875
transcript.pyannote[2477].end 15937.74284375
transcript.pyannote[2478].speaker SPEAKER_21
transcript.pyannote[2478].start 15938.40096875
transcript.pyannote[2478].end 15942.70409375
transcript.pyannote[2479].speaker SPEAKER_15
transcript.pyannote[2479].start 15943.07534375
transcript.pyannote[2479].end 15946.99034375
transcript.pyannote[2480].speaker SPEAKER_15
transcript.pyannote[2480].start 15948.32346875
transcript.pyannote[2480].end 15949.87596875
transcript.pyannote[2481].speaker SPEAKER_21
transcript.pyannote[2481].start 15950.92221875
transcript.pyannote[2481].end 15951.49596875
transcript.pyannote[2482].speaker SPEAKER_21
transcript.pyannote[2482].start 15952.03596875
transcript.pyannote[2482].end 15955.00596875
transcript.pyannote[2483].speaker SPEAKER_21
transcript.pyannote[2483].start 15955.46159375
transcript.pyannote[2483].end 15961.63784375
transcript.pyannote[2484].speaker SPEAKER_21
transcript.pyannote[2484].start 15961.92471875
transcript.pyannote[2484].end 15973.75409375
transcript.pyannote[2485].speaker SPEAKER_15
transcript.pyannote[2485].start 15973.75409375
transcript.pyannote[2485].end 15979.42409375
transcript.pyannote[2486].speaker SPEAKER_15
transcript.pyannote[2486].start 15979.99784375
transcript.pyannote[2486].end 15981.24659375
transcript.pyannote[2487].speaker SPEAKER_15
transcript.pyannote[2487].start 15981.63471875
transcript.pyannote[2487].end 15983.05221875
transcript.pyannote[2488].speaker SPEAKER_15
transcript.pyannote[2488].start 15983.44034375
transcript.pyannote[2488].end 15984.14909375
transcript.pyannote[2489].speaker SPEAKER_15
transcript.pyannote[2489].start 15985.31346875
transcript.pyannote[2489].end 15998.30721875
transcript.pyannote[2490].speaker SPEAKER_15
transcript.pyannote[2490].start 15998.91471875
transcript.pyannote[2490].end 16010.44034375
transcript.pyannote[2491].speaker SPEAKER_15
transcript.pyannote[2491].start 16010.94659375
transcript.pyannote[2491].end 16023.26534375
transcript.pyannote[2492].speaker SPEAKER_15
transcript.pyannote[2492].start 16023.80534375
transcript.pyannote[2492].end 16026.35346875
transcript.pyannote[2493].speaker SPEAKER_21
transcript.pyannote[2493].start 16027.58534375
transcript.pyannote[2493].end 16027.92284375
transcript.pyannote[2494].speaker SPEAKER_21
transcript.pyannote[2494].start 16028.68221875
transcript.pyannote[2494].end 16029.86346875
transcript.pyannote[2495].speaker SPEAKER_15
transcript.pyannote[2495].start 16029.79596875
transcript.pyannote[2495].end 16030.55534375
transcript.pyannote[2496].speaker SPEAKER_33
transcript.pyannote[2496].start 16029.86346875
transcript.pyannote[2496].end 16035.60096875
transcript.pyannote[2497].speaker SPEAKER_33
transcript.pyannote[2497].start 16036.00596875
transcript.pyannote[2497].end 16048.66221875
transcript.pyannote[2498].speaker SPEAKER_19
transcript.pyannote[2498].start 16041.91221875
transcript.pyannote[2498].end 16041.92909375
transcript.pyannote[2499].speaker SPEAKER_15
transcript.pyannote[2499].start 16041.92909375
transcript.pyannote[2499].end 16043.65034375
transcript.pyannote[2500].speaker SPEAKER_15
transcript.pyannote[2500].start 16047.09284375
transcript.pyannote[2500].end 16049.67471875
transcript.pyannote[2501].speaker SPEAKER_33
transcript.pyannote[2501].start 16049.53971875
transcript.pyannote[2501].end 16054.01159375
transcript.pyannote[2502].speaker SPEAKER_15
transcript.pyannote[2502].start 16053.18471875
transcript.pyannote[2502].end 16054.72034375
transcript.pyannote[2503].speaker SPEAKER_33
transcript.pyannote[2503].start 16054.85534375
transcript.pyannote[2503].end 16056.07034375
transcript.pyannote[2504].speaker SPEAKER_15
transcript.pyannote[2504].start 16055.47971875
transcript.pyannote[2504].end 16059.54659375
transcript.pyannote[2505].speaker SPEAKER_33
transcript.pyannote[2505].start 16057.85909375
transcript.pyannote[2505].end 16069.67159375
transcript.pyannote[2506].speaker SPEAKER_15
transcript.pyannote[2506].start 16066.83659375
transcript.pyannote[2506].end 16071.67971875
transcript.pyannote[2507].speaker SPEAKER_33
transcript.pyannote[2507].start 16071.83159375
transcript.pyannote[2507].end 16076.82659375
transcript.pyannote[2508].speaker SPEAKER_15
transcript.pyannote[2508].start 16075.62846875
transcript.pyannote[2508].end 16089.65159375
transcript.pyannote[2509].speaker SPEAKER_33
transcript.pyannote[2509].start 16078.39596875
transcript.pyannote[2509].end 16079.05409375
transcript.pyannote[2510].speaker SPEAKER_15
transcript.pyannote[2510].start 16090.05659375
transcript.pyannote[2510].end 16108.63596875
transcript.pyannote[2511].speaker SPEAKER_15
transcript.pyannote[2511].start 16108.99034375
transcript.pyannote[2511].end 16110.69471875
transcript.pyannote[2512].speaker SPEAKER_15
transcript.pyannote[2512].start 16111.90971875
transcript.pyannote[2512].end 16114.64346875
transcript.pyannote[2513].speaker SPEAKER_15
transcript.pyannote[2513].start 16115.30159375
transcript.pyannote[2513].end 16118.47409375
transcript.pyannote[2514].speaker SPEAKER_18
transcript.pyannote[2514].start 16118.76096875
transcript.pyannote[2514].end 16119.14909375
transcript.pyannote[2515].speaker SPEAKER_15
transcript.pyannote[2515].start 16119.62159375
transcript.pyannote[2515].end 16121.14034375
transcript.pyannote[2516].speaker SPEAKER_15
transcript.pyannote[2516].start 16122.59159375
transcript.pyannote[2516].end 16123.48596875
transcript.pyannote[2517].speaker SPEAKER_15
transcript.pyannote[2517].start 16123.82346875
transcript.pyannote[2517].end 16131.19784375
transcript.pyannote[2518].speaker SPEAKER_05
transcript.pyannote[2518].start 16132.41284375
transcript.pyannote[2518].end 16142.04846875
transcript.pyannote[2519].speaker SPEAKER_05
transcript.pyannote[2519].start 16142.77409375
transcript.pyannote[2519].end 16144.66409375
transcript.pyannote[2520].speaker SPEAKER_15
transcript.pyannote[2520].start 16144.27596875
transcript.pyannote[2520].end 16146.26721875
transcript.pyannote[2521].speaker SPEAKER_15
transcript.pyannote[2521].start 16147.53284375
transcript.pyannote[2521].end 16148.27534375
transcript.pyannote[2522].speaker SPEAKER_15
transcript.pyannote[2522].start 16148.96721875
transcript.pyannote[2522].end 16149.00096875
transcript.pyannote[2523].speaker SPEAKER_05
transcript.pyannote[2523].start 16149.00096875
transcript.pyannote[2523].end 16149.01784375
transcript.pyannote[2524].speaker SPEAKER_15
transcript.pyannote[2524].start 16149.01784375
transcript.pyannote[2524].end 16149.03471875
transcript.pyannote[2525].speaker SPEAKER_05
transcript.pyannote[2525].start 16149.03471875
transcript.pyannote[2525].end 16149.05159375
transcript.pyannote[2526].speaker SPEAKER_15
transcript.pyannote[2526].start 16149.05159375
transcript.pyannote[2526].end 16149.11909375
transcript.pyannote[2527].speaker SPEAKER_05
transcript.pyannote[2527].start 16149.11909375
transcript.pyannote[2527].end 16149.23721875
transcript.pyannote[2528].speaker SPEAKER_15
transcript.pyannote[2528].start 16149.23721875
transcript.pyannote[2528].end 16149.40596875
transcript.pyannote[2529].speaker SPEAKER_05
transcript.pyannote[2529].start 16149.40596875
transcript.pyannote[2529].end 16149.42284375
transcript.pyannote[2530].speaker SPEAKER_05
transcript.pyannote[2530].start 16150.70534375
transcript.pyannote[2530].end 16178.48159375
transcript.pyannote[2531].speaker SPEAKER_15
transcript.pyannote[2531].start 16178.48159375
transcript.pyannote[2531].end 16178.49846875
transcript.pyannote[2532].speaker SPEAKER_05
transcript.pyannote[2532].start 16178.49846875
transcript.pyannote[2532].end 16179.03846875
transcript.pyannote[2533].speaker SPEAKER_15
transcript.pyannote[2533].start 16179.03846875
transcript.pyannote[2533].end 16182.09284375
transcript.pyannote[2534].speaker SPEAKER_05
transcript.pyannote[2534].start 16182.66659375
transcript.pyannote[2534].end 16183.52721875
transcript.pyannote[2535].speaker SPEAKER_15
transcript.pyannote[2535].start 16183.29096875
transcript.pyannote[2535].end 16188.30284375
transcript.pyannote[2536].speaker SPEAKER_05
transcript.pyannote[2536].start 16188.62346875
transcript.pyannote[2536].end 16189.66971875
transcript.pyannote[2537].speaker SPEAKER_15
transcript.pyannote[2537].start 16189.93971875
transcript.pyannote[2537].end 16197.16221875
transcript.pyannote[2538].speaker SPEAKER_15
transcript.pyannote[2538].start 16197.55034375
transcript.pyannote[2538].end 16199.08596875
transcript.pyannote[2539].speaker SPEAKER_05
transcript.pyannote[2539].start 16200.19971875
transcript.pyannote[2539].end 16201.81971875
transcript.pyannote[2540].speaker SPEAKER_05
transcript.pyannote[2540].start 16202.46096875
transcript.pyannote[2540].end 16209.37971875
transcript.pyannote[2541].speaker SPEAKER_15
transcript.pyannote[2541].start 16202.62971875
transcript.pyannote[2541].end 16203.55784375
transcript.pyannote[2542].speaker SPEAKER_15
transcript.pyannote[2542].start 16209.09284375
transcript.pyannote[2542].end 16209.32909375
transcript.pyannote[2543].speaker SPEAKER_15
transcript.pyannote[2543].start 16209.37971875
transcript.pyannote[2543].end 16209.51471875
transcript.pyannote[2544].speaker SPEAKER_05
transcript.pyannote[2544].start 16209.51471875
transcript.pyannote[2544].end 16209.54846875
transcript.pyannote[2545].speaker SPEAKER_15
transcript.pyannote[2545].start 16209.54846875
transcript.pyannote[2545].end 16209.63284375
transcript.pyannote[2546].speaker SPEAKER_05
transcript.pyannote[2546].start 16209.63284375
transcript.pyannote[2546].end 16209.97034375
transcript.pyannote[2547].speaker SPEAKER_15
transcript.pyannote[2547].start 16209.97034375
transcript.pyannote[2547].end 16210.07159375
transcript.pyannote[2548].speaker SPEAKER_05
transcript.pyannote[2548].start 16210.66221875
transcript.pyannote[2548].end 16210.96596875
transcript.pyannote[2549].speaker SPEAKER_15
transcript.pyannote[2549].start 16210.96596875
transcript.pyannote[2549].end 16211.03346875
transcript.pyannote[2550].speaker SPEAKER_05
transcript.pyannote[2550].start 16211.03346875
transcript.pyannote[2550].end 16211.16846875
transcript.pyannote[2551].speaker SPEAKER_15
transcript.pyannote[2551].start 16211.16846875
transcript.pyannote[2551].end 16211.50596875
transcript.pyannote[2552].speaker SPEAKER_15
transcript.pyannote[2552].start 16212.19784375
transcript.pyannote[2552].end 16214.81346875
transcript.pyannote[2553].speaker SPEAKER_05
transcript.pyannote[2553].start 16215.50534375
transcript.pyannote[2553].end 16216.41659375
transcript.pyannote[2554].speaker SPEAKER_15
transcript.pyannote[2554].start 16216.58534375
transcript.pyannote[2554].end 16224.80346875
transcript.pyannote[2555].speaker SPEAKER_05
transcript.pyannote[2555].start 16224.80346875
transcript.pyannote[2555].end 16224.98909375
transcript.pyannote[2556].speaker SPEAKER_15
transcript.pyannote[2556].start 16224.98909375
transcript.pyannote[2556].end 16225.02284375
transcript.pyannote[2557].speaker SPEAKER_05
transcript.pyannote[2557].start 16225.02284375
transcript.pyannote[2557].end 16225.05659375
transcript.pyannote[2558].speaker SPEAKER_15
transcript.pyannote[2558].start 16225.05659375
transcript.pyannote[2558].end 16225.07346875
transcript.pyannote[2559].speaker SPEAKER_05
transcript.pyannote[2559].start 16225.07346875
transcript.pyannote[2559].end 16225.09034375
transcript.pyannote[2560].speaker SPEAKER_15
transcript.pyannote[2560].start 16225.09034375
transcript.pyannote[2560].end 16225.10721875
transcript.pyannote[2561].speaker SPEAKER_05
transcript.pyannote[2561].start 16226.18721875
transcript.pyannote[2561].end 16235.09721875
transcript.pyannote[2562].speaker SPEAKER_15
transcript.pyannote[2562].start 16233.15659375
transcript.pyannote[2562].end 16239.29909375
transcript.pyannote[2563].speaker SPEAKER_15
transcript.pyannote[2563].start 16239.88971875
transcript.pyannote[2563].end 16263.86909375
transcript.pyannote[2564].speaker SPEAKER_05
transcript.pyannote[2564].start 16264.74659375
transcript.pyannote[2564].end 16271.93534375
transcript.pyannote[2565].speaker SPEAKER_15
transcript.pyannote[2565].start 16267.21034375
transcript.pyannote[2565].end 16268.30721875
transcript.pyannote[2566].speaker SPEAKER_15
transcript.pyannote[2566].start 16268.67846875
transcript.pyannote[2566].end 16269.48846875
transcript.pyannote[2567].speaker SPEAKER_15
transcript.pyannote[2567].start 16270.48409375
transcript.pyannote[2567].end 16276.33971875
transcript.pyannote[2568].speaker SPEAKER_05
transcript.pyannote[2568].start 16276.69409375
transcript.pyannote[2568].end 16282.11096875
transcript.pyannote[2569].speaker SPEAKER_15
transcript.pyannote[2569].start 16281.46971875
transcript.pyannote[2569].end 16282.98846875
transcript.pyannote[2570].speaker SPEAKER_05
transcript.pyannote[2570].start 16283.41034375
transcript.pyannote[2570].end 16287.44346875
transcript.pyannote[2571].speaker SPEAKER_15
transcript.pyannote[2571].start 16287.44346875
transcript.pyannote[2571].end 16288.11846875
transcript.pyannote[2572].speaker SPEAKER_05
transcript.pyannote[2572].start 16288.11846875
transcript.pyannote[2572].end 16288.13534375
transcript.pyannote[2573].speaker SPEAKER_15
transcript.pyannote[2573].start 16288.13534375
transcript.pyannote[2573].end 16290.19409375
transcript.pyannote[2574].speaker SPEAKER_05
transcript.pyannote[2574].start 16291.02096875
transcript.pyannote[2574].end 16293.83909375
transcript.pyannote[2575].speaker SPEAKER_15
transcript.pyannote[2575].start 16293.60284375
transcript.pyannote[2575].end 16295.56034375
transcript.pyannote[2576].speaker SPEAKER_05
transcript.pyannote[2576].start 16296.33659375
transcript.pyannote[2576].end 16301.66909375
transcript.pyannote[2577].speaker SPEAKER_15
transcript.pyannote[2577].start 16301.06159375
transcript.pyannote[2577].end 16303.18784375
transcript.pyannote[2578].speaker SPEAKER_15
transcript.pyannote[2578].start 16303.87971875
transcript.pyannote[2578].end 16320.21471875
transcript.pyannote[2579].speaker SPEAKER_15
transcript.pyannote[2579].start 16321.05846875
transcript.pyannote[2579].end 16324.73721875
transcript.pyannote[2580].speaker SPEAKER_15
transcript.pyannote[2580].start 16325.02409375
transcript.pyannote[2580].end 16326.42471875
transcript.pyannote[2581].speaker SPEAKER_15
transcript.pyannote[2581].start 16327.20096875
transcript.pyannote[2581].end 16333.96784375
transcript.pyannote[2582].speaker SPEAKER_05
transcript.pyannote[2582].start 16334.65971875
transcript.pyannote[2582].end 16335.14909375
transcript.pyannote[2583].speaker SPEAKER_15
transcript.pyannote[2583].start 16335.11534375
transcript.pyannote[2583].end 16337.64659375
transcript.pyannote[2584].speaker SPEAKER_05
transcript.pyannote[2584].start 16337.86596875
transcript.pyannote[2584].end 16340.21159375
transcript.pyannote[2585].speaker SPEAKER_15
transcript.pyannote[2585].start 16340.65034375
transcript.pyannote[2585].end 16342.74284375
transcript.pyannote[2586].speaker SPEAKER_05
transcript.pyannote[2586].start 16343.14784375
transcript.pyannote[2586].end 16343.21534375
transcript.pyannote[2587].speaker SPEAKER_03
transcript.pyannote[2587].start 16343.21534375
transcript.pyannote[2587].end 16346.47221875
transcript.pyannote[2588].speaker SPEAKER_05
transcript.pyannote[2588].start 16343.31659375
transcript.pyannote[2588].end 16343.38409375
transcript.pyannote[2589].speaker SPEAKER_03
transcript.pyannote[2589].start 16347.34971875
transcript.pyannote[2589].end 16350.25221875
transcript.pyannote[2590].speaker SPEAKER_14
transcript.pyannote[2590].start 16355.55096875
transcript.pyannote[2590].end 16358.03159375
transcript.pyannote[2591].speaker SPEAKER_14
transcript.pyannote[2591].start 16358.82471875
transcript.pyannote[2591].end 16361.47409375
transcript.pyannote[2592].speaker SPEAKER_14
transcript.pyannote[2592].start 16362.65534375
transcript.pyannote[2592].end 16364.24159375
transcript.pyannote[2593].speaker SPEAKER_14
transcript.pyannote[2593].start 16365.16971875
transcript.pyannote[2593].end 16367.68409375
transcript.pyannote[2594].speaker SPEAKER_14
transcript.pyannote[2594].start 16367.98784375
transcript.pyannote[2594].end 16369.25346875
transcript.pyannote[2595].speaker SPEAKER_20
transcript.pyannote[2595].start 16372.45971875
transcript.pyannote[2595].end 16372.98284375
transcript.pyannote[2596].speaker SPEAKER_14
transcript.pyannote[2596].start 16373.33721875
transcript.pyannote[2596].end 16373.80971875
transcript.pyannote[2597].speaker SPEAKER_14
transcript.pyannote[2597].start 16374.28221875
transcript.pyannote[2597].end 16378.26471875
transcript.pyannote[2598].speaker SPEAKER_14
transcript.pyannote[2598].start 16378.66971875
transcript.pyannote[2598].end 16388.84534375
transcript.pyannote[2599].speaker SPEAKER_14
transcript.pyannote[2599].start 16389.33471875
transcript.pyannote[2599].end 16389.94221875
transcript.pyannote[2600].speaker SPEAKER_14
transcript.pyannote[2600].start 16391.00534375
transcript.pyannote[2600].end 16412.97659375
transcript.pyannote[2601].speaker SPEAKER_21
transcript.pyannote[2601].start 16415.27159375
transcript.pyannote[2601].end 16415.79471875
transcript.pyannote[2602].speaker SPEAKER_21
transcript.pyannote[2602].start 16416.38534375
transcript.pyannote[2602].end 16418.47784375
transcript.pyannote[2603].speaker SPEAKER_14
transcript.pyannote[2603].start 16418.22471875
transcript.pyannote[2603].end 16419.08534375
transcript.pyannote[2604].speaker SPEAKER_21
transcript.pyannote[2604].start 16419.08534375
transcript.pyannote[2604].end 16419.30471875
transcript.pyannote[2605].speaker SPEAKER_14
transcript.pyannote[2605].start 16419.30471875
transcript.pyannote[2605].end 16424.82284375
transcript.pyannote[2606].speaker SPEAKER_21
transcript.pyannote[2606].start 16424.82284375
transcript.pyannote[2606].end 16431.94409375
transcript.pyannote[2607].speaker SPEAKER_14
transcript.pyannote[2607].start 16431.77534375
transcript.pyannote[2607].end 16435.50471875
transcript.pyannote[2608].speaker SPEAKER_14
transcript.pyannote[2608].start 16436.21346875
transcript.pyannote[2608].end 16440.28034375
transcript.pyannote[2609].speaker SPEAKER_12
transcript.pyannote[2609].start 16436.39909375
transcript.pyannote[2609].end 16439.23409375
transcript.pyannote[2610].speaker SPEAKER_14
transcript.pyannote[2610].start 16441.20846875
transcript.pyannote[2610].end 16442.27159375
transcript.pyannote[2611].speaker SPEAKER_14
transcript.pyannote[2611].start 16442.89596875
transcript.pyannote[2611].end 16445.51159375
transcript.pyannote[2612].speaker SPEAKER_27
transcript.pyannote[2612].start 16447.67159375
transcript.pyannote[2612].end 16449.30846875
transcript.pyannote[2613].speaker SPEAKER_14
transcript.pyannote[2613].start 16449.44346875
transcript.pyannote[2613].end 16451.80596875
transcript.pyannote[2614].speaker SPEAKER_14
transcript.pyannote[2614].start 16452.14346875
transcript.pyannote[2614].end 16469.06909375
transcript.pyannote[2615].speaker SPEAKER_14
transcript.pyannote[2615].start 16469.54159375
transcript.pyannote[2615].end 16470.87471875
transcript.pyannote[2616].speaker SPEAKER_01
transcript.pyannote[2616].start 16471.66784375
transcript.pyannote[2616].end 16476.02159375
transcript.pyannote[2617].speaker SPEAKER_14
transcript.pyannote[2617].start 16473.81096875
transcript.pyannote[2617].end 16482.11346875
transcript.pyannote[2618].speaker SPEAKER_01
transcript.pyannote[2618].start 16476.52784375
transcript.pyannote[2618].end 16476.59534375
transcript.pyannote[2619].speaker SPEAKER_14
transcript.pyannote[2619].start 16482.45096875
transcript.pyannote[2619].end 16483.85159375
transcript.pyannote[2620].speaker SPEAKER_14
transcript.pyannote[2620].start 16484.20596875
transcript.pyannote[2620].end 16494.73596875
transcript.pyannote[2621].speaker SPEAKER_10
transcript.pyannote[2621].start 16494.73596875
transcript.pyannote[2621].end 16495.52909375
transcript.pyannote[2622].speaker SPEAKER_14
transcript.pyannote[2622].start 16495.52909375
transcript.pyannote[2622].end 16507.39221875
transcript.pyannote[2623].speaker SPEAKER_10
transcript.pyannote[2623].start 16507.49346875
transcript.pyannote[2623].end 16509.02909375
transcript.pyannote[2624].speaker SPEAKER_14
transcript.pyannote[2624].start 16509.02909375
transcript.pyannote[2624].end 16509.06284375
transcript.pyannote[2625].speaker SPEAKER_14
transcript.pyannote[2625].start 16509.28221875
transcript.pyannote[2625].end 16515.03659375
transcript.pyannote[2626].speaker SPEAKER_10
transcript.pyannote[2626].start 16515.71159375
transcript.pyannote[2626].end 16517.14596875
transcript.pyannote[2627].speaker SPEAKER_14
transcript.pyannote[2627].start 16517.28096875
transcript.pyannote[2627].end 16522.83284375
transcript.pyannote[2628].speaker SPEAKER_14
transcript.pyannote[2628].start 16523.05221875
transcript.pyannote[2628].end 16542.12096875
transcript.pyannote[2629].speaker SPEAKER_14
transcript.pyannote[2629].start 16543.18409375
transcript.pyannote[2629].end 16554.05159375
transcript.pyannote[2630].speaker SPEAKER_12
transcript.pyannote[2630].start 16554.37221875
transcript.pyannote[2630].end 16554.55784375
transcript.pyannote[2631].speaker SPEAKER_12
transcript.pyannote[2631].start 16554.97971875
transcript.pyannote[2631].end 16561.96596875
transcript.pyannote[2632].speaker SPEAKER_14
transcript.pyannote[2632].start 16561.96596875
transcript.pyannote[2632].end 16571.16284375
transcript.pyannote[2633].speaker SPEAKER_12
transcript.pyannote[2633].start 16571.33159375
transcript.pyannote[2633].end 16574.09909375
transcript.pyannote[2634].speaker SPEAKER_14
transcript.pyannote[2634].start 16574.26784375
transcript.pyannote[2634].end 16576.69784375
transcript.pyannote[2635].speaker SPEAKER_14
transcript.pyannote[2635].start 16577.11971875
transcript.pyannote[2635].end 16577.60909375
transcript.pyannote[2636].speaker SPEAKER_12
transcript.pyannote[2636].start 16577.89596875
transcript.pyannote[2636].end 16579.36409375
transcript.pyannote[2637].speaker SPEAKER_14
transcript.pyannote[2637].start 16579.02659375
transcript.pyannote[2637].end 16581.03471875
transcript.pyannote[2638].speaker SPEAKER_14
transcript.pyannote[2638].start 16581.27096875
transcript.pyannote[2638].end 16585.37159375
transcript.pyannote[2639].speaker SPEAKER_14
transcript.pyannote[2639].start 16585.60784375
transcript.pyannote[2639].end 16595.93534375
transcript.pyannote[2640].speaker SPEAKER_14
transcript.pyannote[2640].start 16596.69471875
transcript.pyannote[2640].end 16597.94346875
transcript.pyannote[2641].speaker SPEAKER_14
transcript.pyannote[2641].start 16597.97721875
transcript.pyannote[2641].end 16600.06971875
transcript.pyannote[2642].speaker SPEAKER_14
transcript.pyannote[2642].start 16600.74471875
transcript.pyannote[2642].end 16601.09909375
transcript.pyannote[2643].speaker SPEAKER_14
transcript.pyannote[2643].start 16601.45346875
transcript.pyannote[2643].end 16603.47846875
transcript.pyannote[2644].speaker SPEAKER_14
transcript.pyannote[2644].start 16603.74846875
transcript.pyannote[2644].end 16607.34284375
transcript.pyannote[2645].speaker SPEAKER_14
transcript.pyannote[2645].start 16607.39346875
transcript.pyannote[2645].end 16610.80221875
transcript.pyannote[2646].speaker SPEAKER_14
transcript.pyannote[2646].start 16611.17346875
transcript.pyannote[2646].end 16613.80596875
transcript.pyannote[2647].speaker SPEAKER_14
transcript.pyannote[2647].start 16613.82284375
transcript.pyannote[2647].end 16664.81909375
transcript.pyannote[2648].speaker SPEAKER_14
transcript.pyannote[2648].start 16665.69659375
transcript.pyannote[2648].end 16674.53909375
transcript.pyannote[2649].speaker SPEAKER_14
transcript.pyannote[2649].start 16674.85971875
transcript.pyannote[2649].end 16676.22659375
transcript.pyannote[2650].speaker SPEAKER_14
transcript.pyannote[2650].start 16676.61471875
transcript.pyannote[2650].end 16679.14596875
transcript.pyannote[2651].speaker SPEAKER_14
transcript.pyannote[2651].start 16679.66909375
transcript.pyannote[2651].end 16680.59721875
transcript.pyannote[2652].speaker SPEAKER_14
transcript.pyannote[2652].start 16680.98534375
transcript.pyannote[2652].end 16681.66034375
transcript.pyannote[2653].speaker SPEAKER_14
transcript.pyannote[2653].start 16682.41971875
transcript.pyannote[2653].end 16686.03096875
transcript.pyannote[2654].speaker SPEAKER_14
transcript.pyannote[2654].start 16686.57096875
transcript.pyannote[2654].end 16724.20221875
transcript.pyannote[2655].speaker SPEAKER_14
transcript.pyannote[2655].start 16724.64096875
transcript.pyannote[2655].end 16725.73784375
transcript.pyannote[2656].speaker SPEAKER_14
transcript.pyannote[2656].start 16725.99096875
transcript.pyannote[2656].end 16738.68096875
transcript.pyannote[2657].speaker SPEAKER_21
transcript.pyannote[2657].start 16737.39846875
transcript.pyannote[2657].end 16748.94096875
transcript.pyannote[2658].speaker SPEAKER_14
transcript.pyannote[2658].start 16748.82284375
transcript.pyannote[2658].end 16752.21471875
transcript.pyannote[2659].speaker SPEAKER_21
transcript.pyannote[2659].start 16750.61159375
transcript.pyannote[2659].end 16758.07034375
transcript.pyannote[2660].speaker SPEAKER_21
transcript.pyannote[2660].start 16758.59346875
transcript.pyannote[2660].end 16761.69846875
transcript.pyannote[2661].speaker SPEAKER_21
transcript.pyannote[2661].start 16762.01909375
transcript.pyannote[2661].end 16762.13721875
transcript.pyannote[2662].speaker SPEAKER_21
transcript.pyannote[2662].start 16762.22159375
transcript.pyannote[2662].end 16781.50971875
transcript.pyannote[2663].speaker SPEAKER_14
transcript.pyannote[2663].start 16772.49846875
transcript.pyannote[2663].end 16774.84409375
transcript.pyannote[2664].speaker SPEAKER_14
transcript.pyannote[2664].start 16780.15971875
transcript.pyannote[2664].end 16784.20971875
transcript.pyannote[2665].speaker SPEAKER_14
transcript.pyannote[2665].start 16784.42909375
transcript.pyannote[2665].end 16802.67096875
transcript.pyannote[2666].speaker SPEAKER_03
transcript.pyannote[2666].start 16802.87346875
transcript.pyannote[2666].end 16803.43034375
transcript.pyannote[2667].speaker SPEAKER_03
transcript.pyannote[2667].start 16805.03346875
transcript.pyannote[2667].end 16807.32846875
transcript.pyannote[2668].speaker SPEAKER_03
transcript.pyannote[2668].start 16807.85159375
transcript.pyannote[2668].end 16810.23096875
transcript.pyannote[2669].speaker SPEAKER_06
transcript.pyannote[2669].start 16818.19596875
transcript.pyannote[2669].end 16821.41909375
transcript.pyannote[2670].speaker SPEAKER_06
transcript.pyannote[2670].start 16827.25784375
transcript.pyannote[2670].end 16896.63096875
transcript.pyannote[2671].speaker SPEAKER_21
transcript.pyannote[2671].start 16898.18346875
transcript.pyannote[2671].end 16902.08159375
transcript.pyannote[2672].speaker SPEAKER_26
transcript.pyannote[2672].start 16902.08159375
transcript.pyannote[2672].end 16902.21659375
transcript.pyannote[2673].speaker SPEAKER_21
transcript.pyannote[2673].start 16902.21659375
transcript.pyannote[2673].end 16902.40221875
transcript.pyannote[2674].speaker SPEAKER_21
transcript.pyannote[2674].start 16902.50346875
transcript.pyannote[2674].end 16913.47221875
transcript.pyannote[2675].speaker SPEAKER_21
transcript.pyannote[2675].start 16914.09659375
transcript.pyannote[2675].end 16918.26471875
transcript.pyannote[2676].speaker SPEAKER_06
transcript.pyannote[2676].start 16918.06221875
transcript.pyannote[2676].end 16923.63096875
transcript.pyannote[2677].speaker SPEAKER_06
transcript.pyannote[2677].start 16925.13284375
transcript.pyannote[2677].end 16926.38159375
transcript.pyannote[2678].speaker SPEAKER_21
transcript.pyannote[2678].start 16925.25096875
transcript.pyannote[2678].end 16926.43221875
transcript.pyannote[2679].speaker SPEAKER_21
transcript.pyannote[2679].start 16927.81596875
transcript.pyannote[2679].end 16930.09409375
transcript.pyannote[2680].speaker SPEAKER_21
transcript.pyannote[2680].start 16930.34721875
transcript.pyannote[2680].end 16930.85346875
transcript.pyannote[2681].speaker SPEAKER_33
transcript.pyannote[2681].start 16930.41471875
transcript.pyannote[2681].end 16938.85221875
transcript.pyannote[2682].speaker SPEAKER_06
transcript.pyannote[2682].start 16937.24909375
transcript.pyannote[2682].end 16945.19721875
transcript.pyannote[2683].speaker SPEAKER_33
transcript.pyannote[2683].start 16946.66534375
transcript.pyannote[2683].end 16948.99409375
transcript.pyannote[2684].speaker SPEAKER_33
transcript.pyannote[2684].start 16949.01096875
transcript.pyannote[2684].end 16963.40534375
transcript.pyannote[2685].speaker SPEAKER_06
transcript.pyannote[2685].start 16962.47721875
transcript.pyannote[2685].end 16984.31346875
transcript.pyannote[2686].speaker SPEAKER_33
transcript.pyannote[2686].start 16981.39409375
transcript.pyannote[2686].end 16985.42721875
transcript.pyannote[2687].speaker SPEAKER_33
transcript.pyannote[2687].start 16986.03471875
transcript.pyannote[2687].end 16986.99659375
transcript.pyannote[2688].speaker SPEAKER_33
transcript.pyannote[2688].start 16987.55346875
transcript.pyannote[2688].end 16989.57846875
transcript.pyannote[2689].speaker SPEAKER_33
transcript.pyannote[2689].start 16989.93284375
transcript.pyannote[2689].end 16991.56971875
transcript.pyannote[2690].speaker SPEAKER_06
transcript.pyannote[2690].start 16990.65846875
transcript.pyannote[2690].end 16992.97034375
transcript.pyannote[2691].speaker SPEAKER_33
transcript.pyannote[2691].start 16992.27846875
transcript.pyannote[2691].end 17000.31096875
transcript.pyannote[2692].speaker SPEAKER_06
transcript.pyannote[2692].start 16998.69096875
transcript.pyannote[2692].end 17007.29721875
transcript.pyannote[2693].speaker SPEAKER_06
transcript.pyannote[2693].start 17007.92159375
transcript.pyannote[2693].end 17031.51284375
transcript.pyannote[2694].speaker SPEAKER_33
transcript.pyannote[2694].start 17032.27221875
transcript.pyannote[2694].end 17038.00971875
transcript.pyannote[2695].speaker SPEAKER_33
transcript.pyannote[2695].start 17038.39784375
transcript.pyannote[2695].end 17041.33409375
transcript.pyannote[2696].speaker SPEAKER_33
transcript.pyannote[2696].start 17041.73909375
transcript.pyannote[2696].end 17045.89034375
transcript.pyannote[2697].speaker SPEAKER_06
transcript.pyannote[2697].start 17045.89034375
transcript.pyannote[2697].end 17055.05346875
transcript.pyannote[2698].speaker SPEAKER_33
transcript.pyannote[2698].start 17046.05909375
transcript.pyannote[2698].end 17046.73409375
transcript.pyannote[2699].speaker SPEAKER_06
transcript.pyannote[2699].start 17055.28971875
transcript.pyannote[2699].end 17058.32721875
transcript.pyannote[2700].speaker SPEAKER_06
transcript.pyannote[2700].start 17058.76596875
transcript.pyannote[2700].end 17062.91721875
transcript.pyannote[2701].speaker SPEAKER_33
transcript.pyannote[2701].start 17062.91721875
transcript.pyannote[2701].end 17074.00409375
transcript.pyannote[2702].speaker SPEAKER_33
transcript.pyannote[2702].start 17074.29096875
transcript.pyannote[2702].end 17080.43346875
transcript.pyannote[2703].speaker SPEAKER_06
transcript.pyannote[2703].start 17077.83471875
transcript.pyannote[2703].end 17078.15534375
transcript.pyannote[2704].speaker SPEAKER_06
transcript.pyannote[2704].start 17080.01159375
transcript.pyannote[2704].end 17109.50909375
transcript.pyannote[2705].speaker SPEAKER_21
transcript.pyannote[2705].start 17111.73659375
transcript.pyannote[2705].end 17114.03159375
transcript.pyannote[2706].speaker SPEAKER_21
transcript.pyannote[2706].start 17115.17909375
transcript.pyannote[2706].end 17128.91534375
transcript.pyannote[2707].speaker SPEAKER_21
transcript.pyannote[2707].start 17129.35409375
transcript.pyannote[2707].end 17134.83846875
transcript.pyannote[2708].speaker SPEAKER_06
transcript.pyannote[2708].start 17134.83846875
transcript.pyannote[2708].end 17150.00909375
transcript.pyannote[2709].speaker SPEAKER_21
transcript.pyannote[2709].start 17135.00721875
transcript.pyannote[2709].end 17140.28909375
transcript.pyannote[2710].speaker SPEAKER_00
transcript.pyannote[2710].start 17140.28909375
transcript.pyannote[2710].end 17140.37346875
transcript.pyannote[2711].speaker SPEAKER_00
transcript.pyannote[2711].start 17140.87971875
transcript.pyannote[2711].end 17140.99784375
transcript.pyannote[2712].speaker SPEAKER_21
transcript.pyannote[2712].start 17140.99784375
transcript.pyannote[2712].end 17141.23409375
transcript.pyannote[2713].speaker SPEAKER_00
transcript.pyannote[2713].start 17141.23409375
transcript.pyannote[2713].end 17141.43659375
transcript.pyannote[2714].speaker SPEAKER_00
transcript.pyannote[2714].start 17142.02721875
transcript.pyannote[2714].end 17142.04409375
transcript.pyannote[2715].speaker SPEAKER_21
transcript.pyannote[2715].start 17142.04409375
transcript.pyannote[2715].end 17142.58409375
transcript.pyannote[2716].speaker SPEAKER_00
transcript.pyannote[2716].start 17142.58409375
transcript.pyannote[2716].end 17142.65159375
transcript.pyannote[2717].speaker SPEAKER_00
transcript.pyannote[2717].start 17142.82034375
transcript.pyannote[2717].end 17142.88784375
transcript.pyannote[2718].speaker SPEAKER_21
transcript.pyannote[2718].start 17142.88784375
transcript.pyannote[2718].end 17142.97221875
transcript.pyannote[2719].speaker SPEAKER_00
transcript.pyannote[2719].start 17142.97221875
transcript.pyannote[2719].end 17143.10721875
transcript.pyannote[2720].speaker SPEAKER_21
transcript.pyannote[2720].start 17147.66346875
transcript.pyannote[2720].end 17149.43534375
transcript.pyannote[2721].speaker SPEAKER_21
transcript.pyannote[2721].start 17149.68846875
transcript.pyannote[2721].end 17149.92471875
transcript.pyannote[2722].speaker SPEAKER_21
transcript.pyannote[2722].start 17150.00909375
transcript.pyannote[2722].end 17160.48846875
transcript.pyannote[2723].speaker SPEAKER_06
transcript.pyannote[2723].start 17150.31284375
transcript.pyannote[2723].end 17151.86534375
transcript.pyannote[2724].speaker SPEAKER_06
transcript.pyannote[2724].start 17159.72909375
transcript.pyannote[2724].end 17169.12846875
transcript.pyannote[2725].speaker SPEAKER_33
transcript.pyannote[2725].start 17169.12846875
transcript.pyannote[2725].end 17176.03034375
transcript.pyannote[2726].speaker SPEAKER_06
transcript.pyannote[2726].start 17173.34721875
transcript.pyannote[2726].end 17176.68846875
transcript.pyannote[2727].speaker SPEAKER_33
transcript.pyannote[2727].start 17176.23284375
transcript.pyannote[2727].end 17177.65034375
transcript.pyannote[2728].speaker SPEAKER_21
transcript.pyannote[2728].start 17177.65034375
transcript.pyannote[2728].end 17177.73471875
transcript.pyannote[2729].speaker SPEAKER_33
transcript.pyannote[2729].start 17177.97096875
transcript.pyannote[2729].end 17178.03846875
transcript.pyannote[2730].speaker SPEAKER_21
transcript.pyannote[2730].start 17178.03846875
transcript.pyannote[2730].end 17180.09721875
transcript.pyannote[2731].speaker SPEAKER_06
transcript.pyannote[2731].start 17178.13971875
transcript.pyannote[2731].end 17189.10846875
transcript.pyannote[2732].speaker SPEAKER_21
transcript.pyannote[2732].start 17182.56096875
transcript.pyannote[2732].end 17182.88159375
transcript.pyannote[2733].speaker SPEAKER_21
transcript.pyannote[2733].start 17187.82596875
transcript.pyannote[2733].end 17190.98159375
transcript.pyannote[2734].speaker SPEAKER_06
transcript.pyannote[2734].start 17190.98159375
transcript.pyannote[2734].end 17192.87159375
transcript.pyannote[2735].speaker SPEAKER_21
transcript.pyannote[2735].start 17191.03221875
transcript.pyannote[2735].end 17191.21784375
transcript.pyannote[2736].speaker SPEAKER_21
transcript.pyannote[2736].start 17191.85909375
transcript.pyannote[2736].end 17193.12471875
transcript.pyannote[2737].speaker SPEAKER_06
transcript.pyannote[2737].start 17193.12471875
transcript.pyannote[2737].end 17193.61409375
transcript.pyannote[2738].speaker SPEAKER_21
transcript.pyannote[2738].start 17193.61409375
transcript.pyannote[2738].end 17196.24659375
transcript.pyannote[2739].speaker SPEAKER_06
transcript.pyannote[2739].start 17193.73221875
transcript.pyannote[2739].end 17203.08096875
transcript.pyannote[2740].speaker SPEAKER_30
transcript.pyannote[2740].start 17196.24659375
transcript.pyannote[2740].end 17196.28034375
transcript.pyannote[2741].speaker SPEAKER_06
transcript.pyannote[2741].start 17203.28346875
transcript.pyannote[2741].end 17203.67159375
transcript.pyannote[2742].speaker SPEAKER_21
transcript.pyannote[2742].start 17203.38471875
transcript.pyannote[2742].end 17208.04221875
transcript.pyannote[2743].speaker SPEAKER_06
transcript.pyannote[2743].start 17208.04221875
transcript.pyannote[2743].end 17209.25721875
transcript.pyannote[2744].speaker SPEAKER_03
transcript.pyannote[2744].start 17211.11346875
transcript.pyannote[2744].end 17212.29471875
transcript.pyannote[2745].speaker SPEAKER_03
transcript.pyannote[2745].start 17212.98659375
transcript.pyannote[2745].end 17213.74596875
transcript.pyannote[2746].speaker SPEAKER_03
transcript.pyannote[2746].start 17214.11721875
transcript.pyannote[2746].end 17216.36159375
transcript.pyannote[2747].speaker SPEAKER_19
transcript.pyannote[2747].start 17223.04409375
transcript.pyannote[2747].end 17224.41096875
transcript.pyannote[2748].speaker SPEAKER_19
transcript.pyannote[2748].start 17224.83284375
transcript.pyannote[2748].end 17227.11096875
transcript.pyannote[2749].speaker SPEAKER_19
transcript.pyannote[2749].start 17227.83659375
transcript.pyannote[2749].end 17228.64659375
transcript.pyannote[2750].speaker SPEAKER_10
transcript.pyannote[2750].start 17236.20659375
transcript.pyannote[2750].end 17237.03346875
transcript.pyannote[2751].speaker SPEAKER_19
transcript.pyannote[2751].start 17237.15159375
transcript.pyannote[2751].end 17242.75409375
transcript.pyannote[2752].speaker SPEAKER_18
transcript.pyannote[2752].start 17242.60221875
transcript.pyannote[2752].end 17242.61909375
transcript.pyannote[2753].speaker SPEAKER_26
transcript.pyannote[2753].start 17242.61909375
transcript.pyannote[2753].end 17242.63596875
transcript.pyannote[2754].speaker SPEAKER_10
transcript.pyannote[2754].start 17242.63596875
transcript.pyannote[2754].end 17242.73721875
transcript.pyannote[2755].speaker SPEAKER_10
transcript.pyannote[2755].start 17242.75409375
transcript.pyannote[2755].end 17243.02409375
transcript.pyannote[2756].speaker SPEAKER_26
transcript.pyannote[2756].start 17243.02409375
transcript.pyannote[2756].end 17243.29409375
transcript.pyannote[2757].speaker SPEAKER_19
transcript.pyannote[2757].start 17243.26034375
transcript.pyannote[2757].end 17253.23346875
transcript.pyannote[2758].speaker SPEAKER_10
transcript.pyannote[2758].start 17243.29409375
transcript.pyannote[2758].end 17243.31096875
transcript.pyannote[2759].speaker SPEAKER_18
transcript.pyannote[2759].start 17243.31096875
transcript.pyannote[2759].end 17243.34471875
transcript.pyannote[2760].speaker SPEAKER_19
transcript.pyannote[2760].start 17253.60471875
transcript.pyannote[2760].end 17276.97659375
transcript.pyannote[2761].speaker SPEAKER_19
transcript.pyannote[2761].start 17277.29721875
transcript.pyannote[2761].end 17281.93784375
transcript.pyannote[2762].speaker SPEAKER_19
transcript.pyannote[2762].start 17282.39346875
transcript.pyannote[2762].end 17297.73284375
transcript.pyannote[2763].speaker SPEAKER_19
transcript.pyannote[2763].start 17298.47534375
transcript.pyannote[2763].end 17299.89284375
transcript.pyannote[2764].speaker SPEAKER_19
transcript.pyannote[2764].start 17300.41596875
transcript.pyannote[2764].end 17307.01409375
transcript.pyannote[2765].speaker SPEAKER_19
transcript.pyannote[2765].start 17307.19971875
transcript.pyannote[2765].end 17324.19284375
transcript.pyannote[2766].speaker SPEAKER_19
transcript.pyannote[2766].start 17324.90159375
transcript.pyannote[2766].end 17328.63096875
transcript.pyannote[2767].speaker SPEAKER_10
transcript.pyannote[2767].start 17329.25534375
transcript.pyannote[2767].end 17334.57096875
transcript.pyannote[2768].speaker SPEAKER_19
transcript.pyannote[2768].start 17329.49159375
transcript.pyannote[2768].end 17329.66034375
transcript.pyannote[2769].speaker SPEAKER_19
transcript.pyannote[2769].start 17330.04846875
transcript.pyannote[2769].end 17330.48721875
transcript.pyannote[2770].speaker SPEAKER_10
transcript.pyannote[2770].start 17334.99284375
transcript.pyannote[2770].end 17344.18971875
transcript.pyannote[2771].speaker SPEAKER_10
transcript.pyannote[2771].start 17344.71284375
transcript.pyannote[2771].end 17350.12971875
transcript.pyannote[2772].speaker SPEAKER_10
transcript.pyannote[2772].start 17351.02409375
transcript.pyannote[2772].end 17352.82971875
transcript.pyannote[2773].speaker SPEAKER_19
transcript.pyannote[2773].start 17351.19284375
transcript.pyannote[2773].end 17360.08596875
transcript.pyannote[2774].speaker SPEAKER_10
transcript.pyannote[2774].start 17353.38659375
transcript.pyannote[2774].end 17353.50471875
transcript.pyannote[2775].speaker SPEAKER_20
transcript.pyannote[2775].start 17353.50471875
transcript.pyannote[2775].end 17353.52159375
transcript.pyannote[2776].speaker SPEAKER_10
transcript.pyannote[2776].start 17360.08596875
transcript.pyannote[2776].end 17374.75034375
transcript.pyannote[2777].speaker SPEAKER_19
transcript.pyannote[2777].start 17361.14909375
transcript.pyannote[2777].end 17361.50346875
transcript.pyannote[2778].speaker SPEAKER_10
transcript.pyannote[2778].start 17375.02034375
transcript.pyannote[2778].end 17382.19221875
transcript.pyannote[2779].speaker SPEAKER_19
transcript.pyannote[2779].start 17380.96034375
transcript.pyannote[2779].end 17382.95159375
transcript.pyannote[2780].speaker SPEAKER_19
transcript.pyannote[2780].start 17383.54221875
transcript.pyannote[2780].end 17384.40284375
transcript.pyannote[2781].speaker SPEAKER_10
transcript.pyannote[2781].start 17384.40284375
transcript.pyannote[2781].end 17385.31409375
transcript.pyannote[2782].speaker SPEAKER_19
transcript.pyannote[2782].start 17384.89221875
transcript.pyannote[2782].end 17385.28034375
transcript.pyannote[2783].speaker SPEAKER_19
transcript.pyannote[2783].start 17385.31409375
transcript.pyannote[2783].end 17390.47784375
transcript.pyannote[2784].speaker SPEAKER_19
transcript.pyannote[2784].start 17390.89971875
transcript.pyannote[2784].end 17414.55846875
transcript.pyannote[2785].speaker SPEAKER_10
transcript.pyannote[2785].start 17416.24596875
transcript.pyannote[2785].end 17418.52409375
transcript.pyannote[2786].speaker SPEAKER_19
transcript.pyannote[2786].start 17416.88721875
transcript.pyannote[2786].end 17422.35471875
transcript.pyannote[2787].speaker SPEAKER_19
transcript.pyannote[2787].start 17422.42221875
transcript.pyannote[2787].end 17426.50596875
transcript.pyannote[2788].speaker SPEAKER_26
transcript.pyannote[2788].start 17427.55221875
transcript.pyannote[2788].end 17429.76284375
transcript.pyannote[2789].speaker SPEAKER_19
transcript.pyannote[2789].start 17428.05846875
transcript.pyannote[2789].end 17440.66409375
transcript.pyannote[2790].speaker SPEAKER_19
transcript.pyannote[2790].start 17441.27159375
transcript.pyannote[2790].end 17465.52096875
transcript.pyannote[2791].speaker SPEAKER_10
transcript.pyannote[2791].start 17465.52096875
