iVOD / 16592

Field Value
IVOD_ID 16592
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16592
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-26-6
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議
影片種類 Full
開始時間 2025-04-16T08:31:05+08:00
結束時間 2025-04-16T13:35:00+08:00
影片長度 05:03:55
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a6859d3c58e6035bf089dbed544b35c5f3ca4af80a8cb003b9bacd046a44d182d8b15ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議(事由:邀請衛生福利部部長就「面對國際經貿情勢瞬變,我國如何因應並確保藥品、醫療器材等各面向供應正常,保障國人權益。」進行專題報告,並備質詢。 【4月16日及17日二天一次會】)
委員名稱 完整會議
委員發言時間 08:31:05 - 13:35:00
transcript.pyannote[0].speaker SPEAKER_19
transcript.pyannote[0].start 21.96846875
transcript.pyannote[0].end 24.93846875
transcript.pyannote[1].speaker SPEAKER_20
transcript.pyannote[1].start 540.57096875
transcript.pyannote[1].end 540.62159375
transcript.pyannote[2].speaker SPEAKER_24
transcript.pyannote[2].start 540.62159375
transcript.pyannote[2].end 541.54971875
transcript.pyannote[3].speaker SPEAKER_19
transcript.pyannote[3].start 1180.40346875
transcript.pyannote[3].end 1180.92659375
transcript.pyannote[4].speaker SPEAKER_25
transcript.pyannote[4].start 1742.96534375
transcript.pyannote[4].end 1748.51721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 1748.51721875
transcript.pyannote[5].end 1748.53409375
transcript.pyannote[6].speaker SPEAKER_25
transcript.pyannote[6].start 1748.53409375
transcript.pyannote[6].end 1748.55096875
transcript.pyannote[7].speaker SPEAKER_25
transcript.pyannote[7].start 1749.42846875
transcript.pyannote[7].end 1749.44534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 1749.44534375
transcript.pyannote[8].end 1749.69846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 1751.62221875
transcript.pyannote[9].end 1753.29284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 1753.52909375
transcript.pyannote[10].end 1754.32221875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 1754.47409375
transcript.pyannote[11].end 1757.00534375
transcript.pyannote[12].speaker SPEAKER_08
transcript.pyannote[12].start 1757.34284375
transcript.pyannote[12].end 1792.62846875
transcript.pyannote[13].speaker SPEAKER_08
transcript.pyannote[13].start 1792.86471875
transcript.pyannote[13].end 1830.22596875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 1832.62221875
transcript.pyannote[14].end 1836.16596875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 1837.71846875
transcript.pyannote[15].end 1840.21596875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 1840.68846875
transcript.pyannote[16].end 1847.16846875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 1847.55659375
transcript.pyannote[17].end 1850.71221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 1851.25221875
transcript.pyannote[18].end 1853.10846875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 1853.29409375
transcript.pyannote[19].end 1859.75721875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 1860.24659375
transcript.pyannote[20].end 1861.37721875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 1861.93409375
transcript.pyannote[21].end 1862.82846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 1863.08159375
transcript.pyannote[22].end 1863.90846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 1864.00971875
transcript.pyannote[23].end 1864.02659375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 1864.04346875
transcript.pyannote[24].end 1865.83221875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 1866.27096875
transcript.pyannote[25].end 1867.75596875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 1870.42221875
transcript.pyannote[26].end 1871.55284375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 1873.62846875
transcript.pyannote[27].end 1874.57346875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 1876.81784375
transcript.pyannote[28].end 1877.84721875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 1879.45034375
transcript.pyannote[29].end 1880.78346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 1881.27284375
transcript.pyannote[30].end 1882.38659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 1884.91784375
transcript.pyannote[31].end 1887.34784375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 1888.25909375
transcript.pyannote[32].end 1888.47846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 1889.28846875
transcript.pyannote[33].end 1890.97596875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 1894.90784375
transcript.pyannote[34].end 1897.30409375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 1897.87784375
transcript.pyannote[35].end 1898.04659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 1898.85659375
transcript.pyannote[36].end 1901.57346875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 1901.77596875
transcript.pyannote[37].end 1903.78409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 1904.99909375
transcript.pyannote[38].end 1906.60221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 1906.70346875
transcript.pyannote[39].end 1909.06596875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 1909.62284375
transcript.pyannote[40].end 1910.02784375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 1911.24284375
transcript.pyannote[41].end 1914.63471875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 1914.97221875
transcript.pyannote[42].end 1916.18721875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 1916.71034375
transcript.pyannote[43].end 1917.11534375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 1918.06034375
transcript.pyannote[44].end 1919.69721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 1920.67596875
transcript.pyannote[45].end 1921.21596875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 1922.19471875
transcript.pyannote[46].end 1922.73471875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 1923.15659375
transcript.pyannote[47].end 1926.80159375
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 1932.85971875
transcript.pyannote[48].end 1935.39096875
transcript.pyannote[49].speaker SPEAKER_04
transcript.pyannote[49].start 1936.09971875
transcript.pyannote[49].end 1945.95471875
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 1946.47784375
transcript.pyannote[50].end 1947.27096875
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 1947.67596875
transcript.pyannote[51].end 1953.43034375
transcript.pyannote[52].speaker SPEAKER_04
transcript.pyannote[52].start 1953.63284375
transcript.pyannote[52].end 1954.42596875
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 1955.15159375
transcript.pyannote[53].end 1957.81784375
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 1958.23971875
transcript.pyannote[54].end 1963.20096875
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 1963.70721875
transcript.pyannote[55].end 1980.83534375
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 1981.56096875
transcript.pyannote[56].end 1983.50159375
transcript.pyannote[57].speaker SPEAKER_04
transcript.pyannote[57].start 1983.78846875
transcript.pyannote[57].end 1985.02034375
transcript.pyannote[58].speaker SPEAKER_04
transcript.pyannote[58].start 1985.50971875
transcript.pyannote[58].end 1991.04471875
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 1991.41596875
transcript.pyannote[59].end 1992.71534375
transcript.pyannote[60].speaker SPEAKER_04
transcript.pyannote[60].start 1994.16659375
transcript.pyannote[60].end 2001.45659375
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 2001.79409375
transcript.pyannote[61].end 2003.85284375
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 2004.83159375
transcript.pyannote[62].end 2023.39409375
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 2023.96784375
transcript.pyannote[63].end 2028.43971875
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 2028.82784375
transcript.pyannote[64].end 2030.70096875
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 2031.24096875
transcript.pyannote[65].end 2037.65346875
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 2038.42971875
transcript.pyannote[66].end 2039.37471875
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 2039.69534375
transcript.pyannote[67].end 2041.02846875
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 2041.88909375
transcript.pyannote[68].end 2042.61471875
transcript.pyannote[69].speaker SPEAKER_04
transcript.pyannote[69].start 2043.25596875
transcript.pyannote[69].end 2045.36534375
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 2045.56784375
transcript.pyannote[70].end 2047.54221875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 2047.93034375
transcript.pyannote[71].end 2051.17034375
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 2051.57534375
transcript.pyannote[72].end 2060.45159375
transcript.pyannote[73].speaker SPEAKER_04
transcript.pyannote[73].start 2061.16034375
transcript.pyannote[73].end 2075.21721875
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 2075.68971875
transcript.pyannote[74].end 2077.57971875
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 2077.96784375
transcript.pyannote[75].end 2083.94159375
transcript.pyannote[76].speaker SPEAKER_04
transcript.pyannote[76].start 2084.61659375
transcript.pyannote[76].end 2098.25159375
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 2098.62284375
transcript.pyannote[77].end 2108.32596875
transcript.pyannote[78].speaker SPEAKER_04
transcript.pyannote[78].start 2108.83221875
transcript.pyannote[78].end 2111.43096875
transcript.pyannote[79].speaker SPEAKER_04
transcript.pyannote[79].start 2111.90346875
transcript.pyannote[79].end 2122.53471875
transcript.pyannote[80].speaker SPEAKER_04
transcript.pyannote[80].start 2123.09159375
transcript.pyannote[80].end 2140.74284375
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 2141.14784375
transcript.pyannote[81].end 2143.59471875
transcript.pyannote[82].speaker SPEAKER_04
transcript.pyannote[82].start 2143.72971875
transcript.pyannote[82].end 2144.69159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 2146.96971875
transcript.pyannote[83].end 2148.82596875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 2150.36159375
transcript.pyannote[84].end 2156.63909375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 2156.82471875
transcript.pyannote[85].end 2174.59409375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 2174.77971875
transcript.pyannote[86].end 2179.20096875
transcript.pyannote[87].speaker SPEAKER_06
transcript.pyannote[87].start 2186.96346875
transcript.pyannote[87].end 2188.85346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 2188.85346875
transcript.pyannote[88].end 2189.61284375
transcript.pyannote[89].speaker SPEAKER_04
transcript.pyannote[89].start 2196.34596875
transcript.pyannote[89].end 2196.86909375
transcript.pyannote[90].speaker SPEAKER_06
transcript.pyannote[90].start 2196.86909375
transcript.pyannote[90].end 2198.30346875
transcript.pyannote[91].speaker SPEAKER_06
transcript.pyannote[91].start 2198.92784375
transcript.pyannote[91].end 2205.49221875
transcript.pyannote[92].speaker SPEAKER_06
transcript.pyannote[92].start 2205.84659375
transcript.pyannote[92].end 2209.06971875
transcript.pyannote[93].speaker SPEAKER_06
transcript.pyannote[93].start 2209.22159375
transcript.pyannote[93].end 2211.02721875
transcript.pyannote[94].speaker SPEAKER_06
transcript.pyannote[94].start 2211.51659375
transcript.pyannote[94].end 2220.94971875
transcript.pyannote[95].speaker SPEAKER_06
transcript.pyannote[95].start 2221.13534375
transcript.pyannote[95].end 2224.25721875
transcript.pyannote[96].speaker SPEAKER_06
transcript.pyannote[96].start 2224.61159375
transcript.pyannote[96].end 2225.72534375
transcript.pyannote[97].speaker SPEAKER_06
transcript.pyannote[97].start 2225.96159375
transcript.pyannote[97].end 2226.60284375
transcript.pyannote[98].speaker SPEAKER_06
transcript.pyannote[98].start 2226.99096875
transcript.pyannote[98].end 2229.60659375
transcript.pyannote[99].speaker SPEAKER_06
transcript.pyannote[99].start 2230.04534375
transcript.pyannote[99].end 2230.55159375
transcript.pyannote[100].speaker SPEAKER_06
transcript.pyannote[100].start 2233.30221875
transcript.pyannote[100].end 2234.82096875
transcript.pyannote[101].speaker SPEAKER_06
transcript.pyannote[101].start 2235.29346875
transcript.pyannote[101].end 2237.36909375
transcript.pyannote[102].speaker SPEAKER_06
transcript.pyannote[102].start 2237.55471875
transcript.pyannote[102].end 2240.60909375
transcript.pyannote[103].speaker SPEAKER_06
transcript.pyannote[103].start 2241.09846875
transcript.pyannote[103].end 2245.90784375
transcript.pyannote[104].speaker SPEAKER_06
transcript.pyannote[104].start 2246.19471875
transcript.pyannote[104].end 2251.91534375
transcript.pyannote[105].speaker SPEAKER_06
transcript.pyannote[105].start 2252.05034375
transcript.pyannote[105].end 2253.78846875
transcript.pyannote[106].speaker SPEAKER_06
transcript.pyannote[106].start 2254.07534375
transcript.pyannote[106].end 2257.14659375
transcript.pyannote[107].speaker SPEAKER_06
transcript.pyannote[107].start 2257.24784375
transcript.pyannote[107].end 2258.17596875
transcript.pyannote[108].speaker SPEAKER_06
transcript.pyannote[108].start 2258.58096875
transcript.pyannote[108].end 2261.33159375
transcript.pyannote[109].speaker SPEAKER_06
transcript.pyannote[109].start 2261.61846875
transcript.pyannote[109].end 2266.47846875
transcript.pyannote[110].speaker SPEAKER_06
transcript.pyannote[110].start 2266.56284375
transcript.pyannote[110].end 2285.61471875
transcript.pyannote[111].speaker SPEAKER_06
transcript.pyannote[111].start 2285.73284375
transcript.pyannote[111].end 2287.03221875
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 2287.58909375
transcript.pyannote[112].end 2291.40284375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 2292.33096875
transcript.pyannote[113].end 2309.84721875
transcript.pyannote[114].speaker SPEAKER_04
transcript.pyannote[114].start 2310.30284375
transcript.pyannote[114].end 2311.41659375
transcript.pyannote[115].speaker SPEAKER_04
transcript.pyannote[115].start 2311.73721875
transcript.pyannote[115].end 2314.26846875
transcript.pyannote[116].speaker SPEAKER_04
transcript.pyannote[116].start 2315.01096875
transcript.pyannote[116].end 2315.90534375
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 2316.20909375
transcript.pyannote[117].end 2326.36784375
transcript.pyannote[118].speaker SPEAKER_04
transcript.pyannote[118].start 2326.95846875
transcript.pyannote[118].end 2352.60846875
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 2353.14846875
transcript.pyannote[119].end 2354.05971875
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 2354.56596875
transcript.pyannote[120].end 2358.58221875
transcript.pyannote[121].speaker SPEAKER_04
transcript.pyannote[121].start 2359.07159375
transcript.pyannote[121].end 2364.06659375
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 2364.18471875
transcript.pyannote[122].end 2376.38534375
transcript.pyannote[123].speaker SPEAKER_04
transcript.pyannote[123].start 2376.79034375
transcript.pyannote[123].end 2388.94034375
transcript.pyannote[124].speaker SPEAKER_06
transcript.pyannote[124].start 2388.41721875
transcript.pyannote[124].end 2390.00346875
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 2389.68284375
transcript.pyannote[125].end 2393.80034375
transcript.pyannote[126].speaker SPEAKER_26
transcript.pyannote[126].start 2396.24721875
transcript.pyannote[126].end 2412.44721875
transcript.pyannote[127].speaker SPEAKER_26
transcript.pyannote[127].start 2412.76784375
transcript.pyannote[127].end 2421.00284375
transcript.pyannote[128].speaker SPEAKER_20
transcript.pyannote[128].start 2420.58096875
transcript.pyannote[128].end 2420.91846875
transcript.pyannote[129].speaker SPEAKER_26
transcript.pyannote[129].start 2421.52596875
transcript.pyannote[129].end 2425.17096875
transcript.pyannote[130].speaker SPEAKER_26
transcript.pyannote[130].start 2425.37346875
transcript.pyannote[130].end 2427.21284375
transcript.pyannote[131].speaker SPEAKER_26
transcript.pyannote[131].start 2427.44909375
transcript.pyannote[131].end 2431.22909375
transcript.pyannote[132].speaker SPEAKER_20
transcript.pyannote[132].start 2427.49971875
transcript.pyannote[132].end 2427.83721875
transcript.pyannote[133].speaker SPEAKER_26
transcript.pyannote[133].start 2431.48221875
transcript.pyannote[133].end 2439.97034375
transcript.pyannote[134].speaker SPEAKER_26
transcript.pyannote[134].start 2440.34159375
transcript.pyannote[134].end 2444.00346875
transcript.pyannote[135].speaker SPEAKER_26
transcript.pyannote[135].start 2444.25659375
transcript.pyannote[135].end 2452.20471875
transcript.pyannote[136].speaker SPEAKER_26
transcript.pyannote[136].start 2452.57596875
transcript.pyannote[136].end 2469.06284375
transcript.pyannote[137].speaker SPEAKER_06
transcript.pyannote[137].start 2468.35409375
transcript.pyannote[137].end 2499.45471875
transcript.pyannote[138].speaker SPEAKER_06
transcript.pyannote[138].start 2499.67409375
transcript.pyannote[138].end 2528.44596875
transcript.pyannote[139].speaker SPEAKER_06
transcript.pyannote[139].start 2528.47971875
transcript.pyannote[139].end 2536.84971875
transcript.pyannote[140].speaker SPEAKER_04
transcript.pyannote[140].start 2537.20409375
transcript.pyannote[140].end 2539.17846875
transcript.pyannote[141].speaker SPEAKER_06
transcript.pyannote[141].start 2538.72284375
transcript.pyannote[141].end 2538.77346875
transcript.pyannote[142].speaker SPEAKER_26
transcript.pyannote[142].start 2538.77346875
transcript.pyannote[142].end 2542.11471875
transcript.pyannote[143].speaker SPEAKER_26
transcript.pyannote[143].start 2542.80659375
transcript.pyannote[143].end 2550.75471875
transcript.pyannote[144].speaker SPEAKER_26
transcript.pyannote[144].start 2551.07534375
transcript.pyannote[144].end 2568.97971875
transcript.pyannote[145].speaker SPEAKER_06
transcript.pyannote[145].start 2569.16534375
transcript.pyannote[145].end 2581.51784375
transcript.pyannote[146].speaker SPEAKER_26
transcript.pyannote[146].start 2580.55596875
transcript.pyannote[146].end 2614.22159375
transcript.pyannote[147].speaker SPEAKER_26
transcript.pyannote[147].start 2614.89659375
transcript.pyannote[147].end 2620.81971875
transcript.pyannote[148].speaker SPEAKER_06
transcript.pyannote[148].start 2619.63846875
transcript.pyannote[148].end 2622.70971875
transcript.pyannote[149].speaker SPEAKER_06
transcript.pyannote[149].start 2622.97971875
transcript.pyannote[149].end 2643.63471875
transcript.pyannote[150].speaker SPEAKER_06
transcript.pyannote[150].start 2644.25909375
transcript.pyannote[150].end 2646.68909375
transcript.pyannote[151].speaker SPEAKER_06
transcript.pyannote[151].start 2646.89159375
transcript.pyannote[151].end 2647.93784375
transcript.pyannote[152].speaker SPEAKER_06
transcript.pyannote[152].start 2647.97159375
transcript.pyannote[152].end 2650.51971875
transcript.pyannote[153].speaker SPEAKER_06
transcript.pyannote[153].start 2650.95846875
transcript.pyannote[153].end 2660.83034375
transcript.pyannote[154].speaker SPEAKER_06
transcript.pyannote[154].start 2661.45471875
transcript.pyannote[154].end 2663.19284375
transcript.pyannote[155].speaker SPEAKER_04
transcript.pyannote[155].start 2662.09596875
transcript.pyannote[155].end 2662.41659375
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 2663.19284375
transcript.pyannote[156].end 2676.50721875
transcript.pyannote[157].speaker SPEAKER_06
transcript.pyannote[157].start 2676.13596875
transcript.pyannote[157].end 2681.21534375
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 2677.87409375
transcript.pyannote[158].end 2678.75159375
transcript.pyannote[159].speaker SPEAKER_04
transcript.pyannote[159].start 2680.35471875
transcript.pyannote[159].end 2728.02659375
transcript.pyannote[160].speaker SPEAKER_06
transcript.pyannote[160].start 2726.86221875
transcript.pyannote[160].end 2739.97409375
transcript.pyannote[161].speaker SPEAKER_18
transcript.pyannote[161].start 2739.97409375
transcript.pyannote[161].end 2756.22471875
transcript.pyannote[162].speaker SPEAKER_18
transcript.pyannote[162].start 2756.61284375
transcript.pyannote[162].end 2787.71346875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 2758.01346875
transcript.pyannote[163].end 2758.48596875
transcript.pyannote[164].speaker SPEAKER_06
transcript.pyannote[164].start 2784.72659375
transcript.pyannote[164].end 2786.78534375
transcript.pyannote[165].speaker SPEAKER_18
transcript.pyannote[165].start 2787.73034375
transcript.pyannote[165].end 2787.74721875
transcript.pyannote[166].speaker SPEAKER_06
transcript.pyannote[166].start 2787.74721875
transcript.pyannote[166].end 2790.48096875
transcript.pyannote[167].speaker SPEAKER_18
transcript.pyannote[167].start 2790.48096875
transcript.pyannote[167].end 2796.03284375
transcript.pyannote[168].speaker SPEAKER_06
transcript.pyannote[168].start 2796.03284375
transcript.pyannote[168].end 2813.97096875
transcript.pyannote[169].speaker SPEAKER_18
transcript.pyannote[169].start 2813.97096875
transcript.pyannote[169].end 2830.18784375
transcript.pyannote[170].speaker SPEAKER_06
transcript.pyannote[170].start 2828.31471875
transcript.pyannote[170].end 2828.85471875
transcript.pyannote[171].speaker SPEAKER_06
transcript.pyannote[171].start 2829.22596875
transcript.pyannote[171].end 2829.83346875
transcript.pyannote[172].speaker SPEAKER_06
transcript.pyannote[172].start 2831.06534375
transcript.pyannote[172].end 2838.52409375
transcript.pyannote[173].speaker SPEAKER_06
transcript.pyannote[173].start 2838.69284375
transcript.pyannote[173].end 2840.00909375
transcript.pyannote[174].speaker SPEAKER_06
transcript.pyannote[174].start 2840.17784375
transcript.pyannote[174].end 2842.89471875
transcript.pyannote[175].speaker SPEAKER_06
transcript.pyannote[175].start 2842.99596875
transcript.pyannote[175].end 2844.04221875
transcript.pyannote[176].speaker SPEAKER_06
transcript.pyannote[176].start 2844.75096875
transcript.pyannote[176].end 2847.97409375
transcript.pyannote[177].speaker SPEAKER_18
transcript.pyannote[177].start 2847.97409375
transcript.pyannote[177].end 2887.02284375
transcript.pyannote[178].speaker SPEAKER_06
transcript.pyannote[178].start 2881.15034375
transcript.pyannote[178].end 2882.51721875
transcript.pyannote[179].speaker SPEAKER_06
transcript.pyannote[179].start 2884.77846875
transcript.pyannote[179].end 2885.20034375
transcript.pyannote[180].speaker SPEAKER_06
transcript.pyannote[180].start 2887.02284375
transcript.pyannote[180].end 2887.46159375
transcript.pyannote[181].speaker SPEAKER_18
transcript.pyannote[181].start 2887.05659375
transcript.pyannote[181].end 2887.10721875
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 2887.10721875
transcript.pyannote[182].end 2887.29284375
transcript.pyannote[183].speaker SPEAKER_18
transcript.pyannote[183].start 2887.29284375
transcript.pyannote[183].end 2887.44471875
transcript.pyannote[184].speaker SPEAKER_18
transcript.pyannote[184].start 2887.46159375
transcript.pyannote[184].end 2887.93409375
transcript.pyannote[185].speaker SPEAKER_04
transcript.pyannote[185].start 2887.93409375
transcript.pyannote[185].end 2887.96784375
transcript.pyannote[186].speaker SPEAKER_06
transcript.pyannote[186].start 2888.08596875
transcript.pyannote[186].end 2891.20784375
transcript.pyannote[187].speaker SPEAKER_04
transcript.pyannote[187].start 2889.67221875
transcript.pyannote[187].end 2901.09659375
transcript.pyannote[188].speaker SPEAKER_06
transcript.pyannote[188].start 2897.02971875
transcript.pyannote[188].end 2903.23971875
transcript.pyannote[189].speaker SPEAKER_06
transcript.pyannote[189].start 2903.54346875
transcript.pyannote[189].end 2910.00659375
transcript.pyannote[190].speaker SPEAKER_06
transcript.pyannote[190].start 2910.52971875
transcript.pyannote[190].end 2930.59409375
transcript.pyannote[191].speaker SPEAKER_06
transcript.pyannote[191].start 2931.06659375
transcript.pyannote[191].end 2940.46596875
transcript.pyannote[192].speaker SPEAKER_06
transcript.pyannote[192].start 2940.55034375
transcript.pyannote[192].end 2941.17471875
transcript.pyannote[193].speaker SPEAKER_06
transcript.pyannote[193].start 2941.49534375
transcript.pyannote[193].end 2944.65096875
transcript.pyannote[194].speaker SPEAKER_06
transcript.pyannote[194].start 2944.70159375
transcript.pyannote[194].end 2945.68034375
transcript.pyannote[195].speaker SPEAKER_06
transcript.pyannote[195].start 2945.96721875
transcript.pyannote[195].end 2946.52409375
transcript.pyannote[196].speaker SPEAKER_06
transcript.pyannote[196].start 2946.81096875
transcript.pyannote[196].end 2950.54034375
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 2950.81034375
transcript.pyannote[197].end 2965.57596875
transcript.pyannote[198].speaker SPEAKER_04
transcript.pyannote[198].start 2965.59284375
transcript.pyannote[198].end 2965.62659375
transcript.pyannote[199].speaker SPEAKER_06
transcript.pyannote[199].start 2965.62659375
transcript.pyannote[199].end 2968.52909375
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 2966.77409375
transcript.pyannote[200].end 2974.08096875
transcript.pyannote[201].speaker SPEAKER_04
transcript.pyannote[201].start 2974.41846875
transcript.pyannote[201].end 2975.11034375
transcript.pyannote[202].speaker SPEAKER_26
transcript.pyannote[202].start 2976.15659375
transcript.pyannote[202].end 3007.66221875
transcript.pyannote[203].speaker SPEAKER_06
transcript.pyannote[203].start 2984.72909375
transcript.pyannote[203].end 2986.19721875
transcript.pyannote[204].speaker SPEAKER_06
transcript.pyannote[204].start 2994.22971875
transcript.pyannote[204].end 2994.39846875
transcript.pyannote[205].speaker SPEAKER_06
transcript.pyannote[205].start 3006.00846875
transcript.pyannote[205].end 3025.61721875
transcript.pyannote[206].speaker SPEAKER_06
transcript.pyannote[206].start 3026.57909375
transcript.pyannote[206].end 3042.61034375
transcript.pyannote[207].speaker SPEAKER_06
transcript.pyannote[207].start 3043.09971875
transcript.pyannote[207].end 3048.70221875
transcript.pyannote[208].speaker SPEAKER_06
transcript.pyannote[208].start 3048.95534375
transcript.pyannote[208].end 3078.30096875
transcript.pyannote[209].speaker SPEAKER_06
transcript.pyannote[209].start 3078.82409375
transcript.pyannote[209].end 3084.15659375
transcript.pyannote[210].speaker SPEAKER_06
transcript.pyannote[210].start 3084.22409375
transcript.pyannote[210].end 3085.81034375
transcript.pyannote[211].speaker SPEAKER_04
transcript.pyannote[211].start 3084.30846875
transcript.pyannote[211].end 3095.71596875
transcript.pyannote[212].speaker SPEAKER_04
transcript.pyannote[212].start 3095.80034375
transcript.pyannote[212].end 3097.77471875
transcript.pyannote[213].speaker SPEAKER_21
transcript.pyannote[213].start 3097.77471875
transcript.pyannote[213].end 3149.10846875
transcript.pyannote[214].speaker SPEAKER_06
transcript.pyannote[214].start 3148.78784375
transcript.pyannote[214].end 3159.89159375
transcript.pyannote[215].speaker SPEAKER_04
transcript.pyannote[215].start 3156.60096875
transcript.pyannote[215].end 3157.29284375
transcript.pyannote[216].speaker SPEAKER_04
transcript.pyannote[216].start 3159.50346875
transcript.pyannote[216].end 3161.81534375
transcript.pyannote[217].speaker SPEAKER_06
transcript.pyannote[217].start 3161.59596875
transcript.pyannote[217].end 3162.10221875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 3163.46909375
transcript.pyannote[218].end 3164.39721875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 3164.46471875
transcript.pyannote[219].end 3165.51096875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 3166.27034375
transcript.pyannote[220].end 3168.59909375
transcript.pyannote[221].speaker SPEAKER_04
transcript.pyannote[221].start 3166.35471875
transcript.pyannote[221].end 3166.62471875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 3168.81846875
transcript.pyannote[222].end 3172.58159375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 3173.00346875
transcript.pyannote[223].end 3173.03721875
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 3173.05409375
transcript.pyannote[224].end 3175.63596875
transcript.pyannote[225].speaker SPEAKER_09
transcript.pyannote[225].start 3178.85909375
transcript.pyannote[225].end 3182.68971875
transcript.pyannote[226].speaker SPEAKER_09
transcript.pyannote[226].start 3183.06096875
transcript.pyannote[226].end 3190.45221875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 3191.58284375
transcript.pyannote[227].end 3192.78096875
transcript.pyannote[228].speaker SPEAKER_09
transcript.pyannote[228].start 3195.91971875
transcript.pyannote[228].end 3198.58596875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 3197.03346875
transcript.pyannote[229].end 3198.55221875
transcript.pyannote[230].speaker SPEAKER_09
transcript.pyannote[230].start 3204.13784375
transcript.pyannote[230].end 3204.82971875
transcript.pyannote[231].speaker SPEAKER_20
transcript.pyannote[231].start 3204.82971875
transcript.pyannote[231].end 3204.89721875
transcript.pyannote[232].speaker SPEAKER_09
transcript.pyannote[232].start 3204.89721875
transcript.pyannote[232].end 3212.32221875
transcript.pyannote[233].speaker SPEAKER_09
transcript.pyannote[233].start 3212.49096875
transcript.pyannote[233].end 3224.43846875
transcript.pyannote[234].speaker SPEAKER_04
transcript.pyannote[234].start 3223.08846875
transcript.pyannote[234].end 3225.87284375
transcript.pyannote[235].speaker SPEAKER_09
transcript.pyannote[235].start 3225.55221875
transcript.pyannote[235].end 3228.75846875
transcript.pyannote[236].speaker SPEAKER_04
transcript.pyannote[236].start 3227.89784375
transcript.pyannote[236].end 3228.80909375
transcript.pyannote[237].speaker SPEAKER_09
transcript.pyannote[237].start 3229.02846875
transcript.pyannote[237].end 3233.70284375
transcript.pyannote[238].speaker SPEAKER_09
transcript.pyannote[238].start 3233.93909375
transcript.pyannote[238].end 3234.79971875
transcript.pyannote[239].speaker SPEAKER_09
transcript.pyannote[239].start 3235.35659375
transcript.pyannote[239].end 3238.96784375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 3236.99346875
transcript.pyannote[240].end 3237.38159375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 3238.51221875
transcript.pyannote[241].end 3238.54596875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 3238.73159375
transcript.pyannote[242].end 3239.72721875
transcript.pyannote[243].speaker SPEAKER_09
transcript.pyannote[243].start 3239.06909375
transcript.pyannote[243].end 3240.38534375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 3240.40221875
transcript.pyannote[244].end 3241.09409375
transcript.pyannote[245].speaker SPEAKER_09
transcript.pyannote[245].start 3241.09409375
transcript.pyannote[245].end 3241.73534375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 3241.11096875
transcript.pyannote[246].end 3241.12784375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 3241.66784375
transcript.pyannote[247].end 3241.73534375
transcript.pyannote[248].speaker SPEAKER_26
transcript.pyannote[248].start 3241.73534375
transcript.pyannote[248].end 3243.54096875
transcript.pyannote[249].speaker SPEAKER_09
transcript.pyannote[249].start 3242.57909375
transcript.pyannote[249].end 3243.43971875
transcript.pyannote[250].speaker SPEAKER_26
transcript.pyannote[250].start 3243.72659375
transcript.pyannote[250].end 3243.74346875
transcript.pyannote[251].speaker SPEAKER_09
transcript.pyannote[251].start 3243.74346875
transcript.pyannote[251].end 3244.65471875
transcript.pyannote[252].speaker SPEAKER_26
transcript.pyannote[252].start 3243.82784375
transcript.pyannote[252].end 3244.46909375
transcript.pyannote[253].speaker SPEAKER_26
transcript.pyannote[253].start 3245.11034375
transcript.pyannote[253].end 3247.15221875
transcript.pyannote[254].speaker SPEAKER_26
transcript.pyannote[254].start 3247.43909375
transcript.pyannote[254].end 3257.58096875
transcript.pyannote[255].speaker SPEAKER_09
transcript.pyannote[255].start 3255.64034375
transcript.pyannote[255].end 3255.97784375
transcript.pyannote[256].speaker SPEAKER_09
transcript.pyannote[256].start 3257.58096875
transcript.pyannote[256].end 3263.87534375
transcript.pyannote[257].speaker SPEAKER_26
transcript.pyannote[257].start 3263.20034375
transcript.pyannote[257].end 3266.30534375
transcript.pyannote[258].speaker SPEAKER_09
transcript.pyannote[258].start 3266.13659375
transcript.pyannote[258].end 3267.30096875
transcript.pyannote[259].speaker SPEAKER_26
transcript.pyannote[259].start 3267.87471875
transcript.pyannote[259].end 3271.13159375
transcript.pyannote[260].speaker SPEAKER_09
transcript.pyannote[260].start 3270.62534375
transcript.pyannote[260].end 3273.52784375
transcript.pyannote[261].speaker SPEAKER_26
transcript.pyannote[261].start 3272.98784375
transcript.pyannote[261].end 3275.24909375
transcript.pyannote[262].speaker SPEAKER_09
transcript.pyannote[262].start 3275.38409375
transcript.pyannote[262].end 3280.19346875
transcript.pyannote[263].speaker SPEAKER_09
transcript.pyannote[263].start 3280.42971875
transcript.pyannote[263].end 3285.30659375
transcript.pyannote[264].speaker SPEAKER_26
transcript.pyannote[264].start 3285.42471875
transcript.pyannote[264].end 3285.76221875
transcript.pyannote[265].speaker SPEAKER_09
transcript.pyannote[265].start 3285.76221875
transcript.pyannote[265].end 3286.85909375
transcript.pyannote[266].speaker SPEAKER_26
transcript.pyannote[266].start 3285.79596875
transcript.pyannote[266].end 3294.11534375
transcript.pyannote[267].speaker SPEAKER_09
transcript.pyannote[267].start 3287.85471875
transcript.pyannote[267].end 3288.85034375
transcript.pyannote[268].speaker SPEAKER_09
transcript.pyannote[268].start 3290.74034375
transcript.pyannote[268].end 3290.82471875
transcript.pyannote[269].speaker SPEAKER_09
transcript.pyannote[269].start 3293.76096875
transcript.pyannote[269].end 3315.98534375
transcript.pyannote[270].speaker SPEAKER_26
transcript.pyannote[270].start 3299.58284375
transcript.pyannote[270].end 3299.85284375
transcript.pyannote[271].speaker SPEAKER_26
transcript.pyannote[271].start 3313.62284375
transcript.pyannote[271].end 3314.09534375
transcript.pyannote[272].speaker SPEAKER_26
transcript.pyannote[272].start 3315.17534375
transcript.pyannote[272].end 3323.74784375
transcript.pyannote[273].speaker SPEAKER_26
transcript.pyannote[273].start 3324.01784375
transcript.pyannote[273].end 3329.13096875
transcript.pyannote[274].speaker SPEAKER_09
transcript.pyannote[274].start 3327.39284375
transcript.pyannote[274].end 3338.29409375
transcript.pyannote[275].speaker SPEAKER_26
transcript.pyannote[275].start 3331.10534375
transcript.pyannote[275].end 3331.59471875
transcript.pyannote[276].speaker SPEAKER_26
transcript.pyannote[276].start 3339.07034375
transcript.pyannote[276].end 3339.37409375
transcript.pyannote[277].speaker SPEAKER_09
transcript.pyannote[277].start 3339.39096875
transcript.pyannote[277].end 3353.68409375
transcript.pyannote[278].speaker SPEAKER_26
transcript.pyannote[278].start 3341.65221875
transcript.pyannote[278].end 3342.96846875
transcript.pyannote[279].speaker SPEAKER_09
transcript.pyannote[279].start 3354.07221875
transcript.pyannote[279].end 3359.15159375
transcript.pyannote[280].speaker SPEAKER_18
transcript.pyannote[280].start 3358.94909375
transcript.pyannote[280].end 3367.03221875
transcript.pyannote[281].speaker SPEAKER_09
transcript.pyannote[281].start 3361.34534375
transcript.pyannote[281].end 3361.41284375
transcript.pyannote[282].speaker SPEAKER_09
transcript.pyannote[282].start 3361.46346875
transcript.pyannote[282].end 3361.51409375
transcript.pyannote[283].speaker SPEAKER_09
transcript.pyannote[283].start 3361.81784375
transcript.pyannote[283].end 3362.88096875
transcript.pyannote[284].speaker SPEAKER_18
transcript.pyannote[284].start 3367.23471875
transcript.pyannote[284].end 3384.44721875
transcript.pyannote[285].speaker SPEAKER_12
transcript.pyannote[285].start 3379.31721875
transcript.pyannote[285].end 3379.33409375
transcript.pyannote[286].speaker SPEAKER_18
transcript.pyannote[286].start 3385.07159375
transcript.pyannote[286].end 3392.22659375
transcript.pyannote[287].speaker SPEAKER_09
transcript.pyannote[287].start 3387.01221875
transcript.pyannote[287].end 3388.24409375
transcript.pyannote[288].speaker SPEAKER_18
transcript.pyannote[288].start 3392.74971875
transcript.pyannote[288].end 3392.95221875
transcript.pyannote[289].speaker SPEAKER_18
transcript.pyannote[289].start 3393.45846875
transcript.pyannote[289].end 3398.85846875
transcript.pyannote[290].speaker SPEAKER_09
transcript.pyannote[290].start 3398.79096875
transcript.pyannote[290].end 3409.48971875
transcript.pyannote[291].speaker SPEAKER_18
transcript.pyannote[291].start 3405.32159375
transcript.pyannote[291].end 3406.16534375
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 3406.16534375
transcript.pyannote[292].end 3406.19909375
transcript.pyannote[293].speaker SPEAKER_09
transcript.pyannote[293].start 3409.72596875
transcript.pyannote[293].end 3412.67909375
transcript.pyannote[294].speaker SPEAKER_09
transcript.pyannote[294].start 3412.79721875
transcript.pyannote[294].end 3416.03721875
transcript.pyannote[295].speaker SPEAKER_18
transcript.pyannote[295].start 3416.91471875
transcript.pyannote[295].end 3421.84221875
transcript.pyannote[296].speaker SPEAKER_09
transcript.pyannote[296].start 3421.18409375
transcript.pyannote[296].end 3422.02784375
transcript.pyannote[297].speaker SPEAKER_09
transcript.pyannote[297].start 3422.53409375
transcript.pyannote[297].end 3424.86284375
transcript.pyannote[298].speaker SPEAKER_09
transcript.pyannote[298].start 3426.73596875
transcript.pyannote[298].end 3427.83284375
transcript.pyannote[299].speaker SPEAKER_18
transcript.pyannote[299].start 3428.05221875
transcript.pyannote[299].end 3430.80284375
transcript.pyannote[300].speaker SPEAKER_09
transcript.pyannote[300].start 3429.03096875
transcript.pyannote[300].end 3432.06846875
transcript.pyannote[301].speaker SPEAKER_09
transcript.pyannote[301].start 3432.22034375
transcript.pyannote[301].end 3437.82284375
transcript.pyannote[302].speaker SPEAKER_20
transcript.pyannote[302].start 3436.72596875
transcript.pyannote[302].end 3437.80596875
transcript.pyannote[303].speaker SPEAKER_20
transcript.pyannote[303].start 3437.82284375
transcript.pyannote[303].end 3437.90721875
transcript.pyannote[304].speaker SPEAKER_09
transcript.pyannote[304].start 3437.90721875
transcript.pyannote[304].end 3442.36221875
transcript.pyannote[305].speaker SPEAKER_09
transcript.pyannote[305].start 3442.53096875
transcript.pyannote[305].end 3451.03596875
transcript.pyannote[306].speaker SPEAKER_11
transcript.pyannote[306].start 3446.86784375
transcript.pyannote[306].end 3447.23909375
transcript.pyannote[307].speaker SPEAKER_18
transcript.pyannote[307].start 3447.23909375
transcript.pyannote[307].end 3447.25596875
transcript.pyannote[308].speaker SPEAKER_11
transcript.pyannote[308].start 3447.25596875
transcript.pyannote[308].end 3447.27284375
transcript.pyannote[309].speaker SPEAKER_18
transcript.pyannote[309].start 3451.03596875
transcript.pyannote[309].end 3457.68471875
transcript.pyannote[310].speaker SPEAKER_09
transcript.pyannote[310].start 3457.36409375
transcript.pyannote[310].end 3477.88409375
transcript.pyannote[311].speaker SPEAKER_18
transcript.pyannote[311].start 3477.88409375
transcript.pyannote[311].end 3479.13284375
transcript.pyannote[312].speaker SPEAKER_09
transcript.pyannote[312].start 3479.03159375
transcript.pyannote[312].end 3479.30159375
transcript.pyannote[313].speaker SPEAKER_18
transcript.pyannote[313].start 3479.30159375
transcript.pyannote[313].end 3490.38846875
transcript.pyannote[314].speaker SPEAKER_09
transcript.pyannote[314].start 3486.92909375
transcript.pyannote[314].end 3496.54784375
transcript.pyannote[315].speaker SPEAKER_19
transcript.pyannote[315].start 3490.38846875
transcript.pyannote[315].end 3490.40534375
transcript.pyannote[316].speaker SPEAKER_18
transcript.pyannote[316].start 3494.74221875
transcript.pyannote[316].end 3495.29909375
transcript.pyannote[317].speaker SPEAKER_09
transcript.pyannote[317].start 3497.22284375
transcript.pyannote[317].end 3499.14659375
transcript.pyannote[318].speaker SPEAKER_18
transcript.pyannote[318].start 3497.25659375
transcript.pyannote[318].end 3497.88096875
transcript.pyannote[319].speaker SPEAKER_18
transcript.pyannote[319].start 3498.60659375
transcript.pyannote[319].end 3500.27721875
transcript.pyannote[320].speaker SPEAKER_09
transcript.pyannote[320].start 3500.26034375
transcript.pyannote[320].end 3500.96909375
transcript.pyannote[321].speaker SPEAKER_09
transcript.pyannote[321].start 3501.01971875
transcript.pyannote[321].end 3502.60596875
transcript.pyannote[322].speaker SPEAKER_09
transcript.pyannote[322].start 3503.11221875
transcript.pyannote[322].end 3504.51284375
transcript.pyannote[323].speaker SPEAKER_09
transcript.pyannote[323].start 3505.30596875
transcript.pyannote[323].end 3506.33534375
transcript.pyannote[324].speaker SPEAKER_09
transcript.pyannote[324].start 3506.82471875
transcript.pyannote[324].end 3515.58284375
transcript.pyannote[325].speaker SPEAKER_18
transcript.pyannote[325].start 3509.99721875
transcript.pyannote[325].end 3512.07284375
transcript.pyannote[326].speaker SPEAKER_18
transcript.pyannote[326].start 3514.36784375
transcript.pyannote[326].end 3518.94096875
transcript.pyannote[327].speaker SPEAKER_18
transcript.pyannote[327].start 3520.86471875
transcript.pyannote[327].end 3522.58596875
transcript.pyannote[328].speaker SPEAKER_18
transcript.pyannote[328].start 3522.61971875
transcript.pyannote[328].end 3522.70409375
transcript.pyannote[329].speaker SPEAKER_09
transcript.pyannote[329].start 3522.70409375
transcript.pyannote[329].end 3544.38846875
transcript.pyannote[330].speaker SPEAKER_18
transcript.pyannote[330].start 3544.38846875
transcript.pyannote[330].end 3550.83471875
transcript.pyannote[331].speaker SPEAKER_09
transcript.pyannote[331].start 3549.24846875
transcript.pyannote[331].end 3599.62034375
transcript.pyannote[332].speaker SPEAKER_18
transcript.pyannote[332].start 3551.77971875
transcript.pyannote[332].end 3551.96534375
transcript.pyannote[333].speaker SPEAKER_20
transcript.pyannote[333].start 3560.58846875
transcript.pyannote[333].end 3560.82471875
transcript.pyannote[334].speaker SPEAKER_18
transcript.pyannote[334].start 3598.33784375
transcript.pyannote[334].end 3605.12159375
transcript.pyannote[335].speaker SPEAKER_09
transcript.pyannote[335].start 3604.71659375
transcript.pyannote[335].end 3619.66784375
transcript.pyannote[336].speaker SPEAKER_09
transcript.pyannote[336].start 3620.32596875
transcript.pyannote[336].end 3622.43534375
transcript.pyannote[337].speaker SPEAKER_09
transcript.pyannote[337].start 3623.63346875
transcript.pyannote[337].end 3624.03846875
transcript.pyannote[338].speaker SPEAKER_09
transcript.pyannote[338].start 3624.64596875
transcript.pyannote[338].end 3626.02971875
transcript.pyannote[339].speaker SPEAKER_18
transcript.pyannote[339].start 3625.52346875
transcript.pyannote[339].end 3634.73721875
transcript.pyannote[340].speaker SPEAKER_19
transcript.pyannote[340].start 3626.02971875
transcript.pyannote[340].end 3626.35034375
transcript.pyannote[341].speaker SPEAKER_09
transcript.pyannote[341].start 3626.35034375
transcript.pyannote[341].end 3627.95346875
transcript.pyannote[342].speaker SPEAKER_09
transcript.pyannote[342].start 3628.71284375
transcript.pyannote[342].end 3629.48909375
transcript.pyannote[343].speaker SPEAKER_09
transcript.pyannote[343].start 3633.08346875
transcript.pyannote[343].end 3634.63596875
transcript.pyannote[344].speaker SPEAKER_18
transcript.pyannote[344].start 3634.95659375
transcript.pyannote[344].end 3635.96909375
transcript.pyannote[345].speaker SPEAKER_09
transcript.pyannote[345].start 3635.64846875
transcript.pyannote[345].end 3650.09346875
transcript.pyannote[346].speaker SPEAKER_09
transcript.pyannote[346].start 3650.54909375
transcript.pyannote[346].end 3656.47221875
transcript.pyannote[347].speaker SPEAKER_09
transcript.pyannote[347].start 3656.92784375
transcript.pyannote[347].end 3658.07534375
transcript.pyannote[348].speaker SPEAKER_09
transcript.pyannote[348].start 3658.58159375
transcript.pyannote[348].end 3662.81721875
transcript.pyannote[349].speaker SPEAKER_18
transcript.pyannote[349].start 3662.71596875
transcript.pyannote[349].end 3674.07284375
transcript.pyannote[350].speaker SPEAKER_09
transcript.pyannote[350].start 3662.95221875
transcript.pyannote[350].end 3663.94784375
transcript.pyannote[351].speaker SPEAKER_09
transcript.pyannote[351].start 3665.75346875
transcript.pyannote[351].end 3667.06971875
transcript.pyannote[352].speaker SPEAKER_09
transcript.pyannote[352].start 3669.56721875
transcript.pyannote[352].end 3670.05659375
transcript.pyannote[353].speaker SPEAKER_09
transcript.pyannote[353].start 3670.51221875
transcript.pyannote[353].end 3672.31784375
transcript.pyannote[354].speaker SPEAKER_09
transcript.pyannote[354].start 3673.02659375
transcript.pyannote[354].end 3676.68846875
transcript.pyannote[355].speaker SPEAKER_18
transcript.pyannote[355].start 3676.78971875
transcript.pyannote[355].end 3676.92471875
