iVOD / 165934

Field Value
IVOD_ID 165934
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165934
日期 2025-11-26
會議資料.會議代碼 委員會-11-4-26-13
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-11-26T12:25:09+08:00
結束時間 2025-11-26T12:33:01+08:00
影片長度 00:07:52
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f5b16bee5fdcc5c1e31615e41cb94cabba7bab90aa47d999a94b05c965ca2aff9aa7beedfef2e22d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 12:25:09 - 12:33:01
會議時間 2025-11-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第13次全體委員會議(事由:邀請衛生福利部部長、財政部及環境部就「蘇丹紅化學原料竄臺,政府如何強化進口把關及後市場查驗,以維護國人健康安全」進行專題報告,並備質詢。 邀請衛生福利部部長、司法院、法務部、勞動部及內政部警政署就「國內醫師、護理人力需求及分布暨防止醫療暴力措施及改善情形」進行專題報告,並備質詢。 (討論事項) 審查 一、委員柯志恩等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 二、委員林月琴等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 三、委員王育敏等16人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 四、委員顏寬恒等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 五、委員萬美玲等16人擬具「醫療法第一百零六條條文修正草案」案。 六、委員顏寬恒等16人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 七、委員邱若華等17人擬具「醫療法第一百零六條條文修正草案」案。 八、委員陳菁徽等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 九、委員魯明哲等18人擬具「醫療法第一百零六條條文修正草案」案。 十、委員王鴻薇等20人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 十一、委員林淑芬等25人擬具「醫療法增訂第一百條之一條文草案」案。 十二、委員盧縣一等16人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 十三、委員羅廷瑋等21人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 十四、委員廖偉翔等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 【第十四案,如經復議,則不予審查】【專題報告及討論事項綜合詢答,討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.73971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.89034375
transcript.pyannote[1].end 9.16034375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.64534375
transcript.pyannote[2].end 11.67471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 12.07971875
transcript.pyannote[3].end 15.62346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.15034375
transcript.pyannote[4].end 19.74096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 20.31471875
transcript.pyannote[5].end 21.05721875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 23.25096875
transcript.pyannote[6].end 24.98909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 25.81596875
transcript.pyannote[7].end 27.04784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 27.84096875
transcript.pyannote[8].end 30.16971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 30.67596875
transcript.pyannote[9].end 33.29159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 33.78096875
transcript.pyannote[10].end 34.67534375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 35.01284375
transcript.pyannote[11].end 35.24909375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 35.24909375
transcript.pyannote[12].end 37.61159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 38.10096875
transcript.pyannote[13].end 41.81346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 41.83034375
transcript.pyannote[14].end 41.84721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 41.84721875
transcript.pyannote[15].end 62.94096875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 61.75971875
transcript.pyannote[16].end 63.71721875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 63.71721875
transcript.pyannote[17].end 64.59471875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 63.81846875
transcript.pyannote[18].end 66.18096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 64.67909375
transcript.pyannote[19].end 85.78971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 85.19909375
transcript.pyannote[20].end 87.62909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 87.64596875
transcript.pyannote[21].end 90.37971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 90.37971875
transcript.pyannote[22].end 90.39659375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 90.93659375
transcript.pyannote[23].end 91.40909375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 91.40909375
transcript.pyannote[24].end 91.49346875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 91.96596875
transcript.pyannote[25].end 91.99971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 91.99971875
transcript.pyannote[26].end 95.71221875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 94.80096875
transcript.pyannote[27].end 97.77096875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 96.04971875
transcript.pyannote[28].end 113.59971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 111.84471875
transcript.pyannote[29].end 112.57034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 113.48159375
transcript.pyannote[30].end 116.67096875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 117.31221875
