iVOD / 166079

Field Value
IVOD_ID 166079
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166079
日期 2025-12-03
會議資料.會議代碼 委員會-11-4-20-10
會議資料.會議代碼:str 第11屆第4會期財政委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-12-03T09:25:28+08:00
結束時間 2025-12-03T09:37:23+08:00
影片長度 00:11:55
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d5a4ce084af309d6fbbd837e182abe9109a18256bf6bdfebab4060e56b945967cf300a208d967c955ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:25:28 - 09:37:23
會議時間 2025-12-03T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第10次全體委員會議(事由:審查本院委員蔡易餘等16人、委員牛煦庭等26人分別擬具「銀行法第一百二十五條及第一百二十五條之四條文修正草案」等2案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.09846875
transcript.pyannote[0].end 1.19534375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.21596875
transcript.pyannote[1].end 4.23284375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 4.23284375
transcript.pyannote[2].end 4.36784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 4.36784375
transcript.pyannote[3].end 4.75596875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 5.34659375
transcript.pyannote[4].end 6.08909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 6.64596875
transcript.pyannote[5].end 7.18596875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 7.82721875
transcript.pyannote[6].end 9.32909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 9.83534375
transcript.pyannote[7].end 14.99909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 15.52221875
transcript.pyannote[8].end 17.73284375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 18.10409375
transcript.pyannote[9].end 21.07409375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 21.51284375
transcript.pyannote[10].end 24.78659375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 25.14096875
transcript.pyannote[11].end 27.19971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 27.53721875
transcript.pyannote[12].end 29.93346875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 30.38909375
transcript.pyannote[13].end 31.36784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 31.63784375
transcript.pyannote[14].end 31.65471875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 31.65471875
transcript.pyannote[15].end 31.82346875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 32.05971875
transcript.pyannote[16].end 37.15596875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 37.40909375
transcript.pyannote[17].end 41.64471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 42.13409375
transcript.pyannote[18].end 43.16346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 43.60221875
transcript.pyannote[19].end 44.54721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 44.93534375
transcript.pyannote[20].end 45.44159375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 46.33596875
transcript.pyannote[21].end 47.51721875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 48.69846875
transcript.pyannote[22].end 50.35221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 50.77409375
transcript.pyannote[23].end 54.57096875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 54.87471875
transcript.pyannote[24].end 55.71846875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 56.20784375
transcript.pyannote[25].end 57.64221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 57.74346875
transcript.pyannote[26].end 63.80159375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 64.22346875
transcript.pyannote[27].end 64.94909375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 66.16409375
transcript.pyannote[28].end 69.50534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 69.69096875
transcript.pyannote[29].end 75.66471875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 76.01909375
transcript.pyannote[30].end 77.94284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 78.21284375
transcript.pyannote[31].end 80.64284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 81.09846875
transcript.pyannote[32].end 83.83221875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 84.79409375
transcript.pyannote[33].end 85.41846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 85.97534375
transcript.pyannote[34].end 88.16909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 88.43909375
transcript.pyannote[35].end 88.72596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 88.86096875