transcript.pyannote[2791].end 17467.98471875
transcript.pyannote[2792].speaker SPEAKER_19
transcript.pyannote[2792].start 17465.79096875
transcript.pyannote[2792].end 17475.29159375
transcript.pyannote[2793].speaker SPEAKER_19
transcript.pyannote[2793].start 17475.71346875
transcript.pyannote[2793].end 17492.26784375
transcript.pyannote[2794].speaker SPEAKER_19
transcript.pyannote[2794].start 17492.40284375
transcript.pyannote[2794].end 17497.02659375
transcript.pyannote[2795].speaker SPEAKER_19
transcript.pyannote[2795].start 17497.16159375
transcript.pyannote[2795].end 17498.17409375
transcript.pyannote[2796].speaker SPEAKER_19
transcript.pyannote[2796].start 17498.24159375
transcript.pyannote[2796].end 17501.92034375
transcript.pyannote[2797].speaker SPEAKER_19
transcript.pyannote[2797].start 17502.35909375
transcript.pyannote[2797].end 17505.61596875
transcript.pyannote[2798].speaker SPEAKER_19
transcript.pyannote[2798].start 17505.98721875
transcript.pyannote[2798].end 17510.20596875
transcript.pyannote[2799].speaker SPEAKER_19
transcript.pyannote[2799].start 17510.57721875
transcript.pyannote[2799].end 17511.57284375
transcript.pyannote[2800].speaker SPEAKER_19
transcript.pyannote[2800].start 17512.09596875
transcript.pyannote[2800].end 17514.27284375
transcript.pyannote[2801].speaker SPEAKER_19
transcript.pyannote[2801].start 17514.74534375
transcript.pyannote[2801].end 17515.82534375
transcript.pyannote[2802].speaker SPEAKER_10
transcript.pyannote[2802].start 17515.82534375
transcript.pyannote[2802].end 17518.81221875
transcript.pyannote[2803].speaker SPEAKER_19
transcript.pyannote[2803].start 17517.81659375
transcript.pyannote[2803].end 17522.06909375
transcript.pyannote[2804].speaker SPEAKER_10
transcript.pyannote[2804].start 17519.85846875
transcript.pyannote[2804].end 17520.07784375
transcript.pyannote[2805].speaker SPEAKER_26
transcript.pyannote[2805].start 17520.07784375
transcript.pyannote[2805].end 17520.21284375
transcript.pyannote[2806].speaker SPEAKER_10
transcript.pyannote[2806].start 17520.21284375
transcript.pyannote[2806].end 17520.24659375
transcript.pyannote[2807].speaker SPEAKER_26
transcript.pyannote[2807].start 17520.24659375
transcript.pyannote[2807].end 17520.29721875
transcript.pyannote[2808].speaker SPEAKER_10
transcript.pyannote[2808].start 17520.29721875
transcript.pyannote[2808].end 17521.44471875
transcript.pyannote[2809].speaker SPEAKER_19
transcript.pyannote[2809].start 17522.64284375
transcript.pyannote[2809].end 17523.57096875
transcript.pyannote[2810].speaker SPEAKER_10
transcript.pyannote[2810].start 17523.75659375
transcript.pyannote[2810].end 17525.71409375
transcript.pyannote[2811].speaker SPEAKER_19
transcript.pyannote[2811].start 17525.49471875
transcript.pyannote[2811].end 17525.73096875
transcript.pyannote[2812].speaker SPEAKER_10
transcript.pyannote[2812].start 17525.73096875
transcript.pyannote[2812].end 17525.83221875
transcript.pyannote[2813].speaker SPEAKER_03
transcript.pyannote[2813].start 17529.19034375
transcript.pyannote[2813].end 17534.13471875
transcript.pyannote[2814].speaker SPEAKER_03
transcript.pyannote[2814].start 17538.18471875
transcript.pyannote[2814].end 17538.20159375
transcript.pyannote[2815].speaker SPEAKER_23
transcript.pyannote[2815].start 17538.20159375
transcript.pyannote[2815].end 17538.21846875
transcript.pyannote[2816].speaker SPEAKER_03
transcript.pyannote[2816].start 17538.21846875
transcript.pyannote[2816].end 17538.23534375
transcript.pyannote[2817].speaker SPEAKER_23
transcript.pyannote[2817].start 17538.23534375
transcript.pyannote[2817].end 17539.87221875
transcript.pyannote[2818].speaker SPEAKER_23
transcript.pyannote[2818].start 17545.76159375
transcript.pyannote[2818].end 17546.25096875
transcript.pyannote[2819].speaker SPEAKER_23
transcript.pyannote[2819].start 17547.01034375
transcript.pyannote[2819].end 17549.03534375
transcript.pyannote[2820].speaker SPEAKER_23
transcript.pyannote[2820].start 17549.50784375
transcript.pyannote[2820].end 17565.97784375
transcript.pyannote[2821].speaker SPEAKER_23
transcript.pyannote[2821].start 17566.61909375
transcript.pyannote[2821].end 17570.24721875
transcript.pyannote[2822].speaker SPEAKER_23
transcript.pyannote[2822].start 17576.54159375
transcript.pyannote[2822].end 17582.97096875
transcript.pyannote[2823].speaker SPEAKER_23
transcript.pyannote[2823].start 17584.08471875
transcript.pyannote[2823].end 17585.14784375
transcript.pyannote[2824].speaker SPEAKER_23
transcript.pyannote[2824].start 17588.80971875
transcript.pyannote[2824].end 17588.82659375
transcript.pyannote[2825].speaker SPEAKER_21
transcript.pyannote[2825].start 17588.82659375
transcript.pyannote[2825].end 17589.02909375
transcript.pyannote[2826].speaker SPEAKER_23
transcript.pyannote[2826].start 17589.02909375
transcript.pyannote[2826].end 17589.88971875
transcript.pyannote[2827].speaker SPEAKER_23
transcript.pyannote[2827].start 17590.00784375
transcript.pyannote[2827].end 17593.39971875
transcript.pyannote[2828].speaker SPEAKER_33
transcript.pyannote[2828].start 17594.59784375
transcript.pyannote[2828].end 17601.95534375
transcript.pyannote[2829].speaker SPEAKER_33
transcript.pyannote[2829].start 17602.81596875
transcript.pyannote[2829].end 17613.16034375
transcript.pyannote[2830].speaker SPEAKER_23
transcript.pyannote[2830].start 17603.67659375
transcript.pyannote[2830].end 17605.24596875
transcript.pyannote[2831].speaker SPEAKER_23
transcript.pyannote[2831].start 17612.29971875
transcript.pyannote[2831].end 17613.29534375
transcript.pyannote[2832].speaker SPEAKER_33
transcript.pyannote[2832].start 17613.29534375
transcript.pyannote[2832].end 17614.03784375
transcript.pyannote[2833].speaker SPEAKER_23
transcript.pyannote[2833].start 17614.03784375
transcript.pyannote[2833].end 17615.03346875
transcript.pyannote[2834].speaker SPEAKER_33
transcript.pyannote[2834].start 17615.03346875
transcript.pyannote[2834].end 17615.25284375
transcript.pyannote[2835].speaker SPEAKER_23
transcript.pyannote[2835].start 17615.25284375
transcript.pyannote[2835].end 17617.68284375
transcript.pyannote[2836].speaker SPEAKER_23
transcript.pyannote[2836].start 17617.96971875
transcript.pyannote[2836].end 17619.25221875
transcript.pyannote[2837].speaker SPEAKER_23
transcript.pyannote[2837].start 17619.33659375
transcript.pyannote[2837].end 17621.49659375
transcript.pyannote[2838].speaker SPEAKER_23
transcript.pyannote[2838].start 17625.47909375
transcript.pyannote[2838].end 17625.79971875
transcript.pyannote[2839].speaker SPEAKER_23
transcript.pyannote[2839].start 17625.96846875
transcript.pyannote[2839].end 17626.10346875
transcript.pyannote[2840].speaker SPEAKER_23
transcript.pyannote[2840].start 17626.23846875
transcript.pyannote[2840].end 17626.72784375
transcript.pyannote[2841].speaker SPEAKER_23
transcript.pyannote[2841].start 17626.76159375
transcript.pyannote[2841].end 17629.69784375
transcript.pyannote[2842].speaker SPEAKER_33
transcript.pyannote[2842].start 17626.82909375
transcript.pyannote[2842].end 17626.94721875
transcript.pyannote[2843].speaker SPEAKER_33
transcript.pyannote[2843].start 17626.96409375
transcript.pyannote[2843].end 17627.09909375
transcript.pyannote[2844].speaker SPEAKER_33
transcript.pyannote[2844].start 17627.13284375
transcript.pyannote[2844].end 17627.80784375
transcript.pyannote[2845].speaker SPEAKER_33
transcript.pyannote[2845].start 17628.83721875
transcript.pyannote[2845].end 17630.45721875
transcript.pyannote[2846].speaker SPEAKER_26
transcript.pyannote[2846].start 17629.69784375
transcript.pyannote[2846].end 17629.73159375
transcript.pyannote[2847].speaker SPEAKER_23
transcript.pyannote[2847].start 17629.73159375
transcript.pyannote[2847].end 17630.03534375
transcript.pyannote[2848].speaker SPEAKER_00
transcript.pyannote[2848].start 17630.03534375
transcript.pyannote[2848].end 17630.17034375
transcript.pyannote[2849].speaker SPEAKER_23
transcript.pyannote[2849].start 17630.17034375
transcript.pyannote[2849].end 17630.32221875
transcript.pyannote[2850].speaker SPEAKER_00
transcript.pyannote[2850].start 17630.32221875
transcript.pyannote[2850].end 17630.35596875
transcript.pyannote[2851].speaker SPEAKER_00
transcript.pyannote[2851].start 17630.45721875
transcript.pyannote[2851].end 17630.47409375
transcript.pyannote[2852].speaker SPEAKER_23
transcript.pyannote[2852].start 17630.47409375
transcript.pyannote[2852].end 17630.49096875
transcript.pyannote[2853].speaker SPEAKER_23
transcript.pyannote[2853].start 17630.81159375
transcript.pyannote[2853].end 17631.45284375
transcript.pyannote[2854].speaker SPEAKER_23
transcript.pyannote[2854].start 17634.06846875
transcript.pyannote[2854].end 17635.58721875
transcript.pyannote[2855].speaker SPEAKER_23
transcript.pyannote[2855].start 17638.74284375
transcript.pyannote[2855].end 17643.50159375
transcript.pyannote[2856].speaker SPEAKER_23
transcript.pyannote[2856].start 17644.19346875
transcript.pyannote[2856].end 17645.15534375
transcript.pyannote[2857].speaker SPEAKER_23
transcript.pyannote[2857].start 17646.04971875
transcript.pyannote[2857].end 17648.41221875
transcript.pyannote[2858].speaker SPEAKER_23
transcript.pyannote[2858].start 17648.91846875
transcript.pyannote[2858].end 17669.18534375
transcript.pyannote[2859].speaker SPEAKER_20
transcript.pyannote[2859].start 17671.75034375
transcript.pyannote[2859].end 17672.84721875
transcript.pyannote[2860].speaker SPEAKER_23
transcript.pyannote[2860].start 17673.47159375
transcript.pyannote[2860].end 17689.06409375
transcript.pyannote[2861].speaker SPEAKER_23
transcript.pyannote[2861].start 17689.94159375
transcript.pyannote[2861].end 17691.12284375
transcript.pyannote[2862].speaker SPEAKER_33
transcript.pyannote[2862].start 17691.12284375
transcript.pyannote[2862].end 17691.13971875
transcript.pyannote[2863].speaker SPEAKER_33
transcript.pyannote[2863].start 17691.49409375
transcript.pyannote[2863].end 17699.18909375
transcript.pyannote[2864].speaker SPEAKER_23
transcript.pyannote[2864].start 17694.14346875
transcript.pyannote[2864].end 17694.81846875
transcript.pyannote[2865].speaker SPEAKER_33
transcript.pyannote[2865].start 17699.35784375
transcript.pyannote[2865].end 17707.57596875
transcript.pyannote[2866].speaker SPEAKER_23
transcript.pyannote[2866].start 17702.00721875
transcript.pyannote[2866].end 17703.99846875
transcript.pyannote[2867].speaker SPEAKER_00
transcript.pyannote[2867].start 17706.91784375
transcript.pyannote[2867].end 17707.33971875
transcript.pyannote[2868].speaker SPEAKER_26
transcript.pyannote[2868].start 17707.33971875
transcript.pyannote[2868].end 17707.35659375
transcript.pyannote[2869].speaker SPEAKER_33
transcript.pyannote[2869].start 17707.66034375
transcript.pyannote[2869].end 17712.03096875
transcript.pyannote[2870].speaker SPEAKER_23
transcript.pyannote[2870].start 17712.03096875
transcript.pyannote[2870].end 17750.72534375
transcript.pyannote[2871].speaker SPEAKER_26
transcript.pyannote[2871].start 17753.83034375
transcript.pyannote[2871].end 17754.01596875
transcript.pyannote[2872].speaker SPEAKER_21
transcript.pyannote[2872].start 17755.12971875
transcript.pyannote[2872].end 17772.69659375
transcript.pyannote[2873].speaker SPEAKER_23
transcript.pyannote[2873].start 17755.23096875
transcript.pyannote[2873].end 17755.50096875
transcript.pyannote[2874].speaker SPEAKER_19
transcript.pyannote[2874].start 17759.55096875
transcript.pyannote[2874].end 17759.56784375
transcript.pyannote[2875].speaker SPEAKER_23
transcript.pyannote[2875].start 17759.56784375
transcript.pyannote[2875].end 17760.17534375
transcript.pyannote[2876].speaker SPEAKER_23
transcript.pyannote[2876].start 17766.40221875
transcript.pyannote[2876].end 17769.92909375
transcript.pyannote[2877].speaker SPEAKER_23
transcript.pyannote[2877].start 17771.44784375
transcript.pyannote[2877].end 17774.90721875
transcript.pyannote[2878].speaker SPEAKER_23
transcript.pyannote[2878].start 17775.19409375
transcript.pyannote[2878].end 17799.66284375
transcript.pyannote[2879].speaker SPEAKER_33
transcript.pyannote[2879].start 17800.47284375
transcript.pyannote[2879].end 17809.56846875
transcript.pyannote[2880].speaker SPEAKER_23
transcript.pyannote[2880].start 17806.48034375
transcript.pyannote[2880].end 17834.15534375
transcript.pyannote[2881].speaker SPEAKER_23
transcript.pyannote[2881].start 17834.69534375
transcript.pyannote[2881].end 17835.80909375
transcript.pyannote[2882].speaker SPEAKER_23
transcript.pyannote[2882].start 17840.24721875
transcript.pyannote[2882].end 17841.22596875
transcript.pyannote[2883].speaker SPEAKER_23
transcript.pyannote[2883].start 17841.41159375
transcript.pyannote[2883].end 17841.47909375
transcript.pyannote[2884].speaker SPEAKER_33
transcript.pyannote[2884].start 17841.47909375
transcript.pyannote[2884].end 17841.54659375
transcript.pyannote[2885].speaker SPEAKER_23
transcript.pyannote[2885].start 17841.54659375
transcript.pyannote[2885].end 17841.59721875
transcript.pyannote[2886].speaker SPEAKER_33
transcript.pyannote[2886].start 17841.59721875
transcript.pyannote[2886].end 17841.71534375
transcript.pyannote[2887].speaker SPEAKER_33
transcript.pyannote[2887].start 17842.03596875
transcript.pyannote[2887].end 17847.03096875
transcript.pyannote[2888].speaker SPEAKER_23
transcript.pyannote[2888].start 17847.03096875
transcript.pyannote[2888].end 17856.68346875
transcript.pyannote[2889].speaker SPEAKER_33
transcript.pyannote[2889].start 17847.19971875
transcript.pyannote[2889].end 17848.14471875
transcript.pyannote[2890].speaker SPEAKER_23
transcript.pyannote[2890].start 17856.91971875
transcript.pyannote[2890].end 17863.18034375
transcript.pyannote[2891].speaker SPEAKER_23
transcript.pyannote[2891].start 17863.46721875
transcript.pyannote[2891].end 17864.78346875
transcript.pyannote[2892].speaker SPEAKER_23
transcript.pyannote[2892].start 17865.18846875
transcript.pyannote[2892].end 17872.59659375
transcript.pyannote[2893].speaker SPEAKER_23
transcript.pyannote[2893].start 17872.79909375
transcript.pyannote[2893].end 17920.30221875
transcript.pyannote[2894].speaker SPEAKER_23
transcript.pyannote[2894].start 17920.60596875
transcript.pyannote[2894].end 17934.22409375
transcript.pyannote[2895].speaker SPEAKER_23
transcript.pyannote[2895].start 17934.71346875
transcript.pyannote[2895].end 17935.06784375
transcript.pyannote[2896].speaker SPEAKER_23
transcript.pyannote[2896].start 17935.37159375
transcript.pyannote[2896].end 17937.85221875
transcript.pyannote[2897].speaker SPEAKER_23
transcript.pyannote[2897].start 17938.71284375
transcript.pyannote[2897].end 17947.87596875
transcript.pyannote[2898].speaker SPEAKER_23
transcript.pyannote[2898].start 17947.90971875
transcript.pyannote[2898].end 17965.96596875
transcript.pyannote[2899].speaker SPEAKER_23
transcript.pyannote[2899].start 17966.06721875
transcript.pyannote[2899].end 17968.75034375
transcript.pyannote[2900].speaker SPEAKER_23
transcript.pyannote[2900].start 17969.13846875
transcript.pyannote[2900].end 17971.51784375
transcript.pyannote[2901].speaker SPEAKER_23
transcript.pyannote[2901].start 17972.32784375
transcript.pyannote[2901].end 17974.26846875
transcript.pyannote[2902].speaker SPEAKER_23
transcript.pyannote[2902].start 17974.55534375
transcript.pyannote[2902].end 17975.50034375
transcript.pyannote[2903].speaker SPEAKER_23
transcript.pyannote[2903].start 17975.83784375
transcript.pyannote[2903].end 17983.51596875
transcript.pyannote[2904].speaker SPEAKER_23
transcript.pyannote[2904].start 17983.88721875
transcript.pyannote[2904].end 17989.59096875
transcript.pyannote[2905].speaker SPEAKER_23
transcript.pyannote[2905].start 17990.09721875
transcript.pyannote[2905].end 17992.56096875
transcript.pyannote[2906].speaker SPEAKER_23
transcript.pyannote[2906].start 17993.28659375
transcript.pyannote[2906].end 18007.84971875
transcript.pyannote[2907].speaker SPEAKER_21
transcript.pyannote[2907].start 18008.57534375
transcript.pyannote[2907].end 18015.76409375
transcript.pyannote[2908].speaker SPEAKER_21
transcript.pyannote[2908].start 18016.57409375
transcript.pyannote[2908].end 18021.40034375
transcript.pyannote[2909].speaker SPEAKER_21
transcript.pyannote[2909].start 18021.73784375
transcript.pyannote[2909].end 18022.02471875
transcript.pyannote[2910].speaker SPEAKER_23
transcript.pyannote[2910].start 18022.02471875
transcript.pyannote[2910].end 18054.40784375
transcript.pyannote[2911].speaker SPEAKER_23
transcript.pyannote[2911].start 18054.44159375
transcript.pyannote[2911].end 18101.10096875
transcript.pyannote[2912].speaker SPEAKER_33
transcript.pyannote[2912].start 18101.67471875
transcript.pyannote[2912].end 18101.96159375
transcript.pyannote[2913].speaker SPEAKER_33
transcript.pyannote[2913].start 18102.50159375
transcript.pyannote[2913].end 18110.02784375
transcript.pyannote[2914].speaker SPEAKER_23
transcript.pyannote[2914].start 18110.02784375
transcript.pyannote[2914].end 18113.53784375
transcript.pyannote[2915].speaker SPEAKER_33
transcript.pyannote[2915].start 18111.71534375
transcript.pyannote[2915].end 18111.98534375
transcript.pyannote[2916].speaker SPEAKER_03
transcript.pyannote[2916].start 18111.98534375
transcript.pyannote[2916].end 18112.18784375
transcript.pyannote[2917].speaker SPEAKER_33
transcript.pyannote[2917].start 18112.18784375
transcript.pyannote[2917].end 18112.30596875
transcript.pyannote[2918].speaker SPEAKER_03
transcript.pyannote[2918].start 18113.09909375
transcript.pyannote[2918].end 18116.35596875
transcript.pyannote[2919].speaker SPEAKER_03
transcript.pyannote[2919].start 18117.94221875
transcript.pyannote[2919].end 18120.94596875
transcript.pyannote[2920].speaker SPEAKER_09
transcript.pyannote[2920].start 18125.82284375
transcript.pyannote[2920].end 18129.88971875
transcript.pyannote[2921].speaker SPEAKER_03
transcript.pyannote[2921].start 18130.37909375
transcript.pyannote[2921].end 18130.85159375
transcript.pyannote[2922].speaker SPEAKER_03
transcript.pyannote[2922].start 18131.77971875
transcript.pyannote[2922].end 18132.26909375
transcript.pyannote[2923].speaker SPEAKER_03
transcript.pyannote[2923].start 18136.84221875
transcript.pyannote[2923].end 18136.85909375
transcript.pyannote[2924].speaker SPEAKER_26
transcript.pyannote[2924].start 18136.85909375
transcript.pyannote[2924].end 18137.41596875
transcript.pyannote[2925].speaker SPEAKER_09
transcript.pyannote[2925].start 18137.53409375
transcript.pyannote[2925].end 18158.76284375
transcript.pyannote[2926].speaker SPEAKER_09
transcript.pyannote[2926].start 18159.23534375
transcript.pyannote[2926].end 18190.55534375
transcript.pyannote[2927].speaker SPEAKER_09
transcript.pyannote[2927].start 18191.01096875
transcript.pyannote[2927].end 18192.74909375
transcript.pyannote[2928].speaker SPEAKER_09
transcript.pyannote[2928].start 18192.93471875
transcript.pyannote[2928].end 18195.73596875
transcript.pyannote[2929].speaker SPEAKER_09
transcript.pyannote[2929].start 18196.24221875
transcript.pyannote[2929].end 18208.18971875
transcript.pyannote[2930].speaker SPEAKER_21
transcript.pyannote[2930].start 18208.99971875
transcript.pyannote[2930].end 18209.64096875
transcript.pyannote[2931].speaker SPEAKER_09
transcript.pyannote[2931].start 18209.64096875
transcript.pyannote[2931].end 18214.73721875
transcript.pyannote[2932].speaker SPEAKER_21
transcript.pyannote[2932].start 18210.48471875
transcript.pyannote[2932].end 18214.02846875
transcript.pyannote[2933].speaker SPEAKER_09
transcript.pyannote[2933].start 18215.59784375
transcript.pyannote[2933].end 18215.71596875
transcript.pyannote[2934].speaker SPEAKER_09
transcript.pyannote[2934].start 18217.30221875
transcript.pyannote[2934].end 18222.80346875
transcript.pyannote[2935].speaker SPEAKER_33
transcript.pyannote[2935].start 18223.46159375
transcript.pyannote[2935].end 18230.26221875
transcript.pyannote[2936].speaker SPEAKER_33
transcript.pyannote[2936].start 18230.39721875
transcript.pyannote[2936].end 18230.78534375
transcript.pyannote[2937].speaker SPEAKER_33
transcript.pyannote[2937].start 18230.81909375
transcript.pyannote[2937].end 18231.35909375
transcript.pyannote[2938].speaker SPEAKER_33
transcript.pyannote[2938].start 18231.51096875
transcript.pyannote[2938].end 18265.31159375
transcript.pyannote[2939].speaker SPEAKER_26
transcript.pyannote[2939].start 18254.42721875
transcript.pyannote[2939].end 18254.52846875
transcript.pyannote[2940].speaker SPEAKER_26
transcript.pyannote[2940].start 18254.56221875
transcript.pyannote[2940].end 18254.71409375
transcript.pyannote[2941].speaker SPEAKER_09
transcript.pyannote[2941].start 18263.33721875
transcript.pyannote[2941].end 18268.85534375
transcript.pyannote[2942].speaker SPEAKER_33
transcript.pyannote[2942].start 18269.91846875
transcript.pyannote[2942].end 18279.16596875
transcript.pyannote[2943].speaker SPEAKER_09
transcript.pyannote[2943].start 18271.15034375
transcript.pyannote[2943].end 18271.80846875
transcript.pyannote[2944].speaker SPEAKER_09
transcript.pyannote[2944].start 18272.50034375
transcript.pyannote[2944].end 18272.92221875
transcript.pyannote[2945].speaker SPEAKER_09
transcript.pyannote[2945].start 18274.10346875
transcript.pyannote[2945].end 18284.49846875
transcript.pyannote[2946].speaker SPEAKER_33
transcript.pyannote[2946].start 18284.58284375
transcript.pyannote[2946].end 18291.75471875
transcript.pyannote[2947].speaker SPEAKER_09
transcript.pyannote[2947].start 18290.26971875
transcript.pyannote[2947].end 18301.23846875
transcript.pyannote[2948].speaker SPEAKER_09
transcript.pyannote[2948].start 18301.60971875
transcript.pyannote[2948].end 18302.20034375
transcript.pyannote[2949].speaker SPEAKER_09
transcript.pyannote[2949].start 18302.30159375
transcript.pyannote[2949].end 18303.14534375
transcript.pyannote[2950].speaker SPEAKER_33
transcript.pyannote[2950].start 18302.41971875
transcript.pyannote[2950].end 18315.17721875
transcript.pyannote[2951].speaker SPEAKER_09
transcript.pyannote[2951].start 18304.09034375
transcript.pyannote[2951].end 18307.00971875
transcript.pyannote[2952].speaker SPEAKER_31
transcript.pyannote[2952].start 18307.00971875
transcript.pyannote[2952].end 18307.07721875
transcript.pyannote[2953].speaker SPEAKER_33
transcript.pyannote[2953].start 18315.80159375
transcript.pyannote[2953].end 18325.09971875
transcript.pyannote[2954].speaker SPEAKER_09
transcript.pyannote[2954].start 18321.79221875
transcript.pyannote[2954].end 18323.41221875
transcript.pyannote[2955].speaker SPEAKER_09
transcript.pyannote[2955].start 18324.34034375
transcript.pyannote[2955].end 18329.75721875
transcript.pyannote[2956].speaker SPEAKER_33
transcript.pyannote[2956].start 18331.29284375
transcript.pyannote[2956].end 18333.31784375
transcript.pyannote[2957].speaker SPEAKER_09
transcript.pyannote[2957].start 18333.80721875
transcript.pyannote[2957].end 18334.09409375
transcript.pyannote[2958].speaker SPEAKER_09
transcript.pyannote[2958].start 18334.83659375
transcript.pyannote[2958].end 18335.24159375
transcript.pyannote[2959].speaker SPEAKER_09
transcript.pyannote[2959].start 18336.06846875
transcript.pyannote[2959].end 18337.73909375
transcript.pyannote[2960].speaker SPEAKER_09
transcript.pyannote[2960].start 18338.27909375
transcript.pyannote[2960].end 18344.91096875
transcript.pyannote[2961].speaker SPEAKER_09
transcript.pyannote[2961].start 18345.28221875
transcript.pyannote[2961].end 18365.58284375
transcript.pyannote[2962].speaker SPEAKER_09
transcript.pyannote[2962].start 18366.27471875
transcript.pyannote[2962].end 18367.52346875
transcript.pyannote[2963].speaker SPEAKER_09
transcript.pyannote[2963].start 18367.96221875
transcript.pyannote[2963].end 18374.35784375
transcript.pyannote[2964].speaker SPEAKER_33
transcript.pyannote[2964].start 18375.06659375
transcript.pyannote[2964].end 18385.95096875
transcript.pyannote[2965].speaker SPEAKER_33
transcript.pyannote[2965].start 18386.35596875
transcript.pyannote[2965].end 18390.00096875
transcript.pyannote[2966].speaker SPEAKER_33
transcript.pyannote[2966].start 18390.27096875
transcript.pyannote[2966].end 18397.62846875
transcript.pyannote[2967].speaker SPEAKER_09
transcript.pyannote[2967].start 18392.24534375
transcript.pyannote[2967].end 18393.02159375
transcript.pyannote[2968].speaker SPEAKER_09
transcript.pyannote[2968].start 18395.83971875
transcript.pyannote[2968].end 18396.78471875
transcript.pyannote[2969].speaker SPEAKER_09
transcript.pyannote[2969].start 18397.40909375
transcript.pyannote[2969].end 18399.78846875
transcript.pyannote[2970].speaker SPEAKER_09
transcript.pyannote[2970].start 18400.81784375
transcript.pyannote[2970].end 18402.82596875
transcript.pyannote[2971].speaker SPEAKER_33
transcript.pyannote[2971].start 18408.69846875
transcript.pyannote[2971].end 18409.40721875
transcript.pyannote[2972].speaker SPEAKER_33
transcript.pyannote[2972].start 18409.55909375
transcript.pyannote[2972].end 18412.61346875
transcript.pyannote[2973].speaker SPEAKER_09
transcript.pyannote[2973].start 18411.73596875
transcript.pyannote[2973].end 18414.06471875
transcript.pyannote[2974].speaker SPEAKER_33
transcript.pyannote[2974].start 18415.04346875
transcript.pyannote[2974].end 18415.46534375
transcript.pyannote[2975].speaker SPEAKER_33
transcript.pyannote[2975].start 18415.70159375
transcript.pyannote[2975].end 18418.09784375
transcript.pyannote[2976].speaker SPEAKER_09
transcript.pyannote[2976].start 18416.74784375
transcript.pyannote[2976].end 18418.58721875
transcript.pyannote[2977].speaker SPEAKER_33
transcript.pyannote[2977].start 18419.24534375
transcript.pyannote[2977].end 18420.62909375
transcript.pyannote[2978].speaker SPEAKER_33
transcript.pyannote[2978].start 18420.71346875
transcript.pyannote[2978].end 18428.84721875
transcript.pyannote[2979].speaker SPEAKER_09
transcript.pyannote[2979].start 18427.95284375
transcript.pyannote[2979].end 18429.77534375
transcript.pyannote[2980].speaker SPEAKER_09
transcript.pyannote[2980].start 18430.23096875
transcript.pyannote[2980].end 18432.22221875
transcript.pyannote[2981].speaker SPEAKER_09
transcript.pyannote[2981].start 18433.01534375
transcript.pyannote[2981].end 18434.28096875
transcript.pyannote[2982].speaker SPEAKER_33
transcript.pyannote[2982].start 18433.04909375
transcript.pyannote[2982].end 18433.40346875
transcript.pyannote[2983].speaker SPEAKER_33
transcript.pyannote[2983].start 18434.33159375
transcript.pyannote[2983].end 18437.90909375
transcript.pyannote[2984].speaker SPEAKER_09
transcript.pyannote[2984].start 18435.39471875
transcript.pyannote[2984].end 18437.01471875
transcript.pyannote[2985].speaker SPEAKER_33
transcript.pyannote[2985].start 18438.06096875
transcript.pyannote[2985].end 18446.39721875
transcript.pyannote[2986].speaker SPEAKER_33
transcript.pyannote[2986].start 18446.70096875
transcript.pyannote[2986].end 18452.25284375
transcript.pyannote[2987].speaker SPEAKER_33
transcript.pyannote[2987].start 18452.79284375
transcript.pyannote[2987].end 18453.45096875
transcript.pyannote[2988].speaker SPEAKER_33
transcript.pyannote[2988].start 18453.53534375
transcript.pyannote[2988].end 18460.33596875
transcript.pyannote[2989].speaker SPEAKER_33
transcript.pyannote[2989].start 18460.84221875
transcript.pyannote[2989].end 18464.57159375
transcript.pyannote[2990].speaker SPEAKER_33
transcript.pyannote[2990].start 18464.67284375
transcript.pyannote[2990].end 18466.86659375
transcript.pyannote[2991].speaker SPEAKER_09
transcript.pyannote[2991].start 18465.02721875
transcript.pyannote[2991].end 18477.07596875
transcript.pyannote[2992].speaker SPEAKER_33
transcript.pyannote[2992].start 18477.59909375
transcript.pyannote[2992].end 18477.61596875
transcript.pyannote[2993].speaker SPEAKER_09
transcript.pyannote[2993].start 18477.63284375
transcript.pyannote[2993].end 18481.54784375
transcript.pyannote[2994].speaker SPEAKER_33
transcript.pyannote[2994].start 18481.81784375
transcript.pyannote[2994].end 18501.39284375
transcript.pyannote[2995].speaker SPEAKER_26
transcript.pyannote[2995].start 18493.12409375
transcript.pyannote[2995].end 18493.14096875
transcript.pyannote[2996].speaker SPEAKER_02
transcript.pyannote[2996].start 18493.14096875
transcript.pyannote[2996].end 18493.15784375
transcript.pyannote[2997].speaker SPEAKER_26
transcript.pyannote[2997].start 18493.15784375
transcript.pyannote[2997].end 18493.96784375
transcript.pyannote[2998].speaker SPEAKER_02
transcript.pyannote[2998].start 18493.96784375
transcript.pyannote[2998].end 18494.91284375
transcript.pyannote[2999].speaker SPEAKER_09
transcript.pyannote[2999].start 18494.91284375
transcript.pyannote[2999].end 18499.28346875
transcript.pyannote[3000].speaker SPEAKER_09
transcript.pyannote[3000].start 18499.68846875
transcript.pyannote[3000].end 18506.80971875
transcript.pyannote[3001].speaker SPEAKER_33
transcript.pyannote[3001].start 18501.64596875
transcript.pyannote[3001].end 18504.63284375
transcript.pyannote[3002].speaker SPEAKER_09
transcript.pyannote[3002].start 18509.42534375
transcript.pyannote[3002].end 18510.01596875
transcript.pyannote[3003].speaker SPEAKER_09
transcript.pyannote[3003].start 18511.34909375
transcript.pyannote[3003].end 18516.91784375
transcript.pyannote[3004].speaker SPEAKER_09
transcript.pyannote[3004].start 18518.20034375
transcript.pyannote[3004].end 18518.94284375
transcript.pyannote[3005].speaker SPEAKER_09
transcript.pyannote[3005].start 18522.33471875
transcript.pyannote[3005].end 18523.68471875
transcript.pyannote[3006].speaker SPEAKER_33
transcript.pyannote[3006].start 18524.68034375
transcript.pyannote[3006].end 18525.81096875
transcript.pyannote[3007].speaker SPEAKER_09
transcript.pyannote[3007].start 18526.58721875
transcript.pyannote[3007].end 18528.08909375
transcript.pyannote[3008].speaker SPEAKER_09
transcript.pyannote[3008].start 18528.44346875
transcript.pyannote[3008].end 18529.50659375
transcript.pyannote[3009].speaker SPEAKER_20
transcript.pyannote[3009].start 18531.34596875
transcript.pyannote[3009].end 18535.41284375
transcript.pyannote[3010].speaker SPEAKER_09
transcript.pyannote[3010].start 18535.12596875
transcript.pyannote[3010].end 18537.48846875
transcript.pyannote[3011].speaker SPEAKER_09
transcript.pyannote[3011].start 18538.23096875
transcript.pyannote[3011].end 18539.02409375
transcript.pyannote[3012].speaker SPEAKER_09
transcript.pyannote[3012].start 18540.30659375
transcript.pyannote[3012].end 18542.44971875
transcript.pyannote[3013].speaker SPEAKER_09
transcript.pyannote[3013].start 18542.98971875
transcript.pyannote[3013].end 18546.29721875
transcript.pyannote[3014].speaker SPEAKER_09
transcript.pyannote[3014].start 18547.12409375
transcript.pyannote[3014].end 18549.89159375
transcript.pyannote[3015].speaker SPEAKER_09
transcript.pyannote[3015].start 18551.59596875
transcript.pyannote[3015].end 18561.82221875
transcript.pyannote[3016].speaker SPEAKER_09
transcript.pyannote[3016].start 18562.37909375
transcript.pyannote[3016].end 18563.96534375
transcript.pyannote[3017].speaker SPEAKER_09
transcript.pyannote[3017].start 18564.03284375
transcript.pyannote[3017].end 18570.61409375
transcript.pyannote[3018].speaker SPEAKER_09
transcript.pyannote[3018].start 18571.06971875
transcript.pyannote[3018].end 18571.66034375
transcript.pyannote[3019].speaker SPEAKER_09
transcript.pyannote[3019].start 18571.86284375
transcript.pyannote[3019].end 18579.77721875
transcript.pyannote[3020].speaker SPEAKER_09
transcript.pyannote[3020].start 18580.04721875
transcript.pyannote[3020].end 18580.63784375
transcript.pyannote[3021].speaker SPEAKER_09
transcript.pyannote[3021].start 18580.87409375
transcript.pyannote[3021].end 18581.88659375
transcript.pyannote[3022].speaker SPEAKER_09
transcript.pyannote[3022].start 18582.17346875
transcript.pyannote[3022].end 18588.99096875
transcript.pyannote[3023].speaker SPEAKER_09
transcript.pyannote[3023].start 18589.46346875
transcript.pyannote[3023].end 18590.12159375
transcript.pyannote[3024].speaker SPEAKER_09
transcript.pyannote[3024].start 18590.40846875
transcript.pyannote[3024].end 18596.65221875
transcript.pyannote[3025].speaker SPEAKER_09
transcript.pyannote[3025].start 18597.12471875
transcript.pyannote[3025].end 18599.50409375
transcript.pyannote[3026].speaker SPEAKER_09
transcript.pyannote[3026].start 18599.84159375
transcript.pyannote[3026].end 18602.42346875
transcript.pyannote[3027].speaker SPEAKER_09
transcript.pyannote[3027].start 18602.72721875
transcript.pyannote[3027].end 18604.22909375
transcript.pyannote[3028].speaker SPEAKER_09
transcript.pyannote[3028].start 18604.51596875
transcript.pyannote[3028].end 18608.56596875
transcript.pyannote[3029].speaker SPEAKER_09
transcript.pyannote[3029].start 18608.95409375
transcript.pyannote[3029].end 18610.23659375
transcript.pyannote[3030].speaker SPEAKER_09
transcript.pyannote[3030].start 18610.48971875
transcript.pyannote[3030].end 18615.72096875
transcript.pyannote[3031].speaker SPEAKER_09
transcript.pyannote[3031].start 18616.00784375
transcript.pyannote[3031].end 18629.91284375
transcript.pyannote[3032].speaker SPEAKER_09
transcript.pyannote[3032].start 18629.92971875
transcript.pyannote[3032].end 18632.73096875
transcript.pyannote[3033].speaker SPEAKER_09
transcript.pyannote[3033].start 18632.76471875
transcript.pyannote[3033].end 18632.84909375
transcript.pyannote[3034].speaker SPEAKER_09
transcript.pyannote[3034].start 18632.95034375
transcript.pyannote[3034].end 18633.67596875
transcript.pyannote[3035].speaker SPEAKER_09
transcript.pyannote[3035].start 18634.50284375
transcript.pyannote[3035].end 18646.46721875
transcript.pyannote[3036].speaker SPEAKER_09
transcript.pyannote[3036].start 18646.65284375
transcript.pyannote[3036].end 18682.32659375
transcript.pyannote[3037].speaker SPEAKER_09
transcript.pyannote[3037].start 18682.64721875
transcript.pyannote[3037].end 18683.01846875
transcript.pyannote[3038].speaker SPEAKER_09
transcript.pyannote[3038].start 18683.79471875
transcript.pyannote[3038].end 18684.45284375
transcript.pyannote[3039].speaker SPEAKER_09
transcript.pyannote[3039].start 18685.71846875
transcript.pyannote[3039].end 18686.32596875
transcript.pyannote[3040].speaker SPEAKER_09
transcript.pyannote[3040].start 18687.20346875
transcript.pyannote[3040].end 18687.82784375
transcript.pyannote[3041].speaker SPEAKER_09
transcript.pyannote[3041].start 18689.22846875
transcript.pyannote[3041].end 18690.62909375
transcript.pyannote[3042].speaker SPEAKER_09
transcript.pyannote[3042].start 18691.40534375
transcript.pyannote[3042].end 18694.47659375
transcript.pyannote[3043].speaker SPEAKER_09
transcript.pyannote[3043].start 18694.69596875
transcript.pyannote[3043].end 18695.37096875
transcript.pyannote[3044].speaker SPEAKER_09
transcript.pyannote[3044].start 18696.16409375
transcript.pyannote[3044].end 18697.98659375
transcript.pyannote[3045].speaker SPEAKER_09
transcript.pyannote[3045].start 18698.32409375
transcript.pyannote[3045].end 18699.94409375
transcript.pyannote[3046].speaker SPEAKER_09
transcript.pyannote[3046].start 18700.93971875
transcript.pyannote[3046].end 18703.57221875
transcript.pyannote[3047].speaker SPEAKER_09
transcript.pyannote[3047].start 18703.72409375
transcript.pyannote[3047].end 18704.98971875
transcript.pyannote[3048].speaker SPEAKER_09
transcript.pyannote[3048].start 18705.86721875
transcript.pyannote[3048].end 18706.86284375
transcript.pyannote[3049].speaker SPEAKER_09
transcript.pyannote[3049].start 18707.38596875
transcript.pyannote[3049].end 18709.44471875
transcript.pyannote[3050].speaker SPEAKER_09
transcript.pyannote[3050].start 18710.11971875
transcript.pyannote[3050].end 18719.77221875
transcript.pyannote[3051].speaker SPEAKER_09
transcript.pyannote[3051].start 18720.70034375
transcript.pyannote[3051].end 18723.68721875
transcript.pyannote[3052].speaker SPEAKER_09
transcript.pyannote[3052].start 18724.37909375
transcript.pyannote[3052].end 18729.84659375
transcript.pyannote[3053].speaker SPEAKER_26
transcript.pyannote[3053].start 18731.95596875
transcript.pyannote[3053].end 18732.79971875
transcript.pyannote[3054].speaker SPEAKER_26
transcript.pyannote[3054].start 18732.93471875
transcript.pyannote[3054].end 18733.79534375
transcript.pyannote[3055].speaker SPEAKER_09
transcript.pyannote[3055].start 18733.05284375
transcript.pyannote[3055].end 18734.82471875
transcript.pyannote[3056].speaker SPEAKER_09
transcript.pyannote[3056].start 18734.89221875
transcript.pyannote[3056].end 18734.92596875
transcript.pyannote[3057].speaker SPEAKER_26
transcript.pyannote[3057].start 18734.92596875
transcript.pyannote[3057].end 18735.22971875
transcript.pyannote[3058].speaker SPEAKER_09
transcript.pyannote[3058].start 18735.16221875
transcript.pyannote[3058].end 18738.04784375
transcript.pyannote[3059].speaker SPEAKER_09
transcript.pyannote[3059].start 18738.62159375
transcript.pyannote[3059].end 18739.29659375
transcript.pyannote[3060].speaker SPEAKER_09
transcript.pyannote[3060].start 18739.95471875
transcript.pyannote[3060].end 18749.64096875
transcript.pyannote[3061].speaker SPEAKER_26
transcript.pyannote[3061].start 18749.64096875
transcript.pyannote[3061].end 18749.84346875
transcript.pyannote[3062].speaker SPEAKER_09
transcript.pyannote[3062].start 18749.84346875
transcript.pyannote[3062].end 18771.27471875
transcript.pyannote[3063].speaker SPEAKER_09
transcript.pyannote[3063].start 18771.67971875
transcript.pyannote[3063].end 18778.27784375
transcript.pyannote[3064].speaker SPEAKER_09
transcript.pyannote[3064].start 18778.32846875
transcript.pyannote[3064].end 18790.14096875
transcript.pyannote[3065].speaker SPEAKER_11
transcript.pyannote[3065].start 18779.13846875
transcript.pyannote[3065].end 18779.25659375
transcript.pyannote[3066].speaker SPEAKER_20
transcript.pyannote[3066].start 18790.39409375
transcript.pyannote[3066].end 18790.88346875
transcript.pyannote[3067].speaker SPEAKER_09
transcript.pyannote[3067].start 18790.88346875
transcript.pyannote[3067].end 18801.43034375
transcript.pyannote[3068].speaker SPEAKER_09
transcript.pyannote[3068].start 18802.29096875
transcript.pyannote[3068].end 18803.32034375
transcript.pyannote[3069].speaker SPEAKER_09
transcript.pyannote[3069].start 18804.31596875
transcript.pyannote[3069].end 18806.77971875
transcript.pyannote[3070].speaker SPEAKER_21
transcript.pyannote[3070].start 18809.53034375
transcript.pyannote[3070].end 18818.49096875
transcript.pyannote[3071].speaker SPEAKER_21
transcript.pyannote[3071].start 18818.79471875
transcript.pyannote[3071].end 18837.25596875
transcript.pyannote[3072].speaker SPEAKER_21
transcript.pyannote[3072].start 18837.27284375
transcript.pyannote[3072].end 18837.28971875
transcript.pyannote[3073].speaker SPEAKER_09
transcript.pyannote[3073].start 18837.28971875
transcript.pyannote[3073].end 18846.04784375
transcript.pyannote[3074].speaker SPEAKER_21
transcript.pyannote[3074].start 18841.01909375
transcript.pyannote[3074].end 18841.13721875
transcript.pyannote[3075].speaker SPEAKER_26
transcript.pyannote[3075].start 18841.13721875
transcript.pyannote[3075].end 18841.27221875
transcript.pyannote[3076].speaker SPEAKER_09
transcript.pyannote[3076].start 18846.26721875
transcript.pyannote[3076].end 18856.66221875
transcript.pyannote[3077].speaker SPEAKER_26
transcript.pyannote[3077].start 18856.34159375
transcript.pyannote[3077].end 18857.01659375
transcript.pyannote[3078].speaker SPEAKER_09
transcript.pyannote[3078].start 18856.94909375
transcript.pyannote[3078].end 18860.56034375
transcript.pyannote[3079].speaker SPEAKER_09
transcript.pyannote[3079].start 18860.77971875
transcript.pyannote[3079].end 18869.82471875
transcript.pyannote[3080].speaker SPEAKER_09
transcript.pyannote[3080].start 18870.31409375
transcript.pyannote[3080].end 18873.50346875
transcript.pyannote[3081].speaker SPEAKER_21
transcript.pyannote[3081].start 18873.70596875
transcript.pyannote[3081].end 18875.15721875
transcript.pyannote[3082].speaker SPEAKER_09
transcript.pyannote[3082].start 18873.77346875
transcript.pyannote[3082].end 18873.97596875
transcript.pyannote[3083].speaker SPEAKER_21
transcript.pyannote[3083].start 18875.59596875
transcript.pyannote[3083].end 18879.25784375
transcript.pyannote[3084].speaker SPEAKER_21
transcript.pyannote[3084].start 18879.62909375
transcript.pyannote[3084].end 18881.83971875
transcript.pyannote[3085].speaker SPEAKER_09
transcript.pyannote[3085].start 18882.07596875
transcript.pyannote[3085].end 18882.09284375
transcript.pyannote[3086].speaker SPEAKER_03
transcript.pyannote[3086].start 18882.09284375
transcript.pyannote[3086].end 18882.70034375
transcript.pyannote[3087].speaker SPEAKER_21
transcript.pyannote[3087].start 18882.70034375
transcript.pyannote[3087].end 18883.27409375
transcript.pyannote[3088].speaker SPEAKER_20
transcript.pyannote[3088].start 18883.27409375
transcript.pyannote[3088].end 18883.61159375
transcript.pyannote[3089].speaker SPEAKER_03
transcript.pyannote[3089].start 18884.16846875
transcript.pyannote[3089].end 18887.32409375
transcript.pyannote[3090].speaker SPEAKER_21
transcript.pyannote[3090].start 18887.54346875
transcript.pyannote[3090].end 18887.59409375
transcript.pyannote[3091].speaker SPEAKER_20
transcript.pyannote[3091].start 18887.59409375
transcript.pyannote[3091].end 18888.03284375
transcript.pyannote[3092].speaker SPEAKER_21
transcript.pyannote[3092].start 18888.03284375
transcript.pyannote[3092].end 18888.77534375
transcript.pyannote[3093].speaker SPEAKER_03
transcript.pyannote[3093].start 18889.09596875
transcript.pyannote[3093].end 18892.65659375
transcript.pyannote[3094].speaker SPEAKER_03
transcript.pyannote[3094].start 18892.97721875
transcript.pyannote[3094].end 18893.02784375
transcript.pyannote[3095].speaker SPEAKER_03
transcript.pyannote[3095].start 18893.11221875
transcript.pyannote[3095].end 18895.71096875
transcript.pyannote[3096].speaker SPEAKER_03
transcript.pyannote[3096].start 18896.53784375
transcript.pyannote[3096].end 18897.90471875
transcript.pyannote[3097].speaker SPEAKER_03
transcript.pyannote[3097].start 18899.13659375
transcript.pyannote[3097].end 18899.49096875
transcript.pyannote[3098].speaker SPEAKER_03
transcript.pyannote[3098].start 18901.54971875
transcript.pyannote[3098].end 18905.90346875
transcript.pyannote[3099].speaker SPEAKER_03
transcript.pyannote[3099].start 18908.60346875
transcript.pyannote[3099].end 18917.07471875
transcript.pyannote[3100].speaker SPEAKER_03
transcript.pyannote[3100].start 18917.86784375
transcript.pyannote[3100].end 18919.92659375
transcript.pyannote[3101].speaker SPEAKER_03
transcript.pyannote[3101].start 18920.63534375
transcript.pyannote[3101].end 18922.82909375
transcript.pyannote[3102].speaker SPEAKER_03
transcript.pyannote[3102].start 18923.67284375
transcript.pyannote[3102].end 18933.17346875
transcript.pyannote[3103].speaker SPEAKER_03
transcript.pyannote[3103].start 18934.54034375
transcript.pyannote[3103].end 18938.38784375
transcript.whisperx[0].start 271.542
transcript.whisperx[0].end 296.739
transcript.whisperx[0].text 持續成長的狀態,對吧?你可以從1300億一直成長到2000億嗎?可以嗎?你有把握嗎?因為長照財源的收入包括以正稅、菸稅、菸品健康福利捐還有就是房地合一稅然後我要問你,像今年這個整個川普他的高關稅的一個衝擊你們還能樂觀的預估今年還有這麼高的一個稅收嗎?
