iVOD / 166129

Field Value
IVOD_ID 166129
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166129
日期 2025-12-03
會議資料.會議代碼 委員會-11-4-19-14
會議資料.會議代碼:str 第11屆第4會期經濟委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第14次全體委員會議
影片種類 Clip
開始時間 2025-12-03T11:08:44+08:00
結束時間 2025-12-03T11:18:46+08:00
影片長度 00:10:02
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d5a4ce084af309d6ef6d41d20772122b4cd0246cdf0bd28ba14720b4e10c82cbccb487e2fda4bc7d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 11:08:44 - 11:18:46
會議時間 2025-12-03T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第14次全體委員會議(事由:審查: 本院委員林宜瑾等22人、委員劉建國等16人、委員徐巧芯等17人、委員李坤城等22人、委員廖先翔等19人、台灣民眾黨黨團、委員羅廷瑋等18人、委員郭昱晴等16人、委員林思銘等18人、委員洪孟楷等16人、蘇巧慧等17人、委員吳琪銘等17人、委員陳亭妃等16人分別擬具「動物保護法部分條文修正草案」、委員呂玉玲等16人、委員張智倫等16人、委員葉元之等17人分別擬具「動物保護法第十條條文修正草案」、台灣民眾黨黨團、委員葉元之等17人分別擬具「動物保護法第二十五條之二條文修正草案」、委員林岱樺等21人擬具「動物保護法第十四條之一、第十四條之二及第三十條條文修正草案」、委員鄭天財Sra Kacaw等16人擬具「動物保護法第二條及第十條條文修正草案」、委員呂玉玲等16人、委員楊瓊瓔等21人、委員張宏陸等17人、委員郭昱晴等16人分別擬具「動物保護法第二十五條及第二十五條之一條文修正草案」、委員陳亭妃等18人擬具「動物保護法第五條、第二十條及第二十五條條文修正草案」、委員葉元之等17人、委員郭昱晴等21人分別擬具「動物保護法增訂第十四條之三條文草案」、委員葉元之等17人、委員吳沛憶等16人分別擬具「動物保護法第二十五條條文修正草案」、委員游顥等23人擬具「動物保護法第二十五條之一條文修正草案」、台灣民眾黨黨團擬具「動物保護法第二條及第五條條文修正草案」、委員吳沛憶等17人擬具「動物保護法第二十二條之四條文修正草案」、委員賴瑞隆等17人擬具「動物保護法第二條及第六條之二條文修正草案」、委員鄭正鈐等19人擬具「動物保護法第三十二條條文修正草案」、委員羅智強等16人擬具「動物保護法第二十三條條文修正草案」以及委員郭昱晴等19人擬具「動物保護法第二十五條之二及第三十三條之二條文修正草案」、本院委員賴瑞隆等16人擬具「動物保護法第三條及第五條條文修正草案」及本院委員邱若華等16人擬具「動物保護法第二十五條之二、第三十三條之二及第三十三條之三條文修正草案」 (請參閱開會通知單及議程)(僅詢答))
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.03909375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 2.03909375
transcript.pyannote[1].end 3.11909375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 9.98721875
transcript.pyannote[2].end 12.88971875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 13.02471875
transcript.pyannote[3].end 14.50971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.16721875
transcript.pyannote[4].end 21.91784375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 21.93471875
transcript.pyannote[5].end 22.01909375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.18784375
transcript.pyannote[6].end 29.02221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 29.46096875
transcript.pyannote[7].end 32.86971875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 33.32534375
transcript.pyannote[8].end 34.16909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 34.38846875
transcript.pyannote[9].end 37.71284375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 38.65784375
transcript.pyannote[10].end 46.62284375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 47.12909375
transcript.pyannote[11].end 51.01034375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 51.63471875
transcript.pyannote[12].end 52.36034375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 52.90034375
transcript.pyannote[13].end 53.76096875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 54.43596875
transcript.pyannote[14].end 58.31721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 58.78971875
transcript.pyannote[15].end 61.32096875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 61.77659375
transcript.pyannote[16].end 63.31221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 63.76784375
transcript.pyannote[17].end 69.64034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 70.01159375
transcript.pyannote[18].end 71.27721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 71.66534375
transcript.pyannote[19].end 73.11659375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 73.38659375
transcript.pyannote[20].end 77.26784375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 77.58846875
transcript.pyannote[21].end 83.49471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 83.62971875
transcript.pyannote[22].end 88.94534375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 89.14784375
transcript.pyannote[23].end 96.16784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 97.02846875
transcript.pyannote[24].end 105.93846875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 106.22534375
transcript.pyannote[25].end 108.46971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 109.00971875
transcript.pyannote[26].end 110.89971875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 111.33846875
transcript.pyannote[27].end 114.47721875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 115.59096875
