iVOD / 166027

Field Value
IVOD_ID 166027
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166027
日期 2025-12-01
會議資料.會議代碼 委員會-11-4-19-13
會議資料.會議代碼:str 第11屆第4會期經濟委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-12-01T11:08:41+08:00
結束時間 2025-12-01T11:20:51+08:00
影片長度 00:12:10
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3f8163f3efc01af78dd434db0a920a9bb28663f7a8bd1180b5a5e9a97e51bcb8057babbb10d0fc445ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊瓊瓔
委員發言時間 11:08:41 - 11:20:51
會議時間 2025-12-01T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第13次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員、行政院經貿談判辦公室首長、外交部首長及國家安全局首長就「台美關稅協議之談判方針、進度、爭議事項、雙方可能承諾及台灣產業之影響評估」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.41909375
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 0.62159375
transcript.pyannote[1].end 1.22909375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 5.31284375
transcript.pyannote[2].end 9.21096875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 16.41659375
transcript.pyannote[3].end 17.04096875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 17.47971875
transcript.pyannote[4].end 21.19221875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 21.37784375
transcript.pyannote[5].end 27.75659375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 28.19534375
transcript.pyannote[6].end 31.68846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 32.48159375
transcript.pyannote[7].end 41.25659375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 41.42534375
transcript.pyannote[8].end 50.03159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 50.09909375
transcript.pyannote[9].end 53.55846875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 53.94659375
transcript.pyannote[10].end 55.61721875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 56.17409375
transcript.pyannote[11].end 60.73034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 61.35471875
transcript.pyannote[12].end 62.06346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 62.14784375
transcript.pyannote[13].end 67.29471875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 67.34534375
transcript.pyannote[14].end 72.13784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 72.71159375
transcript.pyannote[15].end 81.87471875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 82.31346875
transcript.pyannote[16].end 92.53971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 92.96159375
transcript.pyannote[17].end 100.67346875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 101.39909375
transcript.pyannote[18].end 114.51096875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 115.18596875
transcript.pyannote[19].end 118.10534375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 118.45971875
transcript.pyannote[20].end 119.91096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 120.04596875
transcript.pyannote[21].end 122.56034375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 122.99909375
transcript.pyannote[22].end 124.34909375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 124.82159375
transcript.pyannote[23].end 153.10409375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 154.23471875
transcript.pyannote[24].end 156.52971875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 156.76596875
transcript.pyannote[25].end 163.38096875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 163.53284375
transcript.pyannote[26].end 174.97409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 172.56096875
transcript.pyannote[27].end 173.80971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 174.97409375
transcript.pyannote[28].end 176.18909375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 176.45909375
transcript.pyannote[29].end 183.09096875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 183.59721875
transcript.pyannote[30].end 184.37346875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 184.91346875
transcript.pyannote[31].end 186.22971875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 186.95534375
transcript.pyannote[32].end 192.74346875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 193.60409375