transcript.whisperx[1].start 297.76
transcript.whisperx[1].end 316.096
transcript.whisperx[1].text 這個還要再觀察啦對啊所以你也沒有把握嘛對不對因為這個東西還要再跟美方再做好那我接下來要問你一個問題今天衛福部的報告裡面衛福部你們自己說社會福利基金不是穩定的財源它不是由政府預算來支應
transcript.whisperx[2].start 317.077
transcript.whisperx[2].end 336.749
transcript.whisperx[2].text 常會受限基金來源而影響其穩定性那同樣的問題我要請教長照基金他是一個穩定的財源嗎他也一樣不是政府預算的支應他是來自稅收這個次長你可以回答嗎如果衛福部的書面報告他說社福基金不是穩定財源請問長照基金他是一個穩定財源嗎
transcript.whisperx[3].start 337.561
transcript.whisperx[3].end 351.02
transcript.whisperx[3].text 當然目前長照的基金當然就是三個三大部分剛才委員都已經提過那當然這些稅收不管是哪一個稅務其實都很難是非常穩定有時候經濟好的時候他就往
transcript.whisperx[4].start 1237.925
transcript.whisperx[4].end 1238.325
transcript.whisperx[4].text 嗯嗯
transcript.whisperx[5].start 1765.046
transcript.whisperx[5].end 1775.124
transcript.whisperx[5].text 好 我們現在繼續開會本日會議的議程為邀請衛福部部長 農業部次長 經濟部次長
transcript.whisperx[6].start 1777.935
transcript.whisperx[6].end 1801.342
transcript.whisperx[6].text 外交部次長行政院經貿談判辦公室副總統副總談判代表行政院食品安全辦公室主任針對美豬美牛進口零關稅且如何保障國人食品安全及農民權益進行專題報告並備諮詢
transcript.whisperx[7].start 1805.023
transcript.whisperx[7].end 1829.076
transcript.whisperx[7].text 我們現在介紹在場的委員去列席官員第一位是陳道志委員黃振旭委員來 衛生福利部邱太遠部長歡迎歡迎 啪啪啦 啪啪啦 啪啪啦食藥署署長江志剛
transcript.whisperx[8].start 1836.417
transcript.whisperx[8].end 1847.345
transcript.whisperx[8].text 昨天 昨天沒來齁國進署副署長賈淑麗好昨天被K啦齁
transcript.whisperx[9].start 1849.082
transcript.whisperx[9].end 1873.818
transcript.whisperx[9].text 中央健康保險署龐一鳴副署長社會保險司代理司長陳真惠社家署主任秘書田基武長照司副司長吳希文醫事司專門委員郭威中
transcript.whisperx[10].start 1876.841
transcript.whisperx[10].end 1898.67
transcript.whisperx[10].text 我們農業部常務次長 杜文貞好 歡迎 歡迎國際事務司 副司長 洪小鈞好 歡迎畜牧師 副司長 周志勳好 歡迎動植物防疫檢疫署主任秘書 陳時委好 歡迎農養署組長 陳其瑞
transcript.whisperx[11].start 1906.191
transcript.whisperx[11].end 1920.365
transcript.whisperx[11].text 漁業署檢任計政 鄭淑雯經濟部政務次長 姜文若國際貿易署主任秘書 戴婉榮中小級新創企業署主任秘書 李嘉錦
transcript.whisperx[12].start 1932.89
transcript.whisperx[12].end 1957.743
transcript.whisperx[12].text 產業發展署副組長曾志雄外交部北美司司長王良玉歡迎副司長下午才會來行政院經貿談判辦公室副總談判代表嚴慧欣歡迎食品安全辦公室主任許甫
transcript.whisperx[13].start 1965.68
transcript.whisperx[13].end 1973.867
transcript.whisperx[13].text 那接續我們接續我們請衛部部長報告然後再來請農業部報告再來請經濟部報告經貿辦也報告一下好 就四個再報告好 部長
transcript.whisperx[14].start 1992.918
transcript.whisperx[14].end 2016.226
transcript.whisperx[14].text 主席、各位委員、女士先生今天大宴第十一屆第三會期社會福利及衛生環境委員會召開全體委員會議本部呈邀列席報告深感榮幸持就美豬、美牛進口零關稅卻如何保障國人食品安全及農民權益提出專案報告敬請各位委員不吝會議指教
transcript.whisperx[15].start 2017.006
transcript.whisperx[15].end 2033.243
transcript.whisperx[15].text 本部在食安優先的前提下透過科學分析定定安全且合理的豬牛產品相關管理規定並規劃原料原產地標示規範方便民眾選擇相關規定兼一體適用於國產及輸入產品
transcript.whisperx[16].start 2039.139
transcript.whisperx[16].end 2066.357
transcript.whisperx[16].text 並持續依食品安全衛生管理法執行邊界食品輸入查驗查驗結果符合規定後使得輸入如邊境通關檢驗不合格之產品將依食品及相關產品輸入查驗辦法令業者辦理退貨或銷毀並依食品安全衛生管理法第52條公布不合格產品資訊
transcript.whisperx[17].start 2068.258
transcript.whisperx[17].end 2093.774
transcript.whisperx[17].text 另針對市售豬肉及其可食部位依法查核原料原產地標示查核萬有包括包含國產及進口產品並為針對特定國家目的維護民眾知識的權益並提升國人對市售食品的信任作為世界貿易組織WTO會員國
transcript.whisperx[18].start 2096.523
transcript.whisperx[18].end 2120.74
transcript.whisperx[18].text 對於食品所採取的管理措施必須根據科學實證國人膳食風險評估並參考國際標準以積極展現立足台灣參與國際的決心最後本部始終秉持科學及專業的態度審慎積極評估致力把關全體國人的食品安全
transcript.whisperx[19].start 2121.823
transcript.whisperx[19].end 2151.349
transcript.whisperx[19].text 亦將透過跨部會及中央地方合作落實邊境查驗與市場稽查積極為民眾建構實在安心實在放心的環境本部曾答應各委員之指教及監督在此靜置謝神並期各位委員繼續予以支持以上謝謝謝謝部長那接下來我們請農業部常務次長杜文臻報告
transcript.whisperx[20].start 2158.311
transcript.whisperx[20].end 2184.239
transcript.whisperx[20].text 主席各位委員各位與會先進女士先生今日本人很代表很榮幸代表農業部列席貴委員會緊就指定的專題進行報告那報告如此一台美農產品的貿易關係美國是我國重要的農產品貿易夥伴國去年有百分之二十二點三的農進口農產品是來自美國價值三十六點九億美元是美國第八的
transcript.whisperx[21].start 2184.699
transcript.whisperx[21].end 2211.199
transcript.whisperx[21].text 第八大的海外市場主要蔬菜產品包括黃豆玉米小麥牛肉等在出口的部分美國也是我國第一大的海外市場台灣向往美國的農產品出口值約8.9億美元出口的主要產品是花卉水產等多項農產品所以美國對我國享有農產品貿易的順差大概28億美元那就進口牛肉的部分及我國養牛產業的部分
transcript.whisperx[22].start 2212.27
transcript.whisperx[22].end 2229.963
transcript.whisperx[22].text 牛肉進口的部分台灣大多是仰賴進口去年我國中全球進口的牛肉數量大概有14.6萬公噸那美國牛肉大概6萬公噸為最大宗其他主要輸入國家包括巴拉圭、澳大利亞、紐西蘭等台灣的牛肉自給率大概5%
transcript.whisperx[23].start 2231.764
transcript.whisperx[23].end 2242.81
transcript.whisperx[23].text 那進口品項偏好及對我國產業的影響的部分呢那美國進口牛肉報關價格大概新台幣371元那主要是供應牛排、電餐、酒館等通路
transcript.whisperx[24].start 2243.939
transcript.whisperx[24].end 2269.598
transcript.whisperx[24].text 国产牛肉的需求主要是温体肉比方说牛肉汤牛肉火锅牛肉面等传统通饮两者在通路销售价位上有明显的区隔那进口牛肉主要是各主要国之间的供应的竞争那本部会持续关注国产牛肉的销售状况并适时推动相关政策以维护我国养牛产业的发展并提供民生消费需求
transcript.whisperx[25].start 2270.399
transcript.whisperx[25].end 2291.678
transcript.whisperx[25].text 那在持續推動國產牛肉產銷履歷及知識產業的部分依照衛福部的部分有食品安全食品及食品原料的管理標示相關規定那在本部的部分其實就台灣養牛產業我們會持續推動國產牛肉的產銷履歷同時建構牛肉牛的多元經營輔導肉牛養殖
transcript.whisperx[26].start 2294.269
transcript.whisperx[26].end 2312.273
transcript.whisperx[26].text 飼養做最佳模式化的建立以穩定國內肉牛牛市來源支持在地產業的永續在豬肉的進口部分與台灣養豬產業的以下說明第一個台灣目前養豬大概有5664場在養521萬頭每年上市大概750萬頭豬那養豬的產業產值大概有850億元
transcript.whisperx[27].start 2321.215
transcript.whisperx[27].end 2350.317
transcript.whisperx[27].text 那近來國人的平均消費豬肉大概是每人每年35.6公斤那九成的都是由國產來供應一成是進口的所以國人其實是偏好國產豬肉那至於進口的部分呢每年大概進口有11萬公噸那美國進口的部分大概佔8%所以提供給國人食用的進口豬肉來源從美國來的大概不到1%那其中加拿大的豬肉最具有價格
transcript.whisperx[28].start 2351.899
transcript.whisperx[28].end 2373.06
transcript.whisperx[28].text 競爭的優勢也是近來大概是都是第一大進口國那就本部而言我們當然會持續推動國產豬肉產業的升值及加值以提升競爭力那為國人提供這個透明的消費資訊可以供參考可以選購可以支持台灣的養豬產業那另外也會導入
transcript.whisperx[29].start 2374.261
transcript.whisperx[29].end 2400.002
transcript.whisperx[29].text 新式的租設及自動化省工設備系統的輔助以提升我們這個豬場的污染防止還有其他的優化的競爭力那配合食安把關維護農業生產的環境安全第一個本部會定期配合衛福部到國外就源頭的設施查核那也會持續請我們駐外人員收集各國肉品生產的相關資訊那
transcript.whisperx[30].start 2404.365
transcript.whisperx[30].end 2427.092
transcript.whisperx[30].text 派獸醫人員協同食藥署赴國外查核以提供獸醫專業意見維護國內動物生產的安全在邊境的部分依照目前動物檢疫的法規各國牛豬肉目前輸入上都順暢本部防檢署會逐批查驗並且在港站執行檢疫以抽驗的方式查查輸入貨品確認貨證相符
transcript.whisperx[31].start 2429.773
transcript.whisperx[31].end 2450.511
transcript.whisperx[31].text 那第三個我們也與美國有持續的定期或不定期的就非關稅障礙進行諮商包括本部防檢署衛福部食藥署那就相關關切的議題在做防疫檢疫的技術諮商以解決相關關切的非常非關稅貿易障礙那結論
transcript.whisperx[32].start 2454.08
transcript.whisperx[32].end 2477.816
transcript.whisperx[32].text 會化解美國關稅對我們的衝擊那經貿談判代表團也已經展開與美方的視訊會議那相關的談判進程大概就依我們所規劃的往前走那美國對我國享有農產品的貿易順差行政部門會持續掌握相關的美方的相關的政策發展妥善與美方溝通
transcript.whisperx[33].start 2479.958
transcript.whisperx[33].end 2498.812
transcript.whisperx[33].text 農業發展對國家糧食安全息息相關農業部當然是以我國糧食安全為最重要參考國際標準規範制定相關管制與作為以照顧農民維護我們的產業永續發展為目標推動各項措施與作為以上報告敬請不吝指教好謝謝陸次長那接下來我們請江文洛政務次長經濟部
transcript.whisperx[34].start 2513.973
transcript.whisperx[34].end 2532.115
transcript.whisperx[34].text 主席 各位委員 大家好承蒙各位委員會邀請就美豬美牛進口零關稅且如何保障國人食品安全及農民權益進行報告行政院已經說明政府在談判過程中會審慎衡平國人的健康爭取國家最大利益也維護國際產業競爭力
transcript.whisperx[35].start 2534.127
transcript.whisperx[35].end 2562.945
transcript.whisperx[35].text 以下經濟部就國際最新的情勢台美經貿現況關稅影響因應措施等部分提出報告請各位委員不吝指教首先在美國關稅的措施川普總統他重返白宮後延續美國優先的路線推動關稅措施來說解貿易逆差而且要促使製造業回流目前美國已經針對鋼鋁汽車等特定產品課徵百分之二十五的關稅在對等關稅方面
transcript.whisperx[36].start 2563.925
transcript.whisperx[36].end 2575.414
transcript.whisperx[36].text 川普政府宣布4月5号起对所有国家加征10%的关税另外对57个贸易顺差比较高的国家加征11%到50不等的税率台湾占定为32%
transcript.whisperx[37].start 2577.068
transcript.whisperx[37].end 2603.639
transcript.whisperx[37].text 之后由于中国采取反制措施美国政府在4月9日宣布将其对等关税税率累加至145%其余国家90天内暂时维持加征10%的税率那对于国际贸易市场的影响在美国政府的关税政策下企业面临产线转移寻找供应链等等挑战经贸环境的不确定性
transcript.whisperx[38].start 2604.735
transcript.whisperx[38].end 2624.519
transcript.whisperx[38].text 減緩了國際貿易及經濟的成長動能根據WTO在本年16日的預測如果美國繼續推動對等關稅加上貿易政策拒不確定性可能使今年全球商品的貿易量會衰退1.5%國際貨幣基金組織也下修今年的全球經濟成長率到2.8%
transcript.whisperx[39].start 2627.796
transcript.whisperx[39].end 2639.323
transcript.whisperx[39].text 我們來探討一下台美經貿關係的發展現況就貿易面來說113年台灣是美國第七大貿易夥伴台灣對美國的出口比重從108年的14.1
transcript.whisperx[40].start 2643.729
transcript.whisperx[40].end 2658.631
transcript.whisperx[40].text 成長到113年的23.4%可見美國已經逐漸深化跟台灣合作113年台灣對美出口達1114億美元顯示卡伺服器電腦零配件是主要的出口主力
transcript.whisperx[41].start 2659.151
transcript.whisperx[41].end 2673.873
transcript.whisperx[41].text 其他也包括汽车零组件扣件机械等同年我们从美国进口465亿元包括半导体设备等在农产品方面美国是我们的最大市场113年出口大约8.9亿美元占比17.6%
transcript.whisperx[42].start 2675.765
transcript.whisperx[42].end 2695.804
transcript.whisperx[42].text 主要有花卉水产品同年我们自美国进口36.9亿美元涵盖黄豆小麦玉米以及牛肉等续产品是美国第八大海外市场在投资面近两年美国已经是台湾最大投资对象我商着眼于接近客户市场商机成为美国供应链重要伙伴
transcript.whisperx[43].start 2696.308
transcript.whisperx[43].end 2714.834
transcript.whisperx[43].text 主要反映供应链移转效果如今台湾也是美商重要的投资市场Intel美光的新厂Google研发中心陆续启用挥达还有超维持续在台布局台美企业相互投资为产业创新及发展益助强劲动能
transcript.whisperx[44].start 2715.765
transcript.whisperx[44].end 2731.31
transcript.whisperx[44].text 目前美国对我家占10%的对等关税可能对出口产生影响经济部近期密集跟产业座谈走反影响比较深的传统产业业者都希望政府优先就金融资源扩大出口拓销等给予协助
transcript.whisperx[45].start 2732.048
transcript.whisperx[45].end 2750.898
transcript.whisperx[45].text 在支持出口供应链部分 新建院已经提出应应美国关税我国出口供应链支持方案经济部会投入410亿元提供厂商金融资源开拓协助开拓多元市场例如提供外销贷款优惠保证中小为企业周转性支出
transcript.whisperx[46].start 2751.465
transcript.whisperx[46].end 2767.533
transcript.whisperx[46].text 及购置机器设备的贷款利息补贴与信用保证协助企业在海外新设展示中心发货仓库或新增代理商经销仓拓展市场另外经济部也设立了及时的服务窗口提供拓销投资布局产业升级等咨询的服务
transcript.whisperx[47].start 2768.113
transcript.whisperx[47].end 2788.33
transcript.whisperx[47].text 并在本月举办Taiwan Select全球抢单大会今年下半年的产业聚落抢单大会也会陆续邀请国际买主深入相关的产业聚落经济部也锁定国际五大排名第一的展览办理受影响产业的专属活动例如在欧洲相关展览增设台湾国家形象馆
transcript.whisperx[48].start 2788.8
transcript.whisperx[48].end 2814.438
transcript.whisperx[48].text 安排买主洽谈新产品发表会等活动此外台湾拥有许多的优质的农产品经加工之后发展出更具创新商品可以供消费者选择为了协助加工食品拓展国际市场经济部今年以共同品牌Taiwan Select协助业者布建海外通路参加国际专业展而且广邀国际买主来台采购的做法争取国际订单
transcript.whisperx[49].start 2815.086
transcript.whisperx[49].end 2829.444
transcript.whisperx[49].text 我們在食品的主要出口市場例如美國、日本、馬來西亞、澳洲、荷蘭及新加坡等國的超市會設置Taiwan Select專區或辦理拓銷活動來提高產品的知名度以及刺激銷售量
transcript.whisperx[50].start 2829.946
transcript.whisperx[50].end 2847.706
transcript.whisperx[50].text 我們也會籌組台灣食品業者參加國際展國際食品展並以國家管的方式展出美西的天然食品展東京國際食品展新加坡國際食品展都已辦理完畢澳洲食品展也將在今年的九月辦理以下報告相關的成果
transcript.whisperx[51].start 2848.687
transcript.whisperx[51].end 2868.207
transcript.whisperx[51].text 東京國際食品展本屆台灣館總共有193家業者參加包括農業部及14個縣市政府11個我國食品相關的工協會組團參加今年因為日本缺米糧還有高利財欠收的緣故所以我們的米商跟菜商在展中洽談的成果豐碩滷肉條禮包
transcript.whisperx[52].start 2871.465
transcript.whisperx[52].end 2887.396
transcript.whisperx[52].text 珍珠奶茶醬料類還有豆奶等產品接受到日本買主的詢問下單在新加坡國際食品展本屆台灣館有95家業者參加包括六個縣市及七家食品相關工協會組團展前的一天
transcript.whisperx[53].start 2888.212
transcript.whisperx[53].end 2908.335
transcript.whisperx[53].text 辦理VIP新加坡買主洽談會與當地連鎖超市洽談合作另外新加坡對於健康養生產品日售重視低基金黃豆製成的素基金等產品也受到青睞我們也會籌組商機聯合團本年會安排前往紐西蘭澳洲荷蘭意大利德國日本韓國與當地通路商與
transcript.whisperx[54].start 2910.188
transcript.whisperx[54].end 2938.204
transcript.whisperx[54].text 进口商媒合洽谈今年将于6月台北国际食品展及10月高雄国际食品展举办大型的国际通路商采购洽谈会预计邀请160位国际买主来台采购并体验台湾美食文化深化国际伙伴关系同时我们也精选我国九大国际专业展设置台湾Select馆展现台湾产品好吃好玩好健康好买的形象并奉茶奉补让国际买主体验
transcript.whisperx[55].start 2939.353
transcript.whisperx[55].end 2966.453
transcript.whisperx[55].text 臺灣道地奉財還有養生的食補文化我們也會持續的帶領臺商開拓全球市場聚焦中東歐日本美國菲律賓等貿易夥伴經濟部已經在去年年底在捷克設立了臺灣貿易投資中心第二個據點也在4月21日在日本福岡設立今年下半年規劃在美國設立第三個臺灣貿易投資中心協助我國業者全球布局結與
transcript.whisperx[56].start 2968.161
transcript.whisperx[56].end 2984.205
transcript.whisperx[56].text 經濟部將持續跨部會的合作與美方溝通確保我產業例外並關注美國關稅的政策變動同時聆聽產業意見調整政策協助業者全球佈置以上報告請請各位委員不吝指教謝謝謝謝江市長最後我們請行政院經貿談判辦公室副總談判代表顏慧欣報告
transcript.whisperx[57].start 3004.862
transcript.whisperx[57].end 3019.78
transcript.whisperx[57].text 主席各位委員各位女士大家好那陳蒙貴委員會的這個委員會的邀請就本辦公室來提出美豬美牛這個進口零關稅保障我國食品安全跟農民的這個主題來提出報告那以下
transcript.whisperx[58].start 3020.393
transcript.whisperx[58].end 3047.804
transcript.whisperx[58].text 二要說明來請各位委員不吝指教首先呢簡單的回顧一下川普現在川普總統上任之後提出了美國優先的投資以及貿易的政策那所以他針對貿易跟投資的目標分別提出了不同的這個政策措施那川普最重要他們提出了這個各國關稅不對等邊境匯率這些問題那要去解決美國貿易赤字的因此他提出了
transcript.whisperx[59].start 3048.595
transcript.whisperx[59].end 3062.854
transcript.whisperx[59].text 這些要去提出所謂對等關稅的這些措施而現在美國提出的4月2號提出這個對等關稅的這個措施呢它是一個超過對全球180個國家以上所提出的措施而不是單獨只針對中國
transcript.whisperx[60].start 3064.281
transcript.whisperx[60].end 3085.754
transcript.whisperx[60].text 那所以他提出這個措施本身是選擇國家別以及他所有的來這個國家的產品他都會加以科徵而他的法源依據呢是美國的國家經濟緊急安全法IEPA那所以在這一個法律的授權之下呢我們看到川普政府決定要對於180個以上的國家來科徵
transcript.whisperx[61].start 3086.89
transcript.whisperx[61].end 3103.439
transcript.whisperx[61].text 不同税率的這個對等關稅那其中呢台灣是屬於被課徵32%的關稅那不過因為後來在這個美國政策的進一步考量之下目前所有的對等關稅除了中國以外都先維持10%的這個對等關稅的這個稅率
transcript.whisperx[62].start 3105.82
transcript.whisperx[62].end 3124.048
transcript.whisperx[62].text 那但是除了這個對等關稅的法律授權以外川普政府他還有另外一個是針對產業威脅的衝擊而他可以採取的這個關稅措施也就是我們現在常常聽到的1962年的貿易擴張法232條款那所以川普政府針對232的這個授權之下他也針對了鋼鋁銅
transcript.whisperx[63].start 3128.09
transcript.whisperx[63].end 3148.365
transcript.whisperx[63].text 木材 汽車 藥品這些有關的產品分別展開了國家安全的調查或者他已經科證了所謂的國安稅所以這個基本上是我們現在所看到川普政府為了要去處理他現在所面臨的問題而採取的一些關稅方面的一些措施
transcript.whisperx[64].start 3149.446
transcript.whisperx[64].end 3168.161
transcript.whisperx[64].text 那就台灣現在輸美的農產品上面呢我們是屬於對等關稅這個措施的適用的範圍那說目前我們看到台灣現在輸往美國的這些關稅呢台灣的農產品簡單平均關稅稅率是16.6美美國本身是5點
transcript.whisperx[65].start 3170.664
transcript.whisperx[65].end 3185.079
transcript.whisperx[65].text 但是這個只是簡單平均的關稅的稅率如果我們從實際台美有在進行農產品貿易的話我們的加權平均關稅台灣實際上就是面臨9.3那美國是4.0所以我們的關稅差距實際上跟美國沒有這麼高
transcript.whisperx[66].start 3190.825
transcript.whisperx[66].end 3214.101
transcript.whisperx[66].text 那所以台美在農產品上面是某種程度是有相當緊密的農產貿易的那剛剛前面的部會都有提到台灣輸美的這些農產品主要是花卉水果為主美國輸往台灣的大概是黃豆玉米小麥那所以在這樣子的一個背景之下呢我們接下來會因應美國的
transcript.whisperx[67].start 3214.605
transcript.whisperx[67].end 3234.837
transcript.whisperx[67].text 這些對等關稅的一個措施我們政府已經組成了談判小組那現在由行政院長政府院長所領軍那所有的未來的關稅的談判非關稅的談判我們都會在兼顧國民健康跟糧食安全的基礎之下去提出最符合台灣利益的一些訴求
transcript.whisperx[68].start 3235.489
transcript.whisperx[68].end 3258.23
transcript.whisperx[68].text 那特別是我們也知道台灣加一的這個策略是很重要的所以我們也會去協助台灣加美國的這個新佈局以及協助我們的台灣產業去發展更多的全球佈局的這樣子一個市場那最終呢我想政府一定會秉持立足台灣佈局全球那我們會去全力改善
transcript.whisperx[69].start 3258.906
transcript.whisperx[69].end 3284.716
transcript.whisperx[69].text 對等關稅也會去推動跟我們的有盟國家加強更多的經貿協議以上報告 謝謝好 謝謝顏慧欣代表有關本次會議各項書面資料均列入紀錄刊登公報
transcript.whisperx[70].start 3286.584
transcript.whisperx[70].end 3314.017
transcript.whisperx[70].text 那我們現在開始詢答 做以下宣告本委員會詢答時間8分鐘 列席委員4分鐘10點半截止花園登記委員如有書面執行 請於上會前提出 預期不受理暫定10點半左右 休息10分鐘原則上11點半處理臨時提案我們今天中午不休息 把它拼完那我們現在第一位委員陳昭芝 花園
transcript.whisperx[71].start 3319.65
transcript.whisperx[71].end 3319.67
transcript.whisperx[71].text 委員長
transcript.whisperx[72].start 3330.558
transcript.whisperx[72].end 3357.068
transcript.whisperx[72].text 好 部長早 副總代表早那美國今年4月他發布了國家貿易障礙評估的這個報告他明白的指出台灣應該要依據科學證據跟國際規範取消對牛絞肉以及副產品的這個限制意思就是說要台灣全面開放美牛產品進口那麼我想先請問部長部長當時我們限制某些牛肉產品不能進口的原因是什麼你還記得嗎
transcript.whisperx[73].start 3361.169
transcript.whisperx[73].end 3379.044
transcript.whisperx[73].text 我們當然是根據科學的分析還有國際的標準在食安照顧國人食安的一個最大的原則之下來做相關的各種我請問你現在時到今天這些風險跟懷疑還存在嗎
transcript.whisperx[74].start 3385.216
transcript.whisperx[74].end 3394.306
transcript.whisperx[74].text 我想我們從以前到現在都是在衛福部的立場當然就是一直做科學的分析跟專業的態度同時也要根據這些科學的實證
transcript.whisperx[75].start 3401.454
transcript.whisperx[75].end 3429.462
transcript.whisperx[75].text 來參考國際的標準當時的認定標準現在是不是還存在當然我知道這不是一個容易回答的問題那這樣我先請教這個副總代表因為美國不斷的要求台灣要全面開放美牛那我們的立場要做改變嗎我們要進一步開放當時我們對牛絞肉跟它的副產品的限制以及有一些牛隻年齡的這個限制問題副總我想請你是不是就這個部分回答 謝謝
transcript.whisperx[76].start 3431.087
transcript.whisperx[76].end 3450.036
transcript.whisperx[76].text 好那個謝委員我想當初我們對於牛角肉這些限制是來自於美國當初有BSC狂牛症的問題那但是狂牛症的這個認定呢實際上按照世界衛生動物組織他們的認定也不斷的針對狂牛症的認定有分為典型跟非典型的不同的一個病症
transcript.whisperx[77].start 3450.556
transcript.whisperx[77].end 3466.308
transcript.whisperx[77].text 那科學也不斷地在進步那我想對於我們台灣來說我們對於美國的產品是否要開放完全就是按照現在國際證據上面然後這些科學的評估會去認定說美國的產品到底安不安全來作為我們接下來討論的基礎
transcript.whisperx[78].start 3467.549
transcript.whisperx[78].end 3484.997
transcript.whisperx[78].text 不過目前到現在為止還是對於某些牛肉產品跟高齡的牛脂那個潛在的風險並沒有排除所以本身認為我們國不應該在還沒有確立的一個科學證據佐證下就全面開放這是我個人的一些想法
transcript.whisperx[79].start 3486.838
transcript.whisperx[79].end 3506.507
transcript.whisperx[79].text 同一份報告中美方有延續過去的立場認為台灣實施指明台灣實施這個豬肉原產地標示規定以及對進口豬實施這個萊克多巴胺的這個最高殘留量的限制這兩件事他們認定是對這個不公平的技術性貿易障礙影響美國出口的利益那現在正逢這個準備要談判的期間我們都預期原產地的標示這會成為這個戰場之一
transcript.whisperx[80].start 3515.171
transcript.whisperx[80].end 3524.974
transcript.whisperx[80].text 那請教部長跟經貿談判副總代表我國是否會在談判過程當中堅定維持豬肉應該要標示原產地呢
transcript.whisperx[81].start 3525.523
transcript.whisperx[81].end 3546.19
transcript.whisperx[81].text 好,我們一定堅定、審慎、積極、自立法官、全國國人的實名單位,見過一個實在安心的環境所以我們要求豬肉跟牛肉原料原產地標示,其實我們是一體適用於國產及所有輸入的豬肉跟牛肉
transcript.whisperx[82].start 3548.071
transcript.whisperx[82].end 3561.562
transcript.whisperx[82].text 我謝謝部長這樣子回答但是我要告訴部長是因為這次我們談判對象是美國美國他自己有個原產地標示法叫COOL他在2015年被自己的國會廢除了部分原產地標示規定
transcript.whisperx[83].start 3562.543
transcript.whisperx[83].end 3566.824
transcript.whisperx[83].text 那當時他們是為了因應WTO的加入那因為WTO對這項法案法規有一個裁釋就是說在爭端案當中WTO裁定美國的部分的原產地標示包含牛肉跟豬肉違反了TBD的這個協定21條還有第22條就裡面包括國民待遇最後國待遇還有不造成不必要這樣這個規定
transcript.whisperx[84].start 3586.269
transcript.whisperx[84].end 3588.35
transcript.whisperx[84].text 他們認定確實構成不必要的貿易障礙所以我想請教部長因為據我了解剛剛您在回答在外面回答這個記者的時候受訪就是說你有回答一個方式的回答說沒有什麼事情是不會改變的
transcript.whisperx[85].start 3603.558
transcript.whisperx[85].end 3607.222
transcript.whisperx[85].text 那部長我請教你,你講的沒有什麼事情是不會改變的,是針對我國的這個標示民文標示安法第22條這個標示原產地這個民文規定嗎?是不是要在美國的壓力下取消這個規定呢?你剛剛談話之意是不是如此呢?包委員我剛剛應該沒有提到那個沒有什麼任何事情是
transcript.whisperx[86].start 3627.991
transcript.whisperx[86].end 3631.634
transcript.whisperx[86].text 我沒有提到這句話我絕對不會講這句話雖然我覺得人生無常但是我會講這句話國際的標準最重要一定要在安全國際的標準當然是專家一直在
transcript.whisperx[87].start 3645.425
transcript.whisperx[87].end 3652.793
transcript.whisperx[87].text 一直在調整調整但是一定都是在專講有機會澄清一下但是美方多次在國際場合對我國的豬肉的標示有一關切雖然我們台南民眾黨絕對認同原產地標示有助於什麼很重要的就是
transcript.whisperx[88].start 3665.207
transcript.whisperx[88].end 3680.752
transcript.whisperx[88].text 讓消費者能夠做出符合個人在做選擇時的一個他的價值跟他的風險認知的一個參考依據但我請教部長衛福部有沒有評估過如果台灣針對美豬的原產地標示也會遭遇類似的法律訴訟呢就是他被裁定等一下我還有其他國家的例子就是我們如果堅定那我們要去準備面對國際法律的訴訟問題
transcript.whisperx[89].start 3692.809
transcript.whisperx[89].end 3709.885
transcript.whisperx[89].text 因為針對前在WTO的訴訟我們做了什麼樣的準備因為這是去談判不是在國內處理那談判這個其中我方的談判代表這個怎麼樣來互惠怎麼樣來幫我們爭取我們覺得應該要維持原來的制度我的重點在這裡也是我們今天討論的重點
transcript.whisperx[90].start 3712.167
transcript.whisperx[90].end 3719.772
transcript.whisperx[90].text 謝謝委員提醒,這個部分我想江市長是專家,那你怎麼樣?時間有限謝謝委員這邊的提問面對美國的豬肉的標示,當然是他們有提到可是這件事情在國內,我們對所有豬肉,不管是
transcript.whisperx[91].start 3736.863
transcript.whisperx[91].end 3763.815
transcript.whisperx[91].text 好吃的一筆一豬 還是哪一國家的豬其實我們是一體適用 一致的標示那也在回應所有全體民眾的一些關心所以做了我們的相關的規定到市場端其實是有做特定的一個標示謝謝署長 既然滿上一體適用但我為什麼要這樣問部長因為按照我國的民情 政府認定萊克多巴胺這件事的殘留量的標準我們目前是認為有提高的必要性
transcript.whisperx[92].start 3764.995
transcript.whisperx[92].end 3772.042
transcript.whisperx[92].text 但綜合我們比較加州還有墨西哥他控告美國的前述案件結果確實被評定為是貿易壁壘有這樣的風險那在庫爾的案件當中WTO認為美國的做法對於進口肉品跟本國的肉品的待遇不一樣雖然表面上規定好像沒有不同但是進口廠商
transcript.whisperx[93].start 3788.197
transcript.whisperx[93].end 3803.8
transcript.whisperx[93].text 他確實要承擔了不同的程序跟成本所以他等同他這個裁定說等同貿易歧視那另一方面美國的這個全難定標示也在訴訟中被裁定為就是你這個標示沒有辦法證明你政策正當性的一個佐證
transcript.whisperx[94].start 3805.021
transcript.whisperx[94].end 3830.604
transcript.whisperx[94].text 你這樣標示法沒有辦法證明在這個材質當中是如此所以換句話說台灣的辯護不能只靠民情封鎖民情而是要提出具體的科學證據那美方已經在2020年10月跟2020年2月的TPT會議當中還有前面我提到的國際貿易的障礙評估的報告當中多次提到這些標示對美國豬肉是會造成不利的影響
transcript.whisperx[95].start 3832.714
transcript.whisperx[95].end 3851.468
transcript.whisperx[95].text 面對我們國家的標準確實比國際標準高啊比國際標準嚴啊所以請問衛福部如何闡述我國行政機關的標準是符合WTO或是這個TBT的協定平等原則我擔心的是這個部分啦因為確實比國際高部長你可以做初步
transcript.whisperx[96].start 3853.15
transcript.whisperx[96].end 3866.79
transcript.whisperx[96].text 非常謝謝委員這麼專業的指教也把可能比較擔心的我們也論述那我想我們我們國人有國人的一個飲食的文化所以我們在
transcript.whisperx[97].start 3867.992
transcript.whisperx[97].end 3886.204
transcript.whisperx[97].text 要求這個標準上面可能雖然我們一定要科學的分析也要符合國際的標準所以我們當然這就是兩難啊所以部長我請問的不是國企在解決的所以這個就是我們要一起來努力我們衛福部絕對在一直針對相關的議題相關的食品
transcript.whisperx[98].start 3888.197
transcript.whisperx[98].end 3912.225
transcript.whisperx[98].text 一定去做好科學的分析跟修正科學的修正然後了解到國際的一個整個標準的一個變化最重要我們要尊重我們國人膳食的一個習慣這樣來訂定相關的措施這個辯護還是要有一個相當的力道因為就是說用我們國人的民情風俗大概很難過關可是美國一旦的拋出國際壓力
transcript.whisperx[99].start 3913.986
transcript.whisperx[99].end 3928.44
transcript.whisperx[99].text 我想我們要堅持我方人民有知情權因為美國相對是人權思考的國家知情權行政機關要整準備以科學證據跟法學的論述來佐證為什麼台灣會定出高於這個Codex
transcript.whisperx[100].start 3929.261
transcript.whisperx[100].end 3935.484
transcript.whisperx[100].text 我們為什麼會訂出高於Codex標準台灣如何在談判中說服美國說我國高於國際認定標準不是一種貿易障礙但是你如果只靠這個風俗民情沒有辦法是一個穩靠的這個立即點那也沒辦法作為這個國家的政策來對應可能引起的國際
transcript.whisperx[101].start 3946.868
transcript.whisperx[101].end 3969.319
transcript.whisperx[101].text 貿易的爭端所以我想說請就是說諸位參考我民眾黨的主張是第一個原產地標示不是貿易的壁壘它是提供消費者在做個人的進行個人的選擇時一種價值或是風險認知的一個參考依據就我們可以從這個觀點來想因為我們必須守護國民的知情權知道事情的這個權
transcript.whisperx[102].start 3970.939
transcript.whisperx[102].end 3987.526
transcript.whisperx[102].text 這個權力第二個原產地標示是大家也要去準備目前是最低標準其實我們的國人對於那個萊克多巴胺的部分他其實是更重視那當然他要我們全面開放所以這個部分你們要怎麼去克服怎麼樣去準備怎麼樣去說服我覺得很相當的艱難
transcript.whisperx[103].start 3992.993
transcript.whisperx[103].end 4009.524
transcript.whisperx[103].text 我們政府一定做好最好的準備,但是一定要在科學的根據還有符合一定,符合標準,符合國際的標準,最重要在這樣的情況之下,一定要提供給民眾知的權益,剛剛委員所提的
transcript.whisperx[104].start 4014.84
transcript.whisperx[104].end 4029.027
transcript.whisperx[104].text 最安才的時評每一個人會去認知提供個參考我想副總代表也請你參考除了科學怎麼去解讀科學證據這是一個談判的手法跟技巧主席已經站起來了謝謝三位我們繼續努力 謝謝謝謝陳委員 謝謝部長好 接著我們請陳清威委員質詢
transcript.whisperx[105].start 4042.005
transcript.whisperx[105].end 4045.753
transcript.whisperx[105].text 謝謝主席 謝謝委員 謝謝各位官員那我想請邱部長
transcript.whisperx[106].start 4051.809
transcript.whisperx[106].end 4076.02
transcript.whisperx[106].text 委員長部長因為您擔任非常久的教授所以我也想問一個很生活化的問題啊教授平常看過很多學生的報告如果今天我被指派一個題目是說我要寫我的家庭結果呢這份報告寫了我的外公外婆寫了爺爺奶奶連鄰居都寫了可是沒有寫到爸爸媽媽跟兄弟姊妹你覺得這個報告幾分
transcript.whisperx[107].start 4080.811
transcript.whisperx[107].end 4103.16
transcript.whisperx[107].text 那要看他寫的可能他以他以外公為榮所以花費了30分鐘都在寫他外公外婆的所謂成績部長我今天要幫您講幾句話今天我們收到了負責去談判的經貿談判辦公室的報告我們來看一下幫我按下一張
transcript.whisperx[108].start 4104.773
transcript.whisperx[108].end 4124.072
transcript.whisperx[108].text 他就只有封面提到美豬美牛今天給的議程題目叫做美豬美牛進口如何保障國人食品安全及農民權益書面報告上有這兩個字再來就是主席各位委員承蒙本辦公室對美豬美牛提出報告再來全部都沒有了
transcript.whisperx[109].start 4127.645
transcript.whisperx[109].end 4152.923
transcript.whisperx[109].text 全部都沒有了我可以幫你改題目教授教授如果我可以我是您的助教的話啦我會幫這份報告改一個題目叫做川普的貿易哲學與全球關稅分佈圖因為他裡面全部都在講全球關稅分佈圖最後一句話只有以上敬請主席以及各位委員指教謝謝那
transcript.whisperx[110].start 4155.543
transcript.whisperx[110].end 4174.51
transcript.whisperx[110].text 部長我今天對你非常好因為我想幫你講話來監督食安的人是你負責把關全民健康的是你可是談判的是他們您不會覺得自己很委屈嗎我想政府是一體的守護國家也是前提
transcript.whisperx[111].start 4175.731
transcript.whisperx[111].end 4193.482
transcript.whisperx[111].text 那個政府跟人民共同的權益我們就是這個台灣我們台灣人民要活得快樂 時的安心好 那我希望其實今天我們也是藉由這個機會這個場合可以做溝通因為您是衛生主管機關的最高指導人嘛
transcript.whisperx[112].start 4194.102
transcript.whisperx[112].end 4210.939
transcript.whisperx[112].text 那今天您對於未來談判的結果可能影響到國人有哪些問題這個是您需要先跟談判辦公室溝通好談判辦公室在代表您去跟美方做溝通所以我們等一下會就可能美方在意的幾個點我們也一起來討論我們也可以藉這個機會可以讓未來代表我們出去溝通的長官們可以把我們台灣人的聲音也納進去謝謝
transcript.whisperx[113].start 4219.195
transcript.whisperx[113].end 4237.763
transcript.whisperx[113].text 好這邊可能要問一下因為這個新聞在非常多台灣的媒體也都有曝光嘛大家知道說自從2024年年初一直到2024年年底美國的牛群就有大規模的這個H5N1禽流感病毒的感染
transcript.whisperx[114].start 4238.323
transcript.whisperx[114].end 4258.144
transcript.whisperx[114].text 那一直到2024年年底已經有15個州689個牧場其中加州又最為嚴重因此他們也撲殺了很多可憐的牛隻後來又發現說這個牛還會傳染給工人所以又發現了36名跟牛隻接觸的工人感染了H5N1病毒
transcript.whisperx[115].start 4259.205
transcript.whisperx[115].end 4273.995
transcript.whisperx[115].text 那這個引起國際的關注所以我想問呢您對於美牛的茶廠以及美豬的茶廠現在的態度是如何還有您最近查了幾次以及未來經過這樣子的談判您有可能會修改您的頻率嗎 您會根據什麼方式來修改
transcript.whisperx[116].start 4279.959
transcript.whisperx[116].end 4295.753
transcript.whisperx[116].text 報告委員,我想我們一定遵守法規,遵守法規的一個規定去執行那我想委員一定很願意聽我們國際死案專家,我們江署長來跟你做一個說明
transcript.whisperx[117].start 4297.385
transcript.whisperx[117].end 4315.931
transcript.whisperx[117].text 江署長最近好像有過去查場嗎這個我大概知道我跟委員做進一步的報告因為我們看到委員非常專業的提到就是乳牛等等的有相關Bird flu就是所謂的禽流感的疫情那其實我們因為
transcript.whisperx[118].start 4317.272
transcript.whisperx[118].end 4327.249
transcript.whisperx[118].text 擔任我們邊境所有進口來台灣的食品安全任何的農產品或者畜產品進來我們把關的機制所以我們要去更加買
transcript.whisperx[119].start 4328.922
transcript.whisperx[119].end 4357.626
transcript.whisperx[119].text 至少他的廠在國內特別是美國的國內有一項叫做Quality System就是品質系統的Assessment叫QSA之後已經認證之後進一步做所謂Export出口的Verification認證之後他們國內會先做完是確定是安全的然後讓我們選擇任何進來台灣的都有機會去看我們要去
transcript.whisperx[120].start 4358.406
transcript.whisperx[120].end 4374.697
transcript.whisperx[120].text 看到的茶廠 那就是系統性的茶廠我懂 那等一下其實美國也有一些聲音我們可以一起討論再來部長這個是您擔任立委的時候我昨天也有把您擔任立委時對於這些台美21世紀貿易倡議的
transcript.whisperx[121].start 4377.279
transcript.whisperx[121].end 4402.541
transcript.whisperx[121].text 這些質詢的發言等等都有看完我也很敬佩你因為部長有堅持住您剛剛的發言跟您以前的發言都非常的類似您還是為全國人民把關那最近就您的掌握呢美國還有沒有再類似講這些我們會再去管制進口它的原產地標籤啊檢驗等等的障礙與關切呢因為這是農民也蠻在意的
transcript.whisperx[122].start 4407.13
transcript.whisperx[122].end 4422.94
transcript.whisperx[122].text 好,我想我們站在衛福部的立場,不管怎麼樣就是把相關有關的一些食品按照法規來執行以外就是不斷的進行科學的分析,提供給我們整體的政府
transcript.whisperx[123].start 4424.152
transcript.whisperx[123].end 4443.788
transcript.whisperx[123].text 來做但是原則上所有的一切都是一體適用所以我們會用這樣子這樣的原則跟各個國家去談論相關的一些事情賴總統有對彭博社做了一個投書所以他說他會擴大對美國能源農業
transcript.whisperx[124].start 4445.309
transcript.whisperx[124].end 4463.939
transcript.whisperx[124].text 工業還有軍售方面的採購來增加雙方的投資量能在他投書之前因為農業有被拉進去嘛農業上其實我們已經對美國是逆差了那可能還會再增加或者是降低這些貿易壁壘等等這個在他投書之前您有知道嗎我想總統提的這些都是得到
transcript.whisperx[125].start 4472.511
transcript.whisperx[125].end 4483.425
transcript.whisperx[125].text 國際間以及我們國內的最大的肯定我想這個方向是我們應該要去做的所以我們就要因應嘛因為可能進口的農產品會變多再來呢這個談判內容在場
transcript.whisperx[126].start 4486.849
transcript.whisperx[126].end 4512.308
transcript.whisperx[126].text 其實這個報告有寫到真的有寫到真心提到美豬美牛大概只有衛福部跟農業部這個本席予以肯定但農業部的結語是說4月11號的首次視訊會議交換意見過程很順利但這邊我們當然也會想知道說過程順利OK有沒有初步談到可能的方向就是跟彭博的投書是不是一致
transcript.whisperx[127].start 4514.5
transcript.whisperx[127].end 4538.79
transcript.whisperx[127].text 是不是農業部員是報告委員謝謝委員關心並支持臺灣農業那開啟談判只是第一步那實質內容其實雙方都還在溝通當中是所以還沒有辦法跟我們講到方向已經開啟了談判是謝謝委員支持那這邊也要請教邱部長這個文件不知道你有沒有看到過因為在關稅之後呢
transcript.whisperx[128].start 4539.963
transcript.whisperx[128].end 4559.238
transcript.whisperx[128].text 川普宣布對世界全球的關稅之後很快他就發布了對每一國的貿易壁壘他一國一國的列出來那這也是公開文件所以我們也一點一點來看跟我們衛福部比較相關的他提到說台灣在沒有正當理由下對
transcript.whisperx[129].start 4560.158
transcript.whisperx[129].end 4580.847
transcript.whisperx[129].text 台湾处理美国租资的业者包括进口商批发商餐饮业者进行稽查频繁回访这些业者干扰正常营运是不是在乱干扰我想要问卫福部的立场是不是是的 谢委员我们的立场非常简单我们都是科学分析然后一体试用
transcript.whisperx[130].start 4581.987
transcript.whisperx[130].end 4591.65