transcript.pyannote[36].end 91.03784375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 91.76346875
transcript.pyannote[37].end 92.62409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 93.09659375
transcript.pyannote[38].end 93.82221875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 93.94034375
transcript.pyannote[39].end 94.31159375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 94.44659375
transcript.pyannote[40].end 95.39159375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 95.72909375
transcript.pyannote[41].end 97.45034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 98.32784375
transcript.pyannote[42].end 99.89721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 100.70721875
transcript.pyannote[43].end 103.28909375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 100.75784375
transcript.pyannote[44].end 101.09534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 103.55909375
transcript.pyannote[45].end 106.14096875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 106.22534375
transcript.pyannote[46].end 106.44471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 107.13659375
transcript.pyannote[47].end 120.87284375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 121.27784375
transcript.pyannote[48].end 127.57221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 128.09534375
transcript.pyannote[49].end 130.55909375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 130.59284375
transcript.pyannote[50].end 132.70221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 133.05659375
transcript.pyannote[51].end 138.13596875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 139.18221875
transcript.pyannote[52].end 140.51534375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 140.95409375
transcript.pyannote[53].end 142.82721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 142.82721875
transcript.pyannote[54].end 143.08034375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 143.08034375
transcript.pyannote[55].end 143.62034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 143.97471875
transcript.pyannote[56].end 145.64534375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 145.86471875
transcript.pyannote[57].end 148.17659375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 148.51409375
transcript.pyannote[58].end 150.18471875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 150.52221875
transcript.pyannote[59].end 156.74909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 156.74909375
transcript.pyannote[60].end 162.16596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 162.33471875
transcript.pyannote[61].end 166.48596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 166.68846875
transcript.pyannote[62].end 171.56534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 172.07159375
transcript.pyannote[63].end 175.66596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 175.96971875
transcript.pyannote[64].end 187.41096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 184.06971875
transcript.pyannote[65].end 184.76159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 187.41096875
transcript.pyannote[66].end 197.97471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 187.88346875
transcript.pyannote[67].end 189.01409375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 197.48534375
transcript.pyannote[68].end 201.55221875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 202.31159375
transcript.pyannote[69].end 213.78659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 204.96096875
transcript.pyannote[70].end 205.36596875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 213.46596875
transcript.pyannote[71].end 224.41784375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 224.97471875
transcript.pyannote[72].end 234.54284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 235.77471875
transcript.pyannote[73].end 241.02284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 240.43221875
transcript.pyannote[74].end 246.84471875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 247.58721875
transcript.pyannote[75].end 257.30721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 257.89784375
transcript.pyannote[76].end 261.39096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 261.86346875
transcript.pyannote[77].end 268.24221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 267.61784375