transcript.pyannote[33].end 201.07971875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 201.07971875
transcript.pyannote[34].end 201.38346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 201.38346875
transcript.pyannote[35].end 201.45096875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 201.67034375
transcript.pyannote[36].end 202.32846875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 203.15534375
transcript.pyannote[37].end 207.03659375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 208.06596875
transcript.pyannote[38].end 208.60596875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 208.77471875
transcript.pyannote[39].end 210.74909375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 211.15409375
transcript.pyannote[40].end 219.81096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 218.47784375
transcript.pyannote[41].end 240.55034375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 220.85721875
transcript.pyannote[42].end 221.11034375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 241.02284375
transcript.pyannote[43].end 250.52346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 250.94534375
transcript.pyannote[44].end 254.45534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 254.84346875
transcript.pyannote[45].end 255.28221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 255.88971875
transcript.pyannote[46].end 257.22284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 257.64471875
transcript.pyannote[47].end 261.50909375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 260.46284375
transcript.pyannote[48].end 264.34409375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 264.10784375
transcript.pyannote[49].end 264.96846875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 264.96846875
transcript.pyannote[50].end 265.03596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 265.03596875
transcript.pyannote[51].end 265.18784375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 265.18784375
transcript.pyannote[52].end 265.28909375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 265.28909375
transcript.pyannote[53].end 266.94284375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 267.38159375
transcript.pyannote[54].end 268.34346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 269.01846875
transcript.pyannote[55].end 272.69721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 274.09784375
transcript.pyannote[56].end 275.44784375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 276.15659375
transcript.pyannote[57].end 282.34971875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 283.19346875
transcript.pyannote[58].end 287.74971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 287.90159375
transcript.pyannote[59].end 290.53409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 290.77034375
transcript.pyannote[60].end 297.67221875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 298.31346875
transcript.pyannote[61].end 300.03471875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 300.03471875
transcript.pyannote[62].end 300.77721875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 302.00909375
transcript.pyannote[63].end 326.51159375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 306.95346875
transcript.pyannote[64].end 307.96596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 311.57721875
transcript.pyannote[65].end 311.91471875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 312.06659375
transcript.pyannote[66].end 312.50534375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 325.75221875
transcript.pyannote[67].end 330.17346875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 331.01721875
transcript.pyannote[68].end 333.73409375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 337.58159375
transcript.pyannote[69].end 338.17221875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 338.56034375
transcript.pyannote[70].end 347.09909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 347.28471875
transcript.pyannote[71].end 356.02596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 356.02596875
transcript.pyannote[72].end 356.05971875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 356.05971875