transcript.whisperx[130].text 所以我們必須會向各國講說我們是為了守護國人的健康我們是一體適用並沒有針對哪個國家所以聽起來我們並不是在亂干擾也很希望我們的官員在談判的時候可以表達我們衛福部的立場那第二個這個陳昭志委員問過了台灣對於訂定最大殘留容許量這個做法錯誤的暗示美國豬肉產品存在食品安全的疑慮
transcript.whisperx[131].start 4611.605
transcript.whisperx[131].end 4612.092
transcript.whisperx[131].text 您覺得呢
transcript.whisperx[132].start 4615.064
transcript.whisperx[132].end 4640.277
transcript.whisperx[132].text 我想我們要這個部分從我們專業以及說在維護食安的當中我們這個是應該是說剛剛已經跟委員報告過這是我們國人的飲食的習慣要遵守陳昭智委員也有說可能沒有辦法就習慣來說服美方我們還是必須要就我們台灣的法規就剛剛食藥署署長講得很清楚我們
transcript.whisperx[133].start 4641.898
transcript.whisperx[133].end 4656.493
transcript.whisperx[133].text 為什麼這樣子做那為什麼我們的標準定的比別人高這個是必須我們要透明的跟對方解釋的好下一個這也列在他對台灣有所意見可是其實很多美國的媽媽也有意見喔
transcript.whisperx[134].start 4657.674
transcript.whisperx[134].end 4685.071
transcript.whisperx[134].text 台灣禁止學校公餐使用含有生物科技成分意思就是基改啦加工食品美國持續對這項禁令的科學依據表示疑慮並且不斷的敦促台灣來撤銷該措施這個是所有父母都最關心的問題因為現在大家都必須要吃營養午餐嘛我也想請問食藥署署長的意見我們有可能去撤銷這樣子的禁令嗎
transcript.whisperx[135].start 4687.778
transcript.whisperx[135].end 4715.296
transcript.whisperx[135].text 就我的了解剛才提到的是校園裡面特定的食品的部分嘛因為這個特定的食品部分當初的立法的背景裡面應該是全國國民很關心食安這個議題那也關心特定的議題之下呢進行的風險溝通最後形成評估出來的結果評估出來的結果呢就變成了一個規定跟法律上面的協助他做法官
transcript.whisperx[136].start 4716.357
transcript.whisperx[136].end 4738.591
transcript.whisperx[136].text 所以在這個規定底下我們就有機會可以協助做整個市場的稽查才能確立它的風險所以這些是我們持續在因應跟持續精進的一個部分那目前我們持續在往這方面來持續的對相關的食安的議題能夠把關我覺得署長講得非常清楚
transcript.whisperx[137].start 4739.271
transcript.whisperx[137].end 4753.164
transcript.whisperx[137].text 這個是在您跟校園跟家長以及台灣的食品提供者作為溝通所訂定出來的這個也希望在談判的過程可以表達清楚因為從第一頁我就說出去的是別人可是進來被罵的是你們
transcript.whisperx[138].start 4754.885
transcript.whisperx[138].end 4782.519
transcript.whisperx[138].text 這不公平所以現在我們剛好藉由這個場合表達清楚你們為什麼這樣做那你們的立場是什麼台灣人民的想法是什麼家長的想法是什麼那在談判的時候希望可以也顧及台灣人民的這麼一塊那最後就是台灣曾經以狂牛病為疑慮啊所以禁止某些美國牛肉的產品如絞肉等等的所以之後這個方向是不是有可能會談到美國的牛絞肉
transcript.whisperx[139].start 4788.187
transcript.whisperx[139].end 4798.278
transcript.whisperx[139].text 因為剛剛前面一個問題我還是跟委員回覆一下我想我們衛福部就站在我們的一個食品
transcript.whisperx[140].start 4799.481
transcript.whisperx[140].end 4819.151
transcript.whisperx[140].text 的一個維護安全的一些專業的建議我們是跟談判的這種團這是政府是一個一體的所以是充分的一個溝通所以沒有說誰來談誰來承擔的事情我們共同一起來承擔然後共同維護實際上跟我們
transcript.whisperx[141].start 4820.021
transcript.whisperx[141].end 4849.367
transcript.whisperx[141].text 國家最大的一個利益所以我想我們都會根據國際的標準來繼續往最後方面來努力主席兩分鐘 對我們今天其實只是希望你們談判的方向大家可以明確知道而且未來可以做社會溝通因為之前兩位還沒上任的時候曾經發生食藥署就默默的更改了日本進口草莓的農藥殘餘量把它提高了
transcript.whisperx[142].start 4849.887
transcript.whisperx[142].end 4875.582
transcript.whisperx[142].text 那預告的時候也是一聲不響後來真的開始實施開始進口的時候接到了非常大量的陳情啊對那當然你們現在可能說你們細節不能透露但是我們希望方向我們是知道的那之後你們用科學的證據來說服我們好不好那最後在這邊提醒大家一下這句話我先念過去不過呢剛剛聽了半天好像都問不到什麼
transcript.whisperx[143].start 4876.542
transcript.whisperx[143].end 4900.82
transcript.whisperx[143].text 明確的這個談判內容等等等一下我們蘇昭瑋可以接著問有一個人曾經說過啊正常的貿易協定跟任何一個政治實體且貿易協定正常需要 需要昭告社會大眾 召開空丁會各行各業的工會加入討論讓行政機關充分獲得資訊了解各行各業的利弊得失我們才能知道談判的重點與籌碼
transcript.whisperx[144].start 4902.501
transcript.whisperx[144].end 4925.914
transcript.whisperx[144].text 第二行政機關出國談判第三談判結果由立法機關審議由於事前授權不完全代表事後不用審議立法機關必須確認行政機關談判並無違法並且符合授權範圍審議過後此貿易協定才能對國內產生法律的效力這句話聽起來很有道理吧很有道理嗎
transcript.whisperx[145].start 4926.804
transcript.whisperx[145].end 4947.53
transcript.whisperx[145].text 包委員我想我們政府在做任何事情一定是廣徵大家的意見不管是產業特別是立法院的一個意見我相信政府這是我們立法院黨團的愛台第一品牌沈博洋大立委曾經做過的發言所以我們希望我們可以堅守同樣的標準
transcript.whisperx[146].start 4949.23
transcript.whisperx[146].end 4974.648
transcript.whisperx[146].text 沈伯陽大立委在監督其他政黨的時候講過這些話我們希望這些事也可以同樣再落實下去因為像現在日本的國會他們在跟立法他們的國會議員討論的時候也許不能給細節但是他們給予大概的方向並且逐步的讓人民去了解為何我們可能需要修改標準等等的這些我希望未來大家可以共同做到各部會可以一起合作好嗎
transcript.whisperx[147].start 4975.208
transcript.whisperx[147].end 4989.551
transcript.whisperx[147].text 好 謝謝主席 謝謝我們一起合作 謝謝謝謝部長我們未完委員會每個委員都很認真喔都是有備而來的喔好 接下來請楊耀委員質詢好 謝謝主席主席我請一下食藥署江署長
transcript.whisperx[148].start 5011.676
transcript.whisperx[148].end 5015.387
transcript.whisperx[148].text 署長好署長不好意思因為問你比較快因為
transcript.whisperx[149].start 5019.79
transcript.whisperx[149].end 5046.102
transcript.whisperx[149].text 台美的貿易談判大概美豬美牛算是國人很重視的一項談判美國的貿易代表署向國會提出了2025年對外貿易障礙的評估報告那在報告中明確的指出台灣對於美豬美牛進口的限制規範是不必要的貿易障礙
transcript.whisperx[150].start 5047.122
transcript.whisperx[150].end 5076.31
transcript.whisperx[150].text 那按照世界貿易組織WTO認為什麼叫做不必要的貿易障礙呢就是指有一個國家採取採取進口限制措施未能證明它的必要性跟合理性對於外國商品造成不公平不科學或者是過度的限制這個叫做不必要的貿易障礙
transcript.whisperx[151].start 5077.264
transcript.whisperx[151].end 5090.43
transcript.whisperx[151].text 那用這個觀點來看呢我國目前對於美豬美牛的限制規範在食藥署的專業來看是不是屬於不必要的貿易障礙
transcript.whisperx[152].start 5093.841
transcript.whisperx[152].end 5112.118
transcript.whisperx[152].text 首先謝謝委員非常精準的提問有關於美國進口台灣的續產品裡面的美豬跟美牛的部分那過去多年來我們知道在牛的開放的時間其實已經超過10年了豬的開放其實在110年的1月1號也開放了
transcript.whisperx[153].start 5116.662
transcript.whisperx[153].end 5145.962
transcript.whisperx[153].text 開放之前其實有非常非常深刻的社會的溝通那談到這個貿易的部分呢其實在食品安全裡面我們強調的叫做Risk Analysis風險的分析風險分析其實包含了三大塊第一大塊叫做風險溝通因為你在乎我在乎委員在乎以及全體的現場的都很在乎所以風險溝通這個議題呢是涵蓋了在做科學的評估
transcript.whisperx[154].start 5146.742
transcript.whisperx[154].end 5161.509
transcript.whisperx[154].text 所以第一項因為大家都覺得食品安全這件事情是最重要的在食安優先的前提之下我們的風險溝通其實一直都是啟動啟動之後因為溝通大家要溝通能夠對話就像我現在講的
transcript.whisperx[155].start 5165.028
transcript.whisperx[155].end 5185.886
transcript.whisperx[155].text 講國語這樣會通 講台語應該也會通所以語言上面要在同一個層次上面去談所以層次上談就是所謂的Risk Analysis裡面的Risk Assessment 風險評估評估要用四大面向來做評估因為我們必須要面對這件事情說我們現在是講的叫做當初的瘦肉精來克多巴胺這個議題
transcript.whisperx[156].start 5187.487
transcript.whisperx[156].end 5215.666
transcript.whisperx[156].text 所以這個評估這之後呢就會牽涉到第二個就是他的所謂的劑量效應到底是怎麼樣的表現然後就叫做後面是風險暴露最後呢才能夠去把他的風險量化出來我之前常常去演講講萊克多巴胺 水狗 講到轉波結果坐在第一排的阿嬤那個粉絲來一直看就點頭微笑阿嬤你怎麼我講說大家在走秘密船你怎麼不走
transcript.whisperx[157].start 5218.267
transcript.whisperx[157].end 5244.157
transcript.whisperx[157].text 意思就是說它其實沒有暴露就沒有風險所以在這種科學的評估的基礎之下呢才能夠去做對談對談之後呢我們把這個標準其實訂出來之後訂出來之後呢回饋給所有的全國的民眾跟回饋給我們的風險管理的機關那目前呢其實就是在衛福部部長領導之下的食藥署來做這件事情所以會訂出這樣子的標準之後
transcript.whisperx[158].start 5245.217
transcript.whisperx[158].end 5274.259
transcript.whisperx[158].text 會有國際的調和國際的調和剛才部長也特別提到說我們會不會成為一個一個障礙的因為國人的飲食習慣其實有非常非常的特殊性這個特殊性裡面我們在未來一定會做非常嚴正的表示那因為國外沒有這樣子的特殊的飲食習慣所以我們這邊就不特別透露出來我們的想法因為那個想法其實是很獨特的有融為有一點點保留那剛才提到的
transcript.whisperx[159].start 5275.487
transcript.whisperx[159].end 5300.643
transcript.whisperx[159].text 會不會是標示在美豬美牛的部分因為我們對於特別豬肉的部分不管是哪一國進來的或者是國內的或者國外的我們其實是一體適用的因為這樣子一體適用我們查查機關我們的監督的行政機關在做的時候才有依據法院的依據那我們其實持續在做那曾經有遇到過就是
transcript.whisperx[160].start 5301.724
transcript.whisperx[160].end 5313.68
transcript.whisperx[160].text 沒有適當的標示的我們也做了裁處因為我們是依法行政行政機關我們能夠幫忙能夠做的大概是這樣子的前提之下來做一些我們對於順便安全的瞭解那
transcript.whisperx[161].start 5314.98
transcript.whisperx[161].end 5344.139
transcript.whisperx[161].text 第二個部分我大概特別提到的是說溝通完之後 風險分析完之後那其實有很多很多調和剛才特別提到的我們會做事前的公告之後公告之後其實是讓吸取全民大家的意見之後再做最後的一個調和跟調整能夠取得最大的共識那事實上這個部分就是我們能夠去做的地方也謝謝楊委員的提案這個題目所以署長剛剛講的大概就是
transcript.whisperx[162].start 5345.961
transcript.whisperx[162].end 5367.48
transcript.whisperx[162].text 風險評估、科學依據、溝通等等還有一個就是平等性也就是說食藥署這邊的看法是美國貿易代表署提出的就是台灣對美豬美牛進口的限制是構成不必要的貿易障礙
transcript.whisperx[163].start 5370.729
transcript.whisperx[163].end 5389.714
transcript.whisperx[163].text 這個部分稍微跟委員進一步說明一下因為我們針對這個標示全世界對於原產地的標示這件事情是非常非常的清楚那並沒有特別的形成障礙我看台灣也是不分國籍也都有標示
transcript.whisperx[164].start 5394.773
transcript.whisperx[164].end 5416.051
transcript.whisperx[164].text 我問一下就是美牛的部分因為美豬剛剛署長大概有談到說特定的部位因為有國情的關係所以不方便透露那我這個也就不問了我問一下美牛所以說我們其實在從2021年
transcript.whisperx[165].start 5421.756
transcript.whisperx[165].end 5446.876
transcript.whisperx[165].text 開始就對30個月齡以上的美牛解禁了可是美國對於我國針對部分美牛內臟產品實施施加繁瑣而且非基於科學根據這是他們的用語的邊境查驗程序食藥署這邊有什麼看法
transcript.whisperx[166].start 5448.818
transcript.whisperx[166].end 5475.143
transcript.whisperx[166].text 首先回應委員特別提到的剛才講說珍貴美牛的部分所謂的全靈的牛的開放那開放這個東西是基於一些科學的分析出來的結果科學是怎麼分析的因為對於動物 動物其實也會生病所以動物生病的時候要如何去醫治它有一個世界的組織叫做Ward Organizational Animal Health動物健康我們簡稱叫做WARD
transcript.whisperx[167].start 5477.023
transcript.whisperx[167].end 5498.653
transcript.whisperx[167].text 這個WAR裡面呢其實針對全世界各個國家裡面的續產品它的風險其實有三個層級啦那層級包含就是完全可以忽略的第二個不確定的等等的這三個層級向下我們可以做深刻的由這個第三方國際重要的組織協助確立了
transcript.whisperx[168].start 5502.005
transcript.whisperx[168].end 5518.53
transcript.whisperx[168].text 它在國際標準之下該國的某一個續產品是怎麼樣子讓全世界各國可以去面對面對這個議題我們其實是有深刻的去了解跟進一步的分析在這種前提之下我們才會在後續的
transcript.whisperx[169].start 5519.21
transcript.whisperx[169].end 5535.756
transcript.whisperx[169].text 有機會去假如要進口之前一定要先去國外去了解它的廠這廠事實上是在所謂的QSA Quality System系統的評估Assessment之後才能他們國內做完之後才可以作為
transcript.whisperx[170].start 5536.776
transcript.whisperx[170].end 5556.623
transcript.whisperx[170].text 出口的一個依據所以在這種的國際標準之下其實我們有機會可以確立看到的世界的標準是什麼在做進一步我們在風險在管理的部分做一些調和所以我們在按照這樣子國際的基準之下做的一個評估其實對國人的食品安全的
transcript.whisperx[171].start 5557.463
transcript.whisperx[171].end 5580.466
transcript.whisperx[171].text 把關的部分其實我們用最嚴謹的態度來面對這個非常艱困的一個對談的一個過程以上跟委員報告我也相信食藥署這邊在把關上就從源頭開始到邊境到市場的標示會站在國人健康的立場來做嚴格的把關
transcript.whisperx[172].start 5581.707
transcript.whisperx[172].end 5608.786
transcript.whisperx[172].text 那國際貿易談判是這樣子就是我們有東西要賣出去那人家有東西要賣進來那食藥署這邊大概就會變成最大的苦主啦因為討論度會變得很高那你們的壓力也大我很少佔用 我先跟主席報告我很少佔用委員會的時間那我想我是不是給署長一些時間
transcript.whisperx[173].start 5610.902
transcript.whisperx[173].end 5634.935
transcript.whisperx[173].text 你把你們目前會提供給談判代表的有關食藥署相關對台美貿易談判包括美牛、美豬及所有食藥署相關的事項你們基本的大原則方向
transcript.whisperx[174].start 5636.834
transcript.whisperx[174].end 5665.894
transcript.whisperx[174].text 會提供給貿易代表也藉這個機會跟國人同胞做個說明好不好謝謝委員有機會讓我們可以做進一步的去闡述這個部分最重要的是因為題目其實是公開的是USTR美國的系統性的談判裡面的障礙裡面的報告裡面都有了所以針對的盤幹的部分這邊跟委員做進一步的說明因為談判之前其實是不露底牌
transcript.whisperx[175].start 5666.754
transcript.whisperx[175].end 5689.637
transcript.whisperx[175].text 那因為不露底牌的至少我們的方向是就是食安優先所以就是講大方向對我們就是以食品安全優先以國際的標準那用科學的風險分析為基準之後國際的標準之後才能建置我們國內的市場稽查的整個機制會以這樣子的前提來去做我們推廣推出去我們要去談判的
transcript.whisperx[176].start 5690.897
transcript.whisperx[176].end 5712.889
transcript.whisperx[176].text 這件事情也是回應在先前蔡總統到現在賴總統裡面第一階段的食安五環裡面所謂的源頭管理到所謂的重建生產的管理到第三個要加強查驗第四個對黑心廠商之間的責任到最後的食品全民的監督
transcript.whisperx[177].start 5713.729
transcript.whisperx[177].end 5741.663
transcript.whisperx[177].text 那已經其實去年度就已經變成upgrade變成叫做五環2.0這邊也有機會跟大家做一點說明我們其實最強調的是全民的監督跟源頭的管理特別是源頭管理的這件事情讓我們可以在中央地方可以共同的去集合然後讓產業鏈能夠結合起來更重要的事情對食品安全的教育其實我們重新從頭一起來把它建置得更完整我們要建置一個
transcript.whisperx[178].start 5742.583
transcript.whisperx[178].end 5758.371
transcript.whisperx[178].text 可以當台灣人也可以當世界人甚至要當宇宙人共同為食安的標準是可以溝通的這溝通必須在科學的基礎之下國際的標準之下來進行後續第二個階段
transcript.whisperx[179].start 5759.986
transcript.whisperx[179].end 5776.068
transcript.whisperx[179].text 所以這個食安的教育的部分我們會把這一塊非常非常深植到我們所有的全民的心中了解這一個很重要的基準的原則以上簡單的說明謝謝謝謝署長那我最後提醒一下就是不管
transcript.whisperx[180].start 5777.389
transcript.whisperx[180].end 5795.747
transcript.whisperx[180].text 國際貿易 台美貿易談判的結果是怎麼樣就算都沒有改變我們查額的人力只要需要增加署裡面這邊還是必須要提出相關的預算補足人力好不好首先 我一點點補充不曉得 趙偉這邊趙偉還沒有站起來
transcript.whisperx[181].start 5799.23
transcript.whisperx[181].end 5824.93
transcript.whisperx[181].text 那我們對於邊境的查查其實非常非常地感謝人事總署這邊給予的協助我們去北七查查在基隆關跟我們的港口以外到我們機場我們看到的是非常非常地窄人力上面目前是有72個查查的人力那因為這麼不好的空間人壓力又大
transcript.whisperx[182].start 5825.791
transcript.whisperx[182].end 5850.089
transcript.whisperx[182].text 工作量又多非常非常感謝我們今年度有爭取到33個33位的稽查的人力能夠在我們的邊境做進一步的部署我相信國家給我們的支持給食藥署北區區管這邊的支持也成為我們能夠堅守食品安全更進一步能夠達到維護全民的食安這一項重要任務的我們一定是全力以赴謝謝
transcript.whisperx[183].start 5851.39
transcript.whisperx[183].end 5874.231
transcript.whisperx[183].text 謝謝署長也謝謝所有在座的行政官員大家正在面臨一場非常非常艱困的貿易談判就是我們要把東西賣出去那我們東西賣不出去影響到國人的經濟那我們必須要買進相關的東西買進來的東西我剛剛聽
transcript.whisperx[184].start 5878.094
transcript.whisperx[184].end 5896.819
transcript.whisperx[184].text 實要屬江署長的說明我對執政團隊是有信心的大家加油謝謝署長 謝謝主席 謝謝謝謝好 謝謝楊耀義你朋友來啦所以齁 讓他說到他開心啦接續我們請王振旭委員質詢好 謝謝主席麻煩農業部杜次長
transcript.whisperx[185].start 5915.928
transcript.whisperx[185].end 5933.202
transcript.whisperx[185].text 市委員好市長好首先就要來討論一下今天的主題就是關稅對於我國農業的衝擊我們雖然已經不是以農利國的主要的一個內涵可是我們知道事實上大家非常關心這次的整個關稅
transcript.whisperx[186].start 5935.043
transcript.whisperx[186].end 5956.153
transcript.whisperx[186].text 不對等之下美國的要求對農業造成的影響大家都非常非常的擔心剛剛也有很多委員也諮詢過那我們也了解其實農業是一個非常具有危險性的產業它危險是來自於有點靠天之犯以外很多的事情可能都會受到波及
transcript.whisperx[187].start 5956.793
transcript.whisperx[187].end 5986.136
transcript.whisperx[187].text 那我們看一下台灣對美國進口的大宗品類裡面我們也知道黃小玉就是最主要的另外就是牛肉那個牛肉剛剛有提到到底美國他們在擔心進大台灣的時候會受到哪一些的影響那如果在零關稅的情形之下我們如何能夠做相對的因應措施我們可以往下看知道說其實我國牛肉94%都是從國外進口當然包括美國 巴拉圭還有澳洲 紐西蘭等等
transcript.whisperx[188].start 5986.736
transcript.whisperx[188].end 6005.665
transcript.whisperx[188].text 那目前針對這一部分美國認為說我們所設定的要求就是無法讓他們進口絞牛肉或者是供動物食用的牛肉的產品還有美國的散裝牛肉等等所以他們很希望能夠
transcript.whisperx[189].start 6006.585
transcript.whisperx[189].end 6025.451
transcript.whisperx[189].text 解禁美國牛肉的產品這個剛剛食藥署那邊也表達過在目前這方面對於國民的國人健康的部分應該要有更周延的好的一個方式來把關所以針對這部分不知道農業部有什麼因應的措施或者是想法
transcript.whisperx[190].start 6026.155
transcript.whisperx[190].end 6053.967
transcript.whisperx[190].text 好 謝謝委員關心也謝謝委員特別支持台灣農業因為就像剛剛委員提到的農業其實是一個非常特別的一個產業那不是只有供我們使用的安全其實對於糧食安全對於整個土地的使用這件事情是長久的那即便是剛剛委員特別關切就是說牛肉的部分確實台灣自己供應自己的牛肉的數量不多大概5到6%所以大部分90幾%都是進口這是第一點
transcript.whisperx[191].start 6055.848
transcript.whisperx[191].end 6081.29
transcript.whisperx[191].text 那第二点就是其实国人食品饮食习惯的改变因为以往其实像在可能四五十年前农业的时候其实吃牛的人不多但是现在其实因为消费习惯改变所以吃牛的人多那国内的肉牛产业有它的特殊性但是牛肉其实是因为第一个饲养跟整个环境然后能够提供到消费者的手上
transcript.whisperx[192].start 6082.131
transcript.whisperx[192].end 6095.797
transcript.whisperx[192].text 是不一樣的因為我們很快從土砂場到消費端的時間是短的那比起進口牛肉要經過運輸冷凍所以對消費者的使用上面跟他的通路是有區隔的但是回過頭來就是說那就農業部來講
transcript.whisperx[193].start 6097.509
transcript.whisperx[193].end 6111.41
transcript.whisperx[193].text 怎麼維持我們台灣肉牛產業的這個競爭性這是農業部要做的那至於剛剛委員提到就是說那美國關切他們牛肉進來台灣好像希望能夠有一些在規定上面的改變我想這限制到兩個層級啦
transcript.whisperx[194].start 6113.012
transcript.whisperx[194].end 6131.92
transcript.whisperx[194].text 第一个成绩是我相信所有的出口国包括我们台湾的农产品要出国我当然希望争取最好的条件希望把所有的相关的限制措施能够降低我相信美国也是基于这样的立场来要求台湾看能不能尽量再打开市场那这是美方立场但就我台湾来讲
transcript.whisperx[195].start 6133.004
transcript.whisperx[195].end 6152.176
transcript.whisperx[195].text 就農業部來講我的重點就是還是要維持我們台灣的農業的安全所以不管是在進口牛肉也許剛剛從那個衛福部這邊的報告其實大家也都知道在不管怎麼開放怎麼談判其實都是基於科學而且國人的安全農業其實一定都要保障我想這是基本立場是不會變的
transcript.whisperx[196].start 6152.936
transcript.whisperx[196].end 6179.263
transcript.whisperx[196].text 是 我非常同意必須要有這樣的具體的做法不過我們也發現 雖然是維持6%可是依照數據看起來 我們這個養牛的這個頭數還是每年在減少 去年甚至減了4.5%到底是什麼原因 我們的這個企業 企業的好處是炒不高 還是有什麼其他的因素所以怎麼樣來維持我們的這個競爭力
transcript.whisperx[197].start 6182.043
transcript.whisperx[197].end 6201.914
transcript.whisperx[197].text 其實基本上我想農業是辛苦的但是農業也在改變譬如說池谷漸漸在減少但是池地雖然戶數減少但是飼養的規模增加所以這是一個產業調整的方向所以對於我們來說我們是覺得說怎麼讓台灣的農業不管是在續勤業也好農業也好怎麼讓我們的農業第一個
transcript.whisperx[198].start 6209.398
transcript.whisperx[198].end 6223.172
transcript.whisperx[198].text 但是我們的經營效能要能夠提升不管是給自動化 給智能化 或是在循環 在減碳在能夠讓整個永續上面來做 這我們會來做至於企業啊 這會減少 我也是覺得說
transcript.whisperx[199].start 6225.194
transcript.whisperx[199].end 6242.206
transcript.whisperx[199].text 當然現流的經營上面其實都有在改變那但是我們是希望就是說留下來有競爭力的那也是我們農業部的最主要的工作就是勞動農業做工作這個事情我們一定會來大家來照顧我們的農民讓他們在經營上面其實能夠得到更多的幫助還能更有效能
transcript.whisperx[200].start 6242.722
transcript.whisperx[200].end 6258.198
transcript.whisperx[200].text 是就是各方面的環境或者是勞動力都需要持續的來分析希望至少至少維持他們該有的這些好的環境好那再過來就是有關於這個我們出口
transcript.whisperx[201].start 6259.179
transcript.whisperx[201].end 6279.398
transcript.whisperx[201].text 到美國大部分都是以這個魚類為主當然最大宗還是這個蝴蝶蘭的這個產品那周圍其實也很關心這個毛豆毛豆覺得很辛苦雖然是占了第五第六位不過我們可以發現十個大量的出口裡面其中也就有六項是屬於這個魚產品
transcript.whisperx[202].start 6282.982
transcript.whisperx[202].end 6301.102
transcript.whisperx[202].text 這漁產品其實川普他也很希望說讓海鮮再次偉大我們可以看下一個幻燈片告訴我們說川普覺得就美國希望再次偉大同時事實上海鮮是重要的我們可以看到
transcript.whisperx[203].start 6301.622
transcript.whisperx[203].end 6319.364
transcript.whisperx[203].text 媒體有相關的報導所以川普要下令要救魚業那這個對台灣可能就有一些衝擊因為我們出美國魚產品有那麼大那麼多想要做全球海鮮的霸主那針對這部分不知道目前市長這邊有沒有哪些因應措施
transcript.whisperx[204].start 6319.793
transcript.whisperx[204].end 6338.328
transcript.whisperx[204].text 好謝謝委員關心其實農產品第一個就像我剛提到農產品的生產其實它有糧食安全的重要性所以不是說有得出口主要是我們自己的台灣糧食自己要能夠維持這是第一點那第二點是那當然如果有全世界的市場我們當然是要能夠去爭取跟維持特別是在海鮮這一塊其實我們跟美國的
transcript.whisperx[205].start 6341.07
transcript.whisperx[205].end 6368.431
transcript.whisperx[205].text 水產的形態不太一樣我們的養殖業相對強那當然也有一些遠洋跟近海的捕撈作業但對我們來講其實美國的關稅對我們來說就是第一美國的市場要購買第二其他市場要去賺就是我們的市場布局其實當然不能只看美國其他市場也要去這樣對農業的整個生產跟做調節才是有幫助那美國自己對自己的不管是農業啦海鮮啦對美國所有的製造業當然美國希望他們是
transcript.whisperx[206].start 6369.505
transcript.whisperx[206].end 6397.236
transcript.whisperx[206].text 有他們的優勢那在台灣我當然是顧我們自己的農業也好我們也希望我們的農業不只是維持我們自己的糧食的供應糧食安全當然也是可以去拚市場的我們一定要去拚所以今拜我們推出三個面向的六大措施也是希望讓我們的產業受影響的狀況能夠降低第二個多過這個時間大家就會來拚啊國外市場要去購新的市場要去拓展啊國內的產銷要把它做好我想這是農業部目前的做法跟目標
transcript.whisperx[207].start 6397.816
transcript.whisperx[207].end 6417.567
transcript.whisperx[207].text 是可以理解不過我們也知道說在川普想要再讓這個美國的漁業再次能夠變成全球的霸主他針對於不同的國家也提出有相關的一些要求因為我們三度上榜強迫勞動清單裡面所受到相關的影響
transcript.whisperx[208].start 6418.547
transcript.whisperx[208].end 6432.713
transcript.whisperx[208].text 那這部分其實漁業署也非常努力在做一些改善的措施包括要改善這個漁工的待遇等等那其實他所提到就是要加強美國要加強審查進口海鮮的非法漁撈跟強迫勞動的
transcript.whisperx[209].start 6435.915
transcript.whisperx[209].end 6452.709
transcript.whisperx[209].text 大綱所提到一個動力的一些如何能夠讓漁工在特定的情形之下能夠符合所有的這些要求那這部分不知道農業部跟勞動部之間有做好哪一些的溝通跟行政執行管道的處理
transcript.whisperx[210].start 6453.243
transcript.whisperx[210].end 6468.877
transcript.whisperx[210].text 有謝謝委員的提醒這件事情其實我們這幾天對於這個在海上捕撈的這些我們的夥伴因為在我們的基準地方做工會是算我們的夥伴那這件事情其實我們這邊做了許多的一些改善比方說我們的那個黃牌被歐盟
transcript.whisperx[211].start 6470.658
transcript.whisperx[211].end 6498.232
transcript.whisperx[211].text 放上之後我們取消掉就表示我們做了一些改善那其實所有對於在海上工作夥伴的勞動力的改善不只是在海上我們譬如說我們前鎮漁港的有一些漁工設施的改善就是說不是只在船上他們克服了上岸之後的這些我們也都有在考慮也做了一些改進那海上的部分大概包括他們的薪資啦包括他們的通訊啦Wi-Fi這些建置還有這個清查
transcript.whisperx[212].start 6499.512
transcript.whisperx[212].end 6522.365
transcript.whisperx[212].text 他們的作業情形這些都有在做那勞動部跟我們其實也一直在就我們的這個勞動力的改善對於這個基準的提升這個部分也非常謝謝我們立法院很多委員其實都很支持幫我們在對這件事情上面有一些協助跟提醒謝謝透過大家努力可以共同克服這個關稅帶來一個衝擊謝謝主席
transcript.whisperx[213].start 6525.006
transcript.whisperx[213].end 6530.788
transcript.whisperx[213].text 好 謝謝 謝謝王議員 謝謝次長 講得很誠實來 接下來我們請王一鳴委員謝謝主席我們首先是不是先請我們經貿談判辦公室的嚴副總談判代表還有我們剛剛農業部我們的次長一起上台
transcript.whisperx[214].start 6557.488
transcript.whisperx[214].end 6569.743
transcript.whisperx[214].text 我們這個副總談判代表我首先請教你之前你們已經跟美方有過視訊的會議請問美豬跟美牛有沒有在你們談判的議題之內
transcript.whisperx[215].start 6572.642
transcript.whisperx[215].end 6596.938
transcript.whisperx[215].text 謝謝委員那我想就是基於台美的談判的互信的問題我們基本上談判的議題是沒有辦法在現階段去跟大家揭露的那未來如果適當的一個時機我們會由我們的鄭麗君副院長所領軍的這個談判小組來跟各位所以你不敢對外表態嗎那這個議題會不會是未來談判的一個重要的議題美豬跟美牛
transcript.whisperx[216].start 6599.921
transcript.whisperx[216].end 6620.2
transcript.whisperx[216].text 我想我們現在各國都是看依照美國現在他剛剛實際上很多委員都有提出來美國有提出這個NTE的外國貿易障礙調查報告那我想這些都是我們現在自己可以操之在我的一些準備的方向所以只要列在美方的這個非關稅貿易障礙報告裡面的議題就是未來要談判的議題對不對
transcript.whisperx[217].start 6626.058
transcript.whisperx[217].end 6642.618
transcript.whisperx[217].text 我們只能說它都是一個指引的方向都是一個指引的方向所以就是會談就對了嘛好那這個是我聽到你這邊的說法我要請教一下次長就是說在我們對美的貿易裡面事實上你們今天的報告也很清楚我們的農產品對美國其實是逆差
transcript.whisperx[218].start 6645.501
transcript.whisperx[218].end 6665.432
transcript.whisperx[218].text 逆差了28億所以在這樣的情況底下如果美方還進一步要逼迫我們在美豬跟美牛上面無論是標示也好或者是萊克多巴胺的標準也好或者是再去放寬其他沒有放寬的事項也好你認為這是公平合理的嗎今天我們對他不是順差我們是逆差那這個川普對外講說你們其他國家賺了我們很多錢很抱歉在農產品這一塊是美國
transcript.whisperx[219].start 6675.297
transcript.whisperx[219].end 6690.75
transcript.whisperx[219].text 賺了我們28億美元所以他還有立場在農產品這一塊逼迫我們去退讓嗎是不是我們這一塊的底氣相對是主的因為這個沒有川普總統所說的我們賺他錢喔是他們賺我們28億美元喔
transcript.whisperx[220].start 6693.755
transcript.whisperx[220].end 6717.112
transcript.whisperx[220].text 是謝謝委員特別支持臺灣農業我想如果是我能夠提供任何資料給我們臺灣代表那邊這點我一定會講因為對農業來講我們美國是對我們是順差的是啊其實臺美的貿易其實本來就是互補的我們買進來的黃小玉其實為了臺灣的續產業所以其實即便有這樣的逆差我想美國應該了解這一點這是第一
transcript.whisperx[221].start 6717.572
transcript.whisperx[221].end 6732.76
transcript.whisperx[221].text 那第二個進來的黃小玉其實支持我們的畜牧產業所以其實我覺得這是互補的所以我想如果能夠提供給我們台灣他們代表在農產品的在諮商上面這點一定會放在裡面好我希望我們顏副總代表在這邊你也聽到了我覺得我們在對美談判的時候順差跟逆差談法是不一樣的
transcript.whisperx[222].start 6738.863
transcript.whisperx[222].end 6763.091
transcript.whisperx[222].text 基本上他已經是大量賺我們美金的這個項目我們是更有底氣的我們應該是可以守得很穩的所以在農產品在美豬美牛這一塊我們是有底氣的應該就是要堅守我們的原則我希望我們副總代表在這邊這一點是我們自己有進有退我們的原則應該是要非常清楚的那這個副總代表你可以先回座我接下來請教一下我們次長在我們的現在進口的豬肉裡面
transcript.whisperx[223].start 6768.315
transcript.whisperx[223].end 6774.693
transcript.whisperx[223].text 這個加拿大豬是第一名嘛請問他有沒有萊克多巴胺加拿大的飼養方式他們有沒有添加萊克多巴胺
transcript.whisperx[224].start 6776.329
transcript.whisperx[224].end 6800.092
transcript.whisperx[224].text 應該這樣說其實就衛福部在邊境的檢測部分目前沒有任何一個含有萊克多巴胺的豬肉進到國內不是我是問你說加拿大他們在養他們的加拿大豬的時候養殖的過程會不會添加萊克多巴胺就我所得到資料是沒有好那第二名的這個西班牙豬他們養殖過程會不會添加萊克多巴胺歐盟國家不用
transcript.whisperx[225].start 6801.113
transcript.whisperx[225].end 6806.819
transcript.whisperx[225].text 對 好 這個是第一名跟第二名那第三名呢 第三名我們進口的豬肉是哪一個國家不知道 是巴拉圭巴拉圭他們會不會添加巴拉圭也不准用好 那美國他飼養過程就是會添加萊克多巴對不對
transcript.whisperx[226].start 6822.264
transcript.whisperx[226].end 6851.149
transcript.whisperx[226].text 它應該有的有的沒有啊它準用但是不見得都會添加對有的有用有的沒有用嘛所以這個就是為什麼我們今天從其他國家進來的這個豬肉我們要去標示這個產地國因為很多國家是不用萊克多巴胺包括台灣我們的飼養是不准添加萊克多巴胺的吧對不對對萊克多巴胺在台灣不只不准添加不准使用不准製造不准運輸也不准承受跟分裝
transcript.whisperx[227].start 6852.63
transcript.whisperx[227].end 6872.588
transcript.whisperx[227].text 對 這個就是我們看到的你如果從消費者的角度這麼多的國家是不使用的美國是使用的所以我們今天要求每一個國家標示他的原產地請問這個有違反什麼精神這個是從消費者的角度讓他可以去分辨跟選擇如果美國連這個標示都要我們拿掉我個人覺得是非常的不合理啊
transcript.whisperx[228].start 6873.708
transcript.whisperx[228].end 6901.818
transcript.whisperx[228].text 從剛才食藥署也回答這件事情就是我們對於這個產地的標示並沒有針對美國我們對所有來源都要做標示所以這不會構成任何貿易障礙嘛這也不是問題嘛我要講的就是說今天不是美方說了算嘛他列在他自己認為的這個貿易障礙他自己認為是貿易障礙但是我們必須從我們自己的消費者我們國家的立場去看待嘛我們是對每一個國家都標示啊我不是只有標美國啊加拿大我也標啊
transcript.whisperx[229].start 6902.518
transcript.whisperx[229].end 6918.493
transcript.whisperx[229].text 對不對好那另外一個我要問你的就是現在之前有發生過這個洗產地的問題我們現在進口美國的豬肉你如果從這個豬肉儀表板你可以看到到去年有7778公噸豬肉加內臟那這個在2023年更是高峰來到16314公噸那這一些進口的
transcript.whisperx[230].start 6929.262
transcript.whisperx[230].end 6954.767
transcript.whisperx[230].text 美豬還有他的內臟我要問這個農業部就是請問他們去了哪裡因為市面上包括消機會他們去把所有的產品拿來看他的標示事實上都很難發現美豬的蹤跡那這些量你不能說他很少喔一萬六千多公噸跟七千多公噸這個量是很大的這樣這個量到了市面上之後完全看不到標示
transcript.whisperx[231].start 6956.608
transcript.whisperx[231].end 6965.383
transcript.whisperx[231].text 這個農業部有掌握嗎 這應該是你們掌握的吧它的流向食藥署是不是 好 那你先請回來食藥署跟部長請上來這個我幫消費者問
transcript.whisperx[232].start 6970.407
transcript.whisperx[232].end 6990.183
transcript.whisperx[232].text 因為按照我們的食安法是要標示成分的但是很多的加工品裡面我們現在都看不到美國豬有看到加拿大但是美國豬就是沒有看見請問都去了哪裡你們不是有做源頭的管理嗎追蹤嗎每一個肉餅商進口進來之後你們會追蹤他的流向我現在就幫消費者問請問這些美豬跟內臟都去了哪裡好是不是這個問題請江市長
transcript.whisperx[233].start 6997.557
transcript.whisperx[233].end 7021.046
transcript.whisperx[233].text 好 署長來謝謝委員的提問有關於豬肉的原產地的標示這件事情那其實是國際的標準所有的都會標示進來的一定都會標示對 你就直接回答我就是美豬到底現在去了哪裡它的流向去了哪些去處為什麼市面上這些包裝的食品它的原料裡面其實都沒有看到美豬
transcript.whisperx[234].start 7022.86
transcript.whisperx[234].end 7044.4
transcript.whisperx[234].text 這邊稍微做簡單的說明因為進來之後流布出去的流量其實是市場自由的機制那我們面對這個議題裡面我們就是後市場端我們去查查從110年到114年我們總共查了297,756件其中標示不合格的我們可以看到是111件
transcript.whisperx[235].start 7046.061
transcript.whisperx[235].end 7065.94
transcript.whisperx[235].text 那其中19件是美豬的產品所以表示我們在查查過程中也不是都是不合格都是美豬其他地方也有可能沒有好好標示只要沒有好標示我們在抽查市場機制我們會堅持做下去總共採取了有300多萬的一個裁罰的金額所以同學跟委員
transcript.whisperx[236].start 7066.5
transcript.whisperx[236].end 7081.529
transcript.whisperx[236].text 署長我問你齁2023年有發生席產地的就是美豬標加拿大豬喔當時這個媒體都有報導那請問這樣的一個席產地的現象到去年2024年還有沒有持續在發生
transcript.whisperx[237].start 7082.113
transcript.whisperx[237].end 7107.26
transcript.whisperx[237].text 我們目前查查的狀況就沒有看到進一步有證據說是有息產地的跟委員做進一步的報告去年零件都沒有我們去年去做的相關的一個查查我們不管是在衛生局的協作或我們其他的同仁後市場的調查裡面都沒有看到這邊跟委員做進一步就沒有息產地的情況還是你們沒查到而已
transcript.whisperx[238].start 7107.72
transcript.whisperx[238].end 7113.701
transcript.whisperx[238].text 那你們有沒有去比對去年有7778公噸喔這7778公噸請問它的流向到哪裡去然後這樣的流向跟你們的查核你有沒有去做一些勾擊跟比對確定說它沒有去剛剛提到市場機制是出去嘛對不對然後標示我們在
transcript.whisperx[239].start 7130.985
transcript.whisperx[239].end 7152.825
transcript.whisperx[239].text 行政機關裡面對於這個標示的部分目前我們持續監測的所以監測出來是沒有的因為沒有這樣的結果我們就會很做適當的一個宣布也做長期在我們的儀表板上面做一個揭露那針對這個議題我們持續的不會因為今天講完沒有明天我們就停下來我們還是持續做我們堅持
transcript.whisperx[240].start 7153.846
transcript.whisperx[240].end 7173.186
transcript.whisperx[240].text 那你應該要跟大家報告7778公噸它的主要的流向是去哪裡都沒有進到食品加工業嗎如果進到食品加工業它就應該要標示嗎但是在後端的所有的產品裡面沒有看見這樣的一個產品那它是化整為零了嗎它是不是都到這種市場上去了變成是絞肉
transcript.whisperx[241].start 7175.228
transcript.whisperx[241].end 7192.209
transcript.whisperx[241].text 然後絞肉只要他沒有標示或者是在市場上面根本沒有標示所以其實都吃下去大家也不知道還有內臟的部分進這麼多的從豬腳大腸頭肝臉整個他是不是都進到一些的小吃店去但是小如果是小吃店不是也應該要標示嗎
transcript.whisperx[242].start 7193.854
transcript.whisperx[242].end 7207.811
transcript.whisperx[242].text 你們有真的好好去追蹤嗎按照我們的飲食餐廳的標準底下我們有特別的標示也有去查查這個部分而且目前揭露的我們看到非常非常多台灣豬剛才提到台灣食用是佔90%是國內的
transcript.whisperx[243].start 7209.893
transcript.whisperx[243].end 7224.595
transcript.whisperx[243].text 因此他的標示裡面看到的不管哪一個產地的標示都其實我們消費者一眼其實在清理的時候所以我在問你的就是那明明有7000多公噸到去年還有7000多公噸的豬肉跟內臟進來了
transcript.whisperx[244].start 7225.717
transcript.whisperx[244].end 7249.833
transcript.whisperx[244].text 但是市面上你沒有看到有任何一個小吃攤有標出來難不成他就消失了嗎他到底去了哪裡啊我要你食藥署要掌握就是你應該要掌握他的流向你才知道說他到底有沒有真實的標示嗎我跟委員做進一步報告因為流向進來之後就會流不出去是啊流不出去的時候我們其實有在邊境的時候就做什麼的BPIBorder Protection Interest
transcript.whisperx[245].start 7250.413
transcript.whisperx[245].end 7278.3
transcript.whisperx[245].text 用人工智慧去知道所以我們都知道是在哪裡對知道在哪裡如果發生是有違規的我們針對這個人工智慧裡面會增加抽查抽驗的比例你的所謂違規是什麼就是沒有好好標示這是一項中間的一項可是任何的你指的是你原來的那個美國豬肉進口一進口的時候標它是美國豬吧我現在在問你的是它流到下游之後的這個流向
transcript.whisperx[246].start 7278.72
transcript.whisperx[246].end 7306.129
transcript.whisperx[246].text 照道來講它源頭如果是美國豬我們現在的標示是你即使到下游你是小吃店 你是店家你有使用到你就應該要把那個成分說我有使用你可能有使用台灣豬加美國豬你就應該要清楚的揭露但現在市面上完全看不到的情況底下那是不是就是有人有使用但是沒有在標示嘛這一點你們應該要去掌握嘛7000多公噸是很大的一個數量
transcript.whisperx[247].start 7306.929
transcript.whisperx[247].end 7328.093
transcript.whisperx[247].text 但是市面上看不到也不合理報告委員因為我們查查的過程是一體適用到所有的標示向下之後去查如果沒有特別的違規的狀況之下我們也是一體的對待任何一個廠家他們在標示上面的所以的確我們現在看到的是並沒有特別有違規的一個狀況特別跟委員做進一步的報告
transcript.whisperx[248].start 7330.974
transcript.whisperx[248].end 7351.945
transcript.whisperx[248].text 對 我覺得署長你們現在的查核還是有疏漏 你們沒有反向去查就是說有些店家你抽查 他進口的肉商是從哪邊來這個肉商在網上 如果他對到 他其實就是從美國進口來的那為什麼他在這一個店家 他就沒有標示出來這個就是漏洞嘛 就是說這個跟習產地是大概一樣的道理
transcript.whisperx[249].start 7352.946
transcript.whisperx[249].end 7376.684
transcript.whisperx[249].text 2023年有查到這個是大量的它因為是冷凍食品然後它這樣子出去但是現在有更多我懷疑它是進到了一般的傳統市場跟小吃店它根本也沒有在標示要不然你想一個基本的道理就知道消極會說很奇怪7000多噸還是一個很大的量結果市面上沒有任何一個產品就是你看到美國豬三個字
transcript.whisperx[250].start 7377.898
transcript.whisperx[250].end 7390.287
transcript.whisperx[250].text 那這個就是有問題嘛我希望這個食藥署在這個把關上面喔你們還是應該是要就是在運用一些方法 好不好謝謝委員 我們一定會積極加強的追蹤對 你們該集合 該查核的才是查核喔因為今天部長 來最後部長你今天對外說你還是會堅持四個原則喔其中有兩個原則一個是落實邊境跟市場稽查我現在在講的就是那你市場稽查這項其實不能放