transcript.pyannote[356].speaker SPEAKER_18
transcript.pyannote[356].start 3676.97534375
transcript.pyannote[356].end 3684.88971875
transcript.pyannote[357].speaker SPEAKER_18
transcript.pyannote[357].start 3685.54784375
transcript.pyannote[357].end 3690.71159375
transcript.pyannote[358].speaker SPEAKER_09
transcript.pyannote[358].start 3689.37846875
transcript.pyannote[358].end 3696.01034375
transcript.pyannote[359].speaker SPEAKER_18
transcript.pyannote[359].start 3694.17096875
transcript.pyannote[359].end 3703.67159375
transcript.pyannote[360].speaker SPEAKER_09
transcript.pyannote[360].start 3704.73471875
transcript.pyannote[360].end 3709.30784375
transcript.pyannote[361].speaker SPEAKER_09
transcript.pyannote[361].start 3709.83096875
transcript.pyannote[361].end 3716.51346875
transcript.pyannote[362].speaker SPEAKER_18
transcript.pyannote[362].start 3714.79221875
transcript.pyannote[362].end 3717.07034375
transcript.pyannote[363].speaker SPEAKER_18
transcript.pyannote[363].start 3717.55971875
transcript.pyannote[363].end 3719.07846875
transcript.pyannote[364].speaker SPEAKER_09
transcript.pyannote[364].start 3719.92221875
transcript.pyannote[364].end 3725.32221875
transcript.pyannote[365].speaker SPEAKER_18
transcript.pyannote[365].start 3723.87096875
transcript.pyannote[365].end 3726.95909375
transcript.pyannote[366].speaker SPEAKER_09
transcript.pyannote[366].start 3726.13221875
transcript.pyannote[366].end 3727.63409375
transcript.pyannote[367].speaker SPEAKER_09
transcript.pyannote[367].start 3727.95471875
transcript.pyannote[367].end 3730.50284375
transcript.pyannote[368].speaker SPEAKER_09
transcript.pyannote[368].start 3730.53659375
transcript.pyannote[368].end 3733.38846875
transcript.pyannote[369].speaker SPEAKER_09
transcript.pyannote[369].start 3733.87784375
transcript.pyannote[369].end 3739.91909375
transcript.pyannote[370].speaker SPEAKER_09
transcript.pyannote[370].start 3740.76284375
transcript.pyannote[370].end 3748.64346875
transcript.pyannote[371].speaker SPEAKER_09
transcript.pyannote[371].start 3749.08221875
transcript.pyannote[371].end 3774.24284375
transcript.pyannote[372].speaker SPEAKER_09
transcript.pyannote[372].start 3774.54659375
transcript.pyannote[372].end 3796.99034375
transcript.pyannote[373].speaker SPEAKER_18
transcript.pyannote[373].start 3799.21784375
transcript.pyannote[373].end 3805.57971875
transcript.pyannote[374].speaker SPEAKER_18
transcript.pyannote[374].start 3806.28846875
transcript.pyannote[374].end 3807.23346875
transcript.pyannote[375].speaker SPEAKER_09
transcript.pyannote[375].start 3807.33471875
transcript.pyannote[375].end 3830.67284375
transcript.pyannote[376].speaker SPEAKER_07
transcript.pyannote[376].start 3809.10659375
transcript.pyannote[376].end 3809.56221875
transcript.pyannote[377].speaker SPEAKER_18
transcript.pyannote[377].start 3809.56221875
transcript.pyannote[377].end 3810.08534375
transcript.pyannote[378].speaker SPEAKER_07
transcript.pyannote[378].start 3810.08534375
transcript.pyannote[378].end 3810.11909375
transcript.pyannote[379].speaker SPEAKER_00
transcript.pyannote[379].start 3828.44534375
transcript.pyannote[379].end 3828.47909375
transcript.pyannote[380].speaker SPEAKER_19
transcript.pyannote[380].start 3828.47909375
transcript.pyannote[380].end 3828.71534375
transcript.pyannote[381].speaker SPEAKER_00
transcript.pyannote[381].start 3828.71534375
transcript.pyannote[381].end 3828.74909375
transcript.pyannote[382].speaker SPEAKER_09
transcript.pyannote[382].start 3830.84159375
transcript.pyannote[382].end 3878.31096875
transcript.pyannote[383].speaker SPEAKER_09
transcript.pyannote[383].start 3879.03659375
transcript.pyannote[383].end 3882.78284375
transcript.pyannote[384].speaker SPEAKER_26
transcript.pyannote[384].start 3883.37346875
transcript.pyannote[384].end 3896.21534375
transcript.pyannote[385].speaker SPEAKER_09
transcript.pyannote[385].start 3885.07784375
transcript.pyannote[385].end 3885.63471875
transcript.pyannote[386].speaker SPEAKER_09
transcript.pyannote[386].start 3892.43534375
transcript.pyannote[386].end 3926.18534375
transcript.pyannote[387].speaker SPEAKER_09
transcript.pyannote[387].start 3926.65784375
transcript.pyannote[387].end 3956.96534375
transcript.pyannote[388].speaker SPEAKER_04
transcript.pyannote[388].start 3954.45096875
transcript.pyannote[388].end 3960.39096875
transcript.pyannote[389].speaker SPEAKER_09
transcript.pyannote[389].start 3959.96909375
transcript.pyannote[389].end 3961.48784375
transcript.pyannote[390].speaker SPEAKER_04
transcript.pyannote[390].start 3960.76221875
transcript.pyannote[390].end 3965.01471875
transcript.pyannote[391].speaker SPEAKER_09
transcript.pyannote[391].start 3963.71534375
transcript.pyannote[391].end 3964.94721875
transcript.pyannote[392].speaker SPEAKER_04
transcript.pyannote[392].start 3965.55471875
transcript.pyannote[392].end 3966.76971875
transcript.pyannote[393].speaker SPEAKER_09
transcript.pyannote[393].start 3965.58846875
transcript.pyannote[393].end 3967.59659375
transcript.pyannote[394].speaker SPEAKER_04
transcript.pyannote[394].start 3966.93846875
transcript.pyannote[394].end 3967.90034375
transcript.pyannote[395].speaker SPEAKER_09
transcript.pyannote[395].start 3967.86659375
transcript.pyannote[395].end 3970.16159375
transcript.pyannote[396].speaker SPEAKER_04
transcript.pyannote[396].start 3969.63846875
transcript.pyannote[396].end 3974.17784375
transcript.pyannote[397].speaker SPEAKER_09
transcript.pyannote[397].start 3971.27534375
transcript.pyannote[397].end 3972.06846875
transcript.pyannote[398].speaker SPEAKER_09
transcript.pyannote[398].start 3972.77721875
transcript.pyannote[398].end 3978.07596875
transcript.pyannote[399].speaker SPEAKER_04
transcript.pyannote[399].start 3977.38409375
transcript.pyannote[399].end 3984.97784375
transcript.pyannote[400].speaker SPEAKER_09
transcript.pyannote[400].start 3978.91971875
transcript.pyannote[400].end 3983.39159375
transcript.pyannote[401].speaker SPEAKER_02
transcript.pyannote[401].start 3983.39159375
transcript.pyannote[401].end 3983.45909375
transcript.pyannote[402].speaker SPEAKER_02
transcript.pyannote[402].start 3984.31971875
transcript.pyannote[402].end 3987.69471875
transcript.pyannote[403].speaker SPEAKER_02
transcript.pyannote[403].start 3988.16721875
transcript.pyannote[403].end 3988.42034375
transcript.pyannote[404].speaker SPEAKER_02
transcript.pyannote[404].start 3989.11221875
transcript.pyannote[404].end 3991.03596875
transcript.pyannote[405].speaker SPEAKER_02
transcript.pyannote[405].start 3991.15409375
transcript.pyannote[405].end 3992.89221875
transcript.pyannote[406].speaker SPEAKER_13
transcript.pyannote[406].start 3997.80284375
transcript.pyannote[406].end 4002.25784375
transcript.pyannote[407].speaker SPEAKER_02
transcript.pyannote[407].start 4002.25784375
transcript.pyannote[407].end 4002.96659375
transcript.pyannote[408].speaker SPEAKER_02
transcript.pyannote[408].start 4003.87784375
transcript.pyannote[408].end 4004.02971875
transcript.pyannote[409].speaker SPEAKER_02
transcript.pyannote[409].start 4006.67909375
transcript.pyannote[409].end 4007.20221875
transcript.pyannote[410].speaker SPEAKER_19
transcript.pyannote[410].start 4007.20221875
transcript.pyannote[410].end 4007.23596875
transcript.pyannote[411].speaker SPEAKER_13
transcript.pyannote[411].start 4007.97846875
transcript.pyannote[411].end 4008.01221875
transcript.pyannote[412].speaker SPEAKER_13
transcript.pyannote[412].start 4008.46784375
transcript.pyannote[412].end 4009.46346875
transcript.pyannote[413].speaker SPEAKER_19
transcript.pyannote[413].start 4009.61534375
transcript.pyannote[413].end 4009.96971875
transcript.pyannote[414].speaker SPEAKER_13
transcript.pyannote[414].start 4010.02034375
transcript.pyannote[414].end 4013.34471875
transcript.pyannote[415].speaker SPEAKER_13
transcript.pyannote[415].start 4013.73284375
transcript.pyannote[415].end 4025.20784375
transcript.pyannote[416].speaker SPEAKER_04
transcript.pyannote[416].start 4027.28346875
transcript.pyannote[416].end 4027.80659375
transcript.pyannote[417].speaker SPEAKER_13
transcript.pyannote[417].start 4027.30034375
transcript.pyannote[417].end 4027.92471875
transcript.pyannote[418].speaker SPEAKER_04
transcript.pyannote[418].start 4027.92471875
transcript.pyannote[418].end 4030.74284375
transcript.pyannote[419].speaker SPEAKER_13
transcript.pyannote[419].start 4027.99221875
transcript.pyannote[419].end 4028.54909375
transcript.pyannote[420].speaker SPEAKER_13
transcript.pyannote[420].start 4030.03409375
transcript.pyannote[420].end 4108.13159375
transcript.pyannote[421].speaker SPEAKER_13
transcript.pyannote[421].start 4108.90784375
transcript.pyannote[421].end 4138.28721875
transcript.pyannote[422].speaker SPEAKER_13
transcript.pyannote[422].start 4138.45596875
transcript.pyannote[422].end 4148.10846875
transcript.pyannote[423].speaker SPEAKER_13
transcript.pyannote[423].start 4148.74971875
transcript.pyannote[423].end 4152.42846875
transcript.pyannote[424].speaker SPEAKER_04
transcript.pyannote[424].start 4152.90096875
transcript.pyannote[424].end 4159.17846875
transcript.pyannote[425].speaker SPEAKER_04
transcript.pyannote[425].start 4159.87034375
transcript.pyannote[425].end 4160.62971875
transcript.pyannote[426].speaker SPEAKER_04
transcript.pyannote[426].start 4161.23721875
transcript.pyannote[426].end 4163.58284375
transcript.pyannote[427].speaker SPEAKER_04
transcript.pyannote[427].start 4164.47721875
transcript.pyannote[427].end 4193.90721875
transcript.pyannote[428].speaker SPEAKER_20
transcript.pyannote[428].start 4180.77846875
transcript.pyannote[428].end 4180.87971875
transcript.pyannote[429].speaker SPEAKER_13
transcript.pyannote[429].start 4180.87971875
transcript.pyannote[429].end 4181.04846875
transcript.pyannote[430].speaker SPEAKER_13
transcript.pyannote[430].start 4181.45346875
transcript.pyannote[430].end 4218.17346875
transcript.pyannote[431].speaker SPEAKER_00
transcript.pyannote[431].start 4193.90721875
transcript.pyannote[431].end 4193.99159375
transcript.pyannote[432].speaker SPEAKER_19
transcript.pyannote[432].start 4195.07159375
transcript.pyannote[432].end 4196.11784375
transcript.pyannote[433].speaker SPEAKER_19
transcript.pyannote[433].start 4220.11409375
transcript.pyannote[433].end 4220.65409375
transcript.pyannote[434].speaker SPEAKER_13
transcript.pyannote[434].start 4220.50221875
transcript.pyannote[434].end 4234.93034375
transcript.pyannote[435].speaker SPEAKER_19
transcript.pyannote[435].start 4222.20659375
transcript.pyannote[435].end 4229.96909375
transcript.pyannote[436].speaker SPEAKER_04
transcript.pyannote[436].start 4229.96909375
transcript.pyannote[436].end 4230.52596875
transcript.pyannote[437].speaker SPEAKER_19
transcript.pyannote[437].start 4230.52596875
transcript.pyannote[437].end 4230.54284375
transcript.pyannote[438].speaker SPEAKER_04
transcript.pyannote[438].start 4235.25096875
transcript.pyannote[438].end 4251.38346875
transcript.pyannote[439].speaker SPEAKER_13
transcript.pyannote[439].start 4235.26784375
transcript.pyannote[439].end 4236.87096875
transcript.pyannote[440].speaker SPEAKER_13
transcript.pyannote[440].start 4251.23159375
transcript.pyannote[440].end 4290.61784375
transcript.pyannote[441].speaker SPEAKER_04
transcript.pyannote[441].start 4255.51784375
transcript.pyannote[441].end 4255.88909375
transcript.pyannote[442].speaker SPEAKER_04
transcript.pyannote[442].start 4256.83409375
transcript.pyannote[442].end 4258.97721875
transcript.pyannote[443].speaker SPEAKER_19
transcript.pyannote[443].start 4258.97721875
transcript.pyannote[443].end 4259.34846875
transcript.pyannote[444].speaker SPEAKER_04
transcript.pyannote[444].start 4259.34846875
transcript.pyannote[444].end 4259.63534375
transcript.pyannote[445].speaker SPEAKER_19
transcript.pyannote[445].start 4259.63534375
transcript.pyannote[445].end 4260.76596875
transcript.pyannote[446].speaker SPEAKER_04
transcript.pyannote[446].start 4270.82346875
transcript.pyannote[446].end 4274.68784375
transcript.pyannote[447].speaker SPEAKER_19
transcript.pyannote[447].start 4274.68784375
transcript.pyannote[447].end 4278.65346875
transcript.pyannote[448].speaker SPEAKER_13
transcript.pyannote[448].start 4290.66846875
transcript.pyannote[448].end 4290.68534375
transcript.pyannote[449].speaker SPEAKER_04
transcript.pyannote[449].start 4290.68534375
transcript.pyannote[449].end 4291.79909375
transcript.pyannote[450].speaker SPEAKER_19
transcript.pyannote[450].start 4291.20846875
transcript.pyannote[450].end 4291.36034375
transcript.pyannote[451].speaker SPEAKER_13
transcript.pyannote[451].start 4291.36034375
transcript.pyannote[451].end 4292.59221875
transcript.pyannote[452].speaker SPEAKER_04
transcript.pyannote[452].start 4292.22096875
transcript.pyannote[452].end 4301.73846875
transcript.pyannote[453].speaker SPEAKER_13
transcript.pyannote[453].start 4297.95846875
transcript.pyannote[453].end 4300.91159375
transcript.pyannote[454].speaker SPEAKER_13
transcript.pyannote[454].start 4301.45159375
transcript.pyannote[454].end 4303.69596875
transcript.pyannote[455].speaker SPEAKER_04
transcript.pyannote[455].start 4302.63284375
transcript.pyannote[455].end 4305.63659375
transcript.pyannote[456].speaker SPEAKER_13
transcript.pyannote[456].start 4304.55659375
transcript.pyannote[456].end 4307.71221875
transcript.pyannote[457].speaker SPEAKER_04
transcript.pyannote[457].start 4307.66159375
transcript.pyannote[457].end 4311.89721875
transcript.pyannote[458].speaker SPEAKER_13
transcript.pyannote[458].start 4310.91846875
transcript.pyannote[458].end 4316.11596875
transcript.pyannote[459].speaker SPEAKER_04
transcript.pyannote[459].start 4316.16659375
transcript.pyannote[459].end 4328.78909375
transcript.pyannote[460].speaker SPEAKER_13
transcript.pyannote[460].start 4321.48221875
transcript.pyannote[460].end 4322.42721875
transcript.pyannote[461].speaker SPEAKER_13
transcript.pyannote[461].start 4322.51159375
transcript.pyannote[461].end 4322.86596875
transcript.pyannote[462].speaker SPEAKER_13
transcript.pyannote[462].start 4323.27096875
transcript.pyannote[462].end 4326.07221875
transcript.pyannote[463].speaker SPEAKER_13
transcript.pyannote[463].start 4328.89034375
transcript.pyannote[463].end 4331.47221875
transcript.pyannote[464].speaker SPEAKER_04
transcript.pyannote[464].start 4332.11346875
transcript.pyannote[464].end 4333.02471875
transcript.pyannote[465].speaker SPEAKER_04
transcript.pyannote[465].start 4333.54784375
transcript.pyannote[465].end 4334.76284375
transcript.pyannote[466].speaker SPEAKER_13
transcript.pyannote[466].start 4334.47596875
transcript.pyannote[466].end 4336.02846875
transcript.pyannote[467].speaker SPEAKER_04
transcript.pyannote[467].start 4334.83034375
transcript.pyannote[467].end 4334.91471875
transcript.pyannote[468].speaker SPEAKER_04
transcript.pyannote[468].start 4334.94846875
transcript.pyannote[468].end 4336.16346875
transcript.pyannote[469].speaker SPEAKER_13
transcript.pyannote[469].start 4336.07909375
transcript.pyannote[469].end 4345.22534375
transcript.pyannote[470].speaker SPEAKER_04
transcript.pyannote[470].start 4345.68096875
transcript.pyannote[470].end 4349.00534375
transcript.pyannote[471].speaker SPEAKER_13
transcript.pyannote[471].start 4346.67659375
transcript.pyannote[471].end 4350.62534375
transcript.pyannote[472].speaker SPEAKER_04
transcript.pyannote[472].start 4350.62534375
transcript.pyannote[472].end 4350.89534375
transcript.pyannote[473].speaker SPEAKER_13
transcript.pyannote[473].start 4350.89534375
transcript.pyannote[473].end 4350.91221875
transcript.pyannote[474].speaker SPEAKER_13
transcript.pyannote[474].start 4351.43534375
transcript.pyannote[474].end 4351.80659375
transcript.pyannote[475].speaker SPEAKER_13
transcript.pyannote[475].start 4352.44784375
transcript.pyannote[475].end 4353.42659375
transcript.pyannote[476].speaker SPEAKER_04
transcript.pyannote[476].start 4354.86096875
transcript.pyannote[476].end 4359.29909375
transcript.pyannote[477].speaker SPEAKER_13
transcript.pyannote[477].start 4359.61971875
transcript.pyannote[477].end 4361.00346875
transcript.pyannote[478].speaker SPEAKER_04
transcript.pyannote[478].start 4360.31159375
transcript.pyannote[478].end 4362.45471875
transcript.pyannote[479].speaker SPEAKER_04
transcript.pyannote[479].start 4362.72471875
transcript.pyannote[479].end 4369.17096875
transcript.pyannote[480].speaker SPEAKER_13
transcript.pyannote[480].start 4367.71971875
transcript.pyannote[480].end 4371.49971875
transcript.pyannote[481].speaker SPEAKER_04
transcript.pyannote[481].start 4369.39034375
transcript.pyannote[481].end 4369.81221875
transcript.pyannote[482].speaker SPEAKER_04
transcript.pyannote[482].start 4370.99346875
transcript.pyannote[482].end 4371.41534375
transcript.pyannote[483].speaker SPEAKER_04
transcript.pyannote[483].start 4371.49971875
transcript.pyannote[483].end 4371.51659375
transcript.pyannote[484].speaker SPEAKER_04
transcript.pyannote[484].start 4371.73596875
transcript.pyannote[484].end 4372.93409375
transcript.pyannote[485].speaker SPEAKER_13
transcript.pyannote[485].start 4374.19971875
transcript.pyannote[485].end 4385.38784375
transcript.pyannote[486].speaker SPEAKER_04
transcript.pyannote[486].start 4376.12346875
transcript.pyannote[486].end 4377.86159375
transcript.pyannote[487].speaker SPEAKER_19
transcript.pyannote[487].start 4377.86159375
transcript.pyannote[487].end 4377.87846875
transcript.pyannote[488].speaker SPEAKER_04
transcript.pyannote[488].start 4377.87846875
transcript.pyannote[488].end 4377.89534375
transcript.pyannote[489].speaker SPEAKER_19
transcript.pyannote[489].start 4377.89534375
transcript.pyannote[489].end 4377.96284375
transcript.pyannote[490].speaker SPEAKER_13
transcript.pyannote[490].start 4385.60721875
transcript.pyannote[490].end 4419.03659375
transcript.pyannote[491].speaker SPEAKER_19
transcript.pyannote[491].start 4419.03659375
transcript.pyannote[491].end 4419.10409375
transcript.pyannote[492].speaker SPEAKER_13
transcript.pyannote[492].start 4419.10409375
transcript.pyannote[492].end 4429.75221875
transcript.pyannote[493].speaker SPEAKER_04
transcript.pyannote[493].start 4430.32596875
transcript.pyannote[493].end 4439.05034375
transcript.pyannote[494].speaker SPEAKER_19
transcript.pyannote[494].start 4434.47721875
transcript.pyannote[494].end 4434.86534375
transcript.pyannote[495].speaker SPEAKER_19
transcript.pyannote[495].start 4438.98284375
transcript.pyannote[495].end 4439.30346875
transcript.pyannote[496].speaker SPEAKER_04
transcript.pyannote[496].start 4439.20221875
transcript.pyannote[496].end 4450.57596875
transcript.pyannote[497].speaker SPEAKER_04
transcript.pyannote[497].start 4450.87971875
transcript.pyannote[497].end 4467.73784375
transcript.pyannote[498].speaker SPEAKER_13
transcript.pyannote[498].start 4456.65096875
transcript.pyannote[498].end 4456.76909375
transcript.pyannote[499].speaker SPEAKER_13
transcript.pyannote[499].start 4461.32534375
transcript.pyannote[499].end 4462.30409375
transcript.pyannote[500].speaker SPEAKER_13
transcript.pyannote[500].start 4463.60346875
transcript.pyannote[500].end 4463.94096875
transcript.pyannote[501].speaker SPEAKER_13
transcript.pyannote[501].start 4465.99971875
transcript.pyannote[501].end 4466.45534375
transcript.pyannote[502].speaker SPEAKER_13
transcript.pyannote[502].start 4467.09659375
transcript.pyannote[502].end 4478.97659375
transcript.pyannote[503].speaker SPEAKER_04
transcript.pyannote[503].start 4468.86846875
transcript.pyannote[503].end 4470.50534375
transcript.pyannote[504].speaker SPEAKER_20
transcript.pyannote[504].start 4470.50534375
transcript.pyannote[504].end 4470.60659375
transcript.pyannote[505].speaker SPEAKER_20
transcript.pyannote[505].start 4471.38284375
transcript.pyannote[505].end 4471.41659375
transcript.pyannote[506].speaker SPEAKER_04
transcript.pyannote[506].start 4471.41659375
transcript.pyannote[506].end 4473.00284375
transcript.pyannote[507].speaker SPEAKER_07
transcript.pyannote[507].start 4473.00284375
transcript.pyannote[507].end 4473.01971875
transcript.pyannote[508].speaker SPEAKER_13
transcript.pyannote[508].start 4479.68534375
transcript.pyannote[508].end 4481.13659375
transcript.pyannote[509].speaker SPEAKER_04
transcript.pyannote[509].start 4482.85784375
transcript.pyannote[509].end 4487.54909375
transcript.pyannote[510].speaker SPEAKER_18
transcript.pyannote[510].start 4487.21159375
transcript.pyannote[510].end 4500.30659375
transcript.pyannote[511].speaker SPEAKER_18
transcript.pyannote[511].start 4501.04909375
transcript.pyannote[511].end 4539.74346875
transcript.pyannote[512].speaker SPEAKER_00
transcript.pyannote[512].start 4515.89909375
transcript.pyannote[512].end 4516.45596875
transcript.pyannote[513].speaker SPEAKER_20
transcript.pyannote[513].start 4533.85409375
transcript.pyannote[513].end 4534.17471875
transcript.pyannote[514].speaker SPEAKER_18
transcript.pyannote[514].start 4539.91221875
transcript.pyannote[514].end 4546.12221875
transcript.pyannote[515].speaker SPEAKER_18
transcript.pyannote[515].start 4546.34159375
transcript.pyannote[515].end 4563.77346875
transcript.pyannote[516].speaker SPEAKER_00
transcript.pyannote[516].start 4554.28971875
transcript.pyannote[516].end 4554.34034375
transcript.pyannote[517].speaker SPEAKER_13
transcript.pyannote[517].start 4554.34034375
transcript.pyannote[517].end 4554.57659375
transcript.pyannote[518].speaker SPEAKER_13
transcript.pyannote[518].start 4562.67659375
transcript.pyannote[518].end 4587.19596875
transcript.pyannote[519].speaker SPEAKER_00
transcript.pyannote[519].start 4573.08846875
transcript.pyannote[519].end 4573.76346875
transcript.pyannote[520].speaker SPEAKER_00
transcript.pyannote[520].start 4577.64471875
transcript.pyannote[520].end 4577.69534375
transcript.pyannote[521].speaker SPEAKER_05
transcript.pyannote[521].start 4577.69534375
transcript.pyannote[521].end 4578.08346875
transcript.pyannote[522].speaker SPEAKER_18
transcript.pyannote[522].start 4588.63034375
transcript.pyannote[522].end 4594.89096875
transcript.pyannote[523].speaker SPEAKER_18
transcript.pyannote[523].start 4595.16096875
transcript.pyannote[523].end 4598.09721875
transcript.pyannote[524].speaker SPEAKER_13
transcript.pyannote[524].start 4595.17784375
transcript.pyannote[524].end 4595.49846875
transcript.pyannote[525].speaker SPEAKER_13
transcript.pyannote[525].start 4596.76409375
transcript.pyannote[525].end 4597.47284375
transcript.pyannote[526].speaker SPEAKER_13
transcript.pyannote[526].start 4597.50659375
transcript.pyannote[526].end 4600.61159375
transcript.pyannote[527].speaker SPEAKER_13
transcript.pyannote[527].start 4600.71284375
transcript.pyannote[527].end 4606.41659375
transcript.pyannote[528].speaker SPEAKER_13
transcript.pyannote[528].start 4606.85534375
transcript.pyannote[528].end 4625.31659375
transcript.pyannote[529].speaker SPEAKER_13
transcript.pyannote[529].start 4625.77221875
transcript.pyannote[529].end 4642.54596875
transcript.pyannote[530].speaker SPEAKER_18
transcript.pyannote[530].start 4642.54596875
transcript.pyannote[530].end 4649.31284375
transcript.pyannote[531].speaker SPEAKER_13
transcript.pyannote[531].start 4649.39721875
transcript.pyannote[531].end 4653.04221875
transcript.pyannote[532].speaker SPEAKER_20
transcript.pyannote[532].start 4653.04221875
transcript.pyannote[532].end 4653.39659375
transcript.pyannote[533].speaker SPEAKER_26
transcript.pyannote[533].start 4655.05034375
transcript.pyannote[533].end 4679.60346875
transcript.pyannote[534].speaker SPEAKER_13
transcript.pyannote[534].start 4673.91659375
transcript.pyannote[534].end 4674.01784375
transcript.pyannote[535].speaker SPEAKER_13
transcript.pyannote[535].start 4677.88221875
transcript.pyannote[535].end 4686.18471875
transcript.pyannote[536].speaker SPEAKER_26
transcript.pyannote[536].start 4686.80909375
transcript.pyannote[536].end 4687.24784375
transcript.pyannote[537].speaker SPEAKER_26
transcript.pyannote[537].start 4688.26034375
transcript.pyannote[537].end 4690.79159375
transcript.pyannote[538].speaker SPEAKER_13
transcript.pyannote[538].start 4689.91409375
transcript.pyannote[538].end 4692.20909375
transcript.pyannote[539].speaker SPEAKER_13
transcript.pyannote[539].start 4692.54659375
transcript.pyannote[539].end 4694.82471875
transcript.pyannote[540].speaker SPEAKER_26
transcript.pyannote[540].start 4695.46596875
transcript.pyannote[540].end 4696.42784375
transcript.pyannote[541].speaker SPEAKER_26
transcript.pyannote[541].start 4696.90034375
transcript.pyannote[541].end 4704.79784375
transcript.pyannote[542].speaker SPEAKER_26
transcript.pyannote[542].start 4705.20284375
transcript.pyannote[542].end 4708.35846875
transcript.pyannote[543].speaker SPEAKER_13
transcript.pyannote[543].start 4707.24471875
transcript.pyannote[543].end 4760.63721875
transcript.pyannote[544].speaker SPEAKER_04
transcript.pyannote[544].start 4761.70034375
transcript.pyannote[544].end 4762.57784375
transcript.pyannote[545].speaker SPEAKER_04
transcript.pyannote[545].start 4762.78034375
transcript.pyannote[545].end 4764.09659375
transcript.pyannote[546].speaker SPEAKER_04
transcript.pyannote[546].start 4764.13034375
transcript.pyannote[546].end 4773.31034375
transcript.pyannote[547].speaker SPEAKER_13
transcript.pyannote[547].start 4773.24284375
transcript.pyannote[547].end 4774.82909375
transcript.pyannote[548].speaker SPEAKER_04
transcript.pyannote[548].start 4773.68159375
transcript.pyannote[548].end 4796.53034375
transcript.pyannote[549].speaker SPEAKER_13
transcript.pyannote[549].start 4775.20034375
transcript.pyannote[549].end 4775.50409375
transcript.pyannote[550].speaker SPEAKER_13
transcript.pyannote[550].start 4795.43346875
transcript.pyannote[550].end 4822.75409375
transcript.pyannote[551].speaker SPEAKER_04
transcript.pyannote[551].start 4797.45846875
transcript.pyannote[551].end 4797.69471875
transcript.pyannote[552].speaker SPEAKER_19
transcript.pyannote[552].start 4809.47346875
transcript.pyannote[552].end 4810.40159375
transcript.pyannote[553].speaker SPEAKER_19
transcript.pyannote[553].start 4811.65034375
transcript.pyannote[553].end 4812.12284375
transcript.pyannote[554].speaker SPEAKER_13
transcript.pyannote[554].start 4823.64846875
transcript.pyannote[554].end 4832.77784375
transcript.pyannote[555].speaker SPEAKER_13
transcript.pyannote[555].start 4833.23346875
transcript.pyannote[555].end 4849.11284375
transcript.pyannote[556].speaker SPEAKER_04
transcript.pyannote[556].start 4849.83846875
transcript.pyannote[556].end 4851.91409375
transcript.pyannote[557].speaker SPEAKER_04
transcript.pyannote[557].start 4852.13346875
transcript.pyannote[557].end 4865.53221875
transcript.pyannote[558].speaker SPEAKER_04
transcript.pyannote[558].start 4865.66721875
transcript.pyannote[558].end 4874.18909375
transcript.pyannote[559].speaker SPEAKER_19
transcript.pyannote[559].start 4866.00471875
transcript.pyannote[559].end 4866.22409375
transcript.pyannote[560].speaker SPEAKER_19
transcript.pyannote[560].start 4867.57409375
transcript.pyannote[560].end 4867.59096875
transcript.pyannote[561].speaker SPEAKER_13
transcript.pyannote[561].start 4867.59096875
transcript.pyannote[561].end 4869.07596875
transcript.pyannote[562].speaker SPEAKER_13
transcript.pyannote[562].start 4871.99534375
transcript.pyannote[562].end 4878.61034375
transcript.pyannote[563].speaker SPEAKER_04
transcript.pyannote[563].start 4874.98221875
transcript.pyannote[563].end 4876.45034375
transcript.pyannote[564].speaker SPEAKER_04
transcript.pyannote[564].start 4877.00721875
transcript.pyannote[564].end 4893.54471875
transcript.pyannote[565].speaker SPEAKER_13
transcript.pyannote[565].start 4891.53659375
transcript.pyannote[565].end 4918.26659375
transcript.pyannote[566].speaker SPEAKER_13
transcript.pyannote[566].start 4918.77284375
transcript.pyannote[566].end 4931.22659375
transcript.pyannote[567].speaker SPEAKER_04
transcript.pyannote[567].start 4930.70346875
transcript.pyannote[567].end 4949.13096875
transcript.pyannote[568].speaker SPEAKER_13
transcript.pyannote[568].start 4942.22909375
transcript.pyannote[568].end 4949.97471875
transcript.pyannote[569].speaker SPEAKER_04
transcript.pyannote[569].start 4949.97471875
transcript.pyannote[569].end 4962.05721875
transcript.pyannote[570].speaker SPEAKER_13
transcript.pyannote[570].start 4950.09284375
transcript.pyannote[570].end 4950.24471875
transcript.pyannote[571].speaker SPEAKER_13
transcript.pyannote[571].start 4958.80034375
transcript.pyannote[571].end 4959.25596875
transcript.pyannote[572].speaker SPEAKER_13
transcript.pyannote[572].start 4959.47534375
transcript.pyannote[572].end 4959.99846875
transcript.pyannote[573].speaker SPEAKER_13
transcript.pyannote[573].start 4961.04471875
transcript.pyannote[573].end 4967.50784375
transcript.pyannote[574].speaker SPEAKER_04
transcript.pyannote[574].start 4964.84159375
transcript.pyannote[574].end 4966.47846875
transcript.pyannote[575].speaker SPEAKER_04
transcript.pyannote[575].start 4967.35596875
transcript.pyannote[575].end 4968.08159375
transcript.pyannote[576].speaker SPEAKER_02
transcript.pyannote[576].start 4969.53284375
transcript.pyannote[576].end 4969.75221875
transcript.pyannote[577].speaker SPEAKER_04
transcript.pyannote[577].start 4969.75221875
transcript.pyannote[577].end 4969.78596875
transcript.pyannote[578].speaker SPEAKER_02
transcript.pyannote[578].start 4972.19909375
transcript.pyannote[578].end 4973.27909375
transcript.pyannote[579].speaker SPEAKER_02
transcript.pyannote[579].start 4973.66721875
transcript.pyannote[579].end 4975.15221875
transcript.pyannote[580].speaker SPEAKER_20
transcript.pyannote[580].start 4979.43846875
transcript.pyannote[580].end 4979.96159375
transcript.pyannote[581].speaker SPEAKER_20
transcript.pyannote[581].start 4979.97846875
transcript.pyannote[581].end 4980.01221875
transcript.pyannote[582].speaker SPEAKER_07
transcript.pyannote[582].start 4984.04534375
transcript.pyannote[582].end 4987.80846875
transcript.pyannote[583].speaker SPEAKER_04
transcript.pyannote[583].start 4992.75284375
transcript.pyannote[583].end 4993.25909375
transcript.pyannote[584].speaker SPEAKER_07
transcript.pyannote[584].start 4993.76534375
transcript.pyannote[584].end 4994.98034375
transcript.pyannote[585].speaker SPEAKER_04
transcript.pyannote[585].start 4995.23346875
transcript.pyannote[585].end 4995.94221875
transcript.pyannote[586].speaker SPEAKER_07
transcript.pyannote[586].start 4995.40221875
transcript.pyannote[586].end 4999.67159375
transcript.pyannote[587].speaker SPEAKER_07
transcript.pyannote[587].start 4999.80659375
transcript.pyannote[587].end 5030.11409375
transcript.pyannote[588].speaker SPEAKER_09
transcript.pyannote[588].start 5004.44721875
transcript.pyannote[588].end 5004.48096875
transcript.pyannote[589].speaker SPEAKER_19
transcript.pyannote[589].start 5004.48096875
transcript.pyannote[589].end 5004.49784375
transcript.pyannote[590].speaker SPEAKER_00
transcript.pyannote[590].start 5004.49784375
transcript.pyannote[590].end 5004.51471875
transcript.pyannote[591].speaker SPEAKER_07
transcript.pyannote[591].start 5030.50221875
transcript.pyannote[591].end 5035.34534375
transcript.pyannote[592].speaker SPEAKER_04
transcript.pyannote[592].start 5035.49721875
transcript.pyannote[592].end 5035.83471875
transcript.pyannote[593].speaker SPEAKER_07
transcript.pyannote[593].start 5036.62784375
transcript.pyannote[593].end 5037.69096875
transcript.pyannote[594].speaker SPEAKER_04
transcript.pyannote[594].start 5037.23534375
transcript.pyannote[594].end 5038.29846875
transcript.pyannote[595].speaker SPEAKER_07
transcript.pyannote[595].start 5038.45034375
transcript.pyannote[595].end 5044.49159375
transcript.pyannote[596].speaker SPEAKER_07
transcript.pyannote[596].start 5044.69409375
transcript.pyannote[596].end 5049.55409375
transcript.pyannote[597].speaker SPEAKER_07
transcript.pyannote[597].start 5050.46534375
transcript.pyannote[597].end 5051.32596875
transcript.pyannote[598].speaker SPEAKER_04
transcript.pyannote[598].start 5052.87846875
transcript.pyannote[598].end 5054.29596875
transcript.pyannote[599].speaker SPEAKER_04
transcript.pyannote[599].start 5054.70096875
transcript.pyannote[599].end 5059.67909375
transcript.pyannote[600].speaker SPEAKER_04
transcript.pyannote[600].start 5059.93221875
transcript.pyannote[600].end 5060.97846875
transcript.pyannote[601].speaker SPEAKER_04
transcript.pyannote[601].start 5061.55221875
transcript.pyannote[601].end 5065.43346875
transcript.pyannote[602].speaker SPEAKER_04
transcript.pyannote[602].start 5065.92284375
transcript.pyannote[602].end 5068.31909375
transcript.pyannote[603].speaker SPEAKER_04
transcript.pyannote[603].start 5068.69034375
transcript.pyannote[603].end 5074.39409375
transcript.pyannote[604].speaker SPEAKER_07
transcript.pyannote[604].start 5073.41534375
transcript.pyannote[604].end 5082.67971875
transcript.pyannote[605].speaker SPEAKER_07
transcript.pyannote[605].start 5082.74721875
transcript.pyannote[605].end 5086.22346875
transcript.pyannote[606].speaker SPEAKER_07
transcript.pyannote[606].start 5086.54409375
transcript.pyannote[606].end 5089.75034375
transcript.pyannote[607].speaker SPEAKER_07
transcript.pyannote[607].start 5089.90221875
transcript.pyannote[607].end 5092.78784375
transcript.pyannote[608].speaker SPEAKER_07
transcript.pyannote[608].start 5092.95659375
transcript.pyannote[608].end 5097.69846875
transcript.pyannote[609].speaker SPEAKER_07
transcript.pyannote[609].start 5098.37346875
transcript.pyannote[609].end 5101.96784375
transcript.pyannote[610].speaker SPEAKER_07
transcript.pyannote[610].start 5102.71034375
transcript.pyannote[610].end 5103.09846875
transcript.pyannote[611].speaker SPEAKER_04
transcript.pyannote[611].start 5104.12784375
transcript.pyannote[611].end 5104.71846875
transcript.pyannote[612].speaker SPEAKER_07
transcript.pyannote[612].start 5104.71846875
transcript.pyannote[612].end 5106.64221875
transcript.pyannote[613].speaker SPEAKER_04
transcript.pyannote[613].start 5105.61284375
transcript.pyannote[613].end 5111.95784375
transcript.pyannote[614].speaker SPEAKER_07
transcript.pyannote[614].start 5110.79346875
transcript.pyannote[614].end 5122.21784375
transcript.pyannote[615].speaker SPEAKER_26
transcript.pyannote[615].start 5122.47096875
transcript.pyannote[615].end 5122.72409375
transcript.pyannote[616].speaker SPEAKER_26
transcript.pyannote[616].start 5123.11221875
transcript.pyannote[616].end 5127.36471875
transcript.pyannote[617].speaker SPEAKER_26
transcript.pyannote[617].start 5127.44909375
transcript.pyannote[617].end 5148.79596875
transcript.pyannote[618].speaker SPEAKER_26
transcript.pyannote[618].start 5149.31909375
transcript.pyannote[618].end 5150.36534375
transcript.pyannote[619].speaker SPEAKER_26
transcript.pyannote[619].start 5150.61846875
transcript.pyannote[619].end 5152.06971875
transcript.pyannote[620].speaker SPEAKER_26
transcript.pyannote[620].start 5152.54221875
transcript.pyannote[620].end 5155.05659375
transcript.pyannote[621].speaker SPEAKER_26
transcript.pyannote[621].start 5155.29284375
transcript.pyannote[621].end 5172.48846875
transcript.pyannote[622].speaker SPEAKER_07
transcript.pyannote[622].start 5168.03346875
transcript.pyannote[622].end 5170.39596875
transcript.pyannote[623].speaker SPEAKER_07
transcript.pyannote[623].start 5171.81346875
transcript.pyannote[623].end 5174.64846875
transcript.pyannote[624].speaker SPEAKER_26
transcript.pyannote[624].start 5174.36159375
transcript.pyannote[624].end 5223.13034375
transcript.pyannote[625].speaker SPEAKER_07
transcript.pyannote[625].start 5176.13346875
transcript.pyannote[625].end 5176.85909375
transcript.pyannote[626].speaker SPEAKER_07
transcript.pyannote[626].start 5222.60721875
transcript.pyannote[626].end 5234.14971875
transcript.pyannote[627].speaker SPEAKER_26
transcript.pyannote[627].start 5232.29346875
transcript.pyannote[627].end 5232.78284375
transcript.pyannote[628].speaker SPEAKER_26
transcript.pyannote[628].start 5234.14971875
transcript.pyannote[628].end 5244.88221875
transcript.pyannote[629].speaker SPEAKER_07
transcript.pyannote[629].start 5243.95409375
transcript.pyannote[629].end 5245.99596875
transcript.pyannote[630].speaker SPEAKER_26
transcript.pyannote[630].start 5245.40534375
transcript.pyannote[630].end 5249.55659375
transcript.pyannote[631].speaker SPEAKER_07
transcript.pyannote[631].start 5246.77221875
transcript.pyannote[631].end 5255.27721875
transcript.pyannote[632].speaker SPEAKER_26
transcript.pyannote[632].start 5255.15909375
transcript.pyannote[632].end 5255.32784375
transcript.pyannote[633].speaker SPEAKER_07
transcript.pyannote[633].start 5255.32784375
transcript.pyannote[633].end 5255.34471875
transcript.pyannote[634].speaker SPEAKER_26
transcript.pyannote[634].start 5255.34471875
transcript.pyannote[634].end 5255.36159375
transcript.pyannote[635].speaker SPEAKER_07
transcript.pyannote[635].start 5255.36159375
transcript.pyannote[635].end 5258.88846875
transcript.pyannote[636].speaker SPEAKER_26
transcript.pyannote[636].start 5255.37846875
transcript.pyannote[636].end 5255.42909375
transcript.pyannote[637].speaker SPEAKER_26
transcript.pyannote[637].start 5257.01534375
transcript.pyannote[637].end 5268.62534375
transcript.pyannote[638].speaker SPEAKER_07
transcript.pyannote[638].start 5265.84096875
transcript.pyannote[638].end 5269.63784375
transcript.pyannote[639].speaker SPEAKER_26
transcript.pyannote[639].start 5269.63784375
transcript.pyannote[639].end 5274.07596875
transcript.pyannote[640].speaker SPEAKER_07
transcript.pyannote[640].start 5273.28284375
transcript.pyannote[640].end 5277.63659375
transcript.pyannote[641].speaker SPEAKER_07
transcript.pyannote[641].start 5277.87284375
transcript.pyannote[641].end 5283.37409375
transcript.pyannote[642].speaker SPEAKER_26
transcript.pyannote[642].start 5279.27346875
transcript.pyannote[642].end 5279.72909375
transcript.pyannote[643].speaker SPEAKER_26
transcript.pyannote[643].start 5284.04909375
transcript.pyannote[643].end 5288.50409375
transcript.pyannote[644].speaker SPEAKER_07
transcript.pyannote[644].start 5287.54221875
transcript.pyannote[644].end 5289.68534375
transcript.pyannote[645].speaker SPEAKER_07
transcript.pyannote[645].start 5290.19159375
transcript.pyannote[645].end 5293.73534375
transcript.pyannote[646].speaker SPEAKER_07
transcript.pyannote[646].start 5293.90409375
transcript.pyannote[646].end 5297.71784375
transcript.pyannote[647].speaker SPEAKER_07
transcript.pyannote[647].start 5297.98784375
transcript.pyannote[647].end 5298.67971875
transcript.pyannote[648].speaker SPEAKER_26
transcript.pyannote[648].start 5298.67971875
transcript.pyannote[648].end 5309.68221875
transcript.pyannote[649].speaker SPEAKER_07
transcript.pyannote[649].start 5309.95221875
transcript.pyannote[649].end 5334.87659375
transcript.pyannote[650].speaker SPEAKER_07
transcript.pyannote[650].start 5335.73721875
transcript.pyannote[650].end 5338.45409375
transcript.pyannote[651].speaker SPEAKER_07
transcript.pyannote[651].start 5339.04471875
transcript.pyannote[651].end 5341.10346875
transcript.pyannote[652].speaker SPEAKER_26
transcript.pyannote[652].start 5344.51221875
transcript.pyannote[652].end 5349.94596875
transcript.pyannote[653].speaker SPEAKER_07
transcript.pyannote[653].start 5349.18659375
transcript.pyannote[653].end 5352.07221875
transcript.pyannote[654].speaker SPEAKER_26
transcript.pyannote[654].start 5352.76409375
transcript.pyannote[654].end 5354.01284375
transcript.pyannote[655].speaker SPEAKER_07
transcript.pyannote[655].start 5353.48971875
transcript.pyannote[655].end 5358.83909375
transcript.pyannote[656].speaker SPEAKER_26
transcript.pyannote[656].start 5356.00409375
transcript.pyannote[656].end 5356.32471875
transcript.pyannote[657].speaker SPEAKER_26
transcript.pyannote[657].start 5359.24409375
transcript.pyannote[657].end 5364.57659375
transcript.pyannote[658].speaker SPEAKER_07
transcript.pyannote[658].start 5363.26034375
transcript.pyannote[658].end 5364.40784375
transcript.pyannote[659].speaker SPEAKER_26
transcript.pyannote[659].start 5364.62721875
transcript.pyannote[659].end 5365.63971875
transcript.pyannote[660].speaker SPEAKER_26
transcript.pyannote[660].start 5365.85909375
transcript.pyannote[660].end 5372.76096875
transcript.pyannote[661].speaker SPEAKER_07
transcript.pyannote[661].start 5368.66034375
transcript.pyannote[661].end 5390.88471875
transcript.pyannote[662].speaker SPEAKER_04
transcript.pyannote[662].start 5391.39096875
transcript.pyannote[662].end 5399.37284375
transcript.pyannote[663].speaker SPEAKER_04
transcript.pyannote[663].start 5399.45721875
transcript.pyannote[663].end 5411.18534375
transcript.pyannote[664].speaker SPEAKER_04
transcript.pyannote[664].start 5411.70846875
transcript.pyannote[664].end 5415.06659375
transcript.pyannote[665].speaker SPEAKER_04
transcript.pyannote[665].start 5415.72471875
transcript.pyannote[665].end 5417.96909375
transcript.pyannote[666].speaker SPEAKER_07
transcript.pyannote[666].start 5417.26034375
transcript.pyannote[666].end 5418.42471875
transcript.pyannote[667].speaker SPEAKER_04
transcript.pyannote[667].start 5418.42471875
transcript.pyannote[667].end 5418.89721875
transcript.pyannote[668].speaker SPEAKER_04
transcript.pyannote[668].start 5419.26846875
transcript.pyannote[668].end 5421.58034375
transcript.pyannote[669].speaker SPEAKER_04
transcript.pyannote[669].start 5422.06971875
transcript.pyannote[669].end 5422.96409375
transcript.pyannote[670].speaker SPEAKER_07
transcript.pyannote[670].start 5422.35659375
transcript.pyannote[670].end 5426.37284375
transcript.pyannote[671].speaker SPEAKER_04
transcript.pyannote[671].start 5425.57971875
transcript.pyannote[671].end 5426.32221875
transcript.pyannote[672].speaker SPEAKER_04
transcript.pyannote[672].start 5427.04784375
transcript.pyannote[672].end 5427.57096875
transcript.pyannote[673].speaker SPEAKER_07
transcript.pyannote[673].start 5427.57096875
transcript.pyannote[673].end 5429.08971875
transcript.pyannote[674].speaker SPEAKER_07
transcript.pyannote[674].start 5430.05159375
transcript.pyannote[674].end 5440.29471875
transcript.pyannote[675].speaker SPEAKER_04
transcript.pyannote[675].start 5439.68721875
transcript.pyannote[675].end 5444.07471875
transcript.pyannote[676].speaker SPEAKER_07
transcript.pyannote[676].start 5444.34471875
transcript.pyannote[676].end 5447.83784375
transcript.pyannote[677].speaker SPEAKER_04
transcript.pyannote[677].start 5447.24721875
transcript.pyannote[677].end 5450.26784375
transcript.pyannote[678].speaker SPEAKER_07
transcript.pyannote[678].start 5450.26784375
transcript.pyannote[678].end 5450.70659375
transcript.pyannote[679].speaker SPEAKER_07
transcript.pyannote[679].start 5450.94284375
transcript.pyannote[679].end 5458.21596875
transcript.pyannote[680].speaker SPEAKER_04
transcript.pyannote[680].start 5457.22034375
transcript.pyannote[680].end 5463.39659375
transcript.pyannote[681].speaker SPEAKER_07
transcript.pyannote[681].start 5458.51971875
transcript.pyannote[681].end 5460.08909375
transcript.pyannote[682].speaker SPEAKER_07
transcript.pyannote[682].start 5462.33346875
transcript.pyannote[682].end 5474.90534375
transcript.pyannote[683].speaker SPEAKER_07
transcript.pyannote[683].start 5475.54659375
transcript.pyannote[683].end 5476.72784375
transcript.pyannote[684].speaker SPEAKER_07
transcript.pyannote[684].start 5476.91346875
transcript.pyannote[684].end 5483.64659375
transcript.pyannote[685].speaker SPEAKER_07
transcript.pyannote[685].start 5484.84471875
transcript.pyannote[685].end 5484.86159375
transcript.pyannote[686].speaker SPEAKER_26
transcript.pyannote[686].start 5484.86159375
transcript.pyannote[686].end 5485.80659375
transcript.pyannote[687].speaker SPEAKER_26
transcript.pyannote[687].start 5486.05971875
transcript.pyannote[687].end 5498.64846875
transcript.pyannote[688].speaker SPEAKER_07
transcript.pyannote[688].start 5498.44596875
transcript.pyannote[688].end 5504.72346875
transcript.pyannote[689].speaker SPEAKER_07
transcript.pyannote[689].start 5505.07784375
transcript.pyannote[689].end 5518.49346875
transcript.pyannote[690].speaker SPEAKER_07
transcript.pyannote[690].start 5518.69596875
transcript.pyannote[690].end 5519.18534375
transcript.pyannote[691].speaker SPEAKER_07
transcript.pyannote[691].start 5520.63659375
transcript.pyannote[691].end 5521.85159375
transcript.pyannote[692].speaker SPEAKER_07
transcript.pyannote[692].start 5521.93596875
transcript.pyannote[692].end 5522.62784375
transcript.pyannote[693].speaker SPEAKER_26
transcript.pyannote[693].start 5523.40409375
transcript.pyannote[693].end 5523.42096875
transcript.pyannote[694].speaker SPEAKER_26
transcript.pyannote[694].start 5523.91034375
transcript.pyannote[694].end 5549.20596875
transcript.pyannote[695].speaker SPEAKER_07
transcript.pyannote[695].start 5549.96534375
transcript.pyannote[695].end 5560.96784375
transcript.pyannote[696].speaker SPEAKER_07
transcript.pyannote[696].start 5561.38971875
transcript.pyannote[696].end 5563.63409375
transcript.pyannote[697].speaker SPEAKER_07
transcript.pyannote[697].start 5564.62971875
transcript.pyannote[697].end 5565.91221875
transcript.pyannote[698].speaker SPEAKER_04
transcript.pyannote[698].start 5566.16534375
transcript.pyannote[698].end 5571.64971875
transcript.pyannote[699].speaker SPEAKER_07