transcript.pyannote[73].end 356.21159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 356.09346875
transcript.pyannote[74].end 356.86971875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 356.53221875
transcript.pyannote[75].end 362.50596875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 362.50596875
transcript.pyannote[76].end 362.82659375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 362.82659375
transcript.pyannote[77].end 372.81659375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 363.67034375
transcript.pyannote[78].end 364.12596875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 364.31159375
transcript.pyannote[79].end 364.48034375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 373.71096875
transcript.pyannote[80].end 375.92159375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 377.11971875
transcript.pyannote[81].end 380.46096875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 380.07284375
transcript.pyannote[82].end 380.30909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 380.46096875
transcript.pyannote[83].end 381.50721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 381.91221875
transcript.pyannote[84].end 382.08096875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 382.08096875
transcript.pyannote[85].end 382.30034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 382.08096875
transcript.pyannote[86].end 390.21471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 384.62909375
transcript.pyannote[87].end 384.64596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 384.67971875
transcript.pyannote[88].end 384.81471875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 386.35034375
transcript.pyannote[89].end 386.40096875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 386.40096875
transcript.pyannote[90].end 386.80596875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 390.21471875
transcript.pyannote[91].end 393.45471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 391.71659375
transcript.pyannote[92].end 397.94346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 398.39909375
transcript.pyannote[93].end 401.68971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 402.09471875
transcript.pyannote[94].end 402.70221875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 403.14096875
transcript.pyannote[95].end 403.68096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 404.84534375
transcript.pyannote[96].end 404.91284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 404.91284375
transcript.pyannote[97].end 405.97596875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 404.92971875
transcript.pyannote[98].end 405.36846875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 406.85346875
transcript.pyannote[99].end 407.19096875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 407.19096875
transcript.pyannote[100].end 407.20784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 407.35971875
transcript.pyannote[101].end 411.35909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 409.89096875
transcript.pyannote[102].end 417.23159375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 412.52346875
transcript.pyannote[103].end 413.89034375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 414.26159375
transcript.pyannote[104].end 414.36284375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 417.80534375
transcript.pyannote[105].end 419.12159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 417.97409375
transcript.pyannote[106].end 418.24409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 418.86846875
transcript.pyannote[107].end 418.93596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 418.98659375
transcript.pyannote[108].end 419.00346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 419.30721875
transcript.pyannote[109].end 420.26909375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 420.48846875
transcript.pyannote[110].end 425.63534375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 425.85471875
transcript.pyannote[111].end 430.05659375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 430.78221875
