iVOD / 166000

Field Value
IVOD_ID 166000
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166000
日期 2025-11-28
會議資料.會議代碼 院會-11-4-11
會議資料.會議代碼:str 第11屆第4會期第11次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 11
會議資料.種類 院會
會議資料.標題 第11屆第4會期第11次會議
影片種類 Clip
開始時間 2025-11-28T14:30:40+08:00
結束時間 2025-11-28T15:02:47+08:00
影片長度 00:32:07
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/e90c42a9ce79e38aea5d62fdcdb15c4867ac07857f1cd0c5a04f4f09a3c71eaf7bd1442b9f89c7a65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳菁徽
委員發言時間 14:30:40 - 15:02:47
會議時間 2025-11-28T09:00:00+08:00
會議名稱 第11屆第4會期第11次會議(事由:一、對行政院院長施政報告繼續質詢。(11月28日)二、討論事項:本院財政、內政、經濟、交通、社會福利及衛生環境五委員會報告審查行政院函請審議「中央政府花蓮馬太鞍溪堰塞湖災後重建特別預算案」案等9案。(12月2日)三、11月28日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.10659375
transcript.pyannote[1].speaker SPEAKER_05
transcript.pyannote[1].start 8.11409375
transcript.pyannote[1].end 12.26534375
transcript.pyannote[2].speaker SPEAKER_05
transcript.pyannote[2].start 12.46784375
transcript.pyannote[2].end 14.03721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.56034375
transcript.pyannote[3].end 15.74159375
transcript.pyannote[4].speaker SPEAKER_05
transcript.pyannote[4].start 24.38159375
transcript.pyannote[4].end 27.92534375
transcript.pyannote[5].speaker SPEAKER_05
transcript.pyannote[5].start 29.29221875
transcript.pyannote[5].end 30.20346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 29.79846875
transcript.pyannote[6].end 32.22846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 36.32909375
transcript.pyannote[7].end 38.59034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 38.59034375
transcript.pyannote[8].end 39.01221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 41.72909375
transcript.pyannote[9].end 42.37034375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 42.48846875
transcript.pyannote[10].end 42.72471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 50.47034375
transcript.pyannote[11].end 51.17909375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 51.43221875
transcript.pyannote[12].end 54.60471875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 56.22471875
transcript.pyannote[13].end 57.38909375
transcript.pyannote[14].speaker SPEAKER_05
transcript.pyannote[14].start 61.18596875
transcript.pyannote[14].end 63.75096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 63.88596875
transcript.pyannote[15].end 65.60721875
transcript.pyannote[16].speaker SPEAKER_05
transcript.pyannote[16].start 64.52721875
transcript.pyannote[16].end 65.03346875
transcript.pyannote[17].speaker SPEAKER_05
transcript.pyannote[17].start 65.18534375
transcript.pyannote[17].end 66.63659375
transcript.pyannote[18].speaker SPEAKER_05
transcript.pyannote[18].start 66.68721875
transcript.pyannote[18].end 66.70409375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 66.70409375
transcript.pyannote[19].end 67.75034375
transcript.pyannote[20].speaker SPEAKER_05
transcript.pyannote[20].start 68.39159375
transcript.pyannote[20].end 68.77971875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 72.82971875
transcript.pyannote[21].end 72.96471875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 72.96471875
transcript.pyannote[22].end 73.84221875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 74.04471875
transcript.pyannote[23].end 74.41596875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 74.55096875
transcript.pyannote[24].end 74.83784375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 74.63534375
transcript.pyannote[25].end 74.88846875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 74.88846875
transcript.pyannote[26].end 75.02346875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 75.02346875
transcript.pyannote[27].end 75.36096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 76.28909375
transcript.pyannote[28].end 83.96721875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 86.56596875
transcript.pyannote[29].end 86.78534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 87.39284375
transcript.pyannote[30].end 87.91596875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 89.28284375
transcript.pyannote[31].end 95.29034375
transcript.pyannote[32].speaker SPEAKER_05
transcript.pyannote[32].start 95.83034375
transcript.pyannote[32].end 96.47159375
transcript.pyannote[33].speaker SPEAKER_05
transcript.pyannote[33].start 96.67409375
transcript.pyannote[33].end 97.31534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 99.10409375
transcript.pyannote[34].end 101.28096875
transcript.pyannote[35].speaker SPEAKER_05
transcript.pyannote[35].start 100.09971875
transcript.pyannote[35].end 101.07846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 101.29784375
transcript.pyannote[36].end 101.31471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 101.43284375
transcript.pyannote[37].end 103.32284375
transcript.pyannote[38].speaker SPEAKER_05
transcript.pyannote[38].start 101.48346875
transcript.pyannote[38].end 101.97284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 101.97284375
transcript.pyannote[39].end 102.12471875
transcript.pyannote[40].speaker SPEAKER_05
transcript.pyannote[40].start 110.66346875
transcript.pyannote[40].end 112.78971875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 111.10221875
transcript.pyannote[41].end 112.85721875
transcript.pyannote[42].speaker SPEAKER_05
transcript.pyannote[42].start 112.85721875
transcript.pyannote[42].end 112.89096875
transcript.pyannote[43].speaker SPEAKER_05
transcript.pyannote[43].start 113.46471875
transcript.pyannote[43].end 121.26096875
transcript.pyannote[44].speaker SPEAKER_05
transcript.pyannote[44].start 121.51409375
transcript.pyannote[44].end 129.56346875
transcript.pyannote[45].speaker SPEAKER_05
transcript.pyannote[45].start 129.63096875
transcript.pyannote[45].end 133.15784375
transcript.pyannote[46].speaker SPEAKER_05
transcript.pyannote[46].start 133.20846875
transcript.pyannote[46].end 137.52846875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 138.18659375
transcript.pyannote[47].end 143.68784375
transcript.pyannote[48].speaker SPEAKER_05
transcript.pyannote[48].start 142.52346875
transcript.pyannote[48].end 148.54784375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 148.54784375
transcript.pyannote[49].end 150.57284375
transcript.pyannote[50].speaker SPEAKER_05
transcript.pyannote[50].start 150.57284375
transcript.pyannote[50].end 153.57659375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 152.85096875
transcript.pyannote[51].end 153.61034375
transcript.pyannote[52].speaker SPEAKER_05
transcript.pyannote[52].start 155.34846875
transcript.pyannote[52].end 156.59721875
transcript.pyannote[53].speaker SPEAKER_05
transcript.pyannote[53].start 156.74909375
transcript.pyannote[53].end 168.98346875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 169.75971875
transcript.pyannote[54].end 172.39221875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 172.83096875
transcript.pyannote[55].end 177.35346875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 177.91034375
transcript.pyannote[56].end 182.19659375
transcript.pyannote[57].speaker SPEAKER_05
transcript.pyannote[57].start 179.86784375
transcript.pyannote[57].end 180.96471875
transcript.pyannote[58].speaker SPEAKER_05
transcript.pyannote[58].start 181.11659375
transcript.pyannote[58].end 187.46159375
transcript.pyannote[59].speaker SPEAKER_05
transcript.pyannote[59].start 187.64721875
transcript.pyannote[59].end 213.22971875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 212.89221875
transcript.pyannote[60].end 215.30534375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 215.60909375
transcript.pyannote[61].end 235.06596875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 235.26846875
transcript.pyannote[62].end 237.47909375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 237.76596875
transcript.pyannote[63].end 239.68971875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 240.01034375
transcript.pyannote[64].end 246.55784375
transcript.pyannote[65].speaker SPEAKER_05