transcript.pyannote[31].end 122.83034375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 123.57284375
transcript.pyannote[32].end 123.97784375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 124.73721875
transcript.pyannote[33].end 147.95721875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 139.41846875
transcript.pyannote[34].end 139.90784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 146.62409375
transcript.pyannote[35].end 148.46346875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 148.69971875
transcript.pyannote[36].end 151.85534375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 151.63596875
transcript.pyannote[37].end 155.53409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 151.87221875
transcript.pyannote[38].end 151.88909375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 152.09159375
transcript.pyannote[39].end 152.56409375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 155.75346875
transcript.pyannote[40].end 159.82034375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 156.39471875
transcript.pyannote[41].end 156.69846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 160.49534375
transcript.pyannote[42].end 161.33909375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 162.21659375
transcript.pyannote[43].end 166.41846875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 164.57909375
transcript.pyannote[44].end 166.36784375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 166.38471875
transcript.pyannote[45].end 178.38284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 168.86534375
transcript.pyannote[46].end 169.28721875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 170.63721875
transcript.pyannote[47].end 170.94096875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 172.44284375
transcript.pyannote[48].end 173.20221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 177.84284375
transcript.pyannote[49].end 178.39971875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 178.39971875
transcript.pyannote[50].end 179.20971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 179.54721875
transcript.pyannote[51].end 179.56409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 179.56409375
transcript.pyannote[52].end 185.03159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 179.91846875
transcript.pyannote[53].end 180.13784375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 185.55471875
transcript.pyannote[54].end 185.97659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 185.97659375
transcript.pyannote[55].end 187.96784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 187.96784375
transcript.pyannote[56].end 190.44846875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 189.16596875
transcript.pyannote[57].end 190.41471875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 190.93784375
transcript.pyannote[58].end 200.38784375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 191.19096875
transcript.pyannote[59].end 192.05159375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 200.82659375
transcript.pyannote[60].end 200.97846875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 202.07534375
transcript.pyannote[61].end 204.67409375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 204.01596875
transcript.pyannote[62].end 207.54284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 208.69034375
transcript.pyannote[63].end 209.06159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 209.06159375
transcript.pyannote[64].end 213.34784375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 209.16284375
transcript.pyannote[65].end 209.90534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 213.70221875
transcript.pyannote[66].end 214.02284375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 214.02284375
transcript.pyannote[67].end 214.96784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 214.17471875
transcript.pyannote[68].end 214.57971875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 214.96784375
transcript.pyannote[69].end 215.05221875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 215.05221875
transcript.pyannote[70].end 215.08596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 215.08596875
transcript.pyannote[71].end 232.34909375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 215.11971875
transcript.pyannote[72].end 219.70971875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 227.43846875
transcript.pyannote[73].end 234.54284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 235.85909375
transcript.pyannote[74].end 236.80409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 236.34846875
transcript.pyannote[75].end 236.61846875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 237.09096875