transcript.pyannote[78].end 267.93846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 268.24221875
transcript.pyannote[79].end 275.53221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 273.23721875
transcript.pyannote[80].end 273.25409375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 275.93721875
transcript.pyannote[81].end 278.58659375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 278.95784375
transcript.pyannote[82].end 290.70284375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 291.07409375
transcript.pyannote[83].end 298.88721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 299.05596875
transcript.pyannote[84].end 301.38471875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 302.29596875
transcript.pyannote[85].end 303.89909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 304.15221875
transcript.pyannote[86].end 304.81034375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 305.18159375
transcript.pyannote[87].end 311.62784375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 312.15096875
transcript.pyannote[88].end 312.82596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 313.29846875
transcript.pyannote[89].end 315.32346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 316.08284375
transcript.pyannote[90].end 317.38221875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 317.68596875
transcript.pyannote[91].end 318.07409375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 318.09096875
transcript.pyannote[92].end 318.74909375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 319.89659375
transcript.pyannote[93].end 322.46159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 323.10284375
transcript.pyannote[94].end 323.44034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 324.13221875
transcript.pyannote[95].end 326.39346875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 326.89971875
transcript.pyannote[96].end 327.87846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 328.23284375
transcript.pyannote[97].end 329.66721875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 330.03846875
transcript.pyannote[98].end 339.65721875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 340.18034375
transcript.pyannote[99].end 344.29784375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 345.15846875
transcript.pyannote[100].end 352.02659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 351.89159375
transcript.pyannote[101].end 351.90846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 351.92534375
transcript.pyannote[102].end 352.51596875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 352.70159375
transcript.pyannote[103].end 361.83096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 362.13471875
transcript.pyannote[104].end 365.89784375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 366.25221875
transcript.pyannote[105].end 370.72409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 371.11221875
transcript.pyannote[106].end 373.01909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 373.45784375
transcript.pyannote[107].end 375.31409375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 375.70221875
transcript.pyannote[108].end 380.61284375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 381.33846875
transcript.pyannote[109].end 382.85721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 383.31284375
transcript.pyannote[110].end 395.42909375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 388.03784375
transcript.pyannote[111].end 388.27409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 396.12096875
transcript.pyannote[112].end 401.38596875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 400.81221875
transcript.pyannote[113].end 403.44471875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 404.05221875
transcript.pyannote[114].end 414.02534375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 414.27846875
transcript.pyannote[115].end 414.66659375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 415.08846875
transcript.pyannote[116].end 415.88159375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 416.65784375
transcript.pyannote[117].end 421.21409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 419.17221875
transcript.pyannote[118].end 419.56034375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 421.21409375
transcript.pyannote[119].end 421.55159375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 421.99034375