transcript.pyannote[699].start 5566.28346875
transcript.pyannote[699].end 5566.90784375
transcript.pyannote[700].speaker SPEAKER_04
transcript.pyannote[700].start 5571.91971875
transcript.pyannote[700].end 5574.68721875
transcript.pyannote[701].speaker SPEAKER_04
transcript.pyannote[701].start 5574.97409375
transcript.pyannote[701].end 5576.83034375
transcript.pyannote[702].speaker SPEAKER_07
transcript.pyannote[702].start 5577.26909375
transcript.pyannote[702].end 5590.92096875
transcript.pyannote[703].speaker SPEAKER_07
transcript.pyannote[703].start 5591.19096875
transcript.pyannote[703].end 5599.10534375
transcript.pyannote[704].speaker SPEAKER_07
transcript.pyannote[704].start 5599.35846875
transcript.pyannote[704].end 5604.53909375
transcript.pyannote[705].speaker SPEAKER_07
transcript.pyannote[705].start 5604.72471875
transcript.pyannote[705].end 5611.37346875
transcript.pyannote[706].speaker SPEAKER_07
transcript.pyannote[706].start 5611.64346875
transcript.pyannote[706].end 5612.65596875
transcript.pyannote[707].speaker SPEAKER_07
transcript.pyannote[707].start 5612.89221875
transcript.pyannote[707].end 5614.03971875
transcript.pyannote[708].speaker SPEAKER_07
transcript.pyannote[708].start 5614.17471875
transcript.pyannote[708].end 5616.08159375
transcript.pyannote[709].speaker SPEAKER_07
transcript.pyannote[709].start 5616.31784375
transcript.pyannote[709].end 5618.81534375
transcript.pyannote[710].speaker SPEAKER_07
transcript.pyannote[710].start 5618.98409375
transcript.pyannote[710].end 5621.09346875
transcript.pyannote[711].speaker SPEAKER_07
transcript.pyannote[711].start 5621.54909375
transcript.pyannote[711].end 5623.72596875
transcript.pyannote[712].speaker SPEAKER_07
transcript.pyannote[712].start 5624.70471875
transcript.pyannote[712].end 5627.77596875
transcript.pyannote[713].speaker SPEAKER_04
transcript.pyannote[713].start 5628.14721875
transcript.pyannote[713].end 5638.93034375
transcript.pyannote[714].speaker SPEAKER_07
transcript.pyannote[714].start 5637.19221875
transcript.pyannote[714].end 5639.72346875
transcript.pyannote[715].speaker SPEAKER_04
transcript.pyannote[715].start 5639.72346875
transcript.pyannote[715].end 5641.95096875
transcript.pyannote[716].speaker SPEAKER_07
transcript.pyannote[716].start 5641.88346875
transcript.pyannote[716].end 5658.37034375
transcript.pyannote[717].speaker SPEAKER_07
transcript.pyannote[717].start 5658.85971875
transcript.pyannote[717].end 5660.90159375
transcript.pyannote[718].speaker SPEAKER_07
transcript.pyannote[718].start 5661.15471875
transcript.pyannote[718].end 5665.20471875
transcript.pyannote[719].speaker SPEAKER_07
transcript.pyannote[719].start 5665.55909375
transcript.pyannote[719].end 5673.50721875
transcript.pyannote[720].speaker SPEAKER_04
transcript.pyannote[720].start 5674.14846875
transcript.pyannote[720].end 5678.43471875
transcript.pyannote[721].speaker SPEAKER_04
transcript.pyannote[721].start 5678.97471875
transcript.pyannote[721].end 5679.71721875
transcript.pyannote[722].speaker SPEAKER_04
transcript.pyannote[722].start 5679.80159375
transcript.pyannote[722].end 5679.81846875
transcript.pyannote[723].speaker SPEAKER_07
transcript.pyannote[723].start 5679.81846875
transcript.pyannote[723].end 5682.70409375
transcript.pyannote[724].speaker SPEAKER_04
transcript.pyannote[724].start 5681.15159375
transcript.pyannote[724].end 5683.14284375
transcript.pyannote[725].speaker SPEAKER_04
transcript.pyannote[725].start 5683.15971875
transcript.pyannote[725].end 5684.93159375
transcript.pyannote[726].speaker SPEAKER_07
transcript.pyannote[726].start 5683.19346875
transcript.pyannote[726].end 5683.96971875
transcript.pyannote[727].speaker SPEAKER_04
transcript.pyannote[727].start 5685.37034375
transcript.pyannote[727].end 5687.80034375
transcript.pyannote[728].speaker SPEAKER_04
transcript.pyannote[728].start 5688.17159375
transcript.pyannote[728].end 5696.20409375
transcript.pyannote[729].speaker SPEAKER_07
transcript.pyannote[729].start 5689.09971875
transcript.pyannote[729].end 5689.30221875
transcript.pyannote[730].speaker SPEAKER_07
transcript.pyannote[730].start 5692.00221875
transcript.pyannote[730].end 5692.37346875
transcript.pyannote[731].speaker SPEAKER_07
transcript.pyannote[731].start 5694.90471875
transcript.pyannote[731].end 5700.49034375
transcript.pyannote[732].speaker SPEAKER_04
transcript.pyannote[732].start 5699.74784375
transcript.pyannote[732].end 5705.28284375
transcript.pyannote[733].speaker SPEAKER_07
transcript.pyannote[733].start 5704.67534375
transcript.pyannote[733].end 5705.13096875
transcript.pyannote[734].speaker SPEAKER_07
transcript.pyannote[734].start 5705.35034375
transcript.pyannote[734].end 5746.89659375
transcript.pyannote[735].speaker SPEAKER_04
transcript.pyannote[735].start 5746.99784375
transcript.pyannote[735].end 5751.03096875
transcript.pyannote[736].speaker SPEAKER_04
transcript.pyannote[736].start 5751.25034375
transcript.pyannote[736].end 5754.55784375
transcript.pyannote[737].speaker SPEAKER_04
transcript.pyannote[737].start 5755.13159375
transcript.pyannote[737].end 5757.94971875
transcript.pyannote[738].speaker SPEAKER_07
transcript.pyannote[738].start 5757.59534375
transcript.pyannote[738].end 5759.40096875
transcript.pyannote[739].speaker SPEAKER_04
transcript.pyannote[739].start 5758.40534375
transcript.pyannote[739].end 5764.80096875
transcript.pyannote[740].speaker SPEAKER_07
transcript.pyannote[740].start 5763.28221875
transcript.pyannote[740].end 5768.02409375
transcript.pyannote[741].speaker SPEAKER_04
transcript.pyannote[741].start 5765.12159375
transcript.pyannote[741].end 5767.97346875
transcript.pyannote[742].speaker SPEAKER_04
transcript.pyannote[742].start 5768.02409375
transcript.pyannote[742].end 5771.02784375
transcript.pyannote[743].speaker SPEAKER_07
transcript.pyannote[743].start 5770.63971875
transcript.pyannote[743].end 5772.34409375
transcript.pyannote[744].speaker SPEAKER_04
transcript.pyannote[744].start 5772.29346875
transcript.pyannote[744].end 5786.51909375
transcript.pyannote[745].speaker SPEAKER_07
transcript.pyannote[745].start 5785.40534375
transcript.pyannote[745].end 5788.67909375
transcript.pyannote[746].speaker SPEAKER_04
transcript.pyannote[746].start 5786.78909375
transcript.pyannote[746].end 5790.72096875
transcript.pyannote[747].speaker SPEAKER_07
transcript.pyannote[747].start 5791.41284375
transcript.pyannote[747].end 5802.16221875
transcript.pyannote[748].speaker SPEAKER_04
transcript.pyannote[748].start 5800.17096875
transcript.pyannote[748].end 5808.40596875
transcript.pyannote[749].speaker SPEAKER_07
transcript.pyannote[749].start 5802.29721875
transcript.pyannote[749].end 5803.95096875
transcript.pyannote[750].speaker SPEAKER_07
transcript.pyannote[750].start 5807.10659375
transcript.pyannote[750].end 5814.63284375
transcript.pyannote[751].speaker SPEAKER_04
transcript.pyannote[751].start 5815.27409375
transcript.pyannote[751].end 5825.36534375
transcript.pyannote[752].speaker SPEAKER_07
transcript.pyannote[752].start 5823.81284375
transcript.pyannote[752].end 5831.81159375
transcript.pyannote[753].speaker SPEAKER_04
transcript.pyannote[753].start 5829.98909375
transcript.pyannote[753].end 5847.53909375
transcript.pyannote[754].speaker SPEAKER_07
transcript.pyannote[754].start 5836.41846875
transcript.pyannote[754].end 5836.70534375
transcript.pyannote[755].speaker SPEAKER_07
transcript.pyannote[755].start 5842.15596875
transcript.pyannote[755].end 5843.65784375
transcript.pyannote[756].speaker SPEAKER_07
transcript.pyannote[756].start 5844.45096875
transcript.pyannote[756].end 5845.48034375
transcript.pyannote[757].speaker SPEAKER_07
transcript.pyannote[757].start 5847.47159375
transcript.pyannote[757].end 5848.99034375
transcript.pyannote[758].speaker SPEAKER_04
transcript.pyannote[758].start 5849.41221875
transcript.pyannote[758].end 5850.30659375
transcript.pyannote[759].speaker SPEAKER_07
transcript.pyannote[759].start 5849.69909375
transcript.pyannote[759].end 5850.66096875
transcript.pyannote[760].speaker SPEAKER_04
transcript.pyannote[760].start 5851.67346875
transcript.pyannote[760].end 5868.22784375
transcript.pyannote[761].speaker SPEAKER_07
transcript.pyannote[761].start 5853.56346875
transcript.pyannote[761].end 5855.11596875
transcript.pyannote[762].speaker SPEAKER_07
transcript.pyannote[762].start 5857.81596875
transcript.pyannote[762].end 5858.77784375
transcript.pyannote[763].speaker SPEAKER_07
transcript.pyannote[763].start 5866.89471875
transcript.pyannote[763].end 5872.24409375
transcript.pyannote[764].speaker SPEAKER_04
transcript.pyannote[764].start 5872.27784375
transcript.pyannote[764].end 5874.08346875
transcript.pyannote[765].speaker SPEAKER_07
transcript.pyannote[765].start 5873.83034375
transcript.pyannote[765].end 5874.06659375
transcript.pyannote[766].speaker SPEAKER_07
transcript.pyannote[766].start 5874.08346875
transcript.pyannote[766].end 5877.39096875
transcript.pyannote[767].speaker SPEAKER_04
transcript.pyannote[767].start 5874.80909375
transcript.pyannote[767].end 5876.90159375
transcript.pyannote[768].speaker SPEAKER_04
transcript.pyannote[768].start 5877.39096875
transcript.pyannote[768].end 5878.04909375
transcript.pyannote[769].speaker SPEAKER_02
transcript.pyannote[769].start 5878.04909375
transcript.pyannote[769].end 5879.82096875
transcript.pyannote[770].speaker SPEAKER_02
transcript.pyannote[770].start 5880.49596875
transcript.pyannote[770].end 5883.63471875
transcript.pyannote[771].speaker SPEAKER_02
transcript.pyannote[771].start 5884.09034375
transcript.pyannote[771].end 5884.59659375
transcript.pyannote[772].speaker SPEAKER_02
transcript.pyannote[772].start 5884.90034375
transcript.pyannote[772].end 5888.52846875
transcript.pyannote[773].speaker SPEAKER_10
transcript.pyannote[773].start 5896.24034375
transcript.pyannote[773].end 5898.55221875
transcript.pyannote[774].speaker SPEAKER_10
transcript.pyannote[774].start 5898.56909375
transcript.pyannote[774].end 5901.16784375
transcript.pyannote[775].speaker SPEAKER_10
transcript.pyannote[775].start 5902.92284375
transcript.pyannote[775].end 5903.78346875
transcript.pyannote[776].speaker SPEAKER_02
transcript.pyannote[776].start 5906.09534375
transcript.pyannote[776].end 5909.14971875
transcript.pyannote[777].speaker SPEAKER_10
transcript.pyannote[777].start 5907.88409375
transcript.pyannote[777].end 5908.69409375
transcript.pyannote[778].speaker SPEAKER_02
transcript.pyannote[778].start 5913.97596875
transcript.pyannote[778].end 5913.99284375
transcript.pyannote[779].speaker SPEAKER_10
transcript.pyannote[779].start 5913.99284375
transcript.pyannote[779].end 5919.46034375
transcript.pyannote[780].speaker SPEAKER_10
transcript.pyannote[780].start 5919.56159375
transcript.pyannote[780].end 5944.06409375
transcript.pyannote[781].speaker SPEAKER_10
transcript.pyannote[781].start 5944.57034375
transcript.pyannote[781].end 5947.08471875
transcript.pyannote[782].speaker SPEAKER_10
transcript.pyannote[782].start 5947.35471875
transcript.pyannote[782].end 5949.05909375
transcript.pyannote[783].speaker SPEAKER_10
transcript.pyannote[783].start 5949.49784375
transcript.pyannote[783].end 5988.05721875
transcript.pyannote[784].speaker SPEAKER_10
transcript.pyannote[784].start 5988.39471875
transcript.pyannote[784].end 5999.58284375
transcript.pyannote[785].speaker SPEAKER_10
transcript.pyannote[785].start 6000.15659375
transcript.pyannote[785].end 6009.97784375
transcript.pyannote[786].speaker SPEAKER_10
transcript.pyannote[786].start 6010.61909375
transcript.pyannote[786].end 6014.28096875
transcript.pyannote[787].speaker SPEAKER_10
transcript.pyannote[787].start 6014.83784375
transcript.pyannote[787].end 6023.79846875
transcript.pyannote[788].speaker SPEAKER_10
transcript.pyannote[788].start 6023.86596875
transcript.pyannote[788].end 6028.21971875
transcript.pyannote[789].speaker SPEAKER_10
transcript.pyannote[789].start 6029.60346875
transcript.pyannote[789].end 6034.81784375
transcript.pyannote[790].speaker SPEAKER_10
transcript.pyannote[790].start 6035.72909375
transcript.pyannote[790].end 6045.61784375
transcript.pyannote[791].speaker SPEAKER_10
transcript.pyannote[791].start 6046.22534375
transcript.pyannote[791].end 6050.22471875
transcript.pyannote[792].speaker SPEAKER_10
transcript.pyannote[792].start 6050.57909375
transcript.pyannote[792].end 6053.65034375
transcript.pyannote[793].speaker SPEAKER_10
transcript.pyannote[793].start 6053.90346875
transcript.pyannote[793].end 6065.58096875
transcript.pyannote[794].speaker SPEAKER_10
transcript.pyannote[794].start 6066.25596875
transcript.pyannote[794].end 6067.30221875
transcript.pyannote[795].speaker SPEAKER_10
transcript.pyannote[795].start 6067.52159375
transcript.pyannote[795].end 6072.58409375
transcript.pyannote[796].speaker SPEAKER_10
transcript.pyannote[796].start 6073.29284375
transcript.pyannote[796].end 6083.33346875
transcript.pyannote[797].speaker SPEAKER_10
transcript.pyannote[797].start 6084.09284375
transcript.pyannote[797].end 6094.35284375
transcript.pyannote[798].speaker SPEAKER_10
transcript.pyannote[798].start 6094.97721875
transcript.pyannote[798].end 6101.22096875
transcript.pyannote[799].speaker SPEAKER_10
transcript.pyannote[799].start 6101.42346875
transcript.pyannote[799].end 6109.74284375
transcript.pyannote[800].speaker SPEAKER_10
transcript.pyannote[800].start 6110.45159375
transcript.pyannote[800].end 6113.53971875
transcript.pyannote[801].speaker SPEAKER_10
transcript.pyannote[801].start 6114.18096875
transcript.pyannote[801].end 6116.83034375
transcript.pyannote[802].speaker SPEAKER_10
transcript.pyannote[802].start 6117.52221875
transcript.pyannote[802].end 6119.07471875
transcript.pyannote[803].speaker SPEAKER_10
transcript.pyannote[803].start 6119.61471875
transcript.pyannote[803].end 6121.82534375
transcript.pyannote[804].speaker SPEAKER_10
transcript.pyannote[804].start 6123.44534375
transcript.pyannote[804].end 6135.62909375
transcript.pyannote[805].speaker SPEAKER_10
transcript.pyannote[805].start 6135.98346875
transcript.pyannote[805].end 6137.56971875
transcript.pyannote[806].speaker SPEAKER_10
transcript.pyannote[806].start 6139.22346875
transcript.pyannote[806].end 6141.16409375
transcript.pyannote[807].speaker SPEAKER_10
transcript.pyannote[807].start 6141.56909375
transcript.pyannote[807].end 6147.76221875
transcript.pyannote[808].speaker SPEAKER_10
transcript.pyannote[808].start 6148.75784375
transcript.pyannote[808].end 6149.75346875
transcript.pyannote[809].speaker SPEAKER_10
transcript.pyannote[809].start 6150.32721875
transcript.pyannote[809].end 6154.54596875
transcript.pyannote[810].speaker SPEAKER_10
transcript.pyannote[810].start 6155.33909375
transcript.pyannote[810].end 6157.29659375
transcript.pyannote[811].speaker SPEAKER_10
transcript.pyannote[811].start 6157.71846875
transcript.pyannote[811].end 6162.15659375
transcript.pyannote[812].speaker SPEAKER_10
transcript.pyannote[812].start 6162.76409375
transcript.pyannote[812].end 6164.28284375
transcript.pyannote[813].speaker SPEAKER_10
transcript.pyannote[813].start 6165.16034375
transcript.pyannote[813].end 6167.82659375
transcript.pyannote[814].speaker SPEAKER_10
transcript.pyannote[814].start 6168.45096875
transcript.pyannote[814].end 6170.57721875
transcript.pyannote[815].speaker SPEAKER_10
transcript.pyannote[815].start 6171.40409375
transcript.pyannote[815].end 6173.44596875
transcript.pyannote[816].speaker SPEAKER_10
transcript.pyannote[816].start 6174.66096875
transcript.pyannote[816].end 6177.51284375
transcript.pyannote[817].speaker SPEAKER_10
transcript.pyannote[817].start 6178.39034375
transcript.pyannote[817].end 6181.02284375
transcript.pyannote[818].speaker SPEAKER_10
transcript.pyannote[818].start 6181.25909375
transcript.pyannote[818].end 6183.46971875
transcript.pyannote[819].speaker SPEAKER_10
transcript.pyannote[819].start 6183.80721875
transcript.pyannote[819].end 6185.52846875
transcript.pyannote[820].speaker SPEAKER_10
transcript.pyannote[820].start 6186.35534375
transcript.pyannote[820].end 6188.07659375
transcript.pyannote[821].speaker SPEAKER_10
transcript.pyannote[821].start 6188.48159375
transcript.pyannote[821].end 6189.39284375
transcript.pyannote[822].speaker SPEAKER_10
transcript.pyannote[822].start 6189.73034375
transcript.pyannote[822].end 6197.18909375
transcript.pyannote[823].speaker SPEAKER_10
transcript.pyannote[823].start 6197.74596875
transcript.pyannote[823].end 6202.08284375
transcript.pyannote[824].speaker SPEAKER_10
transcript.pyannote[824].start 6202.96034375
transcript.pyannote[824].end 6213.08534375
transcript.pyannote[825].speaker SPEAKER_10
transcript.pyannote[825].start 6213.38909375
transcript.pyannote[825].end 6219.83534375
transcript.pyannote[826].speaker SPEAKER_10
transcript.pyannote[826].start 6220.30784375
transcript.pyannote[826].end 6224.42534375
transcript.pyannote[827].speaker SPEAKER_10
transcript.pyannote[827].start 6224.84721875
transcript.pyannote[827].end 6234.38159375
transcript.pyannote[828].speaker SPEAKER_10
transcript.pyannote[828].start 6235.46159375
transcript.pyannote[828].end 6236.54159375
transcript.pyannote[829].speaker SPEAKER_10
transcript.pyannote[829].start 6236.86221875
transcript.pyannote[829].end 6238.02659375
transcript.pyannote[830].speaker SPEAKER_10
transcript.pyannote[830].start 6239.54534375
transcript.pyannote[830].end 6246.80159375
transcript.pyannote[831].speaker SPEAKER_10
transcript.pyannote[831].start 6247.07159375
transcript.pyannote[831].end 6250.22721875
transcript.pyannote[832].speaker SPEAKER_10
transcript.pyannote[832].start 6250.86846875
transcript.pyannote[832].end 6253.07909375
transcript.pyannote[833].speaker SPEAKER_10
transcript.pyannote[833].start 6253.33221875
transcript.pyannote[833].end 6259.35659375
transcript.pyannote[834].speaker SPEAKER_10
transcript.pyannote[834].start 6259.82909375
transcript.pyannote[834].end 6266.08971875
transcript.pyannote[835].speaker SPEAKER_10
transcript.pyannote[835].start 6267.00096875
transcript.pyannote[835].end 6272.11409375
transcript.pyannote[836].speaker SPEAKER_10
transcript.pyannote[836].start 6273.10971875
transcript.pyannote[836].end 6276.14721875
transcript.pyannote[837].speaker SPEAKER_10
transcript.pyannote[837].start 6276.58596875
transcript.pyannote[837].end 6280.60221875
transcript.pyannote[838].speaker SPEAKER_10
transcript.pyannote[838].start 6280.93971875
transcript.pyannote[838].end 6283.52159375
transcript.pyannote[839].speaker SPEAKER_10
transcript.pyannote[839].start 6283.92659375
transcript.pyannote[839].end 6286.60971875
transcript.pyannote[840].speaker SPEAKER_10
transcript.pyannote[840].start 6287.65596875
transcript.pyannote[840].end 6292.09409375
transcript.pyannote[841].speaker SPEAKER_10
transcript.pyannote[841].start 6292.75221875
transcript.pyannote[841].end 6296.54909375
transcript.pyannote[842].speaker SPEAKER_10
transcript.pyannote[842].start 6297.07221875
transcript.pyannote[842].end 6301.24034375
transcript.pyannote[843].speaker SPEAKER_10
transcript.pyannote[843].start 6302.69159375
transcript.pyannote[843].end 6303.23159375
transcript.pyannote[844].speaker SPEAKER_10
transcript.pyannote[844].start 6303.80534375
transcript.pyannote[844].end 6305.03721875
transcript.pyannote[845].speaker SPEAKER_10
transcript.pyannote[845].start 6305.42534375
transcript.pyannote[845].end 6312.09096875
transcript.pyannote[846].speaker SPEAKER_10
transcript.pyannote[846].start 6312.27659375
transcript.pyannote[846].end 6316.47846875
transcript.pyannote[847].speaker SPEAKER_10
transcript.pyannote[847].start 6318.19971875
transcript.pyannote[847].end 6326.62034375
transcript.pyannote[848].speaker SPEAKER_10
transcript.pyannote[848].start 6327.86909375
transcript.pyannote[848].end 6329.75909375
transcript.pyannote[849].speaker SPEAKER_10
transcript.pyannote[849].start 6330.31596875
transcript.pyannote[849].end 6334.09596875
transcript.pyannote[850].speaker SPEAKER_10
transcript.pyannote[850].start 6334.55159375
transcript.pyannote[850].end 6338.55096875
transcript.pyannote[851].speaker SPEAKER_10
transcript.pyannote[851].start 6338.78721875
transcript.pyannote[851].end 6339.54659375
transcript.pyannote[852].speaker SPEAKER_10
transcript.pyannote[852].start 6340.35659375
transcript.pyannote[852].end 6344.23784375
transcript.pyannote[853].speaker SPEAKER_10
transcript.pyannote[853].start 6344.79471875
transcript.pyannote[853].end 6348.96284375
transcript.pyannote[854].speaker SPEAKER_10
transcript.pyannote[854].start 6350.34659375
transcript.pyannote[854].end 6350.68409375
transcript.pyannote[855].speaker SPEAKER_10
transcript.pyannote[855].start 6351.84846875
transcript.pyannote[855].end 6353.18159375
transcript.pyannote[856].speaker SPEAKER_10
transcript.pyannote[856].start 6353.89034375
transcript.pyannote[856].end 6360.72471875
transcript.pyannote[857].speaker SPEAKER_10
transcript.pyannote[857].start 6361.38284375
transcript.pyannote[857].end 6367.42409375
transcript.pyannote[858].speaker SPEAKER_10
transcript.pyannote[858].start 6368.85846875
transcript.pyannote[858].end 6375.81096875
transcript.pyannote[859].speaker SPEAKER_10
transcript.pyannote[859].start 6376.80659375
transcript.pyannote[859].end 6377.85284375
transcript.pyannote[860].speaker SPEAKER_10
transcript.pyannote[860].start 6378.42659375
transcript.pyannote[860].end 6380.83971875
transcript.pyannote[861].speaker SPEAKER_10
transcript.pyannote[861].start 6381.24471875
transcript.pyannote[861].end 6383.15159375
transcript.pyannote[862].speaker SPEAKER_10
transcript.pyannote[862].start 6383.26971875
transcript.pyannote[862].end 6386.42534375
transcript.pyannote[863].speaker SPEAKER_10
transcript.pyannote[863].start 6386.96534375
transcript.pyannote[863].end 6388.23096875
transcript.pyannote[864].speaker SPEAKER_10
transcript.pyannote[864].start 6388.95659375
transcript.pyannote[864].end 6389.96909375
transcript.pyannote[865].speaker SPEAKER_10
transcript.pyannote[865].start 6390.01971875
transcript.pyannote[865].end 6390.03659375
transcript.pyannote[866].speaker SPEAKER_10
transcript.pyannote[866].start 6390.10409375
transcript.pyannote[866].end 6391.69034375
transcript.pyannote[867].speaker SPEAKER_10
transcript.pyannote[867].start 6392.65221875
transcript.pyannote[867].end 6393.71534375
transcript.pyannote[868].speaker SPEAKER_10
transcript.pyannote[868].start 6395.03159375
transcript.pyannote[868].end 6401.24159375
transcript.pyannote[869].speaker SPEAKER_10
transcript.pyannote[869].start 6401.68034375
transcript.pyannote[869].end 6408.05909375
transcript.pyannote[870].speaker SPEAKER_10
transcript.pyannote[870].start 6408.10971875
transcript.pyannote[870].end 6410.13471875
transcript.pyannote[871].speaker SPEAKER_10
transcript.pyannote[871].start 6411.19784375
transcript.pyannote[871].end 6416.42909375
transcript.pyannote[872].speaker SPEAKER_10
transcript.pyannote[872].start 6416.73284375
transcript.pyannote[872].end 6418.96034375
transcript.pyannote[873].speaker SPEAKER_10
transcript.pyannote[873].start 6419.83784375
transcript.pyannote[873].end 6423.75284375
transcript.pyannote[874].speaker SPEAKER_10
transcript.pyannote[874].start 6424.05659375
transcript.pyannote[874].end 6425.86221875
transcript.pyannote[875].speaker SPEAKER_04
transcript.pyannote[875].start 6426.62159375
transcript.pyannote[875].end 6432.02159375
transcript.pyannote[876].speaker SPEAKER_04
transcript.pyannote[876].start 6432.44346875
transcript.pyannote[876].end 6439.51409375
transcript.pyannote[877].speaker SPEAKER_04
transcript.pyannote[877].start 6439.64909375
transcript.pyannote[877].end 6441.96096875
transcript.pyannote[878].speaker SPEAKER_04
transcript.pyannote[878].start 6442.21409375
transcript.pyannote[878].end 6453.63846875
transcript.pyannote[879].speaker SPEAKER_10
transcript.pyannote[879].start 6447.83346875
transcript.pyannote[879].end 6454.97159375
transcript.pyannote[880].speaker SPEAKER_04
transcript.pyannote[880].start 6454.97159375
transcript.pyannote[880].end 6471.44159375
transcript.pyannote[881].speaker SPEAKER_10
transcript.pyannote[881].start 6456.82784375
transcript.pyannote[881].end 6457.24971875
transcript.pyannote[882].speaker SPEAKER_10
transcript.pyannote[882].start 6462.83534375
transcript.pyannote[882].end 6462.97034375
transcript.pyannote[883].speaker SPEAKER_10
transcript.pyannote[883].start 6471.44159375
transcript.pyannote[883].end 6475.35659375
transcript.pyannote[884].speaker SPEAKER_04
transcript.pyannote[884].start 6473.11221875
transcript.pyannote[884].end 6475.87971875
transcript.pyannote[885].speaker SPEAKER_10
transcript.pyannote[885].start 6475.72784375
transcript.pyannote[885].end 6491.18534375
transcript.pyannote[886].speaker SPEAKER_04
transcript.pyannote[886].start 6476.36909375
transcript.pyannote[886].end 6477.71909375
transcript.pyannote[887].speaker SPEAKER_04
transcript.pyannote[887].start 6489.16034375
transcript.pyannote[887].end 6490.15596875
transcript.pyannote[888].speaker SPEAKER_04
transcript.pyannote[888].start 6491.18534375
transcript.pyannote[888].end 6496.31534375
transcript.pyannote[889].speaker SPEAKER_10
transcript.pyannote[889].start 6492.72096875
transcript.pyannote[889].end 6494.76284375
transcript.pyannote[890].speaker SPEAKER_10
transcript.pyannote[890].start 6495.45471875
transcript.pyannote[890].end 6496.53471875
transcript.pyannote[891].speaker SPEAKER_10
transcript.pyannote[891].start 6496.60221875
transcript.pyannote[891].end 6502.40721875
transcript.pyannote[892].speaker SPEAKER_10
transcript.pyannote[892].start 6502.93034375
transcript.pyannote[892].end 6509.56221875
transcript.pyannote[893].speaker SPEAKER_10
transcript.pyannote[893].start 6509.59596875
transcript.pyannote[893].end 6511.03034375
transcript.pyannote[894].speaker SPEAKER_10
transcript.pyannote[894].start 6511.63784375
transcript.pyannote[894].end 6512.44784375
transcript.pyannote[895].speaker SPEAKER_10
transcript.pyannote[895].start 6513.25784375
transcript.pyannote[895].end 6517.79721875
transcript.pyannote[896].speaker SPEAKER_10
transcript.pyannote[896].start 6518.03346875
transcript.pyannote[896].end 6524.00721875
transcript.pyannote[897].speaker SPEAKER_10
transcript.pyannote[897].start 6525.25596875
transcript.pyannote[897].end 6528.73221875
transcript.pyannote[898].speaker SPEAKER_04
transcript.pyannote[898].start 6528.73221875
transcript.pyannote[898].end 6530.65596875
transcript.pyannote[899].speaker SPEAKER_10
transcript.pyannote[899].start 6531.55034375
transcript.pyannote[899].end 6535.17846875
transcript.pyannote[900].speaker SPEAKER_10
transcript.pyannote[900].start 6535.66784375
transcript.pyannote[900].end 6543.48096875
transcript.pyannote[901].speaker SPEAKER_10
transcript.pyannote[901].start 6543.78471875
transcript.pyannote[901].end 6546.09659375
transcript.pyannote[902].speaker SPEAKER_10
transcript.pyannote[902].start 6546.45096875
transcript.pyannote[902].end 6561.94221875
transcript.pyannote[903].speaker SPEAKER_10
transcript.pyannote[903].start 6562.21221875
transcript.pyannote[903].end 6572.84346875
transcript.pyannote[904].speaker SPEAKER_18
transcript.pyannote[904].start 6574.37909375
transcript.pyannote[904].end 6596.38409375
transcript.pyannote[905].speaker SPEAKER_12
transcript.pyannote[905].start 6583.93034375
transcript.pyannote[905].end 6584.50409375
transcript.pyannote[906].speaker SPEAKER_10
transcript.pyannote[906].start 6595.48971875
transcript.pyannote[906].end 6598.00409375
transcript.pyannote[907].speaker SPEAKER_18
transcript.pyannote[907].start 6597.68346875
transcript.pyannote[907].end 6597.93659375
transcript.pyannote[908].speaker SPEAKER_18
transcript.pyannote[908].start 6598.00409375
transcript.pyannote[908].end 6598.08846875
transcript.pyannote[909].speaker SPEAKER_10
transcript.pyannote[909].start 6598.08846875
transcript.pyannote[909].end 6598.12221875
transcript.pyannote[910].speaker SPEAKER_10
transcript.pyannote[910].start 6598.66221875
transcript.pyannote[910].end 6602.15534375
transcript.pyannote[911].speaker SPEAKER_10
transcript.pyannote[911].start 6602.23971875
transcript.pyannote[911].end 6607.38659375
transcript.pyannote[912].speaker SPEAKER_10
transcript.pyannote[912].start 6608.90534375
transcript.pyannote[912].end 6618.20346875
transcript.pyannote[913].speaker SPEAKER_20
transcript.pyannote[913].start 6609.09096875
transcript.pyannote[913].end 6610.30596875
transcript.pyannote[914].speaker SPEAKER_20
transcript.pyannote[914].start 6611.89221875
transcript.pyannote[914].end 6612.43221875
transcript.pyannote[915].speaker SPEAKER_19
transcript.pyannote[915].start 6612.43221875
transcript.pyannote[915].end 6612.44909375
transcript.pyannote[916].speaker SPEAKER_10
transcript.pyannote[916].start 6618.91221875
transcript.pyannote[916].end 6619.57034375
transcript.pyannote[917].speaker SPEAKER_10
transcript.pyannote[917].start 6620.07659375
transcript.pyannote[917].end 6631.36596875
transcript.pyannote[918].speaker SPEAKER_10
transcript.pyannote[918].start 6631.38284375
transcript.pyannote[918].end 6634.89284375
transcript.pyannote[919].speaker SPEAKER_10
transcript.pyannote[919].start 6635.41596875
transcript.pyannote[919].end 6636.22596875
transcript.pyannote[920].speaker SPEAKER_18
transcript.pyannote[920].start 6636.61409375
transcript.pyannote[920].end 6648.02159375
transcript.pyannote[921].speaker SPEAKER_10
transcript.pyannote[921].start 6645.74346875
transcript.pyannote[921].end 6648.81471875
transcript.pyannote[922].speaker SPEAKER_18
transcript.pyannote[922].start 6648.81471875
transcript.pyannote[922].end 6659.24346875
transcript.pyannote[923].speaker SPEAKER_10
transcript.pyannote[923].start 6648.83159375
transcript.pyannote[923].end 6649.52346875
transcript.pyannote[924].speaker SPEAKER_10
transcript.pyannote[924].start 6657.42096875
transcript.pyannote[924].end 6662.71971875
transcript.pyannote[925].speaker SPEAKER_26
transcript.pyannote[925].start 6663.56346875
transcript.pyannote[925].end 6673.97534375
transcript.pyannote[926].speaker SPEAKER_26
transcript.pyannote[926].start 6674.17784375
transcript.pyannote[926].end 6680.70846875
transcript.pyannote[927].speaker SPEAKER_00
transcript.pyannote[927].start 6676.72596875
transcript.pyannote[927].end 6677.11409375
transcript.pyannote[928].speaker SPEAKER_20
transcript.pyannote[928].start 6677.11409375
transcript.pyannote[928].end 6677.48534375
transcript.pyannote[929].speaker SPEAKER_00
transcript.pyannote[929].start 6677.48534375
transcript.pyannote[929].end 6677.50221875
transcript.pyannote[930].speaker SPEAKER_26
transcript.pyannote[930].start 6681.06284375
transcript.pyannote[930].end 6684.85971875
transcript.pyannote[931].speaker SPEAKER_10
transcript.pyannote[931].start 6681.09659375
transcript.pyannote[931].end 6681.56909375
transcript.pyannote[932].speaker SPEAKER_10
transcript.pyannote[932].start 6683.07096875
transcript.pyannote[932].end 6707.25284375
transcript.pyannote[933].speaker SPEAKER_26
transcript.pyannote[933].start 6704.31659375
transcript.pyannote[933].end 6709.02471875
transcript.pyannote[934].speaker SPEAKER_26
transcript.pyannote[934].start 6709.37909375
transcript.pyannote[934].end 6711.57284375
transcript.pyannote[935].speaker SPEAKER_26
transcript.pyannote[935].start 6711.84284375
transcript.pyannote[935].end 6715.50471875
transcript.pyannote[936].speaker SPEAKER_26
transcript.pyannote[936].start 6716.02784375
transcript.pyannote[936].end 6716.78721875
transcript.pyannote[937].speaker SPEAKER_26
transcript.pyannote[937].start 6717.07409375
transcript.pyannote[937].end 6723.97596875
transcript.pyannote[938].speaker SPEAKER_10
transcript.pyannote[938].start 6721.71471875
transcript.pyannote[938].end 6730.52346875
transcript.pyannote[939].speaker SPEAKER_10
transcript.pyannote[939].start 6730.62471875
transcript.pyannote[939].end 6730.64159375
transcript.pyannote[940].speaker SPEAKER_10
transcript.pyannote[940].start 6730.70909375
transcript.pyannote[940].end 6730.75971875
transcript.pyannote[941].speaker SPEAKER_26
transcript.pyannote[941].start 6730.75971875
transcript.pyannote[941].end 6732.14346875
transcript.pyannote[942].speaker SPEAKER_10
transcript.pyannote[942].start 6733.13909375
transcript.pyannote[942].end 6746.70659375
transcript.pyannote[943].speaker SPEAKER_26
transcript.pyannote[943].start 6733.91534375
transcript.pyannote[943].end 6733.98284375
transcript.pyannote[944].speaker SPEAKER_10
transcript.pyannote[944].start 6747.33096875
transcript.pyannote[944].end 6753.15284375
transcript.pyannote[945].speaker SPEAKER_26
transcript.pyannote[945].start 6748.34346875
transcript.pyannote[945].end 6749.35596875
transcript.pyannote[946].speaker SPEAKER_26
transcript.pyannote[946].start 6750.62159375
transcript.pyannote[946].end 6750.90846875
transcript.pyannote[947].speaker SPEAKER_26
transcript.pyannote[947].start 6752.15721875
transcript.pyannote[947].end 6756.94971875
transcript.pyannote[948].speaker SPEAKER_10
transcript.pyannote[948].start 6754.40159375
transcript.pyannote[948].end 6757.00034375
transcript.pyannote[949].speaker SPEAKER_10
transcript.pyannote[949].start 6757.35471875
transcript.pyannote[949].end 6763.71659375
transcript.pyannote[950].speaker SPEAKER_04
transcript.pyannote[950].start 6764.54346875
transcript.pyannote[950].end 6773.67284375
transcript.pyannote[951].speaker SPEAKER_10
transcript.pyannote[951].start 6773.18346875
transcript.pyannote[951].end 6784.23659375
transcript.pyannote[952].speaker SPEAKER_04
transcript.pyannote[952].start 6775.46159375
transcript.pyannote[952].end 6786.78471875
transcript.pyannote[953].speaker SPEAKER_10
transcript.pyannote[953].start 6784.57409375
transcript.pyannote[953].end 6788.62409375
transcript.pyannote[954].speaker SPEAKER_10
transcript.pyannote[954].start 6789.60284375
transcript.pyannote[954].end 6808.38471875
transcript.pyannote[955].speaker SPEAKER_10
transcript.pyannote[955].start 6809.48159375
transcript.pyannote[955].end 6812.82284375
transcript.pyannote[956].speaker SPEAKER_10
transcript.pyannote[956].start 6813.51471875
transcript.pyannote[956].end 6818.37471875
transcript.pyannote[957].speaker SPEAKER_04
transcript.pyannote[957].start 6818.37471875
transcript.pyannote[957].end 6825.95159375
transcript.pyannote[958].speaker SPEAKER_10
transcript.pyannote[958].start 6825.98534375
transcript.pyannote[958].end 6831.03096875
transcript.pyannote[959].speaker SPEAKER_04
transcript.pyannote[959].start 6831.03096875
transcript.pyannote[959].end 6840.05909375
transcript.pyannote[960].speaker SPEAKER_10
transcript.pyannote[960].start 6836.27909375
transcript.pyannote[960].end 6837.73034375
transcript.pyannote[961].speaker SPEAKER_10
transcript.pyannote[961].start 6838.42221875
transcript.pyannote[961].end 6848.56409375
transcript.pyannote[962].speaker SPEAKER_10
transcript.pyannote[962].start 6848.85096875
transcript.pyannote[962].end 6849.39096875
transcript.pyannote[963].speaker SPEAKER_10
transcript.pyannote[963].start 6849.79596875
transcript.pyannote[963].end 6870.88971875
transcript.pyannote[964].speaker SPEAKER_10
transcript.pyannote[964].start 6871.59846875
transcript.pyannote[964].end 6883.12409375
transcript.pyannote[965].speaker SPEAKER_18
transcript.pyannote[965].start 6884.45721875
transcript.pyannote[965].end 6892.15221875
transcript.pyannote[966].speaker SPEAKER_18
transcript.pyannote[966].start 6892.62471875
transcript.pyannote[966].end 6896.05034375
transcript.pyannote[967].speaker SPEAKER_10
transcript.pyannote[967].start 6894.53159375
transcript.pyannote[967].end 6895.45971875
transcript.pyannote[968].speaker SPEAKER_18
transcript.pyannote[968].start 6896.25284375
transcript.pyannote[968].end 6907.74471875
transcript.pyannote[969].speaker SPEAKER_10
transcript.pyannote[969].start 6897.87284375
transcript.pyannote[969].end 6899.64471875
transcript.pyannote[970].speaker SPEAKER_10
transcript.pyannote[970].start 6906.07409375
transcript.pyannote[970].end 6909.24659375
transcript.pyannote[971].speaker SPEAKER_18
transcript.pyannote[971].start 6909.24659375
transcript.pyannote[971].end 6915.30471875
transcript.pyannote[972].speaker SPEAKER_10
transcript.pyannote[972].start 6914.27534375
transcript.pyannote[972].end 6916.14846875
transcript.pyannote[973].speaker SPEAKER_18
transcript.pyannote[973].start 6916.28346875
transcript.pyannote[973].end 6922.81409375
transcript.pyannote[974].speaker SPEAKER_10
transcript.pyannote[974].start 6919.45596875
transcript.pyannote[974].end 6920.24909375
transcript.pyannote[975].speaker SPEAKER_10
transcript.pyannote[975].start 6921.36284375
transcript.pyannote[975].end 6928.24784375
transcript.pyannote[976].speaker SPEAKER_10
transcript.pyannote[976].start 6928.53471875
transcript.pyannote[976].end 6932.31471875
transcript.pyannote[977].speaker SPEAKER_18
transcript.pyannote[977].start 6929.02409375
transcript.pyannote[977].end 6929.91846875
transcript.pyannote[978].speaker SPEAKER_19
transcript.pyannote[978].start 6929.91846875
transcript.pyannote[978].end 6929.96909375
transcript.pyannote[979].speaker SPEAKER_10
transcript.pyannote[979].start 6932.51721875
transcript.pyannote[979].end 6935.06534375
transcript.pyannote[980].speaker SPEAKER_18
transcript.pyannote[980].start 6933.29346875
transcript.pyannote[980].end 6938.67659375
transcript.pyannote[981].speaker SPEAKER_10
transcript.pyannote[981].start 6939.65534375
transcript.pyannote[981].end 6966.67221875
transcript.pyannote[982].speaker SPEAKER_26
transcript.pyannote[982].start 6967.38096875
transcript.pyannote[982].end 6981.06659375
transcript.pyannote[983].speaker SPEAKER_19
transcript.pyannote[983].start 6976.62846875
transcript.pyannote[983].end 6977.06721875
transcript.pyannote[984].speaker SPEAKER_26
transcript.pyannote[984].start 6981.38721875
transcript.pyannote[984].end 6997.82346875
transcript.pyannote[985].speaker SPEAKER_10
transcript.pyannote[985].start 6996.28784375
transcript.pyannote[985].end 6999.02159375
transcript.pyannote[986].speaker SPEAKER_10
transcript.pyannote[986].start 6999.27471875
transcript.pyannote[986].end 7002.54846875
transcript.pyannote[987].speaker SPEAKER_10
transcript.pyannote[987].start 7003.69596875
transcript.pyannote[987].end 7005.07971875
transcript.pyannote[988].speaker SPEAKER_26
transcript.pyannote[988].start 7005.07971875
transcript.pyannote[988].end 7005.28221875
transcript.pyannote[989].speaker SPEAKER_26
transcript.pyannote[989].start 7005.48471875
transcript.pyannote[989].end 7018.83284375
transcript.pyannote[990].speaker SPEAKER_10
transcript.pyannote[990].start 7008.26909375
transcript.pyannote[990].end 7009.01159375
transcript.pyannote[991].speaker SPEAKER_10
transcript.pyannote[991].start 7009.48409375
transcript.pyannote[991].end 7010.05784375
transcript.pyannote[992].speaker SPEAKER_19
transcript.pyannote[992].start 7012.26846875
transcript.pyannote[992].end 7013.97284375
transcript.pyannote[993].speaker SPEAKER_10
transcript.pyannote[993].start 7013.97284375
transcript.pyannote[993].end 7014.09096875
transcript.pyannote[994].speaker SPEAKER_19
transcript.pyannote[994].start 7014.09096875
transcript.pyannote[994].end 7014.10784375
transcript.pyannote[995].speaker SPEAKER_10
transcript.pyannote[995].start 7015.67721875
transcript.pyannote[995].end 7021.53284375
transcript.pyannote[996].speaker SPEAKER_10
transcript.pyannote[996].start 7021.81971875
transcript.pyannote[996].end 7023.52409375
transcript.pyannote[997].speaker SPEAKER_10
transcript.pyannote[997].start 7023.62534375
transcript.pyannote[997].end 7033.21034375
transcript.pyannote[998].speaker SPEAKER_10
transcript.pyannote[998].start 7033.49721875
transcript.pyannote[998].end 7045.25909375
transcript.pyannote[999].speaker SPEAKER_10
transcript.pyannote[999].start 7047.06471875
transcript.pyannote[999].end 7047.72284375
transcript.pyannote[1000].speaker SPEAKER_10
transcript.pyannote[1000].start 7049.10659375
transcript.pyannote[1000].end 7049.91659375
transcript.pyannote[1001].speaker SPEAKER_18
transcript.pyannote[1001].start 7050.57471875
transcript.pyannote[1001].end 7053.40971875
transcript.pyannote[1002].speaker SPEAKER_10
transcript.pyannote[1002].start 7053.08909375
transcript.pyannote[1002].end 7074.38534375
transcript.pyannote[1003].speaker SPEAKER_10
transcript.pyannote[1003].start 7074.73971875
transcript.pyannote[1003].end 7076.39346875
transcript.pyannote[1004].speaker SPEAKER_10
transcript.pyannote[1004].start 7076.86596875
transcript.pyannote[1004].end 7076.96721875
transcript.pyannote[1005].speaker SPEAKER_18
transcript.pyannote[1005].start 7076.96721875
transcript.pyannote[1005].end 7077.06846875
transcript.pyannote[1006].speaker SPEAKER_10
transcript.pyannote[1006].start 7077.06846875
transcript.pyannote[1006].end 7079.12721875
transcript.pyannote[1007].speaker SPEAKER_18
transcript.pyannote[1007].start 7077.35534375
transcript.pyannote[1007].end 7086.50159375
transcript.pyannote[1008].speaker SPEAKER_10
transcript.pyannote[1008].start 7085.64096875
transcript.pyannote[1008].end 7088.57721875
transcript.pyannote[1009].speaker SPEAKER_18
transcript.pyannote[1009].start 7087.15971875
transcript.pyannote[1009].end 7094.51721875
transcript.pyannote[1010].speaker SPEAKER_10
transcript.pyannote[1010].start 7090.73721875
transcript.pyannote[1010].end 7092.37409375
transcript.pyannote[1011].speaker SPEAKER_10
transcript.pyannote[1011].start 7093.11659375
transcript.pyannote[1011].end 7102.38096875
transcript.pyannote[1012].speaker SPEAKER_10
transcript.pyannote[1012].start 7102.76909375
transcript.pyannote[1012].end 7123.55909375
transcript.pyannote[1013].speaker SPEAKER_10
transcript.pyannote[1013].start 7123.93034375
transcript.pyannote[1013].end 7130.59596875
transcript.pyannote[1014].speaker SPEAKER_10
transcript.pyannote[1014].start 7131.76034375
transcript.pyannote[1014].end 7135.42221875
transcript.pyannote[1015].speaker SPEAKER_10
transcript.pyannote[1015].start 7136.06346875
transcript.pyannote[1015].end 7138.62846875
transcript.pyannote[1016].speaker SPEAKER_10
transcript.pyannote[1016].start 7139.69159375
transcript.pyannote[1016].end 7143.64034375
transcript.pyannote[1017].speaker SPEAKER_10
transcript.pyannote[1017].start 7144.04534375
transcript.pyannote[1017].end 7148.26409375
transcript.pyannote[1018].speaker SPEAKER_04
transcript.pyannote[1018].start 7145.39534375
transcript.pyannote[1018].end 7145.56409375
transcript.pyannote[1019].speaker SPEAKER_04
transcript.pyannote[1019].start 7148.26409375
transcript.pyannote[1019].end 7148.29784375
transcript.pyannote[1020].speaker SPEAKER_10
transcript.pyannote[1020].start 7148.29784375
transcript.pyannote[1020].end 7148.33159375
transcript.pyannote[1021].speaker SPEAKER_04
transcript.pyannote[1021].start 7148.33159375
transcript.pyannote[1021].end 7159.60409375
transcript.pyannote[1022].speaker SPEAKER_10
transcript.pyannote[1022].start 7148.56784375
transcript.pyannote[1022].end 7151.40284375
transcript.pyannote[1023].speaker SPEAKER_10
transcript.pyannote[1023].start 7158.42284375
transcript.pyannote[1023].end 7160.49846875
transcript.pyannote[1024].speaker SPEAKER_10
transcript.pyannote[1024].start 7160.80221875
transcript.pyannote[1024].end 7180.10721875
transcript.pyannote[1025].speaker SPEAKER_00
transcript.pyannote[1025].start 7175.77034375
transcript.pyannote[1025].end 7176.19221875
transcript.pyannote[1026].speaker SPEAKER_19
transcript.pyannote[1026].start 7176.19221875
transcript.pyannote[1026].end 7177.17096875
transcript.pyannote[1027].speaker SPEAKER_00
transcript.pyannote[1027].start 7177.17096875
transcript.pyannote[1027].end 7177.42409375
transcript.pyannote[1028].speaker SPEAKER_10
transcript.pyannote[1028].start 7180.69784375
transcript.pyannote[1028].end 7186.89096875
transcript.pyannote[1029].speaker SPEAKER_10
transcript.pyannote[1029].start 7186.94159375
transcript.pyannote[1029].end 7186.97534375
transcript.pyannote[1030].speaker SPEAKER_20
transcript.pyannote[1030].start 7186.97534375
transcript.pyannote[1030].end 7187.02596875
transcript.pyannote[1031].speaker SPEAKER_02
transcript.pyannote[1031].start 7187.02596875
transcript.pyannote[1031].end 7197.03284375
transcript.pyannote[1032].speaker SPEAKER_04
transcript.pyannote[1032].start 7188.03846875
transcript.pyannote[1032].end 7190.02971875
transcript.pyannote[1033].speaker SPEAKER_04
transcript.pyannote[1033].start 7190.68784375
transcript.pyannote[1033].end 7190.73846875
transcript.pyannote[1034].speaker SPEAKER_20
transcript.pyannote[1034].start 7190.73846875
transcript.pyannote[1034].end 7190.80596875
transcript.pyannote[1035].speaker SPEAKER_04
transcript.pyannote[1035].start 7190.80596875
transcript.pyannote[1035].end 7191.02534375
transcript.pyannote[1036].speaker SPEAKER_16
transcript.pyannote[1036].start 7191.02534375
transcript.pyannote[1036].end 7192.76346875
transcript.pyannote[1037].speaker SPEAKER_16
transcript.pyannote[1037].start 7198.01159375
transcript.pyannote[1037].end 7201.63971875
transcript.pyannote[1038].speaker SPEAKER_16
transcript.pyannote[1038].start 7206.29721875
transcript.pyannote[1038].end 7207.52909375
transcript.pyannote[1039].speaker SPEAKER_16
transcript.pyannote[1039].start 7207.54596875
transcript.pyannote[1039].end 7207.56284375
transcript.pyannote[1040].speaker SPEAKER_02
transcript.pyannote[1040].start 7207.56284375
transcript.pyannote[1040].end 7210.24596875
transcript.pyannote[1041].speaker SPEAKER_16
transcript.pyannote[1041].start 7208.65971875