transcript.pyannote[28].end 133.29284375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 133.73159375
transcript.pyannote[29].end 135.31784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 135.63846875
transcript.pyannote[30].end 139.24971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 140.24534375
transcript.pyannote[31].end 142.59096875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 142.79346875
transcript.pyannote[32].end 144.07596875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 144.31221875
transcript.pyannote[33].end 145.61159375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 146.25284375
transcript.pyannote[34].end 148.32846875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 148.56471875
transcript.pyannote[35].end 154.85909375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 152.22659375
transcript.pyannote[36].end 153.20534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 154.38659375
transcript.pyannote[37].end 154.70721875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 154.85909375
transcript.pyannote[38].end 154.97721875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 154.97721875
transcript.pyannote[39].end 169.84409375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 155.23034375
transcript.pyannote[40].end 155.75346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 169.99596875
transcript.pyannote[41].end 176.29034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 176.45909375
transcript.pyannote[42].end 177.16784375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 177.55596875
transcript.pyannote[43].end 181.47096875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 178.14659375
transcript.pyannote[44].end 178.56846875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 181.77471875
transcript.pyannote[45].end 185.33534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 184.76159375
transcript.pyannote[46].end 189.26721875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 188.60909375
transcript.pyannote[47].end 197.56971875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 189.57096875
transcript.pyannote[48].end 189.94221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 197.31659375
transcript.pyannote[49].end 199.52721875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 198.90284375
transcript.pyannote[50].end 198.93659375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 199.89846875
transcript.pyannote[51].end 202.96971875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 203.81346875
transcript.pyannote[52].end 206.81721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 207.30659375
transcript.pyannote[53].end 209.34846875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 209.71971875
transcript.pyannote[54].end 213.21284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 213.55034375
transcript.pyannote[55].end 216.48659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 217.02659375
transcript.pyannote[56].end 219.99659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 220.33409375
transcript.pyannote[57].end 223.52346875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 224.56971875
transcript.pyannote[58].end 230.42534375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 230.93159375
transcript.pyannote[59].end 233.47971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 233.90159375
transcript.pyannote[60].end 235.48784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 237.52971875
transcript.pyannote[61].end 241.79909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 240.68534375
transcript.pyannote[62].end 241.14096875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 241.91721875
transcript.pyannote[63].end 244.41471875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 244.53284375
transcript.pyannote[64].end 249.13971875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 249.32534375
transcript.pyannote[65].end 250.32096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 250.69221875
transcript.pyannote[66].end 271.16159375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 270.18284375
transcript.pyannote[67].end 276.19034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 276.37596875
transcript.pyannote[68].end 277.23659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 277.23659375
transcript.pyannote[69].end 280.27409375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 277.38846875