transcript.pyannote[76].end 249.59534375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 239.06534375
transcript.pyannote[77].end 240.49971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 244.95471875
transcript.pyannote[78].end 247.24971875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 247.80659375
transcript.pyannote[79].end 248.86971875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 249.51096875
transcript.pyannote[80].end 250.30409375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 250.77659375
transcript.pyannote[81].end 256.98659375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 257.29034375
transcript.pyannote[82].end 258.50534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 259.18034375
transcript.pyannote[83].end 262.26846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 261.01971875
transcript.pyannote[84].end 261.52596875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 262.26846875
transcript.pyannote[85].end 262.30221875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 262.30221875
transcript.pyannote[86].end 262.38659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 262.38659375
transcript.pyannote[87].end 267.90471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 263.75346875
transcript.pyannote[88].end 264.20909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 266.28471875
transcript.pyannote[89].end 267.19596875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 267.48284375
transcript.pyannote[90].end 267.65159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 267.90471875
transcript.pyannote[91].end 268.81596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 269.33909375
transcript.pyannote[92].end 271.78596875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 272.30909375
transcript.pyannote[93].end 278.24909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 278.43471875
transcript.pyannote[94].end 282.09659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 282.23159375
transcript.pyannote[95].end 286.45034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 286.77096875
transcript.pyannote[96].end 292.74471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 292.86284375
transcript.pyannote[97].end 295.63034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 296.05221875
transcript.pyannote[98].end 298.09409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 298.17846875
transcript.pyannote[99].end 298.46534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 298.68471875
transcript.pyannote[100].end 304.77659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 305.58659375
transcript.pyannote[101].end 305.62034375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 305.62034375
transcript.pyannote[102].end 311.23971875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 310.21034375
transcript.pyannote[103].end 316.87596875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 317.44971875
transcript.pyannote[104].end 319.50846875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 320.21721875
transcript.pyannote[105].end 325.29659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 325.07721875
transcript.pyannote[106].end 332.75534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 333.46409375
transcript.pyannote[107].end 335.37096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 335.75909375
transcript.pyannote[108].end 338.07096875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 338.64471875
transcript.pyannote[109].end 339.55596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 339.99471875
transcript.pyannote[110].end 342.15471875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 343.23471875
transcript.pyannote[111].end 344.17971875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 344.39909375
transcript.pyannote[112].end 344.90534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 345.76596875
transcript.pyannote[113].end 347.03159375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 347.99346875
transcript.pyannote[114].end 348.92159375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 349.93409375
transcript.pyannote[115].end 352.53284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 353.42721875
transcript.pyannote[116].end 355.40159375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 355.75596875
transcript.pyannote[117].end 358.13534375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 358.94534375
transcript.pyannote[118].end 362.16846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 363.14721875
transcript.pyannote[119].end 363.50159375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 363.67034375
transcript.pyannote[120].end 372.69846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 365.61096875
