iVOD / 166083

Field Value
IVOD_ID 166083
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166083
日期 2025-12-03
會議資料.會議代碼 委員會-11-4-20-10
會議資料.會議代碼:str 第11屆第4會期財政委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-12-03T09:37:29+08:00
結束時間 2025-12-03T09:49:35+08:00
影片長度 00:12:06
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d5a4ce084af309d64891c14bf3de166609a18256bf6bdfebab4060e56b945967e766b101dd82558b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:37:29 - 09:49:35
會議時間 2025-12-03T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第10次全體委員會議(事由:審查本院委員蔡易餘等16人、委員牛煦庭等26人分別擬具「銀行法第一百二十五條及第一百二十五條之四條文修正草案」等2案。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.46534375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 1.80284375
transcript.pyannote[1].end 3.30471875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 3.37221875
transcript.pyannote[2].end 3.38909375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 3.38909375
transcript.pyannote[3].end 4.03034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 4.03034375
transcript.pyannote[4].end 4.58721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 7.11846875
transcript.pyannote[5].end 7.64159375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 7.99596875
transcript.pyannote[6].end 9.00846875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 9.53159375
transcript.pyannote[7].end 16.11284375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 16.24784375
transcript.pyannote[8].end 19.58909375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 19.90971875
transcript.pyannote[9].end 21.41159375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 22.00221875
transcript.pyannote[10].end 23.35221875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 23.74034375
transcript.pyannote[11].end 25.73159375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 26.96346875
transcript.pyannote[12].end 28.38096875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 29.93346875
transcript.pyannote[13].end 39.23159375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 34.94534375
transcript.pyannote[14].end 35.31659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 39.24846875
transcript.pyannote[15].end 44.26034375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 43.14659375
transcript.pyannote[16].end 44.24346875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 44.26034375
transcript.pyannote[17].end 44.31096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 44.31096875
transcript.pyannote[18].end 46.03221875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 45.39096875
transcript.pyannote[19].end 46.60596875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 46.60596875
transcript.pyannote[20].end 50.26784375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 50.26784375
transcript.pyannote[21].end 50.45346875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 50.45346875
transcript.pyannote[22].end 53.05221875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 52.29284375
transcript.pyannote[23].end 53.91284375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 53.69346875
transcript.pyannote[24].end 57.49034375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 58.28346875
transcript.pyannote[25].end 59.36346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 59.48159375
transcript.pyannote[26].end 63.98721875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 63.14346875
transcript.pyannote[27].end 68.07096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 65.05034375
transcript.pyannote[28].end 65.48909375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 68.57721875
transcript.pyannote[29].end 78.83721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 78.60096875
transcript.pyannote[30].end 78.97221875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 78.97221875
transcript.pyannote[31].end 78.98909375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 79.30971875
transcript.pyannote[32].end 81.87471875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 80.40659375
transcript.pyannote[33].end 81.16596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 81.45284375
transcript.pyannote[34].end 82.24596875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 82.19534375
transcript.pyannote[35].end 85.87409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 86.19471875
transcript.pyannote[36].end 92.01659375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 88.48971875
transcript.pyannote[37].end 88.94534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 92.45534375
