iVOD / 166148

Field Value
IVOD_ID 166148
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166148
日期 2025-12-03
會議資料.會議代碼 委員會-11-4-20-10
會議資料.會議代碼:str 第11屆第4會期財政委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-12-03T11:49:19+08:00
結束時間 2025-12-03T12:01:25+08:00
影片長度 00:12:06
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d5a4ce084af309d663bb26a78b04875f09a18256bf6bdfeb7a6b5dab788943100a24d4c92cf601975ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:49:19 - 12:01:25
會議時間 2025-12-03T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第10次全體委員會議(事由:審查本院委員蔡易餘等16人、委員牛煦庭等26人分別擬具「銀行法第一百二十五條及第一百二十五條之四條文修正草案」等2案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.83659375
transcript.pyannote[1].end 3.82784375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 7.65846875
transcript.pyannote[2].end 9.54846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 8.62034375
transcript.pyannote[3].end 9.04221875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 11.30346875
transcript.pyannote[4].end 17.59784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 17.76659375
transcript.pyannote[5].end 22.23846875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 22.52534375
transcript.pyannote[6].end 25.36034375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 25.73159375
transcript.pyannote[7].end 35.89034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 36.51471875
transcript.pyannote[8].end 46.16721875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 46.74096875
transcript.pyannote[9].end 53.25471875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 53.71034375
transcript.pyannote[10].end 61.18596875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 62.01284375
transcript.pyannote[11].end 64.81409375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 65.13471875
transcript.pyannote[12].end 79.51221875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 80.03534375
transcript.pyannote[13].end 83.98409375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 84.35534375
transcript.pyannote[14].end 87.83159375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 88.20284375
transcript.pyannote[15].end 90.76784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 91.30784375
transcript.pyannote[16].end 94.91909375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 95.27346875
transcript.pyannote[17].end 98.59784375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 99.49221875
transcript.pyannote[18].end 110.34284375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 110.88284375
transcript.pyannote[19].end 118.34159375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 118.47659375
transcript.pyannote[20].end 122.61096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 122.96534375
transcript.pyannote[21].end 127.60596875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 128.60159375
transcript.pyannote[22].end 142.99596875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 143.24909375
transcript.pyannote[23].end 146.42159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 146.97846875
transcript.pyannote[24].end 151.55159375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 151.77096875
transcript.pyannote[25].end 155.77034375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 156.20909375
transcript.pyannote[26].end 159.19596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 157.59284375
transcript.pyannote[27].end 161.94659375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 162.04784375
transcript.pyannote[28].end 183.04034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 169.13534375
transcript.pyannote[29].end 169.87784375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 183.91784375
transcript.pyannote[30].end 186.68534375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 187.20846875
transcript.pyannote[31].end 187.59659375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 187.90034375
transcript.pyannote[32].end 190.63409375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 191.51159375
transcript.pyannote[33].end 201.82221875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 203.35784375
