iVOD / 165932

Field Value
IVOD_ID 165932
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165932
日期 2025-11-26
會議資料.會議代碼 委員會-11-4-26-13
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-11-26T11:53:48+08:00
結束時間 2025-11-26T12:05:04+08:00
影片長度 00:11:16
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f5b16bee5fdcc5c193d1e926d4dc224bba7bab90aa47d999a94b05c965ca2affb8d54088b54cead65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 涂權吉
委員發言時間 11:53:48 - 12:05:04
會議時間 2025-11-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第13次全體委員會議(事由:邀請衛生福利部部長、財政部及環境部就「蘇丹紅化學原料竄臺,政府如何強化進口把關及後市場查驗,以維護國人健康安全」進行專題報告,並備質詢。 邀請衛生福利部部長、司法院、法務部、勞動部及內政部警政署就「國內醫師、護理人力需求及分布暨防止醫療暴力措施及改善情形」進行專題報告,並備質詢。 (討論事項) 審查 一、委員柯志恩等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 二、委員林月琴等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 三、委員王育敏等16人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 四、委員顏寬恒等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 五、委員萬美玲等16人擬具「醫療法第一百零六條條文修正草案」案。 六、委員顏寬恒等16人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 七、委員邱若華等17人擬具「醫療法第一百零六條條文修正草案」案。 八、委員陳菁徽等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 九、委員魯明哲等18人擬具「醫療法第一百零六條條文修正草案」案。 十、委員王鴻薇等20人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 十一、委員林淑芬等25人擬具「醫療法增訂第一百條之一條文草案」案。 十二、委員盧縣一等16人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 十三、委員羅廷瑋等21人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 十四、委員廖偉翔等17人擬具「醫療法第二十四條及第一百零六條條文修正草案」案。 【第十四案,如經復議,則不予審查】【專題報告及討論事項綜合詢答,討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.22909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.39784375
transcript.pyannote[1].end 2.24159375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 2.24159375
transcript.pyannote[2].end 2.44409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 2.44409375
transcript.pyannote[3].end 2.98409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 2.98409375
transcript.pyannote[4].end 3.08534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 3.45659375
transcript.pyannote[5].end 5.71784375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 10.13909375
transcript.pyannote[6].end 13.00784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 13.21034375
transcript.pyannote[7].end 13.88534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 15.10034375
transcript.pyannote[8].end 16.85534375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.87221875
transcript.pyannote[9].end 17.85096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 18.15471875
transcript.pyannote[10].end 19.03221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 20.09534375
transcript.pyannote[11].end 23.82471875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 24.28034375
transcript.pyannote[12].end 25.05659375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 25.09034375
transcript.pyannote[13].end 26.96346875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 27.13221875
transcript.pyannote[14].end 27.14909375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 27.89159375
transcript.pyannote[15].end 29.56221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 29.59596875
transcript.pyannote[16].end 32.24534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 32.46471875
transcript.pyannote[17].end 33.73034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 34.11846875
transcript.pyannote[18].end 36.85221875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 37.27409375
transcript.pyannote[19].end 40.76721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 41.30721875
transcript.pyannote[20].end 43.75409375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 43.87221875
transcript.pyannote[21].end 45.88034375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 46.08284375
transcript.pyannote[22].end 49.47471875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 49.74471875
transcript.pyannote[23].end 53.03534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 53.45721875
transcript.pyannote[24].end 58.36784375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 58.60409375
transcript.pyannote[25].end 58.97534375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 58.97534375
transcript.pyannote[26].end 81.11534375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 81.67221875
transcript.pyannote[27].end 81.70596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 81.70596875