transcript.pyannote[65].start 243.90846875
transcript.pyannote[65].end 244.31346875
transcript.pyannote[66].speaker SPEAKER_05
transcript.pyannote[66].start 245.42721875
transcript.pyannote[66].end 259.34909375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 259.80471875
transcript.pyannote[67].end 261.96471875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 262.15034375
transcript.pyannote[68].end 266.06534375
transcript.pyannote[69].speaker SPEAKER_05
transcript.pyannote[69].start 266.04846875
transcript.pyannote[69].end 267.63471875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 268.39409375
transcript.pyannote[70].end 269.30534375
transcript.pyannote[71].speaker SPEAKER_05
transcript.pyannote[71].start 269.69346875
transcript.pyannote[71].end 301.36784375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 275.73471875
transcript.pyannote[72].end 276.03846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 283.46346875
transcript.pyannote[73].end 283.98659375
transcript.pyannote[74].speaker SPEAKER_05
transcript.pyannote[74].start 301.57034375
transcript.pyannote[74].end 307.08846875
transcript.pyannote[75].speaker SPEAKER_05
transcript.pyannote[75].start 307.78034375
transcript.pyannote[75].end 322.76534375
transcript.pyannote[76].speaker SPEAKER_05
transcript.pyannote[76].start 323.10284375
transcript.pyannote[76].end 347.70659375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 350.96346875
transcript.pyannote[77].end 351.80721875
transcript.pyannote[78].speaker SPEAKER_05
transcript.pyannote[78].start 351.80721875
transcript.pyannote[78].end 353.10659375
transcript.pyannote[79].speaker SPEAKER_05
transcript.pyannote[79].start 353.83221875
transcript.pyannote[79].end 354.37221875
transcript.pyannote[80].speaker SPEAKER_05
transcript.pyannote[80].start 354.72659375
transcript.pyannote[80].end 355.51971875
transcript.pyannote[81].speaker SPEAKER_05
transcript.pyannote[81].start 355.95846875
transcript.pyannote[81].end 377.82846875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 373.17096875
transcript.pyannote[82].end 373.25534375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 378.77346875
transcript.pyannote[83].end 380.66346875
transcript.pyannote[84].speaker SPEAKER_05
transcript.pyannote[84].start 378.80721875
transcript.pyannote[84].end 379.43159375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 381.11909375
transcript.pyannote[85].end 384.66284375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 385.35471875
transcript.pyannote[86].end 386.18159375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 386.87346875
transcript.pyannote[87].end 388.00409375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 388.52721875
transcript.pyannote[88].end 389.48909375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 389.92784375
transcript.pyannote[89].end 391.41284375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 391.61534375
transcript.pyannote[90].end 393.04971875
transcript.pyannote[91].speaker SPEAKER_05
transcript.pyannote[91].start 392.84721875
transcript.pyannote[91].end 393.97784375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 393.31971875
transcript.pyannote[92].end 398.88846875
transcript.pyannote[93].speaker SPEAKER_05
transcript.pyannote[93].start 398.73659375
transcript.pyannote[93].end 403.39409375
transcript.pyannote[94].speaker SPEAKER_05
transcript.pyannote[94].start 403.52909375
transcript.pyannote[94].end 404.20409375
transcript.pyannote[95].speaker SPEAKER_05
transcript.pyannote[95].start 404.65971875
transcript.pyannote[95].end 411.73034375
transcript.pyannote[96].speaker SPEAKER_05
transcript.pyannote[96].start 412.08471875
transcript.pyannote[96].end 412.30409375
transcript.pyannote[97].speaker SPEAKER_05
transcript.pyannote[97].start 412.67534375
transcript.pyannote[97].end 414.73409375
transcript.pyannote[98].speaker SPEAKER_05
transcript.pyannote[98].start 415.66221875
transcript.pyannote[98].end 428.79096875
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 429.46596875
transcript.pyannote[99].end 430.37721875
transcript.pyannote[100].speaker SPEAKER_04
transcript.pyannote[100].start 430.41096875
transcript.pyannote[100].end 431.11971875
transcript.pyannote[101].speaker SPEAKER_04
transcript.pyannote[101].start 432.06471875
transcript.pyannote[101].end 441.58221875
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 441.61596875
transcript.pyannote[102].end 442.56096875
transcript.pyannote[103].speaker SPEAKER_05
transcript.pyannote[103].start 441.80159375
transcript.pyannote[103].end 450.62721875
transcript.pyannote[104].speaker SPEAKER_04
transcript.pyannote[104].start 451.74096875
transcript.pyannote[104].end 453.83346875
transcript.pyannote[105].speaker SPEAKER_04
transcript.pyannote[105].start 454.71096875
transcript.pyannote[105].end 456.71909375
transcript.pyannote[106].speaker SPEAKER_05
transcript.pyannote[106].start 456.51659375
transcript.pyannote[106].end 458.89596875
transcript.pyannote[107].speaker SPEAKER_05
transcript.pyannote[107].start 460.43159375
transcript.pyannote[107].end 466.50659375
transcript.pyannote[108].speaker SPEAKER_05
transcript.pyannote[108].start 467.04659375
transcript.pyannote[108].end 467.29971875
transcript.pyannote[109].speaker SPEAKER_05
transcript.pyannote[109].start 468.05909375
transcript.pyannote[109].end 469.42596875
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 469.84784375
transcript.pyannote[110].end 482.87534375
transcript.pyannote[111].speaker SPEAKER_05
transcript.pyannote[111].start 483.07784375
transcript.pyannote[111].end 493.30409375
transcript.pyannote[112].speaker SPEAKER_05
transcript.pyannote[112].start 493.79346875
transcript.pyannote[112].end 495.98721875
transcript.pyannote[113].speaker SPEAKER_05
transcript.pyannote[113].start 496.47659375
transcript.pyannote[113].end 497.37096875
transcript.pyannote[114].speaker SPEAKER_05
transcript.pyannote[114].start 498.07971875
transcript.pyannote[114].end 519.15659375
transcript.pyannote[115].speaker SPEAKER_05
transcript.pyannote[115].start 519.52784375
transcript.pyannote[115].end 520.01721875
transcript.pyannote[116].speaker SPEAKER_05
transcript.pyannote[116].start 524.50596875
transcript.pyannote[116].end 532.16721875
transcript.pyannote[117].speaker SPEAKER_05
transcript.pyannote[117].start 532.35284375
transcript.pyannote[117].end 537.58409375
transcript.pyannote[118].speaker SPEAKER_05
transcript.pyannote[118].start 540.46971875
transcript.pyannote[118].end 541.44846875
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 541.88721875
transcript.pyannote[119].end 544.90784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 542.44409375
transcript.pyannote[120].end 542.57909375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 542.98409375
transcript.pyannote[121].end 543.27096875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 544.06409375
transcript.pyannote[122].end 544.08096875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 544.08096875
transcript.pyannote[123].end 549.85221875
transcript.pyannote[124].speaker SPEAKER_05
transcript.pyannote[124].start 549.93659375
transcript.pyannote[124].end 554.62784375
transcript.pyannote[125].speaker SPEAKER_05
transcript.pyannote[125].start 555.89346875
transcript.pyannote[125].end 557.78346875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 557.78346875
transcript.pyannote[126].end 558.98159375
transcript.pyannote[127].speaker SPEAKER_05
transcript.pyannote[127].start 558.98159375
transcript.pyannote[127].end 576.29534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 566.86221875
transcript.pyannote[128].end 566.87909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 566.87909375
transcript.pyannote[129].end 567.01409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 567.01409375
transcript.pyannote[130].end 567.16596875
transcript.pyannote[131].speaker SPEAKER_05
transcript.pyannote[131].start 576.54846875
transcript.pyannote[131].end 577.71284375
transcript.pyannote[132].speaker SPEAKER_05
transcript.pyannote[132].start 578.25284375