transcript.pyannote[34].end 203.77971875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 205.02846875
transcript.pyannote[35].end 206.37846875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 206.76659375
transcript.pyannote[36].end 217.65096875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 218.35971875
transcript.pyannote[37].end 220.53659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 221.24534375
transcript.pyannote[38].end 229.02471875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 221.70096875
transcript.pyannote[39].end 222.12284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 228.29909375
transcript.pyannote[40].end 229.00784375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 229.02471875
transcript.pyannote[41].end 229.59846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 229.90221875
transcript.pyannote[42].end 240.02721875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 233.19284375
transcript.pyannote[43].end 234.22221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 241.02284375
transcript.pyannote[44].end 245.32596875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 245.61284375
transcript.pyannote[45].end 246.20346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 246.23721875
transcript.pyannote[46].end 252.10971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 252.71721875
transcript.pyannote[47].end 256.78409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 255.94034375
transcript.pyannote[48].end 265.12034375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 265.57596875
transcript.pyannote[49].end 269.42346875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 269.77784375
transcript.pyannote[50].end 275.54909375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 275.76846875
transcript.pyannote[51].end 276.88221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 277.30409375
transcript.pyannote[52].end 278.46846875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 278.97471875
transcript.pyannote[53].end 284.18909375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 284.84721875
transcript.pyannote[54].end 287.04096875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 287.96909375
transcript.pyannote[55].end 293.90909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 291.71534375
transcript.pyannote[56].end 292.37346875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 294.51659375
transcript.pyannote[57].end 303.03846875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 303.35909375
transcript.pyannote[58].end 304.30409375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 304.86096875
transcript.pyannote[59].end 309.92346875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 310.37909375
transcript.pyannote[60].end 312.37034375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 312.82596875
transcript.pyannote[61].end 312.91034375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 313.34909375
transcript.pyannote[62].end 315.55971875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 316.06596875
transcript.pyannote[63].end 324.09846875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 324.38534375
transcript.pyannote[64].end 328.03034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 328.30034375
transcript.pyannote[65].end 333.85221875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 333.22784375
transcript.pyannote[66].end 334.44284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 334.47659375
transcript.pyannote[67].end 342.72846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 343.26846875
transcript.pyannote[68].end 344.07846875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 344.07846875
transcript.pyannote[69].end 348.68534375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 349.02284375
transcript.pyannote[70].end 350.81159375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 351.14909375
transcript.pyannote[71].end 352.29659375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 354.82784375
transcript.pyannote[72].end 356.46471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 356.68409375
transcript.pyannote[73].end 366.79221875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 368.24346875