transcript.pyannote[28].end 84.60846875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 84.96284375
transcript.pyannote[29].end 87.79784375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 87.69659375
transcript.pyannote[30].end 88.45596875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 88.28721875
transcript.pyannote[31].end 89.78909375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 90.34596875
transcript.pyannote[32].end 95.61096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 95.93159375
transcript.pyannote[33].end 97.50096875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 97.92284375
transcript.pyannote[34].end 99.93096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 100.16721875
transcript.pyannote[35].end 105.73596875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 105.73596875
transcript.pyannote[36].end 126.86346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 126.82971875
transcript.pyannote[37].end 130.27221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 130.37346875
transcript.pyannote[38].end 132.73596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 132.07784375
transcript.pyannote[39].end 133.09034375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 132.95534375
transcript.pyannote[40].end 134.35596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 134.47409375
transcript.pyannote[41].end 135.67221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 136.00971875
transcript.pyannote[42].end 139.99221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 140.27909375
transcript.pyannote[43].end 143.36721875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 142.57409375
transcript.pyannote[44].end 142.59096875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 142.86096875
transcript.pyannote[45].end 142.92846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 143.68784375
transcript.pyannote[46].end 146.74221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 146.79284375
transcript.pyannote[47].end 148.53096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 148.86846875
transcript.pyannote[48].end 149.29034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 149.94846875
transcript.pyannote[49].end 153.99846875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 154.11659375
transcript.pyannote[50].end 154.53846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 155.51721875
transcript.pyannote[51].end 156.74909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 157.01909375
transcript.pyannote[52].end 165.18659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 165.50721875
transcript.pyannote[53].end 167.46471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 167.56596875
transcript.pyannote[54].end 171.29534375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 171.51471875
transcript.pyannote[55].end 174.01221875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 174.06284375
transcript.pyannote[56].end 178.50096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 178.53471875
transcript.pyannote[57].end 178.56846875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 178.56846875
transcript.pyannote[58].end 178.83846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 179.12534375
transcript.pyannote[59].end 192.49034375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 193.18221875
transcript.pyannote[60].end 193.68846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 194.29596875
transcript.pyannote[61].end 215.86221875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 214.78221875
transcript.pyannote[62].end 230.39159375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 217.68471875
transcript.pyannote[63].end 219.05159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 231.03284375
transcript.pyannote[64].end 238.30596875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 238.77846875
transcript.pyannote[65].end 239.06534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 239.28471875
transcript.pyannote[66].end 248.46471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 248.43096875
transcript.pyannote[67].end 248.44784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 248.46471875
transcript.pyannote[68].end 248.81909375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 248.70096875
transcript.pyannote[69].end 264.42846875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 264.81659375