transcript.pyannote[112].end 431.82846875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 431.87909375
transcript.pyannote[113].end 433.53284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 434.08971875
transcript.pyannote[114].end 434.89971875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 434.10659375
transcript.pyannote[115].end 435.76034375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 436.24971875
transcript.pyannote[116].end 439.35471875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 439.30409375
transcript.pyannote[117].end 439.32096875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 439.35471875
transcript.pyannote[118].end 440.60346875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 439.77659375
transcript.pyannote[119].end 443.18534375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 445.12596875
transcript.pyannote[120].end 449.66534375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 450.18846875
transcript.pyannote[121].end 451.03221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 451.18409375
transcript.pyannote[122].end 454.23846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 455.28471875
transcript.pyannote[123].end 468.36284375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 468.83534375
transcript.pyannote[124].end 473.50971875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 473.30721875
transcript.pyannote[125].end 477.34034375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 477.86346875
transcript.pyannote[126].end 480.56346875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 480.83346875
transcript.pyannote[127].end 484.37721875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 484.83284375
transcript.pyannote[128].end 487.76909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 487.51596875
transcript.pyannote[129].end 501.33659375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 502.77096875
transcript.pyannote[130].end 507.10784375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 507.44534375
transcript.pyannote[131].end 511.15784375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 511.74846875
transcript.pyannote[132].end 514.51596875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 515.24159375
transcript.pyannote[133].end 517.58721875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 518.29596875
transcript.pyannote[134].end 520.23659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 520.42221875
transcript.pyannote[135].end 525.83909375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 526.39596875
transcript.pyannote[136].end 527.13846875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 527.34096875
transcript.pyannote[137].end 531.50909375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 531.93096875
transcript.pyannote[138].end 534.42846875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 535.22159375
transcript.pyannote[139].end 535.77846875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 536.28471875
transcript.pyannote[140].end 538.54596875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 539.08596875
transcript.pyannote[141].end 542.00534375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 542.47784375
transcript.pyannote[142].end 543.18659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 542.52846875
transcript.pyannote[143].end 543.72659375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 543.72659375
transcript.pyannote[144].end 544.36784375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 543.74346875
transcript.pyannote[145].end 552.55221875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 552.80534375
transcript.pyannote[146].end 553.29471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 553.66596875
transcript.pyannote[147].end 554.64471875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 553.80096875
transcript.pyannote[148].end 556.33221875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 558.34034375
transcript.pyannote[149].end 559.90971875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 560.12909375
transcript.pyannote[150].end 561.34409375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 561.61409375