transcript.pyannote[121].end 366.47159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 373.10346875
transcript.pyannote[122].end 385.52346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 384.24096875
transcript.pyannote[123].end 384.62909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 386.40096875
transcript.pyannote[124].end 391.73346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 392.59409375
transcript.pyannote[125].end 393.60659375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 393.82596875
transcript.pyannote[126].end 395.26034375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 396.44159375
transcript.pyannote[127].end 397.87596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 399.15846875
transcript.pyannote[128].end 400.99784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 401.52096875
transcript.pyannote[129].end 403.12409375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 402.73596875
transcript.pyannote[130].end 402.80346875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 403.32659375
transcript.pyannote[131].end 403.61346875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 404.15346875
transcript.pyannote[132].end 404.47409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 404.87909375
transcript.pyannote[133].end 405.77346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 405.77346875
transcript.pyannote[134].end 405.82409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 405.95909375
transcript.pyannote[135].end 408.32159375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 408.57471875
transcript.pyannote[136].end 412.43909375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 413.94096875
transcript.pyannote[137].end 415.05471875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 414.48096875
transcript.pyannote[138].end 414.51471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 415.05471875
transcript.pyannote[139].end 417.09659375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 415.07159375
transcript.pyannote[140].end 415.12221875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 416.99534375
transcript.pyannote[141].end 417.58596875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 417.16409375
transcript.pyannote[142].end 425.02784375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 419.42534375
transcript.pyannote[143].end 419.67846875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 425.02784375
transcript.pyannote[144].end 425.34846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 425.28096875
transcript.pyannote[145].end 433.26284375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 425.83784375
transcript.pyannote[146].end 426.68159375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 433.87034375
transcript.pyannote[147].end 434.79846875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 435.62534375
transcript.pyannote[148].end 437.68409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 438.08909375
transcript.pyannote[149].end 440.23221875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 440.58659375
transcript.pyannote[150].end 441.76784375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 441.97034375
transcript.pyannote[151].end 443.30346875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 443.82659375
transcript.pyannote[152].end 446.47596875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 447.35346875
transcript.pyannote[153].end 448.04534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 448.04534375
transcript.pyannote[154].end 448.06221875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 448.06221875
transcript.pyannote[155].end 448.09596875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 448.36596875
transcript.pyannote[156].end 449.68221875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 448.43346875
transcript.pyannote[157].end 449.58096875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 449.68221875
transcript.pyannote[158].end 449.91846875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 449.91846875
transcript.pyannote[159].end 450.03659375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 450.03659375
transcript.pyannote[160].end 450.05346875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 450.05346875
transcript.pyannote[161].end 451.20096875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 450.08721875
transcript.pyannote[162].end 450.86346875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 451.99409375
transcript.pyannote[163].end 460.44846875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 461.20784375
transcript.pyannote[164].end 462.59159375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 463.06409375