transcript.whisperx[251].start 7406.88
transcript.whisperx[251].end 7432.409
transcript.whisperx[251].text 在我們現行的規定裡面我覺得就是要讓消費者非常清楚的知道我們進口了美國的豬肉跟內臟他到底到哪裡去消費者可以選擇吃或選擇不吃有的人不怕沒有關係有的人他就是要選擇真正的台灣豬他就是不要吃外國的我覺得就是要保留給消費者選擇權好不好我們一定透過部會跟中央地方的合作落實邊境差異跟市場的計差
transcript.whisperx[252].start 7433.089
transcript.whisperx[252].end 7447.119
transcript.whisperx[252].text 好,我希望市場稽查要徹底的落實,謝謝謝謝委員、市長謝謝王委員、謝謝部長接下來我們請楊瓊英委員執行我們在林淑芬委員執行完畢後休息十分鐘
transcript.whisperx[253].start 7455.765
transcript.whisperx[253].end 7469.199
transcript.whisperx[253].text 謝謝主席楊瓊瑜發言邀請這個經濟農業部次長還有談判辦公室的代表以及這個邱部長我們就一起討論謝謝如果我們討論到哪一個議題就請相關單位主動回答謝謝
transcript.whisperx[254].start 7481.299
transcript.whisperx[254].end 7503.453
transcript.whisperx[254].text 我們都知道無論是臺美零關稅或者是非關稅的貿易障礙我國的農業都會受到重大的一個影響所以本席首先要請問在4月15號的時候農業部市長在這邊農業部長陳俊濟在立法院答詢的時候他就說了不會把農業議題推到第一線
transcript.whisperx[255].start 7504.913
transcript.whisperx[255].end 7508.894
transcript.whisperx[255].text 來跟美方來談判絕對不會犧牲了農業民的一個權益將其作為談判的籌碼但是到了21號呢那院長卓榮泰又說了農業談判一直是很大的重點政府會以民眾的健康引用國際的標準來做橫頻的考量
transcript.whisperx[256].start 7526.798
transcript.whisperx[256].end 7540.046
transcript.whisperx[256].text 但是我們看到據報導有學者認為美方的目的遠不止只有要降低關稅喔而是希望我們要開放更多的農產品的市場那請問是如此嗎
transcript.whisperx[257].start 7542.017
transcript.whisperx[257].end 7568.746
transcript.whisperx[257].text 謝謝委員關心那特別是我們在農業的部分委員從我們的農業觀察上就是我們的農業就農業部來講肯定是要守住我們的農業的最大利益那兩件事情跟委員報告第一個美國對台灣的農產品其實享有順差28億美元我想這件事情我們一定會讓美方知道不是沒有買我們其實買很多買到美國對我們台灣是有順差這是第一點那第二點台美之間的農產品貿易其實是互補的
transcript.whisperx[258].start 7569.346
transcript.whisperx[258].end 7593.332
transcript.whisperx[258].text 那對於淨化住宅是黃小玉我們出口是我們的強項產品比方說是蝴蝶蘭或是我們的漁產品所以兩方是互補的我想這件事我們也會跟美方講是就講我們目前對待他的方式是如何但是請針對本席的提問美方目前為止是不是不只是降低關稅而是希望開放更多的農產品市長沒有收到這樣的訊息來談判辦公室
transcript.whisperx[259].start 7597.112
transcript.whisperx[259].end 7614.293
transcript.whisperx[259].text 方向是如何呢謝謝委員因為我們現在如果我剛才提到我們台美的談判當然都還是在進行當中那我們現在只能說從美國一開始川普政府所提出來的訴求降低關稅解決非關稅貿易障礙以及降低他
transcript.whisperx[260].start 7615.329
transcript.whisperx[260].end 7626.552
transcript.whisperx[260].text 貿易逆差這都是他的訴求所以他這個訴求是不分工業產品農業產品都是一體式所以有這個可能喔他不只是要降低關稅而且要增加更多的農產品市場的這個市場如果為了解決他的貿易逆差當然這個是一個可能的一個方向因為我們要防範才能夠去應對所以就成如我們看到日本日本在之前就要將增加美國米進口作為談判的籌碼
transcript.whisperx[261].start 7644.696
transcript.whisperx[261].end 7669.583
transcript.whisperx[261].text 所以引發了他們國內的一個反對因為這會導致日本稻農它的數量會下降所以在這樣的情況之下 本席要請教就像美豬牛鬆綁以及基改食品的開放那麼農業零關稅等是不是現在是成為我們台美談判的重點美方是不是如此 請教談判辦公室
transcript.whisperx[262].start 7670.74
transcript.whisperx[262].end 7685.877
transcript.whisperx[262].text 我想我們跟美國的之間的這些談判呢除了討論到這些農產品的市場開放問題但是很重要的另外一個是我們要去考量我們自己國內的產業發展以及我們本身還有這些國人的健康跟糧食安全的考量
transcript.whisperx[263].start 7686.337
transcript.whisperx[263].end 7704.166
transcript.whisperx[263].text 好非常感謝你說必須要考量到我們我們也不希望本席特別舉日本的例子國內的反對那我們更應當要保護我們自己的產業這是非常非常的重要所以我本席再次請問我方的立場究竟是如何
transcript.whisperx[264].start 7706.295
transcript.whisperx[264].end 7726.515
transcript.whisperx[264].text 我想我們都是跟我們的我們這個談判團隊各有分工所以我們就是協調我們的農工部門共同來討論這些各個關稅跟非關稅議題的立場然後我們再來決定一個最符合台灣利益的保護我國國內的農業那請教農業部市長我方的立場
transcript.whisperx[265].start 7728.243
transcript.whisperx[265].end 7739.708
transcript.whisperx[265].text 就農業玻璃廠當然是以農業為最優先要守護的一定要全力以赴本席強調我們不能只有用GDP的數值來看農業農業它不是只有一個單一的一個產業因為它攸關了糧食的安全生態文化不該輕易的放棄讓步這絕對不可以所以在非關稅貿易障礙的
transcript.whisperx[266].start 7751.713
transcript.whisperx[266].end 7756.856
transcript.whisperx[266].text 當中跟零關稅的部分我們絕對不可以輕易來犧牲食安跟我們的農業那所以根據美國2025年各國貿易障礙評估的報告我們台灣僅能夠進口30個月以上的美國牛肉但是禁止進口這個絞牛肉而且嚴格的檢驗牛的內臟以及豬肉則是以國際標準不符的方式來檢驗萊克多巴胺
transcript.whisperx[267].start 7779.907
transcript.whisperx[267].end 7790.957
transcript.whisperx[267].text 而且我們必須要要求一定要標示產地對不對目前我們的作為是如此但是這些皆被任美方視為非關稅貿易的障礙所以本校請問美豬美牛可能因為關稅談判來鬆綁會取消標示產地嗎請做說明
transcript.whisperx[268].start 7802.912
transcript.whisperx[268].end 7830.92
transcript.whisperx[268].text 好 謝謝委員的關心 我想我們站在衛福部的立場 我們會提供這是一個談判是一個團隊剛剛談判這邊的代表也有講我們收集所有的專業 站在維護人民的健康尤其在衛福部我們對食安方面的堅持提供專業的科學的分析然後大概也去了解國際的標準這樣來提供
transcript.whisperx[269].start 7831.9
transcript.whisperx[269].end 7837.104
transcript.whisperx[269].text 細節部長的說明因為產品產地的標示不應該成為談判的一個籌碼這個是非常的重要因為在2021年當中進口萊豬食對台灣豬農跟消費者的承諾如果棄守是社會沒有辦法接受的所以本席也強調美方也希望要開放我們的基改食品
transcript.whisperx[270].start 7858.661
transcript.whisperx[270].end 7886.081
transcript.whisperx[270].text 那立法院也通過提案學童健康安全是全民的底線並非單純的貿易議題絕不能拿學童健康作為談判的籌碼並且要堅持依據我們學校衛生法不開放基改食品進校園這也是本席的一個堅持請教政府是不是我們堅持承諾絕不開放基改的食品進入校園請教
transcript.whisperx[271].start 7891.322
transcript.whisperx[271].end 7917.179
transcript.whisperx[271].text 堅持給我們學童最安全的一個食品是我們一不變的道理不變的堅持而且我們會依據科學的分析來提供給我們所有的政策一定要堅持這一點是我們絕對不可以妥協基改的食品絕對不能進校園這是我們一定要好好來維護我們全國的學童的一個食安安全
transcript.whisperx[272].start 7919.4
transcript.whisperx[272].end 7922.421
transcript.whisperx[272].text 好 謝謝主席喔 是不是請我們這個部長和署長
transcript.whisperx[273].start 7953.97
transcript.whisperx[273].end 7974.383
transcript.whisperx[273].text 因為我們署長大家頗為為以重任你和那個台大醫院明顯這個院長都稱他是不可多得的三刀流人才啊腎臟科醫師讀藥品的專業還有具有法律措施的學位的確是三刀流
transcript.whisperx[274].start 7975.663
transcript.whisperx[274].end 7996.932
transcript.whisperx[274].text 那署長就任的時候也一直在強調說這個強化邊境的查驗然後呢我們其實有幾點其實真的是想要討論一下就是說署長以前也接受過政府的委託報告那有一篇叫寒川的廢水排放後的食品安全影響研析還有風險溝通
transcript.whisperx[275].start 7998.973
transcript.whisperx[275].end 8017.431
transcript.whisperx[275].text 這幾年的署長在風險溝通上包括剛才的這個答詢上顯然看起來是很專業的但是呢再怎麼專業我是在這裡希望因為看到你的報告以後有幾個這個態度上的問題特別要跟署長就教我是希望
transcript.whisperx[276].start 8019.994
transcript.whisperx[276].end 8046.821
transcript.whisperx[276].text 我是希望這件事情可以溝通因為啊你主持的這一個報告的這個我在報告寫的內容是講說啊以食品添加物為例當消費者在包裝上看到一連串不熟悉的化學成分的時候往往會自動聯想到這些成分可能對健康有害然後這種擔憂往往源自於知識的缺乏而非基於科學的風險評估然後
transcript.whisperx[277].start 8048.881
transcript.whisperx[277].end 8072.239
transcript.whisperx[277].text 你後面在這裡前面你控訴了說如果擔心太過擔心看到一連串這個標示不明的化學成分會恐懼這個是來自於知識的缺乏可是你的單數又說只要消費者不使用過量只要身體的代謝功能正常這不會對身體健康構成威脅
transcript.whisperx[278].start 8073.46
transcript.whisperx[278].end 8102.091
transcript.whisperx[278].text 前面說人民可能知識不足後面說科學的風險評估的變相還很多那我要提醒你是希望這一套不要用在立法院因為這件事情知識提大你在控訴人民知識缺乏的時候不要忘了你所加的但書必須是身體代謝功能正常而我要提醒你一件事情台灣人的代謝症候群40歲以上有將近四成
transcript.whisperx[279].start 8103.052
transcript.whisperx[279].end 8117.853
transcript.whisperx[279].text 都罹患三高然後呢20到64歲我想都是衛福部的數據每4人就1人罹患20到6464以上更高啦每4人就1人罹患代謝症候群
transcript.whisperx[280].start 8118.714
transcript.whisperx[280].end 8147.344
transcript.whisperx[280].text 而且三高的自支率民眾對自己罹患三高有沒有自我的感知20歲以上的高血壓自支率是68血糖自支率是66血脂的自支率是23其實三高人數在2023年你們也發表有47%將近五成的人不知道自己有代謝症候群而且都不知道自己有三高
transcript.whisperx[281].start 8148.065
transcript.whisperx[281].end 8148.708
transcript.whisperx[281].text 所以在這種狀況裡面你在
transcript.whisperx[282].start 8152.899
transcript.whisperx[282].end 8177.851
transcript.whisperx[282].text 對人民這個說知識缺乏的時候其實你要知道人民並不是知識缺乏其實相反的人民自己知道我可能有三高所以我對於太多的添加物我們是有擔心的OK那我要跟他溝通的是這個署長我要溝通的是這個態度你的報告的態度其實我不太能接受你的說法那我要就叫部長和署長就是說一直以來食藥署的問題在哪裡啊
transcript.whisperx[283].start 8182.213
transcript.whisperx[283].end 8210.805
transcript.whisperx[283].text 食藥署部長其實包裝了一個形象上非常專業的確也很專業 我不好意思說是包裝是真的也很專業但食安專家 腎臟科 毒物科的專家法律的碩士但是要真的要把它做好並不是一件很容易的事情而且要明食相符在這種狀況 台灣食品安全上所面臨的挑戰很多署長
transcript.whisperx[284].start 8212.045
transcript.whisperx[284].end 8239.635
transcript.whisperx[284].text 如果整個衛福部食藥署你上任的時候你的觀察你覺得台灣面臨的這個食安的挑戰有哪些呢好 謝謝這是不是請署長好 那署長你來回答好了謝謝委員的提問我首先針對剛剛委員提到的寒川水廢水排水的這個計畫裡面做一點點的回應那上面寫的
transcript.whisperx[285].start 8240.675
transcript.whisperx[285].end 8265.315
transcript.whisperx[285].text 的確像是學者當老師在教同學的時候覺得我們需要給他更多的期待把我們知道的東西從科學的意義這是政府的委外報告對政府不能用這種字眼來教訓人民說你無知所以這邊我們非常非常虛心的接受委員這樣的指導我們在態度上面會有很大的轉變學者跟當官員不一樣那是你學者的時候寫的好
transcript.whisperx[286].start 8267.096
transcript.whisperx[286].end 8286.191
transcript.whisperx[286].text 謝謝委員給我一點點的空間你覺得台灣的食安問題你自己從接任到現在面臨的挑戰有哪些食品安全的議題裡面我稍微說明一下最大的議題是任何一個食品安全議題一定要先標定現在要問什麼問題
transcript.whisperx[287].start 8287.492
transcript.whisperx[287].end 8309.827
transcript.whisperx[287].text 所以在標定一個特定議題的過程中我們就是會食品安全的風險分析會導入你知道過去的食品安全的議題都是接避者揭發的幾乎都是接避者所以我上一次質詢問你食品也是藥品也是所以是接避者主動去揭發然後才產生問題然後你們才去做風險評估才去做風險控管
transcript.whisperx[288].start 8312.532
transcript.whisperx[288].end 8328.362
transcript.whisperx[288].text 過去是這樣子但我認為我認為江志剛署長有能力不應該只是這樣子謝謝委員這邊的提點因為食安的管制其實在食安五環到現在五環2.0它是全面性的建構
transcript.whisperx[289].start 8329.463
transcript.whisperx[289].end 8345.52
transcript.whisperx[289].text 接避者是其中一但事實上我們的團隊行政團隊主動去查查中央地方的合作的檢驗其實跟整個產業鏈所謂的公司協力自主規制我們希望能夠跟所有的業者做很好的鏈接
transcript.whisperx[290].start 8346.994
transcript.whisperx[290].end 8356.041
transcript.whisperx[290].text 更重要的事情是業者之間的工協會他們發揮了很重要功能達到了很努力的地方你甚至在新聞稿上面也有講說像班克列酸、諾羅病毒、仙人掌、桿菌等生物性危害這種生物性危害蘇丹虹、農藥殘留等化學性危害你們都要進行控管但是我要告訴你說這種議題歷史已經翻頁了
transcript.whisperx[291].start 8370.652
transcript.whisperx[291].end 8375.273
transcript.whisperx[291].text 我們不要總是一直停留在過去政府要深刻的反省主動去發現問題而且解決我們當初的食安五環我們登陸制度都認為說能夠達到預警的效果然後可以主動發現問題然後政府就可以達到風險控管事實上
transcript.whisperx[292].start 8387.637
transcript.whisperx[292].end 8407.078
transcript.whisperx[292].text 都沒有運作出來而且都是接避者然後事情發生了以後才發現整個制度有問題那食藥署的過去都是頭痛一頭腳痛一腳台灣的食品安全如果是這樣子的話這樣的管理方式的話會不斷的重演那我們現在在這裡就是說我在這裡要問署長你有沒有吃零食的習慣
transcript.whisperx[293].start 8408.519
transcript.whisperx[293].end 8426.017
transcript.whisperx[293].text 署長有 很少啦 我這個健康取向這個齁 過年期間人家送我們很多家家戶戶大概是人手一包有沒有吃過這種零食 核桃 核桃大家都有吃過喔 簡體制的包裝 來
transcript.whisperx[294].start 8428.677
transcript.whisperx[294].end 8450.645
transcript.whisperx[294].text 但是也有合格輸入有這個代理商的這一包兩三百元這一包一百元我們去蝦皮上網購了然後呢伴手禮在夜市在網路隨手買得到那我為什麼要講這個事情因為在2月3號我們辦公室發了公文給你們食藥署
transcript.whisperx[295].start 8452.265
transcript.whisperx[295].end 8466.891
transcript.whisperx[295].text 要求去查明大量的網路這個販售未辦理輸入產品的資訊申報未辦理查驗的新疆紙皮烤核桃除了嚴重造成國人健康風險而且已經違反了食安法請貴屬詳查要求他下架而且我們去問來講說30天內把你開罰的狀況來告訴我們回報一下結果你們的公文回復是這樣子啦
transcript.whisperx[296].start 8480.677
transcript.whisperx[296].end 8497.591
transcript.whisperx[296].text 你們去查買了六件的確就有一件發現添加不許可的這個食品添加物然後呢最後你們又講說這是電商平台所以你們要叫地方政府自己去依法查查好像這件事情你就沒了好像就沒了
transcript.whisperx[297].start 8500.214
transcript.whisperx[297].end 8512.347
transcript.whisperx[297].text 我們在講是因為立委辦公室出門叫你查立委舉一個舉一件產品就馬上通通都是然後呢 到底有沒有下架有沒有開罰
transcript.whisperx[298].start 8514.564
transcript.whisperx[298].end 8537.594
transcript.whisperx[298].text 這邊跟委員做進一步報告新疆紙皮烤核桃炒本味當初這個也非常感謝委員給我們指導跟給我們機會能夠快速的了解了解之後我們在我們檢舉的時候你還沒上任但你回文是一個多月以後3月14號才公文回覆我們所以照理說也應該開罰了有沒有開罰
transcript.whisperx[299].start 8539.815
transcript.whisperx[299].end 8561.013
transcript.whisperx[299].text 有的,我們後續呢開法誰?我們因為查查的過程當中標示的結果五件不符合規定所以我們因此有兩件不是標示不符合規定喔未查驗沒有代理商在這種狀況裡面他是違反很多法律,不是只有標示喔還不只是標示喔同時呢我們就積極的就裁處了裁處誰啦?
transcript.whisperx[300].start 8567.438
transcript.whisperx[300].end 8579.805
transcript.whisperx[300].text 這個採取的是進口的部分我們有採取了六萬塊錢那在網路電商上你們到底是罰誰跟委員報告現在網路電商的部分我們面對都是用你們六件是去實體店鋪買的嗎
transcript.whisperx[301].start 8583.187
transcript.whisperx[301].end 8596.959
transcript.whisperx[301].text 呃我們是用網路平台架構的對那你網路平台架構我問你說你處罰誰啊你處分的對象是誰為什麼一直都講不出來這個部分呢對於電商的部分我們只能說告訴他有違規的所以沒有處分電商
transcript.whisperx[302].start 8599.313
transcript.whisperx[302].end 8622.373
transcript.whisperx[302].text 然後也沒有處分廠商對廠商電商有提供廠商的資料給你採取嗎對所以我們在這個部分就採取了部分我現在在問你平台下架電商的部分現在網路上是不是還可以買到為辦理輸入產品資訊申報查驗的新疆紙皮烤核桃
transcript.whisperx[303].start 8623.553
transcript.whisperx[303].end 8642.709
transcript.whisperx[303].text 還是不是可以繼續買這個報告委員我們這個持續跟這個平台只要有違規的關鍵字的部分都請他在二次小時能下架這個我們前幾天才買的蝦皮繼續在賣而且大量你點進去大家使用蝦皮現在馬上新疆紙皮烤核桃馬上全部都是
transcript.whisperx[304].start 8643.49
transcript.whisperx[304].end 8664.725
transcript.whisperx[304].text 都沒有查驗登記沒有台灣未符合台灣相關法令你們買六件就有一件是很恐怖的不允許添加的有許可添加的也搞不好有的超標為了今天的質詢我還打開吃了一下吃了以後覺得很噁心但是我還是吃了喝了三杯水但是我要講說我不是要講這個
transcript.whisperx[305].start 8666.38
transcript.whisperx[305].end 8687.034
transcript.whisperx[305].text 主角於邊境今天邊境淪陷了長驅直入沒有主角於邊境這一件事而且電商這種中國違法販賣的食品整個網路上通通都是然後邊境
transcript.whisperx[306].start 8688.069
transcript.whisperx[306].end 8702.255
transcript.whisperx[306].text 喔 不要忘了這些東西還賣到嚇嚇叫 你看這個已售出 來兩萬包 已售出兩萬包 已售出幾百包 已售出左下角3.8萬包台灣人
transcript.whisperx[307].start 8705.799
transcript.whisperx[307].end 8718.65
transcript.whisperx[307].text 大家瘋狂的買啊在電商上瘋狂的買江志剛署長掌管的食藥署你說有檢舉你就叫他下架沒檢舉了就不下架了嗎
transcript.whisperx[308].start 8722.1
transcript.whisperx[308].end 8740.004
transcript.whisperx[308].text 沒有檢舉我們隨時都用人工智慧的關鍵字在爬蟲所以現在我們爬到你們有人工智慧在爬書然後有下架還會這樣子這是我們前兩天才打開的網頁來你再去看叫大家現場蝦皮再打開保證裡面還一堆我們隨時積極的我們會隨時關鍵字會這樣持續的來打你這樣子的話一個月處分幾件
transcript.whisperx[309].start 8748.154
transcript.whisperx[309].end 8775.822
transcript.whisperx[309].text 他這裡你處分多少你說你們關鍵字然後再管理所以特別我們最近的財閥有點兇所以財閥兇的情形之下來啦多兇啊你都告訴我們到底是多兇賣到下下叫的中國產品多少有毒物質台灣人已經吃下肚而台灣的三高代謝症候群的人口數有多高對台灣人的健康風險有多嚴重
transcript.whisperx[310].start 8776.782
transcript.whisperx[310].end 8804.845
transcript.whisperx[310].text 這個有符合食品衛生法裡面第30條的規定嗎有報官查驗嗎有經過邊境的這個把關嗎已經長驅直入了長驅直入了而且不是只有線上欸這個實體店家都有滿山滿谷 滿坑滿谷都是中國食品而且小孩子最愛的我們還買了剛才那是大人最愛的現在是小孩最愛的這麼多
transcript.whisperx[311].start 8809.298
transcript.whisperx[311].end 8835.169
transcript.whisperx[311].text 太多了 我也不曉得要拿多出來全部都是小孩的 全部都是小孩的小孩的 電商就買得到的 滿坑滿谷給小孩吃的零食中國來的 沒有檢驗 沒有查驗沒有進口商 沒有受台灣法律安全規範的而且沒有政府在管理的
transcript.whisperx[312].start 8836.689
transcript.whisperx[312].end 8846.616
transcript.whisperx[312].text 從透過網購、郵購甚至在夜市的實體店面長驅直入台灣沒有邊境把關了沒有邊境把關
transcript.whisperx[313].start 8848.399
transcript.whisperx[313].end 8873.486
transcript.whisperx[313].text 所以署長為什麼要講這件事情是因為不要打高空不要唱高調這個事情你把這件事情管好就功德無量真的食品安全的風險管控在哪裡在生活當中而這個在夜市實體店面就在賣不用到網路所以到底是不知道還是不想做
transcript.whisperx[314].start 8874.746
transcript.whisperx[314].end 8892.879
transcript.whisperx[314].text 還是你們跟你們無關 我不好意思說這是裝睡的人叫不行因為過去的食藥署的確都是裝睡的人叫不行啦那因為江署長三刀流的不可多得的人才 我就相信你不是叫不行的人
transcript.whisperx[315].start 8893.92
transcript.whisperx[315].end 8902.827
transcript.whisperx[315].text 所以署長你有沒有去逛過夜市 你有後市場抽驗 後市場檢查過嗎食藥署有預算進行輿情監測有食安網路大數據剖析應用與風險管控及處理應變計畫然後有這個你們講的導入網路爬蟲及風險智能監控的研發計畫還有食品大數據的智能監控及風險偵測預警研究
transcript.whisperx[316].start 8920.649
transcript.whisperx[316].end 8926.746
transcript.whisperx[316].text 千萬百萬然後這種東西你告訴我說你們通通沒有在管然後有這些預算
transcript.whisperx[317].start 8928.197
transcript.whisperx[317].end 8955.173
transcript.whisperx[317].text 然後呢其實去年有人就跟地方的衛生局檢舉在夜市裡面夜市裡面太多太多中國違反違法的零食商品在地方政府都沒有反應上來你們都無知嗎所以在這種狀況裡面我是要講電商就算了我們大家上網就知道你知道實體店面離我們距離最近的在哪裡你知道嗎
transcript.whisperx[318].start 8956.013
transcript.whisperx[318].end 8964.144
transcript.whisperx[318].text 你知道嗎立法院最近的實體店面也在販賣這一種違法的中國食品最近的在哪裡你知道嗎這個要委員提示在樓下立法院的福利社前面都有在賣來
transcript.whisperx[319].start 8975.609
transcript.whisperx[319].end 8998.653
transcript.whisperx[319].text 然後呢店家還說這一批很新鮮製造日期2025年你問他說怎麼進口這種非法的中國食品他說飛機、海運、小山通都很方便更不用說到台灣以後夜市市場或是大家都很好賣因為台灣人很喜歡吃很香的核桃所以我們有邊境嗎邊境有把關嗎有阻絕於境外嗎
transcript.whisperx[320].start 9003.584
transcript.whisperx[320].end 9016.016
transcript.whisperx[320].text 已經長驅直入 而且變像話所以在這裡隨便都數萬包在賣然後在這種 你剛剛驗出來你們自己驗出來 甜味濟糖精環擠雞帶黃溪胺酸鈉
transcript.whisperx[321].start 9020.7
transcript.whisperx[321].end 9049.423
transcript.whisperx[321].text 一規定都要退運一規定都要銷毀你開了一張罰單你還讓他繼續賣然後你是覺得長輩的肝汗腎代謝功能都可以全台灣的都沒有代謝症候群了嗎這個就是為什麼我們要我們的肝汗腎來承受政府對食品安全邊境把關不利的這一種風險呢更不要講這不是單一事件去年我記得林次長有說
transcript.whisperx[322].start 9050.862
transcript.whisperx[322].end 9063.228
transcript.whisperx[322].text 辣平糖啦 魔芋爽啦在你們禁止這個以前我都還記得我的小孩也拿一個紅紅汽汽的魔芋爽回來吃我一看就說這很恐怖就他說很好吃所以這些未經中國來的未經查驗的沒有核准輸入的食品都是冰山一角早就充斥在全台灣的民眾的生活當中
transcript.whisperx[323].start 9080.259
transcript.whisperx[323].end 9107.611
transcript.whisperx[323].text 所以歷史翻了這麼多頁 新的課題永遠在這裡政府 政府要承擔起這個責任啊 署長署長三刀流人才 應該不是立委跟你講這些的選擇啦這個食藥署 除了你以外 其他人都是舊的從馬英九時代做到蔡英文時代 再做到賴清德時代食藥署很多人都是三朝 四朝 五朝元老了啦他們喔
transcript.whisperx[324].start 9110.683
transcript.whisperx[324].end 9127.108
transcript.whisperx[324].text 我不好意思說太難聽啦你署長沒有上警發條下面的人絕對不會上警發條然後國人的健康風險永遠暴露在高風險裡面不是一個署長很厲害有那麼多改變
transcript.whisperx[325].start 9129.588
transcript.whisperx[325].end 9146.476
transcript.whisperx[325].text 我現在提醒你是務實一點讓人民的生活真的從生活的從小的到老的從生活的所有每一項讓我們的風險降低一點少一點這個就是最務實的做法
transcript.whisperx[326].start 9148.571
transcript.whisperx[326].end 9159.397
transcript.whisperx[326].text 謝謝委員 委員特別提到風險能夠降低那我們一定會基於這個 希望能夠趨近移民 零風險很困難你剛才下面的人給你唸的稿子 你們什麼爬蟲啦 然後關鍵字啦那都沒在做 也沒好啦他跟你虛偽 跟你說 你拿來這裡回答立委馬上要打槍啊 馬上上網 馬上蝦皮 馬上去點
transcript.whisperx[327].start 9175.377
transcript.whisperx[327].end 9181.624
transcript.whisperx[327].text 幾萬包 幾萬包 還在 還在你們都沒有一個霹靂的手段可以阻絕嗎完全都一籌莫展嗎
transcript.whisperx[328].start 9186.38
transcript.whisperx[328].end 9203.787
transcript.whisperx[328].text 對不對不要再講那種官方 官槍官吊 官方的標準回答不要讓你下面的人蒙蔽了你啊我簡單的就是這麼說好 繼續喔 我要繼續看喔我們繼續追喔謝謝委員 謝謝好 謝謝林淑芬委員休息6分鐘
transcript.whisperx[329].start 9219.142
transcript.whisperx[329].end 9219.382
transcript.whisperx[329].text 謝謝大家。
transcript.whisperx[330].start 9248.612
transcript.whisperx[330].end 9249.176
transcript.whisperx[330].text 鸡蛋
transcript.whisperx[331].start 9594.704
transcript.whisperx[331].end 9597.326
transcript.whisperx[331].text 好現在繼續開會接下來我們邀請蘇清泉委員好謝謝主席我請
transcript.whisperx[332].start 9624.675
transcript.whisperx[332].end 9632.957
transcript.whisperx[332].text 農業部 杜次長還有我們經貿辦 嚴首席代表次長 我們貧困關 農業關市地市污都很多 我們的養殖業也發達
transcript.whisperx[333].start 9650.563
transcript.whisperx[333].end 9679.563
transcript.whisperx[333].text 那我們台灣現在的漁業差不多近海捕魚近海魚撈跟遠洋魚撈差不多占45%差不多嘛那鄉網養殖跟岸上養殖差不多占55%那這間呢美國這樣搞下去我們才發現說這個農業是要好好的保護啦我跟你講一個data
transcript.whisperx[334].start 9680.851
transcript.whisperx[334].end 9707.02
transcript.whisperx[334].text 加薩走廊加薩走廊現在的難民差不多兩百萬人差不多190到210以色列是要炸哪裡就炸哪裡要殺誰就殺誰小孩子嬰兒都不放過這就是戰爭已經死了十萬人左右啦那加薩走廊什麼都沒有那每天需要的水
transcript.whisperx[335].start 9708.663
transcript.whisperx[335].end 9727.634
transcript.whisperx[335].text 每天需要的糧食差不多沒辦法供應30%所以我們的農業台灣的農業重不重要當然重要我去日本我看到日本的米它的價值差不多泰國的五倍
transcript.whisperx[336].start 9729.008
transcript.whisperx[336].end 9751.316
transcript.whisperx[336].text 那些看日本人離開泰國,都賣什麼?賣米!因為日本的米太貴,又太好吃了所以要拿泰國米來討所以農業一定要保護這一次我們屏東的毛豆,差不多佔了51%差不多一年的6000公噸
transcript.whisperx[337].start 9754.257
transcript.whisperx[337].end 9761.203
transcript.whisperx[337].text 我們鱸魚 整條島 還有台灣鯛我們北東也有一些在那你怎麼還要保護呢一定的你也要幫我起那你們編了180億夠嗎
transcript.whisperx[338].start 9770.47
transcript.whisperx[338].end 9782.739
transcript.whisperx[338].text 謝謝委員支持臺灣農業這是一定要做因為農業真的不是說是吃飽吃好其實是一個糧食安全和國家安全的基礎那當然也是一個文化傳承那181 到底夠不夠我相信這樣說現時我們是先變這件事希望是渡費這個困難
transcript.whisperx[339].start 9787.503
transcript.whisperx[339].end 9802.731
transcript.whisperx[339].text 都怪這個困難這個是短時間之內那以這個美國現在10%的關稅來看先這樣做長期來看支持農業一直要往前走這絕對不是只有180億現在要做的事情農業部肯定要一直跟我們台灣農業站在一起
transcript.whisperx[340].start 9803.511
transcript.whisperx[340].end 9817.489
transcript.whisperx[340].text 對啦,所以我們經貿辦這邊談判,我們台灣的農業,剛才很多委員講,已經是對美國是入操了嘛,所以我們才有底氣嘛,美國是前九十萬的低價估估,
transcript.whisperx[341].start 9821.474
transcript.whisperx[341].end 9832.384
transcript.whisperx[341].text 我記得在第八屆立委的時候,我非常欽佩田秋琴委員、陳潔如委員我在當召委,他們堅持就是要零檢出邱部長你也是說要零檢出嘛但是2021年開放,什麼40個PPB、10個PPB
transcript.whisperx[342].start 9844.287
transcript.whisperx[342].end 9872.336
transcript.whisperx[342].text 現在進來的 剛剛你講的大部分也都是沒有用萊克多巴胺嘛 對不對只有美國進來的有 是這樣酒都要保留在裡面 我只推廣 我也贊成我也來Promote 只有台灣豬啦我都要保留在裡面 我不會替美國人說話啦我在舊金山Fremont那邊看那個超市我去看他們 真的跑去看他們的超市的豬肉跟牛肉
transcript.whisperx[343].start 9873.223
transcript.whisperx[343].end 9891.91
transcript.whisperx[343].text 他標示得很清楚耶這個有用瘦肉精的這個沒有瘦肉精的分開然後你要買實在是另一回事你要吃瘦肉精的吃瘦肉精這個我跟大家報告那個有加瘦肉精的那個價格是比沒有加瘦肉精的還貴一點
transcript.whisperx[344].start 9894.364
transcript.whisperx[344].end 9908.109
transcript.whisperx[344].text 真的是瘦肉,油花比較少,因為有代謝所以要標示,標示最重要我們自己的所有商業都要保護你進口的美國豬肉
transcript.whisperx[345].start 9915.404
transcript.whisperx[345].end 9929.808
transcript.whisperx[345].text 八千多噸嘛 每一年進來 剛才王玉敏一直在追 一直在追說都遭遇到 都遭遇到營養午餐啦 遭遇到7-11啦營養午餐不能用進口 當然都這樣說啊營養午餐張Q一定是我們台灣國產的 農業部理廠也只推廣台灣豬
transcript.whisperx[346].start 9941.107
transcript.whisperx[346].end 9960.337
transcript.whisperx[346].text 希望是這樣啦那我們現在養豬的頭數你說6000多個養豬場屏東都佔了20幾%左右屏東的場數最多最多嘛那我們一直在關心現在我們的豬肉也可以銷日本冷藏的就可以銷日本那要不然加工的啦
transcript.whisperx[347].start 9961.175
transcript.whisperx[347].end 9982.689
transcript.whisperx[347].text 不不不,這間餵一箱,這間餵一箱有出去,去新加坡我也有去參加,台灣的豬肉本身品質也非常好那外務部的標示跟農委會的標示,欸你標示這是什麼意思啦是農委會比較厲害,還是外務部比較厲害,為什麼標示都不一樣
transcript.whisperx[348].start 9987.981
transcript.whisperx[348].end 9995.946
transcript.whisperx[348].text 這樣就能夠證明是我們台灣豬啊不然那...北省不那麼聰明啦北省就簡單就好 看得到就好大大隻 台灣豬很清楚那我們經貿辦談判一定要捍衛這個我們的糧食一定要保護我剛剛講那個家灶走廊那個就是完全沒有生產力
transcript.whisperx[349].start 10016.65
transcript.whisperx[349].end 10044.222
transcript.whisperx[349].text 它是200多平方公里上面住了200多萬人然後所有的一點一滴都是從外面輸進來你知道一天只有貨櫃車幾千台貨櫃車從西奈半島這邊上去然後以色列要過不過的要進不進的每一個人的飲用水都不到20公升然後他的糧食能夠拿到的人不到30%
transcript.whisperx[350].start 10046.124
transcript.whisperx[350].end 10072.295
transcript.whisperx[350].text 要就是要讓那些人都死死的讓那些人都遷就讓那些人移民 捐贈族人 以色列永久佔領是不是這樣 我不知道但是看那個樣子是這樣就硬幹所以 打仗封鎖是非常非常的殘酷我們如果現在你都零關稅全部的米 米糕米都一百米糕什麼東西都一百台灣整個農業都崩盤
transcript.whisperx[351].start 10074.332
transcript.whisperx[351].end 10094.031
transcript.whisperx[351].text 我們真的被封鎖的時候,真的打仗的時候,我們是死的我們的人口數是袈裟走廊的十二倍所以這個經貿辦你們要以國家的,日本有些人很硬啊日本講到農業,他們聽就不要聽啦,他就自己拚所以你看你們的立場,這個很重要
transcript.whisperx[352].start 10095.044
transcript.whisperx[352].end 10113.193
transcript.whisperx[352].text 跟委員報告我想不論是我們現在跟美國之間是出超關係或入超關係我們一定都是據理理真更何況我們現在農產品對美國來說完全是對他來說是一個順差的這個情況之下所以我覺得這個是第一個我們會跟美國去訴求我們跟他
transcript.whisperx[353].start 10113.693
transcript.whisperx[353].end 10143.173
transcript.whisperx[353].text 在很多的領域上面都是戰略夥伴的關係所以這是第一個我們一定會努力的去爭取第二個我想對於農產或農業它絕對不是一個單純的市場開放的問題所以我們還會兼顧到產業發展以及您剛才提到的這些糧食安全國人的健康這個絕對會是我們在通盤考量而且特別是我們會跟我們的農業主管機關討論之後才來決定我們的接下來要跟美國去進行談判的策略
transcript.whisperx[354].start 10144.537
transcript.whisperx[354].end 10156.973
transcript.whisperx[354].text 我們爆米的收購價格是26塊每公斤我們在立法院搞到要31塊結果法案通過還沒有實施所以要調2塊錢
transcript.whisperx[355].start 10158.946
transcript.whisperx[355].end 10187.241
transcript.whisperx[355].text 這是一樣的意思,我們的黃豆我們生產成本一公斤,可能是多少錢美國的黃豆可能是十塊而已,因為大規模的所以如果我們都沒有保護的話我們一定是崩盤啦,崩盤好,然後我再問農業部你的牛肉,台灣的牛肉自產的
transcript.whisperx[356].start 10188.143
transcript.whisperx[356].end 10193.945
transcript.whisperx[356].text 差不多幾% 整年多少萬噸我們自己對消費市場佔有率差不多5%到6%牛肉嘛 國產牛肉那這些牛肉都是企業或是衛土牛打起來的都有
transcript.whisperx[357].start 10204.926
transcript.whisperx[357].end 10220.432
transcript.whisperx[357].text 都有啦我那麼深入的我幾乎每個禮拜都在跟那些乳牛業者在因為為了那個紐西蘭的牛FTA簽完他們的一公升才40塊的成本我們這邊要7、80、80、90這個市府都趕快叫
transcript.whisperx[358].start 10226.576
transcript.whisperx[358].end 10240.267
transcript.whisperx[358].text 那我們的牛肉我們自己才供應5、6%所以從國外進口的我們是沒有話講那我們的豬肉我們養了700一年才要產750萬頭豬肉差不多180天就一起那應該是要產到八九百萬頭才對啊怎麼會只有750萬頭
transcript.whisperx[359].start 10251.121
transcript.whisperx[359].end 10265.564
transcript.whisperx[359].text 沒有啦,一方面就是因為我們的整個飼養環境當然也是有成本的可能,第二就是因為我們現在其實三龍提供我們國內90%都是我們自己的國產豬肉,國人對那個風味其實也是非常敏感,所以
transcript.whisperx[360].start 10266.805
transcript.whisperx[360].end 10277.011
transcript.whisperx[360].text 臺灣的豬肉在我們的市場其實選擇性我們的消費者比較喜歡所以臺灣的豬肉是有競爭性國人還是喜歡吃目前看起來是這樣進口的就是11萬噸美國差不多占8%總共一成左右
transcript.whisperx[361].start 10286.596
transcript.whisperx[361].end 10301.193
transcript.whisperx[361].text 好,我是希望一定要堅持啦,今天排這個題目就是一定要捍衛住,尤其是談判的人齁,這個不要穿著西裝,帝母啊,出去跟他們談判,談到未來回來再扛扛
transcript.whisperx[362].start 10303.584
transcript.whisperx[362].end 10326.832
transcript.whisperx[362].text 再說下去就難聽了,所以這個我是非常concern這一塊,每天會頂,因為我們家就做實的,我們家就在做虛弱的,我們的錢都在累虛的,我們有可能說沒主意沒主意就用這個,而且是以農立國,農業為本,民以食為天,你這個農業要崩盤,你這個國家就...結束啊,好謝謝
transcript.whisperx[363].start 10333.533
transcript.whisperx[363].end 10337.715
transcript.whisperx[363].text 好 謝謝蘇清泉委員 接下來請圖權吉委員好 謝謝主席 那請我們邱部長還有我們江署長
transcript.whisperx[364].start 10363.978
transcript.whisperx[364].end 10364.331
transcript.whisperx[364].text 非常好
transcript.whisperx[365].start 10368.496
transcript.whisperx[365].end 10395.039
transcript.whisperx[365].text 好 部長署長那針對我們2021年開放美豬進口以來其實我國開始對於我們食品安全還有農民的權益這個時候也受到廣泛的關注那最近因為美國要加徵台灣對等32%對等關稅雖然已經暫緩90天可是我們還是有10%的基本關稅那美國的貿易代表署
transcript.whisperx[366].start 10397.12
transcript.whisperx[366].end 10424.252
transcript.whisperx[366].text 3月31號那時候有公布2025年對外貿易障礙的評估報告那時候有指出台灣針對美豬的標示以及美牛進口這些貿易障礙非貿易障礙針對這些非貿易障礙他們認為說需要讓步那部長認為我們這次食安的問題會不會成為我們台美貿易談判的籌碼
transcript.whisperx[367].start 10426.345
transcript.whisperx[367].end 10445.922
transcript.whisperx[367].text 謝謝委員,我還是要重申,對守護死安、守護人民的健康,這是我們衛福部,我相信也是政府最重要的一個目標。那至於說,川普那邊美國所列出來的一些事件,當然我們都要做好準備。
transcript.whisperx[368].start 10447.484
transcript.whisperx[368].end 10455.471
transcript.whisperx[368].text 這樣才能夠應用未來的各種變局那我想政府是一體的所以我們各個部門當然提供他的專業的一個
transcript.whisperx[369].start 10458.431
transcript.whisperx[369].end 10482.283
transcript.whisperx[369].text 科學的分析以及他的論述做最好的準備但是這都必須要守護食安讓我們台灣的人民在食方面是最安心那也在健康方面可以說是得到最好的照顧我想這個部分是我們大家一起在努力所以針對我們這次台美貿易談判的籌碼食安問題部長應該會
transcript.whisperx[370].start 10484.724
transcript.whisperx[370].end 10501.552
transcript.whisperx[370].text 堅守為我們國人的食安健康來堅守這個底線吧我們一定堅守食安最優先然後我們會提供因為我們畢竟是專業屬於專業的部門所以我們會提供相關的議題的科學的分析好那針對我們一些數據的統計台灣在
transcript.whisperx[371].start 10506.411
transcript.whisperx[371].end 10533.169
transcript.whisperx[371].text 每年平均豬肉的消耗量在亞洲來講僅次於香港那我們針對來季的殘留容許量我們也訂定高標準那剛剛部長也有講我們也希望守護國人的健康安全那針對我們食藥署署長是不是也跟部長一樣針對殘留容許量的標準我們是不是一樣不會有讓步
transcript.whisperx[372].start 10536.466
transcript.whisperx[372].end 10549.761
transcript.whisperx[372].text 謝謝委員的提問針對提到豬肉裡面的每個可食用部位的檢驗的標準產業標準的部分萊克多巴胺這部分屬於動物用藥
transcript.whisperx[373].start 10551.142
transcript.whisperx[373].end 10575.378
transcript.whisperx[373].text 動物用藥的評估其實我們在跨部會裡面的協作之下對於動物用藥的檢驗其實都是會有科學方法做檢驗檢驗出來之後在最後的殘餘定的標準的時候是配合著國人的所謂的飲食習慣跟國人的營養調查會把所有的攝食量加殘餘會定出我們所謂的每日的攝食的一個標準
transcript.whisperx[374].start 10576.218
transcript.whisperx[374].end 10600.079
transcript.whisperx[374].text 這個設施的標準呢是用國際的標準在進行評估的這個是非常非常重要的一件事實那也符合國人在飲食習慣的特殊性所以定的有跟國際的有一些些差異那這個部分呢其實我們會堅持我們對於科學評估以及我們的特殊性會有機會呢好好來把我們特殊性做一些表述
transcript.whisperx[375].start 10600.359
transcript.whisperx[375].end 10623.051
transcript.whisperx[375].text 所以我們今天提出來最主要目的就是我們針對美豬的標示還有帳類殘留標準還有美國牛絞肉牛油等我們希望還是依照現行的標準尤其那個豬肉來源的標示我們也希望能夠要維持因為我們希望雖然這個去談判
transcript.whisperx[376].start 10624.554
transcript.whisperx[376].end 10643.147
transcript.whisperx[376].text 加大進口但是我們針對這食安問題的標準我們應該是寸步不讓那尤其我們主管國人健康的衛福部還有我們邊境食品跟市場查驗的食藥署這部分部長跟署長剛剛講的是不是能夠捍衛我們國人健康針對食安問題這個標準是不是把這個標準底線能夠來幫我們來捍衛
transcript.whisperx[377].start 10652.979
transcript.whisperx[377].end 10658.028
transcript.whisperx[377].text 我想我們一定在國人食安的最重要的堅持之下
transcript.whisperx[378].start 10663.82
transcript.whisperx[378].end 10691.164
transcript.whisperx[378].text 當然我們對任何的食品我們一定去做好風險的一個科學的一個分析定定安全跟合理的一個規範這個要是合乎而且要根據我們國人科學的實證跟國人膳食的一個習慣做好沒關係 部長我們今天提出來最主要的目的因為你一直講都是重複在講我是希望我們今天提出來我們
transcript.whisperx[379].start 10692.124
transcript.whisperx[379].end 10716.982
transcript.whisperx[379].text 當然我們談判有這個籌碼但是我們認為加大進口之外我們希望這個食安問題的標準要為了我們國人的健康我們要來捍衛還有我們針對食藥署的部分那時候我們加大進口之後勢必我們食藥署有沒有規劃要提升邊境跟市場的查驗這部分有沒有規劃