transcript.pyannote[132].end 581.05409375
transcript.pyannote[133].speaker SPEAKER_05
transcript.pyannote[133].start 581.32409375
transcript.pyannote[133].end 598.43534375
transcript.pyannote[134].speaker SPEAKER_05
transcript.pyannote[134].start 599.58284375
transcript.pyannote[134].end 612.25596875
transcript.pyannote[135].speaker SPEAKER_05
transcript.pyannote[135].start 612.50909375
transcript.pyannote[135].end 615.29346875
transcript.pyannote[136].speaker SPEAKER_05
transcript.pyannote[136].start 616.10346875
transcript.pyannote[136].end 619.79909375
transcript.pyannote[137].speaker SPEAKER_05
transcript.pyannote[137].start 620.52471875
transcript.pyannote[137].end 628.33784375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 629.40096875
transcript.pyannote[138].end 631.07159375
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 631.98284375
transcript.pyannote[139].end 634.15971875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 634.41284375
transcript.pyannote[140].end 637.16346875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 637.68659375
transcript.pyannote[141].end 638.14221875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 638.54721875
transcript.pyannote[142].end 642.22596875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 642.42846875
transcript.pyannote[143].end 643.93034375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 644.35221875
transcript.pyannote[144].end 644.77409375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 645.31409375
transcript.pyannote[145].end 645.90471875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 646.15784375
transcript.pyannote[146].end 648.36846875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 648.63846875
transcript.pyannote[147].end 653.98784375
transcript.pyannote[148].speaker SPEAKER_05
transcript.pyannote[148].start 654.10596875
transcript.pyannote[148].end 655.94534375
transcript.pyannote[149].speaker SPEAKER_05
transcript.pyannote[149].start 656.06346875
transcript.pyannote[149].end 657.88596875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 656.35034375
transcript.pyannote[150].end 656.63721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 656.63721875
transcript.pyannote[151].end 659.03346875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 657.88596875
transcript.pyannote[152].end 657.97034375
transcript.pyannote[153].speaker SPEAKER_05
transcript.pyannote[153].start 657.97034375
transcript.pyannote[153].end 661.39596875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 659.32034375
transcript.pyannote[154].end 660.40034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 660.92346875
transcript.pyannote[155].end 668.56784375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 668.82096875
transcript.pyannote[156].end 672.88784375
transcript.pyannote[157].speaker SPEAKER_05
transcript.pyannote[157].start 671.75721875
transcript.pyannote[157].end 674.92971875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 673.59659375
transcript.pyannote[158].end 673.76534375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 674.71034375
transcript.pyannote[159].end 680.27909375
transcript.pyannote[160].speaker SPEAKER_05
transcript.pyannote[160].start 678.60846875
transcript.pyannote[160].end 679.45221875
transcript.pyannote[161].speaker SPEAKER_05
transcript.pyannote[161].start 679.58721875
transcript.pyannote[161].end 693.52596875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 680.76846875
transcript.pyannote[162].end 680.83596875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 681.66284375
transcript.pyannote[163].end 681.98346875
transcript.pyannote[164].speaker SPEAKER_05
transcript.pyannote[164].start 694.43721875
transcript.pyannote[164].end 694.67346875
transcript.pyannote[165].speaker SPEAKER_05
transcript.pyannote[165].start 695.06159375
transcript.pyannote[165].end 698.20034375
transcript.pyannote[166].speaker SPEAKER_05
transcript.pyannote[166].start 698.72346875
transcript.pyannote[166].end 699.31409375
transcript.pyannote[167].speaker SPEAKER_05
transcript.pyannote[167].start 700.09034375
transcript.pyannote[167].end 724.96409375
transcript.pyannote[168].speaker SPEAKER_05
transcript.pyannote[168].start 726.26346875
transcript.pyannote[168].end 729.62159375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 731.15721875
transcript.pyannote[169].end 733.03034375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 733.99221875
transcript.pyannote[170].end 735.24096875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 735.57846875
transcript.pyannote[171].end 739.03784375
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 739.27409375
transcript.pyannote[172].end 740.52284375
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 740.75909375
transcript.pyannote[173].end 742.75034375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 743.07096875
transcript.pyannote[174].end 744.16784375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 744.38721875
transcript.pyannote[175].end 746.00721875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 746.26034375
transcript.pyannote[176].end 751.76159375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 752.03159375
transcript.pyannote[177].end 754.88346875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 755.27159375
transcript.pyannote[178].end 757.19534375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 757.33034375
transcript.pyannote[179].end 758.15721875
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 758.69721875
transcript.pyannote[180].end 759.89534375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 760.58721875
transcript.pyannote[181].end 763.47284375
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 763.72596875
transcript.pyannote[182].end 764.11409375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 764.68784375
transcript.pyannote[183].end 766.08846875
transcript.pyannote[184].speaker SPEAKER_05
transcript.pyannote[184].start 766.57784375
transcript.pyannote[184].end 766.94909375
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 766.83096875
transcript.pyannote[185].end 768.63659375
transcript.pyannote[186].speaker SPEAKER_05
transcript.pyannote[186].start 768.77159375
transcript.pyannote[186].end 769.17659375
transcript.pyannote[187].speaker SPEAKER_05
transcript.pyannote[187].start 769.69971875
transcript.pyannote[187].end 777.85034375
transcript.pyannote[188].speaker SPEAKER_05
transcript.pyannote[188].start 778.00221875
transcript.pyannote[188].end 779.52096875
transcript.pyannote[189].speaker SPEAKER_05
transcript.pyannote[189].start 779.87534375
transcript.pyannote[189].end 800.05784375
transcript.pyannote[190].speaker SPEAKER_05
transcript.pyannote[190].start 800.24346875
transcript.pyannote[190].end 812.14034375
transcript.pyannote[191].speaker SPEAKER_05
transcript.pyannote[191].start 812.69721875
transcript.pyannote[191].end 826.82159375
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 827.05784375
transcript.pyannote[192].end 833.09909375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 833.31846875
transcript.pyannote[193].end 836.79471875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 837.09846875
transcript.pyannote[194].end 838.60034375
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 838.85346875
transcript.pyannote[195].end 842.26221875
transcript.pyannote[196].speaker SPEAKER_05
transcript.pyannote[196].start 841.04721875
transcript.pyannote[196].end 841.43534375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 842.43096875
transcript.pyannote[197].end 844.06784375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 844.65846875
transcript.pyannote[198].end 846.48096875
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 846.68346875
transcript.pyannote[199].end 851.81346875
transcript.pyannote[200].speaker SPEAKER_05
transcript.pyannote[200].start 852.06659375
transcript.pyannote[200].end 857.75346875
transcript.pyannote[201].speaker SPEAKER_05
transcript.pyannote[201].start 859.39034375
transcript.pyannote[201].end 859.64346875