transcript.pyannote[38].end 98.86784375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 99.32346875
transcript.pyannote[39].end 106.86659375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 107.13659375
transcript.pyannote[40].end 110.17409375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 110.69721875
transcript.pyannote[41].end 113.02596875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 113.19471875
transcript.pyannote[42].end 124.24784375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 123.99471875
transcript.pyannote[43].end 127.65659375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 127.85909375
transcript.pyannote[44].end 131.95971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 131.89221875
transcript.pyannote[45].end 132.90471875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 132.16221875
transcript.pyannote[46].end 132.88784375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 132.90471875
transcript.pyannote[47].end 133.02284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 133.02284375
transcript.pyannote[48].end 136.65096875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 136.29659375
transcript.pyannote[49].end 137.98409375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 138.23721875
transcript.pyannote[50].end 143.70471875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 142.28721875
transcript.pyannote[51].end 145.66221875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 144.22784375
transcript.pyannote[52].end 144.63284375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 145.86471875
transcript.pyannote[53].end 150.89346875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 149.79659375
transcript.pyannote[54].end 152.05784375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 152.05784375
transcript.pyannote[55].end 152.44596875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 152.44596875
transcript.pyannote[56].end 153.57659375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 153.88034375
transcript.pyannote[57].end 169.96221875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 168.22409375
transcript.pyannote[58].end 168.57846875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 169.96221875
transcript.pyannote[59].end 170.02971875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 170.62034375
transcript.pyannote[60].end 182.14596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 179.98596875
transcript.pyannote[61].end 180.49221875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 182.38221875
transcript.pyannote[62].end 188.69346875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 183.90096875
transcript.pyannote[63].end 183.93471875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 189.18284375
transcript.pyannote[64].end 199.64534375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 198.81846875
transcript.pyannote[65].end 200.80971875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 200.87721875
transcript.pyannote[66].end 207.50909375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 208.03221875
transcript.pyannote[67].end 210.98534375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 208.42034375
transcript.pyannote[68].end 208.94346875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 210.14159375
transcript.pyannote[69].end 212.03159375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 212.62221875
transcript.pyannote[70].end 214.88346875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 215.86221875
transcript.pyannote[71].end 221.63346875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 221.73471875
transcript.pyannote[72].end 227.01659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 225.07596875
transcript.pyannote[73].end 226.27409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 226.61159375
transcript.pyannote[74].end 254.16846875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 229.39596875
transcript.pyannote[75].end 229.95284375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 237.73221875
transcript.pyannote[76].end 238.30596875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 240.11159375
transcript.pyannote[77].end 241.37721875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 243.28409375
transcript.pyannote[78].end 243.62159375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 252.51471875
transcript.pyannote[79].end 254.43846875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 255.07971875
transcript.pyannote[80].end 257.13846875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 255.11346875