transcript.pyannote[1041].end 7212.08534375
transcript.pyannote[1042].speaker SPEAKER_02
transcript.pyannote[1042].start 7212.08534375
transcript.pyannote[1042].end 7217.01284375
transcript.pyannote[1043].speaker SPEAKER_16
transcript.pyannote[1043].start 7212.10221875
transcript.pyannote[1043].end 7214.32971875
transcript.pyannote[1044].speaker SPEAKER_16
transcript.pyannote[1044].start 7214.88659375
transcript.pyannote[1044].end 7216.23659375
transcript.pyannote[1045].speaker SPEAKER_16
transcript.pyannote[1045].start 7216.25346875
transcript.pyannote[1045].end 7216.40534375
transcript.pyannote[1046].speaker SPEAKER_16
transcript.pyannote[1046].start 7216.42221875
transcript.pyannote[1046].end 7220.05034375
transcript.pyannote[1047].speaker SPEAKER_16
transcript.pyannote[1047].start 7222.15971875
transcript.pyannote[1047].end 7227.13784375
transcript.pyannote[1048].speaker SPEAKER_16
transcript.pyannote[1048].start 7228.01534375
transcript.pyannote[1048].end 7228.38659375
transcript.pyannote[1049].speaker SPEAKER_16
transcript.pyannote[1049].start 7228.94346875
transcript.pyannote[1049].end 7230.56346875
transcript.pyannote[1050].speaker SPEAKER_16
transcript.pyannote[1050].start 7230.93471875
transcript.pyannote[1050].end 7234.20846875
transcript.pyannote[1051].speaker SPEAKER_16
transcript.pyannote[1051].start 7234.44471875
transcript.pyannote[1051].end 7235.47409375
transcript.pyannote[1052].speaker SPEAKER_16
transcript.pyannote[1052].start 7236.09846875
transcript.pyannote[1052].end 7237.48221875
transcript.pyannote[1053].speaker SPEAKER_16
transcript.pyannote[1053].start 7238.17409375
transcript.pyannote[1053].end 7238.86596875
transcript.pyannote[1054].speaker SPEAKER_16
transcript.pyannote[1054].start 7238.96721875
transcript.pyannote[1054].end 7245.63284375
transcript.pyannote[1055].speaker SPEAKER_16
transcript.pyannote[1055].start 7246.08846875
transcript.pyannote[1055].end 7246.67909375
transcript.pyannote[1056].speaker SPEAKER_16
transcript.pyannote[1056].start 7247.13471875
transcript.pyannote[1056].end 7249.68284375
transcript.pyannote[1057].speaker SPEAKER_16
transcript.pyannote[1057].start 7250.02034375
transcript.pyannote[1057].end 7251.38721875
transcript.pyannote[1058].speaker SPEAKER_16
transcript.pyannote[1058].start 7251.67409375
transcript.pyannote[1058].end 7261.37721875
transcript.pyannote[1059].speaker SPEAKER_16
transcript.pyannote[1059].start 7261.47846875
transcript.pyannote[1059].end 7265.17409375
transcript.pyannote[1060].speaker SPEAKER_18
transcript.pyannote[1060].start 7264.98846875
transcript.pyannote[1060].end 7265.79846875
transcript.pyannote[1061].speaker SPEAKER_18
transcript.pyannote[1061].start 7266.20346875
transcript.pyannote[1061].end 7285.10346875
transcript.pyannote[1062].speaker SPEAKER_16
transcript.pyannote[1062].start 7280.86784375
transcript.pyannote[1062].end 7282.08284375
transcript.pyannote[1063].speaker SPEAKER_16
transcript.pyannote[1063].start 7282.94346875
transcript.pyannote[1063].end 7284.58034375
transcript.pyannote[1064].speaker SPEAKER_16
transcript.pyannote[1064].start 7285.10346875
transcript.pyannote[1064].end 7291.92096875
transcript.pyannote[1065].speaker SPEAKER_16
transcript.pyannote[1065].start 7292.79846875
transcript.pyannote[1065].end 7298.09721875
transcript.pyannote[1066].speaker SPEAKER_16
transcript.pyannote[1066].start 7298.77221875
transcript.pyannote[1066].end 7304.05409375
transcript.pyannote[1067].speaker SPEAKER_16
transcript.pyannote[1067].start 7304.10471875
transcript.pyannote[1067].end 7304.76284375
transcript.pyannote[1068].speaker SPEAKER_16
transcript.pyannote[1068].start 7305.26909375
transcript.pyannote[1068].end 7306.02846875
transcript.pyannote[1069].speaker SPEAKER_16
transcript.pyannote[1069].start 7306.21409375
transcript.pyannote[1069].end 7307.58096875
transcript.pyannote[1070].speaker SPEAKER_16
transcript.pyannote[1070].start 7308.17159375
transcript.pyannote[1070].end 7309.47096875
transcript.pyannote[1071].speaker SPEAKER_16
transcript.pyannote[1071].start 7309.90971875
transcript.pyannote[1071].end 7312.13721875
transcript.pyannote[1072].speaker SPEAKER_16
transcript.pyannote[1072].start 7312.55909375
transcript.pyannote[1072].end 7315.47846875
transcript.pyannote[1073].speaker SPEAKER_16
transcript.pyannote[1073].start 7316.25471875
transcript.pyannote[1073].end 7317.28409375
transcript.pyannote[1074].speaker SPEAKER_16
transcript.pyannote[1074].start 7318.21221875
transcript.pyannote[1074].end 7319.68034375
transcript.pyannote[1075].speaker SPEAKER_16
transcript.pyannote[1075].start 7320.62534375
transcript.pyannote[1075].end 7323.59534375
transcript.pyannote[1076].speaker SPEAKER_16
transcript.pyannote[1076].start 7324.01721875
transcript.pyannote[1076].end 7325.40096875
transcript.pyannote[1077].speaker SPEAKER_16
transcript.pyannote[1077].start 7326.00846875
transcript.pyannote[1077].end 7327.24034375
transcript.pyannote[1078].speaker SPEAKER_16
transcript.pyannote[1078].start 7327.88159375
transcript.pyannote[1078].end 7330.07534375
transcript.pyannote[1079].speaker SPEAKER_16
transcript.pyannote[1079].start 7330.53096875
transcript.pyannote[1079].end 7338.24284375
transcript.pyannote[1080].speaker SPEAKER_16
transcript.pyannote[1080].start 7338.88409375
transcript.pyannote[1080].end 7343.44034375
transcript.pyannote[1081].speaker SPEAKER_16
transcript.pyannote[1081].start 7343.77784375
transcript.pyannote[1081].end 7351.10159375
transcript.pyannote[1082].speaker SPEAKER_16
transcript.pyannote[1082].start 7352.08034375
transcript.pyannote[1082].end 7358.49284375
transcript.pyannote[1083].speaker SPEAKER_16
transcript.pyannote[1083].start 7359.47159375
transcript.pyannote[1083].end 7361.04096875
transcript.pyannote[1084].speaker SPEAKER_16
transcript.pyannote[1084].start 7362.61034375
transcript.pyannote[1084].end 7363.96034375
transcript.pyannote[1085].speaker SPEAKER_16
transcript.pyannote[1085].start 7364.78721875
transcript.pyannote[1085].end 7370.42346875
transcript.pyannote[1086].speaker SPEAKER_16
transcript.pyannote[1086].start 7370.60909375
transcript.pyannote[1086].end 7377.94971875
transcript.pyannote[1087].speaker SPEAKER_16
transcript.pyannote[1087].start 7378.43909375
transcript.pyannote[1087].end 7378.47284375
transcript.pyannote[1088].speaker SPEAKER_18
transcript.pyannote[1088].start 7378.47284375
transcript.pyannote[1088].end 7405.92846875
transcript.pyannote[1089].speaker SPEAKER_16
transcript.pyannote[1089].start 7402.92471875
transcript.pyannote[1089].end 7403.97096875
transcript.pyannote[1090].speaker SPEAKER_16
transcript.pyannote[1090].start 7405.48971875
transcript.pyannote[1090].end 7418.51721875
transcript.pyannote[1091].speaker SPEAKER_16
transcript.pyannote[1091].start 7419.25971875
transcript.pyannote[1091].end 7422.48284375
transcript.pyannote[1092].speaker SPEAKER_16
transcript.pyannote[1092].start 7423.46159375
transcript.pyannote[1092].end 7431.32534375
transcript.pyannote[1093].speaker SPEAKER_16
transcript.pyannote[1093].start 7432.00034375
transcript.pyannote[1093].end 7432.74284375
transcript.pyannote[1094].speaker SPEAKER_16
transcript.pyannote[1094].start 7433.33346875
transcript.pyannote[1094].end 7434.98721875
transcript.pyannote[1095].speaker SPEAKER_16
transcript.pyannote[1095].start 7435.49346875
transcript.pyannote[1095].end 7444.60596875
transcript.pyannote[1096].speaker SPEAKER_16
transcript.pyannote[1096].start 7445.26409375
transcript.pyannote[1096].end 7452.70596875
transcript.pyannote[1097].speaker SPEAKER_16
transcript.pyannote[1097].start 7454.35971875
transcript.pyannote[1097].end 7461.43034375
transcript.pyannote[1098].speaker SPEAKER_23
transcript.pyannote[1098].start 7459.38846875
transcript.pyannote[1098].end 7459.60784375
transcript.pyannote[1099].speaker SPEAKER_00
transcript.pyannote[1099].start 7459.60784375
transcript.pyannote[1099].end 7459.69221875
transcript.pyannote[1100].speaker SPEAKER_16
transcript.pyannote[1100].start 7462.32471875
transcript.pyannote[1100].end 7466.20596875
transcript.pyannote[1101].speaker SPEAKER_16
transcript.pyannote[1101].start 7466.40846875
transcript.pyannote[1101].end 7473.42846875
transcript.pyannote[1102].speaker SPEAKER_16
transcript.pyannote[1102].start 7474.10346875
transcript.pyannote[1102].end 7480.46534375
transcript.pyannote[1103].speaker SPEAKER_16
transcript.pyannote[1103].start 7480.63409375
transcript.pyannote[1103].end 7482.06846875
transcript.pyannote[1104].speaker SPEAKER_16
transcript.pyannote[1104].start 7482.28784375
transcript.pyannote[1104].end 7485.03846875
transcript.pyannote[1105].speaker SPEAKER_20
transcript.pyannote[1105].start 7485.07221875
transcript.pyannote[1105].end 7485.40971875
transcript.pyannote[1106].speaker SPEAKER_16
transcript.pyannote[1106].start 7485.40971875
transcript.pyannote[1106].end 7492.32846875
transcript.pyannote[1107].speaker SPEAKER_16
transcript.pyannote[1107].start 7492.64909375
transcript.pyannote[1107].end 7495.18034375
transcript.pyannote[1108].speaker SPEAKER_16
transcript.pyannote[1108].start 7495.70346875
transcript.pyannote[1108].end 7498.43721875
transcript.pyannote[1109].speaker SPEAKER_16
transcript.pyannote[1109].start 7498.97721875
transcript.pyannote[1109].end 7499.90534375
transcript.pyannote[1110].speaker SPEAKER_16
transcript.pyannote[1110].start 7500.64784375
transcript.pyannote[1110].end 7503.21284375
transcript.pyannote[1111].speaker SPEAKER_16
transcript.pyannote[1111].start 7503.22971875
transcript.pyannote[1111].end 7514.80596875
transcript.pyannote[1112].speaker SPEAKER_16
transcript.pyannote[1112].start 7515.27846875
transcript.pyannote[1112].end 7518.77159375
transcript.pyannote[1113].speaker SPEAKER_16
transcript.pyannote[1113].start 7519.34534375
transcript.pyannote[1113].end 7525.04909375
transcript.pyannote[1114].speaker SPEAKER_16
transcript.pyannote[1114].start 7526.97284375
transcript.pyannote[1114].end 7528.82909375
transcript.pyannote[1115].speaker SPEAKER_16
transcript.pyannote[1115].start 7529.08221875
transcript.pyannote[1115].end 7529.94284375
transcript.pyannote[1116].speaker SPEAKER_16
transcript.pyannote[1116].start 7530.26346875
transcript.pyannote[1116].end 7531.03971875
transcript.pyannote[1117].speaker SPEAKER_16
transcript.pyannote[1117].start 7531.39409375
transcript.pyannote[1117].end 7533.11534375
transcript.pyannote[1118].speaker SPEAKER_16
transcript.pyannote[1118].start 7534.43159375
transcript.pyannote[1118].end 7536.18659375
transcript.pyannote[1119].speaker SPEAKER_16
transcript.pyannote[1119].start 7536.92909375
transcript.pyannote[1119].end 7537.41846875
transcript.pyannote[1120].speaker SPEAKER_16
transcript.pyannote[1120].start 7538.49846875
transcript.pyannote[1120].end 7539.20721875
transcript.pyannote[1121].speaker SPEAKER_16
transcript.pyannote[1121].start 7539.84846875
transcript.pyannote[1121].end 7540.45596875
transcript.pyannote[1122].speaker SPEAKER_16
transcript.pyannote[1122].start 7541.45159375
transcript.pyannote[1122].end 7545.63659375
transcript.pyannote[1123].speaker SPEAKER_16
transcript.pyannote[1123].start 7546.27784375
transcript.pyannote[1123].end 7549.63596875
transcript.pyannote[1124].speaker SPEAKER_16
transcript.pyannote[1124].start 7550.78346875
transcript.pyannote[1124].end 7557.07784375
transcript.pyannote[1125].speaker SPEAKER_16
transcript.pyannote[1125].start 7557.75284375
transcript.pyannote[1125].end 7562.08971875
transcript.pyannote[1126].speaker SPEAKER_16
transcript.pyannote[1126].start 7562.64659375
transcript.pyannote[1126].end 7562.95034375
transcript.pyannote[1127].speaker SPEAKER_16
transcript.pyannote[1127].start 7563.30471875
transcript.pyannote[1127].end 7567.55721875
transcript.pyannote[1128].speaker SPEAKER_16
transcript.pyannote[1128].start 7567.86096875
transcript.pyannote[1128].end 7570.07159375
transcript.pyannote[1129].speaker SPEAKER_16
transcript.pyannote[1129].start 7570.64534375
transcript.pyannote[1129].end 7579.26846875
transcript.pyannote[1130].speaker SPEAKER_16
transcript.pyannote[1130].start 7579.70721875
transcript.pyannote[1130].end 7582.98096875
transcript.pyannote[1131].speaker SPEAKER_16
transcript.pyannote[1131].start 7583.65596875
transcript.pyannote[1131].end 7588.31346875
transcript.pyannote[1132].speaker SPEAKER_16
transcript.pyannote[1132].start 7588.61721875
transcript.pyannote[1132].end 7589.41034375
transcript.pyannote[1133].speaker SPEAKER_16
transcript.pyannote[1133].start 7590.00096875
transcript.pyannote[1133].end 7604.58096875
transcript.pyannote[1134].speaker SPEAKER_16
transcript.pyannote[1134].start 7605.35721875
transcript.pyannote[1134].end 7610.03159375
transcript.pyannote[1135].speaker SPEAKER_16
transcript.pyannote[1135].start 7610.67284375
transcript.pyannote[1135].end 7612.02284375
transcript.pyannote[1136].speaker SPEAKER_16
transcript.pyannote[1136].start 7612.36034375
transcript.pyannote[1136].end 7615.53284375
transcript.pyannote[1137].speaker SPEAKER_16
transcript.pyannote[1137].start 7616.05596875
transcript.pyannote[1137].end 7619.83596875
transcript.pyannote[1138].speaker SPEAKER_16
transcript.pyannote[1138].start 7620.47721875
transcript.pyannote[1138].end 7626.99096875
transcript.pyannote[1139].speaker SPEAKER_16
transcript.pyannote[1139].start 7627.64909375
transcript.pyannote[1139].end 7631.14221875
transcript.pyannote[1140].speaker SPEAKER_23
transcript.pyannote[1140].start 7632.18846875
transcript.pyannote[1140].end 7632.20534375
transcript.pyannote[1141].speaker SPEAKER_16
transcript.pyannote[1141].start 7632.20534375
transcript.pyannote[1141].end 7635.02346875
transcript.pyannote[1142].speaker SPEAKER_18
transcript.pyannote[1142].start 7635.02346875
transcript.pyannote[1142].end 7635.96846875
transcript.pyannote[1143].speaker SPEAKER_16
transcript.pyannote[1143].start 7635.96846875
transcript.pyannote[1143].end 7636.03596875
transcript.pyannote[1144].speaker SPEAKER_18
transcript.pyannote[1144].start 7636.03596875
transcript.pyannote[1144].end 7636.67721875
transcript.pyannote[1145].speaker SPEAKER_18
transcript.pyannote[1145].start 7637.47034375
transcript.pyannote[1145].end 7644.77721875
transcript.pyannote[1146].speaker SPEAKER_16
transcript.pyannote[1146].start 7643.96721875
transcript.pyannote[1146].end 7644.81096875
transcript.pyannote[1147].speaker SPEAKER_18
transcript.pyannote[1147].start 7644.81096875
transcript.pyannote[1147].end 7644.96284375
transcript.pyannote[1148].speaker SPEAKER_16
transcript.pyannote[1148].start 7644.96284375
transcript.pyannote[1148].end 7648.05096875
transcript.pyannote[1149].speaker SPEAKER_18
transcript.pyannote[1149].start 7647.44346875
transcript.pyannote[1149].end 7648.13534375
transcript.pyannote[1150].speaker SPEAKER_16
transcript.pyannote[1150].start 7648.11846875
transcript.pyannote[1150].end 7651.44284375
transcript.pyannote[1151].speaker SPEAKER_16
transcript.pyannote[1151].start 7651.62846875
transcript.pyannote[1151].end 7652.86034375
transcript.pyannote[1152].speaker SPEAKER_18
transcript.pyannote[1152].start 7652.47221875
transcript.pyannote[1152].end 7654.66596875
transcript.pyannote[1153].speaker SPEAKER_16
transcript.pyannote[1153].start 7654.66596875
transcript.pyannote[1153].end 7657.73721875
transcript.pyannote[1154].speaker SPEAKER_18
transcript.pyannote[1154].start 7654.90221875
transcript.pyannote[1154].end 7655.52659375
transcript.pyannote[1155].speaker SPEAKER_18
transcript.pyannote[1155].start 7657.07909375
transcript.pyannote[1155].end 7657.75409375
transcript.pyannote[1156].speaker SPEAKER_16
transcript.pyannote[1156].start 7657.75409375
transcript.pyannote[1156].end 7657.78784375
transcript.pyannote[1157].speaker SPEAKER_18
transcript.pyannote[1157].start 7657.78784375
transcript.pyannote[1157].end 7657.87221875
transcript.pyannote[1158].speaker SPEAKER_16
transcript.pyannote[1158].start 7657.87221875
transcript.pyannote[1158].end 7660.13346875
transcript.pyannote[1159].speaker SPEAKER_16
transcript.pyannote[1159].start 7660.70721875
transcript.pyannote[1159].end 7662.00659375
transcript.pyannote[1160].speaker SPEAKER_16
transcript.pyannote[1160].start 7663.42409375
transcript.pyannote[1160].end 7664.43659375
transcript.pyannote[1161].speaker SPEAKER_16
transcript.pyannote[1161].start 7664.58846875
transcript.pyannote[1161].end 7665.24659375
transcript.pyannote[1162].speaker SPEAKER_18
transcript.pyannote[1162].start 7664.80784375
transcript.pyannote[1162].end 7668.13221875
transcript.pyannote[1163].speaker SPEAKER_16
transcript.pyannote[1163].start 7667.92971875
transcript.pyannote[1163].end 7668.57096875
transcript.pyannote[1164].speaker SPEAKER_16
transcript.pyannote[1164].start 7669.00971875
transcript.pyannote[1164].end 7671.42284375
transcript.pyannote[1165].speaker SPEAKER_16
transcript.pyannote[1165].start 7672.33409375
transcript.pyannote[1165].end 7683.33659375
transcript.pyannote[1166].speaker SPEAKER_16
transcript.pyannote[1166].start 7683.64034375
transcript.pyannote[1166].end 7683.94409375
transcript.pyannote[1167].speaker SPEAKER_16
transcript.pyannote[1167].start 7684.31534375
transcript.pyannote[1167].end 7685.69909375
transcript.pyannote[1168].speaker SPEAKER_16
transcript.pyannote[1168].start 7686.13784375
transcript.pyannote[1168].end 7687.09971875
transcript.pyannote[1169].speaker SPEAKER_16
transcript.pyannote[1169].start 7687.52159375
transcript.pyannote[1169].end 7689.37784375
transcript.pyannote[1170].speaker SPEAKER_16
transcript.pyannote[1170].start 7689.88409375
transcript.pyannote[1170].end 7694.01846875
transcript.pyannote[1171].speaker SPEAKER_16
transcript.pyannote[1171].start 7694.45721875
transcript.pyannote[1171].end 7697.98409375
transcript.pyannote[1172].speaker SPEAKER_16
transcript.pyannote[1172].start 7698.92909375
transcript.pyannote[1172].end 7700.95409375
transcript.pyannote[1173].speaker SPEAKER_16
transcript.pyannote[1173].start 7701.44346875
transcript.pyannote[1173].end 7704.54846875
transcript.pyannote[1174].speaker SPEAKER_16
transcript.pyannote[1174].start 7705.34159375
transcript.pyannote[1174].end 7706.06721875
transcript.pyannote[1175].speaker SPEAKER_16
transcript.pyannote[1175].start 7706.65784375
transcript.pyannote[1175].end 7707.63659375
transcript.pyannote[1176].speaker SPEAKER_16
transcript.pyannote[1176].start 7707.95721875
transcript.pyannote[1176].end 7708.36221875
transcript.pyannote[1177].speaker SPEAKER_16
transcript.pyannote[1177].start 7708.80096875
transcript.pyannote[1177].end 7713.28971875
transcript.pyannote[1178].speaker SPEAKER_16
transcript.pyannote[1178].start 7714.20096875
transcript.pyannote[1178].end 7714.85909375
transcript.pyannote[1179].speaker SPEAKER_18
transcript.pyannote[1179].start 7714.85909375
transcript.pyannote[1179].end 7715.06159375
transcript.pyannote[1180].speaker SPEAKER_16
transcript.pyannote[1180].start 7715.43284375
transcript.pyannote[1180].end 7715.46659375
transcript.pyannote[1181].speaker SPEAKER_18
transcript.pyannote[1181].start 7715.46659375
transcript.pyannote[1181].end 7722.45284375
transcript.pyannote[1182].speaker SPEAKER_18
transcript.pyannote[1182].start 7723.44846875
transcript.pyannote[1182].end 7724.49471875
transcript.pyannote[1183].speaker SPEAKER_16
transcript.pyannote[1183].start 7724.49471875
transcript.pyannote[1183].end 7724.54534375
transcript.pyannote[1184].speaker SPEAKER_18
transcript.pyannote[1184].start 7724.93346875
transcript.pyannote[1184].end 7724.96721875
transcript.pyannote[1185].speaker SPEAKER_16
transcript.pyannote[1185].start 7724.96721875
transcript.pyannote[1185].end 7726.36784375
transcript.pyannote[1186].speaker SPEAKER_16
transcript.pyannote[1186].start 7726.90784375
transcript.pyannote[1186].end 7729.10159375
transcript.pyannote[1187].speaker SPEAKER_16
transcript.pyannote[1187].start 7729.59096875
transcript.pyannote[1187].end 7730.87346875
transcript.pyannote[1188].speaker SPEAKER_16
transcript.pyannote[1188].start 7731.29534375
transcript.pyannote[1188].end 7732.62846875
transcript.pyannote[1189].speaker SPEAKER_16
transcript.pyannote[1189].start 7733.45534375
transcript.pyannote[1189].end 7733.72534375
transcript.pyannote[1190].speaker SPEAKER_16
transcript.pyannote[1190].start 7734.33284375
transcript.pyannote[1190].end 7735.10909375
transcript.pyannote[1191].speaker SPEAKER_16
transcript.pyannote[1191].start 7735.49721875
transcript.pyannote[1191].end 7737.33659375
transcript.pyannote[1192].speaker SPEAKER_16
transcript.pyannote[1192].start 7738.41659375
transcript.pyannote[1192].end 7750.66784375
transcript.pyannote[1193].speaker SPEAKER_16
transcript.pyannote[1193].start 7751.25846875
transcript.pyannote[1193].end 7752.96284375
transcript.pyannote[1194].speaker SPEAKER_16
transcript.pyannote[1194].start 7753.33409375
transcript.pyannote[1194].end 7756.00034375
transcript.pyannote[1195].speaker SPEAKER_18
transcript.pyannote[1195].start 7756.00034375
transcript.pyannote[1195].end 7756.01721875
transcript.pyannote[1196].speaker SPEAKER_02
transcript.pyannote[1196].start 7757.28284375
transcript.pyannote[1196].end 7760.32034375
transcript.pyannote[1197].speaker SPEAKER_02
transcript.pyannote[1197].start 7760.82659375
transcript.pyannote[1197].end 7766.41221875
transcript.pyannote[1198].speaker SPEAKER_02
transcript.pyannote[1198].start 7770.39471875
transcript.pyannote[1198].end 7770.90096875
transcript.pyannote[1199].speaker SPEAKER_12
transcript.pyannote[1199].start 7771.25534375
transcript.pyannote[1199].end 7772.11596875
transcript.pyannote[1200].speaker SPEAKER_02
transcript.pyannote[1200].start 7772.48721875
transcript.pyannote[1200].end 7773.28034375
transcript.pyannote[1201].speaker SPEAKER_12
transcript.pyannote[1201].start 7777.61721875
transcript.pyannote[1201].end 7813.89846875
transcript.pyannote[1202].speaker SPEAKER_00
transcript.pyannote[1202].start 7785.14346875
transcript.pyannote[1202].end 7785.16034375
transcript.pyannote[1203].speaker SPEAKER_19
transcript.pyannote[1203].start 7785.16034375
transcript.pyannote[1203].end 7785.54846875
transcript.pyannote[1204].speaker SPEAKER_04
transcript.pyannote[1204].start 7815.94034375
transcript.pyannote[1204].end 7824.36096875
transcript.pyannote[1205].speaker SPEAKER_18
transcript.pyannote[1205].start 7825.12034375
transcript.pyannote[1205].end 7841.05034375
transcript.pyannote[1206].speaker SPEAKER_12
transcript.pyannote[1206].start 7840.71284375
transcript.pyannote[1206].end 7849.26846875
transcript.pyannote[1207].speaker SPEAKER_12
transcript.pyannote[1207].start 7849.63971875
transcript.pyannote[1207].end 7849.65659375
transcript.pyannote[1208].speaker SPEAKER_18
transcript.pyannote[1208].start 7849.65659375
transcript.pyannote[1208].end 7863.46034375
transcript.pyannote[1209].speaker SPEAKER_12
transcript.pyannote[1209].start 7858.87034375
transcript.pyannote[1209].end 7859.02221875
transcript.pyannote[1210].speaker SPEAKER_12
transcript.pyannote[1210].start 7860.55784375
transcript.pyannote[1210].end 7862.48159375
transcript.pyannote[1211].speaker SPEAKER_12
transcript.pyannote[1211].start 7863.46034375
transcript.pyannote[1211].end 7896.48471875
transcript.pyannote[1212].speaker SPEAKER_12
transcript.pyannote[1212].start 7896.77159375
transcript.pyannote[1212].end 7925.62784375
transcript.pyannote[1213].speaker SPEAKER_12
transcript.pyannote[1213].start 7926.31971875
transcript.pyannote[1213].end 7930.36971875
transcript.pyannote[1214].speaker SPEAKER_12
transcript.pyannote[1214].start 7930.40346875
transcript.pyannote[1214].end 7930.42034375
transcript.pyannote[1215].speaker SPEAKER_18
transcript.pyannote[1215].start 7930.42034375
transcript.pyannote[1215].end 7937.91284375
transcript.pyannote[1216].speaker SPEAKER_12
transcript.pyannote[1216].start 7937.27159375
transcript.pyannote[1216].end 7940.98409375
transcript.pyannote[1217].speaker SPEAKER_18
transcript.pyannote[1217].start 7940.98409375
transcript.pyannote[1217].end 7948.67909375
transcript.pyannote[1218].speaker SPEAKER_12
transcript.pyannote[1218].start 7947.68346875
transcript.pyannote[1218].end 7952.08784375
transcript.pyannote[1219].speaker SPEAKER_18
transcript.pyannote[1219].start 7952.34096875
transcript.pyannote[1219].end 7960.64346875
transcript.pyannote[1220].speaker SPEAKER_12
transcript.pyannote[1220].start 7958.44971875
transcript.pyannote[1220].end 7959.47909375
transcript.pyannote[1221].speaker SPEAKER_12
transcript.pyannote[1221].start 7960.05284375
transcript.pyannote[1221].end 7966.19534375
transcript.pyannote[1222].speaker SPEAKER_18
transcript.pyannote[1222].start 7965.77346875
transcript.pyannote[1222].end 7970.14409375
transcript.pyannote[1223].speaker SPEAKER_12
transcript.pyannote[1223].start 7968.11909375
transcript.pyannote[1223].end 7968.54096875
transcript.pyannote[1224].speaker SPEAKER_12
transcript.pyannote[1224].start 7969.50284375
transcript.pyannote[1224].end 7969.99221875
transcript.pyannote[1225].speaker SPEAKER_12
transcript.pyannote[1225].start 7970.02596875
transcript.pyannote[1225].end 7971.46034375
transcript.pyannote[1226].speaker SPEAKER_18
transcript.pyannote[1226].start 7971.52784375
transcript.pyannote[1226].end 7977.31596875
transcript.pyannote[1227].speaker SPEAKER_12
transcript.pyannote[1227].start 7977.48471875
transcript.pyannote[1227].end 7989.51659375
transcript.pyannote[1228].speaker SPEAKER_12
transcript.pyannote[1228].start 7989.90471875
transcript.pyannote[1228].end 8004.33284375
transcript.pyannote[1229].speaker SPEAKER_18
transcript.pyannote[1229].start 7996.36784375
transcript.pyannote[1229].end 7996.40159375
transcript.pyannote[1230].speaker SPEAKER_04
transcript.pyannote[1230].start 7996.40159375
transcript.pyannote[1230].end 7996.68846875
transcript.pyannote[1231].speaker SPEAKER_18
transcript.pyannote[1231].start 8004.48471875
transcript.pyannote[1231].end 8004.87284375
transcript.pyannote[1232].speaker SPEAKER_18
transcript.pyannote[1232].start 8004.90659375
transcript.pyannote[1232].end 8017.69784375
transcript.pyannote[1233].speaker SPEAKER_12
transcript.pyannote[1233].start 8011.72409375
transcript.pyannote[1233].end 8011.94346875
transcript.pyannote[1234].speaker SPEAKER_12
transcript.pyannote[1234].start 8014.10346875
transcript.pyannote[1234].end 8014.45784375
transcript.pyannote[1235].speaker SPEAKER_12
transcript.pyannote[1235].start 8015.94284375
transcript.pyannote[1235].end 8026.99596875
transcript.pyannote[1236].speaker SPEAKER_18
transcript.pyannote[1236].start 8022.72659375
transcript.pyannote[1236].end 8022.86159375
transcript.pyannote[1237].speaker SPEAKER_18
transcript.pyannote[1237].start 8023.28346875
transcript.pyannote[1237].end 8023.50284375
transcript.pyannote[1238].speaker SPEAKER_18
transcript.pyannote[1238].start 8025.96659375
transcript.pyannote[1238].end 8038.55534375
transcript.pyannote[1239].speaker SPEAKER_12
transcript.pyannote[1239].start 8030.62409375
transcript.pyannote[1239].end 8030.92784375
transcript.pyannote[1240].speaker SPEAKER_12
transcript.pyannote[1240].start 8032.80096875
transcript.pyannote[1240].end 8032.95284375
transcript.pyannote[1241].speaker SPEAKER_12
transcript.pyannote[1241].start 8037.82971875
transcript.pyannote[1241].end 8043.28034375
transcript.pyannote[1242].speaker SPEAKER_18
transcript.pyannote[1242].start 8043.28034375
transcript.pyannote[1242].end 8051.16096875
transcript.pyannote[1243].speaker SPEAKER_12
transcript.pyannote[1243].start 8048.14034375
transcript.pyannote[1243].end 8048.42721875
transcript.pyannote[1244].speaker SPEAKER_12
transcript.pyannote[1244].start 8048.98409375
transcript.pyannote[1244].end 8051.93721875
transcript.pyannote[1245].speaker SPEAKER_12
transcript.pyannote[1245].start 8052.22409375
transcript.pyannote[1245].end 8052.78096875
transcript.pyannote[1246].speaker SPEAKER_18
transcript.pyannote[1246].start 8052.24096875
transcript.pyannote[1246].end 8052.71346875
transcript.pyannote[1247].speaker SPEAKER_18
transcript.pyannote[1247].start 8052.78096875
transcript.pyannote[1247].end 8053.33784375
transcript.pyannote[1248].speaker SPEAKER_12
transcript.pyannote[1248].start 8053.33784375
transcript.pyannote[1248].end 8053.38846875
transcript.pyannote[1249].speaker SPEAKER_18
transcript.pyannote[1249].start 8053.38846875
transcript.pyannote[1249].end 8054.92409375
transcript.pyannote[1250].speaker SPEAKER_12
transcript.pyannote[1250].start 8053.54034375
transcript.pyannote[1250].end 8054.31659375
transcript.pyannote[1251].speaker SPEAKER_12
transcript.pyannote[1251].start 8055.04221875
transcript.pyannote[1251].end 8057.53971875
transcript.pyannote[1252].speaker SPEAKER_18
transcript.pyannote[1252].start 8057.75909375
transcript.pyannote[1252].end 8063.31096875
transcript.pyannote[1253].speaker SPEAKER_12
transcript.pyannote[1253].start 8063.00721875
transcript.pyannote[1253].end 8064.47534375
transcript.pyannote[1254].speaker SPEAKER_12
transcript.pyannote[1254].start 8064.69471875
transcript.pyannote[1254].end 8065.75784375
transcript.pyannote[1255].speaker SPEAKER_12
transcript.pyannote[1255].start 8065.80846875
transcript.pyannote[1255].end 8083.03784375
transcript.pyannote[1256].speaker SPEAKER_12
transcript.pyannote[1256].start 8083.35846875
transcript.pyannote[1256].end 8099.22096875
transcript.pyannote[1257].speaker SPEAKER_04
transcript.pyannote[1257].start 8100.21659375
transcript.pyannote[1257].end 8102.42721875
transcript.pyannote[1258].speaker SPEAKER_04
transcript.pyannote[1258].start 8102.78159375
transcript.pyannote[1258].end 8108.78909375
transcript.pyannote[1259].speaker SPEAKER_21
transcript.pyannote[1259].start 8109.21096875
transcript.pyannote[1259].end 8122.39034375
transcript.pyannote[1260].speaker SPEAKER_12
transcript.pyannote[1260].start 8122.35659375
transcript.pyannote[1260].end 8122.66034375
transcript.pyannote[1261].speaker SPEAKER_21
transcript.pyannote[1261].start 8122.66034375
transcript.pyannote[1261].end 8124.06096875
transcript.pyannote[1262].speaker SPEAKER_12
transcript.pyannote[1262].start 8122.71096875
transcript.pyannote[1262].end 8125.12409375
transcript.pyannote[1263].speaker SPEAKER_21
transcript.pyannote[1263].start 8125.12409375
transcript.pyannote[1263].end 8173.80846875
transcript.pyannote[1264].speaker SPEAKER_12
transcript.pyannote[1264].start 8132.58284375
transcript.pyannote[1264].end 8132.97096875
transcript.pyannote[1265].speaker SPEAKER_00
transcript.pyannote[1265].start 8132.97096875
transcript.pyannote[1265].end 8133.00471875
transcript.pyannote[1266].speaker SPEAKER_12
transcript.pyannote[1266].start 8173.26846875
transcript.pyannote[1266].end 8177.21721875
transcript.pyannote[1267].speaker SPEAKER_21
transcript.pyannote[1267].start 8174.80409375
transcript.pyannote[1267].end 8175.20909375
transcript.pyannote[1268].speaker SPEAKER_21
transcript.pyannote[1268].start 8177.38596875
transcript.pyannote[1268].end 8178.19596875
transcript.pyannote[1269].speaker SPEAKER_12
transcript.pyannote[1269].start 8177.79096875
transcript.pyannote[1269].end 8206.14096875
transcript.pyannote[1270].speaker SPEAKER_12
transcript.pyannote[1270].start 8206.81596875
transcript.pyannote[1270].end 8210.96721875
transcript.pyannote[1271].speaker SPEAKER_04
transcript.pyannote[1271].start 8211.54096875
transcript.pyannote[1271].end 8218.42596875
transcript.pyannote[1272].speaker SPEAKER_21
transcript.pyannote[1272].start 8218.42596875
transcript.pyannote[1272].end 8220.94034375
transcript.pyannote[1273].speaker SPEAKER_21
transcript.pyannote[1273].start 8221.07534375
transcript.pyannote[1273].end 8238.00096875
transcript.pyannote[1274].speaker SPEAKER_12
transcript.pyannote[1274].start 8236.92096875
transcript.pyannote[1274].end 8240.68409375
transcript.pyannote[1275].speaker SPEAKER_21
transcript.pyannote[1275].start 8240.68409375
transcript.pyannote[1275].end 8240.86971875
transcript.pyannote[1276].speaker SPEAKER_12
transcript.pyannote[1276].start 8240.86971875
transcript.pyannote[1276].end 8250.62346875
transcript.pyannote[1277].speaker SPEAKER_12
transcript.pyannote[1277].start 8251.18034375
transcript.pyannote[1277].end 8284.79534375
transcript.pyannote[1278].speaker SPEAKER_12
transcript.pyannote[1278].start 8285.13284375
transcript.pyannote[1278].end 8334.98159375
transcript.pyannote[1279].speaker SPEAKER_12
transcript.pyannote[1279].start 8335.33596875
transcript.pyannote[1279].end 8336.48346875
transcript.pyannote[1280].speaker SPEAKER_04
transcript.pyannote[1280].start 8338.69409375
transcript.pyannote[1280].end 8342.10284375
transcript.pyannote[1281].speaker SPEAKER_04
transcript.pyannote[1281].start 8342.74409375
transcript.pyannote[1281].end 8348.00909375
transcript.pyannote[1282].speaker SPEAKER_04
transcript.pyannote[1282].start 8348.56596875
transcript.pyannote[1282].end 8367.78659375
transcript.pyannote[1283].speaker SPEAKER_12
transcript.pyannote[1283].start 8367.82034375
transcript.pyannote[1283].end 8371.68471875
transcript.pyannote[1284].speaker SPEAKER_04
transcript.pyannote[1284].start 8368.91721875
transcript.pyannote[1284].end 8368.98471875
transcript.pyannote[1285].speaker SPEAKER_04
transcript.pyannote[1285].start 8369.84534375
transcript.pyannote[1285].end 8370.04784375
transcript.pyannote[1286].speaker SPEAKER_04
transcript.pyannote[1286].start 8371.07721875
transcript.pyannote[1286].end 8371.83659375
transcript.pyannote[1287].speaker SPEAKER_04
transcript.pyannote[1287].start 8372.10659375
transcript.pyannote[1287].end 8373.47346875
transcript.pyannote[1288].speaker SPEAKER_02
transcript.pyannote[1288].start 8376.05534375
transcript.pyannote[1288].end 8377.43909375
transcript.pyannote[1289].speaker SPEAKER_02
transcript.pyannote[1289].start 8378.02971875
transcript.pyannote[1289].end 8380.24034375
transcript.pyannote[1290].speaker SPEAKER_02
transcript.pyannote[1290].start 8380.51034375
transcript.pyannote[1290].end 8380.94909375
transcript.pyannote[1291].speaker SPEAKER_24
transcript.pyannote[1291].start 8410.68284375
transcript.pyannote[1291].end 8413.31534375
transcript.pyannote[1292].speaker SPEAKER_02
transcript.pyannote[1292].start 9080.33346875
transcript.pyannote[1292].end 9081.36284375
transcript.pyannote[1293].speaker SPEAKER_02
transcript.pyannote[1293].start 9081.73409375
transcript.pyannote[1293].end 9083.69159375
transcript.pyannote[1294].speaker SPEAKER_27
transcript.pyannote[1294].start 9093.22596875
transcript.pyannote[1294].end 9095.18346875
transcript.pyannote[1295].speaker SPEAKER_02
transcript.pyannote[1295].start 9095.52096875
transcript.pyannote[1295].end 9096.21284375
transcript.pyannote[1296].speaker SPEAKER_27
transcript.pyannote[1296].start 9096.65159375
transcript.pyannote[1296].end 9097.34346875
transcript.pyannote[1297].speaker SPEAKER_27
transcript.pyannote[1297].start 9102.45659375
transcript.pyannote[1297].end 9102.99659375
transcript.pyannote[1298].speaker SPEAKER_27
transcript.pyannote[1298].start 9103.73909375
transcript.pyannote[1298].end 9104.38034375
transcript.pyannote[1299].speaker SPEAKER_27
transcript.pyannote[1299].start 9104.66721875
transcript.pyannote[1299].end 9105.37596875
transcript.pyannote[1300].speaker SPEAKER_27
transcript.pyannote[1300].start 9106.72596875
transcript.pyannote[1300].end 9111.02909375
transcript.pyannote[1301].speaker SPEAKER_27
transcript.pyannote[1301].start 9111.38346875
transcript.pyannote[1301].end 9120.52971875
transcript.pyannote[1302].speaker SPEAKER_27
transcript.pyannote[1302].start 9120.71534375
transcript.pyannote[1302].end 9121.76159375
transcript.pyannote[1303].speaker SPEAKER_27
transcript.pyannote[1303].start 9122.13284375
transcript.pyannote[1303].end 9123.65159375
transcript.pyannote[1304].speaker SPEAKER_27
transcript.pyannote[1304].start 9124.19159375
transcript.pyannote[1304].end 9128.89971875
transcript.pyannote[1305].speaker SPEAKER_27
transcript.pyannote[1305].start 9129.79409375
transcript.pyannote[1305].end 9130.80659375
transcript.pyannote[1306].speaker SPEAKER_27
transcript.pyannote[1306].start 9131.48159375
transcript.pyannote[1306].end 9131.81909375
transcript.pyannote[1307].speaker SPEAKER_27
transcript.pyannote[1307].start 9132.84846875
transcript.pyannote[1307].end 9134.02971875
transcript.pyannote[1308].speaker SPEAKER_27
transcript.pyannote[1308].start 9134.67096875
transcript.pyannote[1308].end 9147.27659375
transcript.pyannote[1309].speaker SPEAKER_27
transcript.pyannote[1309].start 9147.96846875
transcript.pyannote[1309].end 9149.68971875
transcript.pyannote[1310].speaker SPEAKER_27
transcript.pyannote[1310].start 9150.21284375
transcript.pyannote[1310].end 9155.15721875
transcript.pyannote[1311].speaker SPEAKER_27
transcript.pyannote[1311].start 9155.76471875
transcript.pyannote[1311].end 9167.89784375
transcript.pyannote[1312].speaker SPEAKER_04
transcript.pyannote[1312].start 9168.72471875
transcript.pyannote[1312].end 9177.16221875
transcript.pyannote[1313].speaker SPEAKER_04
transcript.pyannote[1313].start 9177.33096875
transcript.pyannote[1313].end 9178.19159375
transcript.pyannote[1314].speaker SPEAKER_04
transcript.pyannote[1314].start 9178.71471875
transcript.pyannote[1314].end 9182.79846875
transcript.pyannote[1315].speaker SPEAKER_04
transcript.pyannote[1315].start 9182.96721875
transcript.pyannote[1315].end 9193.80096875
transcript.pyannote[1316].speaker SPEAKER_04
transcript.pyannote[1316].start 9194.23971875
transcript.pyannote[1316].end 9194.69534375
transcript.pyannote[1317].speaker SPEAKER_04
transcript.pyannote[1317].start 9195.25221875
transcript.pyannote[1317].end 9195.62346875
transcript.pyannote[1318].speaker SPEAKER_27
transcript.pyannote[1318].start 9195.62346875
transcript.pyannote[1318].end 9195.69096875
transcript.pyannote[1319].speaker SPEAKER_27
transcript.pyannote[1319].start 9196.06221875
transcript.pyannote[1319].end 9208.09409375
transcript.pyannote[1320].speaker SPEAKER_27
transcript.pyannote[1320].start 9208.85346875
transcript.pyannote[1320].end 9209.03909375
transcript.pyannote[1321].speaker SPEAKER_04
transcript.pyannote[1321].start 9209.03909375
transcript.pyannote[1321].end 9215.43471875
transcript.pyannote[1322].speaker SPEAKER_19
transcript.pyannote[1322].start 9215.43471875
transcript.pyannote[1322].end 9215.97471875
transcript.pyannote[1323].speaker SPEAKER_04
transcript.pyannote[1323].start 9215.60346875
transcript.pyannote[1323].end 9222.42096875
transcript.pyannote[1324].speaker SPEAKER_04
transcript.pyannote[1324].start 9223.09596875
transcript.pyannote[1324].end 9224.24346875
transcript.pyannote[1325].speaker SPEAKER_04
transcript.pyannote[1325].start 9224.93534375
transcript.pyannote[1325].end 9233.00159375
transcript.pyannote[1326].speaker SPEAKER_04
transcript.pyannote[1326].start 9233.59221875
transcript.pyannote[1326].end 9237.49034375
transcript.pyannote[1327].speaker SPEAKER_04
transcript.pyannote[1327].start 9237.82784375
transcript.pyannote[1327].end 9241.74284375
transcript.pyannote[1328].speaker SPEAKER_04
transcript.pyannote[1328].start 9242.53596875
transcript.pyannote[1328].end 9248.74596875
transcript.pyannote[1329].speaker SPEAKER_27
transcript.pyannote[1329].start 9248.74596875
transcript.pyannote[1329].end 9248.91471875
transcript.pyannote[1330].speaker SPEAKER_27
transcript.pyannote[1330].start 9248.96534375
transcript.pyannote[1330].end 9251.91846875
transcript.pyannote[1331].speaker SPEAKER_27
transcript.pyannote[1331].start 9251.96909375
transcript.pyannote[1331].end 9254.97284375
transcript.pyannote[1332].speaker SPEAKER_27
transcript.pyannote[1332].start 9255.37784375
transcript.pyannote[1332].end 9258.04409375
transcript.pyannote[1333].speaker SPEAKER_04
transcript.pyannote[1333].start 9257.84159375
transcript.pyannote[1333].end 9259.63034375
transcript.pyannote[1334].speaker SPEAKER_27
transcript.pyannote[1334].start 9258.76971875
transcript.pyannote[1334].end 9260.15346875
transcript.pyannote[1335].speaker SPEAKER_04
transcript.pyannote[1335].start 9260.15346875
transcript.pyannote[1335].end 9273.26534375
transcript.pyannote[1336].speaker SPEAKER_27
transcript.pyannote[1336].start 9260.27159375
transcript.pyannote[1336].end 9261.26721875
transcript.pyannote[1337].speaker SPEAKER_27
transcript.pyannote[1337].start 9273.26534375
transcript.pyannote[1337].end 9274.09221875
transcript.pyannote[1338].speaker SPEAKER_27
transcript.pyannote[1338].start 9275.03721875
transcript.pyannote[1338].end 9316.95471875
transcript.pyannote[1339].speaker SPEAKER_04
transcript.pyannote[1339].start 9285.41534375
transcript.pyannote[1339].end 9285.71909375
transcript.pyannote[1340].speaker SPEAKER_04
transcript.pyannote[1340].start 9293.88659375
transcript.pyannote[1340].end 9297.70034375
transcript.pyannote[1341].speaker SPEAKER_04
transcript.pyannote[1341].start 9301.14284375
transcript.pyannote[1341].end 9301.29471875
transcript.pyannote[1342].speaker SPEAKER_27
transcript.pyannote[1342].start 9317.46096875
transcript.pyannote[1342].end 9318.67596875
transcript.pyannote[1343].speaker SPEAKER_27
transcript.pyannote[1343].start 9319.75596875
transcript.pyannote[1343].end 9320.26221875
transcript.pyannote[1344].speaker SPEAKER_27
transcript.pyannote[1344].start 9322.13534375
transcript.pyannote[1344].end 9322.52346875
transcript.pyannote[1345].speaker SPEAKER_27
transcript.pyannote[1345].start 9323.99159375
transcript.pyannote[1345].end 9324.46409375
transcript.pyannote[1346].speaker SPEAKER_27
transcript.pyannote[1346].start 9325.02096875
transcript.pyannote[1346].end 9327.02909375
transcript.pyannote[1347].speaker SPEAKER_27
transcript.pyannote[1347].start 9327.78846875
transcript.pyannote[1347].end 9337.44096875
transcript.pyannote[1348].speaker SPEAKER_27
transcript.pyannote[1348].start 9338.21721875
transcript.pyannote[1348].end 9342.16596875
transcript.pyannote[1349].speaker SPEAKER_27
transcript.pyannote[1349].start 9342.77346875
transcript.pyannote[1349].end 9345.35534375
transcript.pyannote[1350].speaker SPEAKER_27
transcript.pyannote[1350].start 9345.96284375
transcript.pyannote[1350].end 9353.26971875
transcript.pyannote[1351].speaker SPEAKER_04
transcript.pyannote[1351].start 9353.26971875
transcript.pyannote[1351].end 9353.28659375
transcript.pyannote[1352].speaker SPEAKER_27
transcript.pyannote[1352].start 9353.28659375
transcript.pyannote[1352].end 9353.30346875
transcript.pyannote[1353].speaker SPEAKER_27
transcript.pyannote[1353].start 9354.23159375
transcript.pyannote[1353].end 9354.28221875
transcript.pyannote[1354].speaker SPEAKER_04
transcript.pyannote[1354].start 9354.28221875
transcript.pyannote[1354].end 9354.61971875
transcript.pyannote[1355].speaker SPEAKER_27
transcript.pyannote[1355].start 9354.61971875
transcript.pyannote[1355].end 9354.63659375
transcript.pyannote[1356].speaker SPEAKER_04
transcript.pyannote[1356].start 9354.63659375
transcript.pyannote[1356].end 9354.68721875
transcript.pyannote[1357].speaker SPEAKER_27
transcript.pyannote[1357].start 9354.97409375
transcript.pyannote[1357].end 9355.02471875
transcript.pyannote[1358].speaker SPEAKER_04
transcript.pyannote[1358].start 9355.02471875
transcript.pyannote[1358].end 9355.04159375
transcript.pyannote[1359].speaker SPEAKER_27
transcript.pyannote[1359].start 9355.05846875
transcript.pyannote[1359].end 9355.09221875
transcript.pyannote[1360].speaker SPEAKER_04
transcript.pyannote[1360].start 9355.09221875
transcript.pyannote[1360].end 9368.32221875
transcript.pyannote[1361].speaker SPEAKER_04
transcript.pyannote[1361].start 9368.71034375
transcript.pyannote[1361].end 9373.51971875
transcript.pyannote[1362].speaker SPEAKER_26
transcript.pyannote[1362].start 9373.73909375
transcript.pyannote[1362].end 9373.75596875
transcript.pyannote[1363].speaker SPEAKER_04
transcript.pyannote[1363].start 9373.75596875
transcript.pyannote[1363].end 9373.97534375
transcript.pyannote[1364].speaker SPEAKER_26
transcript.pyannote[1364].start 9373.97534375
transcript.pyannote[1364].end 9374.09346875
transcript.pyannote[1365].speaker SPEAKER_26
transcript.pyannote[1365].start 9374.66721875
transcript.pyannote[1365].end 9378.83534375
transcript.pyannote[1366].speaker SPEAKER_26
transcript.pyannote[1366].start 9379.59471875
transcript.pyannote[1366].end 9389.68596875
transcript.pyannote[1367].speaker SPEAKER_26
transcript.pyannote[1367].start 9390.09096875
transcript.pyannote[1367].end 9401.29596875
transcript.pyannote[1368].speaker SPEAKER_26
transcript.pyannote[1368].start 9401.58284375
transcript.pyannote[1368].end 9404.11409375
transcript.pyannote[1369].speaker SPEAKER_26
transcript.pyannote[1369].start 9404.62034375
transcript.pyannote[1369].end 9407.47221875
transcript.pyannote[1370].speaker SPEAKER_26
transcript.pyannote[1370].start 9407.94471875
transcript.pyannote[1370].end 9422.40659375
transcript.pyannote[1371].speaker SPEAKER_26
transcript.pyannote[1371].start 9422.67659375
transcript.pyannote[1371].end 9440.07471875
transcript.pyannote[1372].speaker SPEAKER_26
transcript.pyannote[1372].start 9440.36159375
transcript.pyannote[1372].end 9458.33346875
transcript.pyannote[1373].speaker SPEAKER_26
transcript.pyannote[1373].start 9458.70471875
transcript.pyannote[1373].end 9460.15596875
transcript.pyannote[1374].speaker SPEAKER_26
transcript.pyannote[1374].start 9460.79721875
transcript.pyannote[1374].end 9480.91221875
transcript.pyannote[1375].speaker SPEAKER_26
transcript.pyannote[1375].start 9481.30034375
transcript.pyannote[1375].end 9495.17159375
transcript.pyannote[1376].speaker SPEAKER_26
transcript.pyannote[1376].start 9495.57659375
transcript.pyannote[1376].end 9515.77596875
transcript.pyannote[1377].speaker SPEAKER_26