transcript.pyannote[120].end 424.53846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 424.87596875
transcript.pyannote[121].end 435.94596875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 436.97534375
transcript.pyannote[122].end 441.19409375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 441.36284375
transcript.pyannote[123].end 443.26971875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 443.50596875
transcript.pyannote[124].end 452.36534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 445.80096875
transcript.pyannote[125].end 445.81784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 445.83471875
transcript.pyannote[126].end 445.90221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 448.19721875
transcript.pyannote[127].end 448.29846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 452.73659375
transcript.pyannote[128].end 455.55471875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 455.77409375
transcript.pyannote[129].end 477.05346875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 455.82471875
transcript.pyannote[130].end 456.28034375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 477.20534375
transcript.pyannote[131].end 481.10346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 481.22159375
transcript.pyannote[132].end 495.48096875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 487.44846875
transcript.pyannote[133].end 487.87034375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 495.81846875
transcript.pyannote[134].end 503.71596875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 503.88471875
transcript.pyannote[135].end 504.94784375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 503.91846875
transcript.pyannote[136].end 504.86346875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 505.53846875
transcript.pyannote[137].end 513.41909375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 513.53721875
transcript.pyannote[138].end 514.88721875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 515.49471875
transcript.pyannote[139].end 516.74346875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 516.99659375
transcript.pyannote[140].end 518.83596875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 519.19034375
transcript.pyannote[141].end 520.77659375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 521.13096875
transcript.pyannote[142].end 538.29284375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 538.51221875
transcript.pyannote[143].end 541.24596875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 541.46534375
transcript.pyannote[144].end 542.44409375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 542.56221875
transcript.pyannote[145].end 547.01721875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 547.33784375
transcript.pyannote[146].end 570.05159375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 570.45659375
transcript.pyannote[147].end 575.60346875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 576.70034375
transcript.pyannote[148].end 579.50159375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 579.50159375
transcript.pyannote[149].end 581.79659375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 581.34096875
transcript.pyannote[150].end 584.76659375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 585.32346875
transcript.pyannote[151].end 607.91909375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 594.03096875
transcript.pyannote[152].end 594.41909375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 607.02471875
transcript.pyannote[153].end 607.42971875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 607.96971875
transcript.pyannote[154].end 610.88909375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 610.92284375
transcript.pyannote[155].end 613.08284375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 613.69034375
transcript.pyannote[156].end 620.64284375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 621.16596875
transcript.pyannote[157].end 626.76846875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 625.46909375
transcript.pyannote[158].end 625.48596875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 625.62096875
transcript.pyannote[159].end 625.68846875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 627.13971875
transcript.pyannote[160].end 628.72596875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 629.73846875