transcript.pyannote[202].speaker SPEAKER_05
transcript.pyannote[202].start 859.98096875
transcript.pyannote[202].end 863.44034375
transcript.pyannote[203].speaker SPEAKER_05
transcript.pyannote[203].start 864.21659375
transcript.pyannote[203].end 873.58221875
transcript.pyannote[204].speaker SPEAKER_05
transcript.pyannote[204].start 873.95346875
transcript.pyannote[204].end 874.78034375
transcript.pyannote[205].speaker SPEAKER_05
transcript.pyannote[205].start 874.94909375
transcript.pyannote[205].end 876.51846875
transcript.pyannote[206].speaker SPEAKER_05
transcript.pyannote[206].start 876.68721875
transcript.pyannote[206].end 888.70221875
transcript.pyannote[207].speaker SPEAKER_05
transcript.pyannote[207].start 889.17471875
transcript.pyannote[207].end 897.91596875
transcript.pyannote[208].speaker SPEAKER_05
transcript.pyannote[208].start 898.47284375
transcript.pyannote[208].end 902.13471875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 905.08784375
transcript.pyannote[209].end 907.72034375
transcript.pyannote[210].speaker SPEAKER_05
transcript.pyannote[210].start 907.95659375
transcript.pyannote[210].end 922.80659375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 923.43096875
transcript.pyannote[211].end 930.29909375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 930.58596875
transcript.pyannote[212].end 938.78721875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 938.98971875
transcript.pyannote[213].end 944.35596875
transcript.pyannote[214].speaker SPEAKER_05
transcript.pyannote[214].start 944.35596875
transcript.pyannote[214].end 946.68471875
transcript.pyannote[215].speaker SPEAKER_05
transcript.pyannote[215].start 947.24159375
transcript.pyannote[215].end 957.90659375
transcript.pyannote[216].speaker SPEAKER_05
transcript.pyannote[216].start 958.42971875
transcript.pyannote[216].end 958.98659375
transcript.pyannote[217].speaker SPEAKER_05
transcript.pyannote[217].start 959.22284375
transcript.pyannote[217].end 968.48721875
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 966.56346875
transcript.pyannote[218].end 972.90846875
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 973.39784375
transcript.pyannote[219].end 975.00096875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 975.42284375
transcript.pyannote[220].end 977.07659375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 977.34659375
transcript.pyannote[221].end 981.10971875
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 981.27846875
transcript.pyannote[222].end 998.13659375
transcript.pyannote[223].speaker SPEAKER_05
transcript.pyannote[223].start 995.70659375
transcript.pyannote[223].end 996.14534375
transcript.pyannote[224].speaker SPEAKER_05
transcript.pyannote[224].start 996.60096875
transcript.pyannote[224].end 1000.36409375
transcript.pyannote[225].speaker SPEAKER_05
transcript.pyannote[225].start 1000.85346875
transcript.pyannote[225].end 1010.94471875
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 1008.39659375
transcript.pyannote[226].end 1008.76784375
transcript.pyannote[227].speaker SPEAKER_05
transcript.pyannote[227].start 1012.27784375
transcript.pyannote[227].end 1015.80471875
transcript.pyannote[228].speaker SPEAKER_05
transcript.pyannote[228].start 1016.53034375
transcript.pyannote[228].end 1021.72784375
transcript.pyannote[229].speaker SPEAKER_05
transcript.pyannote[229].start 1022.06534375
transcript.pyannote[229].end 1029.77721875
transcript.pyannote[230].speaker SPEAKER_05
transcript.pyannote[230].start 1030.28346875
transcript.pyannote[230].end 1046.02784375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 1046.02784375
transcript.pyannote[231].end 1047.05721875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 1047.32721875
transcript.pyannote[232].end 1056.25409375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 1056.47346875
transcript.pyannote[233].end 1058.78534375
transcript.pyannote[234].speaker SPEAKER_05
transcript.pyannote[234].start 1059.32534375
transcript.pyannote[234].end 1063.84784375
transcript.pyannote[235].speaker SPEAKER_05
transcript.pyannote[235].start 1063.96596875
transcript.pyannote[235].end 1090.57784375
transcript.pyannote[236].speaker SPEAKER_05
transcript.pyannote[236].start 1091.10096875
transcript.pyannote[236].end 1097.04096875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 1097.24346875
transcript.pyannote[237].end 1099.43721875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 1100.11221875
transcript.pyannote[238].end 1101.12471875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 1101.76596875
transcript.pyannote[239].end 1106.11971875
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 1106.40659375
transcript.pyannote[240].end 1108.60034375
transcript.pyannote[241].speaker SPEAKER_05
transcript.pyannote[241].start 1109.14034375
transcript.pyannote[241].end 1109.47784375
transcript.pyannote[242].speaker SPEAKER_05
transcript.pyannote[242].start 1109.89971875
transcript.pyannote[242].end 1115.16471875
transcript.pyannote[243].speaker SPEAKER_05
transcript.pyannote[243].start 1115.29971875
transcript.pyannote[243].end 1129.00221875
transcript.pyannote[244].speaker SPEAKER_05
transcript.pyannote[244].start 1129.40721875
transcript.pyannote[244].end 1138.82346875
transcript.pyannote[245].speaker SPEAKER_05
transcript.pyannote[245].start 1139.11034375
transcript.pyannote[245].end 1147.12596875
transcript.pyannote[246].speaker SPEAKER_05
transcript.pyannote[246].start 1147.27784375
transcript.pyannote[246].end 1150.06221875
transcript.pyannote[247].speaker SPEAKER_05
transcript.pyannote[247].start 1150.68659375
transcript.pyannote[247].end 1153.53846875
transcript.pyannote[248].speaker SPEAKER_05
transcript.pyannote[248].start 1153.65659375
transcript.pyannote[248].end 1157.92596875
transcript.pyannote[249].speaker SPEAKER_05
transcript.pyannote[249].start 1159.02284375
transcript.pyannote[249].end 1165.55346875
transcript.pyannote[250].speaker SPEAKER_05
transcript.pyannote[250].start 1165.73909375
transcript.pyannote[250].end 1169.95784375
transcript.pyannote[251].speaker SPEAKER_05
transcript.pyannote[251].start 1170.48096875
transcript.pyannote[251].end 1180.25159375
transcript.pyannote[252].speaker SPEAKER_05
transcript.pyannote[252].start 1181.55096875
transcript.pyannote[252].end 1182.59721875
transcript.pyannote[253].speaker SPEAKER_05
transcript.pyannote[253].start 1182.78284375
transcript.pyannote[253].end 1188.31784375
transcript.pyannote[254].speaker SPEAKER_05
transcript.pyannote[254].start 1188.77346875
transcript.pyannote[254].end 1190.49471875
transcript.pyannote[255].speaker SPEAKER_05
transcript.pyannote[255].start 1190.79846875
transcript.pyannote[255].end 1195.47284375
transcript.pyannote[256].speaker SPEAKER_05
transcript.pyannote[256].start 1195.86096875
transcript.pyannote[256].end 1204.75409375
transcript.pyannote[257].speaker SPEAKER_05
transcript.pyannote[257].start 1205.29409375
transcript.pyannote[257].end 1209.46221875
transcript.pyannote[258].speaker SPEAKER_05
transcript.pyannote[258].start 1209.64784375
transcript.pyannote[258].end 1212.87096875
transcript.pyannote[259].speaker SPEAKER_05
transcript.pyannote[259].start 1213.29284375
transcript.pyannote[259].end 1218.45659375
transcript.pyannote[260].speaker SPEAKER_05
transcript.pyannote[260].start 1219.43534375
transcript.pyannote[260].end 1221.17346875
transcript.pyannote[261].speaker SPEAKER_05
transcript.pyannote[261].start 1221.67971875
transcript.pyannote[261].end 1222.18596875
transcript.pyannote[262].speaker SPEAKER_05
transcript.pyannote[262].start 1222.40534375
transcript.pyannote[262].end 1233.42471875
transcript.pyannote[263].speaker SPEAKER_05
transcript.pyannote[263].start 1233.50909375
transcript.pyannote[263].end 1242.26721875
transcript.pyannote[264].speaker SPEAKER_05
transcript.pyannote[264].start 1242.38534375
transcript.pyannote[264].end 1245.35534375
transcript.pyannote[265].speaker SPEAKER_05
transcript.pyannote[265].start 1245.40596875
transcript.pyannote[265].end 1261.13346875
transcript.pyannote[266].speaker SPEAKER_05