transcript.pyannote[1377].start 9515.84346875
transcript.pyannote[1377].end 9540.51471875
transcript.pyannote[1378].speaker SPEAKER_27
transcript.pyannote[1378].start 9534.67596875
transcript.pyannote[1378].end 9535.70534375
transcript.pyannote[1379].speaker SPEAKER_27
transcript.pyannote[1379].start 9539.85659375
transcript.pyannote[1379].end 9540.49784375
transcript.pyannote[1380].speaker SPEAKER_27
transcript.pyannote[1380].start 9540.51471875
transcript.pyannote[1380].end 9546.28596875
transcript.pyannote[1381].speaker SPEAKER_27
transcript.pyannote[1381].start 9546.60659375
transcript.pyannote[1381].end 9546.69096875
transcript.pyannote[1382].speaker SPEAKER_27
transcript.pyannote[1382].start 9547.16346875
transcript.pyannote[1382].end 9579.86721875
transcript.pyannote[1383].speaker SPEAKER_20
transcript.pyannote[1383].start 9561.99659375
transcript.pyannote[1383].end 9562.09784375
transcript.pyannote[1384].speaker SPEAKER_27
transcript.pyannote[1384].start 9580.64346875
transcript.pyannote[1384].end 9588.00096875
transcript.pyannote[1385].speaker SPEAKER_19
transcript.pyannote[1385].start 9588.06846875
transcript.pyannote[1385].end 9588.42284375
transcript.pyannote[1386].speaker SPEAKER_27
transcript.pyannote[1386].start 9588.42284375
transcript.pyannote[1386].end 9590.17784375
transcript.pyannote[1387].speaker SPEAKER_27
transcript.pyannote[1387].start 9590.32971875
transcript.pyannote[1387].end 9591.17346875
transcript.pyannote[1388].speaker SPEAKER_27
transcript.pyannote[1388].start 9592.48971875
transcript.pyannote[1388].end 9599.07096875
transcript.pyannote[1389].speaker SPEAKER_27
transcript.pyannote[1389].start 9599.17221875
transcript.pyannote[1389].end 9614.07284375
transcript.pyannote[1390].speaker SPEAKER_27
transcript.pyannote[1390].start 9614.57909375
transcript.pyannote[1390].end 9618.67971875
transcript.pyannote[1391].speaker SPEAKER_27
transcript.pyannote[1391].start 9618.91596875
transcript.pyannote[1391].end 9621.86909375
transcript.pyannote[1392].speaker SPEAKER_27
transcript.pyannote[1392].start 9622.86471875
transcript.pyannote[1392].end 9625.78409375
transcript.pyannote[1393].speaker SPEAKER_27
transcript.pyannote[1393].start 9626.22284375
transcript.pyannote[1393].end 9633.49596875
transcript.pyannote[1394].speaker SPEAKER_27
transcript.pyannote[1394].start 9634.57596875
transcript.pyannote[1394].end 9646.06784375
transcript.pyannote[1395].speaker SPEAKER_27
transcript.pyannote[1395].start 9646.50659375
transcript.pyannote[1395].end 9648.21096875
transcript.pyannote[1396].speaker SPEAKER_27
transcript.pyannote[1396].start 9649.42596875
transcript.pyannote[1396].end 9651.34971875
transcript.pyannote[1397].speaker SPEAKER_27
transcript.pyannote[1397].start 9651.94034375
transcript.pyannote[1397].end 9663.70221875
transcript.pyannote[1398].speaker SPEAKER_27
transcript.pyannote[1398].start 9664.59659375
transcript.pyannote[1398].end 9665.91284375
transcript.pyannote[1399].speaker SPEAKER_27
transcript.pyannote[1399].start 9666.87471875
transcript.pyannote[1399].end 9669.69284375
transcript.pyannote[1400].speaker SPEAKER_27
transcript.pyannote[1400].start 9670.72221875
transcript.pyannote[1400].end 9671.83596875
transcript.pyannote[1401].speaker SPEAKER_27
transcript.pyannote[1401].start 9673.30409375
transcript.pyannote[1401].end 9674.80596875
transcript.pyannote[1402].speaker SPEAKER_27
transcript.pyannote[1402].start 9675.64971875
transcript.pyannote[1402].end 9680.83034375
transcript.pyannote[1403].speaker SPEAKER_03
transcript.pyannote[1403].start 9676.17284375
transcript.pyannote[1403].end 9677.11784375
transcript.pyannote[1404].speaker SPEAKER_04
transcript.pyannote[1404].start 9681.94409375
transcript.pyannote[1404].end 9681.96096875
transcript.pyannote[1405].speaker SPEAKER_27
transcript.pyannote[1405].start 9681.96096875
transcript.pyannote[1405].end 9682.02846875
transcript.pyannote[1406].speaker SPEAKER_04
transcript.pyannote[1406].start 9682.02846875
transcript.pyannote[1406].end 9682.23096875
transcript.pyannote[1407].speaker SPEAKER_27
transcript.pyannote[1407].start 9682.23096875
transcript.pyannote[1407].end 9682.24784375
transcript.pyannote[1408].speaker SPEAKER_04
transcript.pyannote[1408].start 9682.24784375
transcript.pyannote[1408].end 9682.26471875
transcript.pyannote[1409].speaker SPEAKER_04
transcript.pyannote[1409].start 9682.72034375
transcript.pyannote[1409].end 9682.77096875
transcript.pyannote[1410].speaker SPEAKER_27
transcript.pyannote[1410].start 9682.77096875
transcript.pyannote[1410].end 9682.78784375
transcript.pyannote[1411].speaker SPEAKER_04
transcript.pyannote[1411].start 9682.78784375
transcript.pyannote[1411].end 9684.77909375
transcript.pyannote[1412].speaker SPEAKER_00
transcript.pyannote[1412].start 9684.86346875
transcript.pyannote[1412].end 9710.42909375
transcript.pyannote[1413].speaker SPEAKER_04
transcript.pyannote[1413].start 9690.93846875
transcript.pyannote[1413].end 9690.97221875
transcript.pyannote[1414].speaker SPEAKER_01
transcript.pyannote[1414].start 9690.97221875
transcript.pyannote[1414].end 9690.98909375
transcript.pyannote[1415].speaker SPEAKER_01
transcript.pyannote[1415].start 9695.52846875
transcript.pyannote[1415].end 9696.03471875
transcript.pyannote[1416].speaker SPEAKER_27
transcript.pyannote[1416].start 9708.64034375
transcript.pyannote[1416].end 9733.29471875
transcript.pyannote[1417].speaker SPEAKER_00
transcript.pyannote[1417].start 9717.87096875
transcript.pyannote[1417].end 9719.05221875
transcript.pyannote[1418].speaker SPEAKER_00
transcript.pyannote[1418].start 9728.23221875
transcript.pyannote[1418].end 9728.24909375
transcript.pyannote[1419].speaker SPEAKER_20
transcript.pyannote[1419].start 9728.24909375
transcript.pyannote[1419].end 9728.97471875
transcript.pyannote[1420].speaker SPEAKER_00
transcript.pyannote[1420].start 9728.97471875
transcript.pyannote[1420].end 9729.17721875
transcript.pyannote[1421].speaker SPEAKER_27
transcript.pyannote[1421].start 9733.68284375
transcript.pyannote[1421].end 9744.56721875
transcript.pyannote[1422].speaker SPEAKER_00
transcript.pyannote[1422].start 9736.87221875
transcript.pyannote[1422].end 9736.88909375
transcript.pyannote[1423].speaker SPEAKER_00
transcript.pyannote[1423].start 9736.92284375
transcript.pyannote[1423].end 9737.49659375
transcript.pyannote[1424].speaker SPEAKER_02
transcript.pyannote[1424].start 9739.79159375
transcript.pyannote[1424].end 9741.12471875
transcript.pyannote[1425].speaker SPEAKER_19
transcript.pyannote[1425].start 9741.12471875
transcript.pyannote[1425].end 9741.19221875
transcript.pyannote[1426].speaker SPEAKER_02
transcript.pyannote[1426].start 9741.96846875
transcript.pyannote[1426].end 9744.21284375
transcript.pyannote[1427].speaker SPEAKER_27
transcript.pyannote[1427].start 9745.30971875
transcript.pyannote[1427].end 9745.76534375
transcript.pyannote[1428].speaker SPEAKER_02
transcript.pyannote[1428].start 9747.70596875
transcript.pyannote[1428].end 9748.46534375
transcript.pyannote[1429].speaker SPEAKER_02
transcript.pyannote[1429].start 9748.61721875
transcript.pyannote[1429].end 9750.62534375
transcript.pyannote[1430].speaker SPEAKER_02
transcript.pyannote[1430].start 9751.38471875
transcript.pyannote[1430].end 9754.65846875
transcript.pyannote[1431].speaker SPEAKER_02
transcript.pyannote[1431].start 9755.33346875
transcript.pyannote[1431].end 9757.64534375
transcript.pyannote[1432].speaker SPEAKER_23
transcript.pyannote[1432].start 9773.15346875
transcript.pyannote[1432].end 9775.27971875
transcript.pyannote[1433].speaker SPEAKER_02
transcript.pyannote[1433].start 9775.48221875
transcript.pyannote[1433].end 9776.14034375
transcript.pyannote[1434].speaker SPEAKER_23
transcript.pyannote[1434].start 9780.71346875
transcript.pyannote[1434].end 9781.45596875
transcript.pyannote[1435].speaker SPEAKER_23
transcript.pyannote[1435].start 9781.62471875
transcript.pyannote[1435].end 9782.46846875
transcript.pyannote[1436].speaker SPEAKER_23
transcript.pyannote[1436].start 9782.77221875
transcript.pyannote[1436].end 9793.35284375
transcript.pyannote[1437].speaker SPEAKER_03
transcript.pyannote[1437].start 9785.80971875
transcript.pyannote[1437].end 9786.23159375
transcript.pyannote[1438].speaker SPEAKER_23
transcript.pyannote[1438].start 9793.97721875
transcript.pyannote[1438].end 9812.03346875
transcript.pyannote[1439].speaker SPEAKER_23
transcript.pyannote[1439].start 9812.75909375
transcript.pyannote[1439].end 9822.17534375
transcript.pyannote[1440].speaker SPEAKER_23
transcript.pyannote[1440].start 9822.76596875
transcript.pyannote[1440].end 9845.81721875
transcript.pyannote[1441].speaker SPEAKER_04
transcript.pyannote[1441].start 9846.42471875
transcript.pyannote[1441].end 9853.20846875
transcript.pyannote[1442].speaker SPEAKER_04
transcript.pyannote[1442].start 9853.61346875
transcript.pyannote[1442].end 9854.92971875
transcript.pyannote[1443].speaker SPEAKER_04
transcript.pyannote[1443].start 9855.40221875
transcript.pyannote[1443].end 9859.41846875
transcript.pyannote[1444].speaker SPEAKER_04
transcript.pyannote[1444].start 9859.73909375
transcript.pyannote[1444].end 9864.86909375
transcript.pyannote[1445].speaker SPEAKER_04
transcript.pyannote[1445].start 9865.34159375
transcript.pyannote[1445].end 9871.26471875
transcript.pyannote[1446].speaker SPEAKER_04
transcript.pyannote[1446].start 9871.46721875
transcript.pyannote[1446].end 9875.34846875
transcript.pyannote[1447].speaker SPEAKER_23
transcript.pyannote[1447].start 9873.93096875
transcript.pyannote[1447].end 9878.35221875
transcript.pyannote[1448].speaker SPEAKER_04
transcript.pyannote[1448].start 9876.95159375
transcript.pyannote[1448].end 9884.03909375
transcript.pyannote[1449].speaker SPEAKER_23
transcript.pyannote[1449].start 9884.03909375
transcript.pyannote[1449].end 9884.32596875
transcript.pyannote[1450].speaker SPEAKER_04
transcript.pyannote[1450].start 9884.32596875
transcript.pyannote[1450].end 9884.47784375
transcript.pyannote[1451].speaker SPEAKER_23
transcript.pyannote[1451].start 9884.47784375
transcript.pyannote[1451].end 9888.10596875
transcript.pyannote[1452].speaker SPEAKER_04
transcript.pyannote[1452].start 9888.32534375
transcript.pyannote[1452].end 9893.03346875
transcript.pyannote[1453].speaker SPEAKER_23
transcript.pyannote[1453].start 9893.03346875
transcript.pyannote[1453].end 9947.64096875
transcript.pyannote[1454].speaker SPEAKER_04
transcript.pyannote[1454].start 9948.41721875
transcript.pyannote[1454].end 9977.44221875
transcript.pyannote[1455].speaker SPEAKER_23
transcript.pyannote[1455].start 9966.72659375
transcript.pyannote[1455].end 9967.57034375
transcript.pyannote[1456].speaker SPEAKER_23
transcript.pyannote[1456].start 9968.29596875
transcript.pyannote[1456].end 9969.03846875
transcript.pyannote[1457].speaker SPEAKER_23
transcript.pyannote[1457].start 9976.05846875
transcript.pyannote[1457].end 9977.39159375
transcript.pyannote[1458].speaker SPEAKER_23
transcript.pyannote[1458].start 9977.44221875
transcript.pyannote[1458].end 10008.91409375
transcript.pyannote[1459].speaker SPEAKER_23
transcript.pyannote[1459].start 10009.74096875
transcript.pyannote[1459].end 10108.12221875
transcript.pyannote[1460].speaker SPEAKER_04
transcript.pyannote[1460].start 10108.12221875
transcript.pyannote[1460].end 10139.96534375
transcript.pyannote[1461].speaker SPEAKER_19
transcript.pyannote[1461].start 10122.78659375
transcript.pyannote[1461].end 10123.00596875
transcript.pyannote[1462].speaker SPEAKER_23
transcript.pyannote[1462].start 10138.71659375
transcript.pyannote[1462].end 10142.81721875
transcript.pyannote[1463].speaker SPEAKER_04
transcript.pyannote[1463].start 10140.85971875
transcript.pyannote[1463].end 10148.03159375
transcript.pyannote[1464].speaker SPEAKER_04
transcript.pyannote[1464].start 10148.62221875
transcript.pyannote[1464].end 10155.97971875
transcript.pyannote[1465].speaker SPEAKER_23
transcript.pyannote[1465].start 10150.20846875
transcript.pyannote[1465].end 10151.01846875
transcript.pyannote[1466].speaker SPEAKER_23
transcript.pyannote[1466].start 10151.03534375
transcript.pyannote[1466].end 10151.08596875
transcript.pyannote[1467].speaker SPEAKER_23
transcript.pyannote[1467].start 10156.11471875
transcript.pyannote[1467].end 10163.50596875
transcript.pyannote[1468].speaker SPEAKER_04
transcript.pyannote[1468].start 10160.09721875
transcript.pyannote[1468].end 10160.41784375
transcript.pyannote[1469].speaker SPEAKER_04
transcript.pyannote[1469].start 10162.61159375
transcript.pyannote[1469].end 10183.94159375
transcript.pyannote[1470].speaker SPEAKER_23
transcript.pyannote[1470].start 10164.04596875
transcript.pyannote[1470].end 10169.26034375
transcript.pyannote[1471].speaker SPEAKER_23
transcript.pyannote[1471].start 10179.13221875
transcript.pyannote[1471].end 10179.82409375
transcript.pyannote[1472].speaker SPEAKER_23
transcript.pyannote[1472].start 10180.43159375
transcript.pyannote[1472].end 10182.10221875
transcript.pyannote[1473].speaker SPEAKER_23
transcript.pyannote[1473].start 10182.97971875
transcript.pyannote[1473].end 10183.04721875
transcript.pyannote[1474].speaker SPEAKER_23
transcript.pyannote[1474].start 10183.06409375
transcript.pyannote[1474].end 10183.08096875
transcript.pyannote[1475].speaker SPEAKER_23
transcript.pyannote[1475].start 10183.72221875
transcript.pyannote[1475].end 10186.84409375
transcript.pyannote[1476].speaker SPEAKER_04
transcript.pyannote[1476].start 10187.09721875
transcript.pyannote[1476].end 10191.63659375
transcript.pyannote[1477].speaker SPEAKER_23
transcript.pyannote[1477].start 10190.59034375
transcript.pyannote[1477].end 10194.42096875
transcript.pyannote[1478].speaker SPEAKER_04
transcript.pyannote[1478].start 10192.14284375
transcript.pyannote[1478].end 10192.96971875
transcript.pyannote[1479].speaker SPEAKER_04
transcript.pyannote[1479].start 10193.59409375
transcript.pyannote[1479].end 10193.96534375
transcript.pyannote[1480].speaker SPEAKER_23
transcript.pyannote[1480].start 10194.62346875
transcript.pyannote[1480].end 10248.35346875
transcript.pyannote[1481].speaker SPEAKER_23
transcript.pyannote[1481].start 10248.80909375
transcript.pyannote[1481].end 10277.47971875
transcript.pyannote[1482].speaker SPEAKER_23
transcript.pyannote[1482].start 10277.66534375
transcript.pyannote[1482].end 10293.37596875
transcript.pyannote[1483].speaker SPEAKER_23
transcript.pyannote[1483].start 10294.28721875
transcript.pyannote[1483].end 10299.24846875
transcript.pyannote[1484].speaker SPEAKER_23
transcript.pyannote[1484].start 10299.55221875
transcript.pyannote[1484].end 10342.95471875
transcript.pyannote[1485].speaker SPEAKER_04
transcript.pyannote[1485].start 10342.95471875
transcript.pyannote[1485].end 10355.56034375
transcript.pyannote[1486].speaker SPEAKER_26
transcript.pyannote[1486].start 10357.75409375
transcript.pyannote[1486].end 10445.67284375
transcript.pyannote[1487].speaker SPEAKER_00
transcript.pyannote[1487].start 10367.11971875
transcript.pyannote[1487].end 10367.18721875
transcript.pyannote[1488].speaker SPEAKER_25
transcript.pyannote[1488].start 10367.18721875
transcript.pyannote[1488].end 10367.20409375
transcript.pyannote[1489].speaker SPEAKER_00
transcript.pyannote[1489].start 10367.20409375
transcript.pyannote[1489].end 10367.47409375
transcript.pyannote[1490].speaker SPEAKER_23
transcript.pyannote[1490].start 10442.02784375
transcript.pyannote[1490].end 10442.70284375
transcript.pyannote[1491].speaker SPEAKER_23
transcript.pyannote[1491].start 10444.77846875
transcript.pyannote[1491].end 10467.96471875
transcript.pyannote[1492].speaker SPEAKER_26
transcript.pyannote[1492].start 10467.96471875
transcript.pyannote[1492].end 10481.31284375
transcript.pyannote[1493].speaker SPEAKER_26
transcript.pyannote[1493].start 10482.22409375
transcript.pyannote[1493].end 10487.18534375
transcript.pyannote[1494].speaker SPEAKER_26
transcript.pyannote[1494].start 10488.21471875
transcript.pyannote[1494].end 10490.39159375
transcript.pyannote[1495].speaker SPEAKER_26
transcript.pyannote[1495].start 10490.89784375
transcript.pyannote[1495].end 10491.62346875
transcript.pyannote[1496].speaker SPEAKER_26
transcript.pyannote[1496].start 10491.85971875
transcript.pyannote[1496].end 10501.14096875
transcript.pyannote[1497].speaker SPEAKER_23
transcript.pyannote[1497].start 10494.50909375
transcript.pyannote[1497].end 10496.95596875
transcript.pyannote[1498].speaker SPEAKER_23
transcript.pyannote[1498].start 10499.14971875
transcript.pyannote[1498].end 10535.49846875
transcript.pyannote[1499].speaker SPEAKER_20
transcript.pyannote[1499].start 10512.02534375
transcript.pyannote[1499].end 10513.25721875
transcript.pyannote[1500].speaker SPEAKER_18
transcript.pyannote[1500].start 10535.04284375
transcript.pyannote[1500].end 10548.52596875
transcript.pyannote[1501].speaker SPEAKER_23
transcript.pyannote[1501].start 10548.67784375
transcript.pyannote[1501].end 10552.66034375
transcript.pyannote[1502].speaker SPEAKER_18
transcript.pyannote[1502].start 10553.41971875
transcript.pyannote[1502].end 10555.79909375
transcript.pyannote[1503].speaker SPEAKER_23
transcript.pyannote[1503].start 10555.79909375
transcript.pyannote[1503].end 10608.92159375
transcript.pyannote[1504].speaker SPEAKER_00
transcript.pyannote[1504].start 10569.04596875
transcript.pyannote[1504].end 10569.31596875
transcript.pyannote[1505].speaker SPEAKER_23
transcript.pyannote[1505].start 10609.56284375
transcript.pyannote[1505].end 10656.35721875
transcript.pyannote[1506].speaker SPEAKER_04
transcript.pyannote[1506].start 10657.94346875
transcript.pyannote[1506].end 10658.11221875
transcript.pyannote[1507].speaker SPEAKER_04
transcript.pyannote[1507].start 10658.26409375
transcript.pyannote[1507].end 10661.04846875
transcript.pyannote[1508].speaker SPEAKER_04
transcript.pyannote[1508].start 10661.21721875
transcript.pyannote[1508].end 10662.09471875
transcript.pyannote[1509].speaker SPEAKER_04
transcript.pyannote[1509].start 10662.63471875
transcript.pyannote[1509].end 10662.70221875
transcript.pyannote[1510].speaker SPEAKER_23
transcript.pyannote[1510].start 10662.70221875
transcript.pyannote[1510].end 10662.88784375
transcript.pyannote[1511].speaker SPEAKER_04
transcript.pyannote[1511].start 10662.88784375
transcript.pyannote[1511].end 10664.82846875
transcript.pyannote[1512].speaker SPEAKER_00
transcript.pyannote[1512].start 10666.02659375
transcript.pyannote[1512].end 10672.82721875
transcript.pyannote[1513].speaker SPEAKER_00
transcript.pyannote[1513].start 10673.06346875
transcript.pyannote[1513].end 10680.65721875
transcript.pyannote[1514].speaker SPEAKER_18
transcript.pyannote[1514].start 10680.79221875
transcript.pyannote[1514].end 10696.04721875
transcript.pyannote[1515].speaker SPEAKER_18
transcript.pyannote[1515].start 10696.45221875
transcript.pyannote[1515].end 10696.46909375
transcript.pyannote[1516].speaker SPEAKER_23
transcript.pyannote[1516].start 10696.46909375
transcript.pyannote[1516].end 10716.55034375
transcript.pyannote[1517].speaker SPEAKER_04
transcript.pyannote[1517].start 10717.52909375
transcript.pyannote[1517].end 10724.63346875
transcript.pyannote[1518].speaker SPEAKER_04
transcript.pyannote[1518].start 10725.17346875
transcript.pyannote[1518].end 10728.39659375
transcript.pyannote[1519].speaker SPEAKER_23
transcript.pyannote[1519].start 10725.30846875
transcript.pyannote[1519].end 10725.76409375
transcript.pyannote[1520].speaker SPEAKER_23
transcript.pyannote[1520].start 10726.01721875
transcript.pyannote[1520].end 10728.26159375
transcript.pyannote[1521].speaker SPEAKER_23
transcript.pyannote[1521].start 10728.39659375
transcript.pyannote[1521].end 10731.61971875
transcript.pyannote[1522].speaker SPEAKER_04
transcript.pyannote[1522].start 10728.44721875
transcript.pyannote[1522].end 10729.12221875
transcript.pyannote[1523].speaker SPEAKER_02
transcript.pyannote[1523].start 10729.12221875
transcript.pyannote[1523].end 10729.20659375
transcript.pyannote[1524].speaker SPEAKER_04
transcript.pyannote[1524].start 10729.20659375
transcript.pyannote[1524].end 10729.22346875
transcript.pyannote[1525].speaker SPEAKER_04
transcript.pyannote[1525].start 10730.03346875
transcript.pyannote[1525].end 10732.02471875
transcript.pyannote[1526].speaker SPEAKER_02
transcript.pyannote[1526].start 10732.02471875
transcript.pyannote[1526].end 10738.13346875
transcript.pyannote[1527].speaker SPEAKER_02
transcript.pyannote[1527].start 10738.31909375
transcript.pyannote[1527].end 10738.94346875
transcript.pyannote[1528].speaker SPEAKER_02
transcript.pyannote[1528].start 10739.29784375
transcript.pyannote[1528].end 10739.31471875
transcript.pyannote[1529].speaker SPEAKER_25
transcript.pyannote[1529].start 10746.40221875
transcript.pyannote[1529].end 10749.22034375
transcript.pyannote[1530].speaker SPEAKER_02
transcript.pyannote[1530].start 10749.60846875
transcript.pyannote[1530].end 10750.14846875
transcript.pyannote[1531].speaker SPEAKER_25
transcript.pyannote[1531].start 10754.06346875
transcript.pyannote[1531].end 10754.24909375
transcript.pyannote[1532].speaker SPEAKER_25
transcript.pyannote[1532].start 10754.73846875
transcript.pyannote[1532].end 10783.74659375
transcript.pyannote[1533].speaker SPEAKER_19
transcript.pyannote[1533].start 10755.76784375
transcript.pyannote[1533].end 10755.98721875
transcript.pyannote[1534].speaker SPEAKER_02
transcript.pyannote[1534].start 10755.98721875
transcript.pyannote[1534].end 10756.05471875
transcript.pyannote[1535].speaker SPEAKER_22
transcript.pyannote[1535].start 10756.05471875
transcript.pyannote[1535].end 10756.10534375
transcript.pyannote[1536].speaker SPEAKER_19
transcript.pyannote[1536].start 10756.10534375
transcript.pyannote[1536].end 10756.88159375
transcript.pyannote[1537].speaker SPEAKER_25
transcript.pyannote[1537].start 10784.08409375
transcript.pyannote[1537].end 10792.35284375
transcript.pyannote[1538].speaker SPEAKER_19
transcript.pyannote[1538].start 10788.70784375
transcript.pyannote[1538].end 10788.85971875
transcript.pyannote[1539].speaker SPEAKER_25
transcript.pyannote[1539].start 10792.74096875
transcript.pyannote[1539].end 10837.24034375
transcript.pyannote[1540].speaker SPEAKER_25
transcript.pyannote[1540].start 10837.52721875
transcript.pyannote[1540].end 10844.15909375
transcript.pyannote[1541].speaker SPEAKER_25
transcript.pyannote[1541].start 10844.58096875
transcript.pyannote[1541].end 10849.96409375
transcript.pyannote[1542].speaker SPEAKER_04
transcript.pyannote[1542].start 10850.53784375
transcript.pyannote[1542].end 10852.27596875
transcript.pyannote[1543].speaker SPEAKER_04
transcript.pyannote[1543].start 10852.41096875
transcript.pyannote[1543].end 10862.90721875
transcript.pyannote[1544].speaker SPEAKER_04
transcript.pyannote[1544].start 10863.43034375
transcript.pyannote[1544].end 10867.91909375
transcript.pyannote[1545].speaker SPEAKER_04
transcript.pyannote[1545].start 10867.96971875
transcript.pyannote[1545].end 10868.44221875
transcript.pyannote[1546].speaker SPEAKER_04
transcript.pyannote[1546].start 10868.93159375
transcript.pyannote[1546].end 10870.53471875
transcript.pyannote[1547].speaker SPEAKER_04
transcript.pyannote[1547].start 10870.72034375
transcript.pyannote[1547].end 10875.04034375
transcript.pyannote[1548].speaker SPEAKER_04
transcript.pyannote[1548].start 10875.31034375
transcript.pyannote[1548].end 10879.88346875
transcript.pyannote[1549].speaker SPEAKER_04
transcript.pyannote[1549].start 10879.96784375
transcript.pyannote[1549].end 10906.22534375
transcript.pyannote[1550].speaker SPEAKER_04
transcript.pyannote[1550].start 10906.56284375
transcript.pyannote[1550].end 10922.00346875
transcript.pyannote[1551].speaker SPEAKER_04
transcript.pyannote[1551].start 10922.71221875
transcript.pyannote[1551].end 10942.05096875
transcript.pyannote[1552].speaker SPEAKER_04
transcript.pyannote[1552].start 10942.62471875
transcript.pyannote[1552].end 10956.39471875
transcript.pyannote[1553].speaker SPEAKER_04
transcript.pyannote[1553].start 10956.73221875
transcript.pyannote[1553].end 10963.85346875
transcript.pyannote[1554].speaker SPEAKER_04
transcript.pyannote[1554].start 10964.51159375
transcript.pyannote[1554].end 10967.02596875
transcript.pyannote[1555].speaker SPEAKER_25
transcript.pyannote[1555].start 10966.75596875
transcript.pyannote[1555].end 10988.64284375
transcript.pyannote[1556].speaker SPEAKER_04
transcript.pyannote[1556].start 10988.52471875
transcript.pyannote[1556].end 10995.74721875
transcript.pyannote[1557].speaker SPEAKER_25
transcript.pyannote[1557].start 10988.86221875
transcript.pyannote[1557].end 10989.52034375
transcript.pyannote[1558].speaker SPEAKER_25
transcript.pyannote[1558].start 10994.24534375
transcript.pyannote[1558].end 10995.73034375
transcript.pyannote[1559].speaker SPEAKER_25
transcript.pyannote[1559].start 10995.74721875
transcript.pyannote[1559].end 10998.12659375
transcript.pyannote[1560].speaker SPEAKER_04
transcript.pyannote[1560].start 10997.97471875
transcript.pyannote[1560].end 11008.36971875
transcript.pyannote[1561].speaker SPEAKER_04
transcript.pyannote[1561].start 11008.77471875
transcript.pyannote[1561].end 11016.18284375
transcript.pyannote[1562].speaker SPEAKER_25
transcript.pyannote[1562].start 11014.54596875
transcript.pyannote[1562].end 11044.83659375
transcript.pyannote[1563].speaker SPEAKER_04
transcript.pyannote[1563].start 11044.66784375
transcript.pyannote[1563].end 11056.95284375
transcript.pyannote[1564].speaker SPEAKER_04
transcript.pyannote[1564].start 11057.25659375
transcript.pyannote[1564].end 11058.03284375
transcript.pyannote[1565].speaker SPEAKER_22
transcript.pyannote[1565].start 11058.03284375
transcript.pyannote[1565].end 11091.59721875
transcript.pyannote[1566].speaker SPEAKER_25
transcript.pyannote[1566].start 11091.59721875
transcript.pyannote[1566].end 11105.08034375
transcript.pyannote[1567].speaker SPEAKER_04
transcript.pyannote[1567].start 11104.35471875
transcript.pyannote[1567].end 11106.54846875
transcript.pyannote[1568].speaker SPEAKER_04
transcript.pyannote[1568].start 11107.42596875
transcript.pyannote[1568].end 11120.84159375
transcript.pyannote[1569].speaker SPEAKER_20
transcript.pyannote[1569].start 11109.36659375
transcript.pyannote[1569].end 11109.38346875
transcript.pyannote[1570].speaker SPEAKER_25
transcript.pyannote[1570].start 11109.38346875
transcript.pyannote[1570].end 11109.40034375
transcript.pyannote[1571].speaker SPEAKER_20
transcript.pyannote[1571].start 11109.40034375
transcript.pyannote[1571].end 11109.41721875
transcript.pyannote[1572].speaker SPEAKER_25
transcript.pyannote[1572].start 11109.41721875
transcript.pyannote[1572].end 11109.63659375
transcript.pyannote[1573].speaker SPEAKER_20
transcript.pyannote[1573].start 11109.72096875
transcript.pyannote[1573].end 11110.02471875
transcript.pyannote[1574].speaker SPEAKER_26
transcript.pyannote[1574].start 11120.84159375
transcript.pyannote[1574].end 11120.85846875
transcript.pyannote[1575].speaker SPEAKER_25
transcript.pyannote[1575].start 11120.85846875
transcript.pyannote[1575].end 11120.89221875
transcript.pyannote[1576].speaker SPEAKER_04
transcript.pyannote[1576].start 11120.89221875
transcript.pyannote[1576].end 11120.94284375
transcript.pyannote[1577].speaker SPEAKER_25
transcript.pyannote[1577].start 11120.94284375
transcript.pyannote[1577].end 11121.02721875
transcript.pyannote[1578].speaker SPEAKER_26
transcript.pyannote[1578].start 11121.02721875
transcript.pyannote[1578].end 11121.04409375
transcript.pyannote[1579].speaker SPEAKER_25
transcript.pyannote[1579].start 11121.04409375
transcript.pyannote[1579].end 11121.17909375
transcript.pyannote[1580].speaker SPEAKER_26
transcript.pyannote[1580].start 11121.17909375
transcript.pyannote[1580].end 11121.19596875
transcript.pyannote[1581].speaker SPEAKER_04
transcript.pyannote[1581].start 11121.19596875
transcript.pyannote[1581].end 11122.25909375
transcript.pyannote[1582].speaker SPEAKER_26
transcript.pyannote[1582].start 11121.22971875
transcript.pyannote[1582].end 11122.83284375
transcript.pyannote[1583].speaker SPEAKER_04
transcript.pyannote[1583].start 11122.41096875
transcript.pyannote[1583].end 11122.46159375
transcript.pyannote[1584].speaker SPEAKER_25
transcript.pyannote[1584].start 11122.46159375
transcript.pyannote[1584].end 11122.52909375
transcript.pyannote[1585].speaker SPEAKER_25
transcript.pyannote[1585].start 11122.83284375
transcript.pyannote[1585].end 11122.98471875
transcript.pyannote[1586].speaker SPEAKER_04
transcript.pyannote[1586].start 11122.98471875
transcript.pyannote[1586].end 11123.00159375
transcript.pyannote[1587].speaker SPEAKER_26
transcript.pyannote[1587].start 11123.74409375
transcript.pyannote[1587].end 11160.51471875
transcript.pyannote[1588].speaker SPEAKER_26
transcript.pyannote[1588].start 11160.68346875
transcript.pyannote[1588].end 11178.97596875
transcript.pyannote[1589].speaker SPEAKER_25
transcript.pyannote[1589].start 11178.41909375
transcript.pyannote[1589].end 11198.98971875
transcript.pyannote[1590].speaker SPEAKER_25
transcript.pyannote[1590].start 11199.56346875
transcript.pyannote[1590].end 11218.71659375
transcript.pyannote[1591].speaker SPEAKER_04
transcript.pyannote[1591].start 11219.49284375
transcript.pyannote[1591].end 11235.59159375
transcript.pyannote[1592].speaker SPEAKER_04
transcript.pyannote[1592].start 11235.91221875
transcript.pyannote[1592].end 11240.09721875
transcript.pyannote[1593].speaker SPEAKER_26
transcript.pyannote[1593].start 11240.90721875
transcript.pyannote[1593].end 11241.27846875
transcript.pyannote[1594].speaker SPEAKER_26
transcript.pyannote[1594].start 11241.58221875
transcript.pyannote[1594].end 11280.05721875
transcript.pyannote[1595].speaker SPEAKER_25
transcript.pyannote[1595].start 11280.31034375
transcript.pyannote[1595].end 11285.40659375
transcript.pyannote[1596].speaker SPEAKER_25
transcript.pyannote[1596].start 11286.06471875
transcript.pyannote[1596].end 11290.65471875
transcript.pyannote[1597].speaker SPEAKER_25
transcript.pyannote[1597].start 11290.95846875
transcript.pyannote[1597].end 11312.42346875
transcript.pyannote[1598].speaker SPEAKER_04
transcript.pyannote[1598].start 11313.06471875
transcript.pyannote[1598].end 11319.32534375
transcript.pyannote[1599].speaker SPEAKER_04
transcript.pyannote[1599].start 11319.76409375
transcript.pyannote[1599].end 11327.23971875
transcript.pyannote[1600].speaker SPEAKER_04
transcript.pyannote[1600].start 11327.56034375
transcript.pyannote[1600].end 11369.76471875
transcript.pyannote[1601].speaker SPEAKER_04
transcript.pyannote[1601].start 11370.15284375
transcript.pyannote[1601].end 11375.02971875
transcript.pyannote[1602].speaker SPEAKER_04
transcript.pyannote[1602].start 11375.92409375
transcript.pyannote[1602].end 11380.22721875
transcript.pyannote[1603].speaker SPEAKER_18
transcript.pyannote[1603].start 11380.75034375
transcript.pyannote[1603].end 11380.80096875
transcript.pyannote[1604].speaker SPEAKER_20
transcript.pyannote[1604].start 11380.80096875
transcript.pyannote[1604].end 11380.81784375
transcript.pyannote[1605].speaker SPEAKER_18
transcript.pyannote[1605].start 11381.27346875
transcript.pyannote[1605].end 11438.24346875
transcript.pyannote[1606].speaker SPEAKER_25
transcript.pyannote[1606].start 11434.90221875
transcript.pyannote[1606].end 11436.52221875
transcript.pyannote[1607].speaker SPEAKER_25
transcript.pyannote[1607].start 11437.43346875
transcript.pyannote[1607].end 11438.02409375
transcript.pyannote[1608].speaker SPEAKER_25
transcript.pyannote[1608].start 11438.24346875
transcript.pyannote[1608].end 11488.32846875
transcript.pyannote[1609].speaker SPEAKER_25
transcript.pyannote[1609].start 11489.18909375
transcript.pyannote[1609].end 11489.27346875
transcript.pyannote[1610].speaker SPEAKER_04
transcript.pyannote[1610].start 11489.27346875
transcript.pyannote[1610].end 11489.29034375
transcript.pyannote[1611].speaker SPEAKER_25
transcript.pyannote[1611].start 11489.29034375
transcript.pyannote[1611].end 11494.09971875
transcript.pyannote[1612].speaker SPEAKER_04
transcript.pyannote[1612].start 11489.35784375
transcript.pyannote[1612].end 11490.50534375
transcript.pyannote[1613].speaker SPEAKER_04
transcript.pyannote[1613].start 11490.74159375
transcript.pyannote[1613].end 11490.77534375
transcript.pyannote[1614].speaker SPEAKER_04
transcript.pyannote[1614].start 11491.87221875
transcript.pyannote[1614].end 11499.31409375
transcript.pyannote[1615].speaker SPEAKER_25
transcript.pyannote[1615].start 11496.02346875
transcript.pyannote[1615].end 11496.98534375
transcript.pyannote[1616].speaker SPEAKER_25
transcript.pyannote[1616].start 11497.59284375
transcript.pyannote[1616].end 11497.94721875
transcript.pyannote[1617].speaker SPEAKER_25
transcript.pyannote[1617].start 11499.26346875
transcript.pyannote[1617].end 11530.41471875
transcript.pyannote[1618].speaker SPEAKER_04
transcript.pyannote[1618].start 11530.75221875
transcript.pyannote[1618].end 11537.01284375
transcript.pyannote[1619].speaker SPEAKER_25
transcript.pyannote[1619].start 11531.71409375
transcript.pyannote[1619].end 11531.73096875
transcript.pyannote[1620].speaker SPEAKER_04
transcript.pyannote[1620].start 11537.62034375
transcript.pyannote[1620].end 11543.88096875
transcript.pyannote[1621].speaker SPEAKER_04
transcript.pyannote[1621].start 11544.57284375
transcript.pyannote[1621].end 11548.85909375
transcript.pyannote[1622].speaker SPEAKER_04
transcript.pyannote[1622].start 11549.46659375
transcript.pyannote[1622].end 11553.14534375
transcript.pyannote[1623].speaker SPEAKER_25
transcript.pyannote[1623].start 11553.36471875
transcript.pyannote[1623].end 11557.65096875
transcript.pyannote[1624].speaker SPEAKER_02
transcript.pyannote[1624].start 11554.95096875
transcript.pyannote[1624].end 11554.98471875
transcript.pyannote[1625].speaker SPEAKER_04
transcript.pyannote[1625].start 11554.98471875
transcript.pyannote[1625].end 11556.97596875
transcript.pyannote[1626].speaker SPEAKER_02
transcript.pyannote[1626].start 11556.97596875
transcript.pyannote[1626].end 11557.63409375
transcript.pyannote[1627].speaker SPEAKER_02
transcript.pyannote[1627].start 11557.65096875
transcript.pyannote[1627].end 11560.03034375
transcript.pyannote[1628].speaker SPEAKER_02
transcript.pyannote[1628].start 11560.21596875
transcript.pyannote[1628].end 11563.35471875
transcript.pyannote[1629].speaker SPEAKER_02
transcript.pyannote[1629].start 11563.79346875
transcript.pyannote[1629].end 11572.43346875
transcript.pyannote[1630].speaker SPEAKER_02
transcript.pyannote[1630].start 11572.70346875
transcript.pyannote[1630].end 11573.93534375
transcript.pyannote[1631].speaker SPEAKER_02
transcript.pyannote[1631].start 11574.37409375
transcript.pyannote[1631].end 11575.25159375
transcript.pyannote[1632].speaker SPEAKER_02
transcript.pyannote[1632].start 11575.69034375
transcript.pyannote[1632].end 11578.57596875
transcript.pyannote[1633].speaker SPEAKER_24
transcript.pyannote[1633].start 11582.30534375
transcript.pyannote[1633].end 11584.06034375
transcript.pyannote[1634].speaker SPEAKER_24
transcript.pyannote[1634].start 11584.56659375
transcript.pyannote[1634].end 11586.28784375
transcript.pyannote[1635].speaker SPEAKER_02
transcript.pyannote[1635].start 11586.50721875
transcript.pyannote[1635].end 11587.19909375
transcript.pyannote[1636].speaker SPEAKER_24
transcript.pyannote[1636].start 11591.97471875
transcript.pyannote[1636].end 11592.51471875
transcript.pyannote[1637].speaker SPEAKER_24
transcript.pyannote[1637].start 11593.49346875
transcript.pyannote[1637].end 11596.64909375
transcript.pyannote[1638].speaker SPEAKER_24
transcript.pyannote[1638].start 11597.12159375
transcript.pyannote[1638].end 11601.34034375
transcript.pyannote[1639].speaker SPEAKER_04
transcript.pyannote[1639].start 11602.13346875
transcript.pyannote[1639].end 11612.34284375
transcript.pyannote[1640].speaker SPEAKER_24
transcript.pyannote[1640].start 11603.07846875
transcript.pyannote[1640].end 11603.78721875
transcript.pyannote[1641].speaker SPEAKER_24
transcript.pyannote[1641].start 11606.45346875
transcript.pyannote[1641].end 11607.26346875
transcript.pyannote[1642].speaker SPEAKER_24
transcript.pyannote[1642].start 11609.76096875
transcript.pyannote[1642].end 11610.89159375
transcript.pyannote[1643].speaker SPEAKER_24
transcript.pyannote[1643].start 11612.17409375
transcript.pyannote[1643].end 11618.65409375
transcript.pyannote[1644].speaker SPEAKER_24
transcript.pyannote[1644].start 11618.68784375
transcript.pyannote[1644].end 11618.70471875
transcript.pyannote[1645].speaker SPEAKER_24
transcript.pyannote[1645].start 11618.90721875
transcript.pyannote[1645].end 11625.04971875
transcript.pyannote[1646].speaker SPEAKER_24
transcript.pyannote[1646].start 11625.57284375
transcript.pyannote[1646].end 11627.26034375
transcript.pyannote[1647].speaker SPEAKER_24
transcript.pyannote[1647].start 11627.61471875
transcript.pyannote[1647].end 11638.92096875
transcript.pyannote[1648].speaker SPEAKER_24
transcript.pyannote[1648].start 11639.44409375
transcript.pyannote[1648].end 11644.48971875
transcript.pyannote[1649].speaker SPEAKER_04
transcript.pyannote[1649].start 11639.91659375
transcript.pyannote[1649].end 11641.33409375
transcript.pyannote[1650].speaker SPEAKER_24
transcript.pyannote[1650].start 11644.82721875
transcript.pyannote[1650].end 11652.62346875
transcript.pyannote[1651].speaker SPEAKER_24
transcript.pyannote[1651].start 11652.70784375
transcript.pyannote[1651].end 11659.47471875
transcript.pyannote[1652].speaker SPEAKER_24
transcript.pyannote[1652].start 11660.28471875
transcript.pyannote[1652].end 11662.86659375
transcript.pyannote[1653].speaker SPEAKER_24
transcript.pyannote[1653].start 11663.15346875
transcript.pyannote[1653].end 11664.62159375
transcript.pyannote[1654].speaker SPEAKER_24
transcript.pyannote[1654].start 11664.94221875
transcript.pyannote[1654].end 11666.54534375
transcript.pyannote[1655].speaker SPEAKER_24
transcript.pyannote[1655].start 11666.76471875
transcript.pyannote[1655].end 11666.86596875
transcript.pyannote[1656].speaker SPEAKER_24
transcript.pyannote[1656].start 11667.22034375
transcript.pyannote[1656].end 11667.50721875
transcript.pyannote[1657].speaker SPEAKER_24
transcript.pyannote[1657].start 11667.82784375
transcript.pyannote[1657].end 11670.29159375
transcript.pyannote[1658].speaker SPEAKER_04
transcript.pyannote[1658].start 11670.84846875
transcript.pyannote[1658].end 11676.78846875
transcript.pyannote[1659].speaker SPEAKER_04
transcript.pyannote[1659].start 11677.27784375
transcript.pyannote[1659].end 11696.98784375
transcript.pyannote[1660].speaker SPEAKER_24
transcript.pyannote[1660].start 11694.01784375
transcript.pyannote[1660].end 11701.59471875
transcript.pyannote[1661].speaker SPEAKER_04
transcript.pyannote[1661].start 11697.89909375
transcript.pyannote[1661].end 11699.70471875
transcript.pyannote[1662].speaker SPEAKER_04
transcript.pyannote[1662].start 11700.44721875
transcript.pyannote[1662].end 11707.09596875
transcript.pyannote[1663].speaker SPEAKER_24
transcript.pyannote[1663].start 11703.92346875
transcript.pyannote[1663].end 11704.37909375
transcript.pyannote[1664].speaker SPEAKER_04
transcript.pyannote[1664].start 11707.48409375
transcript.pyannote[1664].end 11714.50409375
transcript.pyannote[1665].speaker SPEAKER_04
transcript.pyannote[1665].start 11714.99346875
transcript.pyannote[1665].end 11727.09284375
transcript.pyannote[1666].speaker SPEAKER_19
transcript.pyannote[1666].start 11715.02721875
transcript.pyannote[1666].end 11716.96784375
transcript.pyannote[1667].speaker SPEAKER_00
transcript.pyannote[1667].start 11716.96784375
transcript.pyannote[1667].end 11717.38971875
transcript.pyannote[1668].speaker SPEAKER_24
transcript.pyannote[1668].start 11725.86096875
transcript.pyannote[1668].end 11737.89284375
transcript.pyannote[1669].speaker SPEAKER_04
transcript.pyannote[1669].start 11727.41346875
transcript.pyannote[1669].end 11728.35846875
transcript.pyannote[1670].speaker SPEAKER_04
transcript.pyannote[1670].start 11736.28971875
transcript.pyannote[1670].end 11754.64971875
transcript.pyannote[1671].speaker SPEAKER_24
transcript.pyannote[1671].start 11743.36034375
transcript.pyannote[1671].end 11744.57534375
transcript.pyannote[1672].speaker SPEAKER_19
transcript.pyannote[1672].start 11747.02221875
transcript.pyannote[1672].end 11747.03909375
transcript.pyannote[1673].speaker SPEAKER_24
transcript.pyannote[1673].start 11747.03909375
transcript.pyannote[1673].end 11747.81534375
transcript.pyannote[1674].speaker SPEAKER_24
transcript.pyannote[1674].start 11752.57409375
transcript.pyannote[1674].end 11752.59096875
transcript.pyannote[1675].speaker SPEAKER_20
transcript.pyannote[1675].start 11752.59096875
transcript.pyannote[1675].end 11753.02971875
transcript.pyannote[1676].speaker SPEAKER_24
transcript.pyannote[1676].start 11753.02971875
transcript.pyannote[1676].end 11753.97471875
transcript.pyannote[1677].speaker SPEAKER_20
transcript.pyannote[1677].start 11753.97471875
transcript.pyannote[1677].end 11754.02534375
transcript.pyannote[1678].speaker SPEAKER_24
transcript.pyannote[1678].start 11754.02534375
transcript.pyannote[1678].end 11754.63284375
transcript.pyannote[1679].speaker SPEAKER_20
transcript.pyannote[1679].start 11754.64971875
transcript.pyannote[1679].end 11754.95346875
transcript.pyannote[1680].speaker SPEAKER_04
transcript.pyannote[1680].start 11754.95346875
transcript.pyannote[1680].end 11762.95221875
transcript.pyannote[1681].speaker SPEAKER_04
transcript.pyannote[1681].start 11763.25596875
transcript.pyannote[1681].end 11765.65221875
transcript.pyannote[1682].speaker SPEAKER_04
transcript.pyannote[1682].start 11766.22596875
transcript.pyannote[1682].end 11767.44096875
transcript.pyannote[1683].speaker SPEAKER_04
transcript.pyannote[1683].start 11767.55909375
transcript.pyannote[1683].end 11768.35221875
transcript.pyannote[1684].speaker SPEAKER_04
transcript.pyannote[1684].start 11770.07346875
transcript.pyannote[1684].end 11771.67659375
transcript.pyannote[1685].speaker SPEAKER_04
transcript.pyannote[1685].start 11772.79034375
transcript.pyannote[1685].end 11780.13096875
transcript.pyannote[1686].speaker SPEAKER_04
transcript.pyannote[1686].start 11780.75534375
transcript.pyannote[1686].end 11782.83096875
transcript.pyannote[1687].speaker SPEAKER_24
transcript.pyannote[1687].start 11782.83096875
transcript.pyannote[1687].end 11782.91534375
transcript.pyannote[1688].speaker SPEAKER_04
transcript.pyannote[1688].start 11782.91534375
transcript.pyannote[1688].end 11783.03346875
transcript.pyannote[1689].speaker SPEAKER_24
transcript.pyannote[1689].start 11783.03346875
transcript.pyannote[1689].end 11783.75909375
transcript.pyannote[1690].speaker SPEAKER_04
transcript.pyannote[1690].start 11783.75909375
transcript.pyannote[1690].end 11784.02909375
transcript.pyannote[1691].speaker SPEAKER_04
transcript.pyannote[1691].start 11784.40034375
transcript.pyannote[1691].end 11784.41721875
transcript.pyannote[1692].speaker SPEAKER_24
transcript.pyannote[1692].start 11784.41721875
transcript.pyannote[1692].end 11786.25659375
transcript.pyannote[1693].speaker SPEAKER_24
transcript.pyannote[1693].start 11786.81346875
transcript.pyannote[1693].end 11789.05784375
transcript.pyannote[1694].speaker SPEAKER_24
transcript.pyannote[1694].start 11789.39534375
transcript.pyannote[1694].end 11790.96471875
transcript.pyannote[1695].speaker SPEAKER_04
transcript.pyannote[1695].start 11790.96471875
transcript.pyannote[1695].end 11791.01534375
transcript.pyannote[1696].speaker SPEAKER_24
transcript.pyannote[1696].start 11791.70721875
transcript.pyannote[1696].end 11791.72409375
transcript.pyannote[1697].speaker SPEAKER_04
transcript.pyannote[1697].start 11791.72409375
transcript.pyannote[1697].end 11796.41534375
transcript.pyannote[1698].speaker SPEAKER_24
transcript.pyannote[1698].start 11795.70659375
transcript.pyannote[1698].end 11796.43221875
transcript.pyannote[1699].speaker SPEAKER_04
transcript.pyannote[1699].start 11796.43221875
transcript.pyannote[1699].end 11797.09034375
transcript.pyannote[1700].speaker SPEAKER_24
transcript.pyannote[1700].start 11797.09034375
transcript.pyannote[1700].end 11799.23346875
transcript.pyannote[1701].speaker SPEAKER_04
transcript.pyannote[1701].start 11799.21659375
transcript.pyannote[1701].end 11799.70596875
transcript.pyannote[1702].speaker SPEAKER_24
transcript.pyannote[1702].start 11799.58784375
transcript.pyannote[1702].end 11801.61284375
transcript.pyannote[1703].speaker SPEAKER_24
transcript.pyannote[1703].start 11802.08534375
transcript.pyannote[1703].end 11802.69284375
transcript.pyannote[1704].speaker SPEAKER_24
transcript.pyannote[1704].start 11803.13159375
transcript.pyannote[1704].end 11809.93221875
transcript.pyannote[1705].speaker SPEAKER_24
transcript.pyannote[1705].start 11810.01659375
transcript.pyannote[1705].end 11813.27346875
transcript.pyannote[1706].speaker SPEAKER_20
transcript.pyannote[1706].start 11811.68721875
transcript.pyannote[1706].end 11811.83909375
transcript.pyannote[1707].speaker SPEAKER_20
transcript.pyannote[1707].start 11813.27346875
transcript.pyannote[1707].end 11813.66159375
transcript.pyannote[1708].speaker SPEAKER_24
transcript.pyannote[1708].start 11813.30721875
transcript.pyannote[1708].end 11818.38659375
transcript.pyannote[1709].speaker SPEAKER_24