transcript.whisperx[380].start 10720.836
transcript.whisperx[380].end 10745.685
transcript.whisperx[380].text 跟委員報告 其實我們特別感謝的在今年度三月份的時候對於邊境的查查的人力在人事總長的親自去到我們的北區管然後去視察之後給我們增加人力從原來72個人力的部分往上能夠提升到33個人力目前我們持續在配置增加這個查查的量
transcript.whisperx[381].start 10747.205
transcript.whisperx[381].end 10769.251
transcript.whisperx[381].text 那能的部分其實特別跟委員報告一下我們使用的所謂BPIBorder Protection Intelligence用人工智慧導入我們邊境查查會更精準的查查這是我們持續在做也有一些想像的成果我們是希望我們未雨綢繆因為你將來勢必如果加大進口
transcript.whisperx[382].start 10771.033
transcript.whisperx[382].end 10782.907
transcript.whisperx[382].text 針對這個邊境跟市場的查驗勢必一定要增加驗的量變大了還有我們之前有沒有發生過美豬混合其他國家的豬肉來販售去規避這個美豬標示產地的這個問題之前沒有發生過
transcript.whisperx[383].start 10788.939
transcript.whisperx[383].end 10807.886
transcript.whisperx[383].text 報告委員這邊我們對於所有的豬肉的標示呢其實不只是美國來的西班牙來的澳洲來的任何一個國家的標示產地的標示都是一體適用的國內的也是有所以有台灣豬標示等等那對於這個標示的議題下有沒有標示的不清楚的
transcript.whisperx[384].start 10808.246
transcript.whisperx[384].end 10831.844
transcript.whisperx[384].text 我們有也有採取過相關的一個個案是屬於標示不清而且標示不清的部分呢也讓我們的邊境跟區管跟地方的衛生局共同協作那我們最針對這個標示的部分我們就持續的一個加強好我們希望這部分要注意因為勢必將來萬一這個廉價的美豬進口之後我們擔心這種曾經發生過的這個案例類似情形我們怕會
transcript.whisperx[385].start 10836.935
transcript.whisperx[385].end 10864.959
transcript.whisperx[385].text 會更嚴重謝謝委員那因為現在美國的豬肉各國豬肉我們其實是採取他們自由貿易進口的部分我們就加強在邊境的一個查查跟後市場端跟補充一點點報告我們查查到110年開始每年我們都查查到目前為止呢我們查查結果呢大概是今年1月份114年查查大概是6597件都沒有不符合規定的
transcript.whisperx[386].start 10865.419
transcript.whisperx[386].end 10889.79
transcript.whisperx[386].text 那另外呢110年到114年我們總共查了29萬7千多件有111件是不符合規格規定的是標示的其中19件為美豬的產品因此可以看到其實不是標準只有美豬的標示我們所有的標示我們都會一併的查查好因為這曾經發生過啦我們擔心萬一加大進口這個問題會更嚴重好那謝謝部長署長那我請問一下那個請教農業部
transcript.whisperx[387].start 10894.196
transcript.whisperx[387].end 10894.54
transcript.whisperx[387].text 好 請問農業部次長
transcript.whisperx[388].start 10901.747
transcript.whisperx[388].end 10923.316
transcript.whisperx[388].text 是委員好好次長那勢必要將來我們如果在談判之後加大對美豬牛的進口那我們擔心了這個對於農業是不是一定會有所衝擊尤其這些養豬啊養牛這些的業者好這些農民是不是會有對他有很大的衝擊沒有評估過嗎
transcript.whisperx[389].start 10924.977
transcript.whisperx[389].end 10944.887
transcript.whisperx[389].text 應該這樣說啦 其實台灣的養豬產業對我們農業是重要的因為每年產值有800多億 這是第一點那第二點 目前我們國人食用豬肉大概有90%都是我們國產的所以養豬產業是很重要 它對國人的消費國人喜歡我們自己的台灣豬肉 這一點是重要的
transcript.whisperx[390].start 10945.407
transcript.whisperx[390].end 10966.596
transcript.whisperx[390].text 那至於其他進口的因為大概我推測這些進口的豬肉其實能夠直接上到我們市場的部分相對應該是走加工比較多因為台灣豬肉的風味相對好所以其實我們包括國人去消費去購買包括我自己上市場買我覺得優先一定選我們自己台灣的國產豬肉
transcript.whisperx[391].start 10969.082
transcript.whisperx[391].end 10982.568
transcript.whisperx[391].text 對啊那我們現在是擔心說因為勢必喔將來這個豬肉如果進口加大之後那我們擔心說這個產地標示不清沒有標示的話勢必會影響衝擊到我們台灣國產的豬
transcript.whisperx[392].start 10985.885
transcript.whisperx[392].end 11007.934
transcript.whisperx[392].text 那這一部分是不是產地這一部分我們這個標示的部分一定也要幫忙捍衛除了做區別之外其實對於農業部來講其實我們對我們自己的養豬產業怎麼讓它能夠第一個是在整個經營上面的更有效率因為其實產業是要永續的所以怎麼讓它降低成本這個才有競爭力第二個是我們養豬產業對我們的社會責任怎麼讓這個循環來做
transcript.whisperx[393].start 11013.116
transcript.whisperx[393].end 11039.201
transcript.whisperx[393].text 對環境的污染也好對養豬的成本降低也好這樣才有競爭力所以讓我們自己有競爭力我們對其他國家我們就能夠站得更穩因為我的選區有很多都是養豬衛生的農民那我們現在也很多農民在緊張就是針對這關稅問題對於美國我們勢必有可能會加大開放美豬進口那是不是我們農業部針對
transcript.whisperx[394].start 11041.541
transcript.whisperx[394].end 11057.528
transcript.whisperx[394].text 這一部分在我們很多有養豬的這些地區能夠來辦理這個說明會來解除我們農民的疑慮甚至如果將來開放之後有沒有一些相關的補助辦法能夠跟他們說明一下
transcript.whisperx[395].start 11058.948
transcript.whisperx[395].end 11079.081
transcript.whisperx[395].text 其實我們等到開放 我們現在對我們的養豬產業 本來就有很多支持措施所以謝謝委員給我們這個機會 不管是委員辦座談 我們做晚禮去 還是我們辦座談 我們邀請委員來我們對整個養豬產業的措施 不是只有以後才要做 是現在就在做那相關的一些 我們都很樂意跟你們溝通說明
transcript.whisperx[396].start 11079.381
transcript.whisperx[396].end 11103.603
transcript.whisperx[396].text 那針對這部分可能本席到時候在我們地方委員召開這個說明會因為一方面釐清我們這些農民他們的疑慮甚至我也希望想了解一下我們農業部針對這些有沒有超前部署有一些規劃一些補助的配套措施能夠讓他們知道說我們農業部在這部分已經有注意到我們很樂意去說明謝謝謝謝市長
transcript.whisperx[397].start 11108.444
transcript.whisperx[397].end 11120.492
transcript.whisperx[397].text 好 謝謝圖委員 謝謝次長來 接著我們請邱正軍委員質詢好 謝謝主席我們請我們邱部長委員好 部長好
transcript.whisperx[398].start 11131.397
transcript.whisperx[398].end 11160.94
transcript.whisperx[398].text 部長我想請教一下我們醫師法第四之一條的修法被大家認為是一個落日條款感覺有一點是來放水用的你們為了四之一的修法也修了醫師的實行細則最近這個也送進來被查了我記得你說過這是醫師法實行細提高到法律的位階是20年來最嚴格的規定對吧
transcript.whisperx[399].start 11165.485
transcript.whisperx[399].end 11171.258
transcript.whisperx[399].text 這個在幾年前我記得我擔任立委的時候就把一個細則
transcript.whisperx[400].start 11173.38
transcript.whisperx[400].end 11195.756
transcript.whisperx[400].text 變成法治化就法律的慰藉法治是這樣子而已啊對啦 實際層面來說其實它的內容都一樣啦是真的加嚴啦這對於患者來說是第一層的把關這個我們當然支持但是部長你說的沒錯確實是提到這個法律的慰藉只是在實際層面上這個修法把學歷採認證原則採認原則放鬆之後
transcript.whisperx[401].start 11200.699
transcript.whisperx[401].end 11215.47
transcript.whisperx[401].text 再加到實行細則裡面部長說的這是最嚴格的規定但看起來沒有我記得你當時說過這個有意見是可以討論跟修改那我先來請教部長幾個問題就以前一次用106年定的學歷採論原則來決定能不能考醫師執照的國考對不對
transcript.whisperx[402].start 11222.267
transcript.whisperx[402].end 11225.555
transcript.whisperx[402].text 就說106年訂的學歷採認的原則來決定能不能考醫師執照的國考對不對
transcript.whisperx[403].start 11232.538
transcript.whisperx[403].end 11252.651
transcript.whisperx[403].text 當然這有一連串的一個偵審的一個過程吧這個學歷採認證採認原則是說學士後的醫學系然後醫學系學士後的中醫學系中醫學系學士後的牙醫學系跟牙醫學系畢業學校必須符合教育部已列入的參考名冊
transcript.whisperx[404].start 11254.011
transcript.whisperx[404].end 11270.434
transcript.whisperx[404].text 那新的公布的版本多了當地國政府學校權責機關或認定之教育專業評鑑團體所任何的也算這是把篩選的學校的權利都放棄了直接交給國外嘛
transcript.whisperx[405].start 11271.872
transcript.whisperx[405].end 11285.874
transcript.whisperx[405].text 跟委員報告一下我想我們從在修正這個相關的法案然後後來施行細則絕對是真的他的心情絕對是嚴格把關
transcript.whisperx[406].start 11287.256
transcript.whisperx[406].end 11312.446
transcript.whisperx[406].text 那個我也不管是在立委的時候或者是在可是我們看不出來當地當地國的政府學校他的修改都是有他的原因我等一下再請那個那個可能醫事室來跟我們報告我先講一個一定是有如果有這個都有做非常非常詳細的溝通但是絕對我也不容許
transcript.whisperx[407].start 11313.855
transcript.whisperx[407].end 11341.625
transcript.whisperx[407].text 讓他更更更對因為當地國政府的這個權責機關跟教育評鑑團體我們搞不懂因為我們看不懂它是什麼東西因為在制定的過程當中我們也了解那個是說有的有的國家是那個是由政府跟團體當然是一定是政府認定的團體才承認所以在後來在記者裡面他還有一個教育評鑑團體是指什麼
transcript.whisperx[408].start 11347.41
transcript.whisperx[408].end 11361.539
transcript.whisperx[408].text 教育評鑑團體認可他也可以啊我想這個團體絕對是非常非常嚴格我要講的是說有沒有比我們教育部列入的參考名冊更加嚴格這個詳細的規劃是在哪裡
transcript.whisperx[409].start 11365.27
transcript.whisperx[409].end 11387.562
transcript.whisperx[409].text 那個意思是要不要回答一下跟委員報告就是說我們過去都是只是針對某個大學或某個學校的機制他送審但是我們現在是由你就地自己主管機關已經平監過審核過的機制而且進公開的機制裡面所以會比過去以來更那比我們自己的嚴格嗎你認為如果他的國家
transcript.whisperx[410].start 11390.384
transcript.whisperx[410].end 11407.729
transcript.whisperx[410].text 這個部分管得比較鬆的時候你認為這樣是好的嗎就是他必須是已經審核結果誰審核嘛他們當地對啊所以這個就有爭議了你懂我意思嗎現在既然是為我們國人看病不是由他們來定標準應該是我們來定標準才對吧
transcript.whisperx[411].start 11409.817
transcript.whisperx[411].end 11423.901
transcript.whisperx[411].text 那在我裡面有一個在不採這個認證學歷部分就是說遠距教學本來是不行的但新修訂的這個特別加上去特殊條件下可以採認那這部分有包含這個臨床實驗嗎
transcript.whisperx[412].start 11428.758
transcript.whisperx[412].end 11450.959
transcript.whisperx[412].text 實作都是一定在實體不會有遠距的不可能有嘛對不對好那你們這個我覺得你們要寫清楚啦用學歷採認證的時候要經過一般這個常態招生或入學管道才可以承認學歷你修完之後變成有公開招生就可以了那不就是讓國際專班的這個部分就就地合法了嗎
transcript.whisperx[413].start 11451.906
transcript.whisperx[413].end 11477.436
transcript.whisperx[413].text 因為他所謂的公開是說你有公開比喻是說聯招或是公開在那個收入學生不是透過某一些特殊機制在收取學生的這個好啦我這樣建議啦就是你們應該把106年的學歷採認證原則一模一樣的放到這個施行細則裡面這樣才有真正提升法律慰藉的效果因為講得不清不楚很讓很多人看不懂部長你覺得勒
transcript.whisperx[414].start 11479.086
transcript.whisperx[414].end 11502.015
transcript.whisperx[414].text 我謝謝委員的關心我必須要再重申一次像這樣的一個討論已經經過非常詳盡連行政院長都主持這樣的一個相關的一個有些團體嘛他關心另外如果真的有因為這樣子而放鬆的話我們都很願意來做處理來做檢討沒有問題
transcript.whisperx[415].start 11506.757
transcript.whisperx[415].end 11518.921
transcript.whisperx[415].text 另外我請教部長,醫師法裡面有提到很多次的外國學歷、外國醫事人員。外國人這個詞彙在中華民國的現行法律裡面,這些外國有包含中國大陸嗎?我們目前沒有承認中國大陸的學籍。
transcript.whisperx[416].start 11528.544
transcript.whisperx[416].end 11552.593
transcript.whisperx[416].text 對嘛因為一個中國大陸醫師想要來台灣執業在實務上會依兩岸人民關係條例來先處理身份跟資格的問題嘛對不對因為兩岸人民關係條例它是特別法它應該是會優先的我們的一般的法律我們現在訂的這些規範它只是一般法律所以我們會優先用兩岸人民關係條例來處理是的對嘛
transcript.whisperx[417].start 11557.435
transcript.whisperx[417].end 11566.16
transcript.whisperx[417].text 所以如果說要開放大陸地區醫生來台灣我們的法律條文裡面就必須寫到大陸地區的醫師而不是外國醫生對吧他不是外國醫生嗎是應該會寫到大陸地區的醫生是這樣嗎理論上是這樣
transcript.whisperx[418].start 11579.41
transcript.whisperx[418].end 11598.591
transcript.whisperx[418].text 應該是依照兩岸人民關係條例的名字所以謝謝部長因為之前我們也聽到說我們要開放大陸的中國醫生來台灣造謠的事情謝謝部長也認證這些立委他好像都不太懂中華民國的法律我們在這邊謝謝部長的澄清
transcript.whisperx[419].start 11601.894
transcript.whisperx[419].end 11629.235
transcript.whisperx[419].text 另外我再請教就是食安的部分我們現在行政院經貿談判辦公室嚴副總談判代表你們今天的這份報告我真的看不出來你們在談判的前中後要怎麼保障我們國人的食品安全跟農民的權益就食安的角度來講談判的時候你們會自己降低食安的標準去配合美國嗎
transcript.whisperx[420].start 11632.37
transcript.whisperx[420].end 11657.263
transcript.whisperx[420].text 報告委員我想我們是有分工的啦雖然我們是政府是一體團隊也是一體的大家齊心協力那在食安這個專業的一個科學的分析那會是由我們衛福部這邊來做琢磨那我想在辦公室那邊談判辦公室那邊你沒有提到啦應該是在談判的技術然後蒐集大家的意見
transcript.whisperx[421].start 11658.963
transcript.whisperx[421].end 11685.456
transcript.whisperx[421].text 來維護國家最大的權益這樣子對啊 因為我不希望我們以國人的健康來做籌碼來變成配合美國的演出雖然美國有提到說我們台灣檢測萊克多巴胺殘留辦法跟捷克認可方法不一致我們台灣標準是比較嚴格的那當然美國是希望我們用寬鬆的標準來認定台灣辦公室的看法呢
transcript.whisperx[422].start 11688.507
transcript.whisperx[422].end 11710.003
transcript.whisperx[422].text 先請署長回應一些報告委員因為簽署萊克多安的檢驗的部分那個是檢驗是非常非常科學的科學的檢驗的過程當中那個標準的部分因為檢驗的科學的時候他檢驗的方式呢JEC法其實有公開公告的相關的一個標準那其實國際可以認證的那我們
transcript.whisperx[423].start 11710.963
transcript.whisperx[423].end 11735.912
transcript.whisperx[423].text 食藥署這邊的我們的研檢組裡面對於開發這些方法以及執行的部分都沒有問題我們都準備好我今天提這個雖然還沒談啦我只是希望說政府能夠站在人民的健康的這個立場來去幫我們人民做把關另外當然農民的衝擊可能也要考慮到我們農業部那個我們次長有來嘛那我們也是希望我有聽到說之前有講零關稅這個部分嘛次長
transcript.whisperx[424].start 11749.674
transcript.whisperx[424].end 11757.518
transcript.whisperx[424].text 我們之前有聽到說我們關稅要從零開始談那是一個原則但是不是所有都談到零
transcript.whisperx[425].start 11758.502
transcript.whisperx[425].end 11778.07
transcript.whisperx[425].text 所以農業部的看法農業部一定跟農民站在一起維護我們國家農業的安全所以不會領我希望你要考量我們農民的生計農業部覺得跟農民站在一起我們蘇昭偉剛剛也有提過好幾個委員都有提到大家都非常擔心就是說我們一定要保護我們自己農業的發展還有我們的農民的權益那經貿辦這邊呢
transcript.whisperx[426].start 11784.256
transcript.whisperx[426].end 11793.193
transcript.whisperx[426].text 我想針對這些農產品的議題絕對不是只有開放的問題所以我們一定會尊重我們的組成機關的意見然後以我們的國人跟農產的發展為優先
transcript.whisperx[427].start 11796.383
transcript.whisperx[427].end 11805.168
transcript.whisperx[427].text 所以你們一定要站好你的角度好不好站好你的立場好好幫我們的國人幫我們的農民好不好希望你們把這件事放在心上謝謝部長謝謝主席我們請部長
transcript.whisperx[428].start 11827.901
transcript.whisperx[428].end 11851.63
transcript.whisperx[428].text 委員好部長我想請教因為今天非常大的一個新聞就是衛福部在推動醫療服務國際化轉型推動計畫那從2022年開始到現在我不知道說到底成效是怎樣那我們看到今天的這一則新聞我一看到之後我就覺得非常的訝異就是說這個
transcript.whisperx[429].start 11856.395
transcript.whisperx[429].end 11868.902
transcript.whisperx[429].text 這個魔法牙醫診所從這個2022年到2023年短短6個月就申請600多件就是這個從國外的民眾然後到台灣來就醫
transcript.whisperx[430].start 11870.543
transcript.whisperx[430].end 11880.955
transcript.whisperx[430].text 那後面發生這個問題是移民署這邊這個發現的啦那我想請教就是說衛福部這邊針對這個計畫從一開始到現在
transcript.whisperx[431].start 11887.282
transcript.whisperx[431].end 11914.545
transcript.whisperx[431].text 到底有幾個這個醫療就是醫療院所有申請再來說你們衛福部自己本身有發現這樣的一個問題到底是有幾家或者是你們完全都沒有發現然後是內政部移民署發現說這個從國外進來從中國進來的這個要來就醫的人這麼多而且這麼密集然後才自己移民署自己調查那你們完全都不知道嗎
transcript.whisperx[432].start 11915.489
transcript.whisperx[432].end 11943.526
transcript.whisperx[432].text 好,雖然的關心,那個本來這個是一個好意啦,一個人道的一個主意嘛,能夠必須要來台灣這麼優秀的醫療來如果能夠幫助,當然也是因為這樣子所以有開放,原來是衛福部來主政,後來在111年,剛剛你也提到嘛,就委託
transcript.whisperx[433].start 11945.054
transcript.whisperx[433].end 11970.652
transcript.whisperx[433].text 其實是私協來做可是你們不需要管理嗎我們提供當然要管理然後那邊是提供一個原則給移民署那邊應該去核定去核定是同意不同意應該不是MET是移民署合定所以移民署那邊會有統計表那他在5月的時候統計出來發現這個診所
transcript.whisperx[434].start 11974.423
transcript.whisperx[434].end 11994.822
transcript.whisperx[434].text 牙醫診所從2022年12月到5月短短的6個月就申請了600多件所以在移民署的管理小組覺得有異就戳查所以當時有沒有通知你們在他們發現有異常的時候有沒有通知你們
transcript.whisperx[435].start 11995.578
transcript.whisperx[435].end 12023.413
transcript.whisperx[435].text 會啊 所以你們那時候是做什麼樣的處置我們5月17號就馬上暫停該診所的資格所以5月是2023年的5月2023年的5月 對一發現就停止他們在申請國外的資格到現在都沒有恢復好 那我想請教除了這一家魔法牙醫診所之外那還有其他的醫療院所有類似這樣的一個狀況嗎
transcript.whisperx[436].start 12025.953
transcript.whisperx[436].end 12043.677
transcript.whisperx[436].text 那當然以現況來講是非常足按去好好的審查我只想要問一下就是說除了這一家那還有沒有其他家有類似這樣的一個狀況所以你們都是被動的被告知的是不是這樣子
transcript.whisperx[437].start 12056.092
transcript.whisperx[437].end 12082.127
transcript.whisperx[437].text 因為申請是向移民署申請,我們給他一個規範啦就是醫療上的規範是提供給移民署去審查那現在是主案審查所以你們也是被告知被移民署告知你們,你們才知道有這樣的一個事情你們也不會自己主動去查應該是移民署收集
transcript.whisperx[438].start 12083.817
transcript.whisperx[438].end 12109.949
transcript.whisperx[438].text 申請 請醫事室回答跟委員報告目前就是衛福部裡面這邊只是說醫療機構有沒有資格可以去幫就是國外的民眾申請醫療簽證那醫療簽證可可就是說我們通過醫療機構可以幫他申請這樣的醫療簽證以後他們接下來的動作就是如果說有國際的病人需求的時候他們會在移民署的網站去登錄
transcript.whisperx[439].start 12111.83
transcript.whisperx[439].end 12139.279
transcript.whisperx[439].text 說哪個病人要來需要醫療簽證然後他什麼時候會到大概什麼時候期間那所以說如果說移民署發現說這個可能有一點異常的數字的時候他到時候就會通知衛福部這邊可能去共同聯合去會勘跟那個瞭解好那我要問部長除了這一家魔法牙醫診所之外那移民署這邊還有沒有告知你們還有其他的醫療院所有類似的這樣一個狀況
transcript.whisperx[440].start 12141.091
transcript.whisperx[440].end 12155.169
transcript.whisperx[440].text 這幾年當中就是針對異常的部分大概是有一家是醫院有一家是另外一家診所所以到目前為止就只有三家有有類似的這樣有異常有類似這樣的一個狀況其他都還好
transcript.whisperx[441].start 12156.05
transcript.whisperx[441].end 12175.292
transcript.whisperx[441].text 是確定是這樣子嗎我們目前醫療可以做醫療簽證的只有規定是28類的疾病才可以幫那個醫療機構可以幫病人簽那個醫療簽證所以目前就是已在這28個可是我們看到這個魔法牙醫診所他只是純粹牙齒的洗牙或者是美白這個也
transcript.whisperx[442].start 12176.753
transcript.whisperx[442].end 12201.17
transcript.whisperx[442].text 跟委員報告不好意思就是說當初我們在28類裡面其中因為這個案件我們就是會同那個口腔師跟營醫師有重新修正這個類別更嚴謹的疾病類別裡面把它寫得更清楚所以有重新來公告這一項的牙科關於口腔的疾病別是屬於更急性而且是比較嚴重的程度之下的他才可以做這樣的醫療簽證
transcript.whisperx[443].start 12202.851
transcript.whisperx[443].end 12225.79
transcript.whisperx[443].text 我今天看到這則新聞我真的是嚇一跳就是說當然是剛剛部長講的就是說這個台灣的這個醫療服務品質應該在國際上應該是數一數二的大家公認是非常好的那如果說我們在推動這個醫療服務國際化轉型推動計畫如果會有這樣的一個疑慮或者是會有國安上的問題
transcript.whisperx[444].start 12227.791
transcript.whisperx[444].end 12249.499
transcript.whisperx[444].text 真的我看到這個就是說短短時間來了這個六七百人那這六七百人在這個診所上面也完全沒有病例或者病例完全是空白那怎麼可能會讓他有這樣的一個機會然後未來還讓他有這個機會再引進其他或是再繼續做這樣的一個服務所以我
transcript.whisperx[445].start 12251.379
transcript.whisperx[445].end 12272.333
transcript.whisperx[445].text 這邊我是希望就是說衛福部針對這一部分未來你們要怎麼去預防或者是你們要怎麼去管理而不是這個變得完全你根本不知道他到底有沒有來做醫療好完全不知道然後病例也沒有對啊那你們怎麼可以忍受這樣子的一個你們原本是一個好意然後後來是變質的
transcript.whisperx[446].start 12274.465
transcript.whisperx[446].end 12295.819
transcript.whisperx[446].text 跟委員報告就是我們每年都會不定期會同那個移民署還有那個陸委會共同去跟衛福部共同聯合一個稽查的機制去不定期去抽目前大概有一百二十九家的會員機構所以我們這個有從事這個計畫的我們會不定期的去做聯合的稽查
transcript.whisperx[447].start 12296.715
transcript.whisperx[447].end 12310.573
transcript.whisperx[447].text 去抽查從此抽查病例跟現場去了解說他當初這樣的你們是現在才開始在已經在這個至少已經執行了五六年了執行五六年那是最近才有這樣子的一個狀況出現嗎
transcript.whisperx[448].start 12311.755
transcript.whisperx[448].end 12329.13
transcript.whisperx[448].text 因為這個案子其實因為移民署他那邊現在都是用資訊化去做登錄他只要是數字異常的他就會跳出來做警示所以這部分的話我們就更特別去我希望就是說這個不要變成一個國安的一個漏洞真的真的部長
transcript.whisperx[449].start 12330.09
transcript.whisperx[449].end 12347.377
transcript.whisperx[449].text 是不是未來這個部分你們要怎麼去做管理雖然是一兩間診所但是我們認為非常嚴重絕對不允許有這樣情況我想我們除了希望依法原辦以外當然我們一定加緊把所有的整個流程
transcript.whisperx[450].start 12348.004
transcript.whisperx[450].end 12372.51
transcript.whisperx[450].text 在做最緊密主動而不是被動的讓告知主動的去...我是認為你們應該自己也要做一個全面的清查有一個聯合小組那我覺得這個應該要發揮更多的對 如果說你們這樣子一個機制已經做了五六年然後你們自己本身沒有發現然後還要靠移民署通知你們的話我認為你們應該要做一個全面的清查
transcript.whisperx[451].start 12374.222
transcript.whisperx[451].end 12387.779
transcript.whisperx[451].text 這個我想我也非常重視這個所以那個一定嚴格來執行他每一個環節讓他真的有需要的人得到照顧照顧以後
transcript.whisperx[452].start 12389.481
transcript.whisperx[452].end 12403.489
transcript.whisperx[452].text 就回去 這個一個一個都要盯得很緊這樣子而且不能許有內造的事實這個我想都要嚴格辦理所以我希望真的部長你今天講的真的說到要做到
transcript.whisperx[453].start 12404.369
transcript.whisperx[453].end 12427.91
transcript.whisperx[453].text 我們是完全不能忍受你竟然來然後你是沒有從事醫療沒有什麼醫療的行為然後這個診所完全也都沒有病例或者是這個病例捏造整個文書記錄全部都捏造那你怎麼可以接受這樣的診所繼續做這樣的事情或者是醫院甚至是醫院我都覺得很壓抑
transcript.whisperx[454].start 12428.49
transcript.whisperx[454].end 12453.801
transcript.whisperx[454].text 不管是鎮守或醫院我們一定取消他的資格而且是知名的醫院那你可以忍受這樣子嗎不能忍受可以提供服務的醫院很多啦如果有違規的我們一定嚴格辦理所以我覺得你應該是全面要趕快去做一個清查不要再有這樣的事情發生我們一定
transcript.whisperx[455].start 12455.722
transcript.whisperx[455].end 12477.179
transcript.whisperx[455].text 人家檢討去把他鎖這個罪行好另外這個再給我兩分鐘的時間我問一下就是說我們一直在推動這個健康台灣那台灣的目前三高變成是國人死亡的非常重要的一個這個原因那在這個
transcript.whisperx[456].start 12479.24
transcript.whisperx[456].end 12494.03
transcript.whisperx[456].text 這個我們整個死亡人數差不多有三成都因為山高的這個原因那我想請教部長就是未來我們衛福部針對這個高血壓高血糖高血脂這樣山高那你防治的目標是什麼那
transcript.whisperx[457].start 12495.371
transcript.whisperx[457].end 12515.572
transcript.whisperx[457].text 有什麼樣的方式可以降低這樣的一個三高的發生那另外就是說我們在推動這個健康存摺我發現一般民眾在使用這個健康存摺可能也可能也很少人在使用這個那是不是有可能跟這個外送平台因為國人
transcript.whisperx[458].start 12516.693
transcript.whisperx[458].end 12519.136
transcript.whisperx[458].text 外食的這個機會真的非常的多那有沒有可能也跟這個外送平台做一個結合就是說你透過外送平台然後你在點餐的時候你在最近這幾天你使用的這個高油高糖
transcript.whisperx[459].start 12537.557
transcript.whisperx[459].end 12559.843
transcript.whisperx[459].text 這樣的類似這樣的一個食物使用了幾次那會影響健康我覺得是不是請部長你可以講一下未來怎樣去降低這個這個三高的這個部分那未來我們怎麼樣透過我們的AI的方式然後讓民眾可以更加的知道自己目前的這個健康狀況
transcript.whisperx[460].start 12561.251
transcript.whisperx[460].end 12582.736
transcript.whisperx[460].text 謝謝委員這是非常重要的一件事情其實它牽涉的蠻廣的我們第一個當然怎麼樣讓他生活習慣好一點這是第一個階段這個部分其實在我們的健康存摺裡面就有相關的一個指導那當然等一下可以由健保署來講健康存摺使用的人有多少
transcript.whisperx[461].start 12586.985
transcript.whisperx[461].end 12605.956
transcript.whisperx[461].text 用過的人非常多但是是不是大家都熟悉去使用習慣去使用那當然又是另外一個問題第二個就是說我們在三高剛剛您提到三高是嚴重的問題所以我們譬如說我們在成人健檢部分我們就把降了10歲
transcript.whisperx[462].start 12606.937
transcript.whisperx[462].end 12626.902
transcript.whisperx[462].text 所以是健康台灣非常重要的一點,因為常常到三十幾歲其實就開始有一些其實是可逆性的一些症狀那只要生活習慣改變,他的調整好,睡覺睡好一點,運動好一點,他的紅字就變成
transcript.whisperx[463].start 12627.842
transcript.whisperx[463].end 12638.555
transcript.whisperx[463].text 黑字了啦所以真的很感謝委員關心這一點那這個部分我們在健康台灣的確增加了很多經費在做這個部分發現了更少發現了這些問題來處理
transcript.whisperx[464].start 12641.621
transcript.whisperx[464].end 12668.868
transcript.whisperx[464].text 那至於說還有另外就是怎麼樣把所有檢查出來的data數據能夠匯集這也是未來這也是行政院在大概一個禮拜一兩個禮拜前在宴會裡面特別討論這個議題那我們希望各部門尤其是勞動部他有很多的勞工健檢的部分能夠我們有一個平台把它通通匯集起來那這樣就會來整個來了解來共同來推動
transcript.whisperx[465].start 12669.708
transcript.whisperx[465].end 12680.601
transcript.whisperx[465].text 它避免傷高那至於說跟外送平台這個部分如果我們這個平台成熟以後我們當然也願意來瞭解來配合來大家增強這個照顧的實力好 我們希望就是說在
transcript.whisperx[466].start 12685.126
transcript.whisperx[466].end 12709.631
transcript.whisperx[466].text 那個部長這邊真的努力來推動健康台灣然後將我們國人的這個三高的這個部分能夠降低減少這個死亡率啦好不好謝謝委員的關心我也呼籲國人多使用我們現在健康村子的一個應該會有很大的幫助這樣子用呼籲的就不好啊 那個使用的人就是救啊對不對好
transcript.whisperx[467].start 12713.232
transcript.whisperx[467].end 12738.613
transcript.whisperx[467].text 但是可能有上去,我不曉得施昭有沒有去看過自己的健康存摺所以今天我發現這陣子用覺得還蠻好用的所以請國人用,這個是我們花了很多精神建造出來的我們希望更多的資料進來的話,那可能有更
transcript.whisperx[468].start 12739.513
transcript.whisperx[468].end 12743.294
transcript.whisperx[468].text 更多可以幫忙促進健康的事情謝謝委員的指導 謝謝
transcript.whisperx[469].start 12768.904
transcript.whisperx[469].end 12793.141
transcript.whisperx[469].text 主席 我想說你沒有要叫人我們的行政院經貿談判辦公室的副總談判代表 顏惠欣還有經濟部的政務次長 姜文洛還有農業部的常務次長 杜文貞姜次長還有農業部的次長經濟部今天都沒有人叫
transcript.whisperx[470].start 12800.482
transcript.whisperx[470].end 12814.224
transcript.whisperx[470].text 三位好2025年3月31號我們美國就已經公布了2025年對外貿易障礙評估報告去指控說台灣對豬肉牛肉馬鈴薯跟稻米跟基改食品設定貿易障礙
transcript.whisperx[471].start 12814.83
transcript.whisperx[471].end 12822.473
transcript.whisperx[471].text 所以對此可能會對我們臺灣關稅懲罰作為一個理由可是至上邊的數據來看的話臺灣對美國的農產品的出口量事實上是相差20倍的貿易逆差
transcript.whisperx[472].start 12830.396
transcript.whisperx[472].end 12852.388
transcript.whisperx[472].text 我們不但沒有在美國便宜還有可能事實上會接受到傾銷所以我不知道嚴代表還有我們的江次長這邊想問兩位為了糧食自給率攸關我們國內的安全各國對此有貿易限制美國台灣都有可是對這次美國的指控你們兩位的看法是什麼
transcript.whisperx[473].start 12854.738
transcript.whisperx[473].end 12874.096
transcript.whisperx[473].text 好 謝謝委員 我首先說明一下我們談判代表辦公室的立場就是基本上我們當然會去考量這個議題是多面向的議題所以除了要去跟美國去談關稅的問題以外實際上我們也知道這些產業農產實際上還要考量到國人健康跟消費習慣為基本的前提
transcript.whisperx[474].start 12876.058
transcript.whisperx[474].end 12902.078
transcript.whisperx[474].text 但是呢我們當然也同時要去思考到這些國際標準要做一些橫頻的思考所以基本上我們會綜合這些因素然後基本上我們會尊重我們的農業跟經濟的主政單位來做一個通盤的一個立場的確認好謝謝代表那江次長這邊是謝謝委員貿易逆差是美方關切的議題但是除了貿易逆差以外他還有提出來
transcript.whisperx[475].start 12902.677
transcript.whisperx[475].end 12921.349
transcript.whisperx[475].text 像非關稅的障礙等等也都是美方關切的一體所以我們政府是一體的從各個層面去運營我們相關的立場以上好 謝謝次長那台灣的糧食自給率事實上是逐年下降到31.7%特別是核穀類的糧食的供給量
transcript.whisperx[476].start 12924.915
transcript.whisperx[476].end 12951.7
transcript.whisperx[476].text 還不能滿足需求所以我們的稻米玉米大豆這種糧食的產量是不足的我們有進口的糧食調節存量的長期需求可是又不能放任我們的糧商被就是破壞價格之後傷害到糧農的利益所以想問我們的江次長跟我們的杜次長要購買糧食要調節供需需要保護糧農面對任何能夠提供
transcript.whisperx[477].start 12952.66
transcript.whisperx[477].end 12970.705
transcript.whisperx[477].text 河谷类粮食的国家都应该保持欢迎的态度可是最怕的是就是被强迫倾销所以美国有强迫倾销的意图吗那政府怎么去因应这个问题谢谢委员关心因为其实粮食安全这件事情真的很重要特别是在台湾其实在美联
transcript.whisperx[478].start 12971.765
transcript.whisperx[478].end 12993.345
transcript.whisperx[478].text 我們不管是河谷類的也好還有其他就是其實我們跟各國不是只有跟美國其實對於台灣以農業來講一定是台灣優先那但是糧食安全確實是要注意所以所以在整個我們對於這個橫頻的過程當中第一個一定是保障我們自己的台灣但是第二個安全的存量確實是一定還是要所以我剛剛有問說
transcript.whisperx[479].start 12995.407
transcript.whisperx[479].end 13024.14
transcript.whisperx[479].text 最怕的是我們的強迫傾銷你覺得美國有這個意圖嗎應該這樣講其實我們也不是現在啦我們當初在加入WTO的時候其實也是面臨一樣很大的挑戰那但是我想為了台灣農業我們這樣的立場絕對還是要守住好那我續問喔就是說在不傷害本國稻米價格的前提下台灣每季還可以增加多少的稻米的進口量啊這個數字農業部有沒有預先做估算啊美國在這邊透露嗎
transcript.whisperx[480].start 13026.689
transcript.whisperx[480].end 13040.723
transcript.whisperx[480].text 應該這樣說 我這樣做不是怕那個農其實對農民最大的幫助是確保他的收購價格 收入農是一回事 農有時候不是要多少多少有時候氣候的變化真的不太能夠如我們所預期的有那麼多收穫 但是
transcript.whisperx[481].start 13041.623
transcript.whisperx[481].end 13070.251
transcript.whisperx[481].text 確保農民的收入的價格收購價格其實是重要的所以不是說我們要進口多少還是說我們可以準備多少而是說我們是雙重的標準在說第一個是確保農民收入一定要保障第二個我們的糧食純糧這塊也一定會守護所以我們當初在加入WTO的時候其實真的是那時候真的是很困難那我想我們經過那樣子的經歷之後怎麼守住台灣我們這塊其實我們是有很堅定的立場在做好那我們再來看豬肉這一塊
transcript.whisperx[482].start 13071.491
transcript.whisperx[482].end 13075.433
transcript.whisperx[482].text 台灣2023年豬肉產值大於850億的新台幣國人平均消費量大概是36公斤 自給率大概88.5%2024年進口的豬肉內臟食品總值大概10萬公噸所以是出口的40倍那美國進口8041公噸 佔總數的7.85%
transcript.whisperx[483].start 13098.724
transcript.whisperx[483].end 13113.758
transcript.whisperx[483].text 台灣豬肉沒有對美國出口所以想問一下2023年我們的豬瘟拔針今年有望為三大豬病肺疫區的國家可是台灣的豬肉的出口卻相當疲弱那這是什麼原因
transcript.whisperx[484].start 13116.625
transcript.whisperx[484].end 13132.797
transcript.whisperx[484].text 其實我們對疾病的控制不是只當作要做出口的唯一的目的第一個是我們的養豬產業能夠把成本降低能夠永續這是我們不管是做疾病清除也好不管是做產業提升也好這是我們最大的目的
transcript.whisperx[485].start 13133.217
transcript.whisperx[485].end 13154.548
transcript.whisperx[485].text 那第二個台灣其實整個養豬的成本老實講確實是有點高有點高所以我們的出口市場其實是鎖定是高端市場那我們的養豬產業確實是也真的是很爭氣不只把口蹄清除把非洲豬人守住現在豬人也拔針也要被認可所以我覺得我們當然是有競爭力但是不是為了出口而出口
transcript.whisperx[486].start 13155.68
transcript.whisperx[486].end 13184.279
transcript.whisperx[486].text 那關於臺灣豬肉透過內銷跟出口來調節市場供需量的問題政府有沒有什麼策略應該是這樣講對我們來講其實臺灣這個養豬產業確實要守住所以怎麼降低成本怎麼讓它永續經營這是第一件我們的養豬產業其實也體認到市場不是為了提供豬肉其實是有社會責任這是一個文化那你2025年政府對於豬肉出口有沒有什麼計畫甚至臺灣豬肉出口量你預估可以達到多少的成長率
transcript.whisperx[487].start 13184.919
transcript.whisperx[487].end 13200.839
transcript.whisperx[487].text 這其實要看我們整個產業的支持我們不是為了出口而出口而是當作第一個是產銷調節的一個方式第二個我們針對不同市場特別是一些高端市場我們去鎖定讓我們的養豬農民出口是有利潤的不是只為了出口而出口這樣
transcript.whisperx[488].start 13201.92
transcript.whisperx[488].end 13219.355
transcript.whisperx[488].text 那一樣的再來談牛肉就是說我們台灣的牛肉需要大量仰賴進口所以因此牛肉進口不是政治問題而是供需的問題所以至於進口的條件就是法律問題食品安全衛生管理
transcript.whisperx[489].start 13220.275
transcript.whisperx[489].end 13241.621
transcript.whisperx[489].text 就有規定10年內發生狂牛症的國家獲得是地區所產牛隻的頭骨、腦、眼睛、脊髓、絞肉、內臟都不得輸入所以一樣問我們的杜次長現今美國是不是已經脫離了狂牛症的疫情到10年之久合乎我們六大禁止項目進口的條件
transcript.whisperx[490].start 13244.192
transcript.whisperx[490].end 13271.559
transcript.whisperx[490].text 應該這樣說其實在世界動物衛生組織對於牛海綿狀腦病就是我們所俗稱的狂牛病其實它的認定方式已經不是以有沒有發生病例來看而是看它的風險那目前是有三個等級一個是風險可忽略一個是風險已控制那另外就是風險未知那對美國現在在世界動物衛生組織被認可是風險可忽略所以事實上它現在可以到它被認定的風險是風險可忽略
transcript.whisperx[491].start 13274.949
transcript.whisperx[491].end 13288.519
transcript.whisperx[491].text 嚴代表想問一下如果美國尚未達到食品安全管理法規定的條件台灣便是很難滿足美國全面開放的要求面對貿易跟法律的兩難政府的態度是什麼
transcript.whisperx[492].start 13289.921
transcript.whisperx[492].end 13306.842
transcript.whisperx[492].text 首先要說明的就是剛剛有提到美國現在被世界動物衛生組織所認定它在這個狂流症上面是風險可忽略區那這個風險可忽略區就這個世界衛生組織它的認定實際上是它的所有的部位
transcript.whisperx[493].start 13307.583
transcript.whisperx[493].end 13326.203
transcript.whisperx[493].text 全流林都是安全可食用的這是我們從國際組織所得到的訊息但是這個符不符合我們國人的食用習慣以及國人對這個概念的這個接受的程度我覺得這是由我們的衛福跟農政的主管機關接下來再去做進一步的專業上面的判斷跟評估
transcript.whisperx[494].start 13326.904
transcript.whisperx[494].end 13339.033
transcript.whisperx[494].text 那我想我們OTN就是經貿辦就是提供我們的農政跟衛福主管機關最這個堅強的後盾來然後確保我們國人的健康之下來做我們談判的立場好
transcript.whisperx[495].start 13340.441
transcript.whisperx[495].end 13359.698
transcript.whisperx[495].text 台灣有一套合格的農產品肉品的標示系統那建制這套系統的目的不是為了排斥美國的肉品是為了保障台灣消費者的知情權所以台灣豬農並不擔心任何國家進口肉品的競爭反而更在意的是進口肉品有沒有混雜
transcript.whisperx[496].start 13361.019
transcript.whisperx[496].end 13380.713
transcript.whisperx[496].text 混充在臺灣豬肉流入市場這個事實上是長期不要關心的因此弱食食品標章事實上是消費者跟豬農的共同期待那消息會去年中旬的也有調查有6.5%的商品或店家沒有依規定標示並且肉品流向不明所以想問我們的言代表
transcript.whisperx[497].start 13381.995
transcript.whisperx[497].end 13391.969
transcript.whisperx[497].text 臺灣農產品肉品標章行之有年是一項具有社會高度共識的制度面對美方認為標章會造成貿易障礙的誤解政府現在應對的態度是什麼
transcript.whisperx[498].start 13395.567
transcript.whisperx[498].end 13415.9
transcript.whisperx[498].text 針對標章這個問題這樣更具體而言我想就是他有表示是原產地的標示以及國內標章的問題原產地的標示這是各國都有這個權利去要求還要確保他的進口來源因為他還有關稅上面的適用問題所以標示原產地這個是各國都該都擁有的權利
transcript.whisperx[499].start 13416.638
transcript.whisperx[499].end 13435.201
transcript.whisperx[499].text 第二個呢針對說國內的這些食品標章的這件事情我想對台灣來說我們只要確保它是一體適用的一個做法那讓消費者有知的權利可以做在購買的時候做適當的選擇這個都是WTO國際規範上面容許各國可以做的事情
transcript.whisperx[500].start 13435.486
transcript.whisperx[500].end 13461.212
transcript.whisperx[500].text 好 農業部這邊想問說 民間有政府提供系統供民眾查詢熱品流向的訴求就是不管經營部 農業部 大家的看法是什麼我想提供讓我們的消費者有能夠查詢 有知道來源的這個基本的資訊 我想應該是全民都希望的 包括我自己也是消費者好 經營部這邊
transcript.whisperx[501].start 13464.113
transcript.whisperx[501].end 13491.288
transcript.whisperx[501].text 報告委員就如同前面一位杜次長說我們都是消費者所以我們都應該有吃的權利所以我覺得台美經貿要穩健發展所以我們希望農產品跟肉品有關國家應該適度保護可是台灣豬肉不怕競爭要爭取外銷所以希望農業部要加油那台灣牛肉進口的品項不是政治議題要符合法還是要符合法規食品標章我們還是希望能夠落實以上謝謝
transcript.whisperx[502].start 13493.916
transcript.whisperx[502].end 13494.216
transcript.whisperx[502].text 謝謝林委員、謝謝部長
transcript.whisperx[503].start 13522.582
transcript.whisperx[503].end 13536.388
transcript.whisperx[503].text 來,謝謝召委一行部長。劉少偉好。部長好,部長辛苦了。部長昨天食藥署查國防生計有查出什麼嗎?