transcript.pyannote[74].end 369.84659375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 370.58909375
transcript.pyannote[75].end 372.42846875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 372.81659375
transcript.pyannote[76].end 376.44471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 376.73159375
transcript.pyannote[77].end 383.56596875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 384.03846875
transcript.pyannote[78].end 387.80159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 387.80159375
transcript.pyannote[79].end 388.94909375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 389.53971875
transcript.pyannote[80].end 392.02034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 392.30721875
transcript.pyannote[81].end 404.03534375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 404.18721875
transcript.pyannote[82].end 407.08971875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 408.18659375
transcript.pyannote[83].end 409.26659375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 409.51971875
transcript.pyannote[84].end 413.68784375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 413.97471875
transcript.pyannote[85].end 414.00846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 414.07596875
transcript.pyannote[86].end 424.70721875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 425.09534375
transcript.pyannote[87].end 425.48346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 425.75346875
transcript.pyannote[88].end 426.56346875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 426.93471875
transcript.pyannote[89].end 430.90034375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 430.96784375
transcript.pyannote[90].end 430.98471875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 431.23784375
transcript.pyannote[91].end 436.04721875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 436.62096875
transcript.pyannote[92].end 441.53159375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 442.25721875
transcript.pyannote[93].end 447.06659375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 447.53909375
transcript.pyannote[94].end 453.00659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 453.37784375
transcript.pyannote[95].end 455.50409375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 455.77409375
transcript.pyannote[96].end 458.64284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 458.33909375
transcript.pyannote[97].end 459.45284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 459.55409375
transcript.pyannote[98].end 462.62534375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 462.62534375
transcript.pyannote[99].end 464.16096875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 464.32971875
transcript.pyannote[100].end 468.49784375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 468.97034375
transcript.pyannote[101].end 471.46784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 471.60284375
transcript.pyannote[102].end 477.22221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 477.76221875
transcript.pyannote[103].end 482.55471875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 482.97659375
transcript.pyannote[104].end 490.16534375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 490.45221875
transcript.pyannote[105].end 497.48909375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 497.89409375
transcript.pyannote[106].end 499.44659375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 499.75034375
transcript.pyannote[107].end 502.95659375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 503.10846875
transcript.pyannote[108].end 503.12534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 503.14221875
transcript.pyannote[109].end 508.30596875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 508.79534375
transcript.pyannote[110].end 510.95534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 511.59659375
transcript.pyannote[111].end 513.21659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 513.21659375
transcript.pyannote[112].end 513.23346875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 513.46971875
transcript.pyannote[113].end 523.27409375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 523.29096875