transcript.pyannote[1709].start 11818.43721875
transcript.pyannote[1709].end 11819.19659375
transcript.pyannote[1710].speaker SPEAKER_24
transcript.pyannote[1710].start 11819.48346875
transcript.pyannote[1710].end 11821.15409375
transcript.pyannote[1711].speaker SPEAKER_24
transcript.pyannote[1711].start 11821.39034375
transcript.pyannote[1711].end 11823.24659375
transcript.pyannote[1712].speaker SPEAKER_24
transcript.pyannote[1712].start 11823.63471875
transcript.pyannote[1712].end 11826.89159375
transcript.pyannote[1713].speaker SPEAKER_04
transcript.pyannote[1713].start 11827.02659375
transcript.pyannote[1713].end 11829.32159375
transcript.pyannote[1714].speaker SPEAKER_24
transcript.pyannote[1714].start 11829.00096875
transcript.pyannote[1714].end 11829.18659375
transcript.pyannote[1715].speaker SPEAKER_24
transcript.pyannote[1715].start 11829.32159375
transcript.pyannote[1715].end 11829.35534375
transcript.pyannote[1716].speaker SPEAKER_04
transcript.pyannote[1716].start 11829.35534375
transcript.pyannote[1716].end 11830.80659375
transcript.pyannote[1717].speaker SPEAKER_24
transcript.pyannote[1717].start 11829.40596875
transcript.pyannote[1717].end 11830.73909375
transcript.pyannote[1718].speaker SPEAKER_04
transcript.pyannote[1718].start 11831.38034375
transcript.pyannote[1718].end 11834.11409375
transcript.pyannote[1719].speaker SPEAKER_24
transcript.pyannote[1719].start 11832.73034375
transcript.pyannote[1719].end 11832.74721875
transcript.pyannote[1720].speaker SPEAKER_18
transcript.pyannote[1720].start 11832.74721875
transcript.pyannote[1720].end 11833.99596875
transcript.pyannote[1721].speaker SPEAKER_18
transcript.pyannote[1721].start 11834.21534375
transcript.pyannote[1721].end 11839.05846875
transcript.pyannote[1722].speaker SPEAKER_04
transcript.pyannote[1722].start 11838.92346875
transcript.pyannote[1722].end 11838.94034375
transcript.pyannote[1723].speaker SPEAKER_20
transcript.pyannote[1723].start 11838.94034375
transcript.pyannote[1723].end 11838.99096875
transcript.pyannote[1724].speaker SPEAKER_20
transcript.pyannote[1724].start 11839.00784375
transcript.pyannote[1724].end 11839.07534375
transcript.pyannote[1725].speaker SPEAKER_18
transcript.pyannote[1725].start 11839.07534375
transcript.pyannote[1725].end 11839.12596875
transcript.pyannote[1726].speaker SPEAKER_20
transcript.pyannote[1726].start 11839.12596875
transcript.pyannote[1726].end 11839.54784375
transcript.pyannote[1727].speaker SPEAKER_18
transcript.pyannote[1727].start 11839.17659375
transcript.pyannote[1727].end 11864.37096875
transcript.pyannote[1728].speaker SPEAKER_20
transcript.pyannote[1728].start 11846.33159375
transcript.pyannote[1728].end 11846.83784375
transcript.pyannote[1729].speaker SPEAKER_24
transcript.pyannote[1729].start 11851.88346875
transcript.pyannote[1729].end 11854.61721875
transcript.pyannote[1730].speaker SPEAKER_24
transcript.pyannote[1730].start 11857.45221875
transcript.pyannote[1730].end 11858.16096875
transcript.pyannote[1731].speaker SPEAKER_24
transcript.pyannote[1731].start 11858.22846875
transcript.pyannote[1731].end 11858.34659375
transcript.pyannote[1732].speaker SPEAKER_24
transcript.pyannote[1732].start 11863.45971875
transcript.pyannote[1732].end 11873.95596875
transcript.pyannote[1733].speaker SPEAKER_18
transcript.pyannote[1733].start 11864.43846875
transcript.pyannote[1733].end 11864.70846875
transcript.pyannote[1734].speaker SPEAKER_18
transcript.pyannote[1734].start 11869.01159375
transcript.pyannote[1734].end 11869.85534375
transcript.pyannote[1735].speaker SPEAKER_24
transcript.pyannote[1735].start 11874.15846875
transcript.pyannote[1735].end 11874.96846875
transcript.pyannote[1736].speaker SPEAKER_18
transcript.pyannote[1736].start 11874.96846875
transcript.pyannote[1736].end 11875.08659375
transcript.pyannote[1737].speaker SPEAKER_24
transcript.pyannote[1737].start 11875.08659375
transcript.pyannote[1737].end 11875.32284375
transcript.pyannote[1738].speaker SPEAKER_18
transcript.pyannote[1738].start 11875.32284375
transcript.pyannote[1738].end 11875.33971875
transcript.pyannote[1739].speaker SPEAKER_24
transcript.pyannote[1739].start 11875.33971875
transcript.pyannote[1739].end 11875.39034375
transcript.pyannote[1740].speaker SPEAKER_18
transcript.pyannote[1740].start 11875.39034375
transcript.pyannote[1740].end 11875.42409375
transcript.pyannote[1741].speaker SPEAKER_24
transcript.pyannote[1741].start 11875.42409375
transcript.pyannote[1741].end 11875.49159375
transcript.pyannote[1742].speaker SPEAKER_18
transcript.pyannote[1742].start 11875.49159375
transcript.pyannote[1742].end 11896.02846875
transcript.pyannote[1743].speaker SPEAKER_24
transcript.pyannote[1743].start 11896.02846875
transcript.pyannote[1743].end 11896.58534375
transcript.pyannote[1744].speaker SPEAKER_18
transcript.pyannote[1744].start 11896.58534375
transcript.pyannote[1744].end 11896.82159375
transcript.pyannote[1745].speaker SPEAKER_24
transcript.pyannote[1745].start 11896.82159375
transcript.pyannote[1745].end 11901.22596875
transcript.pyannote[1746].speaker SPEAKER_24
transcript.pyannote[1746].start 11901.32721875
transcript.pyannote[1746].end 11909.54534375
transcript.pyannote[1747].speaker SPEAKER_24
transcript.pyannote[1747].start 11909.84909375
transcript.pyannote[1747].end 11911.14846875
transcript.pyannote[1748].speaker SPEAKER_24
transcript.pyannote[1748].start 11911.57034375
transcript.pyannote[1748].end 11912.29596875
transcript.pyannote[1749].speaker SPEAKER_24
transcript.pyannote[1749].start 11912.39721875
transcript.pyannote[1749].end 11914.82721875
transcript.pyannote[1750].speaker SPEAKER_24
transcript.pyannote[1750].start 11915.38409375
transcript.pyannote[1750].end 11919.78846875
transcript.pyannote[1751].speaker SPEAKER_24
transcript.pyannote[1751].start 11920.26096875
transcript.pyannote[1751].end 11924.04096875
transcript.pyannote[1752].speaker SPEAKER_24
transcript.pyannote[1752].start 11924.73284375
transcript.pyannote[1752].end 11927.75346875
transcript.pyannote[1753].speaker SPEAKER_24
transcript.pyannote[1753].start 11929.10346875
transcript.pyannote[1753].end 11929.77846875
transcript.pyannote[1754].speaker SPEAKER_04
transcript.pyannote[1754].start 11930.84159375
transcript.pyannote[1754].end 11931.02721875
transcript.pyannote[1755].speaker SPEAKER_24
transcript.pyannote[1755].start 11931.43221875
transcript.pyannote[1755].end 11932.00596875
transcript.pyannote[1756].speaker SPEAKER_24
transcript.pyannote[1756].start 11932.49534375
transcript.pyannote[1756].end 11934.21659375
transcript.pyannote[1757].speaker SPEAKER_04
transcript.pyannote[1757].start 11934.75659375
transcript.pyannote[1757].end 11935.21221875
transcript.pyannote[1758].speaker SPEAKER_24
transcript.pyannote[1758].start 11935.58346875
transcript.pyannote[1758].end 11936.10659375
transcript.pyannote[1759].speaker SPEAKER_24
transcript.pyannote[1759].start 11937.50721875
transcript.pyannote[1759].end 11939.21159375
transcript.pyannote[1760].speaker SPEAKER_24
transcript.pyannote[1760].start 11939.51534375
transcript.pyannote[1760].end 11940.73034375
transcript.pyannote[1761].speaker SPEAKER_24
transcript.pyannote[1761].start 11941.03409375
transcript.pyannote[1761].end 11944.15596875
transcript.pyannote[1762].speaker SPEAKER_24
transcript.pyannote[1762].start 11944.54409375
transcript.pyannote[1762].end 11945.15159375
transcript.pyannote[1763].speaker SPEAKER_24
transcript.pyannote[1763].start 11945.70846875
transcript.pyannote[1763].end 11949.06659375
transcript.pyannote[1764].speaker SPEAKER_24
transcript.pyannote[1764].start 11950.01159375
transcript.pyannote[1764].end 11952.10409375
transcript.pyannote[1765].speaker SPEAKER_04
transcript.pyannote[1765].start 11950.04534375
transcript.pyannote[1765].end 11952.08721875
transcript.pyannote[1766].speaker SPEAKER_04
transcript.pyannote[1766].start 11952.10409375
transcript.pyannote[1766].end 11952.52596875
transcript.pyannote[1767].speaker SPEAKER_24
transcript.pyannote[1767].start 11952.52596875
transcript.pyannote[1767].end 11952.54284375
transcript.pyannote[1768].speaker SPEAKER_04
transcript.pyannote[1768].start 11952.54284375
transcript.pyannote[1768].end 11952.93096875
transcript.pyannote[1769].speaker SPEAKER_24
transcript.pyannote[1769].start 11952.93096875
transcript.pyannote[1769].end 11953.94346875
transcript.pyannote[1770].speaker SPEAKER_04
transcript.pyannote[1770].start 11952.98159375
transcript.pyannote[1770].end 11954.48346875
transcript.pyannote[1771].speaker SPEAKER_24
transcript.pyannote[1771].start 11954.48346875
transcript.pyannote[1771].end 11956.64346875
transcript.pyannote[1772].speaker SPEAKER_04
transcript.pyannote[1772].start 11954.50034375
transcript.pyannote[1772].end 11954.56784375
transcript.pyannote[1773].speaker SPEAKER_20
transcript.pyannote[1773].start 11954.56784375
transcript.pyannote[1773].end 11954.60159375
transcript.pyannote[1774].speaker SPEAKER_24
transcript.pyannote[1774].start 11957.87534375
transcript.pyannote[1774].end 11959.76534375
transcript.pyannote[1775].speaker SPEAKER_24
transcript.pyannote[1775].start 11959.88346875
transcript.pyannote[1775].end 11964.92909375
transcript.pyannote[1776].speaker SPEAKER_26
transcript.pyannote[1776].start 11960.82846875
transcript.pyannote[1776].end 11962.09409375
transcript.pyannote[1777].speaker SPEAKER_26
transcript.pyannote[1777].start 11964.60846875
transcript.pyannote[1777].end 11969.43471875
transcript.pyannote[1778].speaker SPEAKER_26
transcript.pyannote[1778].start 11969.75534375
transcript.pyannote[1778].end 11980.55534375
transcript.pyannote[1779].speaker SPEAKER_24
transcript.pyannote[1779].start 11972.60721875
transcript.pyannote[1779].end 11974.14284375
transcript.pyannote[1780].speaker SPEAKER_24
transcript.pyannote[1780].start 11979.94784375
transcript.pyannote[1780].end 11983.52534375
transcript.pyannote[1781].speaker SPEAKER_26
transcript.pyannote[1781].start 11982.42846875
transcript.pyannote[1781].end 11987.28846875
transcript.pyannote[1782].speaker SPEAKER_26
transcript.pyannote[1782].start 11987.32221875
transcript.pyannote[1782].end 12001.44659375
transcript.pyannote[1783].speaker SPEAKER_24
transcript.pyannote[1783].start 11999.26971875
transcript.pyannote[1783].end 11999.89409375
transcript.pyannote[1784].speaker SPEAKER_24
transcript.pyannote[1784].start 12001.14284375
transcript.pyannote[1784].end 12002.57721875
transcript.pyannote[1785].speaker SPEAKER_26
transcript.pyannote[1785].start 12002.57721875
transcript.pyannote[1785].end 12016.70159375
transcript.pyannote[1786].speaker SPEAKER_24
transcript.pyannote[1786].start 12013.46159375
transcript.pyannote[1786].end 12014.20409375
transcript.pyannote[1787].speaker SPEAKER_24
transcript.pyannote[1787].start 12014.59221875
transcript.pyannote[1787].end 12017.69721875
transcript.pyannote[1788].speaker SPEAKER_24
transcript.pyannote[1788].start 12018.38909375
transcript.pyannote[1788].end 12019.40159375
transcript.pyannote[1789].speaker SPEAKER_24
transcript.pyannote[1789].start 12020.43096875
transcript.pyannote[1789].end 12020.98784375
transcript.pyannote[1790].speaker SPEAKER_24
transcript.pyannote[1790].start 12021.44346875
transcript.pyannote[1790].end 12024.86909375
transcript.pyannote[1791].speaker SPEAKER_24
transcript.pyannote[1791].start 12025.12221875
transcript.pyannote[1791].end 12025.78034375
transcript.pyannote[1792].speaker SPEAKER_24
transcript.pyannote[1792].start 12026.20221875
transcript.pyannote[1792].end 12027.11346875
transcript.pyannote[1793].speaker SPEAKER_24
transcript.pyannote[1793].start 12027.58596875
transcript.pyannote[1793].end 12028.85159375
transcript.pyannote[1794].speaker SPEAKER_04
transcript.pyannote[1794].start 12031.75409375
transcript.pyannote[1794].end 12034.21784375
transcript.pyannote[1795].speaker SPEAKER_04
transcript.pyannote[1795].start 12034.57221875
transcript.pyannote[1795].end 12044.98409375
transcript.pyannote[1796].speaker SPEAKER_24
transcript.pyannote[1796].start 12045.06846875
transcript.pyannote[1796].end 12046.65471875
transcript.pyannote[1797].speaker SPEAKER_04
transcript.pyannote[1797].start 12047.76846875
transcript.pyannote[1797].end 12048.12284375
transcript.pyannote[1798].speaker SPEAKER_24
transcript.pyannote[1798].start 12048.20721875
transcript.pyannote[1798].end 12048.76409375
transcript.pyannote[1799].speaker SPEAKER_24
transcript.pyannote[1799].start 12049.15221875
transcript.pyannote[1799].end 12050.04659375
transcript.pyannote[1800].speaker SPEAKER_04
transcript.pyannote[1800].start 12050.04659375
transcript.pyannote[1800].end 12050.09721875
transcript.pyannote[1801].speaker SPEAKER_24
transcript.pyannote[1801].start 12050.09721875
transcript.pyannote[1801].end 12050.13096875
transcript.pyannote[1802].speaker SPEAKER_24
transcript.pyannote[1802].start 12050.48534375
transcript.pyannote[1802].end 12050.78909375
transcript.pyannote[1803].speaker SPEAKER_02
transcript.pyannote[1803].start 12050.78909375
transcript.pyannote[1803].end 12050.80596875
transcript.pyannote[1804].speaker SPEAKER_24
transcript.pyannote[1804].start 12051.02534375
transcript.pyannote[1804].end 12051.37971875
transcript.pyannote[1805].speaker SPEAKER_04
transcript.pyannote[1805].start 12051.86909375
transcript.pyannote[1805].end 12052.94909375
transcript.pyannote[1806].speaker SPEAKER_02
transcript.pyannote[1806].start 12055.98659375
transcript.pyannote[1806].end 12056.69534375
transcript.pyannote[1807].speaker SPEAKER_02
transcript.pyannote[1807].start 12056.91471875
transcript.pyannote[1807].end 12059.05784375
transcript.pyannote[1808].speaker SPEAKER_02
transcript.pyannote[1808].start 12060.52596875
transcript.pyannote[1808].end 12064.03596875
transcript.pyannote[1809].speaker SPEAKER_08
transcript.pyannote[1809].start 12064.49159375
transcript.pyannote[1809].end 12086.69909375
transcript.pyannote[1810].speaker SPEAKER_08
transcript.pyannote[1810].start 12086.76659375
transcript.pyannote[1810].end 12169.97721875
transcript.pyannote[1811].speaker SPEAKER_02
transcript.pyannote[1811].start 12171.78284375
transcript.pyannote[1811].end 12175.20846875
transcript.pyannote[1812].speaker SPEAKER_02
transcript.pyannote[1812].start 12175.98471875
transcript.pyannote[1812].end 12177.13221875
transcript.pyannote[1813].speaker SPEAKER_04
transcript.pyannote[1813].start 12178.19534375
transcript.pyannote[1813].end 12178.21221875
transcript.pyannote[1814].speaker SPEAKER_02
transcript.pyannote[1814].start 12178.21221875
transcript.pyannote[1814].end 12178.90409375
transcript.pyannote[1815].speaker SPEAKER_04
transcript.pyannote[1815].start 12178.90409375
transcript.pyannote[1815].end 12178.92096875
transcript.pyannote[1816].speaker SPEAKER_02
transcript.pyannote[1816].start 12179.74784375
transcript.pyannote[1816].end 12180.03471875
transcript.pyannote[1817].speaker SPEAKER_04
transcript.pyannote[1817].start 12180.03471875
transcript.pyannote[1817].end 12180.62534375
transcript.pyannote[1818].speaker SPEAKER_04
transcript.pyannote[1818].start 12185.19846875
transcript.pyannote[1818].end 12191.94846875
transcript.pyannote[1819].speaker SPEAKER_00
transcript.pyannote[1819].start 12187.22346875
transcript.pyannote[1819].end 12189.85596875
transcript.pyannote[1820].speaker SPEAKER_04
transcript.pyannote[1820].start 12192.28596875
transcript.pyannote[1820].end 12198.20909375
transcript.pyannote[1821].speaker SPEAKER_04
transcript.pyannote[1821].start 12200.62221875
transcript.pyannote[1821].end 12200.63909375
transcript.pyannote[1822].speaker SPEAKER_02
transcript.pyannote[1822].start 12200.63909375
transcript.pyannote[1822].end 12200.85846875
transcript.pyannote[1823].speaker SPEAKER_04
transcript.pyannote[1823].start 12200.85846875
transcript.pyannote[1823].end 12201.41534375
transcript.pyannote[1824].speaker SPEAKER_02
transcript.pyannote[1824].start 12201.41534375
transcript.pyannote[1824].end 12202.54596875
transcript.pyannote[1825].speaker SPEAKER_02
transcript.pyannote[1825].start 12203.01846875
transcript.pyannote[1825].end 12205.31346875
transcript.pyannote[1826].speaker SPEAKER_02
transcript.pyannote[1826].start 12206.02221875
transcript.pyannote[1826].end 12206.24159375
transcript.pyannote[1827].speaker SPEAKER_02
transcript.pyannote[1827].start 12207.06846875
transcript.pyannote[1827].end 12207.86159375
transcript.pyannote[1828].speaker SPEAKER_04
transcript.pyannote[1828].start 12211.18596875
transcript.pyannote[1828].end 12212.24909375
transcript.pyannote[1829].speaker SPEAKER_04
transcript.pyannote[1829].start 12213.56534375
transcript.pyannote[1829].end 12214.67909375
transcript.pyannote[1830].speaker SPEAKER_21
transcript.pyannote[1830].start 12215.06721875
transcript.pyannote[1830].end 12237.13971875
transcript.pyannote[1831].speaker SPEAKER_21
transcript.pyannote[1831].start 12237.62909375
transcript.pyannote[1831].end 12238.13534375
transcript.pyannote[1832].speaker SPEAKER_21
transcript.pyannote[1832].start 12238.23659375
transcript.pyannote[1832].end 12266.24909375
transcript.pyannote[1833].speaker SPEAKER_21
transcript.pyannote[1833].start 12266.56971875
transcript.pyannote[1833].end 12269.03346875
transcript.pyannote[1834].speaker SPEAKER_21
transcript.pyannote[1834].start 12269.15159375
transcript.pyannote[1834].end 12270.65346875
transcript.pyannote[1835].speaker SPEAKER_21
transcript.pyannote[1835].start 12270.95721875
transcript.pyannote[1835].end 12272.79659375
transcript.pyannote[1836].speaker SPEAKER_02
transcript.pyannote[1836].start 12273.11721875
transcript.pyannote[1836].end 12273.31971875
transcript.pyannote[1837].speaker SPEAKER_02
transcript.pyannote[1837].start 12274.12971875
transcript.pyannote[1837].end 12274.34909375
transcript.pyannote[1838].speaker SPEAKER_06
transcript.pyannote[1838].start 12274.34909375
transcript.pyannote[1838].end 12275.49659375
transcript.pyannote[1839].speaker SPEAKER_02
transcript.pyannote[1839].start 12275.20971875
transcript.pyannote[1839].end 12276.17159375
transcript.pyannote[1840].speaker SPEAKER_02
transcript.pyannote[1840].start 12276.30659375
transcript.pyannote[1840].end 12276.62721875
transcript.pyannote[1841].speaker SPEAKER_02
transcript.pyannote[1841].start 12276.76221875
transcript.pyannote[1841].end 12277.72409375
transcript.pyannote[1842].speaker SPEAKER_02
transcript.pyannote[1842].start 12278.39909375
transcript.pyannote[1842].end 12280.84596875
transcript.pyannote[1843].speaker SPEAKER_02
transcript.pyannote[1843].start 12281.58846875
transcript.pyannote[1843].end 12281.68971875
transcript.pyannote[1844].speaker SPEAKER_02
transcript.pyannote[1844].start 12282.04409375
transcript.pyannote[1844].end 12282.71909375
transcript.pyannote[1845].speaker SPEAKER_02
transcript.pyannote[1845].start 12287.46096875
transcript.pyannote[1845].end 12289.68846875
transcript.pyannote[1846].speaker SPEAKER_02
transcript.pyannote[1846].start 12290.54909375
transcript.pyannote[1846].end 12291.07221875
transcript.pyannote[1847].speaker SPEAKER_04
transcript.pyannote[1847].start 12291.07221875
transcript.pyannote[1847].end 12305.06159375
transcript.pyannote[1848].speaker SPEAKER_02
transcript.pyannote[1848].start 12291.08909375
transcript.pyannote[1848].end 12291.10596875
transcript.pyannote[1849].speaker SPEAKER_02
transcript.pyannote[1849].start 12291.13971875
transcript.pyannote[1849].end 12291.27471875
transcript.pyannote[1850].speaker SPEAKER_04
transcript.pyannote[1850].start 12305.31471875
transcript.pyannote[1850].end 12308.03159375
transcript.pyannote[1851].speaker SPEAKER_04
transcript.pyannote[1851].start 12308.23409375
transcript.pyannote[1851].end 12310.25909375
transcript.pyannote[1852].speaker SPEAKER_04
transcript.pyannote[1852].start 12310.78221875
transcript.pyannote[1852].end 12313.56659375
transcript.pyannote[1853].speaker SPEAKER_02
transcript.pyannote[1853].start 12315.27096875
transcript.pyannote[1853].end 12315.30471875
transcript.pyannote[1854].speaker SPEAKER_02
transcript.pyannote[1854].start 12315.59159375
transcript.pyannote[1854].end 12316.06409375
transcript.pyannote[1855].speaker SPEAKER_04
transcript.pyannote[1855].start 12316.06409375
transcript.pyannote[1855].end 12316.08096875
transcript.pyannote[1856].speaker SPEAKER_02
transcript.pyannote[1856].start 12316.08096875
transcript.pyannote[1856].end 12316.11471875
transcript.pyannote[1857].speaker SPEAKER_04
transcript.pyannote[1857].start 12316.11471875
transcript.pyannote[1857].end 12316.33409375
transcript.pyannote[1858].speaker SPEAKER_02
transcript.pyannote[1858].start 12316.33409375
transcript.pyannote[1858].end 12316.51971875
transcript.pyannote[1859].speaker SPEAKER_04
transcript.pyannote[1859].start 12316.51971875
transcript.pyannote[1859].end 12316.58721875
transcript.pyannote[1860].speaker SPEAKER_02
transcript.pyannote[1860].start 12316.58721875
transcript.pyannote[1860].end 12316.63784375
transcript.pyannote[1861].speaker SPEAKER_02
transcript.pyannote[1861].start 12317.22846875
transcript.pyannote[1861].end 12318.96659375
transcript.pyannote[1862].speaker SPEAKER_02
transcript.pyannote[1862].start 12319.25346875
transcript.pyannote[1862].end 12323.45534375
transcript.pyannote[1863].speaker SPEAKER_02
transcript.pyannote[1863].start 12323.87721875
transcript.pyannote[1863].end 12325.91909375
transcript.pyannote[1864].speaker SPEAKER_02
transcript.pyannote[1864].start 12326.25659375
transcript.pyannote[1864].end 12326.83034375
transcript.pyannote[1865].speaker SPEAKER_02
transcript.pyannote[1865].start 12329.51346875
transcript.pyannote[1865].end 12332.77034375
transcript.pyannote[1866].speaker SPEAKER_02
transcript.pyannote[1866].start 12333.17534375
transcript.pyannote[1866].end 12334.47471875
transcript.pyannote[1867].speaker SPEAKER_02
transcript.pyannote[1867].start 12336.88784375
transcript.pyannote[1867].end 12342.92909375
transcript.pyannote[1868].speaker SPEAKER_25
transcript.pyannote[1868].start 12348.05909375
transcript.pyannote[1868].end 12349.86471875
transcript.pyannote[1869].speaker SPEAKER_25
transcript.pyannote[1869].start 12352.96971875
transcript.pyannote[1869].end 12353.13846875
transcript.pyannote[1870].speaker SPEAKER_25
transcript.pyannote[1870].start 12353.81346875
transcript.pyannote[1870].end 12353.96534375
transcript.pyannote[1871].speaker SPEAKER_02
transcript.pyannote[1871].start 12353.96534375
transcript.pyannote[1871].end 12355.06221875
transcript.pyannote[1872].speaker SPEAKER_02
transcript.pyannote[1872].start 12360.54659375
transcript.pyannote[1872].end 12362.30159375
transcript.pyannote[1873].speaker SPEAKER_02
transcript.pyannote[1873].start 12362.87534375
transcript.pyannote[1873].end 12367.68471875
transcript.pyannote[1874].speaker SPEAKER_02
transcript.pyannote[1874].start 12368.22471875
transcript.pyannote[1874].end 12372.83159375
transcript.pyannote[1875].speaker SPEAKER_02
transcript.pyannote[1875].start 12373.27034375
transcript.pyannote[1875].end 12392.03534375
transcript.pyannote[1876].speaker SPEAKER_02
transcript.pyannote[1876].start 12392.82846875
transcript.pyannote[1876].end 12393.94221875
transcript.pyannote[1877].speaker SPEAKER_02
transcript.pyannote[1877].start 12394.38096875
transcript.pyannote[1877].end 12416.89221875
transcript.pyannote[1878].speaker SPEAKER_02
transcript.pyannote[1878].start 12417.14534375
transcript.pyannote[1878].end 12429.75096875
transcript.pyannote[1879].speaker SPEAKER_19
transcript.pyannote[1879].start 12418.29284375
transcript.pyannote[1879].end 12418.64721875
transcript.pyannote[1880].speaker SPEAKER_02
transcript.pyannote[1880].start 12430.17284375
transcript.pyannote[1880].end 12435.48846875
transcript.pyannote[1881].speaker SPEAKER_02
transcript.pyannote[1881].start 12435.89346875
transcript.pyannote[1881].end 12448.33034375
transcript.pyannote[1882].speaker SPEAKER_04
transcript.pyannote[1882].start 12444.48284375
transcript.pyannote[1882].end 12444.56721875
transcript.pyannote[1883].speaker SPEAKER_02
transcript.pyannote[1883].start 12448.97159375
transcript.pyannote[1883].end 12456.27846875
transcript.pyannote[1884].speaker SPEAKER_02
transcript.pyannote[1884].start 12456.61596875
transcript.pyannote[1884].end 12458.50596875
transcript.pyannote[1885].speaker SPEAKER_02
transcript.pyannote[1885].start 12458.82659375
transcript.pyannote[1885].end 12459.87284375
transcript.pyannote[1886].speaker SPEAKER_02
transcript.pyannote[1886].start 12461.18909375
transcript.pyannote[1886].end 12461.89784375
transcript.pyannote[1887].speaker SPEAKER_02
transcript.pyannote[1887].start 12462.62346875
transcript.pyannote[1887].end 12466.21784375
transcript.pyannote[1888].speaker SPEAKER_02
transcript.pyannote[1888].start 12467.43284375
transcript.pyannote[1888].end 12486.92346875
transcript.pyannote[1889].speaker SPEAKER_02
transcript.pyannote[1889].start 12487.49721875
transcript.pyannote[1889].end 12492.82971875
transcript.pyannote[1890].speaker SPEAKER_02
transcript.pyannote[1890].start 12492.91409375
transcript.pyannote[1890].end 12502.43159375
transcript.pyannote[1891].speaker SPEAKER_02
transcript.pyannote[1891].start 12502.98846875
transcript.pyannote[1891].end 12504.89534375
transcript.pyannote[1892].speaker SPEAKER_02
transcript.pyannote[1892].start 12505.26659375
transcript.pyannote[1892].end 12508.30409375
transcript.pyannote[1893].speaker SPEAKER_02
transcript.pyannote[1893].start 12508.94534375
transcript.pyannote[1893].end 12513.56909375
transcript.pyannote[1894].speaker SPEAKER_02
transcript.pyannote[1894].start 12513.85596875
transcript.pyannote[1894].end 12531.22034375
transcript.pyannote[1895].speaker SPEAKER_02
transcript.pyannote[1895].start 12531.32159375
transcript.pyannote[1895].end 12533.19471875
transcript.pyannote[1896].speaker SPEAKER_02
transcript.pyannote[1896].start 12533.54909375
transcript.pyannote[1896].end 12536.02971875
transcript.pyannote[1897].speaker SPEAKER_02
transcript.pyannote[1897].start 12537.31221875
transcript.pyannote[1897].end 12538.03784375
transcript.pyannote[1898].speaker SPEAKER_04
transcript.pyannote[1898].start 12538.03784375
transcript.pyannote[1898].end 12538.45971875
transcript.pyannote[1899].speaker SPEAKER_04
transcript.pyannote[1899].start 12539.26971875
transcript.pyannote[1899].end 12539.92784375
transcript.pyannote[1900].speaker SPEAKER_04
transcript.pyannote[1900].start 12541.54784375
transcript.pyannote[1900].end 12544.39971875
transcript.pyannote[1901].speaker SPEAKER_04
transcript.pyannote[1901].start 12545.15909375
transcript.pyannote[1901].end 12549.51284375
transcript.pyannote[1902].speaker SPEAKER_04
transcript.pyannote[1902].start 12549.93471875
transcript.pyannote[1902].end 12551.40284375
transcript.pyannote[1903].speaker SPEAKER_04
transcript.pyannote[1903].start 12551.90909375
transcript.pyannote[1903].end 12567.43409375
transcript.pyannote[1904].speaker SPEAKER_04
transcript.pyannote[1904].start 12567.83909375
transcript.pyannote[1904].end 12574.30221875
transcript.pyannote[1905].speaker SPEAKER_02
transcript.pyannote[1905].start 12575.43284375
transcript.pyannote[1905].end 12580.61346875
transcript.pyannote[1906].speaker SPEAKER_02
transcript.pyannote[1906].start 12581.76096875
transcript.pyannote[1906].end 12583.27971875
transcript.pyannote[1907].speaker SPEAKER_02
transcript.pyannote[1907].start 12584.10659375
transcript.pyannote[1907].end 12585.59159375
transcript.pyannote[1908].speaker SPEAKER_02
transcript.pyannote[1908].start 12586.35096875
transcript.pyannote[1908].end 12587.98784375
transcript.pyannote[1909].speaker SPEAKER_02
transcript.pyannote[1909].start 12588.10596875
transcript.pyannote[1909].end 12588.44346875
transcript.pyannote[1910].speaker SPEAKER_02
transcript.pyannote[1910].start 12588.67971875
transcript.pyannote[1910].end 12589.28721875
transcript.pyannote[1911].speaker SPEAKER_02
transcript.pyannote[1911].start 12589.59096875
transcript.pyannote[1911].end 12591.66659375
transcript.pyannote[1912].speaker SPEAKER_02
transcript.pyannote[1912].start 12591.75096875
transcript.pyannote[1912].end 12607.37721875
transcript.pyannote[1913].speaker SPEAKER_04
transcript.pyannote[1913].start 12592.69596875
transcript.pyannote[1913].end 12594.53534375
transcript.pyannote[1914].speaker SPEAKER_04
transcript.pyannote[1914].start 12594.58596875
transcript.pyannote[1914].end 12594.60284375
transcript.pyannote[1915].speaker SPEAKER_04
transcript.pyannote[1915].start 12594.63659375
transcript.pyannote[1915].end 12594.65346875
transcript.pyannote[1916].speaker SPEAKER_04
transcript.pyannote[1916].start 12594.67034375
transcript.pyannote[1916].end 12594.70409375
transcript.pyannote[1917].speaker SPEAKER_20
transcript.pyannote[1917].start 12594.70409375
transcript.pyannote[1917].end 12594.72096875
transcript.pyannote[1918].speaker SPEAKER_04
transcript.pyannote[1918].start 12594.72096875
transcript.pyannote[1918].end 12594.73784375
transcript.pyannote[1919].speaker SPEAKER_02
transcript.pyannote[1919].start 12607.81596875
transcript.pyannote[1919].end 12610.12784375
transcript.pyannote[1920].speaker SPEAKER_02
transcript.pyannote[1920].start 12610.53284375
transcript.pyannote[1920].end 12611.57909375
transcript.pyannote[1921].speaker SPEAKER_02
transcript.pyannote[1921].start 12612.05159375
transcript.pyannote[1921].end 12613.90784375
transcript.pyannote[1922].speaker SPEAKER_02
transcript.pyannote[1922].start 12614.75159375
transcript.pyannote[1922].end 12620.43846875
transcript.pyannote[1923].speaker SPEAKER_02
transcript.pyannote[1923].start 12622.66596875
transcript.pyannote[1923].end 12623.88096875
transcript.pyannote[1924].speaker SPEAKER_02
transcript.pyannote[1924].start 12626.66534375
transcript.pyannote[1924].end 12627.03659375
transcript.pyannote[1925].speaker SPEAKER_18
transcript.pyannote[1925].start 12627.03659375
transcript.pyannote[1925].end 12627.42471875
transcript.pyannote[1926].speaker SPEAKER_18
transcript.pyannote[1926].start 12627.61034375
transcript.pyannote[1926].end 12627.66096875
transcript.pyannote[1927].speaker SPEAKER_02
transcript.pyannote[1927].start 12627.66096875
transcript.pyannote[1927].end 12629.88846875
transcript.pyannote[1928].speaker SPEAKER_18
transcript.pyannote[1928].start 12627.67784375
transcript.pyannote[1928].end 12628.67346875
transcript.pyannote[1929].speaker SPEAKER_18
transcript.pyannote[1929].start 12628.99409375
transcript.pyannote[1929].end 12676.69971875
transcript.pyannote[1930].speaker SPEAKER_02
transcript.pyannote[1930].start 12630.29346875
transcript.pyannote[1930].end 12630.49596875
transcript.pyannote[1931].speaker SPEAKER_20
transcript.pyannote[1931].start 12676.69971875
transcript.pyannote[1931].end 12676.88534375
transcript.pyannote[1932].speaker SPEAKER_18
transcript.pyannote[1932].start 12676.88534375
transcript.pyannote[1932].end 12676.90221875
transcript.pyannote[1933].speaker SPEAKER_20
transcript.pyannote[1933].start 12676.90221875
transcript.pyannote[1933].end 12676.91909375
transcript.pyannote[1934].speaker SPEAKER_02
transcript.pyannote[1934].start 12677.23971875
transcript.pyannote[1934].end 12679.75409375
transcript.pyannote[1935].speaker SPEAKER_02
transcript.pyannote[1935].start 12680.15909375
transcript.pyannote[1935].end 12694.14846875
transcript.pyannote[1936].speaker SPEAKER_02
transcript.pyannote[1936].start 12695.24534375
transcript.pyannote[1936].end 12714.97221875
transcript.pyannote[1937].speaker SPEAKER_04
transcript.pyannote[1937].start 12714.97221875
transcript.pyannote[1937].end 12715.15784375
transcript.pyannote[1938].speaker SPEAKER_04
transcript.pyannote[1938].start 12715.49534375
transcript.pyannote[1938].end 12715.51221875
transcript.pyannote[1939].speaker SPEAKER_02
transcript.pyannote[1939].start 12715.51221875
transcript.pyannote[1939].end 12715.54596875
transcript.pyannote[1940].speaker SPEAKER_04
transcript.pyannote[1940].start 12715.54596875
transcript.pyannote[1940].end 12728.25284375
transcript.pyannote[1941].speaker SPEAKER_26
transcript.pyannote[1941].start 12728.57346875
transcript.pyannote[1941].end 12764.07846875
transcript.pyannote[1942].speaker SPEAKER_02
transcript.pyannote[1942].start 12762.94784375
transcript.pyannote[1942].end 12773.66346875
transcript.pyannote[1943].speaker SPEAKER_26
transcript.pyannote[1943].start 12772.66784375
transcript.pyannote[1943].end 12775.50284375
transcript.pyannote[1944].speaker SPEAKER_02
transcript.pyannote[1944].start 12774.38909375
transcript.pyannote[1944].end 12790.60596875
transcript.pyannote[1945].speaker SPEAKER_02
transcript.pyannote[1945].start 12791.38221875
transcript.pyannote[1945].end 12797.22096875
transcript.pyannote[1946].speaker SPEAKER_02
transcript.pyannote[1946].start 12797.71034375
transcript.pyannote[1946].end 12805.55721875
transcript.pyannote[1947].speaker SPEAKER_02
transcript.pyannote[1947].start 12805.87784375
transcript.pyannote[1947].end 12806.97471875
transcript.pyannote[1948].speaker SPEAKER_26
transcript.pyannote[1948].start 12806.97471875
transcript.pyannote[1948].end 12817.48784375
transcript.pyannote[1949].speaker SPEAKER_02
transcript.pyannote[1949].start 12817.60596875
transcript.pyannote[1949].end 12819.42846875
transcript.pyannote[1950].speaker SPEAKER_02
transcript.pyannote[1950].start 12819.73221875
transcript.pyannote[1950].end 12824.72721875
transcript.pyannote[1951].speaker SPEAKER_02
transcript.pyannote[1951].start 12825.09846875
transcript.pyannote[1951].end 12845.83784375
transcript.pyannote[1952].speaker SPEAKER_02
transcript.pyannote[1952].start 12846.24284375
transcript.pyannote[1952].end 12850.27596875
transcript.pyannote[1953].speaker SPEAKER_02
transcript.pyannote[1953].start 12850.54596875
transcript.pyannote[1953].end 12854.44409375
transcript.pyannote[1954].speaker SPEAKER_02
transcript.pyannote[1954].start 12855.10221875
transcript.pyannote[1954].end 12860.51909375
transcript.pyannote[1955].speaker SPEAKER_02
transcript.pyannote[1955].start 12861.04221875
transcript.pyannote[1955].end 12862.93221875
transcript.pyannote[1956].speaker SPEAKER_02
transcript.pyannote[1956].start 12863.52284375
transcript.pyannote[1956].end 12867.94409375
transcript.pyannote[1957].speaker SPEAKER_02
transcript.pyannote[1957].start 12868.36596875
transcript.pyannote[1957].end 12874.77846875
transcript.pyannote[1958].speaker SPEAKER_19
transcript.pyannote[1958].start 12874.72784375
transcript.pyannote[1958].end 12875.11596875
transcript.pyannote[1959].speaker SPEAKER_02
transcript.pyannote[1959].start 12874.98096875
transcript.pyannote[1959].end 12883.03034375
transcript.pyannote[1960].speaker SPEAKER_04
transcript.pyannote[1960].start 12883.03034375
transcript.pyannote[1960].end 12884.36346875
transcript.pyannote[1961].speaker SPEAKER_02
transcript.pyannote[1961].start 12884.70096875
transcript.pyannote[1961].end 12884.71784375
transcript.pyannote[1962].speaker SPEAKER_19
transcript.pyannote[1962].start 12884.71784375
transcript.pyannote[1962].end 12884.92034375
transcript.pyannote[1963].speaker SPEAKER_04
transcript.pyannote[1963].start 12884.92034375
transcript.pyannote[1963].end 12894.11721875
transcript.pyannote[1964].speaker SPEAKER_19
transcript.pyannote[1964].start 12884.93721875
transcript.pyannote[1964].end 12884.95409375
transcript.pyannote[1965].speaker SPEAKER_02
transcript.pyannote[1965].start 12884.95409375
transcript.pyannote[1965].end 12884.97096875
transcript.pyannote[1966].speaker SPEAKER_02
transcript.pyannote[1966].start 12885.02159375
transcript.pyannote[1966].end 12885.07221875
transcript.pyannote[1967].speaker SPEAKER_02
transcript.pyannote[1967].start 12895.07909375
transcript.pyannote[1967].end 12895.73721875
transcript.pyannote[1968].speaker SPEAKER_04
transcript.pyannote[1968].start 12895.24784375
transcript.pyannote[1968].end 12895.39971875
transcript.pyannote[1969].speaker SPEAKER_04
transcript.pyannote[1969].start 12895.45034375
transcript.pyannote[1969].end 12895.68659375
transcript.pyannote[1970].speaker SPEAKER_04
transcript.pyannote[1970].start 12895.73721875
transcript.pyannote[1970].end 12897.05346875
transcript.pyannote[1971].speaker SPEAKER_02
transcript.pyannote[1971].start 12897.05346875
transcript.pyannote[1971].end 12897.07034375
transcript.pyannote[1972].speaker SPEAKER_04
transcript.pyannote[1972].start 12897.89721875
transcript.pyannote[1972].end 12897.93096875
transcript.pyannote[1973].speaker SPEAKER_18
transcript.pyannote[1973].start 12897.93096875
transcript.pyannote[1973].end 12898.55534375
transcript.pyannote[1974].speaker SPEAKER_02
transcript.pyannote[1974].start 12898.55534375
transcript.pyannote[1974].end 12899.87159375
transcript.pyannote[1975].speaker SPEAKER_18
transcript.pyannote[1975].start 12898.97721875
transcript.pyannote[1975].end 12905.91284375
transcript.pyannote[1976].speaker SPEAKER_04
transcript.pyannote[1976].start 12904.02284375
transcript.pyannote[1976].end 12904.30971875
transcript.pyannote[1977].speaker SPEAKER_18
transcript.pyannote[1977].start 12906.31784375
transcript.pyannote[1977].end 12907.78596875
transcript.pyannote[1978].speaker SPEAKER_04
transcript.pyannote[1978].start 12908.88284375
transcript.pyannote[1978].end 12911.65034375
transcript.pyannote[1979].speaker SPEAKER_02
transcript.pyannote[1979].start 12912.08909375
transcript.pyannote[1979].end 12915.09284375
transcript.pyannote[1980].speaker SPEAKER_04
transcript.pyannote[1980].start 12914.53596875
transcript.pyannote[1980].end 12917.06721875
transcript.pyannote[1981].speaker SPEAKER_04
transcript.pyannote[1981].start 12917.60721875
transcript.pyannote[1981].end 12919.86846875
transcript.pyannote[1982].speaker SPEAKER_04
transcript.pyannote[1982].start 12921.31971875
transcript.pyannote[1982].end 12922.97346875
transcript.pyannote[1983].speaker SPEAKER_02
transcript.pyannote[1983].start 12922.97346875
transcript.pyannote[1983].end 12923.51346875
transcript.pyannote[1984].speaker SPEAKER_04
transcript.pyannote[1984].start 12923.51346875
transcript.pyannote[1984].end 12924.71159375
transcript.pyannote[1985].speaker SPEAKER_02
transcript.pyannote[1985].start 12923.56409375
transcript.pyannote[1985].end 12928.87971875
transcript.pyannote[1986].speaker SPEAKER_04
transcript.pyannote[1986].start 12930.04409375
transcript.pyannote[1986].end 12930.29721875
transcript.pyannote[1987].speaker SPEAKER_04
transcript.pyannote[1987].start 12930.55034375
transcript.pyannote[1987].end 12931.51221875
transcript.pyannote[1988].speaker SPEAKER_04
transcript.pyannote[1988].start 12931.69784375
transcript.pyannote[1988].end 12931.90034375
transcript.pyannote[1989].speaker SPEAKER_02
transcript.pyannote[1989].start 12931.90034375
transcript.pyannote[1989].end 12932.01846875
transcript.pyannote[1990].speaker SPEAKER_04
transcript.pyannote[1990].start 12932.01846875
transcript.pyannote[1990].end 12932.06909375
transcript.pyannote[1991].speaker SPEAKER_04
transcript.pyannote[1991].start 12932.72721875
transcript.pyannote[1991].end 12933.48659375
transcript.pyannote[1992].speaker SPEAKER_04
transcript.pyannote[1992].start 12933.87471875
transcript.pyannote[1992].end 12939.96659375
transcript.pyannote[1993].speaker SPEAKER_02
transcript.pyannote[1993].start 12933.95909375
transcript.pyannote[1993].end 12934.49909375
transcript.pyannote[1994].speaker SPEAKER_02
transcript.pyannote[1994].start 12939.96659375
transcript.pyannote[1994].end 12948.35346875
transcript.pyannote[1995].speaker SPEAKER_04
transcript.pyannote[1995].start 12949.73721875
transcript.pyannote[1995].end 12954.17534375
transcript.pyannote[1996].speaker SPEAKER_02
transcript.pyannote[1996].start 12949.90596875
transcript.pyannote[1996].end 12951.15471875
transcript.pyannote[1997].speaker SPEAKER_02
transcript.pyannote[1997].start 12953.53409375
transcript.pyannote[1997].end 12962.15721875
transcript.pyannote[1998].speaker SPEAKER_02
transcript.pyannote[1998].start 12962.83221875
transcript.pyannote[1998].end 12967.08471875
transcript.pyannote[1999].speaker SPEAKER_04
transcript.pyannote[1999].start 12967.60784375
transcript.pyannote[1999].end 12968.56971875
transcript.pyannote[2000].speaker SPEAKER_02
transcript.pyannote[2000].start 12968.56971875
transcript.pyannote[2000].end 12974.50971875
transcript.pyannote[2001].speaker SPEAKER_04
transcript.pyannote[2001].start 12968.58659375
transcript.pyannote[2001].end 12968.60346875
transcript.pyannote[2002].speaker SPEAKER_04
transcript.pyannote[2002].start 12968.62034375
transcript.pyannote[2002].end 12968.83971875
transcript.pyannote[2003].speaker SPEAKER_02
transcript.pyannote[2003].start 12974.59409375
transcript.pyannote[2003].end 12975.87659375
transcript.pyannote[2004].speaker SPEAKER_02
transcript.pyannote[2004].start 12976.28159375
transcript.pyannote[2004].end 12980.63534375
transcript.pyannote[2005].speaker SPEAKER_02
transcript.pyannote[2005].start 12981.10784375
transcript.pyannote[2005].end 12982.99784375
transcript.pyannote[2006].speaker SPEAKER_18
transcript.pyannote[2006].start 12982.99784375
transcript.pyannote[2006].end 13015.00971875
transcript.pyannote[2007].speaker SPEAKER_02
transcript.pyannote[2007].start 13013.89596875
transcript.pyannote[2007].end 13018.03034375
transcript.pyannote[2008].speaker SPEAKER_18
transcript.pyannote[2008].start 13015.70159375
transcript.pyannote[2008].end 13015.95471875
transcript.pyannote[2009].speaker SPEAKER_02
transcript.pyannote[2009].start 13018.62096875
transcript.pyannote[2009].end 13024.30784375
transcript.pyannote[2010].speaker SPEAKER_26
transcript.pyannote[2010].start 13023.86909375
transcript.pyannote[2010].end 13081.46346875
transcript.pyannote[2011].speaker SPEAKER_26
transcript.pyannote[2011].start 13081.85159375
transcript.pyannote[2011].end 13089.25971875
transcript.pyannote[2012].speaker SPEAKER_02
transcript.pyannote[2012].start 13088.56784375
transcript.pyannote[2012].end 13108.48034375
transcript.pyannote[2013].speaker SPEAKER_02
transcript.pyannote[2013].start 13108.75034375
transcript.pyannote[2013].end 13132.34159375
transcript.pyannote[2014].speaker SPEAKER_02
transcript.pyannote[2014].start 13132.62846875
transcript.pyannote[2014].end 13143.78284375
transcript.pyannote[2015].speaker SPEAKER_20
transcript.pyannote[2015].start 13141.87596875
transcript.pyannote[2015].end 13141.96034375
transcript.pyannote[2016].speaker SPEAKER_02
transcript.pyannote[2016].start 13144.08659375
transcript.pyannote[2016].end 13159.27409375
transcript.pyannote[2017].speaker SPEAKER_04
transcript.pyannote[2017].start 13159.27409375
transcript.pyannote[2017].end 13165.19721875
transcript.pyannote[2018].speaker SPEAKER_02
transcript.pyannote[2018].start 13159.49346875
transcript.pyannote[2018].end 13160.99534375
transcript.pyannote[2019].speaker SPEAKER_02
transcript.pyannote[2019].start 13164.01596875
transcript.pyannote[2019].end 13164.89346875
transcript.pyannote[2020].speaker SPEAKER_02
transcript.pyannote[2020].start 13165.12971875
transcript.pyannote[2020].end 13189.15971875
transcript.pyannote[2021].speaker SPEAKER_02
transcript.pyannote[2021].start 13190.47596875
transcript.pyannote[2021].end 13191.89346875
transcript.pyannote[2022].speaker SPEAKER_02
transcript.pyannote[2022].start 13192.29846875
transcript.pyannote[2022].end 13195.33596875
transcript.pyannote[2023].speaker SPEAKER_25
transcript.pyannote[2023].start 13193.42909375
transcript.pyannote[2023].end 13198.28909375
transcript.pyannote[2024].speaker SPEAKER_25
transcript.pyannote[2024].start 13198.91346875
transcript.pyannote[2024].end 13201.25909375
transcript.pyannote[2025].speaker SPEAKER_25
transcript.pyannote[2025].start 13201.88346875
transcript.pyannote[2025].end 13205.59596875
transcript.pyannote[2026].speaker SPEAKER_05
transcript.pyannote[2026].start 13218.84284375
transcript.pyannote[2026].end 13220.36159375
transcript.pyannote[2027].speaker SPEAKER_25
transcript.pyannote[2027].start 13221.34034375
transcript.pyannote[2027].end 13222.01534375
transcript.pyannote[2028].speaker SPEAKER_25
transcript.pyannote[2028].start 13225.69409375
transcript.pyannote[2028].end 13226.31846875
transcript.pyannote[2029].speaker SPEAKER_05
transcript.pyannote[2029].start 13227.02721875
transcript.pyannote[2029].end 13227.90471875
transcript.pyannote[2030].speaker SPEAKER_05
transcript.pyannote[2030].start 13228.56284375
transcript.pyannote[2030].end 13290.61221875
transcript.pyannote[2031].speaker SPEAKER_04
transcript.pyannote[2031].start 13290.78096875
transcript.pyannote[2031].end 13312.56659375
transcript.pyannote[2032].speaker SPEAKER_04
transcript.pyannote[2032].start 13312.90409375
transcript.pyannote[2032].end 13313.79846875
transcript.pyannote[2033].speaker SPEAKER_04
transcript.pyannote[2033].start 13314.20346875
transcript.pyannote[2033].end 13315.60409375
transcript.pyannote[2034].speaker SPEAKER_04
transcript.pyannote[2034].start 13316.27909375
transcript.pyannote[2034].end 13318.89471875
transcript.pyannote[2035].speaker SPEAKER_04
transcript.pyannote[2035].start 13319.16471875
transcript.pyannote[2035].end 13330.92659375
transcript.pyannote[2036].speaker SPEAKER_05
transcript.pyannote[2036].start 13330.28534375
transcript.pyannote[2036].end 13379.98221875
transcript.pyannote[2037].speaker SPEAKER_04
transcript.pyannote[2037].start 13332.02346875
transcript.pyannote[2037].end 13332.42846875
transcript.pyannote[2038].speaker SPEAKER_19
transcript.pyannote[2038].start 13352.40846875
transcript.pyannote[2038].end 13352.50971875
transcript.pyannote[2039].speaker SPEAKER_19
transcript.pyannote[2039].start 13359.17534375
transcript.pyannote[2039].end 13359.19221875