transcript.pyannote[70].end 266.04846875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 266.97659375
transcript.pyannote[71].end 268.10721875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 268.22534375
transcript.pyannote[72].end 269.00159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 269.35596875
transcript.pyannote[73].end 271.70159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 271.98846875
transcript.pyannote[74].end 275.27909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 272.20784375
transcript.pyannote[75].end 272.22471875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 275.75159375
transcript.pyannote[76].end 280.61159375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 280.71284375
transcript.pyannote[77].end 281.97846875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 281.97846875
transcript.pyannote[78].end 292.94721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 290.02784375
transcript.pyannote[79].end 299.59596875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 294.06096875
transcript.pyannote[80].end 294.83721875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 299.76471875
transcript.pyannote[81].end 302.93721875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 303.03846875
transcript.pyannote[82].end 308.01659375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 308.33721875
transcript.pyannote[83].end 317.33159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 317.83784375
transcript.pyannote[84].end 326.96721875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 325.34721875
transcript.pyannote[85].end 325.76909375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 326.46096875
transcript.pyannote[86].end 326.95034375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 326.96721875
transcript.pyannote[87].end 330.74721875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 329.32971875
transcript.pyannote[88].end 331.62471875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 331.96221875
transcript.pyannote[89].end 335.53971875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 336.36659375
transcript.pyannote[90].end 337.19346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 338.50971875
transcript.pyannote[91].end 340.12971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 341.32784375
transcript.pyannote[92].end 343.15034375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 343.50471875
transcript.pyannote[93].end 344.19659375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 344.44971875
transcript.pyannote[94].end 347.06534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 347.38596875
transcript.pyannote[95].end 349.86659375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 350.71034375
transcript.pyannote[96].end 352.88721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 352.88721875
transcript.pyannote[97].end 352.90409375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 352.90409375
transcript.pyannote[98].end 352.95471875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 352.95471875
transcript.pyannote[99].end 352.97159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 352.97159375
transcript.pyannote[100].end 353.03909375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 353.03909375
transcript.pyannote[101].end 353.05596875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 353.05596875
transcript.pyannote[102].end 353.14034375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 353.14034375
transcript.pyannote[103].end 353.96721875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 353.96721875
transcript.pyannote[104].end 354.01784375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 354.01784375
transcript.pyannote[105].end 371.31471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 354.20346875
transcript.pyannote[106].end 356.11034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 371.61846875
transcript.pyannote[107].end 373.05284375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 373.74471875
transcript.pyannote[108].end 376.96784375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 376.96784375
transcript.pyannote[109].end 385.35471875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 385.48971875
transcript.pyannote[110].end 387.09284375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 387.83534375