transcript.pyannote[161].end 630.61596875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 631.13909375
transcript.pyannote[162].end 637.07909375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 637.26471875
transcript.pyannote[163].end 637.77096875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 638.34471875
transcript.pyannote[164].end 639.27284375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 639.61034375
transcript.pyannote[165].end 643.54221875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 640.25159375
transcript.pyannote[166].end 640.38659375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 642.93471875
transcript.pyannote[167].end 650.86596875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 650.86596875
transcript.pyannote[168].end 652.03034375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 652.87409375
transcript.pyannote[169].end 658.84784375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 655.27034375
transcript.pyannote[170].end 656.35034375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 657.97034375
transcript.pyannote[171].end 671.13284375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 671.55471875
transcript.pyannote[172].end 672.26346875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 671.75721875
transcript.pyannote[173].end 676.68471875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 676.90409375
transcript.pyannote[174].end 689.05409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 689.05409375
transcript.pyannote[175].end 698.58846875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 689.15534375
transcript.pyannote[176].end 689.18909375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 689.25659375
transcript.pyannote[177].end 690.94409375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 697.82909375
transcript.pyannote[178].end 703.66784375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 700.95096875
transcript.pyannote[179].end 701.23784375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 703.66784375
transcript.pyannote[180].end 704.00534375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 705.30471875
transcript.pyannote[181].end 711.78471875
transcript.whisperx[0].start 0.749
transcript.whisperx[0].end 16.777
transcript.whisperx[0].text 主委早 經濟學人雜誌前幾天一篇關於台灣跟美金之間的匯率被嚴重低估的報導
transcript.whisperx[1].start 18.394
transcript.whisperx[1].end 47.017
transcript.whisperx[1].text 雖然馬上就被央行跟美國一起出來開記者會說明把這個東西給澄清了那從這邊引申而來就是跟剛剛前面的委員提到類似的問題但我用不同的問法現在我們國家目前的受險公司它在外國投資的金額總共是多少現在總共 目前剛剛提到委員剛剛提到22兆左右22兆左右那因為這個在外國投資
transcript.whisperx[2].start 48.949
transcript.whisperx[2].end 77.931
transcript.whisperx[2].text 所要花的這個避險的這個費用就是為了這個匯率的風險避險的費用大概是多少如果每年不一樣還有根據比如說台美的這個利差不同像今年的話有可能會逼近4000億就是說如果風險沒有發生我們這4000億的錢也就是花掉了就是說因為整個避險工具很貴的話就過去平均來講的話就是2000到3000億左右對啦我就意思說這個錢就是花掉了
transcript.whisperx[3].start 78.297
transcript.whisperx[3].end 105.844
transcript.whisperx[3].text 是就可能是產生資產的淨流出是那不是我的意思說因為我們是類似為了要規避風險所以我們才要買避險那我今年就算風險沒有發生我這錢也就花掉了那花掉了這個如果風險沒有發生就是覺得每年花這個錢很可惜其中最釜底抽薪的方法就是不能增加台灣的投資管道
transcript.whisperx[4].start 107.216
transcript.whisperx[4].end 120.737
transcript.whisperx[4].text 其實剛剛委員提到我剛才提過就是說假設要解決受險人的問題有三個面向一個就是資產面向資產面向裡面很重要就是把那個不匹配扭回來其實很重要就是加大對台幣的投資我想這是一個方向
transcript.whisperx[5].start 121.749
transcript.whisperx[5].end 137.429
transcript.whisperx[5].text 對 你想想看我們22兆多在外國的投資假設你能夠多投資台灣5兆 6兆那就有相當的比例至少那一部分需要避險的金額就降低了嘛所以需要花出去的成本就會降低嘛真正釜底抽薪的是要讓台灣
transcript.whisperx[6].start 139.249
transcript.whisperx[6].end 156.56
transcript.whisperx[6].text 有好的資產或是好的方式可以投資那偏偏台灣的利率低那政府的公債又很久都沒有發行所以變成說這個投資的管道在台灣投資的管道越來越少你有沒有什麼好的想法可以讓台灣投資的管道可以增加
transcript.whisperx[7].start 156.84
transcript.whisperx[7].end 175.471
transcript.whisperx[7].text 其實我也看到受請公司最近幾年的努力比如說他們第一個他們會自己去做一些比如說地上權或是一些不動產或是一些投資案的投資我想各位可以看到很多像比如說我們一些地區型的這些購物中心還有一些物流這些東西他們都在做
transcript.whisperx[8].start 176.124
transcript.whisperx[8].end 197.83
transcript.whisperx[8].text 你們金管會有給他規定啊你如果要對這個商業不動產的這個投資或是要怎麼樣他有一個固定的那個基礎利率然後再加上三碼是不是我如果沒有記錯的話我們最近的話是用均速的方式因為最近的那個利率波動比較大所以過去我們是鎖定的我們最近把它調整成就是一個幾年平均的一個對 因為這個會造成一個問題就是會隨著利率
transcript.whisperx[9].start 202.386
transcript.whisperx[9].end 224.057
transcript.whisperx[9].text 的浮動那不是投資在保險公司的可是會所謂的利率的浮動有的投資合法有的投資過去是可以現在變成不可以這個都事實上這個政策上面是有一些思考的空間對所以說剛剛跟文報告我們就因為也注意到這個問題我們很快的做出調整我想前一陣子如果文有注意到我們先把過去那個盯住一個定點的方式我們就把它調整成是一個
transcript.whisperx[10].start 225.738
transcript.whisperx[10].end 246.533