transcript.pyannote[2040].speaker SPEAKER_20
transcript.pyannote[2040].start 13359.19221875
transcript.pyannote[2040].end 13359.42846875
transcript.pyannote[2041].speaker SPEAKER_19
transcript.pyannote[2041].start 13359.42846875
transcript.pyannote[2041].end 13359.46221875
transcript.pyannote[2042].speaker SPEAKER_20
transcript.pyannote[2042].start 13364.98034375
transcript.pyannote[2042].end 13365.31784375
transcript.pyannote[2043].speaker SPEAKER_05
transcript.pyannote[2043].start 13380.35346875
transcript.pyannote[2043].end 13380.97784375
transcript.pyannote[2044].speaker SPEAKER_04
transcript.pyannote[2044].start 13381.38284375
transcript.pyannote[2044].end 13382.96909375
transcript.pyannote[2045].speaker SPEAKER_05
transcript.pyannote[2045].start 13382.19284375
transcript.pyannote[2045].end 13385.92221875
transcript.pyannote[2046].speaker SPEAKER_04
transcript.pyannote[2046].start 13383.30659375
transcript.pyannote[2046].end 13385.11221875
transcript.pyannote[2047].speaker SPEAKER_04
transcript.pyannote[2047].start 13385.92221875
transcript.pyannote[2047].end 13397.04284375
transcript.pyannote[2048].speaker SPEAKER_05
transcript.pyannote[2048].start 13386.25971875
transcript.pyannote[2048].end 13386.51284375
transcript.pyannote[2049].speaker SPEAKER_05
transcript.pyannote[2049].start 13395.72659375
transcript.pyannote[2049].end 13398.07221875
transcript.pyannote[2050].speaker SPEAKER_04
transcript.pyannote[2050].start 13397.54909375
transcript.pyannote[2050].end 13399.15221875
transcript.pyannote[2051].speaker SPEAKER_05
transcript.pyannote[2051].start 13398.89909375
transcript.pyannote[2051].end 13400.29971875
transcript.pyannote[2052].speaker SPEAKER_04
transcript.pyannote[2052].start 13400.06346875
transcript.pyannote[2052].end 13401.86909375
transcript.pyannote[2053].speaker SPEAKER_05
transcript.pyannote[2053].start 13401.56534375
transcript.pyannote[2053].end 13402.91534375
transcript.pyannote[2054].speaker SPEAKER_04
transcript.pyannote[2054].start 13402.49346875
transcript.pyannote[2054].end 13405.85159375
transcript.pyannote[2055].speaker SPEAKER_05
transcript.pyannote[2055].start 13405.73346875
transcript.pyannote[2055].end 13405.83471875
transcript.pyannote[2056].speaker SPEAKER_05
transcript.pyannote[2056].start 13405.85159375
transcript.pyannote[2056].end 13406.32409375
transcript.pyannote[2057].speaker SPEAKER_05
transcript.pyannote[2057].start 13406.42534375
transcript.pyannote[2057].end 13406.96534375
transcript.pyannote[2058].speaker SPEAKER_04
transcript.pyannote[2058].start 13406.96534375
transcript.pyannote[2058].end 13411.85909375
transcript.pyannote[2059].speaker SPEAKER_05
transcript.pyannote[2059].start 13406.99909375
transcript.pyannote[2059].end 13409.12534375
transcript.pyannote[2060].speaker SPEAKER_05
transcript.pyannote[2060].start 13410.61034375
transcript.pyannote[2060].end 13412.85471875
transcript.pyannote[2061].speaker SPEAKER_04
transcript.pyannote[2061].start 13412.41596875
transcript.pyannote[2061].end 13413.19221875
transcript.pyannote[2062].speaker SPEAKER_04
transcript.pyannote[2062].start 13413.37784375
transcript.pyannote[2062].end 13416.61784375
transcript.pyannote[2063].speaker SPEAKER_05
transcript.pyannote[2063].start 13416.19596875
transcript.pyannote[2063].end 13420.00971875
transcript.pyannote[2064].speaker SPEAKER_04
transcript.pyannote[2064].start 13416.95534375
transcript.pyannote[2064].end 13422.10221875
transcript.pyannote[2065].speaker SPEAKER_05
transcript.pyannote[2065].start 13420.66784375
transcript.pyannote[2065].end 13420.93784375
transcript.pyannote[2066].speaker SPEAKER_05
transcript.pyannote[2066].start 13422.10221875
transcript.pyannote[2066].end 13437.05346875
transcript.pyannote[2067].speaker SPEAKER_04
transcript.pyannote[2067].start 13425.40971875
transcript.pyannote[2067].end 13426.15221875
transcript.pyannote[2068].speaker SPEAKER_19
transcript.pyannote[2068].start 13430.57346875
transcript.pyannote[2068].end 13432.34534375
transcript.pyannote[2069].speaker SPEAKER_05
transcript.pyannote[2069].start 13437.44159375
transcript.pyannote[2069].end 13459.42971875
transcript.pyannote[2070].speaker SPEAKER_20
transcript.pyannote[2070].start 13437.49221875
transcript.pyannote[2070].end 13437.62721875
transcript.pyannote[2071].speaker SPEAKER_19
transcript.pyannote[2071].start 13437.62721875
transcript.pyannote[2071].end 13437.64409375
transcript.pyannote[2072].speaker SPEAKER_20
transcript.pyannote[2072].start 13437.64409375
transcript.pyannote[2072].end 13437.69471875
transcript.pyannote[2073].speaker SPEAKER_19
transcript.pyannote[2073].start 13437.69471875
transcript.pyannote[2073].end 13437.76221875
transcript.pyannote[2074].speaker SPEAKER_20
transcript.pyannote[2074].start 13437.76221875
transcript.pyannote[2074].end 13437.81284375
transcript.pyannote[2075].speaker SPEAKER_20
transcript.pyannote[2075].start 13438.48784375
transcript.pyannote[2075].end 13438.55534375
transcript.pyannote[2076].speaker SPEAKER_04
transcript.pyannote[2076].start 13455.07596875
transcript.pyannote[2076].end 13455.37971875
transcript.pyannote[2077].speaker SPEAKER_04
transcript.pyannote[2077].start 13455.90284375
transcript.pyannote[2077].end 13456.35846875
transcript.pyannote[2078].speaker SPEAKER_04
transcript.pyannote[2078].start 13458.94034375
transcript.pyannote[2078].end 13461.89346875
transcript.pyannote[2079].speaker SPEAKER_05
transcript.pyannote[2079].start 13461.64034375
transcript.pyannote[2079].end 13464.98159375
transcript.pyannote[2080].speaker SPEAKER_05
transcript.pyannote[2080].start 13465.53846875
transcript.pyannote[2080].end 13470.65159375
transcript.pyannote[2081].speaker SPEAKER_05
transcript.pyannote[2081].start 13470.76971875
transcript.pyannote[2081].end 13475.05596875
transcript.pyannote[2082].speaker SPEAKER_05
transcript.pyannote[2082].start 13475.64659375
transcript.pyannote[2082].end 13487.89784375
transcript.pyannote[2083].speaker SPEAKER_05
transcript.pyannote[2083].start 13488.35346875
transcript.pyannote[2083].end 13494.44534375
transcript.pyannote[2084].speaker SPEAKER_22
transcript.pyannote[2084].start 13488.38721875
transcript.pyannote[2084].end 13488.50534375
transcript.pyannote[2085].speaker SPEAKER_04
transcript.pyannote[2085].start 13488.50534375
transcript.pyannote[2085].end 13488.96096875
transcript.pyannote[2086].speaker SPEAKER_04
transcript.pyannote[2086].start 13495.82909375
transcript.pyannote[2086].end 13501.11096875
transcript.pyannote[2087].speaker SPEAKER_07
transcript.pyannote[2087].start 13500.75659375
transcript.pyannote[2087].end 13507.64159375
transcript.pyannote[2088].speaker SPEAKER_04
transcript.pyannote[2088].start 13502.15721875
transcript.pyannote[2088].end 13502.64659375
transcript.pyannote[2089].speaker SPEAKER_04
transcript.pyannote[2089].start 13503.43971875
transcript.pyannote[2089].end 13504.82346875
transcript.pyannote[2090].speaker SPEAKER_04
transcript.pyannote[2090].start 13505.58284375
transcript.pyannote[2090].end 13516.90596875
transcript.pyannote[2091].speaker SPEAKER_05
transcript.pyannote[2091].start 13507.64159375
transcript.pyannote[2091].end 13507.67534375
transcript.pyannote[2092].speaker SPEAKER_19
transcript.pyannote[2092].start 13507.67534375
transcript.pyannote[2092].end 13507.69221875
transcript.pyannote[2093].speaker SPEAKER_04
transcript.pyannote[2093].start 13517.34471875
transcript.pyannote[2093].end 13526.84534375
transcript.pyannote[2094].speaker SPEAKER_05
transcript.pyannote[2094].start 13526.22096875
transcript.pyannote[2094].end 13530.79409375
transcript.pyannote[2095].speaker SPEAKER_04
transcript.pyannote[2095].start 13527.09846875
transcript.pyannote[2095].end 13532.38034375
transcript.pyannote[2096].speaker SPEAKER_05
transcript.pyannote[2096].start 13531.40159375
transcript.pyannote[2096].end 13533.13971875
transcript.pyannote[2097].speaker SPEAKER_04
transcript.pyannote[2097].start 13533.13971875
transcript.pyannote[2097].end 13537.07159375
transcript.pyannote[2098].speaker SPEAKER_04
transcript.pyannote[2098].start 13537.20659375
transcript.pyannote[2098].end 13538.25284375
transcript.pyannote[2099].speaker SPEAKER_05
transcript.pyannote[2099].start 13537.35846875
transcript.pyannote[2099].end 13538.08409375
transcript.pyannote[2100].speaker SPEAKER_05
transcript.pyannote[2100].start 13538.65784375
transcript.pyannote[2100].end 13540.46346875
transcript.pyannote[2101].speaker SPEAKER_05
transcript.pyannote[2101].start 13540.71659375
transcript.pyannote[2101].end 13542.20159375
transcript.pyannote[2102].speaker SPEAKER_04
transcript.pyannote[2102].start 13540.88534375
transcript.pyannote[2102].end 13549.60971875
transcript.pyannote[2103].speaker SPEAKER_05
transcript.pyannote[2103].start 13542.92721875
transcript.pyannote[2103].end 13544.96909375
transcript.pyannote[2104].speaker SPEAKER_05
transcript.pyannote[2104].start 13549.01909375
transcript.pyannote[2104].end 13555.36409375
transcript.pyannote[2105].speaker SPEAKER_04
transcript.pyannote[2105].start 13552.49534375
transcript.pyannote[2105].end 13553.89596875
transcript.pyannote[2106].speaker SPEAKER_04
transcript.pyannote[2106].start 13554.89159375
transcript.pyannote[2106].end 13557.77721875
transcript.pyannote[2107].speaker SPEAKER_05
transcript.pyannote[2107].start 13556.74784375
transcript.pyannote[2107].end 13560.08909375
transcript.pyannote[2108].speaker SPEAKER_04
transcript.pyannote[2108].start 13558.92471875
transcript.pyannote[2108].end 13561.57409375
transcript.pyannote[2109].speaker SPEAKER_05
transcript.pyannote[2109].start 13560.25784375
transcript.pyannote[2109].end 13561.65846875
transcript.pyannote[2110].speaker SPEAKER_04
transcript.pyannote[2110].start 13561.65846875
transcript.pyannote[2110].end 13566.68721875
transcript.pyannote[2111].speaker SPEAKER_05
transcript.pyannote[2111].start 13561.67534375
transcript.pyannote[2111].end 13561.69221875
transcript.pyannote[2112].speaker SPEAKER_05
transcript.pyannote[2112].start 13562.02971875
transcript.pyannote[2112].end 13562.63721875
transcript.pyannote[2113].speaker SPEAKER_05
transcript.pyannote[2113].start 13562.82284375
transcript.pyannote[2113].end 13565.47221875
transcript.pyannote[2114].speaker SPEAKER_05
transcript.pyannote[2114].start 13565.67471875
transcript.pyannote[2114].end 13572.23909375
transcript.pyannote[2115].speaker SPEAKER_04
transcript.pyannote[2115].start 13569.28596875
transcript.pyannote[2115].end 13571.00721875
transcript.pyannote[2116].speaker SPEAKER_04
transcript.pyannote[2116].start 13571.19284375
transcript.pyannote[2116].end 13571.37846875
transcript.pyannote[2117].speaker SPEAKER_04
transcript.pyannote[2117].start 13571.91846875
transcript.pyannote[2117].end 13576.69409375
transcript.pyannote[2118].speaker SPEAKER_05
transcript.pyannote[2118].start 13573.06596875
transcript.pyannote[2118].end 13574.50034375
transcript.pyannote[2119].speaker SPEAKER_05
transcript.pyannote[2119].start 13575.15846875
transcript.pyannote[2119].end 13579.76534375
transcript.pyannote[2120].speaker SPEAKER_05
transcript.pyannote[2120].start 13579.84971875
transcript.pyannote[2120].end 13586.59971875
transcript.pyannote[2121].speaker SPEAKER_04
transcript.pyannote[2121].start 13580.08596875
transcript.pyannote[2121].end 13580.84534375
transcript.pyannote[2122].speaker SPEAKER_04
transcript.pyannote[2122].start 13585.35096875
transcript.pyannote[2122].end 13587.93284375
transcript.pyannote[2123].speaker SPEAKER_05
transcript.pyannote[2123].start 13587.74721875
transcript.pyannote[2123].end 13610.08971875
transcript.pyannote[2124].speaker SPEAKER_20
transcript.pyannote[2124].start 13601.46659375
transcript.pyannote[2124].end 13601.80409375
transcript.pyannote[2125].speaker SPEAKER_05
transcript.pyannote[2125].start 13610.47784375
transcript.pyannote[2125].end 13612.53659375
transcript.pyannote[2126].speaker SPEAKER_04
transcript.pyannote[2126].start 13613.09346875
transcript.pyannote[2126].end 13618.24034375
transcript.pyannote[2127].speaker SPEAKER_05
transcript.pyannote[2127].start 13616.24909375
transcript.pyannote[2127].end 13642.57409375
transcript.pyannote[2128].speaker SPEAKER_04
transcript.pyannote[2128].start 13618.69596875
transcript.pyannote[2128].end 13618.88159375
transcript.pyannote[2129].speaker SPEAKER_04
transcript.pyannote[2129].start 13618.91534375
transcript.pyannote[2129].end 13618.96596875
transcript.pyannote[2130].speaker SPEAKER_04
transcript.pyannote[2130].start 13618.99971875
transcript.pyannote[2130].end 13619.01659375
transcript.pyannote[2131].speaker SPEAKER_04
transcript.pyannote[2131].start 13619.03346875
transcript.pyannote[2131].end 13619.86034375
transcript.pyannote[2132].speaker SPEAKER_04
transcript.pyannote[2132].start 13643.18159375
transcript.pyannote[2132].end 13644.27846875
transcript.pyannote[2133].speaker SPEAKER_04
transcript.pyannote[2133].start 13645.61159375
transcript.pyannote[2133].end 13647.45096875
transcript.pyannote[2134].speaker SPEAKER_04
transcript.pyannote[2134].start 13648.81784375
transcript.pyannote[2134].end 13663.04346875
transcript.pyannote[2135].speaker SPEAKER_05
transcript.pyannote[2135].start 13652.24346875
transcript.pyannote[2135].end 13655.61846875
transcript.pyannote[2136].speaker SPEAKER_05
transcript.pyannote[2136].start 13655.95596875
transcript.pyannote[2136].end 13656.83346875
transcript.pyannote[2137].speaker SPEAKER_05
transcript.pyannote[2137].start 13660.93409375
transcript.pyannote[2137].end 13660.96784375
transcript.pyannote[2138].speaker SPEAKER_24
transcript.pyannote[2138].start 13660.96784375
transcript.pyannote[2138].end 13661.03534375
transcript.pyannote[2139].speaker SPEAKER_05
transcript.pyannote[2139].start 13661.03534375
transcript.pyannote[2139].end 13661.60909375
transcript.pyannote[2140].speaker SPEAKER_24
transcript.pyannote[2140].start 13661.60909375
transcript.pyannote[2140].end 13661.72721875
transcript.pyannote[2141].speaker SPEAKER_24
transcript.pyannote[2141].start 13662.36846875
transcript.pyannote[2141].end 13662.41909375
transcript.pyannote[2142].speaker SPEAKER_05
transcript.pyannote[2142].start 13662.41909375
transcript.pyannote[2142].end 13662.45284375
transcript.pyannote[2143].speaker SPEAKER_24
transcript.pyannote[2143].start 13662.45284375
transcript.pyannote[2143].end 13662.53721875
transcript.pyannote[2144].speaker SPEAKER_05
transcript.pyannote[2144].start 13662.53721875
transcript.pyannote[2144].end 13662.97596875
transcript.pyannote[2145].speaker SPEAKER_24
transcript.pyannote[2145].start 13662.97596875
transcript.pyannote[2145].end 13663.02659375
transcript.pyannote[2146].speaker SPEAKER_05
transcript.pyannote[2146].start 13663.02659375
transcript.pyannote[2146].end 13663.36409375
transcript.pyannote[2147].speaker SPEAKER_04
transcript.pyannote[2147].start 13663.27971875
transcript.pyannote[2147].end 13675.64909375
transcript.pyannote[2148].speaker SPEAKER_24
transcript.pyannote[2148].start 13663.36409375
transcript.pyannote[2148].end 13663.39784375
transcript.pyannote[2149].speaker SPEAKER_24
transcript.pyannote[2149].start 13663.68471875
transcript.pyannote[2149].end 13664.49471875
transcript.pyannote[2150].speaker SPEAKER_05
transcript.pyannote[2150].start 13664.49471875
transcript.pyannote[2150].end 13664.52846875
transcript.pyannote[2151].speaker SPEAKER_05
transcript.pyannote[2151].start 13675.34534375
transcript.pyannote[2151].end 13726.27409375
transcript.pyannote[2152].speaker SPEAKER_04
transcript.pyannote[2152].start 13726.27409375
transcript.pyannote[2152].end 13728.11346875
transcript.pyannote[2153].speaker SPEAKER_05
transcript.pyannote[2153].start 13727.18534375
transcript.pyannote[2153].end 13730.34096875
transcript.pyannote[2154].speaker SPEAKER_05
transcript.pyannote[2154].start 13730.83034375
transcript.pyannote[2154].end 13734.47534375
transcript.pyannote[2155].speaker SPEAKER_04
transcript.pyannote[2155].start 13731.04971875
transcript.pyannote[2155].end 13734.50909375
transcript.pyannote[2156].speaker SPEAKER_05
transcript.pyannote[2156].start 13734.50909375
transcript.pyannote[2156].end 13734.52596875
transcript.pyannote[2157].speaker SPEAKER_04
transcript.pyannote[2157].start 13734.52596875
transcript.pyannote[2157].end 13743.53721875
transcript.pyannote[2158].speaker SPEAKER_05
transcript.pyannote[2158].start 13735.18409375
transcript.pyannote[2158].end 13736.02784375
transcript.pyannote[2159].speaker SPEAKER_05
transcript.pyannote[2159].start 13736.71971875
transcript.pyannote[2159].end 13736.75346875
transcript.pyannote[2160].speaker SPEAKER_04
transcript.pyannote[2160].start 13743.68909375
transcript.pyannote[2160].end 13744.54971875
transcript.pyannote[2161].speaker SPEAKER_05
transcript.pyannote[2161].start 13743.70596875
transcript.pyannote[2161].end 13747.03034375
transcript.pyannote[2162].speaker SPEAKER_04
transcript.pyannote[2162].start 13745.84909375
transcript.pyannote[2162].end 13752.85221875
transcript.pyannote[2163].speaker SPEAKER_05
transcript.pyannote[2163].start 13750.52346875
transcript.pyannote[2163].end 13759.75409375
transcript.pyannote[2164].speaker SPEAKER_04
transcript.pyannote[2164].start 13759.75409375
transcript.pyannote[2164].end 13762.30221875
transcript.pyannote[2165].speaker SPEAKER_05
transcript.pyannote[2165].start 13760.19284375
transcript.pyannote[2165].end 13761.40784375
transcript.pyannote[2166].speaker SPEAKER_05
transcript.pyannote[2166].start 13762.06596875
transcript.pyannote[2166].end 13765.20471875
transcript.pyannote[2167].speaker SPEAKER_04
transcript.pyannote[2167].start 13765.20471875
transcript.pyannote[2167].end 13765.30596875
transcript.pyannote[2168].speaker SPEAKER_05
transcript.pyannote[2168].start 13765.30596875
transcript.pyannote[2168].end 13765.40721875
transcript.pyannote[2169].speaker SPEAKER_04
transcript.pyannote[2169].start 13765.40721875
transcript.pyannote[2169].end 13765.54221875
transcript.pyannote[2170].speaker SPEAKER_04
transcript.pyannote[2170].start 13765.62659375
transcript.pyannote[2170].end 13782.21471875
transcript.pyannote[2171].speaker SPEAKER_05
transcript.pyannote[2171].start 13778.24909375
transcript.pyannote[2171].end 13824.62159375
transcript.pyannote[2172].speaker SPEAKER_05
transcript.pyannote[2172].start 13825.53284375
transcript.pyannote[2172].end 13841.17596875
transcript.pyannote[2173].speaker SPEAKER_04
transcript.pyannote[2173].start 13841.44596875
transcript.pyannote[2173].end 13843.30221875
transcript.pyannote[2174].speaker SPEAKER_04
transcript.pyannote[2174].start 13843.89284375
transcript.pyannote[2174].end 13849.07346875
transcript.pyannote[2175].speaker SPEAKER_04
transcript.pyannote[2175].start 13849.69784375
transcript.pyannote[2175].end 13856.26221875
transcript.pyannote[2176].speaker SPEAKER_04
transcript.pyannote[2176].start 13856.63346875
transcript.pyannote[2176].end 13872.31034375
transcript.pyannote[2177].speaker SPEAKER_05
transcript.pyannote[2177].start 13859.28284375
transcript.pyannote[2177].end 13864.88534375
transcript.pyannote[2178].speaker SPEAKER_19
transcript.pyannote[2178].start 13864.88534375
transcript.pyannote[2178].end 13864.96971875
transcript.pyannote[2179].speaker SPEAKER_04
transcript.pyannote[2179].start 13872.63096875
transcript.pyannote[2179].end 13876.37721875
transcript.pyannote[2180].speaker SPEAKER_04
transcript.pyannote[2180].start 13876.93409375
transcript.pyannote[2180].end 13877.91284375
transcript.pyannote[2181].speaker SPEAKER_04
transcript.pyannote[2181].start 13878.40221875
transcript.pyannote[2181].end 13879.21221875
transcript.pyannote[2182].speaker SPEAKER_04
transcript.pyannote[2182].start 13879.58346875
transcript.pyannote[2182].end 13881.67596875
transcript.pyannote[2183].speaker SPEAKER_04
transcript.pyannote[2183].start 13881.97971875
transcript.pyannote[2183].end 13886.87346875
transcript.pyannote[2184].speaker SPEAKER_04
transcript.pyannote[2184].start 13887.58221875
transcript.pyannote[2184].end 13890.80534375
transcript.pyannote[2185].speaker SPEAKER_05
transcript.pyannote[2185].start 13890.45096875
transcript.pyannote[2185].end 13893.16784375
transcript.pyannote[2186].speaker SPEAKER_04
transcript.pyannote[2186].start 13891.05846875
transcript.pyannote[2186].end 13896.62721875
transcript.pyannote[2187].speaker SPEAKER_05
transcript.pyannote[2187].start 13893.91034375
transcript.pyannote[2187].end 13894.45034375
transcript.pyannote[2188].speaker SPEAKER_05
transcript.pyannote[2188].start 13895.22659375
transcript.pyannote[2188].end 13907.88284375
transcript.pyannote[2189].speaker SPEAKER_04
transcript.pyannote[2189].start 13901.62221875
transcript.pyannote[2189].end 13901.97659375
transcript.pyannote[2190].speaker SPEAKER_04
transcript.pyannote[2190].start 13903.76534375
transcript.pyannote[2190].end 13904.25471875
transcript.pyannote[2191].speaker SPEAKER_04
transcript.pyannote[2191].start 13907.88284375
transcript.pyannote[2191].end 13918.04159375
transcript.pyannote[2192].speaker SPEAKER_05
transcript.pyannote[2192].start 13908.70971875
transcript.pyannote[2192].end 13908.76034375
transcript.pyannote[2193].speaker SPEAKER_05
transcript.pyannote[2193].start 13910.19471875
transcript.pyannote[2193].end 13910.68409375
transcript.pyannote[2194].speaker SPEAKER_04
transcript.pyannote[2194].start 13918.49721875
transcript.pyannote[2194].end 13919.96534375
transcript.pyannote[2195].speaker SPEAKER_25
transcript.pyannote[2195].start 13919.96534375
transcript.pyannote[2195].end 13919.99909375
transcript.pyannote[2196].speaker SPEAKER_25
transcript.pyannote[2196].start 13920.35346875
transcript.pyannote[2196].end 13923.98159375
transcript.pyannote[2197].speaker SPEAKER_25
transcript.pyannote[2197].start 13925.48346875
transcript.pyannote[2197].end 13928.45346875
transcript.pyannote[2198].speaker SPEAKER_11
transcript.pyannote[2198].start 13932.95909375
transcript.pyannote[2198].end 13934.69721875
transcript.pyannote[2199].speaker SPEAKER_19
transcript.pyannote[2199].start 13933.19534375
transcript.pyannote[2199].end 13933.93784375
transcript.pyannote[2200].speaker SPEAKER_25
transcript.pyannote[2200].start 13933.93784375
transcript.pyannote[2200].end 13934.34284375
transcript.pyannote[2201].speaker SPEAKER_19
transcript.pyannote[2201].start 13934.34284375
transcript.pyannote[2201].end 13934.57909375
transcript.pyannote[2202].speaker SPEAKER_11
transcript.pyannote[2202].start 13934.95034375
transcript.pyannote[2202].end 13935.23721875
transcript.pyannote[2203].speaker SPEAKER_11
transcript.pyannote[2203].start 13935.69284375
transcript.pyannote[2203].end 13936.24971875
transcript.pyannote[2204].speaker SPEAKER_11
transcript.pyannote[2204].start 13937.86971875
transcript.pyannote[2204].end 13939.25346875
transcript.pyannote[2205].speaker SPEAKER_25
transcript.pyannote[2205].start 13940.29971875
transcript.pyannote[2205].end 13940.99159375
transcript.pyannote[2206].speaker SPEAKER_11
transcript.pyannote[2206].start 13940.48534375
transcript.pyannote[2206].end 13942.00409375
transcript.pyannote[2207].speaker SPEAKER_11
transcript.pyannote[2207].start 13942.81409375
transcript.pyannote[2207].end 13944.09659375
transcript.pyannote[2208].speaker SPEAKER_25
transcript.pyannote[2208].start 13944.73784375
transcript.pyannote[2208].end 13946.07096875
transcript.pyannote[2209].speaker SPEAKER_11
transcript.pyannote[2209].start 13947.16784375
transcript.pyannote[2209].end 13947.69096875
transcript.pyannote[2210].speaker SPEAKER_25
transcript.pyannote[2210].start 13947.97784375
transcript.pyannote[2210].end 13948.39971875
transcript.pyannote[2211].speaker SPEAKER_11
transcript.pyannote[2211].start 13948.06221875
transcript.pyannote[2211].end 13949.29409375
transcript.pyannote[2212].speaker SPEAKER_11
transcript.pyannote[2212].start 13949.86784375
transcript.pyannote[2212].end 13957.61346875
transcript.pyannote[2213].speaker SPEAKER_11
transcript.pyannote[2213].start 13958.05221875
transcript.pyannote[2213].end 14039.22096875
transcript.pyannote[2214].speaker SPEAKER_20
transcript.pyannote[2214].start 13972.71659375
transcript.pyannote[2214].end 13972.96971875
transcript.pyannote[2215].speaker SPEAKER_11
transcript.pyannote[2215].start 14039.65971875
transcript.pyannote[2215].end 14062.37346875
transcript.pyannote[2216].speaker SPEAKER_11
transcript.pyannote[2216].start 14062.54221875
transcript.pyannote[2216].end 14073.83159375
transcript.pyannote[2217].speaker SPEAKER_11
transcript.pyannote[2217].start 14074.18596875
transcript.pyannote[2217].end 14076.88596875
transcript.pyannote[2218].speaker SPEAKER_11
transcript.pyannote[2218].start 14077.13909375
transcript.pyannote[2218].end 14079.36659375
transcript.pyannote[2219].speaker SPEAKER_11
transcript.pyannote[2219].start 14079.41721875
transcript.pyannote[2219].end 14082.87659375
transcript.pyannote[2220].speaker SPEAKER_11
transcript.pyannote[2220].start 14083.72034375
transcript.pyannote[2220].end 14087.61846875
transcript.pyannote[2221].speaker SPEAKER_11
transcript.pyannote[2221].start 14088.05721875
transcript.pyannote[2221].end 14110.88909375
transcript.pyannote[2222].speaker SPEAKER_11
transcript.pyannote[2222].start 14110.92284375
transcript.pyannote[2222].end 14162.91471875
transcript.pyannote[2223].speaker SPEAKER_11
transcript.pyannote[2223].start 14163.08346875
transcript.pyannote[2223].end 14187.07971875
transcript.pyannote[2224].speaker SPEAKER_04
transcript.pyannote[2224].start 14187.16409375
transcript.pyannote[2224].end 14202.13221875
transcript.pyannote[2225].speaker SPEAKER_11
transcript.pyannote[2225].start 14201.91284375
transcript.pyannote[2225].end 14202.95909375
transcript.pyannote[2226].speaker SPEAKER_04
transcript.pyannote[2226].start 14202.19971875
transcript.pyannote[2226].end 14202.70596875
transcript.pyannote[2227].speaker SPEAKER_04
transcript.pyannote[2227].start 14202.89159375
transcript.pyannote[2227].end 14218.83846875
transcript.pyannote[2228].speaker SPEAKER_11
transcript.pyannote[2228].start 14217.11721875
transcript.pyannote[2228].end 14224.49159375
transcript.pyannote[2229].speaker SPEAKER_04
transcript.pyannote[2229].start 14223.24284375
transcript.pyannote[2229].end 14245.14659375
transcript.pyannote[2230].speaker SPEAKER_11
transcript.pyannote[2230].start 14245.23096875
transcript.pyannote[2230].end 14248.18409375
transcript.pyannote[2231].speaker SPEAKER_04
transcript.pyannote[2231].start 14246.14221875
transcript.pyannote[2231].end 14259.40596875
transcript.pyannote[2232].speaker SPEAKER_11
transcript.pyannote[2232].start 14248.74096875
transcript.pyannote[2232].end 14249.04471875
transcript.pyannote[2233].speaker SPEAKER_11
transcript.pyannote[2233].start 14252.18346875
transcript.pyannote[2233].end 14252.60534375
transcript.pyannote[2234].speaker SPEAKER_11
transcript.pyannote[2234].start 14255.03534375
transcript.pyannote[2234].end 14255.25471875
transcript.pyannote[2235].speaker SPEAKER_11
transcript.pyannote[2235].start 14258.84909375
transcript.pyannote[2235].end 14275.04909375
transcript.pyannote[2236].speaker SPEAKER_04
transcript.pyannote[2236].start 14272.70346875
transcript.pyannote[2236].end 14273.29409375
transcript.pyannote[2237].speaker SPEAKER_04
transcript.pyannote[2237].start 14274.84659375
transcript.pyannote[2237].end 14286.89534375
transcript.pyannote[2238].speaker SPEAKER_11
transcript.pyannote[2238].start 14278.28909375
transcript.pyannote[2238].end 14279.60534375
transcript.pyannote[2239].speaker SPEAKER_11
transcript.pyannote[2239].start 14285.73096875
transcript.pyannote[2239].end 14286.59159375
transcript.pyannote[2240].speaker SPEAKER_11
transcript.pyannote[2240].start 14287.04721875
transcript.pyannote[2240].end 14293.39221875
transcript.pyannote[2241].speaker SPEAKER_11
transcript.pyannote[2241].start 14293.72971875
transcript.pyannote[2241].end 14308.34346875
transcript.pyannote[2242].speaker SPEAKER_18
transcript.pyannote[2242].start 14308.42784375
transcript.pyannote[2242].end 14382.44159375
transcript.pyannote[2243].speaker SPEAKER_00
transcript.pyannote[2243].start 14367.47346875
transcript.pyannote[2243].end 14367.67596875
transcript.pyannote[2244].speaker SPEAKER_20
transcript.pyannote[2244].start 14367.67596875
transcript.pyannote[2244].end 14367.77721875
transcript.pyannote[2245].speaker SPEAKER_00
transcript.pyannote[2245].start 14367.77721875
transcript.pyannote[2245].end 14367.94596875
transcript.pyannote[2246].speaker SPEAKER_20
transcript.pyannote[2246].start 14367.94596875
transcript.pyannote[2246].end 14367.96284375
transcript.pyannote[2247].speaker SPEAKER_00
transcript.pyannote[2247].start 14367.96284375
transcript.pyannote[2247].end 14368.03034375
transcript.pyannote[2248].speaker SPEAKER_11
transcript.pyannote[2248].start 14381.91846875
transcript.pyannote[2248].end 14428.83096875
transcript.pyannote[2249].speaker SPEAKER_11
transcript.pyannote[2249].start 14428.88159375
transcript.pyannote[2249].end 14429.99534375
transcript.pyannote[2250].speaker SPEAKER_25
transcript.pyannote[2250].start 14430.46784375
transcript.pyannote[2250].end 14435.74971875
transcript.pyannote[2251].speaker SPEAKER_25
transcript.pyannote[2251].start 14436.32346875
transcript.pyannote[2251].end 14439.37784375
transcript.pyannote[2252].speaker SPEAKER_25
transcript.pyannote[2252].start 14440.81221875
transcript.pyannote[2252].end 14442.71909375
transcript.pyannote[2253].speaker SPEAKER_25
transcript.pyannote[2253].start 14443.24221875
transcript.pyannote[2253].end 14444.23784375
transcript.pyannote[2254].speaker SPEAKER_25
transcript.pyannote[2254].start 14444.55846875
transcript.pyannote[2254].end 14447.49471875
transcript.pyannote[2255].speaker SPEAKER_25
transcript.pyannote[2255].start 14447.64659375
transcript.pyannote[2255].end 14449.03034375
transcript.pyannote[2256].speaker SPEAKER_25
transcript.pyannote[2256].start 14449.16534375
transcript.pyannote[2256].end 14456.48909375
transcript.pyannote[2257].speaker SPEAKER_25
transcript.pyannote[2257].start 14456.79284375
transcript.pyannote[2257].end 14458.81784375
transcript.pyannote[2258].speaker SPEAKER_25
transcript.pyannote[2258].start 14459.42534375
transcript.pyannote[2258].end 14461.36596875
transcript.pyannote[2259].speaker SPEAKER_25
transcript.pyannote[2259].start 14461.53471875
transcript.pyannote[2259].end 14463.15471875
transcript.pyannote[2260].speaker SPEAKER_01
transcript.pyannote[2260].start 14468.48721875
transcript.pyannote[2260].end 14469.97221875
transcript.pyannote[2261].speaker SPEAKER_25
transcript.pyannote[2261].start 14470.42784375
transcript.pyannote[2261].end 14471.25471875
transcript.pyannote[2262].speaker SPEAKER_25
transcript.pyannote[2262].start 14475.13596875
transcript.pyannote[2262].end 14475.64221875
transcript.pyannote[2263].speaker SPEAKER_19
transcript.pyannote[2263].start 14475.64221875
transcript.pyannote[2263].end 14475.69284375
transcript.pyannote[2264].speaker SPEAKER_01
transcript.pyannote[2264].start 14475.94596875
transcript.pyannote[2264].end 14519.26409375
transcript.pyannote[2265].speaker SPEAKER_00
transcript.pyannote[2265].start 14498.87909375
transcript.pyannote[2265].end 14499.23346875
transcript.pyannote[2266].speaker SPEAKER_01
transcript.pyannote[2266].start 14519.95596875
transcript.pyannote[2266].end 14520.69846875
transcript.pyannote[2267].speaker SPEAKER_01
transcript.pyannote[2267].start 14521.15409375
transcript.pyannote[2267].end 14548.33971875
transcript.pyannote[2268].speaker SPEAKER_04
transcript.pyannote[2268].start 14549.72346875
transcript.pyannote[2268].end 14556.79409375
transcript.pyannote[2269].speaker SPEAKER_04
transcript.pyannote[2269].start 14557.08096875
transcript.pyannote[2269].end 14567.62784375
transcript.pyannote[2270].speaker SPEAKER_04
transcript.pyannote[2270].start 14568.06659375
transcript.pyannote[2270].end 14584.70534375
transcript.pyannote[2271].speaker SPEAKER_19
transcript.pyannote[2271].start 14568.28596875
transcript.pyannote[2271].end 14569.58534375
transcript.pyannote[2272].speaker SPEAKER_01
transcript.pyannote[2272].start 14569.58534375
transcript.pyannote[2272].end 14569.61909375
transcript.pyannote[2273].speaker SPEAKER_19
transcript.pyannote[2273].start 14570.51346875
transcript.pyannote[2273].end 14571.03659375
transcript.pyannote[2274].speaker SPEAKER_01
transcript.pyannote[2274].start 14575.66034375
transcript.pyannote[2274].end 14576.97659375
transcript.pyannote[2275].speaker SPEAKER_20
transcript.pyannote[2275].start 14576.97659375
transcript.pyannote[2275].end 14577.65159375
transcript.pyannote[2276].speaker SPEAKER_00
transcript.pyannote[2276].start 14580.28409375
transcript.pyannote[2276].end 14580.33471875
transcript.pyannote[2277].speaker SPEAKER_20
transcript.pyannote[2277].start 14580.33471875
transcript.pyannote[2277].end 14580.63846875
transcript.pyannote[2278].speaker SPEAKER_20
transcript.pyannote[2278].start 14581.09409375
transcript.pyannote[2278].end 14581.43159375
transcript.pyannote[2279].speaker SPEAKER_00
transcript.pyannote[2279].start 14581.43159375
transcript.pyannote[2279].end 14581.51596875
transcript.pyannote[2280].speaker SPEAKER_20
transcript.pyannote[2280].start 14582.88284375
transcript.pyannote[2280].end 14582.96721875
transcript.pyannote[2281].speaker SPEAKER_00
transcript.pyannote[2281].start 14582.96721875
transcript.pyannote[2281].end 14583.05159375
transcript.pyannote[2282].speaker SPEAKER_04
transcript.pyannote[2282].start 14584.87409375
transcript.pyannote[2282].end 14600.53409375
transcript.pyannote[2283].speaker SPEAKER_22
transcript.pyannote[2283].start 14597.51346875
transcript.pyannote[2283].end 14598.03659375
transcript.pyannote[2284].speaker SPEAKER_04
transcript.pyannote[2284].start 14600.60159375
transcript.pyannote[2284].end 14619.65346875
transcript.pyannote[2285].speaker SPEAKER_20
transcript.pyannote[2285].start 14604.95534375
transcript.pyannote[2285].end 14605.00596875
transcript.pyannote[2286].speaker SPEAKER_20
transcript.pyannote[2286].start 14605.09034375
transcript.pyannote[2286].end 14605.20846875
transcript.pyannote[2287].speaker SPEAKER_20
transcript.pyannote[2287].start 14610.35534375
transcript.pyannote[2287].end 14610.72659375
transcript.pyannote[2288].speaker SPEAKER_00
transcript.pyannote[2288].start 14610.72659375
transcript.pyannote[2288].end 14610.74346875
transcript.pyannote[2289].speaker SPEAKER_04
transcript.pyannote[2289].start 14620.19346875
transcript.pyannote[2289].end 14645.64096875
transcript.pyannote[2290].speaker SPEAKER_00
transcript.pyannote[2290].start 14625.40784375
transcript.pyannote[2290].end 14625.82971875
transcript.pyannote[2291].speaker SPEAKER_00
transcript.pyannote[2291].start 14633.91284375
transcript.pyannote[2291].end 14633.92971875
transcript.pyannote[2292].speaker SPEAKER_20
transcript.pyannote[2292].start 14633.92971875
transcript.pyannote[2292].end 14634.03096875
transcript.pyannote[2293].speaker SPEAKER_19
transcript.pyannote[2293].start 14634.03096875
transcript.pyannote[2293].end 14634.35159375
transcript.pyannote[2294].speaker SPEAKER_20
transcript.pyannote[2294].start 14634.35159375
transcript.pyannote[2294].end 14634.38534375
transcript.pyannote[2295].speaker SPEAKER_00
transcript.pyannote[2295].start 14635.31346875
transcript.pyannote[2295].end 14635.34721875
transcript.pyannote[2296].speaker SPEAKER_20
transcript.pyannote[2296].start 14635.34721875
transcript.pyannote[2296].end 14635.49909375
transcript.pyannote[2297].speaker SPEAKER_19
transcript.pyannote[2297].start 14636.35971875
transcript.pyannote[2297].end 14636.68034375
transcript.pyannote[2298].speaker SPEAKER_01
transcript.pyannote[2298].start 14642.85659375
transcript.pyannote[2298].end 14643.24471875
transcript.pyannote[2299].speaker SPEAKER_01
transcript.pyannote[2299].start 14644.94909375
transcript.pyannote[2299].end 14645.40471875
transcript.pyannote[2300].speaker SPEAKER_01
transcript.pyannote[2300].start 14645.89409375
transcript.pyannote[2300].end 14689.27971875
transcript.pyannote[2301].speaker SPEAKER_01
transcript.pyannote[2301].start 14689.58346875
transcript.pyannote[2301].end 14694.91596875
transcript.pyannote[2302].speaker SPEAKER_01
transcript.pyannote[2302].start 14695.87784375
transcript.pyannote[2302].end 14701.34534375
transcript.pyannote[2303].speaker SPEAKER_01
transcript.pyannote[2303].start 14701.64909375
transcript.pyannote[2303].end 14703.11721875
transcript.pyannote[2304].speaker SPEAKER_01
transcript.pyannote[2304].start 14703.89346875
transcript.pyannote[2304].end 14709.19221875
transcript.pyannote[2305].speaker SPEAKER_01
transcript.pyannote[2305].start 14709.52971875
transcript.pyannote[2305].end 14721.86534375
transcript.pyannote[2306].speaker SPEAKER_01
transcript.pyannote[2306].start 14721.98346875
transcript.pyannote[2306].end 14724.39659375
transcript.pyannote[2307].speaker SPEAKER_01
transcript.pyannote[2307].start 14724.80159375
transcript.pyannote[2307].end 14735.88846875
transcript.pyannote[2308].speaker SPEAKER_04
transcript.pyannote[2308].start 14736.25971875
transcript.pyannote[2308].end 14740.07346875
transcript.pyannote[2309].speaker SPEAKER_04
transcript.pyannote[2309].start 14740.56284375
transcript.pyannote[2309].end 14749.55721875
transcript.pyannote[2310].speaker SPEAKER_01
transcript.pyannote[2310].start 14743.92096875
transcript.pyannote[2310].end 14743.95471875
transcript.pyannote[2311].speaker SPEAKER_04
transcript.pyannote[2311].start 14749.99596875
transcript.pyannote[2311].end 14766.95534375
transcript.pyannote[2312].speaker SPEAKER_04
transcript.pyannote[2312].start 14768.05221875
transcript.pyannote[2312].end 14768.49096875
transcript.pyannote[2313].speaker SPEAKER_04
transcript.pyannote[2313].start 14769.08159375
transcript.pyannote[2313].end 14772.69284375
transcript.pyannote[2314].speaker SPEAKER_18
transcript.pyannote[2314].start 14772.69284375
transcript.pyannote[2314].end 14822.08596875
transcript.pyannote[2315].speaker SPEAKER_04
transcript.pyannote[2315].start 14779.93221875
transcript.pyannote[2315].end 14780.30346875
transcript.pyannote[2316].speaker SPEAKER_20
transcript.pyannote[2316].start 14780.30346875
transcript.pyannote[2316].end 14780.35409375
transcript.pyannote[2317].speaker SPEAKER_00
transcript.pyannote[2317].start 14810.40846875
transcript.pyannote[2317].end 14810.71221875
transcript.pyannote[2318].speaker SPEAKER_01
transcript.pyannote[2318].start 14820.29721875
transcript.pyannote[2318].end 14826.74346875
transcript.pyannote[2319].speaker SPEAKER_01
transcript.pyannote[2319].start 14826.89534375
transcript.pyannote[2319].end 14842.75784375
transcript.pyannote[2320].speaker SPEAKER_01
transcript.pyannote[2320].start 14843.04471875
transcript.pyannote[2320].end 14851.56659375
transcript.pyannote[2321].speaker SPEAKER_26
transcript.pyannote[2321].start 14852.69721875
transcript.pyannote[2321].end 14887.61159375
transcript.pyannote[2322].speaker SPEAKER_20
transcript.pyannote[2322].start 14858.56971875
transcript.pyannote[2322].end 14858.80596875
transcript.pyannote[2323].speaker SPEAKER_20
transcript.pyannote[2323].start 14862.82221875
transcript.pyannote[2323].end 14862.83909375
transcript.pyannote[2324].speaker SPEAKER_25
transcript.pyannote[2324].start 14875.34346875
transcript.pyannote[2324].end 14875.76534375
transcript.pyannote[2325].speaker SPEAKER_01
transcript.pyannote[2325].start 14883.67971875
transcript.pyannote[2325].end 14884.15221875
transcript.pyannote[2326].speaker SPEAKER_01
transcript.pyannote[2326].start 14887.37534375
transcript.pyannote[2326].end 14937.83159375
transcript.pyannote[2327].speaker SPEAKER_01
transcript.pyannote[2327].start 14938.20284375
transcript.pyannote[2327].end 14953.18784375
transcript.pyannote[2328].speaker SPEAKER_01
transcript.pyannote[2328].start 14953.82909375
transcript.pyannote[2328].end 14954.80784375
transcript.pyannote[2329].speaker SPEAKER_01
transcript.pyannote[2329].start 14955.19596875
transcript.pyannote[2329].end 14975.39534375
transcript.pyannote[2330].speaker SPEAKER_01
transcript.pyannote[2330].start 14975.96909375
transcript.pyannote[2330].end 14990.73471875
transcript.pyannote[2331].speaker SPEAKER_04
transcript.pyannote[2331].start 14991.02159375
transcript.pyannote[2331].end 14992.94534375
transcript.pyannote[2332].speaker SPEAKER_04
transcript.pyannote[2332].start 14993.35034375
transcript.pyannote[2332].end 14998.86846875
transcript.pyannote[2333].speaker SPEAKER_04
transcript.pyannote[2333].start 14998.96971875
transcript.pyannote[2333].end 15035.80784375
transcript.pyannote[2334].speaker SPEAKER_04
transcript.pyannote[2334].start 15036.98909375
transcript.pyannote[2334].end 15041.89971875
transcript.pyannote[2335].speaker SPEAKER_04
transcript.pyannote[2335].start 15042.15284375
transcript.pyannote[2335].end 15067.68471875
transcript.pyannote[2336].speaker SPEAKER_04
transcript.pyannote[2336].start 15068.24159375
transcript.pyannote[2336].end 15071.19471875
transcript.pyannote[2337].speaker SPEAKER_04
transcript.pyannote[2337].start 15071.44784375
transcript.pyannote[2337].end 15083.54721875
transcript.pyannote[2338].speaker SPEAKER_20
transcript.pyannote[2338].start 15076.84784375
transcript.pyannote[2338].end 15077.32034375
transcript.pyannote[2339].speaker SPEAKER_00
transcript.pyannote[2339].start 15077.32034375
transcript.pyannote[2339].end 15077.35409375
transcript.pyannote[2340].speaker SPEAKER_20
transcript.pyannote[2340].start 15081.48846875
transcript.pyannote[2340].end 15081.82596875
transcript.pyannote[2341].speaker SPEAKER_00
transcript.pyannote[2341].start 15081.82596875
transcript.pyannote[2341].end 15081.84284375
transcript.pyannote[2342].speaker SPEAKER_04
transcript.pyannote[2342].start 15083.69909375
transcript.pyannote[2342].end 15094.76909375
transcript.pyannote[2343].speaker SPEAKER_04
transcript.pyannote[2343].start 15094.80284375
transcript.pyannote[2343].end 15101.11409375
transcript.pyannote[2344].speaker SPEAKER_04
transcript.pyannote[2344].start 15101.48534375
transcript.pyannote[2344].end 15106.39596875
transcript.pyannote[2345].speaker SPEAKER_04
transcript.pyannote[2345].start 15107.05409375
transcript.pyannote[2345].end 15112.36971875
transcript.pyannote[2346].speaker SPEAKER_26
transcript.pyannote[2346].start 15112.80846875
transcript.pyannote[2346].end 15147.70596875
transcript.pyannote[2347].speaker SPEAKER_01
transcript.pyannote[2347].start 15146.60909375
transcript.pyannote[2347].end 15150.15284375
transcript.pyannote[2348].speaker SPEAKER_01
transcript.pyannote[2348].start 15150.40596875
transcript.pyannote[2348].end 15198.68534375
transcript.pyannote[2349].speaker SPEAKER_01
transcript.pyannote[2349].start 15198.88784375
transcript.pyannote[2349].end 15199.51221875
transcript.pyannote[2350].speaker SPEAKER_04
transcript.pyannote[2350].start 15199.71471875
transcript.pyannote[2350].end 15219.03659375
transcript.pyannote[2351].speaker SPEAKER_20
transcript.pyannote[2351].start 15205.09784375
transcript.pyannote[2351].end 15205.53659375
transcript.pyannote[2352].speaker SPEAKER_07
transcript.pyannote[2352].start 15218.47971875
transcript.pyannote[2352].end 15219.89721875
transcript.pyannote[2353].speaker SPEAKER_25
transcript.pyannote[2353].start 15219.03659375
transcript.pyannote[2353].end 15219.40784375
transcript.pyannote[2354].speaker SPEAKER_04
transcript.pyannote[2354].start 15219.40784375
transcript.pyannote[2354].end 15219.42471875
transcript.pyannote[2355].speaker SPEAKER_25
transcript.pyannote[2355].start 15219.42471875
transcript.pyannote[2355].end 15219.44159375
transcript.pyannote[2356].speaker SPEAKER_25
transcript.pyannote[2356].start 15221.17971875
transcript.pyannote[2356].end 15228.63846875
transcript.pyannote[2357].speaker SPEAKER_15
transcript.pyannote[2357].start 15237.43034375
transcript.pyannote[2357].end 15238.54409375
transcript.pyannote[2358].speaker SPEAKER_15
transcript.pyannote[2358].start 15238.72971875
transcript.pyannote[2358].end 15239.80971875
transcript.pyannote[2359].speaker SPEAKER_25
transcript.pyannote[2359].start 15240.87284375
transcript.pyannote[2359].end 15241.61534375
transcript.pyannote[2360].speaker SPEAKER_25
transcript.pyannote[2360].start 15244.95659375
transcript.pyannote[2360].end 15245.39534375
transcript.pyannote[2361].speaker SPEAKER_15
transcript.pyannote[2361].start 15245.69909375
transcript.pyannote[2361].end 15246.74534375
transcript.pyannote[2362].speaker SPEAKER_15
transcript.pyannote[2362].start 15247.62284375
transcript.pyannote[2362].end 15265.83096875
transcript.pyannote[2363].speaker SPEAKER_20
transcript.pyannote[2363].start 15254.55846875
transcript.pyannote[2363].end 15254.60909375
transcript.pyannote[2364].speaker SPEAKER_20
transcript.pyannote[2364].start 15254.96346875
transcript.pyannote[2364].end 15254.99721875
transcript.pyannote[2365].speaker SPEAKER_15
transcript.pyannote[2365].start 15266.33721875
transcript.pyannote[2365].end 15454.93221875
transcript.pyannote[2366].speaker SPEAKER_15
transcript.pyannote[2366].start 15455.16846875
transcript.pyannote[2366].end 15474.43971875
transcript.pyannote[2367].speaker SPEAKER_15
transcript.pyannote[2367].start 15474.49034375
transcript.pyannote[2367].end 15489.66096875
transcript.pyannote[2368].speaker SPEAKER_15
transcript.pyannote[2368].start 15490.06596875
transcript.pyannote[2368].end 15530.66721875
transcript.pyannote[2369].speaker SPEAKER_15
transcript.pyannote[2369].start 15531.27471875
transcript.pyannote[2369].end 15540.25221875
transcript.pyannote[2370].speaker SPEAKER_15
transcript.pyannote[2370].start 15540.97784375