transcript.whisperx[504].start 13540.389
transcript.whisperx[504].end 13555.916
transcript.whisperx[504].text 這個畢竟是去年七月份的事情嘛,如果現在還能夠讓你們炒出什麼東西,那就是真的FDA加FBI。現在回過頭來,為什麼去年七月發生的事情,國光生技場內發生這麼嚴重的問題,不用進行通報?
transcript.whisperx[505].start 13561.018
transcript.whisperx[505].end 13581.256
transcript.whisperx[505].text 然後你知道國防生技在講什麼嗎老鼠釋放在研發區研發區與生產區有明確的區隔不屬於藥品優良製作作業範圍GMP的所規範的範圍內因此不會影響到藥品品質請署長回應我兩個問題第一個查到什麼第二個國防生技這樣回應對嗎謝謝 謝謝委員我請署長
transcript.whisperx[506].start 13588.555
transcript.whisperx[506].end 13605.086
transcript.whisperx[506].text 謝謝委員非常精準的提問有關於國光生技的部分呢第一個是我們昨天7點知道的消息昨天早上7點的時候立刻就在昨天就派人去國光生技做查核馬上我們就出發了
transcript.whisperx[507].start 13606.087
transcript.whisperx[507].end 13631.788
transcript.whisperx[507].text 那對於為什麼在國光沒有立即去通報這件事情因為在GMP沒有涉及產品那國光他們是這麼樣子的解釋但是我們認為一樣GMP沒有涉及產品對他沒有涉及產品的部分所以他就說是沒有通報可是我們去的時候我們不是這樣子認為的因此我們有開出缺失這邊特別跟委員做進一步報告
transcript.whisperx[508].start 13632.849
transcript.whisperx[508].end 13661.399
transcript.whisperx[508].text 對 所以針對國光生技講的這句話它不在它這個事發地點不在GMP的規範裡面正確嗎我們其實我們就直接開出了缺失了跟委員做進入報告你要回應我啊對 已經我們有開出了它的缺失它這樣子是不符合的所以不符合嘛所以國光生技是到現在還在騙還是怎樣那你為什麼講出這樣的話我想這個藥廠裡面難道不包含它所謂的實驗區不包含它的實驗室不包含它的研發區嗎
transcript.whisperx[509].start 13663.137
transcript.whisperx[509].end 13687.35
transcript.whisperx[509].text 我想他們的認定上面呢跟我們去查查的過程當中呢其實是有出入的我們認為我們他必須要包含的相關的查案雖然說他這個在二樓的研發的獨立區域跟我們的上市產品的實驗區在B1跟一樓呢是分開來的是實體上面是區隔的所以對於所有的產品是沒有有風險的
transcript.whisperx[510].start 13688.951
transcript.whisperx[510].end 13707.203
transcript.whisperx[510].text 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一樓或是二樓 不管它一�
transcript.whisperx[511].start 13717.594
transcript.whisperx[511].end 13737.693
transcript.whisperx[511].text 吹哨者的報紙是說去年的7月台風馬台中市2425就已經停班停課也因此國防升級的員工就偏移行事直接把實驗室放在實驗室中兩天重新上班之後發現老鼠屎尿滲出 瘤痰滿桌事後又拖了三天才一種也就是說這些老鼠在實驗室待了五天
transcript.whisperx[512].start 13738.823
transcript.whisperx[512].end 13761.597
transcript.whisperx[512].text 不僅如此連莊保養署的紙箱被沈尿濺濕這種應該立即丟棄的東西竟然還堆在實驗室好多天部長跟署長可以看拖影片那這個實驗室裡面有檢測核酸與DNA濃度的精密儀器製冰器和溫水槽加上有鹽酸、硫酸、混合磷就連研發人員的實驗跑也通通暴露在污染中對不對
transcript.whisperx[513].start 13763.118
transcript.whisperx[513].end 13784.871
transcript.whisperx[513].text 報告委員第一個部分呢有關於這個實驗室的部分其實在26號正式上班就已經移走了這部分說進一步說明那整個實驗室呢在去年113年的8月6號呢也遷移到南投那本市查查呢也確認了這個空間呢所以我們8月6號的時候我們就不要再談嘛好不好我們就談這個事發的當時的時間才準確嘛你連事後的傾銷到底有沒有落實
transcript.whisperx[514].start 13791.295
transcript.whisperx[514].end 13816.34
transcript.whisperx[514].text 其實也沒有知道嘛 也不知道嘛有進一步的有清消 這個記錄上面你們有指出這是他缺失之一嗎對啊 研發部門環境消毒 記錄也不完整啊報告外務員 他們有做清消 只是我們覺得他的記錄不夠完整記錄不夠完整嘛 所以還是提出了一些糾正另外這個缺少者的說法說二樓實驗室二樓廁所是瀰漫到整個樓梯間喔而樓下一樓就是品管的檢驗區
transcript.whisperx[515].start 13817.64
transcript.whisperx[515].end 13834.512
transcript.whisperx[515].text 那另外雖然品管檢驗區是獨立的空調空間但除此之外這整棟大樓空調系統也是相通這些鼠毛衣會在大樓流竄所有工作人員在這個工作環境下在工作所以即便品管區有區隔這樣的環境
transcript.whisperx[516].start 13835.453
transcript.whisperx[516].end 13849.189
transcript.whisperx[516].text 你們會不會要幫國光掛保證我們沒有掛保證因為跟委員這邊報告因為整個的空調系統是獨立的那我們回風的時候其實它轉生的所謂的
transcript.whisperx[517].start 13850.97
transcript.whisperx[517].end 13876.119
transcript.whisperx[517].text 過濾跟阻隔跟傾銷的部分呢其實它的整個空調系統裡面有進一步的做阻隔時間有限啦齁我當然是希望讓你答覆的清楚不過可能要就陳瑋瑜所講的大家要抓的精準啦齁因為他之前已經講說沒有違反GMP了我就覺得非常的離譜到極點了這是第一點啦齁第二點他絕對不是只有這個環境而已不是只有這個研發實驗室
transcript.whisperx[518].start 13877.813
transcript.whisperx[518].end 13888.635
transcript.whisperx[518].text 你看喔除了生產區未落實無菌跟監控外先生有沒有做管理紀錄就這樣被...欸對不起他在這個他在這個對不起我用一個隱喻啦就是五福製藥這個部分啦五福製藥的部分去年才發生的事情他有針對這事項的缺失
transcript.whisperx[519].start 13906.874
transcript.whisperx[519].end 13923.866
transcript.whisperx[519].text 你們就把它列為嚴重違反GMP的藥廠對不對那你們怎麼處理跟委員最近報告因為這個跟產品之間是有關係的所以直接會對品質有影響所以它列的層級就自然所以國光生技你的意思跟我表達就是說跟產品沒有關係
transcript.whisperx[520].start 13924.963
transcript.whisperx[520].end 13947.453
transcript.whisperx[520].text 你要直接這麼講目前我們去查查之後因為廠內的製造疫苗的產品跟生產跟檢驗都沒有在這次涉案的範圍的區域執行因此我們判斷是沒有對疫苗的品質跟安全有差異的但是我們一致還是要去強調是我們是對國際一致性的PIX GMP的規範
transcript.whisperx[521].start 13949.573
transcript.whisperx[521].end 13975.723
transcript.whisperx[521].text 對藥廠進行定期跟不定期的一些查查希望我們能夠嚴格的把關製藥業的一些製造的品質處長你們對五福是這麼處理的剛剛我講的那一段是針對五福除了生產區會落實無菌跟健康外實驗室也沒有做管理的記錄你們這樣就把它打為嚴重違反GMP那現在是直接實驗室裡面有微規養老鼠甚至於飼料紙箱都不丟然後存放在那邊要培養什麼樣的東西
transcript.whisperx[522].start 13976.564
transcript.whisperx[522].end 13982.319
transcript.whisperx[522].text 這樣的GMP廠可以雲東風情說因為他醫療的區域不一樣請大家放心可以這樣嗎
transcript.whisperx[523].start 13984.318
transcript.whisperx[523].end 14010.554
transcript.whisperx[523].text 我們這一次要重申其實食藥署對於國內藥廠的GMP是已經建立了我們國際的規格只有這樣子嚴謹的國際規格才能夠讓我們的產品可以到全世界都能夠走得通所以我們對於這件事件我們非常嚴謹的去做採取雖然說我們看到它是獨立管理的品質是無虞的但是我們還是提出了嚴重的缺失以上說明徹查到底
transcript.whisperx[524].start 14011.758
transcript.whisperx[524].end 14030.105
transcript.whisperx[524].text 絕不慣敗一定會的不然我們前兩天才上禮拜才講說人家那個世界的那個極大的藥廠投資是在新加坡怎麼反而不選擇到台灣來如果這個事情處理得不好真的會一笑大方也會折損我們就整個在執行這個GMP過程裡面
transcript.whisperx[525].start 14031.708
transcript.whisperx[525].end 14041.174
transcript.whisperx[525].text 對人民對我們的信息會大打折扣啦好不好 可以吧可以的 我們一定積極的採取好 謝謝對不起齁 稍微再給我一點點時間啦齁我請經濟部的次長江次 嘿
transcript.whisperx[526].start 14045.891
transcript.whisperx[526].end 14072.834
transcript.whisperx[526].text 社長一邊走一邊聽美國貿易代表在3月31公佈2025對外貿易障礙評估中其中點名台灣豬牛馬燈設有貿易障礙等於是我們在歧視這個台灣標示美豬美牛是這樣的一個歧視的行為但事實上台灣的肉品都有標示產地不論美國就連澳洲就連日本甚至於台灣本土都會標示出來甚至於被川普講的加拿大比較稱為他的
transcript.whisperx[527].start 14073.955
transcript.whisperx[527].end 14088.991
transcript.whisperx[527].text 一周我們都要標示出來嘛哪來的歧視哪來的不平等哪來的沒有公平你們簡單回應一下是我們的現在的相關的標示呢都是一體適用的所以未來呢我們在
transcript.whisperx[528].start 14090.24
transcript.whisperx[528].end 14110.07
transcript.whisperx[528].text 我們未來的談判團隊一定會去跟這個美方去說明清楚這個部分呢是在台灣在台灣的話是一體施用對所以我是要特別強調說如果是這個樣子美方就講說實際上在歧視那相對其他這麼多國家都是一樣在台灣一視同仁的標示出來
transcript.whisperx[529].start 14111.089
transcript.whisperx[529].end 14138.102
transcript.whisperx[529].text 那來來有歧視的問題不可能嘛對不對那你今天你美國牛肉豬肉輸入到台灣輸給加拿大輸入到台灣的這個整個的數量那是他們自己要去做檢討修正嘛反而不能來講說是我們設下貿易障礙讓他們的銷售量低於其他進口的國家的銷售量嘛我想這個談判裡面應該你們應該是可以來拒以力爭看著讓人緩和來把這事情講清楚嘛
transcript.whisperx[530].start 14138.553
transcript.whisperx[530].end 14149.076
transcript.whisperx[530].text 所以臺灣的農業絕對不能成為這次美國貿易關稅談判桌的籌碼市長可以做到嗎剩下不到90天整個臺灣團隊在政府院長的領軍之下我們一定盡我們最大的這個能力農業是一個非常敏感的在那個產業後那臺灣是以農立國臺灣以農為本那絕對不能在這次關稅談判中然後讓我們臺灣的農業
transcript.whisperx[531].start 14165.061
transcript.whisperx[531].end 14177.231
transcript.whisperx[531].text 去受到任何的傷害跟責損好不好可以啦 謝謝那第二件事情是這樣這個關稅不僅全球起商人連各行各業都受到不同程度的衝擊有一個職業逆風上漲市長有掌握嗎有一個產業的人才的人力它是逆風上漲就是有近七八成的民眾有關稅占影響工作但是這個AI職缺卻飆升到11%
transcript.whisperx[532].start 14193.513
transcript.whisperx[532].end 14208.227
transcript.whisperx[532].text 市長知道這個事情嗎?美國川普也宣布要赤字五千億美元打造這個STARTGATE然後的AI超級企劃也要讓美國走在全球的AI領先的地位嘛中國研發Deposit可獲得AI人工智能
transcript.whisperx[533].start 14208.968
transcript.whisperx[533].end 14226.879
transcript.whisperx[533].text 其實這個人工智能戰爭已經熱戰中了各國都投入在這個AI領域連工業總會在因應這次關稅中提出六大建言其中有一個就是強化AI人才培育那我請教次長台南何時能有原產的國產的原生AI誕生
transcript.whisperx[534].start 14228.93
transcript.whisperx[534].end 14248.587
transcript.whisperx[534].text 報告委員AI也是這個艾總統所說的五大信賴產業之一所以我們現在相關的部會尤其是在經濟部積極的在培育AI的相關的人才到目前為止我們從賴政府上台之後到目前我們已經培育了6萬人次所以我們的目標是在4年之內要培育20萬人到現在已經有6萬人
transcript.whisperx[535].start 14255.732
transcript.whisperx[535].end 14283.885
transcript.whisperx[535].text 所以經濟部的相關的部會都在進行人才培育工作那實際上其他的部會包括樹發部等等也都在進行相關的工作你們有培育到6萬的人次的?有你確定?是我們看一個資料就好了差不多請你簡單再答我就好了你看這個排名我們是21嘛全球AI這個指數嘛對不對然後郭部長還特別提到說今年年底要超越香港
transcript.whisperx[536].start 14284.945
transcript.whisperx[536].end 14311.979
transcript.whisperx[536].text 是不是 然後看明年能不能再超越第六名的藍函嘛齁那你們有一個從去年開始政府就喊出2加4的人才培育方案每年要培育2.5萬的海外生嘛對不對然後國內是2.5萬嘛四年要培育20萬的AI相關人才你講的是這個啊對現在已經有達到6萬的 6萬人次去年才開始呢對 但是因為呢我們所謂的培育的話是包括我們經濟部所屬的所有的
transcript.whisperx[537].start 14313.09
transcript.whisperx[537].end 14327.991
transcript.whisperx[537].text 這個掌管的產業別包括製造業以及你在最後看一張表格好不好你看這個全球AI的指標有七大指數有七大個指標嘛齁台灣我們除了這個基礎建設有極盡滿分啦其他除了政府
transcript.whisperx[538].start 14329.103
transcript.whisperx[538].end 14345.049
transcript.whisperx[538].text 策略、商業、集人才、政策環境等等好像都不盡理想我在去年6月12日總諮詢有特別建立說雲林科大退場之後有30公頃的校地12棟校舍空間可利用可以成為台灣首座
transcript.whisperx[539].start 14346.049
transcript.whisperx[539].end 14372.078
transcript.whisperx[539].text 這個AI人才的培訓基地郭部長也有承諾那你們金光鼠也在8月5號今年的8月5號不是去年8月5號有提出環球課到退場的校地營運規劃那規劃有三大主軸第一個是AI國際經貿暨雙軸轉型人才培育創新研發暨AI新創育成支持輔導其他就幼齡壯齡在地熱火了那如今這個全球的AI戰已經如虎如同在展開
transcript.whisperx[540].start 14373.376
transcript.whisperx[540].end 14385.949
transcript.whisperx[540].text 但是環球消停還限制在一個地方你們資金的產花署三大功能下落不明所以部長要宣誓要趕到14名明年要趕到第2名我覺得指日不可待
transcript.whisperx[541].start 14388.93
transcript.whisperx[541].end 14404.577
transcript.whisperx[541].text 你怎麼笑出來報告委員我的剛剛的您所說的這個排名的檢討我們在部內確實有做檢討我們也希望能夠精進我們全這個全台灣的AI不只是人陪甚至包括相關的這個環境那
transcript.whisperx[542].start 14406.536
transcript.whisperx[542].end 14433.445
transcript.whisperx[542].text 您所提示的這個環球科大的部分我回去再跟產發所在我這邊這樣嘛你的另外人士等一下會後給我們委員會資料第一個看你整個執行的狀態是怎麼樣那第二個我希望剛剛針對這個環球科大要來做整個轉移應用成為AI的這個培訓人才你們的時程是不是可以加快有相關的積極的這樣的報告給我們來做參考是好謝謝好謝謝召委謝謝
transcript.whisperx[543].start 14435.067
transcript.whisperx[543].end 14435.889
transcript.whisperx[543].text 謝謝劉昭偉謝謝次長那接下來我們請鍾嘉賓委員質詢
transcript.whisperx[544].start 14452.39
transcript.whisperx[544].end 14466.52
transcript.whisperx[544].text 主席 在場的委員先進 政務機關首長代表會長 共同夥伴媒體記者女士先生有請我們農業部的杜次長 經濟部的江次長以及經貿談判辦公室的嚴副總談判代表是 委員好次長好 次長好 先請教江次長像你看這次美國的關稅衝擊
transcript.whisperx[545].start 14479.99
transcript.whisperx[545].end 14502.513
transcript.whisperx[545].text 對台灣來講我們現在是比較擔心出口賣不到美國還是擔心美國進口很多到台灣來哪一個你會比較我們衝擊比較大我覺得站在經濟部的立場我們當然是非第一點的話當然是希望我們的廠商都可以將他最好的優質產品出口到全世界各地重要的市場那現在是對是不是進口的衝擊影響可能比較大
transcript.whisperx[546].start 14503.496
transcript.whisperx[546].end 14519.469
transcript.whisperx[546].text 目前為止因為川普是苛徵10%的關稅是對我們的出口的部分但是對於進口的部分現在還是持續觀察中我們請那個嚴副總裁那麼在這樣的一個進出口的變化當中請問對台灣跟美國的農業來講是我們賣給美國的農產品多還是美國賣給我們的農產品多
transcript.whisperx[547].start 14529.971
transcript.whisperx[547].end 14551.057
transcript.whisperx[547].text 當然是美國賣給我們比較多我們是美國我們進口的美國是第一名嘛對不對但是我們出口跟美國的美國占我們出口市場第一名美國只是我們進口是我們是它第八大它是我們的第一名我們是美國出口對象的第八名
transcript.whisperx[548].start 14551.533
transcript.whisperx[548].end 14571.003
transcript.whisperx[548].text 但是他是我們出口對象的第一名對但是貿易值上面他是順差的對他是順差的換言之如果我跟劉建國他是我唯一的好朋友我是他排名第八的好朋友你覺得誰比較擔心誰我比較擔心嘛美國是我最大的出口市場我只是美國的第八出口市場農業部好來現在換農業部了
transcript.whisperx[549].start 14574.548
transcript.whisperx[549].end 14592.103
transcript.whisperx[549].text 是 委員來 處長 那天喔 來 我們看下一頁那天在4月13日 高雄龍街中 你沒跌嘛你可知道我們的寶座不會移動嘛是那天是跟模特兒一起在說嘛這段主席聽過 你可以休息我們台灣的模特兒 一半是大紀元 一半是華僧 是不是這樣
transcript.whisperx[550].start 14594.265
transcript.whisperx[550].end 14616.587
transcript.whisperx[550].text 外鄉的摩托 日本占7成 美國占3成 是不是這樣?沒有人喔?好 但是呢 美國的市場裡面 吃摩托吃同桌是不是吃中國的?對好 現在中國跟美國的環境 中國的摩托沒辦法賣美國啊?現在美國是不是很大量?所以我們要補充說什麼?台灣的摩托要趕快去抽美國的市場對不對?
transcript.whisperx[551].start 14619.506
transcript.whisperx[551].end 14626.736
transcript.whisperx[551].text 再去美國的市場但是中國的模特兒 模特兒不會去美國 它不會來哪裡不會來日本嘛日本跟中國是連關稅但是我們台灣小日本是六趴的關稅所以我們現在是不是在日本的模特兒市場受到中國的威脅
transcript.whisperx[552].start 14636.408
transcript.whisperx[552].end 14647.715
transcript.whisperx[552].text 是不是這樣?是所以說一個無約的關稅差別會造成說我們來美國的市場我們台灣要趕快去吃但是我們在日本的市場要歡樂中國來吃是不是這樣?是好來我給你們看好來所以另外一方美國是不是出口很多紅豆?是美國出口的紅豆是不是最近一半是在中國?中國現在中國會跟美國買紅豆嗎?所以你看這樣美國的紅豆會下去嗎?
transcript.whisperx[553].start 14666.227
transcript.whisperx[553].end 14694.402
transcript.whisperx[553].text 有可能的下去美國的黃小玉下去對台灣的容顏什麼衝擊 什麼影響我們台北分的黃小玉都對美國來啊所以我們有好康就對了嘛大家共產黨就有好康就好現在我們來看世界在吃地霸進地霸跟出地霸出靠地霸的國家是不是這個國家比較奧秘美國只有大陸少這地霸要統治的是中國 日本 白色國家 英國有台灣沒有沒有嘛 台灣很小喔 想想看 來
transcript.whisperx[554].start 14695.834
transcript.whisperx[554].end 14719.145
transcript.whisperx[554].text 台灣齁 現在齁 台灣吃的豬肉一成是進口的六成是我們本土的九成九成啦齁 本土的豬肉99%是供應過來的不夠1%是消外國消兩千噸嘛 消哪裡新加坡 菲律賓有消日本嗎呃 加工的有加工的有齁過去30年間 台灣的豬肉出口是現在的超過100倍是27萬公噸 噸啦 27萬噸
transcript.whisperx[555].start 14725.512
transcript.whisperx[555].end 14740.64
transcript.whisperx[555].text 現在只剩下兩千樓 外面來看 來所以你要看 30年前日本進口的地霸有四成來自台灣台灣出口的地霸有九成是小日本日本對台灣的地霸基金有重要嗎 多少有重要 但是現在呢
transcript.whisperx[556].start 14741.58
transcript.whisperx[556].end 14758.671
transcript.whisperx[556].text 現在日本的進口地盤美國、加拿大跟其他都請不上司機問詢對不對?有台灣嗎?沒有所以說台灣的地盤我們現在要出口是不是修正科留的應該是日本的集團市場是好來往那邊看請問台灣的地盤出口有什麼優勢?
transcript.whisperx[557].start 14759.966
transcript.whisperx[557].end 14781.861
transcript.whisperx[557].text 我們的地板好吃啊好吃不會燒焦嘛有煙過嘛我們它通風不燒焦但是治療尋問管人工管對不對是所以好來往下面看來下面所以我們的治療我們的起地的尋問裡面都是人工管黃曉玉啊對 治療檢查過六成是但是我們的治療比例裡面黃曉玉在哪裡
transcript.whisperx[558].start 14784.215
transcript.whisperx[558].end 14789.818
transcript.whisperx[558].text 所以說如果美國的黃小玉下跌,我們台灣的飼料下跌,台灣的飼料的競爭,地霸的競爭,那是什麼樣的結果?
transcript.whisperx[559].start 14805.087
transcript.whisperx[559].end 14814.953
transcript.whisperx[559].text 治療這麼痛快嘛所以治療六個月我們台灣的第二競爭力就退開嘛有競爭力嘛啊你這樣好 要存這行治療用油對待一陣感不懂應該是我們國內自己有很多那個化製油脂的部分治療的油啊很多都是卡尿啦台滴的卡尿下腳尿 還有地霸奶啦但是地霸奶台灣人有在吃啦
transcript.whisperx[560].start 14833.024
transcript.whisperx[560].end 14836.726
transcript.whisperx[560].text 美國人有在吃豬肩膀嗎?比較沒有啦 他們不會吃所以說你來想啦咖哩油的咖哩是不是美國很多的
transcript.whisperx[561].start 14843.761
transcript.whisperx[561].end 14865.318
transcript.whisperx[561].text 這就是要你考慮的就是這樣我問過一些治療手因為說現在這個黃小玉下去治療的成分更多對他們來說是好事但是他們欠什麼他欠瘦的當然有油啦就是卡尿啦所以你能支持我們的協博書去了解一下嗎現在美國在到黃小玉下去之後他們的卡尿他們出口很多滴肉嘛他們不會其他國家的滴肉到那裡不會卡尿有在那裡不會滴肉來嗎
transcript.whisperx[562].start 14874.8
transcript.whisperx[562].end 14901.572
transcript.whisperx[562].text 所以這個時候我相信他們的卡尿也受所以我們現在的治療我們的油我們的動物油進口有進口黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆油黃豆
transcript.whisperx[563].start 14903.697
transcript.whisperx[563].end 14907.159
transcript.whisperx[563].text 不要用過的東西不要用過其實是你不知道啦我們治療前有在用啦靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜靜
transcript.whisperx[564].start 14932.076
transcript.whisperx[564].end 14935.537
transcript.whisperx[564].text 要總體來看總體來看來 苦寶針我們做的來說台語你也會通來兩個來 最好結論啦 結論啦是不是都會補 都會補 處長你是不是可以講解一下原來的處長介紹以及提升台灣地盤去日本的市場這麼有倫 你來提一個報告
transcript.whisperx[565].start 14951.963
transcript.whisperx[565].end 14960.785
transcript.whisperx[565].text 去日本的保溫現在是比較沒辦法因為我們地溫要先清掉才有辦法生鮮果所以要加油啊30年前日本是我們統統的外銷市場啊結果現在一年才2000噸過去是一年26萬噸欸我們要提出書面報告你來提出齁好來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來來
transcript.whisperx[566].start 14979.969
transcript.whisperx[566].end 14989.855
transcript.whisperx[566].text 對啊 這做得到啊那如果沒有 你也要去奉祭啊因為做治療是你們在管嘛做人質是部長在管嘛所以你們作為合作 把這做好好不好好好 謝謝好 謝謝宗嘉斌委員盧縣議委員質詢
transcript.whisperx[567].start 15004.554
transcript.whisperx[567].end 15031.213
transcript.whisperx[567].text 主席有請我們經貿談判辦公室副總裁副談判代表代表好我看了4月11號有沒有視訊會議那我找相關資料都看不到說到底談判了什麼有沒有好消息有沒有壞消息告訴大家
transcript.whisperx[568].start 15033.16
transcript.whisperx[568].end 15049.556
transcript.whisperx[568].text 謝謝委員那不過因為我們台美談判基本上有這些互信的基礎那就是說這談判過程的有一些資訊因為還沒有到一個比較穩定的階段所以這個都還在保密的狀態好那謝謝那我們有請經濟部江次長
transcript.whisperx[569].start 15058.846
transcript.whisperx[569].end 15071.25
transcript.whisperx[569].text 市長好 剛剛看到我們4月21號有公布就是申請辦法關於這個出口供應鏈的880億後來又追加到930億我想知道說關於這個930億這個部分會到哪裡去
transcript.whisperx[570].start 15077.062
transcript.whisperx[570].end 15102.377
transcript.whisperx[570].text 除了这个700个180亿刚才行政院院会有做讨论所以除了经济部原先的这个410亿以外我们还有50亿会来协助这个我们相关的厂商做设备的太阳刚看到就是说如果说本来是单愿于收受影响是大概是15%以后才有申请资格吗
transcript.whisperx[571].start 15102.977
transcript.whisperx[571].end 15113.267
transcript.whisperx[571].text 現在放寬到說一年內或者是半年的那個營收可能影響到10%的時候也可以申請那我是覺得說以後有沒有更好的一些措施
transcript.whisperx[572].start 15114.534
transcript.whisperx[572].end 15134.587
transcript.whisperx[572].text 这些话因为这些也是我们过去一直跟产业界在做沟通然后做了很多的产业之旅从院长副院长一直到部长都有这是也是去反映业者的他的需求所以我们才会把相关的这个标准给放了很希望说881能够透明
transcript.whisperx[573].start 15135.608
transcript.whisperx[573].end 15153.682
transcript.whisperx[573].text 而不是又去做了一些我們覺得不適合的事情那我是覺得說這一部這邊能夠把這些880或是後來的930能夠很清楚的讓民眾知道說這個錢到哪裡去了謝謝那有請外交部下頁市長
transcript.whisperx[574].start 15159.201
transcript.whisperx[574].end 15168.468
transcript.whisperx[574].text 市長嗎?鮑威,我是貝雷斯副市長那我想說你一直把美國當作非常非常好的朋友可是我覺得他們對我們這樣子你覺得會不會難過啊?
transcript.whisperx[575].start 15173.167
transcript.whisperx[575].end 15197.115
transcript.whisperx[575].text 我們的台美關係其實是它有延續性的啦那這個不管是哪一個政黨過去這雙邊關係在過去10年來一直是有可能是不是我們賺他們的錢太多了我看一下2017年的時候我們那時候的順差大概就是我們賺了他們大概84億美金那現在已經是649億美金也就是說多了7倍所以我們就被他們點名了下一頁
transcript.whisperx[576].start 15198.137
transcript.whisperx[576].end 15213.369
transcript.whisperx[576].text 他說我們是30-15 30喔這個字眼如果就外交字眼來講是不是很難聽啊如果是佔了第六名那你覺得說他有攻擊性的言語的時候外交部有沒有做一些就是對我們國格的一些辯護啊
transcript.whisperx[577].start 15215.374
transcript.whisperx[577].end 15231.073
transcript.whisperx[577].text 包委員這個其實主要是說他那基本上是依據這個貿易的貿易量貿易逆差那其實台灣過去去年的貿易逆差是特別高是因為美國他也是他的推動到高科技AI產業造成的意思就是說其實
transcript.whisperx[578].start 15231.693
transcript.whisperx[578].end 15256.13
transcript.whisperx[578].text 我們一直把他當做很好的朋友可是他們用的字眼或什麼其實我們還是可以適當的反擊因為覺得說對我們作為一個小國可是是經濟大國我們非常驕傲我們非常對我們的這些經濟成就很像是我們國人的榮耀可是我們被放上去的時候他說dirty所以我覺得這個dirty的部分我覺得事實要做回應謝謝我請衛福部長下一位
transcript.whisperx[579].start 15261.246
transcript.whisperx[579].end 15282.456
transcript.whisperx[579].text 其實我們的這些跟美國大部分都是跟資訊相關然後跟醫療比較沒有大的關係不過我剛看了就是我們在就是今天的主題就是牛肉跟豬肉的部分剛才也知道說其實豬肉很像沒有佔很大的篇幅大概也不到10%那我想說再下一個再下一個
transcript.whisperx[580].start 15284.377
transcript.whisperx[580].end 15303.576
transcript.whisperx[580].text 我們一直在想說這個我們跟美國在談判這些我們的農產品的時候是不是這些我們的疑慮啊是不是都應該被保證不會改變希望部長這邊看看這幾個條件比如說基改食材啊農產品只要發芽了就要全部退貨
transcript.whisperx[581].start 15304.096
transcript.whisperx[581].end 15330.208
transcript.whisperx[581].text 可是他覺得這個應該要更改或者說我們的產地標示這個部分還有他一直在質疑我們的檢驗紙太嚴格了這個部分能不能一一回答一下好 師父我先請署長回答我再來補充好就關於Codex參與標準什麼更為放寬這個議題因為檢驗的這個部分是議題適用是非常非常的精準的
transcript.whisperx[582].start 15330.828
transcript.whisperx[582].end 15357.057
transcript.whisperx[582].text 所以檢驗的開發的時候 它用的是它希望我們用WHO的標準嗎檢驗的開發呢其實在國內的食藥署的研檢組裡面也做完整的開發開發過程中請問推估跟推算的過程呢是可以能夠做國際接軌所以我們有最重要的國際接軌比如說那個豬腎的部分說40ppm或PPP它希望能夠改成90就是將近一倍這個部分你覺得怎麼辦在當初
transcript.whisperx[583].start 15357.757
transcript.whisperx[583].end 15373.62
transcript.whisperx[583].text 在朱盛的時候訂了40ppb的過程中其實做了非常充分的討論討論過程中其實強調的一點是我們國人的飲食設施上面的特殊性因此有這樣子的折衝之下我們跟國際上標準是有不一樣的
transcript.whisperx[584].start 15374.281
transcript.whisperx[584].end 15399.314
transcript.whisperx[584].text 那我們其實會計算出相關的一些設施的安全的範圍我們每日的設施的範圍是可以應該不會放寬吧我們會計算出那個精確所有的在標準是訂定的我們會以國際標準跟科學關係希望我們能夠更改我們的實驗的方法他甚至他的建議裡面就是在貿易障礙的報告書裡面他也希望說我們的實驗室的標準應該要跟他們一樣
transcript.whisperx[585].start 15400.594
transcript.whisperx[585].end 15414.025
transcript.whisperx[585].text 應該說那個方法齁其實方法不同其實結果是一致的啦所以並不是說因為方法開了之後所以你要去說服美國說我們的方法是一樣的這個一致的是如果讓他精準用A B方法產地標示的部分呢
transcript.whisperx[586].start 15415.562
transcript.whisperx[586].end 15438.104
transcript.whisperx[586].text 目前我們產地對豬肉來說明的話我們對國內任何的豬的來源其實是不管國內國外都是一體適用的做我們的一體的標示他的貿易障礙報告書裡面他就一再的在強調這個字就是說我們的leveling他覺得說台灣不應該有這個那你在談判的時候你要怎麼去說服他呢
transcript.whisperx[587].start 15438.644
transcript.whisperx[587].end 15462.178
transcript.whisperx[587].text 我們針對這個議題裡面我們並不是針對美國的產品有這樣的歧視我們強調的是歧視一再都是我們國內是一體私用的你要說服他啊是不是對我們現在就好像我想要說服一下這個委員一樣我們是一體私用國內國外所有的豬肉的來源我們都會標示這個其實沒有歧視的意思你為什麼這麼擔心我跳到最後一頁
transcript.whisperx[588].start 15463.078
transcript.whisperx[588].end 15470.607
transcript.whisperx[588].text 那我想請問部長就是關於他就說他有那個貿易障礙的部分報告是最後一頁最後一頁
transcript.whisperx[589].start 15473.939
transcript.whisperx[589].end 15495.797
transcript.whisperx[589].text 他藥品的部分他說我們缺乏透明度跟可預測性不過他說因為經過他們的努力看了這個第一段的告訴第二行他說2024年的1月其實因為他們的努力他我們健保署有縮短了他的Pricing Approval Timeline也就是說
transcript.whisperx[590].start 15497.096
transcript.whisperx[590].end 15508.214
transcript.whisperx[590].text 他們有努力所以我們台灣這邊就把申請的核可時間縮短那我的意思就是說他一再的要求我們就會達到他們要的目的嗎
transcript.whisperx[591].start 15509.757
transcript.whisperx[591].end 15537.285
transcript.whisperx[591].text 我想不是這樣子我們那個任何的一個要求我們都會站在說它的合理性嘛但最重要就是能不能說這樣的一個要求對我們國人的健康是一件好的事情關於醫療器材的部分部長最後還有他對那個自費的那個一些醫療器材他希望能夠放寬那你怎麼說你怎麼想
transcript.whisperx[592].start 15539.298
transcript.whisperx[592].end 15559.644
transcript.whisperx[592].text 我們建自費平台讓程序他希望有一個自費代碼可是我們這個健保署是幫我們來說明我們已經建了一個自費平台讓相關的廠商申請他民眾查詢資料的時候都能夠更資訊公開透明也方便行政審查所以我們要做一個把關的動作是正在做了對是好謝謝
transcript.whisperx[593].start 15565.232
transcript.whisperx[593].end 15568.721
transcript.whisperx[593].text 謝謝謝謝盧縣議員 謝謝部長接下來我們請高金素美委員質詢
transcript.whisperx[594].start 15576.082
transcript.whisperx[594].end 15600.823
transcript.whisperx[594].text 謝謝周圍 大家都辛苦了到現在大家還沒有休息但是為了國人的健康我覺得我們應該是要很嚴肅跟非常辛苦在這邊都是為了國人的健康來把關的4月2號美國總統川普他向全世界宣布要徵收對等關稅而我們的賴清德總統在4月6號的時候他就宣布了要以五項策略來應變請大家看一下
transcript.whisperx[595].start 15601.784
transcript.whisperx[595].end 15616.355
transcript.whisperx[595].text 我想這五大策略的應變呢所以才是我們今天未還安排這樣的議題顯然是因為賴總統他宣布的這五大策略提到了零關稅和排除所謂的非關稅貿易障礙所以我要請衛福部的部長還有農業部的常務次長經濟部的政務次長以及行政院經貿談判辦公室的副總談判代表一起上台
transcript.whisperx[596].start 15635.459
transcript.whisperx[596].end 15664.171
transcript.whisperx[596].text 我從2021年我就一直開始對於美國所謂的貿易障礙評估報告的台灣這個部分我不斷的就提出來我們的政府我警告我們的政府特別是美國他指責我們對於豬肉的標示還有牛角肉的進口還有非基改食品進入校園這些嚴格把關的政策他們說是不科學的貿易障礙
transcript.whisperx[597].start 15665.311
transcript.whisperx[597].end 15690.56
transcript.whisperx[597].text 在這裡我要請台上已經台下的各位官員還有媒體朋友們注意一下貿易障礙是美國政府他用的用語而我們應該要把這些長年以來我們堅持的稱為貿易自保措施因為呢這些措施是為了要保護我們國內產業的利益還有人民的健康請問一下大家同意嗎部長
transcript.whisperx[598].start 15695.25
transcript.whisperx[598].end 15716.567
transcript.whisperx[598].text 美國說是貿易障礙我們不可以跟他一起說這是貿易障礙啊我們應該說是貿易自保措施啊如果真的是站在全民的利益跟健康把關的話你同意嗎我非常敬佩我們的委員是說這些措施是為了保護國內利益跟人民的健康這是我們共同堅持的那自己用什麼樣的名詞
transcript.whisperx[599].start 15717.928
transcript.whisperx[599].end 15742.194
transcript.whisperx[599].text 也敬佩委員的智慧對很好所以你也同意嘛對不對我們民主大家都會來用這樣子的立場是同意的這樣子的所謂的貿易自保措施才是真正站在台灣人民的健康跟利益來把關啊因為有了這樣子我們才可以去談判啊對嗎好最近談到的對等關稅行政院用了一個字眼叫做極端情境
transcript.whisperx[600].start 15743.314
transcript.whisperx[600].end 15745.715
transcript.whisperx[600].text 那我們現在就來看一下賴清德總統他如果要替美國掃除貿易障礙之後我們台灣會面對怎麼樣的極端情境有哪些來進口的美國稻米變成零關稅
transcript.whisperx[601].start 15760.28
transcript.whisperx[601].end 15779.773
transcript.whisperx[601].text 進口的美國豬肉不但零關稅還必須取消標示然後牛角肉必須要開放進口並且要零關稅基改食品零關稅並且要開放進入校園取消美國農產品的萊克多巴胺和農藥殘留容許量的限制
transcript.whisperx[602].start 15782.876
transcript.whisperx[602].end 15790.404
transcript.whisperx[602].text 開發美國發芽的馬鈴薯要進口然後要取消服務貿易限制取消投資限制等等
transcript.whisperx[603].start 15791.933
transcript.whisperx[603].end 15813.573
transcript.whisperx[603].text 這麼樣一來台灣的產業還有人民的健康將何去何從呢?880億的進水撲滅得了美國對等關稅跟貿易障礙所燒起來的大火嗎?我要問一個更尖銳的問題就是政府就算是用這種還沒有談判就先亮底牌的策略看一下這五個
transcript.whisperx[604].start 15815.494
transcript.whisperx[604].end 15822.117
transcript.whisperx[604].text 12345是我們賴總統他已經跟美國說他準備這麼樣的做還沒有跟我們大家全民討論他就已經公開的在媒體上這樣說了然後我要問一個更尖銳的問題就是政府就算是用這種還沒有談判就先亮底牌的策略去迎合川普川普他也不見得會滿意我們看一下越南
transcript.whisperx[605].start 15841.084
transcript.whisperx[605].end 15845.31
transcript.whisperx[605].text 越南就是一個例子越南他也答應要零關稅開始來談判但是川普的貿易顧問納瓦羅他直接就講不夠因為美國對越南的貿易逆差還有1200億
transcript.whisperx[606].start 15857.507
transcript.whisperx[606].end 15877.498
transcript.whisperx[606].text 越南還有非關稅的作弊行為 請注意一下納瓦羅的用語他不是用障礙 不是用產地 而他用的是作弊行為就好像剛剛盧憲英委員說的 他用那麼樣的詞彙來對待他的好朋友台灣
transcript.whisperx[607].start 15879.222
transcript.whisperx[607].end 15895.647
transcript.whisperx[607].text 這根本就是漫天喊價的勒索嘛那我們要對美國這麼樣無底洞的勒索要照單全收嗎當然我談的是越南我現在跟你談的是日本日本在美國這一次對等關稅談判他是排第一順位
transcript.whisperx[608].start 15896.627
transcript.whisperx[608].end 15911.063
transcript.whisperx[608].text 而日本首相石破茂20號他就說了我們不會在食品安全的問題上面妥協再講一次我們不會在食品安全的問題上妥協那我們呢
transcript.whisperx[609].start 15912.318
transcript.whisperx[609].end 15929.385
transcript.whisperx[609].text 我們是要把美國所謂的貿易障礙當作表忠的先例嗎我們是要全部取消呢還是為了國內產業的利益和人民的健康要跟石破茂首相那樣周旋到底絕對不妥協請問一下 部長
transcript.whisperx[610].start 15934.621
transcript.whisperx[610].end 15949.474
transcript.whisperx[610].text 我想我們對於人民的健康的維護食品安全的堅持這是絕對政府不會妥協的好很好講的跟石破茅一樣萬一沒有打到你怎麼辦萬一被妥協了你怎麼辦我們
transcript.whisperx[611].start 15952.311
transcript.whisperx[611].end 15979.203
transcript.whisperx[611].text 不過所有的事情就是在這樣的原則之下我們還是像我們衛福部的角色就是專業的做科學的一個分析提供一個在那個按照國際的標準以及我們國人的飲食習慣的一個提供專業的意見給我們談判的一個團隊我從早上就一直聽到你在講科學這兩個字其實一講到科學我就頭皮發麻了
transcript.whisperx[612].start 15980.043
transcript.whisperx[612].end 15980.444
transcript.whisperx[612].text 因為為什麼要在這邊提醒你因為
transcript.whisperx[613].start 15985.336
transcript.whisperx[613].end 16010.055
transcript.whisperx[613].text 因為這個所謂的科學的重要性就是中美貿易倡議的良好法制作業這一章我相信你們都應該知道了有五個地方提到了科學而美國貿易障礙的評估報告在台灣這個部分當中美國他也指控我們沒有科學依據就有三個地方
transcript.whisperx[614].start 16011.036
transcript.whisperx[614].end 16022.949
transcript.whisperx[614].text 而我曾經對陳建源院長也談過這個問題他說我們要按照科學依據尤其是美國的食品法典委員會CODES標準那請問一下我們還是按照這個標準嗎
transcript.whisperx[615].start 16030.106
transcript.whisperx[615].end 16054.521
transcript.whisperx[615].text 請問一下就剛才提到的科學的標準的部分我們其實對於科學這一塊定下來以外另外配的是國人的飲食調查裡面的國人營養調查的數據會有國人的飲食的特殊性所以這種特殊性之下提供出來我們的特殊性是什麼對 我們特殊性裡面的飲食你說我們在不同的年齡我們吃豬肉吃很多啊
transcript.whisperx[616].start 16055.502
transcript.whisperx[616].end 16068.797
transcript.whisperx[616].text 所以這個東西都重新都算過了所以算完之後呢我們訂出來標準一直以來按照這個標準我們在邊境裡面查查所以你的科學所謂的科學是美國都接受的
transcript.whisperx[617].start 16071.88
transcript.whisperx[617].end 16088.273
transcript.whisperx[617].text 我覺得它是Universal的是全世界都會共同認定這是可以的錯了 你是食藥署對吧是的 你知不知道歐盟它是拒絕基改食品它依據的是什麼它依據的是卡塔赫納生物安全議定書
transcript.whisperx[618].start 16090.815
transcript.whisperx[618].end 16118.394
transcript.whisperx[618].text 這個也包括日本也用這一個所謂的議定書來拒絕美國的基品食物然後進入到校園所以呢我今天為什麼要請三五位上來尤其是談判總代表處是吧嚴惠欣副總談判代表對吧好你是行政院經貿談判辦公室很重要是
transcript.whisperx[619].start 16119.673
transcript.whisperx[619].end 16145.406
transcript.whisperx[619].text 那您認為您認為你們要怎麼樣在談判的過程捍衛堅持台灣人民的利益還有健康我想我們基本上我要講我們跟美國的談判不是只有專門只有談這個美豬美牛的議題然後我們基本還有什麼議題我想對等關稅的來源拿一下我們賴總統那個五個再放一下這個嗎
transcript.whisperx[620].start 16151.952
transcript.whisperx[620].end 16166.428
transcript.whisperx[620].text 跟這個都有關係嗎對等關稅的來源確實就是來自於川普政府他們自己宣布對等關稅的背景是因為其他的關稅各國的關稅太高還有非關稅障礙還有匯率的問題以及各國還有一些境內稅這些貨物稅的問題
transcript.whisperx[621].start 16168.05
transcript.whisperx[621].end 16181.818