transcript.whisperx[10].text 軍屬這樣會考慮到其實就好像他可能一簽約可能簽約三年五年他不可能在利率上升的時候他突然說我要調高是不可能所以我們也注意到我們也也把他納入到我們監理的考量就是因為這個是一個環境的變動所以我們有調整過就我了解的個案上面變得很多比較大額的投資就要經過你們同意那個經過你們同意的過程中
transcript.whisperx[11].start 247.679
transcript.whisperx[11].end 267.185
transcript.whisperx[11].text 有的時候諸多種考量都在裡面不見得是不正確但是就會讓這個申請人覺得說他們也會有一個如果不順的時候也會有一個懷疑說金管會的標準是不是不一致對每個公司不一致或是對每個個案不一致會有這樣子的疑問產生
transcript.whisperx[12].start 268.385
transcript.whisperx[12].end 290.504
transcript.whisperx[12].text 其實主要是說我想最近會比較大的爭議就是有些對公建的認定比如它的比例的問題就像我們現在很多地方政府跟很多的做一個開發案有些開發案的時候因為它有些有公民的參與所以有些部分可能涉及到比如說過去我們都不樂見受血液投資在住宅這上面有些還有就是說它的
transcript.whisperx[13].start 291.724
transcript.whisperx[13].end 318.474
transcript.whisperx[13].text 可能是一個政府主辦但是公件的比例比較低所以我們就會有一個考慮實際上我們最近也有做一些明確的規定讓他們好遵循主委我是這樣想我們對保險公司如果要讓整個市場健全你要想方設法讓台灣可以投資的範圍而且當然這個投資是必須是有足夠性的保障所以
transcript.whisperx[14].start 320.003
transcript.whisperx[14].end 343.735
transcript.whisperx[14].text 像之前提出說要對公共建設的投資可以來參與那對有一些參與但是也是冒著風險譬如說你以前說綠能可以投資那現在綠能的環境變得這麼差那已經投資進去了就會覺得說這我要被人家搬所以我們先撇開這個不講我認為金管會不是只有正在管理
transcript.whisperx[15].start 345.416
transcript.whisperx[15].end 372.693
transcript.whisperx[15].text 你可能要想方設法跟政府部門溝通哪一些範圍是你認為可以增加投資標的其實委員剛才講沒錯其實我跟委員報告我在這方面其實跟很多的部會有那個部長都做過很多溝通其實都蠻正面只是說有些是有法令的障礙但我們都在突破中這是我們正在努力的方向包括像比如說國發會的兆元投資計畫裡面除了這裡面整體來講其實我們在已經的不斷的跟比如說
transcript.whisperx[16].start 374.053
transcript.whisperx[16].end 395.251
transcript.whisperx[16].text 各个部会有可能列为可以国人可以投资的标的部分我们持续在努力中这是绝对是我们努力的方向就刚刚委员提到就是说其实国内的投资呢确实有它比较多的障碍比如报酬率的问题这是一个很明显的所以我刚才讲说要解决这个投资工具除了我们的资产面的报酬率很重要就是我们的受险公司的负债成本
transcript.whisperx[17].start 396.192
transcript.whisperx[17].end 423.541
transcript.whisperx[17].text 如果能夠降低的話那自然他投資的能力就加強這也是我們努力的方向那這要看他的保單裡面他將來的支付要支付的金額的估算那是不是符合實際我舉一個例子我覺得其實有時候想法靈活就有可能可以改變譬如說天然氣的運輸船LND他一艘新造大概是3億美金那台灣其實需要這個船隊
transcript.whisperx[18].start 424.946
transcript.whisperx[18].end 451.364
transcript.whisperx[18].text 那問題是過去我們都是叫賣方運來給我們我們把運價加記在裡面那台灣的買家就只有中油跟台電都是台灣的公司我們如果這個中油跟台電現在以他的資本額來講他們現在沒有辦法出得起這麼一下子出得起這麼大條錢因為你建這個船隊可能不是一條兩條喔可能要十幾二十條以上那這個對台灣的國家安全也很重要
transcript.whisperx[19].start 453.546
transcript.whisperx[19].end 479.788
transcript.whisperx[19].text 這個議題有人在談你能不能把它結合在一起我舉個例子我們授權公司這麼多的錢如果這個運輸的權利東友跟台電願意釋放出來其實這個保險公司可以跟他們買債券買這個東西然後來做船隊然後這個只是把它原來要付給外國船隊的運輸費用付給這個台灣自己建立的這個船隊那這個光是這個投資至少也可以出現幾千億的台幣的這個金額
transcript.whisperx[20].start 481.48
transcript.whisperx[20].end 504.609
transcript.whisperx[20].text 對 其實委員提到他很重要授權公司適合投資就是穩定長期固定報酬是很適合他那剛剛提到其實我們在那個那個跟財政部跟國化建的平台我們每次定期都有跟我們的業者諮詢說你有沒有什麼投資的標的像剛剛委員提到那個我覺得那個想法的部分我們也會帶回去請他們去評估一下這個可另外一點就是
transcript.whisperx[21].start 505.609
transcript.whisperx[21].end 511.932
transcript.whisperx[21].text 有沒有什麼方法可以替代掉這個要去買這個避險的這個錢我舉個例子我4000億花出去那風險沒有發生當然我們不希望風險發生嘛
transcript.whisperx[22].start 519.261
transcript.whisperx[22].end 546.898
transcript.whisperx[22].text 那錢就花掉了每一年兩千億三千億四千億這樣在花其實那個成本很高我如果一部分避險還是繼續但是一部分因為你知道嗎那個風險的那個極端值你買都是買到極端值出現嘛但是那個極端值出現的機率相對是越來越小的那小的風險的那一部分可能要付那有的東西是不是可以拿來充實這些保險公司的資本不用這樣花出去啊
transcript.whisperx[23].start 547.598
transcript.whisperx[23].end 573.117
transcript.whisperx[23].text 確實沒有錯我們剛才提到就是說我剛才在委員答詢的時候我也提到就是說其實我們更關切的是說你怎麼樣強化未來的抵禦匯率風險的能力所以剛才講強制提撥跟止撥跟增資都是我們未來在整個做匯率改革的一個非常重要的相關的措施其實一個最大的問題就是這個避險的錢萬一發生了風險的時候
transcript.whisperx[24].start 576.738
transcript.whisperx[24].end 584.468
transcript.whisperx[24].text 你認為你有沒有估算過那個金額會有多大其實我們有做過各種的前進我就舉個例子今年4100到底是買到多大的保障
transcript.whisperx[25].start 585.69
transcript.whisperx[25].end 612.691
transcript.whisperx[25].text 其實這個東西就是我們大概剛才講我們的避險比例20就是大概15兆裡面大概六成左右剛才提到差不多六成那等於說我們大概可以算得出來大概基本上我記得在前幾次會議的時候我也跟大家報告說大概一塊錢大概就是2000億左右的波動對他的損益那其實上這個剛剛就可以推估出來大概多少的部位他們是在做避險
transcript.whisperx[26].start 614.916
transcript.whisperx[26].end 628.107
transcript.whisperx[26].text 我剛剛那個問題對不起我追問一下就把它問清楚我舉個例子我們今年花了4000億如果像經濟學人說的應該台幣兌美金當然他是亂講我們不相信他說應該1比20那真的發生了1比20
transcript.whisperx[27].start 629.97
transcript.whisperx[27].end 651.515
transcript.whisperx[27].text 這四千億的花出去錢買到的這個保障的這個匯率的這個損失有辦法完全填補嗎這很可惜沒有沒有嘛那所以我的意思是說要填補多少多少比例可以去填補就是那個牽涉到匯率有多快到達剛剛講那個期間因為我們現在的避險工具都是短期的避險工具所以只有一年內
transcript.whisperx[28].start 653.11
transcript.whisperx[28].end 669.943
transcript.whisperx[28].text 這一年為了怕匯率的變動所以今年就要花4000億的錢因為我們的避險工具沒有提供長期所以它必須要一直轉都是短期短期有點像以短支長的概念它其實並沒有真正的能夠解決未來假設結構性的
transcript.whisperx[29].start 671.844
transcript.whisperx[29].end 693.151
transcript.whisperx[29].text 變化所以你想想看這個實在是很可惜台灣每一年花了這麼多的錢就是花掉用什麼方法既可以讓這些保險公司這個匯率的變動的時候他還是能夠撐得住又不用花這麼大的成本各式各樣的方法應該趕快這也是我們覺得說從整個金融安定長遠的角度必須要
transcript.whisperx[30].start 694.191
transcript.whisperx[30].end 705.935
transcript.whisperx[30].text 要做也要立刻做調整體質的這些事情我們會全力來做好 那是釜底抽薪還是讓台灣的投資機會能夠增加是的這就不用有避險的問題了嘛是的好 謝謝好 謝謝吳秉瑞委員主委請回好 接下來我們請賴思寶委員質詢