transcript.pyannote[81].end 257.40846875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 257.40846875
transcript.pyannote[82].end 262.18409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 257.64471875
transcript.pyannote[83].end 257.93159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 262.30221875
transcript.pyannote[84].end 264.36096875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 263.02784375
transcript.pyannote[85].end 264.25971875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 264.49596875
transcript.pyannote[86].end 266.52096875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 266.84159375
transcript.pyannote[87].end 269.20409375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 269.81159375
transcript.pyannote[88].end 271.22909375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 271.65096875
transcript.pyannote[89].end 274.46909375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 274.80659375
transcript.pyannote[90].end 280.02096875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 278.33346875
transcript.pyannote[91].end 278.55284375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 279.29534375
transcript.pyannote[92].end 280.00409375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 280.47659375
transcript.pyannote[93].end 285.06659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 285.45471875
transcript.pyannote[94].end 293.06534375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 293.50409375
transcript.pyannote[95].end 309.65346875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 295.20846875
transcript.pyannote[96].end 298.12784375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 298.51596875
transcript.pyannote[97].end 298.68471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 299.59596875
transcript.pyannote[98].end 300.84471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 301.08096875
transcript.pyannote[99].end 302.66721875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 310.10909375
transcript.pyannote[100].end 310.61534375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 311.10471875
transcript.pyannote[101].end 314.17596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 312.43784375
transcript.pyannote[102].end 319.62659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 319.89659375
transcript.pyannote[103].end 332.38409375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 332.67096875
transcript.pyannote[104].end 336.09659375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 336.26534375
transcript.pyannote[105].end 371.34846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 339.10034375
transcript.pyannote[106].end 339.77534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 340.55159375
transcript.pyannote[107].end 340.99034375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 346.35659375
transcript.pyannote[108].end 346.81221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 350.59221875
transcript.pyannote[109].end 354.40596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 356.66721875
transcript.pyannote[110].end 360.41346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 360.64971875
transcript.pyannote[111].end 360.86909375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 362.37096875
transcript.pyannote[112].end 362.53971875
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 371.41596875
transcript.pyannote[113].end 373.45784375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 373.66034375
transcript.pyannote[114].end 384.27471875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 384.59534375
transcript.pyannote[115].end 387.05909375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 387.83534375
transcript.pyannote[116].end 396.30659375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 396.64409375
transcript.pyannote[117].end 398.88846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 399.58034375
transcript.pyannote[118].end 405.75659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 406.29659375
transcript.pyannote[119].end 425.48346875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 424.45409375
transcript.pyannote[120].end 430.30971875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 430.47846875
transcript.pyannote[121].end 440.14784375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 440.92409375
transcript.pyannote[122].end 445.81784375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 446.94846875
transcript.pyannote[123].end 449.39534375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 449.88471875