transcript.whisperx[621].text 那是總結這些來說所以他希望各國要去看待他們自己國內是不是確實有這些美國所關切的所以談判應該是怎麼樣知己知彼對吧是談判最重要的是你是台灣的代表對吧
transcript.whisperx[622].start 16182.779
transcript.whisperx[622].end 16198.763
transcript.whisperx[622].text 沒錯台灣是不是應該代表2300萬的人民站在第一線捍衛我們的權益這也是我們的責任好如果這一次沒有辦法捍衛到人民的健康跟利益你們該怎麼辦如何向國人交代我想我們一定距離一生
transcript.whisperx[623].start 16202.686
transcript.whisperx[623].end 16224.024
transcript.whisperx[623].text 只有據理力爭嗎有任何的需要我想這個都需要朝野的共識所以我們一定會來爭取我們絕對是同意的啊我們絕對堅決站在你們的背後啊對謝謝委員絕對是啊但是我現在要講的是萬一今天達不到我們說的捍衛人民的利益跟健康該怎麼辦你們
transcript.whisperx[624].start 16226.406
transcript.whisperx[624].end 16242.178
transcript.whisperx[624].text 我想國人的健康不會是談判的籌碼我們一定是這個是我們的基本立場好 你能不能學剛剛那個部長一樣講的講得更清楚一點當你們去談判 因為你們已經有視訊談判了嘛
transcript.whisperx[625].start 16243.98
transcript.whisperx[625].end 16260.158
transcript.whisperx[625].text 因為我的總職群院長告訴我已經有視訊了然後近期馬上就會統整視訊談判當中所談到的問題然後直接的進入到核心來談判所以你們已經有一個想法了也有一個談判的要點跟籌碼了
transcript.whisperx[626].start 16264.793
transcript.whisperx[626].end 16289.365
transcript.whisperx[626].text 我們現在正在統整各個相關的地方還在統整啊還在統整因為我們的談判團隊各有分科縱使已經有了一次的這個所謂的這個視訊談判你們還正在統整視訊是交換讓大家增進了解我們也是要確認美國實際上那請問會談判幾次這個完全是我們現在正在進行當中的議題幾次都不知道啊有沒有在你們的規劃當中
transcript.whisperx[627].start 16291.392
transcript.whisperx[627].end 16318.882
transcript.whisperx[627].text 呃就是這個部分都是持續在進行的所以你們認為你們準備充分了嗎我相信我們是廣泛的去收集各種情資目的就是要讓台灣的好如果今天我在這邊全民都在看全民都在等召委特別安排了這一次的這個委員會讓你們來做說明跟報告就是全民都認為這是非常嚴重的事情甚至於是台灣的國難
transcript.whisperx[628].start 16321.144
transcript.whisperx[628].end 16349.31
transcript.whisperx[628].text 所以你們要秉持著跟石破茂一樣的精神告訴美國告訴他說人民的健康人民的利益是你們不容許被美國這樣子踐踏的可以嗎了解在這樣的基礎上面去談判可以嗎了解我們會我們會去理例證好我們都在等我們都在看謝謝好謝謝高經文謝謝部長次長那接著我們請王宏威委員質詢
transcript.whisperx[629].start 16356.199
transcript.whisperx[629].end 16366.128
transcript.whisperx[629].text 謝謝主席 請邱部長中央健保署社會及家庭署農業部次長經濟部次長
transcript.whisperx[630].start 16378.793
transcript.whisperx[630].end 16389.439
transcript.whisperx[630].text 今天行政院院會通過了非常重要的就是針對因應美國對等關稅的特別條例及特別預算那麼
transcript.whisperx[631].start 16391.058
transcript.whisperx[631].end 16412.738
transcript.whisperx[631].text 本來從880億現在喊到了4100億所以他多了3220億之多那我想先請教邱太元部長增加這麼多的預算請問一下衛福部從原來的880億增加了多少預算
transcript.whisperx[632].start 16417.142
transcript.whisperx[632].end 16445.122
transcript.whisperx[632].text 880億原來沒有衛福部好那現在3,220億增加了3,220億衛福部多了多少預算我想我們第一時間我們就做了衛福部所有的部門都做了盤點以及說會有部長多多少因為今天這個行政院院會公布啦好不知道沒關係來來來我們中央健保署好我們健保署相關的有關健保多了多少預算
transcript.whisperx[633].start 16447.757
transcript.whisperx[633].end 16460.966
transcript.whisperx[633].text 我們也是今天上午看到新聞才知道才知道好來來我們社會及家庭署來請請準備來準備那請問一下就是增加這麼多3220億我們有關於社會及家庭這些相關的照顧有增加多少預算
transcript.whisperx[634].start 16472.232
transcript.whisperx[634].end 16493.641
transcript.whisperx[634].text 那個我們也是早上才知道早上才知道對不對早上才知道好好這個謝謝你們的回答來農業部農業部的次長因為我們這次非常關心農民就是怕農民會受到一些影響所以原來880億裡面我知道有關農民的180億嘛
transcript.whisperx[635].start 16497.262
transcript.whisperx[635].end 16509.799
transcript.whisperx[635].text 那好那現在多了3220億之後我就多了嘛比88增加那請問一下我們農民的部分農業部的部分增加多少預算我們應該是維持現行的還是維持180億還是只有180億所以這3220億你沒有分到
transcript.whisperx[636].start 16515.765
transcript.whisperx[636].end 16537.064
transcript.whisperx[636].text 我們並沒有提出沒有提出所以就沒有分到好謝謝來請問一下經濟部經濟部政務次長江次長那麼原來880億那個應該是屬於經濟部中小企業的部分但還有勞工的部分他是企業家勞工一共是700億700億那請問一下增加了320
transcript.whisperx[637].start 16545.683
transcript.whisperx[637].end 16560.146
transcript.whisperx[637].text 3220億之後請問一下經濟部這邊不管是國貿中小企業產發產業發展我們增加多少的預算報告委員原來經濟部的部分是410億現在增加50增加50億所以460億好所以從原來410億只增加了50億也就是說這3220億裡面我們只多增加了50億是吧
transcript.whisperx[638].start 16571.748
transcript.whisperx[638].end 16598.536
transcript.whisperx[638].text 還有我們有台電的1000億對台電沒錯台電有1000億還有嗎以上是經濟部的部分經濟部的部分好謝謝因為其實我們相關部會我其實覺得我很想知道勞動部是能夠增加多少錢因為我曾經跟那個院長是希望能夠增加對勞工紓困的部分好但是我覺得我剛才經過詢問我非常
transcript.whisperx[639].start 16601.518
transcript.whisperx[639].end 16606.082
transcript.whisperx[639].text 這個大為這個差異我為什麼來問我們衛福部因為呢他在現在我所看到的資料會撥補勞健保300億但是到底撥補勞保多少撥補健保多少不知道total 300億但是我竟然衛福部並不知道
transcript.whisperx[640].start 16621.835
transcript.whisperx[640].end 16626.659
transcript.whisperx[640].text 好然後他另外說要照顧弱勢要增加170億那我想衛福部也是照顧弱勢的嗎我們衛福部就是最主要照顧弱勢的這個部會嗎那但是部長也在狀況外我就不曉得這170億是怎麼匡列出來的好所以呢其實按照原來880億變成4100億以現在我們所掌握的資料包含
transcript.whisperx[641].start 16650.579
transcript.whisperx[641].end 16654.645
transcript.whisperx[641].text 原來的支援計劃從原來880億變在930億然後勞健保300億台電1000億照顧弱勢170億提供高教人才200億TOTAL 2600億
transcript.whisperx[642].start 16666.398
transcript.whisperx[642].end 16678.964
transcript.whisperx[642].text 總共2600億 我在努力的在幫忙算因為我們這個每一分錢都是來自於民脂民膏然後這裡面呢還有1500億我不知道要用到哪裡去還有1500億 很奇怪
transcript.whisperx[643].start 16682.466
transcript.whisperx[643].end 16690.655
transcript.whisperx[643].text 很奇怪我們其實今天今天那個我們行政院院會都開完了都對外宣布我還不曉得1500億到哪裡去當一送來我們就要嚴格的來審查只要該用到的
transcript.whisperx[644].start 16697.822
transcript.whisperx[644].end 16700.443
transcript.whisperx[644].text 用在刀口上的提供給我們產業的勞工的勞健保的廣大的民眾需要的弱勢的我們通通都會充分的支持但是我剛才論論了一輪我發現我們這4100億到底怎麼來的非常離奇
transcript.whisperx[645].start 16717.671
transcript.whisperx[645].end 16746.023
transcript.whisperx[645].text 相關的弱勢的勞健保的竟然都不知道都是看新聞才知道所以我不曉得這整個的預算的編列到底他的過程出現什麼樣的問題不過我想基本上非常謝謝幾位部長還有長官讓我知道我會不會回應一下是這樣子這個政策我想是連續的因為突然早上我們大家都在這邊開會所以
transcript.whisperx[646].start 16747.364
transcript.whisperx[646].end 16760.557
transcript.whisperx[646].text 不曉得他的數據但是他不可能今天早上才決定啊那怎麼出操弱勢的這個部分尤其是獨基島這個是一直都是我們跟行政院在爭取的那第二個部分就是
transcript.whisperx[647].start 16762.585
transcript.whisperx[647].end 16777.214
transcript.whisperx[647].text 健保的一個安定基金這個部分我們也希望行政院那我聽到您這個報告跟我知道這個好消息你好高興 竟然是從我嘴巴裡告訴你我覺得政府能夠體諒到衛福部的需求
transcript.whisperx[648].start 16779.194
transcript.whisperx[648].end 16802.021
transcript.whisperx[648].text 這個部分我非常的感謝該發的錢我們會充分支持但是編列預算總是有編列預算的程序嘛對不對尤其在公家機關或者以前當立法院一定要知道這個編列程序怎麼來的但是呢我非常訝異既然我們這幾個主要單位是到現在在這邊或者早上看新聞才知道以上謝謝
transcript.whisperx[649].start 16805.397
transcript.whisperx[649].end 16809.942
transcript.whisperx[649].text 好謝謝汪委員謝謝部長次長那接著我們請徐宇珍委員質詢謝謝主席我們請問福布車部長
transcript.whisperx[650].start 16829.448
transcript.whisperx[650].end 16845.516
transcript.whisperx[650].text 有關美國貿易代表署 針對2025的對外貿易障礙評估報告我想今天早上已經有非常多的委員 大家都有請教過您因為他們再次點名台灣對美豬美牛等限制為不必要的貿易關稅障礙
transcript.whisperx[651].start 16847.017
transcript.whisperx[651].end 16863.56
transcript.whisperx[651].text 而且甚至直接要求我們要取消學童營養午餐不得使用基改食物的禁令賴清德總統也投書這個美國的彭博社也提到要致力於排除非關稅貿易障礙那我在質詢卓院長的時候卓院長表示會考慮國情及國際共同標準及科學根據來與美方討論本席請部長先回憶一件事情就是當年
transcript.whisperx[652].start 16875.402
transcript.whisperx[652].end 16895.22
transcript.whisperx[652].text 蔡英文政府執意開放寒萊劑的美豬美牛進口時說是為了台美關係為了FTA鋪路那當時的行政院說開放換來的會是台灣走入國際與美國簽署自由貿易協定的大門請問部長現在幾年過去了台美有簽訂FTA嗎
transcript.whisperx[653].start 16898.206
transcript.whisperx[653].end 16922.88
transcript.whisperx[653].text 好 學委委員的質詢 詢問我想剛剛有提到美牛這個部分是在馬英九總統時候進來的啦那美豬當然是蔡總統這個部分那我想我們任何一個 不是 我們絕對不會因為部長我請教您 台美有簽FTA嗎還是有任何的貿易協議具體落實嗎
transcript.whisperx[654].start 16925.191
transcript.whisperx[654].end 16944.87
transcript.whisperx[654].text 就這幾年過去啊台美倡議有簽訂的台美21世紀倡議所以雙方的溝通可以更為通暢所以更為通暢的意思就是說我們可以極力的表達我們反對美豬反對美牛進口在不標示產地嗎
transcript.whisperx[655].start 16947.368
transcript.whisperx[655].end 16966.69
transcript.whisperx[655].text 這邊我跟委員回應一下標示產地這件事情是一體適用的我們現在對台灣豬美國豬西班牙澳洲任何一個國家的豬進入台灣都是產地標示的都一體適用都是要標示沒有特別的現在是美方要求我們馬上也是關稅談判的一個
transcript.whisperx[656].start 16967.49
transcript.whisperx[656].end 16986.622
transcript.whisperx[656].text 一個他們的要求所以我們今天會在這邊當然就是希望我們衛福部這邊部長能夠具體的承諾就是說不會開放含萊劑的豬肉進口也不會不用標示產地也不會開放基改食品進入校園這個已經已經是
transcript.whisperx[657].start 16987.623
transcript.whisperx[657].end 17007.004
transcript.whisperx[657].text 美豬是可以進口的不是這個可能不是現在 含萊劑的美豬是可以有標準0.01ppm是肉類的部分其實它已經是可以進口所以當時你們的食品因為有這樣的標示規定還有加強檢驗跟查驗所以我們可以看到你可以看到一下我們這個豬肉儀表板
transcript.whisperx[658].start 17008.767
transcript.whisperx[658].end 17029.977
transcript.whisperx[658].text 113年國產豬肉進口豬肉都沒有檢驗出來跡為什麼就是因為我們有食品標示的規定要強制要求進口這個豬肉進行標示還有加強檢驗跟查驗所以美豬才美國才不敢貿然把這個有來跡的美豬賣到我們國內來現在你不用標示產地之後他是不是會這樣來去進行呢
transcript.whisperx[659].start 17032.584
transcript.whisperx[659].end 17057.965
transcript.whisperx[659].text 這邊跟委員報告一下這裡面的進口豬肉的邊境的查驗任何一個查驗任何一個國家都會進行查驗那查驗只要符合規定我們檢驗的標準以下都會符合我看到這個美豬儀表板喔表示美國其實有不是沒有來寄的美豬可以進口給到台灣為什麼他現在要求我們要取消這個管制的措施
transcript.whisperx[660].start 17058.906
transcript.whisperx[660].end 17072.266
transcript.whisperx[660].text 是不是他們就是想要賣還有萊劑的這個美竹進入到我們台灣呢我想跟委員報告其實我們對於任何一個國家進來的我們都會驗驗裡面其實有沒有是本來是有萊劑的它因為動物體會代謝
transcript.whisperx[661].start 17074.389
transcript.whisperx[661].end 17080.933
transcript.whisperx[661].text 我代謝的過程中我們假如是沒有測到就是沒測到的對大概是這樣子來跟跟委員說所以我們現在的標準是這樣嗎因為我們有加強檢驗的一個標準所以就沒有目前的話我們現在你的這個豬肉儀表板我們就可以看得出來嘛那但我現在講的是現在經過談判的時候他們現在要求我們不要標示產地不要有這個基改食品可以進入到校園我想請問的部長就是說你可不可以宣示喔針對肉品標示產地還有這個
transcript.whisperx[662].start 17104.929
transcript.whisperx[662].end 17108.756
transcript.whisperx[662].text 這個基改食品進入校園您在這邊宣示我們絕不讓步呢我想我們還是
transcript.whisperx[663].start 17115.536
transcript.whisperx[663].end 17134.177
transcript.whisperx[663].text 維護部跟我想政府也是一樣,是對於保護人民的健康還有食安的優先,這個是一定是不變的真理但是我們所有的制定政策或者管理的規則一定要用科學的分析
transcript.whisperx[664].start 17134.898
transcript.whisperx[664].end 17140.264
transcript.whisperx[664].text 剛剛已經講過了 我想前面的委員都已經特別提到我現在請教您的是 您身為衛福部長針對我們國人的食安跟我們學童的健康這個部分絕對不能讓步您會在這邊宣示嗎會在國際的標準 在科學跟國際的標準下來
transcript.whisperx[665].start 17157.848
transcript.whisperx[665].end 17174.741
transcript.whisperx[665].text 來做最大的一個所以您可以宣示說您絕對不會犧牲國人的食安安全跟這個健康我們台北的健康嗎回應委員一下所有的只要在我們的標準向下我現在請教部長不好意思署長我請教部長我想
transcript.whisperx[666].start 17178.484
transcript.whisperx[666].end 17194.234
transcript.whisperx[666].text 部長其實我想今天這麼多的委員請教您的就是希望您可以在這邊您是衛福部長您應該為國人的食安要讓我們安心所以讓我們的學童安心我們保護食安是非常完整的好那您可以您可以針對這個部分我這是強烈的要求在關稅這個我們在談判的時候針對國人的食安跟我們的學童的健康絕對不能讓步
transcript.whisperx[667].start 17203.36
transcript.whisperx[667].end 17214.885
transcript.whisperx[667].text 可以嗎我們那個對國人的食安絕對不會讓步好 謝謝 謝謝部長謝謝許處委謝謝部長來 接續我們請葉延思委員質詢主席好 麻煩請農業部還有那個我們談判代表經貿辦公室
transcript.whisperx[668].start 17236.46
transcript.whisperx[668].end 17261.756
transcript.whisperx[668].text 委員好是 那個我先跟那個談判副總談判代表嘛是 委員好因為我們看到日本啊他們在對美國在談判這個貿易協定的時候其實採取比較硬的態度啦就是說美國要求日本要把貿易逆差歸零還包括說要出口很多農產品到日本去還甚至叫日本去買美國車
transcript.whisperx[669].start 17263.412
transcript.whisperx[669].end 17291.041
transcript.whisperx[669].text 諸多的要求啦我看到日本首相其實蠻硬的石破茂說他絕對會堅守日本的利益而且他不會很快就跟他們達成協議他們會長期抗戰我希望我們台灣也秉持這樣的立場啦不要說好像美國找我們了我們就川普找我們了所以我們就什麼都投降了他要幹嘛就幹嘛一定要堅守我們的國家利益啦也不要說好像為了要很快達成協議就退讓
transcript.whisperx[670].start 17291.921
transcript.whisperx[670].end 17296.908
transcript.whisperx[670].text 這一點底線一定要守住跟日本一樣我先請教一下農業部
transcript.whisperx[671].start 17298.53
transcript.whisperx[671].end 17323.824
transcript.whisperx[671].text 那個紐西蘭的牛奶紐西蘭的鮮乳現在零關稅進來嘛大家都之前農業部也預測說因為他零關稅鮮奶進來之後呢他的價錢一定會往下降所以你們在去年的時候才推那個慢慢喝鮮奶嘛要保護弱農嘛因為怕說紐西蘭的鮮奶便宜之後大家都去買紐西蘭的鮮奶導致國內弱農受到影響結果發現完全沒有影響他們的鮮奶價錢依然一樣
transcript.whisperx[672].start 17324.946
transcript.whisperx[672].end 17349.888
transcript.whisperx[672].text 那我第一個問一下農業部你們當初是有誤判嗎應該這樣說其實推動國產應該是推動國產可溯源牛乳進到校園這件事情是為了國內的農農產業這件事情是對的那第二個紐西蘭進來到台灣的產品其實乳產品很多但是鮮乳不多他大概都是起司奶粉比較多
transcript.whisperx[673].start 17350.749
transcript.whisperx[673].end 17373.91
transcript.whisperx[673].text 那當然關稅你又沒回答我的問題啦那第二你有沒有去了解一下說為什麼他都零關稅了結果他的價格還是跟之前一樣這是卡在哪裡看到兩件事情一件事情是紐西蘭自己本身因為其實出口的先入也是有限那去年能夠出口的也不多所以價格上面我不曉得是不是有這樣的影響之間我不確定那第二個進來即使成本低
transcript.whisperx[674].start 17375.171
transcript.whisperx[674].end 17390.044
transcript.whisperx[674].text 即使零關稅不代表他一定成本低因為每個國家包括我們自己的養牛產業的成本也會因為有影響所以這個是次長嗎是我杜汶琛對那所以其實次長你現在講的就會讓人家覺得說去年不是大家對於這個
transcript.whisperx[675].start 17391.145
transcript.whisperx[675].end 17414.118
transcript.whisperx[675].text 紐西蘭牛奶零關稅這個事情很緊張嗎然後現在感覺是好像沒什麼差別我是覺得因為現在消費者對這個東西很多質疑啦你應該了解一下說為什麼關稅降了之後它的價格沒有下來但我要提醒農業部現在你們在跟美國談的時候其實你有注意到美國奶的問題嗎你知道好市多因為好市多都進口加州牛奶嘛你知道它兩公升一瓶是多少錢嗎
transcript.whisperx[676].start 17416.311
transcript.whisperx[676].end 17440.307
transcript.whisperx[676].text 抱歉我都買國產的一瓶兩公升一瓶在好市多大概賣一百二十五到一百三十塊那你知道台灣的鮮奶現在一瓶兩公升大概賣多少嗎也是一百多一百六到一百七所以美國的鮮奶是比台灣便宜很多而且好市多還是在付很多關稅的情況之下他還可以把價格壓那麼低
transcript.whisperx[677].start 17441.488
transcript.whisperx[677].end 17464.983
transcript.whisperx[677].text 這個代表什麼呢這個代表說我們現在跟美國談判如果美國要求說我們在鮮奶這一塊呢零關稅的話美國的鮮奶才會很低價的進到台灣我剛剛已經舉了那個好事多的例子給你聽了那當然這個對消費者來說是個好事啦以後消費者就可以買到很便宜的鮮奶美國鮮奶但是我站在農業部的立場你一定會保護我們的弱農嘛
transcript.whisperx[678].start 17465.603
transcript.whisperx[678].end 17470.346
transcript.whisperx[678].text 我一定是對所以所以你到時候就會哇又要推什麼斑斑喝鮮奶啊或者是長輩喝鮮奶啊軍人喝鮮奶啊
transcript.whisperx[679].start 17473.291
transcript.whisperx[679].end 17501.421
transcript.whisperx[679].text 又會搞了一堆這個政策出來那所以我現在是提醒農業部當然站在你們的角度一定是保護假設最後談判結果是美國的牛奶有大舉入侵你們一定會推很多配套措施出來可是在推配套措施出來的時候一定要考慮到這個執行面的部分就不然的話就會跟斑斑喝鮮奶一樣搞到最後農業部就退場了為什麼呢因為發現學校沒有那個斑斑喝鮮奶的配套的設備
transcript.whisperx[680].start 17502.401
transcript.whisperx[680].end 17524.623
transcript.whisperx[680].text 大家都訂保酒奶保酒奶又不夠所以最後農業部退場然後變成地方政府看哪一個地方政府自己要執行再去執行就一團亂所以提醒這件事情美國的牛奶如果要進來你一定要做好準備農業部一定支持國內的一定要做好準備啦一定要做好準備啦因為他會比紐西蘭的鮮奶影響更大農業部一定支持國內落農產業謝謝
transcript.whisperx[681].start 17529.212
transcript.whisperx[681].end 17530.794
transcript.whisperx[681].text 謝謝葉委員謝謝次長來繼續請羅廷偉委員質詢好謝謝召委有請部長委員好
transcript.whisperx[682].start 17547.062
transcript.whisperx[682].end 17570.03
transcript.whisperx[682].text 好部長我們來看一下喔PTT那這一份的報告2023年6月完成的美國豬肉查核報告那出國的期間是2022年9月12到9月20齁其內容所引述的這些相關事實準確性可以參考這個可供參考引用性的如何還沒好還沒好沒關係沒關係時間是不是暫停一下
transcript.whisperx[683].start 17576.641
transcript.whisperx[683].end 17584.97
transcript.whisperx[683].text 出國的時間是不是9月12到9月20那這份報告您覺得引用性參考性依據OK嗎您知道這份報告嗎2022的嗎沒關係署長可以救你署長請說
transcript.whisperx[684].start 17595.159
transcript.whisperx[684].end 17621.255
transcript.whisperx[684].text 報告委員這邊美國豬肉的茶盒的部分我們其實是例行性對於任何進口國家的進口的廠所以是例行性的報告例行性去的時候其實同時我們會跟農業部房檢署的同仁以及專家代表我們一起我知道我知道來我們看一下這份報告第五頁裡面有提及我們英文說寫NFBAP這個制度請問一下這個制度是什麼
transcript.whisperx[685].start 17625.509
transcript.whisperx[685].end 17629.632
transcript.whisperx[685].text NFBAT從未為時已行受體數計畫部長你有講過嗎還是部長都不知道
transcript.whisperx[686].start 17646.067
transcript.whisperx[686].end 17646.107
transcript.whisperx[686].text 這個可能
transcript.whisperx[687].start 17673.733
transcript.whisperx[687].end 17688.28
transcript.whisperx[687].text 這一個計畫就是告訴我們全國人民美國養的豬不會全部都是萊豬有58家的畜牧場的美豬是從未餵食以行受體數
transcript.whisperx[688].start 17689.977
transcript.whisperx[688].end 17707.175
transcript.whisperx[688].text 部長您到底知不知道這個部分可以我做一點點署長請說好那就針對NFBAP的部分餵食的部分有58家這件事情從未餵食從未餵食的這件事情是屬於自願性的一個標示我知道
transcript.whisperx[689].start 17707.816
transcript.whisperx[689].end 17724.019
transcript.whisperx[689].text 他這個是不是一個強制性的那以上簡短說明好謝謝你的分享那我想部長今天你才知道這個計畫嗎看起來是今天才知道我跟你提醒的但我要講的是如果他有從未餵食以行受體數的這樣子的一個美豬
transcript.whisperx[690].start 17725.72
transcript.whisperx[690].end 17750.156
transcript.whisperx[690].text 那為什麼我們沒有去爭取這樣子的一個美豬來到台灣而是一定要有來寄的美豬我想林維州委員發文去詢問但是這一個部分並沒有得到他要的回答所以我想問一下部長您今天到底知不知道這個NFBAP所參與的這58家的美豬有多少賣到台灣
transcript.whisperx[691].start 17755.166
transcript.whisperx[691].end 17769.431
transcript.whisperx[691].text 我想我先補充一下啦,這個可能要查一下,因為這個,我們在上一屆,你那個周委員也是同事啦,我們共同對這個問題也做了相當多的討論。對啊,你是同事啊,雖然這是進口的問題,但是我看,豬肉的查核報告,是你們出國的捏。
transcript.whisperx[692].start 17775.313
transcript.whisperx[692].end 17797.924
transcript.whisperx[692].text 不是其他單位出國怎麼你們完全不知道你已經眼睜睜的看著你的計劃報告裡面查到了NFBAP所有的有將近58家畜牧場是沒有用乙型受體數為什麼我們不去爭取這一部分來到台灣而不是來寄的這些萊豬呢到底沒賣到台灣那美國的NFBAP計劃的美豬賣去哪裡
transcript.whisperx[693].start 17801.005
transcript.whisperx[693].end 17822.951
transcript.whisperx[693].text 報告委員其實美國進來的大部分現在其實是沒有收入金的也就是沒有PAP的部分我們有抽樣調查所以基本上是未檢出嘛對不對但是未檢出來氣但我希望是已經有這樣子的一個計畫它是基本上一定是零檢出因為它是從未餵食已行受提出
transcript.whisperx[694].start 17823.331
transcript.whisperx[694].end 17835.409
transcript.whisperx[694].text 是更加能夠保障我國國人的一個健康的話那為什麼不跟他談論說這58家你賣給我們呢再來部長我再問一下NFBAP這一批美豬您知道賣到哪裡嗎
transcript.whisperx[695].start 17840.307
transcript.whisperx[695].end 17864.221
transcript.whisperx[695].text 署長可以解救那這邊特別提到的上面是對消亡中國的市場部長我的答案都給你了你怎麼都沒辦法回答呢我想這件事情很嚴重我們這個PT5這個裡面報告寫得很清楚抽樣結果如未檢出則符合NFBAP可受亡中國
transcript.whisperx[696].start 17865.282
transcript.whisperx[696].end 17879.989
transcript.whisperx[696].text 那如果檢出了最低最高低於最高容許量則販售非中國市場如檢出且高於最高容許量則將不與販售並停止停止檢體
transcript.whisperx[697].start 17881.73
transcript.whisperx[697].end 17904.187
transcript.whisperx[697].text 這個株枝農場的一個供貨不管政策的對或錯符不符合科學的論證政務官都要為現在既定的一個政策做出辯論這無可厚非但是我還是不禁想問美豬竟然還有分成有跟沒有乙型受理樹那為什麼美國要為美國要台灣多吃有萊劑可能性高的一個美豬
transcript.whisperx[698].start 17904.707
transcript.whisperx[698].end 17925.515
transcript.whisperx[698].text 而不是吃從未餵食已行受體數的這個計畫NFBAP的美豬給台灣針對美國貿易代表署剛剛許多的委員都在說了美豬加標示是所謂的貿易障礙部長您或許會說我們靠抽樣檢查不論是足皮檢查或者是加強
transcript.whisperx[699].start 17926.556
transcript.whisperx[699].end 17937.552
transcript.whisperx[699].text 抽樣的一個檢查來把關但是美珠並未驗出萊克多巴胺並不代表沒有含萊劑我不知道趙薇站起來速度這麼快
transcript.whisperx[700].start 17938.769
transcript.whisperx[700].end 17965.484
transcript.whisperx[700].text 但是我要講的是說今天萊豬有可能還有瘦肉精但是抽樣檢驗是未驗出不代表是零檢出啊依據藥物食品安全週報第509期啊所談論的檢驗非萬能啊鋸買不良的產品我們還是希望針對美牛美豬的標示問題不是貿易障礙剛剛有許多委員在提我要講慎重的跟您報告衛福部部長邱太元部長
transcript.whisperx[701].start 17966.284
transcript.whisperx[701].end 17992.059
transcript.whisperx[701].text 所有的在野黨做你的後盾所有在野黨做你的黑臉去跟美國對談的時候就告訴他我知道你有作為一個政務官為難的地方但我們在野黨作為全國人民我們當最大的黑臉讓我們來當這個黑臉告訴美國我們希望我們的國人是健康的你要去運用在野黨的反對
transcript.whisperx[702].start 17993.36
transcript.whisperx[702].end 18015.479
transcript.whisperx[702].text 我們希望在這一個全國國人都希望我們團結的情況之下一起面對這樣子的一個狀況部長今天我雖然非常非常的憤慨但是我們是要作為衛福部的後盾守護國人的健康你可以認同嗎好我想我不但認同而且我也跟委員報告我想政府跟衛福部也是以
transcript.whisperx[703].start 18017.179
transcript.whisperx[703].end 18037.699
transcript.whisperx[703].text 維護全民健康維護食安為最重要的一個工作最後30秒我想昨天經濟日報有一個相關的說法說世界正在重新認識美國和中國其中有提到美國農業部長被記者問到如果中國反制美國的相關農業的時候
transcript.whisperx[704].start 18039.861
transcript.whisperx[704].end 18065.476
transcript.whisperx[704].text 美國農民該怎麼辦說美國的豬肉不賣中國可以賣到東南亞美國的農業部部長霸氣的回應美國的NFBAP的豬肉可以不賣去中國部長在美豬政策已經回不到原來的現在可不可以要求NFBAP的美豬賣給台灣萊豬萊牛吃那麼久也沒有看到我們能夠加入CPTPP印太經濟的架構我們還是希望會後你提供幾個
transcript.whisperx[705].start 18066.917
transcript.whisperx[705].end 18074.723
transcript.whisperx[705].text 計畫給我們我們相關的資料在美國到底有多少這樣子參與NFBAP的一個計畫佔總體的比例還有相關的設施從113年到114年蘇台的美國豬肉生產設施共有幾家進口的總數量有幾家上開蘇台的美國豬肉生產的設施
transcript.whisperx[706].start 18086.652
transcript.whisperx[706].end 18094.064
transcript.whisperx[706].text 參與這個NFBAP到底計劃加速又有幾家我們都希望能夠了解你們在食藥署總體在這個期間加強邊境的茶宴還有市場的稽查計劃如何這些資料我希望會後能夠提供可以嗎
transcript.whisperx[707].start 18102.9
transcript.whisperx[707].end 18115.965
transcript.whisperx[707].text 謝謝委員我們這個部分我們積極的其實已經有一部分資料我們盡快的做彙整謝謝好今天大家都非常有願都很關心這個議題部長加油好不好一起為國人健康好謝謝雷委員謝謝部長好繼續請陳穎委員質詢好謝謝主席那個麻煩部長跟石耀署長部長
transcript.whisperx[708].start 18138.153
transcript.whisperx[708].end 18157.725
transcript.whisperx[708].text 大家好我想今天本席要再次質詢衛福部跟食藥署把食品廣告、健康效應通通當成是醫療效能的這件事情我想這不只是法規上的荒謬更是對我們全民健康的霸權壟斷
transcript.whisperx[709].start 18159.766
transcript.whisperx[709].end 18185.287
transcript.whisperx[709].text 本席在上個月16號質詢的時候就有講過食品及藥物廣告標示及醫療效能認定的準則把健康跟醫療畫上等號那害得業者動輒得咎那人民追求健康的權利被剝奪今天我就用兩個實例來檢驗你們的邏輯看看你們的標準到底有多離譜也希望今天我跟署長的對話可以有交集
transcript.whisperx[710].start 18187.369
transcript.whisperx[710].end 18207.401
transcript.whisperx[710].text 我們第一個案例好來看一下這是國建署的這個案例那這個國建署算是你們自己人好國建署的部分在這個他們補助的廣告寫著輕未償代謝好那請問這個邱部長跟江署長這句話有沒有問題
transcript.whisperx[711].start 18209.676
transcript.whisperx[711].end 18214.478
transcript.whisperx[711].text 代謝好是健康效應還是你們說的醫療效能?跟委員做經濟部報告清腸胃跟代謝好是抽象的概念
transcript.whisperx[712].start 18231.864
transcript.whisperx[712].end 18246.785
transcript.whisperx[712].text 對於這個抽薑的概念裡面提到的是腸胃道假如是長期有些便祕的狀況呢假如是有蔬菜的話其實它有膳食纖維它可以有機會能夠讓我們的排便更順暢那代謝好呢 那其實
transcript.whisperx[713].start 18247.385
transcript.whisperx[713].end 18264.274
transcript.whisperx[713].text 我們裡面蔬菜的膳食纖維對於血糖的穩定度是非常非常高的它可以減緩我們血糖吸收的速度對於血糖的波動是這樣因為血糖的波動叫做Glucose Bar Sugar Oscillation就是波動波動的越高高高低低我簡單這樣問啦我簡單這樣問齁國健署這樣子的廣告該不該罰
transcript.whisperx[714].start 18269.963
transcript.whisperx[714].end 18289.498
transcript.whisperx[714].text 我想這個齁它是抽象概念對蔬菜的這個增進而且每日五蔬果蔬果五七九這件事情我們覺得這個特供是非常非常好的如果說是業者這樣寫的話你們就不會罰了是不是也是抽象概念我們對於廣告的名詞上面其實我們都是正面表列說哪些
transcript.whisperx[715].start 18290.199
transcript.whisperx[715].end 18314.441
transcript.whisperx[715].text 不適合的地方有根據食品安全衛生管理法第28條食品不得宣稱醫療效能也就是不能說治療或預防疾病可是輕胃腸你說治療便祕的話就是不行的如果說治療便祕就不行它叫輕腸胃這個問題是抽象的概念裡面能夠去做它可以達到因為這個東西呢
transcript.whisperx[716].start 18315.922
transcript.whisperx[716].end 18329.731
transcript.whisperx[716].text 所有吃進去看得到的照片裡面都會增加我們糞便的殘渣這糞便殘渣就會讓我們的水類能夠保存避免便秘現在你講的就是國健署就是不用法這樣的案例是不用法他沒有宣稱醫療效能好
transcript.whisperx[717].start 18334.858
transcript.whisperx[717].end 18362.597
transcript.whisperx[717].text 可以那大家把這個記住來再來看這個案例二教育部的膳食纖維預防腸道疾病的廣告這個廣告的案例就更誇張了教育部推廣健康飲食說多吃含纖維食物可以預防腸道疾病及控制血糖這句話呢就直接踩到你們認定的這個準則第五條第一項的紅線宣稱預防疾病和控制血糖
transcript.whisperx[718].start 18365.119
transcript.whisperx[718].end 18374.101
transcript.whisperx[718].text 不是嗎那我想問的是說教育部這個廣告應該就違法違法按照你的標準那他該不該罰呢還是又很抽象
transcript.whisperx[719].start 18375.1
transcript.whisperx[719].end 18402.552
transcript.whisperx[719].text 我這邊跟委員說進一步說明從整體來看你看到1 2 3 4 5裡面各項裡面把裡面重要的去說明之後每一項提到的是重要的含膳食纖維的概念在底下那膳食纖維概念底下呢它畫了腸道裡面有畫了那個應該是小細菌的代表的感覺降低血中膽固醇預防心血管疾病
transcript.whisperx[720].start 18408.9
transcript.whisperx[720].end 18431.931
transcript.whisperx[720].text 報導委員 上面寫的那個降低預防或改善便祕好 跟委員特別說明一下他沒有任何產品 產品沒有在裡面啦這裡面是沒有產品的 廣告是要做產品的一個我們是針對特別產品的但是你們的食品 食品 在講食品
transcript.whisperx[721].start 18433.075
transcript.whisperx[721].end 18450.89
transcript.whisperx[721].text 也是一樣的對 我的意思是說如果是一個特定的一個產品它的廣告針對裡面的所有的論述這邊特別跟委員說明一下其實是說有助血糖的控制它裡面提到的是一種我們針對這個它不會說我可以治療糖尿病這個不行
transcript.whisperx[722].start 18453.09
transcript.whisperx[722].end 18480.658
transcript.whisperx[722].text 預防便祕改善便祕的情形這裡面的是改善他沒有特別提到說我可以治療便祕治療的話就是所謂的我們剛才講的醫療療效接下來呢他提到如果今天如果今天在你們的認定每個人都可以像署長這樣子的話我想爭議可能就會少很多了吧但是問題是事實上可能不是這個樣子
transcript.whisperx[723].start 18482.297
transcript.whisperx[723].end 18506.837
transcript.whisperx[723].text 謝謝委員這邊的跟我們提醒我們對於業者所有的廣告我們很積極的做所謂以輔導代替裁罰是我們要去做的那我們最近有一件事先跟委員報告一下我們特別的連這些媒體的平台特別的都希望我們一起來能夠協作剛來立法院你可能還不是很懂規矩就是
transcript.whisperx[724].start 18511.36
transcript.whisperx[724].end 18537.095
transcript.whisperx[724].text 本席在問話的時候 你還要一直搶答 那我剩下的時間都交給你你繼續講我剩下的時間都給你謝謝委員 謝謝你就把它講到完 你還有一分半請委員繼續執行我想先看一下 先看一下
transcript.whisperx[725].start 18540.336
transcript.whisperx[725].end 18567.005
transcript.whisperx[725].text 看一下那個簡報我們第三簡報三的部分我想是這個樣子在下一個下一個在很多的時候大部分的時候很多的這個解釋都被當作是醫療效能去處理在你們認定的時候因為有很多的這個醫療背景的專業人士在裡面
transcript.whisperx[726].start 18567.685
transcript.whisperx[726].end 18588.391
transcript.whisperx[726].text 那健康效應的這個佔用的範圍就只有一點點所以這是本席要去提醒你們的一個很簡單的一個圖那我想今天的一個討論跟署長可能還是沒有交集但是他做了一個很好的示範
transcript.whisperx[727].start 18589.511
transcript.whisperx[727].end 18612.62
transcript.whisperx[727].text 就是如果在未來相關單位在對於這個認定的時候能不能像署長這樣子那我想有時候很多的時候是會變成自己的那個標準會有一個新政在那邊他變成是一個模糊到讓人家讓業者無所適從的一個狀態
transcript.whisperx[728].start 18616.121
transcript.whisperx[728].end 18632.192
transcript.whisperx[728].text 所以我今天特別要提這個案例那但是可能這個案例呢在署長眼裡看來是沒有問題的但是可能換了一個人這個案例可能就有問題了好所以我想要特別提醒的是說
transcript.whisperx[729].start 18634.574
transcript.whisperx[729].end 18651.606
transcript.whisperx[729].text 在希望在未來這個食品安全衛生管理辦法第28條的第一項第二款的規定食品不得為醫療效能的標示宣傳或廣告好那你們把這個食品跟宣傳的廣告全部納入不得為這個醫療效能的範圍
transcript.whisperx[730].start 18653.767
transcript.whisperx[730].end 18681.721
transcript.whisperx[730].text 但是在認定準則的時候又全部把健康視為醫療我想這個是大部分的人他們所會會犯的一個問題所以我想要在這裡很懇求兩位非常專業的這個老師跟學生現在都出塞啊可以好好的去面對檢視放下你們專業的傲慢好好的去面對真的就是有這樣子的問題那
transcript.whisperx[731].start 18683.854
transcript.whisperx[731].end 18704.667
transcript.whisperx[731].text 如果如果署長認為我想我想如果署長認為說本期今天提出的這樣子的一個建議在你們的專業角度看來仍然是
transcript.whisperx[732].start 18705.896
transcript.whisperx[732].end 18729.657
transcript.whisperx[732].text 很卑微的或者是不夠水準的那不管怎麼樣我想這個國會殿堂我也請你可以比較再更莊重一點我想我們是夥伴是好朋友但是我想站在一個良心的建議我還是會建議您修正一下您在台上的態度
transcript.whisperx[733].start 18733.136
transcript.whisperx[733].end 18737.123
transcript.whisperx[733].text 那上次有說是兩個月內你們要把這個
transcript.whisperx[734].start 18740.051
transcript.whisperx[734].end 18762.931
transcript.whisperx[734].text 你們要把整個的這個就是說健康效應跟醫療效能如何分清楚要把它定清楚不要讓大家無所適從那麼其實本席發現母法也有一些問題那我想今天時間不夠我就把這個母法的問題讓你們帶回去你們回去好好的研究一下所以
transcript.whisperx[735].start 18763.291
transcript.whisperx[735].end 18777.829
transcript.whisperx[735].text 我想在這邊我做個結論你們還是好好的去檢視一下或許不同的人在檢視有不同的結果就是剛剛我提了這個國建署跟教育部的廣告說清楚他們的用詞到底違不違法
transcript.whisperx[736].start 18779.01
transcript.whisperx[736].end 18806.323
transcript.whisperx[736].text 那再來就是說修訂認定準則然後參考國際範圍允許科學證據支持健康宣稱別在一竿子打翻所有的健康食品再來我希望你們可以再次的宣示就是說告訴全民你們什麼時候會改進這套落後的法規因為大家等不及了這個時間點兩個月都可以真正的完成嗎
transcript.whisperx[737].start 18809.595
transcript.whisperx[737].end 18831.055
transcript.whisperx[737].text 我們謝謝委員我想這個其實是在追求健康裡面我們要以時計進的一個處理我們會剛剛委員的指示我們會來做如果牽涉到法需要再澄清的話可能要稍微比較多一點時間
transcript.whisperx[738].start 18831.872
transcript.whisperx[738].end 18855.647
transcript.whisperx[738].text 但是我們怎麼做我想我們在這段期間裡面就會最快的速度跟委員報告我想我是這樣健康是人民的權利啦也不是衛福部的專利那現在都是AI的時代了那我們要怎麼樣吃得健康那也有權利知道就是說怎麼樣吃得健康活得更好我想大家不要用過時的這些法規當絆腳石
transcript.whisperx[739].start 18857.028
transcript.whisperx[739].end 18882.127
transcript.whisperx[739].text 好 那有很多的知識常識 我們可以從這個很多的這個Source裡面得到一些答案所以我想兩位可以給本席一個很清楚的一個答覆我們希望這個改變修正可以不要再拖延好 我們一定馬上來立即來檢討最壞的適度如果有什麼進度都會跟委員報告好 謝謝
transcript.whisperx[740].start 18885.112
transcript.whisperx[740].end 18894.475
transcript.whisperx[740].text 謝謝陳寗委員的質詢謝謝部長洪孟凱 洪孟凱 洪孟凱委員不在張祺凱 張祺凱 張祺凱委員不在鄭天才 鄭天才 鄭天才委員不在
transcript.whisperx[741].start 18908.681
transcript.whisperx[741].end 18932.942
transcript.whisperx[741].text 本日會議詢答全部結束委員許新穎 廖偉祥所提書面執行列入紀錄刊登公報現在就以下決定報告詢答完畢委員執行為其答覆或請補充需要者請相關機關以兩週內書面答覆委員另行要求期限者從其鎖定
transcript.whisperx[742].start 18934.571
transcript.whisperx[742].end 18937.368
transcript.whisperx[742].text 本次會議到此結束現在散會謝謝大家