transcript.pyannote[70].end 277.54034375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 277.55721875
transcript.pyannote[71].end 277.59096875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 278.78909375
transcript.pyannote[72].end 279.24471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 280.29096875
transcript.pyannote[73].end 282.36659375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 282.14721875
transcript.pyannote[74].end 287.68221875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 288.00284375
transcript.pyannote[75].end 289.30221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 291.05721875
transcript.pyannote[76].end 294.21284375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 293.84159375
transcript.pyannote[77].end 295.25909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 295.25909375
transcript.pyannote[78].end 295.27596875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 295.39409375
transcript.pyannote[79].end 307.42596875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 307.79721875
transcript.pyannote[80].end 309.99096875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 310.32846875
transcript.pyannote[81].end 317.85471875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 319.01909375
transcript.pyannote[82].end 320.47034375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 320.79096875
transcript.pyannote[83].end 326.83221875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 324.53721875
transcript.pyannote[84].end 324.57096875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 324.77346875
transcript.pyannote[85].end 324.95909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 324.95909375
transcript.pyannote[86].end 324.97596875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 324.97596875
transcript.pyannote[87].end 325.04346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 326.30909375
transcript.pyannote[88].end 332.13096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 328.72221875
transcript.pyannote[89].end 329.90346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 330.27471875
transcript.pyannote[90].end 330.83159375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 332.31659375
transcript.pyannote[91].end 332.68784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 332.89034375
transcript.pyannote[92].end 332.99159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 332.99159375
transcript.pyannote[93].end 333.10971875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 333.10971875
transcript.pyannote[94].end 333.17721875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 333.49784375
transcript.pyannote[95].end 336.21471875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 335.60721875
transcript.pyannote[96].end 343.06596875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 343.85909375
transcript.pyannote[97].end 350.84534375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 350.84534375
transcript.pyannote[98].end 351.75659375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 352.29659375
transcript.pyannote[99].end 354.74346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 355.73909375
transcript.pyannote[100].end 356.61659375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 356.70096875
transcript.pyannote[101].end 359.09721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 359.90721875
transcript.pyannote[102].end 362.35409375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 363.02909375
transcript.pyannote[103].end 365.81346875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 369.93096875
transcript.pyannote[104].end 370.85909375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 370.85909375
transcript.pyannote[105].end 376.24221875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 375.78659375
transcript.pyannote[106].end 376.12409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 376.24221875
transcript.pyannote[107].end 379.33034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 379.70159375
transcript.pyannote[108].end 380.91659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 381.67596875
transcript.pyannote[109].end 383.54909375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 383.95409375
transcript.pyannote[110].end 384.46034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 384.83159375