transcript.pyannote[114].end 526.56471875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 526.63221875
transcript.pyannote[115].end 526.90221875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 526.90221875
transcript.pyannote[116].end 527.64471875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 527.64471875
transcript.pyannote[117].end 527.66159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 527.66159375
transcript.pyannote[118].end 527.67846875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 528.01596875
transcript.pyannote[119].end 528.74159375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 529.07909375
transcript.pyannote[120].end 529.50096875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 531.01971875
transcript.pyannote[121].end 541.00971875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 541.44846875
transcript.pyannote[122].end 545.26221875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 545.26221875
transcript.pyannote[123].end 550.62846875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 551.72534375
transcript.pyannote[124].end 557.91846875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 558.13784375
transcript.pyannote[125].end 565.20846875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 559.15034375
transcript.pyannote[126].end 560.33159375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 565.98471875
transcript.pyannote[127].end 567.19971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 567.19971875
transcript.pyannote[128].end 567.21659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 567.43596875
transcript.pyannote[129].end 575.09721875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 575.09721875
transcript.pyannote[130].end 584.10846875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 584.85096875
transcript.pyannote[131].end 585.77909375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 585.07034375
transcript.pyannote[132].end 585.52596875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 585.88034375
transcript.pyannote[133].end 588.69846875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 589.06971875
transcript.pyannote[134].end 590.67284375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 590.89221875
transcript.pyannote[135].end 592.96784375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 592.86659375
transcript.pyannote[136].end 593.92971875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 594.75659375
transcript.pyannote[137].end 596.44409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 596.74784375
transcript.pyannote[138].end 597.33846875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 598.28346875
transcript.pyannote[139].end 599.00909375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 599.19471875
transcript.pyannote[140].end 599.56596875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 599.36346875
transcript.pyannote[141].end 599.49846875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 599.97096875
transcript.pyannote[142].end 601.54034375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 602.33346875
transcript.pyannote[143].end 602.56971875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 602.85659375
transcript.pyannote[144].end 603.14346875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 604.89846875
transcript.pyannote[145].end 607.54784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 608.08784375
transcript.pyannote[146].end 611.47971875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 612.08721875
transcript.pyannote[147].end 614.63534375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 615.96846875
transcript.pyannote[148].end 616.47471875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 617.31846875
transcript.pyannote[149].end 620.05221875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 620.33909375
transcript.pyannote[150].end 620.94659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 621.36846875
transcript.pyannote[151].end 622.33034375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 624.30471875
transcript.pyannote[152].end 627.17346875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 625.11471875