transcript.pyannote[266].start 1261.35284375
transcript.pyannote[266].end 1280.89409375
transcript.pyannote[267].speaker SPEAKER_05
transcript.pyannote[267].start 1281.82221875
transcript.pyannote[267].end 1298.79846875
transcript.pyannote[268].speaker SPEAKER_03
transcript.pyannote[268].start 1299.87846875
transcript.pyannote[268].end 1300.60409375
transcript.pyannote[269].speaker SPEAKER_05
transcript.pyannote[269].start 1301.00909375
transcript.pyannote[269].end 1301.43096875
transcript.pyannote[270].speaker SPEAKER_05
transcript.pyannote[270].start 1301.73471875
transcript.pyannote[270].end 1319.16659375
transcript.pyannote[271].speaker SPEAKER_05
transcript.pyannote[271].start 1319.58846875
transcript.pyannote[271].end 1326.35534375
transcript.pyannote[272].speaker SPEAKER_05
transcript.pyannote[272].start 1326.76034375
transcript.pyannote[272].end 1333.83096875
transcript.pyannote[273].speaker SPEAKER_05
transcript.pyannote[273].start 1334.10096875
transcript.pyannote[273].end 1339.95659375
transcript.pyannote[274].speaker SPEAKER_05
transcript.pyannote[274].start 1340.64846875
transcript.pyannote[274].end 1344.04034375
transcript.pyannote[275].speaker SPEAKER_05
transcript.pyannote[275].start 1344.20909375
transcript.pyannote[275].end 1345.82909375
transcript.pyannote[276].speaker SPEAKER_05
transcript.pyannote[276].start 1345.94721875
transcript.pyannote[276].end 1358.21534375
transcript.pyannote[277].speaker SPEAKER_05
transcript.pyannote[277].start 1358.31659375
transcript.pyannote[277].end 1363.59846875
transcript.pyannote[278].speaker SPEAKER_05
transcript.pyannote[278].start 1363.98659375
transcript.pyannote[278].end 1367.12534375
transcript.pyannote[279].speaker SPEAKER_05
transcript.pyannote[279].start 1367.31096875
transcript.pyannote[279].end 1372.49159375
transcript.pyannote[280].speaker SPEAKER_05
transcript.pyannote[280].start 1372.64346875
transcript.pyannote[280].end 1384.97909375
transcript.pyannote[281].speaker SPEAKER_05
transcript.pyannote[281].start 1385.35034375
transcript.pyannote[281].end 1396.04909375
transcript.pyannote[282].speaker SPEAKER_05
transcript.pyannote[282].start 1397.21346875
transcript.pyannote[282].end 1397.63534375
transcript.pyannote[283].speaker SPEAKER_05
transcript.pyannote[283].start 1397.87159375
transcript.pyannote[283].end 1401.36471875
transcript.pyannote[284].speaker SPEAKER_05
transcript.pyannote[284].start 1403.44034375
transcript.pyannote[284].end 1404.08159375
transcript.pyannote[285].speaker SPEAKER_05
transcript.pyannote[285].start 1408.40159375
transcript.pyannote[285].end 1414.64534375
transcript.pyannote[286].speaker SPEAKER_05
transcript.pyannote[286].start 1414.88159375
transcript.pyannote[286].end 1418.29034375
transcript.pyannote[287].speaker SPEAKER_05
transcript.pyannote[287].start 1418.67846875
transcript.pyannote[287].end 1424.17971875
transcript.pyannote[288].speaker SPEAKER_05
transcript.pyannote[288].start 1424.56784375
transcript.pyannote[288].end 1438.48971875
transcript.pyannote[289].speaker SPEAKER_05
transcript.pyannote[289].start 1438.64159375
transcript.pyannote[289].end 1438.91159375
transcript.pyannote[290].speaker SPEAKER_05
transcript.pyannote[290].start 1439.02971875
transcript.pyannote[290].end 1440.37971875
transcript.pyannote[291].speaker SPEAKER_05
transcript.pyannote[291].start 1440.80159375
transcript.pyannote[291].end 1441.03784375
transcript.pyannote[292].speaker SPEAKER_05
transcript.pyannote[292].start 1441.86471875
transcript.pyannote[292].end 1449.25596875
transcript.pyannote[293].speaker SPEAKER_05
transcript.pyannote[293].start 1449.89721875
transcript.pyannote[293].end 1476.82971875
transcript.pyannote[294].speaker SPEAKER_03
transcript.pyannote[294].start 1477.38659375
transcript.pyannote[294].end 1481.43659375
transcript.pyannote[295].speaker SPEAKER_03
transcript.pyannote[295].start 1481.77409375
transcript.pyannote[295].end 1490.95409375
transcript.pyannote[296].speaker SPEAKER_03
transcript.pyannote[296].start 1491.64596875
transcript.pyannote[296].end 1492.32096875
transcript.pyannote[297].speaker SPEAKER_03
transcript.pyannote[297].start 1492.70909375
transcript.pyannote[297].end 1496.01659375
transcript.pyannote[298].speaker SPEAKER_03
transcript.pyannote[298].start 1496.08409375
transcript.pyannote[298].end 1497.04596875
transcript.pyannote[299].speaker SPEAKER_03
transcript.pyannote[299].start 1497.33284375
transcript.pyannote[299].end 1497.83909375
transcript.pyannote[300].speaker SPEAKER_03
transcript.pyannote[300].start 1498.07534375
transcript.pyannote[300].end 1499.08784375
transcript.pyannote[301].speaker SPEAKER_03
transcript.pyannote[301].start 1499.98221875
transcript.pyannote[301].end 1500.70784375
transcript.pyannote[302].speaker SPEAKER_03
transcript.pyannote[302].start 1501.11284375
transcript.pyannote[302].end 1507.06971875
transcript.pyannote[303].speaker SPEAKER_03
transcript.pyannote[303].start 1507.18784375
transcript.pyannote[303].end 1511.60909375
transcript.pyannote[304].speaker SPEAKER_03
transcript.pyannote[304].start 1511.92971875
transcript.pyannote[304].end 1518.07221875
transcript.pyannote[305].speaker SPEAKER_03
transcript.pyannote[305].start 1518.12284375
transcript.pyannote[305].end 1523.20221875
transcript.pyannote[306].speaker SPEAKER_03
transcript.pyannote[306].start 1523.69159375
transcript.pyannote[306].end 1524.90659375
transcript.pyannote[307].speaker SPEAKER_03
transcript.pyannote[307].start 1525.07534375
transcript.pyannote[307].end 1525.75034375
transcript.pyannote[308].speaker SPEAKER_03
transcript.pyannote[308].start 1526.86409375
transcript.pyannote[308].end 1528.75409375
transcript.pyannote[309].speaker SPEAKER_03
transcript.pyannote[309].start 1529.09159375
transcript.pyannote[309].end 1537.24221875
transcript.pyannote[310].speaker SPEAKER_03
transcript.pyannote[310].start 1537.42784375
transcript.pyannote[310].end 1540.43159375
transcript.pyannote[311].speaker SPEAKER_03
transcript.pyannote[311].start 1541.17409375
transcript.pyannote[311].end 1547.26596875
transcript.pyannote[312].speaker SPEAKER_03
transcript.pyannote[312].start 1548.21096875
transcript.pyannote[312].end 1550.60721875
transcript.pyannote[313].speaker SPEAKER_03
transcript.pyannote[313].start 1550.87721875
transcript.pyannote[313].end 1552.12596875
transcript.pyannote[314].speaker SPEAKER_03
transcript.pyannote[314].start 1552.48034375
transcript.pyannote[314].end 1554.80909375
transcript.pyannote[315].speaker SPEAKER_03
transcript.pyannote[315].start 1555.41659375
transcript.pyannote[315].end 1558.85909375
transcript.pyannote[316].speaker SPEAKER_03
transcript.pyannote[316].start 1559.07846875
transcript.pyannote[316].end 1562.60534375
transcript.pyannote[317].speaker SPEAKER_03
transcript.pyannote[317].start 1562.62221875
transcript.pyannote[317].end 1566.01409375
transcript.pyannote[318].speaker SPEAKER_05
transcript.pyannote[318].start 1565.99721875
transcript.pyannote[318].end 1567.53284375
transcript.pyannote[319].speaker SPEAKER_05
transcript.pyannote[319].start 1568.02221875
transcript.pyannote[319].end 1570.40159375
transcript.pyannote[320].speaker SPEAKER_05
transcript.pyannote[320].start 1570.75596875
transcript.pyannote[320].end 1572.46034375
transcript.pyannote[321].speaker SPEAKER_05
transcript.pyannote[321].start 1573.00034375
transcript.pyannote[321].end 1573.67534375
transcript.pyannote[322].speaker SPEAKER_05
transcript.pyannote[322].start 1574.28284375
transcript.pyannote[322].end 1597.95846875
transcript.pyannote[323].speaker SPEAKER_05
transcript.pyannote[323].start 1598.12721875
transcript.pyannote[323].end 1608.92721875
transcript.pyannote[324].speaker SPEAKER_05
transcript.pyannote[324].start 1609.61909375
transcript.pyannote[324].end 1613.66909375
transcript.pyannote[325].speaker SPEAKER_05
transcript.pyannote[325].start 1614.56346875
transcript.pyannote[325].end 1624.60409375
transcript.pyannote[326].speaker SPEAKER_05
transcript.pyannote[326].start 1624.63784375
transcript.pyannote[326].end 1625.16096875
transcript.pyannote[327].speaker SPEAKER_05