transcript.pyannote[151].end 563.23409375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 563.58846875
transcript.pyannote[152].end 565.71471875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 566.22096875
transcript.pyannote[153].end 568.02659375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 569.00534375
transcript.pyannote[154].end 569.81534375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 570.06846875
transcript.pyannote[155].end 575.82284375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 576.31221875
transcript.pyannote[156].end 589.91346875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 590.45346875
transcript.pyannote[157].end 590.92596875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 592.00596875
transcript.pyannote[158].end 598.50284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 598.60409375
transcript.pyannote[159].end 599.43096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 599.98784375
transcript.pyannote[160].end 620.77784375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 600.61221875
transcript.pyannote[161].end 601.69221875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 619.74846875
transcript.pyannote[162].end 623.03909375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 621.08159375
transcript.pyannote[163].end 621.36846875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 623.03909375
transcript.pyannote[164].end 623.15721875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 623.15721875
transcript.pyannote[165].end 628.13534375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 623.19096875
transcript.pyannote[166].end 625.21596875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 625.57034375
transcript.pyannote[167].end 626.71784375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 627.05534375
transcript.pyannote[168].end 627.94971875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 628.74284375
transcript.pyannote[169].end 630.98721875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 630.68346875
transcript.pyannote[170].end 632.55659375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 633.21471875
transcript.pyannote[171].end 633.60284375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 633.88971875
transcript.pyannote[172].end 634.96971875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 634.56471875
transcript.pyannote[173].end 635.64471875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 636.45471875
transcript.pyannote[174].end 638.12534375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 639.00284375
transcript.pyannote[175].end 642.02346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 641.09534375
transcript.pyannote[176].end 641.56784375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 642.22596875
transcript.pyannote[177].end 653.80221875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 654.62909375
transcript.pyannote[178].end 659.97846875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 656.92409375
transcript.pyannote[179].end 657.24471875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 659.97846875
transcript.pyannote[180].end 660.23159375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 660.23159375
transcript.pyannote[181].end 670.05284375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 670.18784375
transcript.pyannote[182].end 672.83721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 672.83721875
transcript.pyannote[183].end 672.85409375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 673.14096875
transcript.pyannote[184].end 674.03534375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 674.03534375
transcript.pyannote[185].end 678.13596875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 678.57471875
transcript.pyannote[186].end 679.08096875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 679.40159375
transcript.pyannote[187].end 684.85221875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 682.33784375
transcript.pyannote[188].end 684.63284375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 684.97034375
transcript.pyannote[189].end 692.91846875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 692.47971875