transcript.pyannote[124].end 452.71971875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 455.14971875
transcript.pyannote[125].end 455.16659375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 455.16659375
transcript.pyannote[126].end 456.61784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 455.21721875
transcript.pyannote[127].end 456.82034375
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 457.03971875
transcript.pyannote[128].end 460.76909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 457.12409375
transcript.pyannote[129].end 457.14096875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 457.15784375
transcript.pyannote[130].end 457.22534375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 460.92096875
transcript.pyannote[131].end 461.69721875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 462.72659375
transcript.pyannote[132].end 473.20596875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 473.84721875
transcript.pyannote[133].end 474.48846875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 475.21409375
transcript.pyannote[134].end 478.36971875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 478.96034375
transcript.pyannote[135].end 486.48659375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 486.92534375
transcript.pyannote[136].end 490.18221875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 490.78971875
transcript.pyannote[137].end 492.76409375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 493.18596875
transcript.pyannote[138].end 495.90284375
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 493.20284375
transcript.pyannote[139].end 500.27346875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 501.40409375
transcript.pyannote[140].end 501.97784375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 502.93971875
transcript.pyannote[141].end 520.97909375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 509.26784375
transcript.pyannote[142].end 509.68971875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 510.93846875
transcript.pyannote[143].end 511.37721875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 516.94596875
transcript.pyannote[144].end 516.96284375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 517.51971875
transcript.pyannote[145].end 521.41784375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 521.80596875
transcript.pyannote[146].end 526.68284375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 526.04159375
transcript.pyannote[147].end 527.08784375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 527.30721875
transcript.pyannote[148].end 527.88096875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 528.11721875
transcript.pyannote[149].end 528.15096875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 528.15096875
transcript.pyannote[150].end 528.99471875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 528.16784375
transcript.pyannote[151].end 533.26409375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 531.62721875
transcript.pyannote[152].end 538.88346875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 539.03534375
transcript.pyannote[153].end 540.25034375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 540.62159375
transcript.pyannote[154].end 542.30909375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 542.57909375
transcript.pyannote[155].end 543.59159375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 544.28346875
transcript.pyannote[156].end 552.55221875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 552.87284375
transcript.pyannote[157].end 554.47596875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 555.33659375
transcript.pyannote[158].end 556.01159375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 556.46721875
transcript.pyannote[159].end 558.25596875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 559.79159375
transcript.pyannote[160].end 562.22159375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 562.86284375
transcript.pyannote[161].end 567.03096875
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 563.99346875
transcript.pyannote[162].end 564.71909375
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 566.54159375
transcript.pyannote[163].end 566.98034375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 567.03096875
transcript.pyannote[164].end 571.38471875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 571.38471875
transcript.pyannote[165].end 590.48721875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 590.48721875
transcript.pyannote[166].end 599.29596875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 598.63784375