transcript.pyannote[111].end 400.74471875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 401.97659375
transcript.pyannote[112].end 408.03471875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 408.03471875
transcript.pyannote[113].end 414.71721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 409.31721875
transcript.pyannote[114].end 410.17784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 414.71721875
transcript.pyannote[115].end 421.19721875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 422.51346875
transcript.pyannote[116].end 425.39909375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 425.65221875
transcript.pyannote[117].end 427.79534375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 426.81659375
transcript.pyannote[118].end 430.51221875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 429.49971875
transcript.pyannote[119].end 436.45221875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 433.51596875
transcript.pyannote[120].end 448.51784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 439.64159375
transcript.pyannote[121].end 439.75971875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 446.59409375
transcript.pyannote[122].end 446.64471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 446.72909375
transcript.pyannote[123].end 446.77971875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 446.77971875
transcript.pyannote[124].end 446.98221875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 446.99909375
transcript.pyannote[125].end 447.11721875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 448.63596875
transcript.pyannote[126].end 451.35284375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 452.23034375
transcript.pyannote[127].end 452.88846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 453.64784375
transcript.pyannote[128].end 458.15346875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 458.15346875
transcript.pyannote[129].end 458.37284375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 458.37284375
transcript.pyannote[130].end 458.45721875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 458.45721875
transcript.pyannote[131].end 458.47409375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 458.47409375
transcript.pyannote[132].end 458.52471875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 458.65971875
transcript.pyannote[133].end 458.69346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 458.69346875
transcript.pyannote[134].end 460.11096875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 460.46534375
transcript.pyannote[135].end 478.45409375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 478.45409375
transcript.pyannote[136].end 478.47096875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 478.65659375
transcript.pyannote[137].end 484.24221875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 484.22534375
transcript.pyannote[138].end 484.51221875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 484.51221875
transcript.pyannote[139].end 493.00034375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 484.52909375
transcript.pyannote[140].end 484.61346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 487.60034375
transcript.pyannote[141].end 487.61721875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 487.65096875
transcript.pyannote[142].end 487.73534375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 493.16909375
transcript.pyannote[143].end 500.59409375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 500.71221875
transcript.pyannote[144].end 501.50534375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 502.29846875
transcript.pyannote[145].end 510.90471875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 510.90471875
transcript.pyannote[146].end 513.36846875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 513.58784375
transcript.pyannote[147].end 529.85534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 530.44596875
transcript.pyannote[148].end 543.86159375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 544.01346875
transcript.pyannote[149].end 545.54909375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 545.88659375
transcript.pyannote[150].end 547.27034375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 547.32096875
transcript.pyannote[151].end 547.94534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 548.77221875