transcript.pyannote[111].end 386.78909375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 387.97034375
transcript.pyannote[112].end 393.33659375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 393.70784375
transcript.pyannote[113].end 394.07909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 394.23096875
transcript.pyannote[114].end 394.61909375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 396.61034375
transcript.pyannote[115].end 396.89721875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 397.79159375
transcript.pyannote[116].end 404.76096875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 405.43596875
transcript.pyannote[117].end 406.38096875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 406.11096875
transcript.pyannote[118].end 410.66721875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 411.15659375
transcript.pyannote[119].end 415.07159375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 415.59471875
transcript.pyannote[120].end 417.88971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 419.54346875
transcript.pyannote[121].end 427.82909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 428.75721875
transcript.pyannote[122].end 431.77784375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 431.96346875
transcript.pyannote[123].end 433.12784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 433.70159375
transcript.pyannote[124].end 435.40596875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 436.09784375
transcript.pyannote[125].end 438.46034375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 438.74721875
transcript.pyannote[126].end 440.24909375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 441.64971875
transcript.pyannote[127].end 444.19784375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 444.46784375
transcript.pyannote[128].end 444.77159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 445.98659375
transcript.pyannote[129].end 446.00346875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 446.00346875
transcript.pyannote[130].end 449.81721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 449.90159375
transcript.pyannote[131].end 462.72659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 461.95034375
transcript.pyannote[132].end 469.56096875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 465.79784375
transcript.pyannote[133].end 465.89909375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 469.91534375
transcript.pyannote[134].end 474.08346875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 474.30284375
transcript.pyannote[135].end 476.93534375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 477.34034375
transcript.pyannote[136].end 480.96846875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 482.45346875
transcript.pyannote[137].end 482.47034375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 482.47034375
transcript.pyannote[138].end 483.82034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 484.20846875
transcript.pyannote[139].end 484.56284375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 485.37284375
transcript.pyannote[140].end 488.84909375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 489.01784375
transcript.pyannote[141].end 490.36784375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 490.36784375
transcript.pyannote[142].end 490.38471875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 493.48971875
transcript.pyannote[143].end 494.73846875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 495.24471875
transcript.pyannote[144].end 496.56096875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 496.91534375
transcript.pyannote[145].end 497.74221875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 499.63221875
transcript.pyannote[146].end 500.27346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 501.70784375
transcript.pyannote[147].end 501.75846875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 501.75846875
transcript.pyannote[148].end 502.85534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 503.74971875
transcript.pyannote[149].end 512.11971875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 512.11971875
transcript.pyannote[150].end 512.38971875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 512.38971875
transcript.pyannote[151].end 512.42346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 512.42346875