transcript.pyannote[167].end 606.85596875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 600.46034375
transcript.pyannote[168].end 602.01284375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 607.36221875
transcript.pyannote[169].end 617.13284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 612.40784375
transcript.pyannote[170].end 612.81284375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 617.30159375
transcript.pyannote[171].end 639.72846875
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 623.34284375
transcript.pyannote[172].end 623.52846875
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 637.63596875
transcript.pyannote[173].end 643.13721875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 642.41159375
transcript.pyannote[174].end 642.85034375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 643.15409375
transcript.pyannote[175].end 645.93846875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 645.28034375
transcript.pyannote[176].end 648.82409375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 647.59221875
transcript.pyannote[177].end 649.81971875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 649.38096875
transcript.pyannote[178].end 659.32034375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 658.74659375
transcript.pyannote[179].end 660.99096875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 660.01221875
transcript.pyannote[180].end 665.74971875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 661.32846875
transcript.pyannote[181].end 663.04971875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 665.83409375
transcript.pyannote[182].end 668.11221875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 666.15471875
transcript.pyannote[183].end 670.54221875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 669.34409375
transcript.pyannote[184].end 700.47846875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 692.56409375
transcript.pyannote[185].end 693.23909375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 693.67784375
transcript.pyannote[186].end 694.72409375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 699.87096875
transcript.pyannote[187].end 705.11909375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 705.59159375
transcript.pyannote[188].end 713.03346875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 713.59034375
transcript.pyannote[189].end 714.58596875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 715.07534375
transcript.pyannote[190].end 716.79659375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 718.68659375
transcript.pyannote[191].end 720.69471875
transcript.whisperx[0].start 0.449
transcript.whisperx[0].end 4.313
transcript.whisperx[0].text 以及各位先進有請今晚會的彭主委好 請彭主委委員早安主委早那麼我看這個數字今年金融業在前10個月它的獲利超過8400億獲利相當的亮眼它的獲利今年會不會上看上兆會不會如果你處一處上兆
transcript.whisperx[1].start 30.24
transcript.whisperx[1].end 57.277
transcript.whisperx[1].text 今年的話因為可能幾個三頁裡面可能銀行還是持續表現的結許會可能會創下今年的新高今年可能會創下新高但是因為受險業受到今年四五月的衝擊其實上會減少很多它相對的比例也比較小啊受險相對比例小但是過去大概是六三一吧去年破兆嘛去年剛好破兆就是大概六三一這樣一個比例所以今年也是破兆應該沒問題今年我覺得有點吃緊因為這個比如受險業的獲利沒有那麼好
transcript.whisperx[2].start 58.322
transcript.whisperx[2].end 85.664
transcript.whisperx[2].text 但今年會破照嗎不確定 但是銀行今年應該我們可以預期就是今年的獲利會比今年還要好銀行很亮喔 今年喔那在這樣子金融業這麼好的情況之下你站在金管會 你看它宗旨一方面監管 二方面希望你們手上的工具促進金融業能夠發展嘛所以這個員工非常重要你要不要公開喊話一下這個金工業給員工加薪啊
transcript.whisperx[3].start 86.263
transcript.whisperx[3].end 109.654
transcript.whisperx[3].text 其實我跟委員報告就是我們在其實我們從今年開始應該講我們就不斷的跟金融業宣導所謂金融大回饋計畫其實在我們在新申請新業務的時候我們都會這個柔性的請他說你未來這個新業務的成果要如何回饋他們開始就是一直在做我們有系統的在做這件事情當然我們講回饋包括三個對象第一個叫做基層員工
transcript.whisperx[4].start 110.734
transcript.whisperx[4].end 126.677
transcript.whisperx[4].text 一定要先針對你的基層員工進行福利的增加再來就是對你的客戶再來對社會大眾這我們會提出具體的金融大回饋計畫來促進這件事情這個確實是金融業未來會成為這麼重要的產業你就跟我講給我簡單的答案你要不要跟金融業喊話給員工加薪就問這個事情其實這個我命在很多場合跟他們呼籲過現在要不要再喊話一次
transcript.whisperx[5].start 138.32
transcript.whisperx[5].end 143.922
transcript.whisperx[5].text 我剛剛講說其實我們希望基層會支持我們金融大回饋計畫裡面所以要給員工加薪我要問你這個啦這股啦這樣啦對我們支持他們對基層的員工鼓勵啦希望啦可以吧可以可以喔
transcript.whisperx[6].start 153.965
transcript.whisperx[6].end 169.623
transcript.whisperx[6].text 那上市櫃公司也比較辦理因為今年號稱 哇贊圖哇贊啦GDP成長率有時候到7%啦所以今年會到7% 哇贊圖哇贊上市櫃公司你要不要也呼籲一下給員工加薪啊其實
transcript.whisperx[7].start 170.68
transcript.whisperx[7].end 187.931
transcript.whisperx[7].text 也是感謝委員我們全職很支持我們的政交法已經調了今年必須要增加就是在章程裡面要提撥一定的比例為基層員工調整福利我想這已經都幾乎所有的上市櫃公司都已經調整了它的章程再來就是我們對今年的上市櫃公司的條件
transcript.whisperx[8].start 189.612
transcript.whisperx[8].end 207.445
transcript.whisperx[8].text 他來申請上市的條件就要求比如說他的那個對於基層員工的薪資一定要達到一定的高水位才可以來做我想這個我們都希望由上市櫃公司來帶動我覺得另外問一個小問題也是很重要的問題你們有推出一個什麼加薪ETF有沒有有那個所謂的加薪指數對嘛 可是賣得不好啊那個不太有人要買這個啊