transcript.pyannote[152].end 552.26534375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 552.95721875
transcript.pyannote[153].end 557.17596875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 557.54721875
transcript.pyannote[154].end 558.27284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 558.82971875
transcript.pyannote[155].end 562.35659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 562.89659375
transcript.pyannote[156].end 568.98846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 569.69721875
transcript.pyannote[157].end 576.37971875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 576.71721875
transcript.pyannote[158].end 587.33159375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 587.56784375
transcript.pyannote[159].end 603.80159375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 604.18971875
transcript.pyannote[160].end 607.04159375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 607.12596875
transcript.pyannote[161].end 607.96971875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 607.96971875
transcript.pyannote[162].end 624.06846875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 616.87971875
transcript.pyannote[163].end 617.40284375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 624.37221875
transcript.pyannote[164].end 630.34596875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 627.10596875
transcript.pyannote[165].end 634.64909375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 631.30784375
transcript.pyannote[166].end 631.57784375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 634.75034375
transcript.pyannote[167].end 640.65659375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 641.17971875
transcript.pyannote[168].end 642.39471875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 642.49596875
transcript.pyannote[169].end 648.84096875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 648.43596875
transcript.pyannote[170].end 650.73096875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 650.73096875
transcript.pyannote[171].end 655.74284375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 655.94534375
transcript.pyannote[172].end 665.37846875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 663.64034375
transcript.pyannote[173].end 664.50096875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 664.50096875
transcript.pyannote[174].end 665.02409375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 665.02409375
transcript.pyannote[175].end 665.34471875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 666.81284375
transcript.pyannote[176].end 669.14159375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 671.62221875
transcript.pyannote[177].end 673.27596875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 675.36846875
transcript.pyannote[178].end 676.12784375
transcript.whisperx[0].start 0.049
transcript.whisperx[0].end 4.333
transcript.whisperx[0].text 好 謝謝主席喔 那請我們石部長好 謝謝部長喔 那請部長看一下我們衛福部統計的資料
transcript.whisperx[1].start 28.147
transcript.whisperx[1].end 43.315
transcript.whisperx[1].text 那這個是我們今年9月三班互併比他未達標率那醫學中心有39%區醫院有31%地區醫院有19%三班互併比的政策我們從2024年開始開辦
transcript.whisperx[2].start 46.196
transcript.whisperx[2].end 66.827
transcript.whisperx[2].text 到今年11月那算起來也有17個月那在推動三班互併筆的獎勵的部分我們看執行到現在那為什麼還有那麼高的未達標率當然這個目標還可以再努力啦不過以今年跟去年相比去年的達標率大概只有在30%左右
transcript.whisperx[3].start 67.687
transcript.whisperx[3].end 87.435
transcript.whisperx[3].text 他今年已經到60幾%所以還是有成效當然這個特別是醫學中心他的護病比要求的比較高他的那個要求護理能力更高所以我們會繼續來努力那針對這部分據我們了解他本身有達標獎勵金嘛那達標獎勵金
transcript.whisperx[4].start 91.316
transcript.whisperx[4].end 103.88
transcript.whisperx[4].text 16億我們現在發了5.9多億也快6億那看起來也有很多人反應那為什麼不向夜班獎勵金就直接回饋給這些護理人員
transcript.whisperx[5].start 106.321
transcript.whisperx[5].end 134.08
transcript.whisperx[5].text 因為我們夜班獎勵那個填班表很清楚啦那這個三班戶病比的是由醫院去看看去提升有的是放在白班啦有些是去整個那個護理的福利的把它提升起來所以它的用途讓它比較多元化一點讓醫院去依據它的需要去處理這樣對 但是我們了解當然衛福部針對這部分是希望說專款專用對 專款專用然後所以沒有用
transcript.whisperx[6].start 134.86
transcript.whisperx[6].end 153.608
transcript.whisperx[6].text 專款的獎勵那可是據我們了解好像其實在醫院很多的用途好像很多用途都很奇怪像當然他有時候在什麼護理師的空間啊去買一些小點心啊然後據說好像也有拿去做修繕也有去買制服的
transcript.whisperx[7].start 155.6
transcript.whisperx[7].end 177.958
transcript.whisperx[7].text 所以很多人反映你這個最簡單最實際就直接能夠直接回饋給護理人員你最主要是要讓這些護理人員留任然後也希望能夠增加這些護理的從業人員所以我們這不管是夜班的獎勵金或者達標獎勵金最主要就是要留住人才再增加人才嘛對不對
transcript.whisperx[8].start 179.439
transcript.whisperx[8].end 207.731