transcript.pyannote[152].end 516.28784375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 516.60846875
transcript.pyannote[153].end 518.73471875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 519.57846875
transcript.pyannote[154].end 520.05096875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 520.25346875
transcript.pyannote[155].end 528.62346875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 529.46721875
transcript.pyannote[156].end 532.70721875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 532.99409375
transcript.pyannote[157].end 533.28096875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 534.02346875
transcript.pyannote[158].end 535.23846875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 536.26784375
transcript.pyannote[159].end 536.53784375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 537.55034375
transcript.pyannote[160].end 538.59659375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 537.98909375
transcript.pyannote[161].end 538.12409375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 538.78221875
transcript.pyannote[162].end 542.08971875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 542.29221875
transcript.pyannote[163].end 547.77659375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 546.44346875
transcript.pyannote[164].end 548.94096875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 548.11409375
transcript.pyannote[165].end 551.60721875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 550.22346875
transcript.pyannote[166].end 555.13409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 555.97784375
transcript.pyannote[167].end 560.28096875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 560.58471875
transcript.pyannote[168].end 563.82471875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 563.97659375
transcript.pyannote[169].end 566.06909375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 566.57534375
transcript.pyannote[170].end 568.90409375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 569.25846875
transcript.pyannote[171].end 571.19909375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 572.11034375
transcript.pyannote[172].end 574.62471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 575.63721875
transcript.pyannote[173].end 575.92409375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 576.86909375
transcript.pyannote[174].end 576.90284375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 576.90284375
transcript.pyannote[175].end 576.97034375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 576.97034375
transcript.pyannote[176].end 577.03784375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 577.03784375
transcript.pyannote[177].end 578.97846875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 577.52721875
transcript.pyannote[178].end 577.99971875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 579.58596875
transcript.pyannote[179].end 583.61909375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 584.63159375
transcript.pyannote[180].end 585.25596875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 585.62721875
transcript.pyannote[181].end 589.55909375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 588.73221875
transcript.pyannote[182].end 589.94721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 589.81221875
transcript.pyannote[183].end 598.13159375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 598.60409375
transcript.pyannote[184].end 602.09721875
transcript.whisperx[0].start 0.089
transcript.whisperx[0].end 10.246
transcript.whisperx[0].text 我們請邱志偉委員請做詢答 謝謝我們再請杜次長
transcript.whisperx[1].start 19.615
transcript.whisperx[1].end 37.187
transcript.whisperx[1].text 上個月18號到東京跟農林水產省相關的官員做了大概三個半小時的討論就是要慎時殘渣相關的處理經驗日本做得很好有兩個方向就是家戶要減量
transcript.whisperx[2].start 38.717
transcript.whisperx[2].end 53.519
transcript.whisperx[2].text 第二个就是事业的部分事业端包括食品工厂餐饮团散这些他们的这个分类来源非常明确由这个专业的处理业者统一回收处理变成ecofit所以从加货端
transcript.whisperx[3].start 54.7
transcript.whisperx[3].end 75.64
transcript.whisperx[3].text 從事業端分別去處理我們去年50萬噸的的加護廚餘大概4成是經過這個養豬所以未來如果用廚餘禁止養豬的時候我們這個加護廚餘的產生一定要減量要除以減量這個在日本幾乎家家戶戶都有這個加護廚餘乾燥機
transcript.whisperx[4].start 78.603
transcript.whisperx[4].end 95.219
transcript.whisperx[4].text 過去某些縣市有一些縣市也有做一些補助所以我應該要推廣第一個你這個食物不要浪費另外就是廚餘的處理要用比較現代化的體系要納入所謂的防疫的體系來
transcript.whisperx[5].start 97.096
transcript.whisperx[5].end 113.875