transcript.pyannote[165].end 463.92471875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 464.24534375
transcript.pyannote[166].end 464.71784375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 465.59534375
transcript.pyannote[167].end 466.59096875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 466.96221875
transcript.pyannote[168].end 468.07596875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 469.07159375
transcript.pyannote[169].end 470.99534375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 471.58596875
transcript.pyannote[170].end 471.68721875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 471.68721875
transcript.pyannote[171].end 471.82221875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 471.95721875
transcript.pyannote[172].end 472.05846875
transcript.whisperx[0].start 11.035
transcript.whisperx[0].end 26.865
transcript.whisperx[0].text 謝謝主席有請這個衛福部的司部長司部長請賴委員好部長你好這個我記得賴清德總統在今年初有提到
transcript.whisperx[1].start 27.881
transcript.whisperx[1].end 41.659
transcript.whisperx[1].text 他說對醫院有存在不同工同酬他想要不同工不同酬這個事情使用衛護部怎麼做你怎麼因應呢
transcript.whisperx[2].start 43.161
transcript.whisperx[2].end 61.095
transcript.whisperx[2].text 這不同供不同的概念是這樣就是不同的處置之間以我們過去有個RVRVS就是說以一個基本的手術為標準然後看看投入的情形不同然後我們就有不同的支付標準所以這個是一種這個相對值的概念這不同供不同種
transcript.whisperx[3].start 61.955
transcript.whisperx[3].end 90.225
transcript.whisperx[3].text 這是總統的一個政策宣示你要落實啊你怎麼落實所以就要去調這個支付標準所以我們就先從當然這個很大支付標準幾千項所以我們就先從人力螺至現在在困難的急重症我們要留在醫院的優先去調整所以我們已經陸續調了不少個包含手術類的包含這個你大概這個因為賴總統的政策宣示你大概什麼時候可以調整完
transcript.whisperx[4].start 90.985
transcript.whisperx[4].end 113.815
transcript.whisperx[4].text 什麼時候這個會一直在調整這個沒有什麼叫調整這樣賴總統不滿意他講話講這麼大聲結果你都不落實會一直在落實當中譬如說像小兒科我們也調過一批了像去年我們是調這個新生兒跟重重度病房明年我們又編了小兒科又會繼續調你繼續弄第二個問題就是
transcript.whisperx[5].start 117.416
transcript.whisperx[5].end 145.516
transcript.whisperx[5].text 现在那个病床的我们不叫开工率了就真正使用率多少病床我们有一种叫做占床率占床率一种是叫做这个开床率使用率跟占床率有点不一样就是说我们有一个叫做许可床数许可床数但是真正开出来的那几成如果是以占床率来讲医学中心的占床率大概是近9成
transcript.whisperx[6].start 146.657
transcript.whisperx[6].end 159.384
transcript.whisperx[6].text 我記得大概只有八成而已不是嗎沒有沒有 近九成八十幾%近九成 占床率這裡面有一個很重要的原因是因為護理是不夠啊請問護理 念完護理真的做護理師的有幾個幾%
transcript.whisperx[7].start 162.305
transcript.whisperx[7].end 184.79
transcript.whisperx[7].text 七成有沒有 七成都沒有啊取得護理執照的 就是有護理證書的有護理執照去從事護理的比例都高有直登的 直登率是差不多63%對啊 很低啊 你跟國外來比的話 你的稅稅高啊其實對護理師來講 我覺得普遍加薪啦
transcript.whisperx[8].start 185.615
transcript.whisperx[8].end 207.459
transcript.whisperx[8].text 有要給他普遍加薪啊有有有現在就是朝怎麼有呢沒有啊有有有你怎麼加我們一方面像這個我們調整的你可以全面的護理師不管他在什麼場合每個月加一萬要加在哪一個地方因為護理的我們算過啊只有大概兩百多億啊也不是很多啊
transcript.whisperx[9].start 208.68
transcript.whisperx[9].end 233.15
transcript.whisperx[9].text 對不對 每個人加一萬護理的工作性質其實還是蠻不一樣的樣態還是多啦有時候在ICU他有時候在一般的病床我們現在是已經今年現在就調整了這個護理費25億啦 四年會調100億太少了 一年25億一年要加一個零啦一年給他調250億還差不多勒25億太少啦
transcript.whisperx[10].start 237.411
transcript.whisperx[10].end 257.963
transcript.whisperx[10].text 這個我們有很多的措施還有這個夜班津貼我們也加了四十幾億然後再加338護病筆我們有六種不同的方案啦別忘了趙少康那時候選副總統他在講啦這個護理師每個月每人每月加一萬大家歡迎到哪裡
transcript.whisperx[11].start 259.344
transcript.whisperx[11].end 285.776
transcript.whisperx[11].text 你們就不敢落實他今天如果選上的話就落實啦跟你講我們要這個長期的來做啦我們各種不同的措施最後一個問題喔這個蘇丹紅怎麼會都進不掉啊怎麼會去年是食物的問題今年又是化妝品的問題到底是什麼蘇丹紅到底是什麼你們請問這個來源什麼地方境外輸入是不是對 境外輸入的這是從海外進來的從什麼地方
transcript.whisperx[12].start 287.077
transcript.whisperx[12].end 304.575
transcript.whisperx[12].text 這個是一個新加坡商不過來源的話要再查清楚它會不會是中國來的因為一開始爆發是在中國這個禁不掉 去年是食品對不對這個什麼辣椒粉 調味料 醬料等等的
transcript.whisperx[13].start 305.629
transcript.whisperx[13].end 332.589
transcript.whisperx[13].text 對不對對 他是把他摻成色素啦他把他當成色素濁色型這樣這個問題就很嚴重可是我們怎麼感覺你都進不了蘇丹紅永遠都很紅怎麼會這個樣子進不掉你們你現在看它是化妝品請問對食品有沒有要加上經驗食品之前已經查過一波了沒有問題沒有問題的食品已經查完了那現在是第一次發現用在化妝品上面
transcript.whisperx[14].start 333.493
transcript.whisperx[14].end 361.118
transcript.whisperx[14].text 好最後一個這個剛剛看到那個賴總統最新講話說要提1.25兆的特別預算要加強等等等等怎麼樣就是說要打仗了加強這個1.25兆我就請教你你們衛福部有沒有對說如果台灣發生戰爭如何維持正常的醫療體系運作
transcript.whisperx[15].start 363.168
transcript.whisperx[15].end 391.12
transcript.whisperx[15].text 有沒有我們大概也有對於緊急狀況下的韌性醫療那從這個醫療的三層級這個急救責任醫院社區急救站到全民互助那麼以及這個藥品的供應韌性我們都有相對應的我具體建議了賴總統提的1.25兆7年要花這麼多錢平均一年大概2000億
transcript.whisperx[16].start 392.645
transcript.whisperx[16].end 412.314
transcript.whisperx[16].text 外務部要去爭取一點經費啦怎麼樣能暫時能夠維持你一定的醫療韌性就醫療韌性要加進來對好你沒想過這個問題我們是目前已經有一個計畫不是不是 他現在一點懊悼你有沒有角色扮演啦我問你這個啦
transcript.whisperx[17].start 414.005
transcript.whisperx[17].end 425.535
transcript.whisperx[17].text 我們再進一步在行政院會你去爭取啊這個醫療打仗的時候醫療要正常運作啊醫療韌性 現在什麼都講韌性醫療韌性非常重要 對不對要給你錢啊要去爭取這筆預算1.25兆 7年1.25兆一年1800億左右很大一筆喔
transcript.whisperx[18].start 435.677
transcript.whisperx[18].end 446.317
transcript.whisperx[18].text 對不對 我們要這個衛務部要蓋一角啊這個要爭取一點 你這個打仗的時候這個護理師不能給他跑掉啊醫生不能給他跑掉啊
transcript.whisperx[19].start 447.401
transcript.whisperx[19].end 467.698
transcript.whisperx[19].text 你同意嗎你都沒有想過這個問題你都沒有想過這個問題我跟你講啦 那個錢都不知道怎麼用我跟你講你要尬一腳啊你要說我這個衛福部很重要啊這個機會他一定澳照提高醫療任性給護理師加薪這比什麼更好比你說的更好好 謝謝委員的提醒