transcript.pyannote[153].end 625.43534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 627.64596875
transcript.pyannote[154].end 651.15284375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 651.50721875
transcript.pyannote[155].end 661.96971875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 661.93596875
transcript.pyannote[156].end 675.87471875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 676.48221875
transcript.pyannote[157].end 678.16971875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 678.67596875
transcript.pyannote[158].end 684.34596875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 686.60721875
transcript.pyannote[159].end 694.97721875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 694.97721875
transcript.pyannote[160].end 696.83346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 697.62659375
transcript.pyannote[161].end 701.72721875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 702.46971875
transcript.pyannote[162].end 702.97596875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 702.97596875
transcript.pyannote[163].end 704.62971875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 704.96721875
transcript.pyannote[164].end 707.17784375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 707.48159375
transcript.pyannote[165].end 709.42221875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 709.99596875
transcript.pyannote[166].end 711.24471875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 712.12221875
transcript.pyannote[167].end 714.16409375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 714.23159375
transcript.pyannote[168].end 714.70409375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 714.70409375
transcript.pyannote[169].end 714.77159375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 714.77159375
transcript.pyannote[170].end 714.80534375
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 714.92346875
transcript.pyannote[171].end 716.79659375
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 717.25221875
transcript.pyannote[172].end 719.76659375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 719.95221875
transcript.pyannote[173].end 719.96909375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 719.96909375
transcript.pyannote[174].end 720.47534375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 721.26846875
transcript.pyannote[175].end 722.66909375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 724.74471875
transcript.pyannote[176].end 726.60096875
transcript.whisperx[0].start 12.397
transcript.whisperx[0].end 21.242
transcript.whisperx[0].text 金融大家都很關心那現在詐騙很多究竟你們掌握的手中的太陽有大概幾種
transcript.whisperx[1].start 22.625
transcript.whisperx[1].end 45.386
transcript.whisperx[1].text 那這一年來這個貴單位打擊犯罪特別是在這個詐騙方面你們的案例有多少金額又是多少我想跟委員報告因為這個金管會只是在整個國家這個打詐裡面的負責金融金流主詐的這一塊
transcript.whisperx[2].start 46.789
transcript.whisperx[2].end 58.217
transcript.whisperx[2].text 那當然所有的樣態在警政署的那個上面都有清楚的公佈我們剛才幾個委員也關切裡面從金額最大應該是所謂的投資詐騙再來就是購物詐騙 交友詐騙大概是這樣的形態
transcript.whisperx[3].start 62.649
transcript.whisperx[3].end 79.045
transcript.whisperx[3].text 請問投資的話大概金額是多少投資的話剛剛有提到就是那個比重是因為投資上次那個警政署的報告裡面他有提到就是投資通常就是他有個很大的特質就是當這個受騙當事人發現的時候都經過一段很長的時間
transcript.whisperx[4].start 80.106
transcript.whisperx[4].end 98.375
transcript.whisperx[4].text 而且他們通常匯款的或是交付款項的期間都很長等到他開始金絕以後通常來講這個金額都很大再來就是而且金流的部分大概都已經都已經經過很久的時間要追償所以他金額很大件數可能不用很多但是金額就會佔比比較高
transcript.whisperx[5].start 99.56
transcript.whisperx[5].end 127.232
transcript.whisperx[5].text 所以大致講起來這次詐騙的過程當中有沒有可能會出現五百塊或一千塊或者是五萬十萬這樣的案例多不多其實如果按照總金額來看剛才投資詐騙的金額平均的這個詳細數字我不記得不過檢診所他會統計確實每個單件案子的那個金額是蠻高但是購物詐騙那些就相對比較微小其他的部分就比較小
transcript.whisperx[6].start 128.659
transcript.whisperx[6].end 155.467
transcript.whisperx[6].text 那全民打詐 當然是全民一起來可是卑躬攝影造成人心惶惶特別是很多的民眾去銀行臨櫃的時候發現我的帳戶為什麼不能用這樣凍結的帳戶目前有幾戶其實我們應該是這是個別銀行在做其實上我們大概現在數據我們沒有確切的掌握我們可能再去了解一下再跟委員報告
transcript.whisperx[7].start 156.4
transcript.whisperx[7].end 176.372
transcript.whisperx[7].text 這個差很多因為它是一個動態的狀況它隨時可能都會變動這樣好 動態 那去昨天就不算動態因為昨天你過那昨天有沒有這樣的統計數字因為我們在20年前大家想想看那時候生活過了四海生平
transcript.whisperx[8].start 177.773
transcript.whisperx[8].end 199.65
transcript.whisperx[8].text 從來不會想像說人民自己的財產突然有一天你去臨櫃領錢的時候我的帳戶不能用被凍結啊那很多老人家遇到這樣的情況很害怕因為他等一下去看醫生啊手上剛好沒有錢啊或者是子女學費明天要繳學費突然去ATM轉帳帳戶被凍結所以