transcript.pyannote[327].start 1626.12284375
transcript.pyannote[327].end 1630.22346875
transcript.pyannote[328].speaker SPEAKER_05
transcript.pyannote[328].start 1630.81409375
transcript.pyannote[328].end 1654.57409375
transcript.pyannote[329].speaker SPEAKER_03
transcript.pyannote[329].start 1655.04659375
transcript.pyannote[329].end 1659.34971875
transcript.pyannote[330].speaker SPEAKER_03
transcript.pyannote[330].start 1659.50159375
transcript.pyannote[330].end 1667.70284375
transcript.pyannote[331].speaker SPEAKER_03
transcript.pyannote[331].start 1667.78721875
transcript.pyannote[331].end 1669.08659375
transcript.pyannote[332].speaker SPEAKER_03
transcript.pyannote[332].start 1669.44096875
transcript.pyannote[332].end 1674.65534375
transcript.pyannote[333].speaker SPEAKER_03
transcript.pyannote[333].start 1675.88721875
transcript.pyannote[333].end 1681.00034375
transcript.pyannote[334].speaker SPEAKER_03
transcript.pyannote[334].start 1681.08471875
transcript.pyannote[334].end 1686.97409375
transcript.pyannote[335].speaker SPEAKER_03
transcript.pyannote[335].start 1687.26096875
transcript.pyannote[335].end 1691.02409375
transcript.pyannote[336].speaker SPEAKER_03
transcript.pyannote[336].start 1691.14221875
transcript.pyannote[336].end 1691.98596875
transcript.pyannote[337].speaker SPEAKER_03
transcript.pyannote[337].start 1692.05346875
transcript.pyannote[337].end 1693.79159375
transcript.pyannote[338].speaker SPEAKER_03
transcript.pyannote[338].start 1693.96034375
transcript.pyannote[338].end 1698.51659375
transcript.pyannote[339].speaker SPEAKER_03
transcript.pyannote[339].start 1699.12409375
transcript.pyannote[339].end 1703.00534375
transcript.pyannote[340].speaker SPEAKER_05
transcript.pyannote[340].start 1701.70596875
transcript.pyannote[340].end 1713.01221875
transcript.pyannote[341].speaker SPEAKER_03
transcript.pyannote[341].start 1714.12596875
transcript.pyannote[341].end 1715.57721875
transcript.pyannote[342].speaker SPEAKER_05
transcript.pyannote[342].start 1714.24409375
transcript.pyannote[342].end 1715.69534375
transcript.pyannote[343].speaker SPEAKER_03
transcript.pyannote[343].start 1715.69534375
transcript.pyannote[343].end 1715.84721875
transcript.pyannote[344].speaker SPEAKER_05
transcript.pyannote[344].start 1715.84721875
transcript.pyannote[344].end 1727.50784375
transcript.pyannote[345].speaker SPEAKER_03
transcript.pyannote[345].start 1727.08596875
transcript.pyannote[345].end 1728.01409375
transcript.pyannote[346].speaker SPEAKER_03
transcript.pyannote[346].start 1728.25034375
transcript.pyannote[346].end 1735.75971875
transcript.pyannote[347].speaker SPEAKER_05
transcript.pyannote[347].start 1732.70534375
transcript.pyannote[347].end 1733.22846875
transcript.pyannote[348].speaker SPEAKER_05
transcript.pyannote[348].start 1735.75971875
transcript.pyannote[348].end 1742.44221875
transcript.pyannote[349].speaker SPEAKER_03
transcript.pyannote[349].start 1738.96596875
transcript.pyannote[349].end 1740.40034375
transcript.pyannote[350].speaker SPEAKER_03
transcript.pyannote[350].start 1740.63659375
transcript.pyannote[350].end 1740.68721875
transcript.pyannote[351].speaker SPEAKER_05
transcript.pyannote[351].start 1742.84721875
transcript.pyannote[351].end 1747.40346875
transcript.pyannote[352].speaker SPEAKER_05
transcript.pyannote[352].start 1747.45409375
transcript.pyannote[352].end 1790.19846875
transcript.pyannote[353].speaker SPEAKER_05
transcript.pyannote[353].start 1790.62034375
transcript.pyannote[353].end 1791.17721875
transcript.pyannote[354].speaker SPEAKER_05
transcript.pyannote[354].start 1792.05471875
transcript.pyannote[354].end 1793.38784375
transcript.pyannote[355].speaker SPEAKER_05
transcript.pyannote[355].start 1793.72534375
transcript.pyannote[355].end 1797.01596875
transcript.pyannote[356].speaker SPEAKER_05
transcript.pyannote[356].start 1797.21846875
transcript.pyannote[356].end 1812.06846875
transcript.pyannote[357].speaker SPEAKER_05
transcript.pyannote[357].start 1812.59159375
transcript.pyannote[357].end 1816.86096875
transcript.pyannote[358].speaker SPEAKER_05
transcript.pyannote[358].start 1817.11409375
transcript.pyannote[358].end 1822.83471875
transcript.pyannote[359].speaker SPEAKER_05
transcript.pyannote[359].start 1823.23971875
transcript.pyannote[359].end 1841.04284375
transcript.pyannote[360].speaker SPEAKER_03
transcript.pyannote[360].start 1840.11471875
transcript.pyannote[360].end 1840.48596875
transcript.pyannote[361].speaker SPEAKER_03
transcript.pyannote[361].start 1841.38034375
transcript.pyannote[361].end 1851.65721875
transcript.pyannote[362].speaker SPEAKER_03
transcript.pyannote[362].start 1851.97784375
transcript.pyannote[362].end 1855.36971875
transcript.pyannote[363].speaker SPEAKER_03
transcript.pyannote[363].start 1855.75784375
transcript.pyannote[363].end 1858.08659375
transcript.pyannote[364].speaker SPEAKER_03
transcript.pyannote[364].start 1858.44096875
transcript.pyannote[364].end 1859.16659375
transcript.pyannote[365].speaker SPEAKER_03
transcript.pyannote[365].start 1859.35221875
transcript.pyannote[365].end 1865.22471875
transcript.pyannote[366].speaker SPEAKER_03
transcript.pyannote[366].start 1865.39346875
transcript.pyannote[366].end 1867.70534375
transcript.pyannote[367].speaker SPEAKER_03
transcript.pyannote[367].start 1868.02596875
transcript.pyannote[367].end 1870.64159375
transcript.pyannote[368].speaker SPEAKER_03
transcript.pyannote[368].start 1870.86096875
transcript.pyannote[368].end 1873.20659375
transcript.pyannote[369].speaker SPEAKER_03
transcript.pyannote[369].start 1873.54409375
transcript.pyannote[369].end 1876.48034375
transcript.pyannote[370].speaker SPEAKER_03
transcript.pyannote[370].start 1876.78409375
transcript.pyannote[370].end 1877.56034375
transcript.pyannote[371].speaker SPEAKER_03
transcript.pyannote[371].start 1877.71221875
transcript.pyannote[371].end 1879.63596875
transcript.pyannote[372].speaker SPEAKER_03
transcript.pyannote[372].start 1879.93971875
transcript.pyannote[372].end 1882.90971875
transcript.pyannote[373].speaker SPEAKER_03
transcript.pyannote[373].start 1883.04471875
transcript.pyannote[373].end 1885.82909375
transcript.pyannote[374].speaker SPEAKER_05
transcript.pyannote[374].start 1885.93034375
transcript.pyannote[374].end 1889.45721875
transcript.pyannote[375].speaker SPEAKER_05
transcript.pyannote[375].start 1889.82846875
transcript.pyannote[375].end 1892.35971875
transcript.pyannote[376].speaker SPEAKER_05
transcript.pyannote[376].start 1892.88284375
transcript.pyannote[376].end 1896.49409375
transcript.pyannote[377].speaker SPEAKER_05
transcript.pyannote[377].start 1896.69659375
transcript.pyannote[377].end 1897.16909375
transcript.pyannote[378].speaker SPEAKER_05
transcript.pyannote[378].start 1897.91159375
transcript.pyannote[378].end 1899.80159375
transcript.pyannote[379].speaker SPEAKER_05
transcript.pyannote[379].start 1900.18971875
transcript.pyannote[379].end 1912.55909375
transcript.pyannote[380].speaker SPEAKER_05
transcript.pyannote[380].start 1913.18346875
transcript.pyannote[380].end 1913.92596875
transcript.pyannote[381].speaker SPEAKER_03
transcript.pyannote[381].start 1913.92596875
transcript.pyannote[381].end 1916.98034375
transcript.pyannote[382].speaker SPEAKER_05
transcript.pyannote[382].start 1914.01034375
transcript.pyannote[382].end 1914.06096875
transcript.pyannote[383].speaker SPEAKER_00
transcript.pyannote[383].start 1925.97471875
transcript.pyannote[383].end 1926.97034375
transcript.whisperx[0].start 1.107
transcript.whisperx[0].end 15.537
transcript.whisperx[0].text 謝榮介委員請準備謝謝院長還有謝謝我們來自高雄的學生們剛看到認識的人那我們請卓院長麻煩請卓院長備詢我可以關心一下為什麼勞動部長不在嗎
transcript.whisperx[1].start 29.736
transcript.whisperx[1].end 36.561
transcript.whisperx[1].text 各位同學這第一次發生過去從來沒有發生過大家不要誤會同學上課沒有知道
transcript.whisperx[2].start 61.263
transcript.whisperx[2].end 83.308
transcript.whisperx[2].text 那卓院長你要不要先回去坐一下卓院長您是不是要先休息一下為什麼部長沒有到對我下去查一下好 院長您請坐跟各位同學介紹我們議場還有兩位立法委員一個桃園大溪地區的邱若驊委員一個嘉義的王玉明委員
transcript.whisperx[3].start 90.01
transcript.whisperx[3].end 102.446
transcript.whisperx[3].text 我們立法院女性立委佔47% 將近一半是是是 到了到了陳委員可以繼續質詢好 那我們請 麻煩請卓院長備詢