transcript.pyannote[190].end 696.93471875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 693.30659375
transcript.pyannote[191].end 693.50909375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 697.40721875
transcript.pyannote[192].end 698.55471875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 698.99346875
transcript.pyannote[193].end 710.02971875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 710.02971875
transcript.pyannote[194].end 710.87346875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 710.87346875
transcript.pyannote[195].end 713.33721875
transcript.pyannote[196].speaker SPEAKER_04
transcript.pyannote[196].start 711.16034375
transcript.pyannote[196].end 711.90284375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 711.90284375
transcript.pyannote[197].end 712.03784375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 712.20659375
transcript.pyannote[198].end 712.29096875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 712.32471875
transcript.pyannote[199].end 712.34159375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 712.86471875
transcript.pyannote[200].end 714.02909375
transcript.pyannote[201].speaker SPEAKER_04
transcript.pyannote[201].start 714.02909375
transcript.pyannote[201].end 716.25659375
transcript.pyannote[202].speaker SPEAKER_04
transcript.pyannote[202].start 717.31971875
transcript.pyannote[202].end 719.32784375
transcript.pyannote[203].speaker SPEAKER_04
transcript.pyannote[203].start 719.56409375
transcript.pyannote[203].end 719.86784375
transcript.pyannote[204].speaker SPEAKER_04
transcript.pyannote[204].start 719.88471875
transcript.pyannote[204].end 723.91784375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 722.71971875
transcript.pyannote[205].end 722.98971875
transcript.pyannote[206].speaker SPEAKER_04
transcript.pyannote[206].start 724.06971875
transcript.pyannote[206].end 725.45346875
transcript.pyannote[207].speaker SPEAKER_04
transcript.pyannote[207].start 726.21284375
transcript.pyannote[207].end 729.03096875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 728.67659375
transcript.pyannote[208].end 730.16159375
transcript.whisperx[0].start 0.75
transcript.whisperx[0].end 8.339
transcript.whisperx[0].text 謝謝主席楊群發言首先邀請這個楊總代表
transcript.whisperx[1].start 16.585
transcript.whisperx[1].end 27.136
transcript.whisperx[1].text 總代表我們根據媒體的報導11月27號那10月份日本工具機整體的訂單較去年同期增加了16.8%那約是日圓1430億元
transcript.whisperx[2].start 32.58
transcript.whisperx[2].end 55.3
transcript.whisperx[2].text 尤其日本的工具机的负责人工会的负责人他说他认为美国关税影响已经缓缓所以才能够有这样的成绩但是我们看看我们自己我们看到台湾机械工会理事长庄理事长所指出工具机产业10月份的出口仅有多少1.4亿美元
transcript.whisperx[3].start 56.297
transcript.whisperx[3].end 71.93
transcript.whisperx[3].text 年減是23.1%主要是受到景氣不佳還有台幣匯率的問題競爭對手強國的一個影響度所以目前我們的出口金額是不及以過往的一半
transcript.whisperx[4].start 72.811
transcript.whisperx[4].end 100.325
transcript.whisperx[4].text 那在這樣的情況之下我們都知道我們自己工具機它是屬於一個高端精密的一個機種從關鍵的這個零組件到整機產業都是由我們自己自主設計以及我們自己的整合力量這是台灣之光啊但是我們看到長期我們被國際也非常的遵從是最重要世界各國的主要出口國
transcript.whisperx[5].start 101.465
transcript.whisperx[5].end 122.238
transcript.whisperx[5].text 但是我們看到日本廠商面臨到同樣的市場來相比我們卻因為高關稅而壓縮了我們的毛利卻因為沒有辦法去降低關稅他們現在的一個痛苦苦境所以本期要請教這個嚴重性不只是
transcript.whisperx[6].start 123.118
transcript.whisperx[6].end 148.629
transcript.whisperx[6].text 老闆接單的問題而且嚴重的影響到我國的就業率嚴重的影響到整個民生的議題整個經濟產業鏈所以本席請教楊代表台灣出口的製造的高額關稅正在削弱我們產業的競爭力你們對於降低對美關稅的談判剛剛從頭到尾本席您聽您都一直告訴我們會有好消息
transcript.whisperx[7].start 149.37
transcript.whisperx[7].end 152.605
transcript.whisperx[7].text 會有好消息那到底是什麼好消息請做說明
transcript.whisperx[8].start 154.738
transcript.whisperx[8].end 179.446
transcript.whisperx[8].text 報告委員 我們的我們談判的目標就是要把對德再往下積極調降而且不疊加然後呢23號的這23號的結果我們也希望有多項的關稅也能夠達到最優惠的待遇這就是我們現在談判的重點從頭到尾從4月一直告訴我們到現在每一次的回答就是如此讓我們的產業姆薩薩我們不知道談判的
transcript.whisperx[9].start 183.687
transcript.whisperx[9].end 206.675
transcript.whisperx[9].text 最黑箱殘判的最慢一拖再拖所以本席好不容易聽到您告訴我們說一定到最後階段那到底什麼時候會告訴我們能夠給我們看到實質的出口的救命效果請做說明委員剛剛你講到這個黑箱我不贊同因為
transcript.whisperx[10].start 208.14
transcript.whisperx[10].end 221.786
transcript.whisperx[10].text 在第一次的談判回來我們有說明然後院長也接同副院長也跟大院來就說明了此外我們也在我們的請問你去告訴我們的產業到目前為止從談判了這麼久誰知道我們的答案是什麼所以本期針對本期的提問
transcript.whisperx[11].start 228.129
transcript.whisperx[11].end 254.967
transcript.whisperx[11].text 因為政府本來就是要協助民眾照顧民眾尤其是他們的產業面對到這麼樣的一個關鍵議題所以請問什麼時候沒關係您告訴本席我們這這麼辛苦的這個從4月份開始談判到現在那麼你們告訴我今天告訴我們已經到最後階段請問你們預計何時可以告訴我們的民眾那麼