transcript.whisperx[5].text 如果你們跟這個環境部來推動就是說家戶除以乾燥機除以你乾燥之後就變成一般的廢棄物你就可以用焚化的方式來處理所以如果每一戶家家戶戶都有家戶除於乾燥機
transcript.whisperx[6].start 115.646
transcript.whisperx[6].end 133.832
transcript.whisperx[6].text 那你要透過補助政府的推廣或者政策上的支持就像我們節能補助一樣冷氣這些節能設備補助一樣所以我建議說農業部跟環境部可以去研究針對家戶廚餘乾燥機提出一個補助的計畫讓家戶的廚餘乾燥機深入每一個家庭
transcript.whisperx[7].start 140.327
transcript.whisperx[7].end 160.843
transcript.whisperx[7].text 所以從加護端來看這個有效減少這個加護廚藝的產生這個次長您的看法好 謝謝委員帶回來第一線在日本看到就有關於怎麼去做e-coffee的這個回來有 還有跟你們報告嗎他其實也是學習很多謝謝委員這次讓我們同仁也一起去
transcript.whisperx[8].start 161.463
transcript.whisperx[8].end 184.86
transcript.whisperx[8].text 那除了這個之外其實剛剛委員提到就是家戶廚餘確實是很重要你要能夠在源頭減少的話後端再處理包括我們清潔隊也好我們的那個環保人員也好其實相對壓力都會少很多所以不管是在把它乾燥化或者是鐵位這是怎麼把它處理掉我想這個應該都可以讓環境部有很好的一個參考的一個方向我想我記得大家可能也知道等於裝在一邊東西
transcript.whisperx[9].start 186.101
transcript.whisperx[9].end 202.668
transcript.whisperx[9].text 就像經濟部他推動節能節能電器嘛 類似那樣子我們在環境部說這是一個方向希望家家戶戶自己如果能夠減少的話後端的區劃相對壓力就會少日本的經驗做得很好所以你看我們這個邊境的管制日本沒有邊境管制
transcript.whisperx[10].start 203.868
transcript.whisperx[10].end 223.426
transcript.whisperx[10].text 好像我们现在这个要入境的时候我们不是都还有安检你这个索尼西你还在安检一次日本没有嘛对不对因为他们的事业端啊事业端的他们用这ecofit我要跟那个工型大学的川岛教授也线上做一些讨论我们那天花了三个半小时
transcript.whisperx[11].start 224.702
transcript.whisperx[11].end 234.902
transcript.whisperx[11].text 很深入的針對他們目前的包括法律面這個政策面 執行面分成家戶端跟這個事業端來處理所以日本的經驗值得我們學習
transcript.whisperx[12].start 237.634
transcript.whisperx[12].end 259.865
transcript.whisperx[12].text 所以未來這個Ecofit你們有沒有什麼比較具體的想法這也是一個方向但是前端並不是把現在所有的廚餘都可以拿去做飼料因為前端還是要有一些分類那有些確實可以進到像剩食 廢食 過期食品這些特定的東西才能去做飼料的話這是第一個那第二個是目前其實國內並沒有這樣子的設備所以我們就農業部來講
transcript.whisperx[13].start 262.907
transcript.whisperx[13].end 288.905
transcript.whisperx[13].text 如果要把這些廚餘再轉換成這個飼料完整配方清除的這些可以再用的飼料這個我想我們會來試試你去跟日本做一些交流學習我們駐日有農業組有有有農業組第一線去學習他們他們已經推廣二十幾年了我們有兩個董事在那裡我知道我知道 我很熟所以我還專程跑去東京這個談了三個多小時事前準備功課
transcript.whisperx[14].start 291.164
transcript.whisperx[14].end 317.649
transcript.whisperx[14].text 所以这部分也有帮助一个重要的政策来推动谢谢委员提醒 谢谢不是提醒这本来就你们不是我提醒之后你们才去做你们本来就应该去赶快去执行拟定一个计划从加货端怎么去减量从这个事业端怎么样去变成ecofit这日本都已经很完整的体系这个我觉得我们没有办法创新没有办法有独特的这个做法那我们去学习其他国家这个成功的经验嘛
transcript.whisperx[15].start 319.536
transcript.whisperx[15].end 337.288
transcript.whisperx[15].text 我希望這個盡快半年之內提出一個完整的一個計畫從加護端 好好那加護端的部分我們會轉給那個環境部因為那個教練補助這一塊會在中央災害應變中心裡面處理中央災害應變中心非洲中央的中央災害應變中心我也跟左院長建議啦這個要跨部你們要開一個會議協調因為這個出於
transcript.whisperx[16].start 343.905
transcript.whisperx[16].end 365.556
transcript.whisperx[16].text 不見得是要編列預算在你們這個農業部也可能要環境部一起合作但是一定要有一個完整的計劃出來好 謝謝委員另外這個所謂流浪 流浪犬的這個部分荷蘭荷蘭已經這個基本上已經做到了荷蘭經驗市長您了解嗎
transcript.whisperx[17].start 371.198
transcript.whisperx[17].end 394.496
transcript.whisperx[17].text 报告委员那个先进国家的经验大概都是在所谓的源头上去做一些管理然后加上我们没有办法做到就是源头管理失灵没有彻底那别的其他国家荷兰成功为什么因为就在源头管理做得好所以你了解问题但是你要提出解决问题的做法你要怎么样做好源头管理这个市长
transcript.whisperx[18].start 396.658
transcript.whisperx[18].end 417.532
transcript.whisperx[18].text 市長是源頭管理真的很重要因為要從那邊減少的時候才會有可能把這個遊蕩犬的數量控制下來你看2019開始就有遊蕩犬管理精進措施計畫執行了6年了2019開始已經執行了6年了但是還是有民眾支持
transcript.whisperx[19].start 419.608
transcript.whisperx[19].end 443.881
transcript.whisperx[19].text 所以你比較這個非都會區你會看到都會區大概不太可能太多的流浪犬非都會區你要去城跑你要去這個見走散步你都要提醒吊膽有些區域有些樂區所以我建議說這個部分園童管理你要提出更有效的方法那個可能是不是市長說明一下
transcript.whisperx[20].start 446.041
transcript.whisperx[20].end 469.429
transcript.whisperx[20].text 那个跟委员报告源头管理大概有三个部分第一个就是那个宠物登记的部分第二个是那个繁殖的商业的那个管理第三个一个部分就是要求事主责任那这部分已经配套相关的一个刑责跟执法的量能去强化这一块事主的责任当然是很重要你必须要强化事主的责任嘛所以源头管理能够做得好就是要强化事主的责任嘛
transcript.whisperx[21].start 469.949
transcript.whisperx[21].end 490.256
transcript.whisperx[21].text 所以你了解問題在提出更精進的做法另外就是說未來財政收支發放法修法之後啊從明年度開始這個動保相關的計劃經費會全部移撥地方嗎那個報告委員目前的一個處理是這樣的一個方式全部一撥個地方那地方如果財源不足呢那你這個相關的經費就沒有啦就少一半啊
transcript.whisperx[22].start 500.093
transcript.whisperx[22].end 528.422
transcript.whisperx[22].text 這個有 有沒有什麼解決方法這一個部分 那個報告部裡面跟部長都非常重視問題也在看 跟主計談看有沒有什麼樣的一個方式去做一個處理你那個凍保業務啊 具有全國一致性的特性那你現在變成地方自己去執行這個 第一個 地方的政府的這個產生狀況這個各縣市不一樣它執行能量 效率 效果也會不同
transcript.whisperx[23].start 529.942
transcript.whisperx[23].end 554.911
transcript.whisperx[23].text 而且長期性的政策推動也會受到影響所以這怎麼辦呢 市長你不能沉默以對啊我們再看一看 因為其實就是其實財化法之後老實講中央的預算狀況其實是有些減少我們盡量來想辦法對於需要協助的因為臨時提案比較有拘束力像臨時提案就是
transcript.whisperx[24].start 556.572
transcript.whisperx[24].end 575.687
transcript.whisperx[24].text 希望你們一個月之內就提出具體做法不是你們回去想想看而已啊我也可以臨時提案或者在約會再提案叫你們一個月提出一個詳細的計畫這樣你們才有壓力你們壓力才有動力啊你跟我說你要回去想想看那回去想想看是你要想多久我也沒辦法約束你對不對
transcript.whisperx[25].start 577.192
transcript.whisperx[25].end 601.604
transcript.whisperx[25].text 那很多事情這個短短時間沒辦法說明很清楚但是我作為最後的決定就是說這個我剛剛說的廚藝的部分一定要跟環境部立即有一個完整的計畫另外你針對這個採訪好修法之後你這個動保相關經費你要移破地方這個困境如何解決裡面要有完整的一個solution好好謝謝好非常感謝