transcript.whisperx[8].text 其實跟委員說明我們未來朝向簡化的方式就是看結果啦結果就是你的這個護理人力有沒有增加那有沒有達標直接來獎勵那至於說要不要像我們這個夜班今天填這個班表直接給那我們是考慮到整個醫院他每個醫院的樣態不一樣各層級醫院的樣態是不一樣那他所需要的人力的配置也不一樣
transcript.whisperx[9].start 208.391
transcript.whisperx[9].end 229.961
transcript.whisperx[9].text 所以才讓醫院但是很清楚的是一定用在護理人員的身上不可以拿去做其他的用途所以我希望衛福部還是要好好去監督其實我看因為沒有強制要求其實在使用這錢上面有蠻多的亂象所以很多護理人員說去做一些奇奇怪怪的事你就直接錢給我們反正我們
transcript.whisperx[10].start 231.281
transcript.whisperx[10].end 245.985
transcript.whisperx[10].text 給我們錢我們就願意留任然後很多人看福利這麼好他也會從事這個行業我們最主要就是要護理人員要增加然後原有的要留任就是要讓這些人才留住嘛所以我覺得說應該還是要聽聽他們的意見啦
transcript.whisperx[11].start 248.786
transcript.whisperx[11].end 265.906
transcript.whisperx[11].text 那当然说好像我们卫福部也有开了12场的会议针对这些护理团体护理人员还有护理主管所以我相信他们也有的反应就是其实最简单这奖励金是不是能够直接回馈到他们身上
transcript.whisperx[12].start 267.014
transcript.whisperx[12].end 292.735
transcript.whisperx[12].text 有钱好办事嘛那直接有增加他们的薪水给予他的肯定所以我觉得他们有提出这反应我觉得还是要听听他们的心声啦怎样子最有效我觉得还是要朝这方面去做好 谢谢我们来跟大家讨论看看用什么方式因为这每一个层级还有医院的形态都不一样他们的用法我们来研究看看有什么更好的方式最主要要落实啦
transcript.whisperx[13].start 292.955
transcript.whisperx[13].end 317.15
transcript.whisperx[13].text 有錢才能做事啦所以剛好我也想到我在總之學的時候有提出還是要請我們部長來重視一下我們部桃心目分遠2019年蔡英文總統從通過這個核定擴建核定通過到現在7年了到現在錢都還沒有編都還沒做7年了所以沒有錢真的沒辦法做事啦
transcript.whisperx[14].start 318.51
transcript.whisperx[14].end 339.659
transcript.whisperx[14].text 剛好說沒有錢沒辦法做事這部分請部長針對這部分為我們沿海的醫療資源來幫忙一下我們已經送了計畫了 我們來努力追一下這個請部長多協助好 那我們再來討論一下因為針對 我看我們衛福部有掌握
transcript.whisperx[15].start 341.36
transcript.whisperx[15].end 349.502
transcript.whisperx[15].text 空中轉整平台上線以來 部長你知道這上線以來像今年總共故障幾次 你知道嗎
transcript.whisperx[16].start 350.782
transcript.whisperx[16].end 372.819
transcript.whisperx[16].text 故障就说那个连线出状况对啊就是出状况系统平台出状况其实出状况是六次你讲的两次是延误病患就医两次他系统出状况是六次但是这六次里面有两次是延误病患就医那针对这一部分
transcript.whisperx[17].start 373.78
transcript.whisperx[17].end 399.503
transcript.whisperx[17].text 我們對這個廠商有做什麼處理嗎這個廠商是我們已經開發不過重點是這樣因為這個網路啊難免會有狀況有時候那個海嵐被被故意破壞還是什麼就會影響到所以我們現在一定建立的另外有一個備援機制就是說如果你這個這個平台如果網路不穩的時候那還是有這個
transcript.whisperx[18].start 402.268
transcript.whisperx[18].end 419.226
transcript.whisperx[18].text 打電話啦 這些方式還是可以做還是有其他的作業方式不要因為這樣去延誤啦不會 不會去延誤部長講的就是你們之前說要研議設計雙機系統作業是不是不是雙機就是說就像我們醫院裡面也都會有這個SOP嘛萬一這個資訊
transcript.whisperx[19].start 422.557
transcript.whisperx[19].end 451.044
transcript.whisperx[19].text 當機了那這時候怎麼啟動手工作業概念是一樣對啊那因為你後來這平台故障後來就有傳真的啊對就是打電話嘛應該還是有電話專線可以使用所以我覺得部長還是要重視一下因為據我們了解其實這個狀況非常多啦那連裡面的其實很多的同仁都有在反映他說針對這個廠商常常發生故障好像對他其實也沒有什麼開發的機制好像
transcript.whisperx[20].start 452.284
transcript.whisperx[20].end 478.189
transcript.whisperx[20].text 有一次罰了4萬多4萬多好像也是違約金的問題是不是好 那這個當然要讓這個平台穩定 故障率要降低如果這個廠商一直一而再再而上當然我們就換廠商嘛這個當然我們會去考慮但是還是要備援萬一有這個狀況的時候怎麼啟動另外一個做法不要去影響到病人
transcript.whisperx[21].start 478.709
transcript.whisperx[21].end 500.208
transcript.whisperx[21].text 所以我说这部长一定要重视因为这空中转诊平台你说系统故障没有影响到就医那就算了可是你看这六次里面有两次真的是延误就医一次据我们了解他整个平台修复延误了11个小时还有一次病患延误送医耽误了一个半小时
transcript.whisperx[22].start 500.848
transcript.whisperx[22].end 529.533
transcript.whisperx[22].text 所以这个对于这个病患时间上是非常非常的重要延误一个半小时可能就失去他的黄金治疗的时间我请市长跟委员说明跟委员说明这个平台主要是在做审查或是指导或协调所以当他因为资讯的关系断的时候其实是另外一个启动另外一个电话或传真所以它实际上不会影响到他后送的时间
transcript.whisperx[23].start 530.495
transcript.whisperx[23].end 552.125
transcript.whisperx[23].text 所以這個部分其實我看中國時報聯合報自由時報其實都有在刊登我們針對我們空轉平台這一系列發生問題的前行居然還有說從上班開始聯絡到下班沒有回覆然後到後來說下班的時候說工程師已經下班了
transcript.whisperx[24].start 553.278
transcript.whisperx[24].end 568.593
transcript.whisperx[24].text 所以這部分我希望部長你們還是要去了解一下然後後來聽說直接把問題回饋拿掉問題回饋拿掉就是說他們要反映問題沒有地方可以反映所以就沒有問題了
transcript.whisperx[25].start 569.761
transcript.whisperx[25].end 590.88
transcript.whisperx[25].text 因為你把問題回饋拿掉啊所以後來就沒有問題原來不是沒有問題是把問題回饋拿掉那而且你看五月份就故障三次後來想反應都沒有地方好去反應所以今天提出來喔因為這個希望部長要重視一下還有剛剛講喔其實之前衛福部有說要研議
transcript.whisperx[26].start 592.22
transcript.whisperx[26].end 606.425
transcript.whisperx[26].text 雙機系統作業就是當空轉中心系統發生問題的時候另外一個系統平台馬上可以備案這樣子才不會延誤到我們這些病患萬一他本身救援的時間不能被耽誤
transcript.whisperx[27].start 607.805
transcript.whisperx[27].end 624.535
transcript.whisperx[27].text 跟委員說你剛剛提到說報怨平台被取消這個事情我們查清楚之後再給委員報告第二個是不是要有一個雙機備援我們來研議之後因為我們很多的資訊系統都會有備援機制
transcript.whisperx[28].start 627.256
transcript.whisperx[28].end 640.275
transcript.whisperx[28].text 對啊你去了解一下你看那個媒體在6月19號就刊登啊說把問題回饋拿掉啊然後所以他們連反應的地方都沒有所以並不是沒有問題是沒有地方好反應的
transcript.whisperx[29].start 642.934
transcript.whisperx[29].end 662.572
transcript.whisperx[29].text 這部分部長幫我們了解一下因為其實很多同仁都有私底下在抱怨這些事情我們查明之後再給委員一個報告那希望這個雙基系統作業趕快來去把它研議設計避免這樣子萬一平台系統故障有疏漏問題馬上有另外一個系統可以備案來使用好 謝謝部長謝謝部長 謝謝圖委員
transcript.whisperx[30].start 671.69
transcript.whisperx[30].end 672.735
transcript.whisperx[30].text 好 出現了