transcript.whisperx[9].start 216.102
transcript.whisperx[9].end 232.476
transcript.whisperx[9].text 你有沒有去研究一下為什麼你加薪ETF加薪100加薪什麼的都嘣嘣嘣這個問題人家覺得不怎麼樣你要不要檢討一下或者什麼原因其實各位委員也有注意到我注意到了對我知道因為這部分我們是在做一個這個嘗試
transcript.whisperx[10].start 234.157
transcript.whisperx[10].end 254.308
transcript.whisperx[10].text 資訊揭露對於這個善盡企業社會責任的企業我們給予鼓勵所以把它編一個加薪的指數可是華人問津不會就像我們在ESG的基金的過去我們也看到很多實證的研究也看到說它確實在因為投資人看的除了我們社會責任的善盡以外更重要是它的獲利你要多宣導宣導是我們會宣導這個給加薪的請鼓勵投資人多買ETF
transcript.whisperx[11].start 262.352
transcript.whisperx[11].end 264.273
transcript.whisperx[11].text 沒有 這個委員的方向我們都支持好 來 第二個新北跟桃園 UBIKE從明年開始沒有投保不能夠騎 UBIKE這個民眾必須完成免費的投保它保費是市政府出的這裡面有第三責任險 傷害險等等的保險局怎麼看這個事情
transcript.whisperx[12].start 285.607
transcript.whisperx[12].end 298.457
transcript.whisperx[12].text 我想這是一個政策保險 這不是商業保險 這取決於各地方政府的政策我想保險公司是配合他們來做這些事情你們能夠鼓勵嗎 因為 老實講 UBIKE 你看每一次中小學放學的時候 UBIKE 跑來跑去的 看了都很危險而且發生的 UBIKE 的車禍也是
transcript.whisperx[13].start 311.227
transcript.whisperx[13].end 335.92
transcript.whisperx[13].text 也是常見的啦其實我們當然是支持這樣其實我們從一個推廣風險管理的概念的話我們絕對支持各地方政府推廣這些事情那我們就是我們的角色就希望站在我們的業者能夠盡量來協助這件事情讓他能夠完成各個地方政府想要推動這個政策的目標我想這個部分如果各個地方政府需要我們來配合的地方我們的保險局一定會督促我們的業者來配合這件事情
transcript.whisperx[14].start 336.311
transcript.whisperx[14].end 344.935
transcript.whisperx[14].text 你要不要去推一下 請那個產險公司也幫忙推一下說鼓勵各縣市因為UPAC這個太方便了這個各縣市你們也push一下這我們可以來努力你們來努力一下雖然這個是新北跟桃園但是我覺得金管會的角色可以樂見其神推廣到所有的
transcript.whisperx[15].start 360.663
transcript.whisperx[15].end 385.963
transcript.whisperx[15].text 各個縣市然後我們看另外一題那個聖石今夜襲警案這個昨天好像被搜索被什麼的那這裡面他就用保障5%到12%而且有總統去站台高官去站台這個跟今天的題目有點關係我就請教一下這個案子你怎麼看
transcript.whisperx[16].start 387.881
transcript.whisperx[16].end 405.471
transcript.whisperx[16].text 我想剛剛提到就是假設以這個涉及到非法吸金地下匯兌這是我們銀行法上的重罪我剛剛已經提過了這是為什麼這兩個是特許業務非法吸金非特許行業不得吸收存款不得辦理匯兌我想這是很清楚所以像
transcript.whisperx[17].start 406.371
transcript.whisperx[17].end 429.929
transcript.whisperx[17].text 今天的那個提案我們也提到就是說如果說把那個提高刑度那部分改成失職所得這部分我們是就不支持啦所以我們就還是維持原來的這個條文那當然對於任何吸金這個非法吸金我們都一定是站在一個你站不站成對非法吸金跟地下會對一起提高薪資
transcript.whisperx[18].start 430.929
transcript.whisperx[18].end 452.618
transcript.whisperx[18].text 對 我想對於打擊犯罪如果有效的方法我們都支持不過這個還牽涉到比如說我們的司法刑度的量刑要跟其他的部會一起要一致性的考量這個要不要請法務部的廖參事上來表達一點意見我們如果提高刑度會不會有什麼你們法律上的一些漢格的地方有沒有
transcript.whisperx[19].start 455.242
transcript.whisperx[19].end 477.782
transcript.whisperx[19].text 你要不要講一下 表示一下如果對非法吸金跟地下會一起提高薪資 你們態度怎麼樣跟委員說明一下 這是兩個不同的形態吸金的部分呢 這個打擊吸金呢本來就是我們的重點工作不過現在談的就是法律規定刑度的一個均衡性的問題
transcript.whisperx[20].start 479.028
transcript.whisperx[20].end 499.897
transcript.whisperx[20].text 那現在吸金的部分目前依照銀行法的規定29條之一的規定它是以吸收存款跟吸收存款的性質相近所以它是以吸收存款論你回答問題因為我時間快到了就是你贊不贊成這兩個都要一起提高薪資就這樣子了贊不贊成
transcript.whisperx[21].start 503.144
transcript.whisperx[21].end 520.434
transcript.whisperx[21].text 廢法吸金的我們的看法是說他要跟29條之一的收受存款的刑責性質相近應該是刑度要相當啦就是說所以你保留就對了啦這樣說快點啦就是說跟29條之一的刑度相當
transcript.whisperx[22].start 521.855
transcript.whisperx[22].end 528.937
transcript.whisperx[22].text 那地下會對現在的刑度也是跟29條之一是一樣的所以你都保留就變這樣就是說在整個金融管理政策上以現在的詐欺案啦人民永遠都痛啊而且逃不回來啊你們應該要贊成提高刑責啦老實講那個我請金光會的本主委以現在的時空啊這個詐欺老是越打越詐啊這個情況之下
transcript.whisperx[23].start 549.674
transcript.whisperx[23].end 554.3
transcript.whisperx[23].text 應該要贊成 最後一個問題講到穩定幣台灣版的穩定幣上路沒有
transcript.whisperx[24].start 563.258
transcript.whisperx[24].end 590.255
transcript.whisperx[24].text 當然還沒有因為我們的法制還在目前你們第一階段也就開放銀行機構才可以發行穩定費用我們初步跟央行的共識是說因為我們剛開始基於這個比如說監理上的穩定我們會從因為其實我們的草案母法草案裡面是沒有限制只有金融機構我們是參考MECA的規定但是我們初步階段基於一個風險管理的角度我們會先由金融機構先
transcript.whisperx[25].start 590.555
transcript.whisperx[25].end 616.423
transcript.whisperx[25].text 你能不能給我們一個時間表比如說半年內或者三個月以後看到台版的穩定幣正式上路那什麼時候一切順利一切順利的話像我們今年大概因為現在剛好正在比如說這個禮拜也會進行那個所謂的穩定幣在行政院政務委員主持的審查會我想已經第三次審查應該大家的共識度應該很高假設
transcript.whisperx[26].start 618.583
transcript.whisperx[26].end 643.589
transcript.whisperx[26].text 這個會期能夠送進立法院的話就是還要通過行政院院會嘛送進立法院排進議程的話如果有可能在下個會期通過的話我們站在一些執法公佈的話最快是大概半年內要把它做完我覺得最快最快可能要到下半年才有可能法制作業完成所以大概最快可以期待明年的6月7月左右可以
transcript.whisperx[27].start 644.269
transcript.whisperx[27].end 665.431
transcript.whisperx[27].text 台版的穩定幣這是什麼這要看就是下個會期是什麼時候對 就是順利嘛我說一切如果順利嘛對 就是因為就是等於說它出來等於說要立法通過執法公佈差不多要最晚半年之內公佈公佈完當然就可以開始所以到明年7月左右對 所以說這樣預期的話就是最快就看明年有可能完成立法然後就有可能
transcript.whisperx[28].start 665.891
transcript.whisperx[28].end 670.956
transcript.whisperx[28].text 明年七月 因為我跟你講一個 我跟你講一個 比如說現在列出來 當然這個不是穩定品 你看 USDT 36天的年收益利率有6% USDT 90天的9%一出來賣得很好 一出來賣得很好 這個
transcript.whisperx[29].start 687.15
transcript.whisperx[29].end 713.031
transcript.whisperx[29].text 這個當然這個穩定幣照理講是沒有利息的它是屬於衍生性商品啦對不對以這個來講的話其實這個需求已經在哪裡了市場在哪裡了我覺得我們的腳步可以快一點了是 我們其實站在我們行政機關的話我們就是很穩健的在推動因為這個我們儘管會能做我們現在都做了但其他的部分就要社會共識還有就是各個部會還有就是我們未來大院的審查好 謝謝
transcript.whisperx[30].start 715.12
transcript.whisperx[30].end 720.066
transcript.whisperx[30].text 好 謝謝賴司保委員接下來請郭國文委員質詢