transcript.whisperx[4].start 113.558
transcript.whisperx[4].end 137.308
transcript.whisperx[4].text 首先我们要探讨一下上一次四月我曾经给你示警因为我说龙年已经低于兔年的生育率那现在第一年的蛇年然后一二三月又非常的低迷所以四月的时候我曾经告诉您说我们一定要立刻拿出策略立刻拿出战略否则会非常的惨你当时提到有一个13万的保卫战我现在播给您看
transcript.whisperx[5].start 138.32
transcript.whisperx[5].end 153.035
transcript.whisperx[5].text 在跟國發會討論過程當中設定一個13萬的保衛戰出生13萬的保衛戰我剛給你三個月的數據您覺得您今年有辦法達到13萬保衛戰嗎我已經給您三個月的數據了這個是要靠我們很多政策跟那要馬上啊不然你今年絕對沒有辦法撐過
transcript.whisperx[6].start 155.393
transcript.whisperx[6].end 168.503
transcript.whisperx[6].text 看完這段影片我想問院長你想要把13萬保衛戰下修為11萬保衛戰嗎因為早上我有聽到其他委員有問你截至今年的10月我們只有淡下9萬的新生兒
transcript.whisperx[7].start 170.71
transcript.whisperx[7].end 186.896
transcript.whisperx[7].text 13萬的保衛戰是我們在去年按照去年一整年的評估我們認為今年應該保13萬但是很遺憾的距離我們想要保的這個數字我可以稍微問一下您是用什麼方式評估的嗎因為我這邊也有一些
transcript.whisperx[8].start 187.816
transcript.whisperx[8].end 214.413
transcript.whisperx[8].text 比如說去做產檢的管道啊專門做一些基因檢測的管道他們有他們自己的AI運算系統他們都已經告訴我說今年可以達到11萬就已經謝天謝地我想知道您運用的因為我們是AI內閣啊AI內閣應該現在產檢的人你就幾乎可以預測到明年生出來的人所以你是用什麼模式去算出你今年應該有13萬保衛戰我們是在去年我們知道去年是龍年
transcript.whisperx[9].start 215.754
transcript.whisperx[9].end 239.335
transcript.whisperx[9].text 去年的生產大概13萬4千來幾千我們認為農年會比較高農年過之後會有往下掉的趨勢當然我也知道用科學的根據來測試預估是一個很好的方式但是我願意在去年我是給閣員一個更高漲的壓力希望大家能夠想出好的對策或是讓國人能夠有這種
transcript.whisperx[10].start 240.255
transcript.whisperx[10].end 268.46
transcript.whisperx[10].text 願意結婚願意生小孩願意來好好的駕養他的這種觀念所以我們是一個比較高難度的目標那我這邊可以具體建議您是不是回去跟數位部還有衛福部研究一下因為你們是AI內閣基本上你們可以去預測明年的出生數並且一直滾動式調整你們的戰略跟策略嘛對不對是我們現在後來我們是下修到12萬的保衛戰那還是沒有保住那你覺得今年會到12萬嗎是有困難的
transcript.whisperx[11].start 269.721
transcript.whisperx[11].end 287.319
transcript.whisperx[11].text 有困難嗎 好那今天其實我會花蠻大的篇幅因為我本身是做這個領域的所以我會花很大的篇幅我也希望我們兩個可以共同激發出一些想法真的可以對我們的少子女畫有幫助好 下一張我們要看一下這個是我們推動八年的少子女畫
transcript.whisperx[12].start 288.28
transcript.whisperx[12].end 306.921
transcript.whisperx[12].text 當初寫得非常好聽我們希望119年的生育率可以達到1.4結果我們這樣子看下來這8年生育率是從1.05一路掉到0.89我們先姑且不論這些預算的執行率了因為生育率就是最好的執行率
transcript.whisperx[13].start 307.882
transcript.whisperx[13].end 322.016
transcript.whisperx[13].text 左邊是計畫執行8年執行率越來越差生育率碼右邊就是我們少子化對策計畫的實施期間我們把它分成四個面向第一個就是有生的人越來越少
transcript.whisperx[14].start 323.197
transcript.whisperx[14].end 347.527
transcript.whisperx[14].text 再来是生一胎生二胎生三胎的人都越来越少好我们再来看你的对策计划呢我也看了审计部的检讨报告针对几个面向比如说0到6岁国家养职场儿童健康还有友善主要友善家庭的配套等等的这些跟各部门都有关系你有没有发现一个最大的重点在哪里
transcript.whisperx[15].start 351.988
transcript.whisperx[15].end 377.583
transcript.whisperx[15].text 我們看標題標題你如果依照審計部對你做的分析你八成的錢幾乎都放在0到6歲全面照顧但是我們0到6歲的人一直在萎縮我們一直在萎縮我們應該是育齡年齡育齡族群怎麼樣可以願意生是現在這個整個對策你115年應該還會再提新的吧
transcript.whisperx[16].start 379.192
transcript.whisperx[16].end 388.768
transcript.whisperx[16].text 我們之前也討論過我想未來的整個戰略思考是從生育養育教育第一個多生育第二個
transcript.whisperx[17].start 389.238
transcript.whisperx[17].end 414.578
transcript.whisperx[17].text 助 幫助的助 助養育第三個 幫教育重點在多生育我們要把多的力量集中在多生育這個領域今天我也會切四個面向跟您做一個分析還有討論第一個 我們來看這個族群的人他非常的願意生我們感謝他都來不及了但是他需要科學的幫忙那上次我問你的進度是這樣子
transcript.whisperx[18].start 415.714
transcript.whisperx[18].end 428.546
transcript.whisperx[18].text 所以至今呢你們說當時你們手上就已經備好兩個版本了那現在已經過了四個月了我是希望知道說什麼時候行政院才可以送到立法院這樣子的你們早就準備好的版本
transcript.whisperx[19].start 432.202
transcript.whisperx[19].end 455.679
transcript.whisperx[19].text 因為這個人工生殖法 政府委員所提的我們是經過預告然後聽了很多的聲音以後其實部長您很簡單的給我大概一個月 兩個月 三個月 半年稍微給我一個數字就好大家關心這個議題的人是想要知道一個時程應該在下個會期前會下個會期以前 好
transcript.whisperx[20].start 460.498
transcript.whisperx[20].end 465.705
transcript.whisperx[20].text 邱前部長口中所說的下個會期以前就是我們目前的這個會期
transcript.whisperx[21].start 468.086
transcript.whisperx[21].end 496.963
transcript.whisperx[21].text 我想說的是其實這也是你們行政院端出來的政績我也感同身受因為像上次我有看張家俊委員質詢包括我自己本人我們就是願意生的我們只是需要一點科技的幫忙你們說從110年7月上路到現在滿4年成功的生下了3萬個寶寶所以他是真的實打實的增加了寶寶但是有一個族群用不到你有看到嗎
transcript.whisperx[22].start 498.384
transcript.whisperx[22].end 518.761
transcript.whisperx[22].text 現行的人工生殖法它的版本就是規定需要一夫一妻才可以用剛有講到說大家都很在意的脫鉤版本也是目前最有共識最沒有爭議最具社會溝通的版本本來說這個會期以前就會提出來這邊我希望請洪聖漢部長可以上來 謝謝
transcript.whisperx[23].start 524.537
transcript.whisperx[23].end 537.365
transcript.whisperx[23].text 我們來看一下當然洪聖漢部長應該也都記得他的提案說明但是也請部長稍微告訴院長一下不同黨派的委員所提出來的版本到底有什麼共通點呢
transcript.whisperx[24].start 540.729
transcript.whisperx[24].end 554.274
transcript.whisperx[24].text 你還記得嗎就是你希望單女跟同志同婚跟單婚的女性那你還記得當時你覺得為什麼你要提出這樣子的版本嗎
transcript.whisperx[25].start 555.894
transcript.whisperx[25].end 574.248
transcript.whisperx[25].text 我幫你念 您說到說許多國家已開放單身女生採用人工受孕碼所以應納入單身女性這符合我們目前的國情還有同性別的兩人雖然可以締結婚姻卻無法依照人工生殖法進行生育補助現在問題來了 您請回座現在問題來囉
transcript.whisperx[26].start 578.992
transcript.whisperx[26].end 597.867
transcript.whisperx[26].text 大家都有共識的這個版本可是這群人會很急因為你已經講了你要擴大補助但是你擴大了補助他依照法規是用不到的那下一頁我請你看一下早上你也有一再的對陳昭之委員講到社會溝通社會溝通
transcript.whisperx[27].start 600.256
transcript.whisperx[27].end 627.57
transcript.whisperx[27].text 這個不管是民團各黨派的委員行政院國發會衛福部還有這些民團等等的幾乎都已經有共識了所以我只想問你三件事情第一個邱前部長的話到底還算不算數第二個他現在是不是躺在行政院他躺在行政院哪裡第三個這個一改再改送進立法院的日期您今天可以給一個答案嗎不然我們幾乎每次總質詢都在問一樣的
transcript.whisperx[28].start 629.431
transcript.whisperx[28].end 653.707
transcript.whisperx[28].text 好的 這個針對同婚跟單身女性可以說人工生殖這個立場沒有改變第二個 那個法案沒有躺在行政院我們還在積極的來尋求更大的共識那衛福部前部長所說的現在石部長也極力的在推動我們也希望時程上能夠取得共識的時候就能夠推出來
transcript.whisperx[29].start 654.147
transcript.whisperx[29].end 669.803
transcript.whisperx[29].text 那水部長你要說嗎我剛已經跟你看幾乎大家都有共識了是誰沒有共識跟委員報告我們之前這個有預告過那當然多數的意見沒有分歧的還是在這個代理運母啦
transcript.whisperx[30].start 670.203
transcript.whisperx[30].end 697.4
transcript.whisperx[30].text 那如果脫鉤的版本的部分呢我從一開始放的影片就是脫鉤目前已經在行政院應該在年底之前就會完成審查好那現在11月就是兩個月內你們預計從行政院送來立法院是OK好謝謝那下一個議題我想要跟您探討的是到底我們115年要提的方向你應該怎麼去修正好這個圖我相信院長部長應該都已經看到
transcript.whisperx[31].start 700.748
transcript.whisperx[31].end 729.393
transcript.whisperx[31].text 很熟悉了啦我們從2001年到2011年到2021年你會發現這個不生育的人越來越多或者是不結婚的然後晚生晚育或是幾乎就不生嘛所以我們應該要去push的就是你剛講的第一個重點就是育齡年齡的低生育率為何育齡族群我早上有稍微聽到一點點請問你覺得最重要的三點是什麼
transcript.whisperx[32].start 731.206
transcript.whisperx[32].end 759.74
transcript.whisperx[32].text 我覺得第一個要讓大家敢婚願意結婚因為結婚的生小孩的比例應該比沒有結婚的高但現在這個社會這個要有一種社會的氣氛跟共同認為說結婚生小孩那不是一個責任而已那是一個對人類來講是重要的一個延續那對我們來講政府要提供的是如果在多生育這個過程當中我們會加大各種補助的力道
transcript.whisperx[33].start 760.72
transcript.whisperx[33].end 777.578
transcript.whisperx[33].text 生出来的小孩我们协助他帮他能够教养在这个教养上面教育跟养育我们都要来协助我现在综合了非常多的视调我找了一个最浅显易懂的表格给您看你只要记得六个字
transcript.whisperx[34].start 778.138
transcript.whisperx[34].end 799.688
transcript.whisperx[34].text 就是薪資工時還有房價薪資工時房價這是我看了無數的調查還有無數的研究是生育族群沒有辦法跨向下一步的原因我們先姑且不論結不結婚因為你們等一下說12月要提出來的人工生殖法
transcript.whisperx[35].start 800.308
transcript.whisperx[35].end 826.305
transcript.whisperx[35].text 基本上你已經有一個婚姻脫鉤的這種概念在了你可能也覺得說我們沒有辦法永遠把婚姻跟生育綁在一起嘛結婚又沒有適合的年紀結婚有時候你可能在人生比較晚期遇到你願意結婚的人但是育齡的確是有他的年紀的限制嘛所以我請院長把這三個字放在心中薪資工時還有房價
transcript.whisperx[36].start 827.725
transcript.whisperx[36].end 851.834
transcript.whisperx[36].text 落成我們實際的政策我們現在就是育嬰的流停的彈性運用第二個我們推出婚育宅第三個對於生育的補助不到10萬的補到10萬這或許能夠稍微貼近委員所說的那至於說育嬰工時還有待遇是不是薪水薪資啦那薪資我們在全國在網上調的速度是逐年在加快的
transcript.whisperx[37].start 852.27
transcript.whisperx[37].end 875.955
transcript.whisperx[37].text 我們這邊因為講到了工時 薪資等等我們就請紅山部長可以先上來一下嗎這個是省紀部給你們的意見我們來看省紀部看了你們的少子化8年他就提到說育齡的族群逾五成未婚不利提高生育率這邊我問了很多人
transcript.whisperx[38].start 876.795
transcript.whisperx[38].end 899.78
transcript.whisperx[38].text 他們就說怎麼行政院的回應會是積極舉辦單身聯誼活動我在這邊想請教不好意思洪部長因為上次我們在委員會有幫你說生日快樂所以您也很受同仁的愛戴當時聽到同仁說您是現在部會的黃金單身漢我想問洪部長如果行政院辦了這個單身聯誼活動您會參加嗎
transcript.whisperx[39].start 905.151
transcript.whisperx[39].end 922.655
transcript.whisperx[39].text 我想這裡不討論我私人的問題那剛剛我講的因為你是勞動部部長我一直請院長把重心放在薪資房價還有工時請問這三點你會不會覺得是first priority要幫這個育齡族群解決的
transcript.whisperx[40].start 923.496
transcript.whisperx[40].end 946.115
transcript.whisperx[40].text 我想就我們在行政院其實在討論少子化的政策裡面的確都是在想怎麼樣給育齡的勞工有更多經濟上的支持那也包括怎麼讓這個職場更有彈性然後能夠去包容或兼顧照顧小孩或育兒的需求我想都是在這個方向上好 謝謝洪部長你可以請回座 謝謝
transcript.whisperx[41].start 947.296
transcript.whisperx[41].end 974.087
transcript.whisperx[41].text 那右邊他已經明確指出幾乎每一個調查房價跟薪資都是最重要的可是這邊行政院的回覆也是給予說他沒有明確的管考機構沒有明確的主責機構所以應該要怎麼改善這個我等等跟你討論如果沒有一個主責你說舉辦單身聯誼就是我們說的怨婚感生樂養我也曾經感慨過
transcript.whisperx[42].start 975.467
transcript.whisperx[42].end 999.736
transcript.whisperx[42].text 到行政院一年半了過去政府各級單位經常在辦那些大型的集團結婚我到行政院一年半了我從來沒有參加過中央跟地方所舉辦的大型集團結婚表示結婚這個事情在現在這個社會是嚴重被忽略的我們如果有一個力道讓大家能夠公開來響應這個事情再配合政府的政策能不能帶動我先跟你說現在所有的這些調查
transcript.whisperx[43].start 1000.916
transcript.whisperx[43].end 1025.931
transcript.whisperx[43].text 目前的年輕人認識人並不難認識人並不難但是我們要讓育齡的族群願意跨出下一步不管是結婚或是生育都好那再來我就是要跟您討論一些很具體的建議剛有提到有一群人很想生但是他必須要靠科技我們要幫忙他第二個族群就是說育齡的年齡你如何要讓他願意從0到11到22到3嘛