transcript.whisperx[12].start 255.933
transcript.whisperx[12].end 272.394
transcript.whisperx[12].text 我們出口救命成效要怎麼樣 什麼時間 內容是什麼盡量的 盡速的把它結束盡量跟盡速是什麼呢 是12月底還是要拖 還是怎麼樣因為我們的產業到目前為止我們不敢戒單
transcript.whisperx[13].start 274.155
transcript.whisperx[13].end 299.663
transcript.whisperx[13].text 但是也不能不結單因為我們的就業率 我們的勞工都是我們很重要的產業生命力所以你要解決我們的產業啊你可不可以告訴我們您月計是在這個月底還是下個月呢告訴我們方向 答案就您所說的 降低關稅以及232條款 要怎麼樣優惠我們請可不可以給我們一個大約時間點
transcript.whisperx[14].start 303.114
transcript.whisperx[14].end 329.259
transcript.whisperx[14].text 委員 產業所面臨的困難的不確定性 我們非常了解哇 這個最好了 您非常了解 就是要解決我們的問題啊對 我們要解決問題 但是談判是要給也要拿所以在這個怎麼求取最好的產業的利益 這是我們最重要的我還是回答 我們會緊述快速的 能夠拿到對業者所謂大眾聽到緊述快速 我們還是得不到答案 您請回
transcript.whisperx[15].start 331.059
transcript.whisperx[15].end 333.521
transcript.whisperx[15].text 那本席要來請教我們的部長工部長台美關稅協議呢即將要出爐我也要謝謝索領軍的總談判代表剛剛說我會盡速會快速那這個方向是爭取對等關稅稅率15%而且不疊加的這個原來的原稅率是不是如此這個方向
transcript.whisperx[16].start 356.636
transcript.whisperx[16].end 375.669
transcript.whisperx[16].text 接下來232條款也有關於到我們關稅優惠的待遇是不是232條款 是楊總代表在點頭那麼既然你們兩位都說是那何時可以告訴我們你們預估大概什麼時候可以告訴我們
transcript.whisperx[17].start 377.482
transcript.whisperx[17].end 403.383
transcript.whisperx[17].text 報告委員因為剛剛總談判代表請依照你經濟部長的立場來回答談判代表告訴我們我會盡快進數就從4月份開始每一次的回答都是如此我們當然期待也是盡快的可以那什麼時候呢你們總是有一個KPI嘛因為從4月份到現在那你們告訴我進數盡快是12月底會告訴我們嗎你預估會不會會不會 部長
transcript.whisperx[18].start 407.453
transcript.whisperx[18].end 429.594
transcript.whisperx[18].text 因為這個我沒有辦法把握你也是沒有辦法把握 你是我們的經濟部長那一月份會不會因為你們都參與其中啊那一月份會不會你們是盡量 我們社會大眾在聽到一個是盡速盡快 一個是盡量所以我們到現在還得不到答案有沒有信心達成
transcript.whisperx[19].start 431.966
transcript.whisperx[19].end 454.085
transcript.whisperx[19].text 有信心但是沒有時間點是不是如此有沒有信心達成剛剛告訴我們的這個方向是喔 楊總代表我可不可以再請你再上來一下兩位因為告訴我們是盡量因為告訴我們是盡速時間點那剛剛部長回答是有信心那請教楊總代表
transcript.whisperx[20].start 455.376
transcript.whisperx[20].end 484.082
transcript.whisperx[20].text 是不是朝著232優惠的這個待遇以及這個15%從現在暫時性的20%到這個15%然後不加原來的關稅不疊加這是我們談判目標一定要有信心一定要拿到這個最好的優惠稅率所以你是有信心可以拿到剛剛我們所說的這兩個方向這是我們要達成的目標一定要有信心是信心嘛齁 那所以時間點還是沒有辦法告訴我們
transcript.whisperx[21].start 485.209
transcript.whisperx[21].end 499.299
transcript.whisperx[21].text 因為談判是雙方的不是一方的因為一拖再拖讓我們的產業不知道該怎麼辦 你知道嗎現在在我們的中部地區我們的工具機 機械類別 扣件等我們不只關稅的問題我們還有一個匯率的問題
transcript.whisperx[22].start 502.89
transcript.whisperx[22].end 516.965
transcript.whisperx[22].text 所以剛剛本席特別舉了日本工具機的例子人家增加那麼多 我們的成效是如此你們告訴我說 你們都很清楚那我們的產業要怎麼辦
transcript.whisperx[23].start 518.486
transcript.whisperx[23].end 538.145
transcript.whisperx[23].text 這是本席所要請問的我們的產業到底要怎麼辦我們的產業現在只有什麼 裁員 減薪而且會影響到本來穩定可以勞工收入的去繳他的房貸 現在也有也有 乾脆我停止了繳房貸
transcript.whisperx[24].start 539.181
transcript.whisperx[24].end 556.113
transcript.whisperx[24].text 你讓家庭的生活都已經受到影響我們到底要怎麼辦去協助產業我們還是有支持方案來支持他們就是說短期間不管是貸款的問題雨仙也不收傘然後貸款的問題最後一個議題我請國發會國發會本席跟你討論在一個月前本席再次請教你我們的傳統產業這麼辛苦您現在的AI導入
transcript.whisperx[25].start 569.316
transcript.whisperx[25].end 589.068
transcript.whisperx[25].text 轉型但是本席告訴你我現在現有的傳統產業中小企業他的貸款他已經在急救室了你應該先解決讓他可以存活下來啊所以本席具體要求你 你去研議現在他們的貸款你可以怎麼樣補貼他們利息你可以怎樣減可是
transcript.whisperx[26].start 592.096
transcript.whisperx[26].end 598.835
transcript.whisperx[26].text 上個禮拜本席收到你的這個回函一個月後的研議你們現在結論要怎麼做怎麼補貼
transcript.whisperx[27].start 600.611
transcript.whisperx[27].end 627.191
transcript.whisperx[27].text 有啊那一個部分還是一樣就是說我們會透過那一個一些銀行的一些機構譬如說像假設譬如說像台企會針對某一些特定的一些中小企業的一些一些信保基金啊他會提供一些利息的補貼這個是新貸新的貸款你舊貸就已經沒有辦法解決了你叫他再去舉新貸
transcript.whisperx[28].start 628.812
transcript.whisperx[28].end 637.596
transcript.whisperx[28].text 所以本席告訴你的 請聽清楚有沒有利息補貼確認一下 有沒有利息補貼現在在急救室的這些有沒有利息補貼他原來貸款有沒有利息補貼所以本席就告訴你 你只有叫人家再去新貸我一定沒辦法 我要用什麼去貸
transcript.whisperx[29].start 654.703
transcript.whisperx[29].end 659.624
transcript.whisperx[29].text 部長 國發會主委 請你真正聽聽產業的聲音好不好你到底告訴我 我現在在急救市的這些產業 他的貸款你有沒有地息補貼 你有沒有預計怎麼樣協助他們除了展 會不會展 會不會展還 會不會展還會展延 會展延 會展延 怎麼展延就是他如果
transcript.whisperx[30].start 679.542
transcript.whisperx[30].end 697.931
transcript.whisperx[30].text 正常繳息的話 就至少可以攢半年攢延半年 利息有沒有補貼利息的話 他如果實際受災的話中小性保在某一個條件之下是可以的在某一些條件之下部長 國外諸位 我拜託你我再一次拜託你你去研議
transcript.whisperx[31].start 699.071
transcript.whisperx[31].end 722.883
transcript.whisperx[31].text 不要糊弄我們的產業一定要把他救活所以本身要問部長啊你到底要選擇救他還是到底要選擇看他倒你要選擇哪一項當然是救他救他 把方案拿出來 謝謝不過這裡面分為兩點企業是信保基金啊私人的房貸 他在講私人的房貸企業的房貸
transcript.whisperx[32].start 726.294
transcript.whisperx[32].end 728.28
transcript.whisperx[32].text 我全套私人网站也不没有啦