transcript.whisperx[9].start 205.747
transcript.whisperx[9].end 220.247
transcript.whisperx[9].text 當這個情況非常嚴格或者說很謹慎全部從這個地方開始動起來的時候造成相對的影響請問這樣子大概被影響的人有多少
transcript.whisperx[10].start 221.314
transcript.whisperx[10].end 238.439
transcript.whisperx[10].text 我想說這部分我這邊沒有具體的數據啦當然是因為是每家銀行個別狀況的不同那情況多不多啊這個情況如果從個案數來講是應該是不少不少 對但是因為從個案數但是如果從我們整個整個總帳戶的這個
transcript.whisperx[11].start 241.232
transcript.whisperx[11].end 264.686
transcript.whisperx[11].text 來看是比例是很低啦我們總共有兩億多個帳戶對不對全國那實際上每次這樣一個比例來講可能是幾百幾千戶我想這部分可能我們會我們未來強力的要求銀行一定要做到精準這個就是一個拿捏啦過猶不及啦你這個大動作的下去剛剛就是數百數千影響的就是數千人
transcript.whisperx[12].start 265.946
transcript.whisperx[12].end 293.352
transcript.whisperx[12].text 這影響也說不可謂不大就你碰到的時候缺錢的當下缺錢的人他就覺得哇覺得很害怕覺得很惶恐因為20年前沒有發生這樣的情況所以是不是主委這邊可以想一下怎麼樣來找到一個平衡點其實我們最起碼民眾
transcript.whisperx[13].start 294.554
transcript.whisperx[13].end 323.635
transcript.whisperx[13].text 他在用他自己的帳戶的時候他是人民私人的財產你突然就把他凍結掉他覺得有時候真的是很不便利而且會覺得有一種這個帳戶凍結的症候群一想到碰到就會怕怕的啊那還有一個問題就是現在究竟使用現金的情況跟以前你們有沒有做個比較
transcript.whisperx[14].start 324.471
transcript.whisperx[14].end 352.019
transcript.whisperx[14].text 其實我們可以看到那個透過那個非現金的那個交易的比數是越來越比重越來越高大概比率是多少我們上次超過好像是60億還80億筆的資料就是說這個交易就是說我們現在國人使用非現金的比重確實在快速的增加中你可不可以說你們要加強管理這個是我是贊成的那你加強管理你可以用AI啊
transcript.whisperx[15].start 354.861
transcript.whisperx[15].end 369.197
transcript.whisperx[15].text 不要變成全面性的讓大家感到人人自危你可以用你AI智慧的辦法去做金管會現在有沒有啟動
transcript.whisperx[16].start 370.629
transcript.whisperx[16].end 388.886
transcript.whisperx[16].text AI的行動其實我們在根文報告我們那個金融科技聯盟裡面本來就有一個專門利用AI來做這些相關的處理的那現在他們已經有一些具體的作為跟呈現那是跨金融機構之間的作為效果好不好
transcript.whisperx[17].start 389.646
transcript.whisperx[17].end 413.163
transcript.whisperx[17].text 效果當然是都在測試中因為民眾對這個要求很高就是民眾幾乎是要零誤差我想這個所有的AI模型不可能做到這種程度但是我們講說我們做不好值得檢討 這沒什麼藉口但是就是說我們一定把它做到我們能力能做得最好現在到處都進入一個AI的世界剛剛主委也講
transcript.whisperx[18].start 414.875
transcript.whisperx[18].end 441.25
transcript.whisperx[18].text 金管會也啟動相關AI的智慧的推動另外一方面有人說美國一些報導說現在高科技這些像AI周邊的股價估值有點過高不曉得主委你的看法怎麼樣我想市場的意見本來就很多元這個部分也很多的分析我想我們都
transcript.whisperx[19].start 442.324
transcript.whisperx[19].end 467.271
transcript.whisperx[19].text 也都會關注到各式各樣的論點但是我們從金管會角度我們本來就是把這種任何的不確定因素都視為我們日常所要關注的點各種的說法都有那各種的論證我覺得這些東西都是需要我們來關注的地方那會不會過高呢這個我剛才講過各種的看法都有因為好 那這樣子我們相反的來看一下國內的一些傳產股
transcript.whisperx[20].start 469.664
transcript.whisperx[20].end 476.803
transcript.whisperx[20].text 現在有一些雞蛋碎焦骨甚至一些傳產表現非常差那主委你會覺得他們的估值過低
transcript.whisperx[21].start 477.833
transcript.whisperx[21].end 478.073
transcript.whisperx[21].text 現在看到國內
transcript.whisperx[22].start 504.486
transcript.whisperx[22].end 528.421
transcript.whisperx[22].text 上市上過1850家左右的公司有多少間是超過一千塊的我沒有這個數字從過去的四千斤變八千斤現在好像一直持續在成長我們看到過去張振山他當任局長有為有首大概是幾年的時間差不多五年五年了
transcript.whisperx[23].start 531.075
transcript.whisperx[23].end 550.01
transcript.whisperx[23].text 我看著他 他當那個政情局的局長股票從一萬變兩萬點兩萬點即將要翻越三萬點的時候主委 他是發生什麼事你怎麼把他換掉呢不是換掉 他就我們接種他去另外一個單位擔任負責人
transcript.whisperx[24].start 551.758
transcript.whisperx[24].end 564.684
transcript.whisperx[24].text 那他是有你是意思說他是高升還是民生暗將不是還是被頂關其實我們他他現在去擔任一個非常重要的職務
transcript.whisperx[25].start 566.041
transcript.whisperx[25].end 593.564
transcript.whisperx[25].text 那什麼原因過去呢這個當然就是我們尊重各醫院還有就是整個的我們對於人力配置的規劃因為太突然了啦也不會啊我們這邊朝夕相處常常會遇到習以為常啦就是質詢啊 見面啊突然那一座山就不見了張震山這一座山不見會影響到我們股市的其他山啊我們還有新任的局長也是非常優秀新任局長是誰
transcript.whisperx[26].start 594.795
transcript.whisperx[26].end 622.103
transcript.whisperx[26].text 我們的我們高精品高高局長高精品哦那你對他有什麼期許哎對啊晶晶亮亮希望股市平平安好那局長你現在擔任局長你對我們這個台灣的證券有什麼期許
transcript.whisperx[27].start 624.652
transcript.whisperx[27].end 642.122
transcript.whisperx[27].text 講幾句吧訓練的大家都很好奇當然就是證券市場首重的就是資訊透明我們大概持續為強化資訊的透明然後提升公司的治理剛剛在我們主委大概11月份有推出請我們兩個交易所推出這個
transcript.whisperx[28].start 643.002
transcript.whisperx[28].end 668.642
transcript.whisperx[28].text 亚洲筹资创新平台这个部分我们会努力来推动刚刚委员有质询到除了我们有台积电护国群山以外我们也希望中小企业也能够在我们这个板块里面都被看见我们整个股票的市场能够蓬勃的发展我们希望说平平安安健健康康股市的发展可以翻越另外一座山
transcript.whisperx[29].start 669.443
transcript.whisperx[29].end 684.172
transcript.whisperx[29].text 每次兩萬七 兩萬八現在都卡在那邊現在你的局長你是高金平高局長希望你平平安不步高股市有沒有機會破三萬點我想這我待會回答因為講過很多次金管會不會對未來做預測如果有一天突然破三萬點健不健康
transcript.whisperx[30].start 697.677
transcript.whisperx[30].end 719.885
transcript.whisperx[30].text 那個委員就會要兌現你的承諾了就是啊 珍奶加雞排啊三萬點還要另外再增加啦再加個巧克力好了祝你越來越美麗股市越來越亮麗 謝謝謝謝委員好 謝謝樓邊財委員好 也請那個高局長加油好 我們