transcript.whisperx[44].start 1031.414
transcript.whisperx[44].end 1058.587
transcript.whisperx[44].text 這邊是我看了衛福部的政策我覺得可以依照我們目前的國情去做修改的我想請教一下衛福部部長您知道您的下轄有一個兒童及少年未來教育與發展帳戶嗎有是對中低收入戶的家庭的孩子在18歲以前的一個帳戶政府跟家長一起對存
transcript.whisperx[45].start 1059.926
transcript.whisperx[45].end 1085.351
transcript.whisperx[45].text 我跟院長簡單的說他其實就是針對中低收入戶的家庭一出生他就先幫你存一萬塊可是他會先問你要不要開戶並且你要去進行這個開戶的動作接下來你們就對存每個月500對存或是1000或是1250所以我算了一下如果你每個月都算到1250存滿18年這個孩子大概會有五四萬的第一桶金他可以幫助弱勢的孩子
transcript.whisperx[46].start 1085.851
transcript.whisperx[46].end 1108.303
transcript.whisperx[46].text 翻轉還有累積他的資本他不論去創業或是去讀書都好可是他從106年開辦至今七年多了你知道現在的開戶率是多少嗎大概是三萬三萬多戶綠因為我們的目標大概符合資格大概是五萬多那開戶的是三萬多
transcript.whisperx[47].start 1109.959
transcript.whisperx[47].end 1137.72
transcript.whisperx[47].text 就蠻慘的我們從一開始去做106年開戶率是30%然後到112年是60那我們再去分縣市比如說高雄他的開戶率大概只有五成而且這五成裡面有15%的人他最後沒有繼續存下去了這個政策利益非常的良好但是他沒有辦法走下去的原因我們也去調查了各地的社會局等等去訪查嘛
transcript.whisperx[48].start 1138.28
transcript.whisperx[48].end 1157.436
transcript.whisperx[48].text 第一 這個流程很繁瑣他必須在這個工作之餘主動去做這件事情然後第一統經進去嘛第二 他可能沒有足夠的誘因去續存好 那我就去看了世界各國其他的方法那在這邊就希望給院長一個建議
transcript.whisperx[49].start 1159.096
transcript.whisperx[49].end 1179.137
transcript.whisperx[49].text 新加坡還有英國都有做這樣子的兒童專門的儲蓄計畫以及照顧新加坡是這樣而且他這個月還有一個新的政策推出意思是說只要你不分你是哪一種的家庭你一生出一個小孩我就問你要不要幫你開戶所以他的開戶率是97%
transcript.whisperx[50].start 1181.578
transcript.whisperx[50].end 1204.55
transcript.whisperx[50].text OK 开完了以后他就先帮你存5000的新币进去当这个宝宝的第一桶金不管你是要怎么付如果你生第一胎最后两个人对存可以增加4000新币如果你觉得他帮助到你了你要生第二胎第二个宝宝两个人对存可以存到多7000的新币
transcript.whisperx[51].start 1205.35
transcript.whisperx[51].end 1220.95
transcript.whisperx[51].text 第三胎他們現在也是面臨非常嚴峻如何讓二變三第三胎他第一桶金直接從五千變一萬五千變一萬以外呢你只要跟他對存最多可以存到九千新幣這樣子你就直接把
transcript.whisperx[52].start 1221.647
transcript.whisperx[52].end 1245.029
transcript.whisperx[52].text 政府花錢給津貼給錢直接昇華到一個人口戰略的地位你也可以從社會救助的概念變成一個人口永續的概念那當然除了這個對存的概念以外他有限制他的用途所以0到12歲我只能用在醫療或者是教育以及他的疫苗配眼鏡等等的
transcript.whisperx[53].start 1245.569
transcript.whisperx[53].end 1272.001
transcript.whisperx[53].text 但是13到30歲新加坡就把它轉換到另外一個帳戶叫做中學後教育戶頭所以你有多的錢你就可以把它運用到直訓啊或者是一些檢驗費啊或是償還學貸或是你想創業都可以31歲以後呢他再把它轉到一個公積金普通戶頭這個院長可能就很熟了用在他之後退休或者是這些公屋租房房屋等等的
transcript.whisperx[54].start 1272.521
transcript.whisperx[54].end 1298.77
transcript.whisperx[54].text 所以政府出錢可以一起幫你養大一個小孩這就變成一個可吸氏可累積而且永續的兒童帳戶那接下來我想要告訴院長的是說為什麼我看了英國又看了新加坡我覺得新加坡這個方式非常的適用台灣是因為新加坡跟台灣的家長很像院長我不知道你有沒有看到新聞雖然我們少子化可是你猜補習班是越來越多還越來越少應該是多吧
transcript.whisperx[55].start 1301.829
transcript.whisperx[55].end 1326.015
transcript.whisperx[55].text 對 答案是多就是由於新加坡的家長跟台灣的家長是很願意把這些資金花在教育上的他們希望可以藉此反轉階級等等所以第一個你限制他這個用在教育跟醫療是非常的有正當性的第二呢我們兩國的人民啊都喜歡做這種無風險的投資而且是高報酬
transcript.whisperx[56].start 1326.835
transcript.whisperx[56].end 1354.313
transcript.whisperx[56].text 所以當你已經確定是無風險了政府存一塊你存一塊政府就幫你存一塊這個單單靠撒錢或者是發津貼你就會創造出一個更大的資金值所以我們看一下圖它第一個它讓你方便政府直接幫你開碼第二個是全部都有不只是中低收入戶全民都有我覺得我們現在也已經到這個程度了
transcript.whisperx[57].start 1355.194
transcript.whisperx[57].end 1370.792
transcript.whisperx[57].text 我左下角有順便幫你分析假使你想要落實比如說我剛講的15%的家長他不願意繼續存他就可以1比2或是1比1.5用這樣子的誘因鼓勵他幫他的小孩累積低統計碼這是第一點
transcript.whisperx[58].start 1372.814
transcript.whisperx[58].end 1400.967
transcript.whisperx[58].text 那第二點新加坡他們是會做代鈔投資以免這些錢等到他18歲等到他12歲隨著通膨就蒸發掉了那這一點我是覺得院長你可以去跟財政部等等其他的部門做討論看這麼大的一個資金池是不是可以也讓政府還有家長做更大的運用那再來這個就是幫你想到的一個
transcript.whisperx[59].start 1403.479
transcript.whisperx[59].end 1423.19
transcript.whisperx[59].text 口號本來衛福部只是一個救助的精神然後我希望院長在這邊可以採納這個意見變成全民而且兒童未來的資產他可以大幅的降低育兒的焦慮並且去提升生育的意願現在
transcript.whisperx[60].start 1424.651
transcript.whisperx[60].end 1440.104
transcript.whisperx[60].text 你要讓0變1 1變2 2變3就是要讓他後面是完全沒有負擔的我知道目前的政策可能你已經在想我如何提高津貼我如何提高補助可是這是一個更加永續的概念我也幫你算了一下
transcript.whisperx[61].start 1441.892
transcript.whisperx[61].end 1463.267
transcript.whisperx[61].text 你不用擔心預算會失控一年最多最多如果1比1或是1比2花的是635億但你現在離開的嘛畢業的18歲的是20萬可是你進入這個你必須編預算的人可能現在是11萬或是明年的10萬你只要稍微增加一點點都不會影響到你的預算太多
transcript.whisperx[62].start 1463.787
transcript.whisperx[62].end 1476.413
transcript.whisperx[62].text 所以他是一個隨時間至少最近十年是減輕負擔的倒吃甘蔗的計畫並且風險完全可控的優質投資我想知道院長有沒有考慮把這個在三個月內提出可行性評估
transcript.whisperx[63].start 1477.418
transcript.whisperx[63].end 1500.548
transcript.whisperx[63].text 好謝謝委員 委員剛剛的這段話我想我們有三個共同點第一個你會看到兒童未來儲蓄賬戶的2.0表示您知道了1.0的時候他有一些執行上的困難所以偏低的這個開戶率偏低我們也看到了包括他的對象等等所以我們共同的第二個我剛說的從多生育
transcript.whisperx[64].start 1501.198
transcript.whisperx[64].end 1525.419
transcript.whisperx[64].text 助教助養育到幫教育三個我們會把力道加在多生育這個部分所以我們從0到17歲會有一個階段性不同的那雖然我們在上學之後小學以後到高中大家都有學費免學費的補助了而且大學以後他又有私立大學的補助但是我們認為在教育這個階段我們還是可以多下一些補助的政策給他們所以從
transcript.whisperx[65].start 1526.906
transcript.whisperx[65].end 1547.094
transcript.whisperx[65].text 最小的書生到基本的國民教育到未來大學我們都有相關的而且0到6歲這個托育的政策現在我們也極力在推所以三項我們在推了這是第二個我們共通點 第三個這些儲蓄的帳戶不要讓他隨著物價而變成價值減少我們考慮說那我們現在有一個TISA
transcript.whisperx[66].start 1548.257
transcript.whisperx[66].end 1572.23
transcript.whisperx[66].text 我們有一個TISA的制度也可以讓他去做代操所以我們有這個共通點我希望我們在未來推動的過程當中衛部也有機會向委員來多請教把外國的一些經歷跟我們來做一些對接也許我們可以在我們現在設想的現在的這個方式裡面能夠讓他比較更為精緻一點我們最後講了這麼多剛琳琳總總不管您提到育兒這個房屋等等的
transcript.whisperx[67].start 1573.05
transcript.whisperx[67].end 1589.774
transcript.whisperx[67].text 其實啊都橫跨了11個機關那這個已經無數的委員詢問過您了這個11個機關來整合是一個非常不容易的事情變成大家各自做各自的我給你看其他國家的做法像日本
transcript.whisperx[68].start 1590.094
transcript.whisperx[68].end 1613.164
transcript.whisperx[68].text 是直接對行政院院長韓國是拉高2024年6月他們就宣布他們面臨一個很嚴重的人口危機所以類似我們現在總統府附設的委員會他們是直接總統府當委員長下轄一個少子化跟高齡的委員會那新加坡也是一樣拉到部級的機關這個是您上次答覆我還有答覆其他委員你就說
transcript.whisperx[69].start 1614.625
transcript.whisperx[69].end 1623.553
transcript.whisperx[69].text 用人口政策來加強研究跟劉敬欽主委開過幾次會議我們現在沒有把它定義成一個固定的形式我們會持續加強來針對但
transcript.whisperx[70].start 1626.295
transcript.whisperx[70].end 1654.416
transcript.whisperx[70].text 開城佈公我就已經說了13萬保衛戰瞬間變成11萬目前可不可以請你回去跟總統報告我們有兩個建議第一個是不是在現行的三大任務型委員會再多設一個委員會由總統來直轄第二個國發會拉出來你直接再成立一個二級機關少子女化人口對策委員會來主責這樣子才可以跟上其他正在應付這個國家的國際潮流
transcript.whisperx[71].start 1655.24
transcript.whisperx[71].end 1668.828
transcript.whisperx[71].text 第一個我會向總統轉達委員的意見讓總統去做參考再來我們雖然現在是由政委來負責包括國發會也包括陳時中政委葉政委跟陳時中政委兩位我們都隨時在討論這個議題所以剛剛委員所說的我剛剛說過這個聲譽
transcript.whisperx[72].start 1676.116
transcript.whisperx[72].end 1698.267
transcript.whisperx[72].text 養育教育這三個階段的不同的力道的補助也都是在討論過程當中的表示說我是本人是參與這個討論的我也了解這個過程的等到要做重大決定的時候我讀了聽部會跟政委的建議之後我當然會再做重大的決定這個模式如果我們這個政策決定了要如何推動了那麼需要一個什麼樣的機構或是怎麼樣一個
transcript.whisperx[73].start 1699.167
transcript.whisperx[73].end 1710.713
transcript.whisperx[73].text 更高層次的會那我們會隨這個程序那我可以跟您要一個月內的書面報告您未來是由您主責那大概這個頻率跟哪一些部會會開這些會呢
transcript.whisperx[74].start 1714.375
transcript.whisperx[74].end 1731.181
transcript.whisperx[74].text 你可以提出來嗎你應該是會固定開這些會而且要有一個主責機關吧有一個主責機關你才有辦法去協調說這個部門提出來的東西到底有沒有效資源到底有沒有完整的去配置嘛跟委員報告政務委員跟我本身的開會每個禮拜都在進行
transcript.whisperx[75].start 1731.961
transcript.whisperx[75].end 1751.452
transcript.whisperx[75].text 這是不同的議題那我會把這個議題當它變成一個比較對這個議題你需要規律的去監督還有monitor最後我是不太好意思用未還的版面來做這個可是因為我沒有抽到政黨總質詢這是我們高雄一個五甲國小的運動場他是專門針對專項的桌球去培訓桌球選手
transcript.whisperx[76].start 1754.333
transcript.whisperx[76].end 1771.249
transcript.whisperx[76].text 我個人去過一次跟教育部去兩次當時運動部還沒有成立教育部就說這個未來是運動部管後來運動部成立了以後又跟運動部去了第四次所有的小選手在那邊排排坐而且幫這個次長搭了一個講台
transcript.whisperx[77].start 1771.849
transcript.whisperx[77].end 1790.946
transcript.whisperx[77].text 所有的會看會議記錄我們都有留影像等等的結果運動部次長講了一個讓小朋友真的寒心到極點他上台他就說今天是因為委員的面子我來這邊但是這個場館跟我一點關係都沒有但我來了我看一下我覺得好可以補助一下地板
transcript.whisperx[78].start 1792.199
transcript.whisperx[78].end 1816.348
transcript.whisperx[78].text 我給你看一下這個圖這個場館他專門訓練桌球選手也會國際比賽結果你補助了地板天花板在漏水地板不是一樣壞掉你補助了地板窗戶因為地震都已經歪斜了還是沒有辦法最後我們還不得不開一個協調會我回到前一張為什麼需要院長回去找運動部還有教育部去溝通
transcript.whisperx[79].start 1817.248
transcript.whisperx[79].end 1839.774
transcript.whisperx[79].text 像現在這樣子在學校裡面的運動專項運動項目的場館運動部最後回覆我的居然是用教育部在委員會答詢其他委員的意見當作他的回覆說明他的意思是說基層訓練站屬運動部但所使用場地如果共同教育屬性大由教育部主責這樣子對嗎
transcript.whisperx[80].start 1841.431
transcript.whisperx[80].end 1867.479
transcript.whisperx[80].text 原則上是在教育學校教育單位裡面的運動設施還是由教育部來督促各級學校來進行維護的但是如果他有一個特殊的功能或是比賽要用的或是其他的因素運動部未來要予以協助補助並非不可能那所以市長講的可能比較簡略學校的設施由教育部的
transcript.whisperx[81].start 1868.203
transcript.whisperx[81].end 1893.44
transcript.whisperx[81].text 體育署來做補助這是目前的政策那有需要的時候我認為運動部應該也會跟教育部來做溝通當他有特別的這個這個傑出的表現或是特別的競賽需求的時候他就會變成一個社區型的或是更高成績的那個就是由運動部來主導我相信不只高雄一定全國各地只要座落在教育環境的專項運動場館會面臨到一模一樣的問題但
transcript.whisperx[82].start 1897.927
transcript.whisperx[82].end 1897.987
transcript.whisperx[82].text 好 謝謝曾經