transcript.pyannote[2370].end 15601.50846875
transcript.pyannote[2371].speaker SPEAKER_04
transcript.pyannote[2371].start 15601.87971875
transcript.pyannote[2371].end 15605.28846875
transcript.pyannote[2372].speaker SPEAKER_04
transcript.pyannote[2372].start 15605.81159375
transcript.pyannote[2372].end 15608.74784375
transcript.pyannote[2373].speaker SPEAKER_04
transcript.pyannote[2373].start 15609.62534375
transcript.pyannote[2373].end 15621.64034375
transcript.pyannote[2374].speaker SPEAKER_19
transcript.pyannote[2374].start 15611.46471875
transcript.pyannote[2374].end 15611.49846875
transcript.pyannote[2375].speaker SPEAKER_11
transcript.pyannote[2375].start 15611.49846875
transcript.pyannote[2375].end 15611.73471875
transcript.pyannote[2376].speaker SPEAKER_11
transcript.pyannote[2376].start 15615.85221875
transcript.pyannote[2376].end 15616.03784375
transcript.pyannote[2377].speaker SPEAKER_15
transcript.pyannote[2377].start 15616.03784375
transcript.pyannote[2377].end 15617.57346875
transcript.pyannote[2378].speaker SPEAKER_11
transcript.pyannote[2378].start 15617.57346875
transcript.pyannote[2378].end 15617.59034375
transcript.pyannote[2379].speaker SPEAKER_25
transcript.pyannote[2379].start 15617.59034375
transcript.pyannote[2379].end 15617.65784375
transcript.pyannote[2380].speaker SPEAKER_15
transcript.pyannote[2380].start 15621.64034375
transcript.pyannote[2380].end 15621.84284375
transcript.pyannote[2381].speaker SPEAKER_26
transcript.pyannote[2381].start 15621.84284375
transcript.pyannote[2381].end 15622.39971875
transcript.pyannote[2382].speaker SPEAKER_04
transcript.pyannote[2382].start 15622.39971875
transcript.pyannote[2382].end 15622.43346875
transcript.pyannote[2383].speaker SPEAKER_26
transcript.pyannote[2383].start 15622.43346875
transcript.pyannote[2383].end 15622.45034375
transcript.pyannote[2384].speaker SPEAKER_15
transcript.pyannote[2384].start 15622.45034375
transcript.pyannote[2384].end 15622.48409375
transcript.pyannote[2385].speaker SPEAKER_26
transcript.pyannote[2385].start 15622.48409375
transcript.pyannote[2385].end 15677.73284375
transcript.pyannote[2386].speaker SPEAKER_20
transcript.pyannote[2386].start 15647.56034375
transcript.pyannote[2386].end 15647.96534375
transcript.pyannote[2387].speaker SPEAKER_00
transcript.pyannote[2387].start 15660.92534375
transcript.pyannote[2387].end 15660.95909375
transcript.pyannote[2388].speaker SPEAKER_15
transcript.pyannote[2388].start 15660.95909375
transcript.pyannote[2388].end 15661.24596875
transcript.pyannote[2389].speaker SPEAKER_15
transcript.pyannote[2389].start 15662.42721875
transcript.pyannote[2389].end 15662.69721875
transcript.pyannote[2390].speaker SPEAKER_00
transcript.pyannote[2390].start 15665.38034375
transcript.pyannote[2390].end 15665.46471875
transcript.pyannote[2391].speaker SPEAKER_15
transcript.pyannote[2391].start 15665.46471875
transcript.pyannote[2391].end 15665.75159375
transcript.pyannote[2392].speaker SPEAKER_00
transcript.pyannote[2392].start 15665.75159375
transcript.pyannote[2392].end 15665.98784375
transcript.pyannote[2393].speaker SPEAKER_15
transcript.pyannote[2393].start 15665.98784375
transcript.pyannote[2393].end 15668.58659375
transcript.pyannote[2394].speaker SPEAKER_15
transcript.pyannote[2394].start 15677.15909375
transcript.pyannote[2394].end 15678.08721875
transcript.pyannote[2395].speaker SPEAKER_26
transcript.pyannote[2395].start 15678.08721875
transcript.pyannote[2395].end 15683.23409375
transcript.pyannote[2396].speaker SPEAKER_15
transcript.pyannote[2396].start 15682.12034375
transcript.pyannote[2396].end 15688.66784375
transcript.pyannote[2397].speaker SPEAKER_26
transcript.pyannote[2397].start 15687.57096875
transcript.pyannote[2397].end 15691.11471875
transcript.pyannote[2398].speaker SPEAKER_15
transcript.pyannote[2398].start 15688.85346875
transcript.pyannote[2398].end 15707.11221875
transcript.pyannote[2399].speaker SPEAKER_15
transcript.pyannote[2399].start 15707.68596875
transcript.pyannote[2399].end 15711.41534375
transcript.pyannote[2400].speaker SPEAKER_15
transcript.pyannote[2400].start 15712.17471875
transcript.pyannote[2400].end 15715.92096875
transcript.pyannote[2401].speaker SPEAKER_15
transcript.pyannote[2401].start 15716.64659375
transcript.pyannote[2401].end 15718.60409375
transcript.pyannote[2402].speaker SPEAKER_15
transcript.pyannote[2402].start 15718.77284375
transcript.pyannote[2402].end 15723.70034375
transcript.pyannote[2403].speaker SPEAKER_15
transcript.pyannote[2403].start 15724.49346875
transcript.pyannote[2403].end 15727.26096875
transcript.pyannote[2404].speaker SPEAKER_15
transcript.pyannote[2404].start 15727.73346875
transcript.pyannote[2404].end 15733.57221875
transcript.pyannote[2405].speaker SPEAKER_15
transcript.pyannote[2405].start 15733.89284375
transcript.pyannote[2405].end 15799.50284375
transcript.pyannote[2406].speaker SPEAKER_04
transcript.pyannote[2406].start 15800.32971875
transcript.pyannote[2406].end 15804.02534375
transcript.pyannote[2407].speaker SPEAKER_04
transcript.pyannote[2407].start 15804.59909375
transcript.pyannote[2407].end 15817.67721875
transcript.pyannote[2408].speaker SPEAKER_04
transcript.pyannote[2408].start 15817.77846875
transcript.pyannote[2408].end 15837.25221875
transcript.pyannote[2409].speaker SPEAKER_15
transcript.pyannote[2409].start 15837.25221875
transcript.pyannote[2409].end 15837.87659375
transcript.pyannote[2410].speaker SPEAKER_18
transcript.pyannote[2410].start 15837.87659375
transcript.pyannote[2410].end 15869.04471875
transcript.pyannote[2411].speaker SPEAKER_04
transcript.pyannote[2411].start 15843.58034375
transcript.pyannote[2411].end 15843.61409375
transcript.pyannote[2412].speaker SPEAKER_19
transcript.pyannote[2412].start 15843.61409375
transcript.pyannote[2412].end 15843.95159375
transcript.pyannote[2413].speaker SPEAKER_04
transcript.pyannote[2413].start 15843.95159375
transcript.pyannote[2413].end 15843.96846875
transcript.pyannote[2414].speaker SPEAKER_15
transcript.pyannote[2414].start 15867.96471875
transcript.pyannote[2414].end 15872.25096875
transcript.pyannote[2415].speaker SPEAKER_15
transcript.pyannote[2415].start 15872.63909375
transcript.pyannote[2415].end 15877.22909375
transcript.pyannote[2416].speaker SPEAKER_25
transcript.pyannote[2416].start 15875.00159375
transcript.pyannote[2416].end 15884.89034375
transcript.pyannote[2417].speaker SPEAKER_03
transcript.pyannote[2417].start 15895.45409375
transcript.pyannote[2417].end 15896.61846875
transcript.pyannote[2418].speaker SPEAKER_25
transcript.pyannote[2418].start 15897.73221875
transcript.pyannote[2418].end 15898.50846875
transcript.pyannote[2419].speaker SPEAKER_25
transcript.pyannote[2419].start 15902.92971875
transcript.pyannote[2419].end 15902.96346875
transcript.pyannote[2420].speaker SPEAKER_03
transcript.pyannote[2420].start 15902.96346875
transcript.pyannote[2420].end 15904.44846875
transcript.pyannote[2421].speaker SPEAKER_03
transcript.pyannote[2421].start 15905.00534375
transcript.pyannote[2421].end 15910.40534375
transcript.pyannote[2422].speaker SPEAKER_03
transcript.pyannote[2422].start 15910.62471875
transcript.pyannote[2422].end 15938.55284375
transcript.pyannote[2423].speaker SPEAKER_03
transcript.pyannote[2423].start 15938.65409375
transcript.pyannote[2423].end 15948.98159375
transcript.pyannote[2424].speaker SPEAKER_03
transcript.pyannote[2424].start 15949.42034375
transcript.pyannote[2424].end 15962.51534375
transcript.pyannote[2425].speaker SPEAKER_03
transcript.pyannote[2425].start 15962.75159375
transcript.pyannote[2425].end 15989.26221875
transcript.pyannote[2426].speaker SPEAKER_03
transcript.pyannote[2426].start 15989.70096875
transcript.pyannote[2426].end 15990.73034375
transcript.pyannote[2427].speaker SPEAKER_03
transcript.pyannote[2427].start 15991.20284375
transcript.pyannote[2427].end 16001.73284375
transcript.pyannote[2428].speaker SPEAKER_04
transcript.pyannote[2428].start 16002.62721875
transcript.pyannote[2428].end 16049.82659375
transcript.pyannote[2429].speaker SPEAKER_04
transcript.pyannote[2429].start 16050.28221875
transcript.pyannote[2429].end 16058.44971875
transcript.pyannote[2430].speaker SPEAKER_04
transcript.pyannote[2430].start 16059.00659375
transcript.pyannote[2430].end 16065.73971875
transcript.pyannote[2431].speaker SPEAKER_04
transcript.pyannote[2431].start 16066.21221875
transcript.pyannote[2431].end 16071.84846875
transcript.pyannote[2432].speaker SPEAKER_04
transcript.pyannote[2432].start 16072.28721875
transcript.pyannote[2432].end 16083.67784375
transcript.pyannote[2433].speaker SPEAKER_03
transcript.pyannote[2433].start 16076.99534375
transcript.pyannote[2433].end 16077.43409375
transcript.pyannote[2434].speaker SPEAKER_03
transcript.pyannote[2434].start 16078.36221875
transcript.pyannote[2434].end 16084.21784375
transcript.pyannote[2435].speaker SPEAKER_04
transcript.pyannote[2435].start 16084.09971875
transcript.pyannote[2435].end 16111.69034375
transcript.pyannote[2436].speaker SPEAKER_03
transcript.pyannote[2436].start 16085.51721875
transcript.pyannote[2436].end 16085.78721875
transcript.pyannote[2437].speaker SPEAKER_03
transcript.pyannote[2437].start 16102.66221875
transcript.pyannote[2437].end 16105.34534375
transcript.pyannote[2438].speaker SPEAKER_03
transcript.pyannote[2438].start 16105.86846875
transcript.pyannote[2438].end 16109.05784375
transcript.pyannote[2439].speaker SPEAKER_03
transcript.pyannote[2439].start 16111.69034375
transcript.pyannote[2439].end 16133.05409375
transcript.pyannote[2440].speaker SPEAKER_04
transcript.pyannote[2440].start 16111.70721875
transcript.pyannote[2440].end 16112.12909375
transcript.pyannote[2441].speaker SPEAKER_00
transcript.pyannote[2441].start 16120.38096875
transcript.pyannote[2441].end 16121.96721875
transcript.pyannote[2442].speaker SPEAKER_00
transcript.pyannote[2442].start 16122.37221875
transcript.pyannote[2442].end 16123.82346875
transcript.pyannote[2443].speaker SPEAKER_19
transcript.pyannote[2443].start 16124.75159375
transcript.pyannote[2443].end 16125.00471875
transcript.pyannote[2444].speaker SPEAKER_00
transcript.pyannote[2444].start 16125.00471875
transcript.pyannote[2444].end 16125.05534375
transcript.pyannote[2445].speaker SPEAKER_03
transcript.pyannote[2445].start 16133.35784375
transcript.pyannote[2445].end 16135.56846875
transcript.pyannote[2446].speaker SPEAKER_03
transcript.pyannote[2446].start 16136.07471875
transcript.pyannote[2446].end 16147.36409375
transcript.pyannote[2447].speaker SPEAKER_03
transcript.pyannote[2447].start 16148.19096875
transcript.pyannote[2447].end 16154.53596875
transcript.pyannote[2448].speaker SPEAKER_03
transcript.pyannote[2448].start 16154.68784375
transcript.pyannote[2448].end 16158.60284375
transcript.pyannote[2449].speaker SPEAKER_02
transcript.pyannote[2449].start 16155.26159375
transcript.pyannote[2449].end 16155.29534375
transcript.pyannote[2450].speaker SPEAKER_22
transcript.pyannote[2450].start 16155.29534375
transcript.pyannote[2450].end 16156.24034375
transcript.pyannote[2451].speaker SPEAKER_00
transcript.pyannote[2451].start 16156.24034375
transcript.pyannote[2451].end 16156.25721875
transcript.pyannote[2452].speaker SPEAKER_03
transcript.pyannote[2452].start 16159.00784375
transcript.pyannote[2452].end 16171.32659375
transcript.pyannote[2453].speaker SPEAKER_04
transcript.pyannote[2453].start 16164.03659375
transcript.pyannote[2453].end 16165.67346875
transcript.pyannote[2454].speaker SPEAKER_04
transcript.pyannote[2454].start 16170.39846875
transcript.pyannote[2454].end 16186.26096875
transcript.pyannote[2455].speaker SPEAKER_03
transcript.pyannote[2455].start 16177.18221875
transcript.pyannote[2455].end 16182.71721875
transcript.pyannote[2456].speaker SPEAKER_03
transcript.pyannote[2456].start 16186.26096875
transcript.pyannote[2456].end 16186.51409375
transcript.pyannote[2457].speaker SPEAKER_04
transcript.pyannote[2457].start 16186.51409375
transcript.pyannote[2457].end 16191.57659375
transcript.pyannote[2458].speaker SPEAKER_03
transcript.pyannote[2458].start 16189.11284375
transcript.pyannote[2458].end 16201.49909375
transcript.pyannote[2459].speaker SPEAKER_03
transcript.pyannote[2459].start 16202.02221875
transcript.pyannote[2459].end 16205.32971875
transcript.pyannote[2460].speaker SPEAKER_20
transcript.pyannote[2460].start 16205.56596875
transcript.pyannote[2460].end 16205.76846875
transcript.pyannote[2461].speaker SPEAKER_03
transcript.pyannote[2461].start 16205.76846875
transcript.pyannote[2461].end 16208.08034375
transcript.pyannote[2462].speaker SPEAKER_03
transcript.pyannote[2462].start 16208.73846875
transcript.pyannote[2462].end 16210.88159375
transcript.pyannote[2463].speaker SPEAKER_03
transcript.pyannote[2463].start 16211.53971875
transcript.pyannote[2463].end 16212.46784375
transcript.pyannote[2464].speaker SPEAKER_03
transcript.pyannote[2464].start 16213.19346875
transcript.pyannote[2464].end 16215.08346875
transcript.pyannote[2465].speaker SPEAKER_03
transcript.pyannote[2465].start 16215.21846875
transcript.pyannote[2465].end 16236.39659375
transcript.pyannote[2466].speaker SPEAKER_03
transcript.pyannote[2466].start 16236.85221875
transcript.pyannote[2466].end 16246.82534375
transcript.pyannote[2467].speaker SPEAKER_03
transcript.pyannote[2467].start 16247.65221875
transcript.pyannote[2467].end 16252.68096875
transcript.pyannote[2468].speaker SPEAKER_03
transcript.pyannote[2468].start 16253.06909375
transcript.pyannote[2468].end 16258.23284375
transcript.pyannote[2469].speaker SPEAKER_04
transcript.pyannote[2469].start 16255.44846875
transcript.pyannote[2469].end 16262.55284375
transcript.pyannote[2470].speaker SPEAKER_04
transcript.pyannote[2470].start 16262.75534375
transcript.pyannote[2470].end 16279.14096875
transcript.pyannote[2471].speaker SPEAKER_03
transcript.pyannote[2471].start 16278.02721875
transcript.pyannote[2471].end 16288.30409375
transcript.pyannote[2472].speaker SPEAKER_04
transcript.pyannote[2472].start 16287.15659375
transcript.pyannote[2472].end 16287.42659375
transcript.pyannote[2473].speaker SPEAKER_04
transcript.pyannote[2473].start 16288.30409375
transcript.pyannote[2473].end 16289.43471875
transcript.pyannote[2474].speaker SPEAKER_03
transcript.pyannote[2474].start 16288.32096875
transcript.pyannote[2474].end 16299.32346875
transcript.pyannote[2475].speaker SPEAKER_04
transcript.pyannote[2475].start 16293.88971875
transcript.pyannote[2475].end 16295.86409375
transcript.pyannote[2476].speaker SPEAKER_18
transcript.pyannote[2476].start 16298.04096875
transcript.pyannote[2476].end 16298.29409375
transcript.pyannote[2477].speaker SPEAKER_20
transcript.pyannote[2477].start 16298.29409375
transcript.pyannote[2477].end 16298.34471875
transcript.pyannote[2478].speaker SPEAKER_18
transcript.pyannote[2478].start 16298.34471875
transcript.pyannote[2478].end 16298.37846875
transcript.pyannote[2479].speaker SPEAKER_03
transcript.pyannote[2479].start 16300.63971875
transcript.pyannote[2479].end 16301.90534375
transcript.pyannote[2480].speaker SPEAKER_18
transcript.pyannote[2480].start 16301.83784375
transcript.pyannote[2480].end 16301.88846875
transcript.pyannote[2481].speaker SPEAKER_20
transcript.pyannote[2481].start 16301.90534375
transcript.pyannote[2481].end 16302.04034375
transcript.pyannote[2482].speaker SPEAKER_03
transcript.pyannote[2482].start 16302.04034375
transcript.pyannote[2482].end 16302.09096875
transcript.pyannote[2483].speaker SPEAKER_18
transcript.pyannote[2483].start 16302.05721875
transcript.pyannote[2483].end 16322.71221875
transcript.pyannote[2484].speaker SPEAKER_20
transcript.pyannote[2484].start 16302.09096875
transcript.pyannote[2484].end 16302.10784375
transcript.pyannote[2485].speaker SPEAKER_03
transcript.pyannote[2485].start 16302.10784375
transcript.pyannote[2485].end 16302.22596875
transcript.pyannote[2486].speaker SPEAKER_20
transcript.pyannote[2486].start 16302.22596875
transcript.pyannote[2486].end 16302.34409375
transcript.pyannote[2487].speaker SPEAKER_03
transcript.pyannote[2487].start 16302.34409375
transcript.pyannote[2487].end 16302.49596875
transcript.pyannote[2488].speaker SPEAKER_03
transcript.pyannote[2488].start 16322.71221875
transcript.pyannote[2488].end 16323.77534375
transcript.pyannote[2489].speaker SPEAKER_18
transcript.pyannote[2489].start 16322.83034375
transcript.pyannote[2489].end 16323.74159375
transcript.pyannote[2490].speaker SPEAKER_18
transcript.pyannote[2490].start 16323.77534375
transcript.pyannote[2490].end 16323.79221875
transcript.pyannote[2491].speaker SPEAKER_03
transcript.pyannote[2491].start 16323.79221875
transcript.pyannote[2491].end 16326.88034375
transcript.pyannote[2492].speaker SPEAKER_18
transcript.pyannote[2492].start 16326.82971875
transcript.pyannote[2492].end 16329.27659375
transcript.pyannote[2493].speaker SPEAKER_03
transcript.pyannote[2493].start 16327.20096875
transcript.pyannote[2493].end 16345.62846875
transcript.pyannote[2494].speaker SPEAKER_18
transcript.pyannote[2494].start 16345.62846875
transcript.pyannote[2494].end 16352.29409375
transcript.pyannote[2495].speaker SPEAKER_03
transcript.pyannote[2495].start 16349.66159375
transcript.pyannote[2495].end 16358.52096875
transcript.pyannote[2496].speaker SPEAKER_03
transcript.pyannote[2496].start 16358.92596875
transcript.pyannote[2496].end 16365.47346875
transcript.pyannote[2497].speaker SPEAKER_03
transcript.pyannote[2497].start 16365.94596875
transcript.pyannote[2497].end 16371.63284375
transcript.pyannote[2498].speaker SPEAKER_03
transcript.pyannote[2498].start 16372.42596875
transcript.pyannote[2498].end 16372.98284375
transcript.pyannote[2499].speaker SPEAKER_03
transcript.pyannote[2499].start 16373.70846875
transcript.pyannote[2499].end 16375.22721875
transcript.pyannote[2500].speaker SPEAKER_03
transcript.pyannote[2500].start 16375.68284375
transcript.pyannote[2500].end 16376.37471875
transcript.pyannote[2501].speaker SPEAKER_03
transcript.pyannote[2501].start 16377.65721875
transcript.pyannote[2501].end 16383.02346875
transcript.pyannote[2502].speaker SPEAKER_03
transcript.pyannote[2502].start 16383.71534375
transcript.pyannote[2502].end 16394.04284375
transcript.pyannote[2503].speaker SPEAKER_03
transcript.pyannote[2503].start 16394.53221875
transcript.pyannote[2503].end 16395.71346875
transcript.pyannote[2504].speaker SPEAKER_03
transcript.pyannote[2504].start 16396.33784375
transcript.pyannote[2504].end 16407.74534375
transcript.pyannote[2505].speaker SPEAKER_03
transcript.pyannote[2505].start 16407.94784375
transcript.pyannote[2505].end 16410.10784375
transcript.pyannote[2506].speaker SPEAKER_03
transcript.pyannote[2506].start 16410.34409375
transcript.pyannote[2506].end 16429.69971875
transcript.pyannote[2507].speaker SPEAKER_03
transcript.pyannote[2507].start 16430.17221875
transcript.pyannote[2507].end 16436.50034375
transcript.pyannote[2508].speaker SPEAKER_03
transcript.pyannote[2508].start 16437.29346875
transcript.pyannote[2508].end 16440.71909375
transcript.pyannote[2509].speaker SPEAKER_03
transcript.pyannote[2509].start 16441.29284375
transcript.pyannote[2509].end 16442.94659375
transcript.pyannote[2510].speaker SPEAKER_03
transcript.pyannote[2510].start 16443.41909375
transcript.pyannote[2510].end 16448.09346875
transcript.pyannote[2511].speaker SPEAKER_04
transcript.pyannote[2511].start 16449.96659375
transcript.pyannote[2511].end 16458.10034375
transcript.pyannote[2512].speaker SPEAKER_03
transcript.pyannote[2512].start 16456.88534375
transcript.pyannote[2512].end 16457.27346875
transcript.pyannote[2513].speaker SPEAKER_03
transcript.pyannote[2513].start 16457.98221875
transcript.pyannote[2513].end 16475.43096875
transcript.pyannote[2514].speaker SPEAKER_03
transcript.pyannote[2514].start 16475.95409375
transcript.pyannote[2514].end 16487.81721875
transcript.pyannote[2515].speaker SPEAKER_03
transcript.pyannote[2515].start 16487.95221875
transcript.pyannote[2515].end 16513.70346875
transcript.pyannote[2516].speaker SPEAKER_04
transcript.pyannote[2516].start 16515.08721875
transcript.pyannote[2516].end 16528.41846875
transcript.pyannote[2517].speaker SPEAKER_03
transcript.pyannote[2517].start 16527.76034375
transcript.pyannote[2517].end 16529.71784375
transcript.pyannote[2518].speaker SPEAKER_04
transcript.pyannote[2518].start 16528.51971875
transcript.pyannote[2518].end 16528.53659375
transcript.pyannote[2519].speaker SPEAKER_04
transcript.pyannote[2519].start 16528.55346875
transcript.pyannote[2519].end 16528.62096875
transcript.pyannote[2520].speaker SPEAKER_04
transcript.pyannote[2520].start 16528.67159375
transcript.pyannote[2520].end 16528.68846875
transcript.pyannote[2521].speaker SPEAKER_04
transcript.pyannote[2521].start 16530.56159375
transcript.pyannote[2521].end 16531.11846875
transcript.pyannote[2522].speaker SPEAKER_03
transcript.pyannote[2522].start 16531.11846875
transcript.pyannote[2522].end 16533.73409375
transcript.pyannote[2523].speaker SPEAKER_03
transcript.pyannote[2523].start 16534.13909375
transcript.pyannote[2523].end 16538.18909375
transcript.pyannote[2524].speaker SPEAKER_03
transcript.pyannote[2524].start 16539.75846875
transcript.pyannote[2524].end 16541.31096875
transcript.pyannote[2525].speaker SPEAKER_03
transcript.pyannote[2525].start 16541.69909375
transcript.pyannote[2525].end 16545.32721875
transcript.pyannote[2526].speaker SPEAKER_03
transcript.pyannote[2526].start 16546.35659375
transcript.pyannote[2526].end 16547.21721875
transcript.pyannote[2527].speaker SPEAKER_04
transcript.pyannote[2527].start 16547.21721875
transcript.pyannote[2527].end 16547.74034375
transcript.pyannote[2528].speaker SPEAKER_03
transcript.pyannote[2528].start 16547.74034375
transcript.pyannote[2528].end 16547.79096875
transcript.pyannote[2529].speaker SPEAKER_04
transcript.pyannote[2529].start 16547.79096875
transcript.pyannote[2529].end 16547.87534375
transcript.pyannote[2530].speaker SPEAKER_03
transcript.pyannote[2530].start 16547.87534375
transcript.pyannote[2530].end 16547.95971875
transcript.pyannote[2531].speaker SPEAKER_04
transcript.pyannote[2531].start 16547.95971875
transcript.pyannote[2531].end 16548.11159375
transcript.pyannote[2532].speaker SPEAKER_03
transcript.pyannote[2532].start 16548.11159375
transcript.pyannote[2532].end 16548.24659375
transcript.pyannote[2533].speaker SPEAKER_04
transcript.pyannote[2533].start 16548.24659375
transcript.pyannote[2533].end 16548.29721875
transcript.pyannote[2534].speaker SPEAKER_03
transcript.pyannote[2534].start 16548.29721875
transcript.pyannote[2534].end 16548.31409375
transcript.pyannote[2535].speaker SPEAKER_04
transcript.pyannote[2535].start 16548.31409375
transcript.pyannote[2535].end 16548.66846875
transcript.pyannote[2536].speaker SPEAKER_03
transcript.pyannote[2536].start 16548.66846875
transcript.pyannote[2536].end 16550.17034375
transcript.pyannote[2537].speaker SPEAKER_03
transcript.pyannote[2537].start 16550.92971875
transcript.pyannote[2537].end 16553.69721875
transcript.pyannote[2538].speaker SPEAKER_03
transcript.pyannote[2538].start 16554.87846875
transcript.pyannote[2538].end 16555.89096875
transcript.pyannote[2539].speaker SPEAKER_03
transcript.pyannote[2539].start 16556.17784375
transcript.pyannote[2539].end 16558.50659375
transcript.pyannote[2540].speaker SPEAKER_03
transcript.pyannote[2540].start 16559.08034375
transcript.pyannote[2540].end 16560.36284375
transcript.pyannote[2541].speaker SPEAKER_03
transcript.pyannote[2541].start 16561.08846875
transcript.pyannote[2541].end 16562.50596875
transcript.pyannote[2542].speaker SPEAKER_03
transcript.pyannote[2542].start 16563.36659375
transcript.pyannote[2542].end 16563.67034375
transcript.pyannote[2543].speaker SPEAKER_03
transcript.pyannote[2543].start 16564.15971875
transcript.pyannote[2543].end 16565.59409375
transcript.pyannote[2544].speaker SPEAKER_24
transcript.pyannote[2544].start 16565.72909375
transcript.pyannote[2544].end 16565.86409375
transcript.pyannote[2545].speaker SPEAKER_03
transcript.pyannote[2545].start 16565.86409375
transcript.pyannote[2545].end 16573.77846875
transcript.pyannote[2546].speaker SPEAKER_24
transcript.pyannote[2546].start 16565.88096875
transcript.pyannote[2546].end 16565.89784375
transcript.pyannote[2547].speaker SPEAKER_03
transcript.pyannote[2547].start 16574.26784375
transcript.pyannote[2547].end 16581.22034375
transcript.pyannote[2548].speaker SPEAKER_03
transcript.pyannote[2548].start 16582.08096875
transcript.pyannote[2548].end 16583.61659375
transcript.pyannote[2549].speaker SPEAKER_03
transcript.pyannote[2549].start 16584.42659375
transcript.pyannote[2549].end 16585.92846875
transcript.pyannote[2550].speaker SPEAKER_03
transcript.pyannote[2550].start 16586.01284375
transcript.pyannote[2550].end 16587.02534375
transcript.pyannote[2551].speaker SPEAKER_04
transcript.pyannote[2551].start 16587.02534375
transcript.pyannote[2551].end 16588.96596875
transcript.pyannote[2552].speaker SPEAKER_02
transcript.pyannote[2552].start 16589.86034375
transcript.pyannote[2552].end 16590.53534375
transcript.pyannote[2553].speaker SPEAKER_02
transcript.pyannote[2553].start 16592.91471875
transcript.pyannote[2553].end 16595.07471875
transcript.pyannote[2554].speaker SPEAKER_02
transcript.pyannote[2554].start 16598.85471875
transcript.pyannote[2554].end 16599.10784375
transcript.pyannote[2555].speaker SPEAKER_14
transcript.pyannote[2555].start 16616.37096875
transcript.pyannote[2555].end 16618.66596875
transcript.pyannote[2556].speaker SPEAKER_02
transcript.pyannote[2556].start 16618.80096875
transcript.pyannote[2556].end 16619.66159375
transcript.pyannote[2557].speaker SPEAKER_02
transcript.pyannote[2557].start 16623.81284375
transcript.pyannote[2557].end 16624.03221875
transcript.pyannote[2558].speaker SPEAKER_19
transcript.pyannote[2558].start 16624.03221875
transcript.pyannote[2558].end 16624.28534375
transcript.pyannote[2559].speaker SPEAKER_14
transcript.pyannote[2559].start 16624.55534375
transcript.pyannote[2559].end 16625.83784375
transcript.pyannote[2560].speaker SPEAKER_14
transcript.pyannote[2560].start 16625.92221875
transcript.pyannote[2560].end 16626.56346875
transcript.pyannote[2561].speaker SPEAKER_14
transcript.pyannote[2561].start 16627.10346875
transcript.pyannote[2561].end 16638.74721875
transcript.pyannote[2562].speaker SPEAKER_04
transcript.pyannote[2562].start 16633.88721875
transcript.pyannote[2562].end 16634.46096875
transcript.pyannote[2563].speaker SPEAKER_04
transcript.pyannote[2563].start 16637.97096875
transcript.pyannote[2563].end 16639.77659375
transcript.pyannote[2564].speaker SPEAKER_14
transcript.pyannote[2564].start 16639.35471875
transcript.pyannote[2564].end 16639.67534375
transcript.pyannote[2565].speaker SPEAKER_14
transcript.pyannote[2565].start 16639.75971875
transcript.pyannote[2565].end 16640.68784375
transcript.pyannote[2566].speaker SPEAKER_04
transcript.pyannote[2566].start 16640.68784375
transcript.pyannote[2566].end 16640.82284375
transcript.pyannote[2567].speaker SPEAKER_14
transcript.pyannote[2567].start 16641.41346875
transcript.pyannote[2567].end 16642.20659375
transcript.pyannote[2568].speaker SPEAKER_14
transcript.pyannote[2568].start 16642.72971875
transcript.pyannote[2568].end 16662.00096875
transcript.pyannote[2569].speaker SPEAKER_00
transcript.pyannote[2569].start 16652.50034375
transcript.pyannote[2569].end 16652.95596875
transcript.pyannote[2570].speaker SPEAKER_14
transcript.pyannote[2570].start 16662.27096875
transcript.pyannote[2570].end 16688.83221875
transcript.pyannote[2571].speaker SPEAKER_14
transcript.pyannote[2571].start 16688.84909375
transcript.pyannote[2571].end 16689.52409375
transcript.pyannote[2572].speaker SPEAKER_14
transcript.pyannote[2572].start 16689.77721875
transcript.pyannote[2572].end 16730.42909375
transcript.pyannote[2573].speaker SPEAKER_14
transcript.pyannote[2573].start 16730.68221875
transcript.pyannote[2573].end 16732.45409375
transcript.pyannote[2574].speaker SPEAKER_14
transcript.pyannote[2574].start 16732.72409375
transcript.pyannote[2574].end 16741.80284375
transcript.pyannote[2575].speaker SPEAKER_14
transcript.pyannote[2575].start 16742.25846875
transcript.pyannote[2575].end 16760.26409375
transcript.pyannote[2576].speaker SPEAKER_14
transcript.pyannote[2576].start 16760.77034375
transcript.pyannote[2576].end 16771.35096875
transcript.pyannote[2577].speaker SPEAKER_14
transcript.pyannote[2577].start 16771.67159375
transcript.pyannote[2577].end 16781.61096875
transcript.pyannote[2578].speaker SPEAKER_14
transcript.pyannote[2578].start 16782.21846875
transcript.pyannote[2578].end 16802.04659375
transcript.pyannote[2579].speaker SPEAKER_04
transcript.pyannote[2579].start 16803.32909375
transcript.pyannote[2579].end 16804.56096875
transcript.pyannote[2580].speaker SPEAKER_04
transcript.pyannote[2580].start 16805.38784375
transcript.pyannote[2580].end 16815.39471875
transcript.pyannote[2581].speaker SPEAKER_04
transcript.pyannote[2581].start 16815.66471875
transcript.pyannote[2581].end 16816.74471875
transcript.pyannote[2582].speaker SPEAKER_04
transcript.pyannote[2582].start 16817.20034375
transcript.pyannote[2582].end 16832.60721875
transcript.pyannote[2583].speaker SPEAKER_20
transcript.pyannote[2583].start 16817.60534375
transcript.pyannote[2583].end 16817.97659375
transcript.pyannote[2584].speaker SPEAKER_00
transcript.pyannote[2584].start 16817.97659375
transcript.pyannote[2584].end 16818.36471875
transcript.pyannote[2585].speaker SPEAKER_04
transcript.pyannote[2585].start 16833.09659375
transcript.pyannote[2585].end 16834.21034375
transcript.pyannote[2586].speaker SPEAKER_14
transcript.pyannote[2586].start 16833.73784375
transcript.pyannote[2586].end 16840.35284375
transcript.pyannote[2587].speaker SPEAKER_04
transcript.pyannote[2587].start 16838.53034375
transcript.pyannote[2587].end 16842.44534375
transcript.pyannote[2588].speaker SPEAKER_14
transcript.pyannote[2588].start 16842.05721875
transcript.pyannote[2588].end 16843.44096875
transcript.pyannote[2589].speaker SPEAKER_04
transcript.pyannote[2589].start 16843.06971875
transcript.pyannote[2589].end 16848.85784375
transcript.pyannote[2590].speaker SPEAKER_14
transcript.pyannote[2590].start 16846.61346875
transcript.pyannote[2590].end 16847.67659375
transcript.pyannote[2591].speaker SPEAKER_14
transcript.pyannote[2591].start 16849.21221875
transcript.pyannote[2591].end 16856.77221875
transcript.pyannote[2592].speaker SPEAKER_04
transcript.pyannote[2592].start 16857.05909375
transcript.pyannote[2592].end 16858.37534375
transcript.pyannote[2593].speaker SPEAKER_14
transcript.pyannote[2593].start 16857.22784375
transcript.pyannote[2593].end 16858.03784375
transcript.pyannote[2594].speaker SPEAKER_14
transcript.pyannote[2594].start 16858.30784375
transcript.pyannote[2594].end 16858.84784375
transcript.pyannote[2595].speaker SPEAKER_14
transcript.pyannote[2595].start 16858.93221875
transcript.pyannote[2595].end 16859.82659375
transcript.pyannote[2596].speaker SPEAKER_14
transcript.pyannote[2596].start 16860.13034375
transcript.pyannote[2596].end 16877.29221875
transcript.pyannote[2597].speaker SPEAKER_14
transcript.pyannote[2597].start 16877.81534375
transcript.pyannote[2597].end 16882.70909375
transcript.pyannote[2598].speaker SPEAKER_14
transcript.pyannote[2598].start 16882.82721875
transcript.pyannote[2598].end 16885.89846875
transcript.pyannote[2599].speaker SPEAKER_14
transcript.pyannote[2599].start 16886.23596875
transcript.pyannote[2599].end 16888.61534375
transcript.pyannote[2600].speaker SPEAKER_14
transcript.pyannote[2600].start 16888.69971875
transcript.pyannote[2600].end 16889.37471875
transcript.pyannote[2601].speaker SPEAKER_14
transcript.pyannote[2601].start 16889.96534375
transcript.pyannote[2601].end 16890.96096875
transcript.pyannote[2602].speaker SPEAKER_14
transcript.pyannote[2602].start 16891.45034375
transcript.pyannote[2602].end 16893.96471875
transcript.pyannote[2603].speaker SPEAKER_14
transcript.pyannote[2603].start 16894.52159375
transcript.pyannote[2603].end 16922.31471875
transcript.pyannote[2604].speaker SPEAKER_14
transcript.pyannote[2604].start 16922.88846875
transcript.pyannote[2604].end 16926.24659375
transcript.pyannote[2605].speaker SPEAKER_14
transcript.pyannote[2605].start 16926.88784375
transcript.pyannote[2605].end 16945.77096875
transcript.pyannote[2606].speaker SPEAKER_14
transcript.pyannote[2606].start 16946.05784375
transcript.pyannote[2606].end 16959.00096875
transcript.pyannote[2607].speaker SPEAKER_04
transcript.pyannote[2607].start 16959.76034375
transcript.pyannote[2607].end 16962.32534375
transcript.pyannote[2608].speaker SPEAKER_14
transcript.pyannote[2608].start 16962.47721875
transcript.pyannote[2608].end 16965.63284375
transcript.pyannote[2609].speaker SPEAKER_04
transcript.pyannote[2609].start 16962.73034375
transcript.pyannote[2609].end 16963.62471875
transcript.pyannote[2610].speaker SPEAKER_04
transcript.pyannote[2610].start 16964.60346875
transcript.pyannote[2610].end 16966.22346875
transcript.pyannote[2611].speaker SPEAKER_04
transcript.pyannote[2611].start 16966.81409375
transcript.pyannote[2611].end 16979.31846875
transcript.pyannote[2612].speaker SPEAKER_14
transcript.pyannote[2612].start 16968.85596875
transcript.pyannote[2612].end 16969.31159375
transcript.pyannote[2613].speaker SPEAKER_14
transcript.pyannote[2613].start 16978.39034375
transcript.pyannote[2613].end 16979.11596875
transcript.pyannote[2614].speaker SPEAKER_04
transcript.pyannote[2614].start 16979.50409375
transcript.pyannote[2614].end 16980.19596875
transcript.pyannote[2615].speaker SPEAKER_04
transcript.pyannote[2615].start 16980.68534375
transcript.pyannote[2615].end 16982.76096875
transcript.pyannote[2616].speaker SPEAKER_14
transcript.pyannote[2616].start 16981.09034375
transcript.pyannote[2616].end 16981.42784375
transcript.pyannote[2617].speaker SPEAKER_14
transcript.pyannote[2617].start 16982.18721875
transcript.pyannote[2617].end 16996.04159375
transcript.pyannote[2618].speaker SPEAKER_04
transcript.pyannote[2618].start 16993.91534375
transcript.pyannote[2618].end 17008.57971875
transcript.pyannote[2619].speaker SPEAKER_14
transcript.pyannote[2619].start 17001.96471875
transcript.pyannote[2619].end 17002.42034375
transcript.pyannote[2620].speaker SPEAKER_14
transcript.pyannote[2620].start 17008.68096875
transcript.pyannote[2620].end 17018.38409375
transcript.pyannote[2621].speaker SPEAKER_04
transcript.pyannote[2621].start 17008.73159375
transcript.pyannote[2621].end 17009.13659375
transcript.pyannote[2622].speaker SPEAKER_04
transcript.pyannote[2622].start 17009.17034375
transcript.pyannote[2622].end 17010.23346875
transcript.pyannote[2623].speaker SPEAKER_19
transcript.pyannote[2623].start 17019.39659375
transcript.pyannote[2623].end 17020.99971875
transcript.pyannote[2624].speaker SPEAKER_14
transcript.pyannote[2624].start 17019.95346875
transcript.pyannote[2624].end 17030.87159375
transcript.pyannote[2625].speaker SPEAKER_19
transcript.pyannote[2625].start 17027.96909375
transcript.pyannote[2625].end 17028.72846875
transcript.pyannote[2626].speaker SPEAKER_00
transcript.pyannote[2626].start 17028.72846875
transcript.pyannote[2626].end 17028.77909375
transcript.pyannote[2627].speaker SPEAKER_14
transcript.pyannote[2627].start 17032.01909375
transcript.pyannote[2627].end 17032.54221875
transcript.pyannote[2628].speaker SPEAKER_14
transcript.pyannote[2628].start 17034.29721875
transcript.pyannote[2628].end 17040.65909375
transcript.pyannote[2629].speaker SPEAKER_14
transcript.pyannote[2629].start 17040.96284375
transcript.pyannote[2629].end 17045.45159375
transcript.pyannote[2630].speaker SPEAKER_26
transcript.pyannote[2630].start 17047.78034375
transcript.pyannote[2630].end 17050.56471875
transcript.pyannote[2631].speaker SPEAKER_26
transcript.pyannote[2631].start 17050.66596875
transcript.pyannote[2631].end 17051.37471875
transcript.pyannote[2632].speaker SPEAKER_26
transcript.pyannote[2632].start 17051.89784375
transcript.pyannote[2632].end 17053.63596875
transcript.pyannote[2633].speaker SPEAKER_26
transcript.pyannote[2633].start 17053.93971875
transcript.pyannote[2633].end 17060.26784375
transcript.pyannote[2634].speaker SPEAKER_26
transcript.pyannote[2634].start 17060.53784375
transcript.pyannote[2634].end 17068.57034375
transcript.pyannote[2635].speaker SPEAKER_14
transcript.pyannote[2635].start 17067.92909375
transcript.pyannote[2635].end 17084.33159375
transcript.pyannote[2636].speaker SPEAKER_14
transcript.pyannote[2636].start 17084.66909375
transcript.pyannote[2636].end 17093.00534375
transcript.pyannote[2637].speaker SPEAKER_14
transcript.pyannote[2637].start 17093.34284375
transcript.pyannote[2637].end 17093.69721875
transcript.pyannote[2638].speaker SPEAKER_14
transcript.pyannote[2638].start 17096.71784375
transcript.pyannote[2638].end 17097.05534375
transcript.pyannote[2639].speaker SPEAKER_19
transcript.pyannote[2639].start 17097.22409375
transcript.pyannote[2639].end 17097.24096875
transcript.pyannote[2640].speaker SPEAKER_04
transcript.pyannote[2640].start 17097.24096875
transcript.pyannote[2640].end 17097.49409375
transcript.pyannote[2641].speaker SPEAKER_26
transcript.pyannote[2641].start 17097.49409375
transcript.pyannote[2641].end 17097.51096875
transcript.pyannote[2642].speaker SPEAKER_14
transcript.pyannote[2642].start 17097.91596875
transcript.pyannote[2642].end 17098.86096875
transcript.pyannote[2643].speaker SPEAKER_14
transcript.pyannote[2643].start 17099.23221875
transcript.pyannote[2643].end 17099.82284375
transcript.pyannote[2644].speaker SPEAKER_26
transcript.pyannote[2644].start 17100.98721875
transcript.pyannote[2644].end 17101.86471875
transcript.pyannote[2645].speaker SPEAKER_04
transcript.pyannote[2645].start 17101.96596875
transcript.pyannote[2645].end 17101.98284375
transcript.pyannote[2646].speaker SPEAKER_26
transcript.pyannote[2646].start 17101.98284375
transcript.pyannote[2646].end 17103.29909375
transcript.pyannote[2647].speaker SPEAKER_14
transcript.pyannote[2647].start 17102.42159375
transcript.pyannote[2647].end 17102.64096875
transcript.pyannote[2648].speaker SPEAKER_26
transcript.pyannote[2648].start 17104.24409375
transcript.pyannote[2648].end 17107.51784375
transcript.pyannote[2649].speaker SPEAKER_26
transcript.pyannote[2649].start 17108.02409375
transcript.pyannote[2649].end 17114.60534375
transcript.pyannote[2650].speaker SPEAKER_14
transcript.pyannote[2650].start 17113.05284375
transcript.pyannote[2650].end 17115.60096875
transcript.pyannote[2651].speaker SPEAKER_26
transcript.pyannote[2651].start 17115.55034375
transcript.pyannote[2651].end 17115.87096875
transcript.pyannote[2652].speaker SPEAKER_14
transcript.pyannote[2652].start 17115.83721875
transcript.pyannote[2652].end 17126.85659375
transcript.pyannote[2653].speaker SPEAKER_19
transcript.pyannote[2653].start 17115.87096875
transcript.pyannote[2653].end 17115.88784375
transcript.pyannote[2654].speaker SPEAKER_14
transcript.pyannote[2654].start 17126.94096875
transcript.pyannote[2654].end 17132.23971875
transcript.pyannote[2655].speaker SPEAKER_14
transcript.pyannote[2655].start 17132.96534375
transcript.pyannote[2655].end 17145.04784375
transcript.pyannote[2656].speaker SPEAKER_14
transcript.pyannote[2656].start 17145.09846875
transcript.pyannote[2656].end 17165.02784375
transcript.pyannote[2657].speaker SPEAKER_14
transcript.pyannote[2657].start 17165.65221875
transcript.pyannote[2657].end 17173.75221875
transcript.pyannote[2658].speaker SPEAKER_14
transcript.pyannote[2658].start 17174.47784375
transcript.pyannote[2658].end 17175.43971875
transcript.pyannote[2659].speaker SPEAKER_14
transcript.pyannote[2659].start 17176.72221875
transcript.pyannote[2659].end 17178.29159375
transcript.pyannote[2660].speaker SPEAKER_14
transcript.pyannote[2660].start 17178.64596875
transcript.pyannote[2660].end 17189.63159375
transcript.pyannote[2661].speaker SPEAKER_14
transcript.pyannote[2661].start 17190.15471875
transcript.pyannote[2661].end 17195.97659375
transcript.pyannote[2662].speaker SPEAKER_26
transcript.pyannote[2662].start 17195.97659375
transcript.pyannote[2662].end 17198.84534375
transcript.pyannote[2663].speaker SPEAKER_26
transcript.pyannote[2663].start 17199.26721875
transcript.pyannote[2663].end 17213.91471875
transcript.pyannote[2664].speaker SPEAKER_26
transcript.pyannote[2664].start 17214.80909375
transcript.pyannote[2664].end 17236.76346875
transcript.pyannote[2665].speaker SPEAKER_14
transcript.pyannote[2665].start 17228.05596875
transcript.pyannote[2665].end 17228.10659375
transcript.pyannote[2666].speaker SPEAKER_20
transcript.pyannote[2666].start 17228.10659375
transcript.pyannote[2666].end 17228.12346875
transcript.pyannote[2667].speaker SPEAKER_14
transcript.pyannote[2667].start 17228.12346875
transcript.pyannote[2667].end 17228.19096875
transcript.pyannote[2668].speaker SPEAKER_20
transcript.pyannote[2668].start 17228.19096875
transcript.pyannote[2668].end 17228.25846875
transcript.pyannote[2669].speaker SPEAKER_14
transcript.pyannote[2669].start 17228.25846875
transcript.pyannote[2669].end 17228.29221875
transcript.pyannote[2670].speaker SPEAKER_14
transcript.pyannote[2670].start 17237.05034375
transcript.pyannote[2670].end 17243.49659375
transcript.pyannote[2671].speaker SPEAKER_14
transcript.pyannote[2671].start 17243.96909375
transcript.pyannote[2671].end 17294.66159375
transcript.pyannote[2672].speaker SPEAKER_14
transcript.pyannote[2672].start 17294.94846875
transcript.pyannote[2672].end 17298.10409375
transcript.pyannote[2673].speaker SPEAKER_14
transcript.pyannote[2673].start 17298.13784375
transcript.pyannote[2673].end 17299.13346875
transcript.pyannote[2674].speaker SPEAKER_14
transcript.pyannote[2674].start 17299.74096875
transcript.pyannote[2674].end 17304.02721875
transcript.pyannote[2675].speaker SPEAKER_14
transcript.pyannote[2675].start 17304.36471875
transcript.pyannote[2675].end 17305.19159375
transcript.pyannote[2676].speaker SPEAKER_14
transcript.pyannote[2676].start 17305.83284375
transcript.pyannote[2676].end 17309.02221875
transcript.pyannote[2677].speaker SPEAKER_14
transcript.pyannote[2677].start 17309.69721875
transcript.pyannote[2677].end 17346.11346875
transcript.pyannote[2678].speaker SPEAKER_14
transcript.pyannote[2678].start 17346.46784375
transcript.pyannote[2678].end 17350.16346875
transcript.pyannote[2679].speaker SPEAKER_14
transcript.pyannote[2679].start 17350.46721875
transcript.pyannote[2679].end 17392.31721875
transcript.pyannote[2680].speaker SPEAKER_14
transcript.pyannote[2680].start 17392.68846875
transcript.pyannote[2680].end 17401.37909375
transcript.pyannote[2681].speaker SPEAKER_14
transcript.pyannote[2681].start 17401.83471875
transcript.pyannote[2681].end 17404.02846875
transcript.pyannote[2682].speaker SPEAKER_14
transcript.pyannote[2682].start 17404.53471875
transcript.pyannote[2682].end 17409.22596875
transcript.pyannote[2683].speaker SPEAKER_14
transcript.pyannote[2683].start 17409.79971875
transcript.pyannote[2683].end 17412.78659375
transcript.pyannote[2684].speaker SPEAKER_26
transcript.pyannote[2684].start 17413.39409375
transcript.pyannote[2684].end 17434.67346875
transcript.pyannote[2685].speaker SPEAKER_26
transcript.pyannote[2685].start 17434.96034375
transcript.pyannote[2685].end 17435.66909375
transcript.pyannote[2686].speaker SPEAKER_26
transcript.pyannote[2686].start 17435.93909375
transcript.pyannote[2686].end 17487.50909375
transcript.pyannote[2687].speaker SPEAKER_14
transcript.pyannote[2687].start 17483.66159375
transcript.pyannote[2687].end 17483.91471875
transcript.pyannote[2688].speaker SPEAKER_14
transcript.pyannote[2688].start 17485.48409375
transcript.pyannote[2688].end 17491.44096875
transcript.pyannote[2689].speaker SPEAKER_14
transcript.pyannote[2689].start 17492.50409375
transcript.pyannote[2689].end 17527.87409375
transcript.pyannote[2690].speaker SPEAKER_14
transcript.pyannote[2690].start 17528.17784375
transcript.pyannote[2690].end 17585.26596875
transcript.pyannote[2691].speaker SPEAKER_14
transcript.pyannote[2691].start 17585.55284375
transcript.pyannote[2691].end 17591.32409375
transcript.pyannote[2692].speaker SPEAKER_14
transcript.pyannote[2692].start 17592.06659375
transcript.pyannote[2692].end 17592.16784375
transcript.pyannote[2693].speaker SPEAKER_08
transcript.pyannote[2693].start 17592.16784375
transcript.pyannote[2693].end 17592.25221875
transcript.pyannote[2694].speaker SPEAKER_14
transcript.pyannote[2694].start 17592.25221875
transcript.pyannote[2694].end 17592.84284375
transcript.pyannote[2695].speaker SPEAKER_19
transcript.pyannote[2695].start 17592.26909375
transcript.pyannote[2695].end 17592.28596875
transcript.pyannote[2696].speaker SPEAKER_04
transcript.pyannote[2696].start 17592.28596875
transcript.pyannote[2696].end 17599.94721875
transcript.pyannote[2697].speaker SPEAKER_08
transcript.pyannote[2697].start 17592.84284375
transcript.pyannote[2697].end 17592.92721875
transcript.pyannote[2698].speaker SPEAKER_14
transcript.pyannote[2698].start 17592.92721875
transcript.pyannote[2698].end 17592.96096875
transcript.pyannote[2699].speaker SPEAKER_08
transcript.pyannote[2699].start 17592.96096875
transcript.pyannote[2699].end 17593.56846875
transcript.pyannote[2700].speaker SPEAKER_14
transcript.pyannote[2700].start 17593.56846875
transcript.pyannote[2700].end 17593.72034375
transcript.pyannote[2701].speaker SPEAKER_04
transcript.pyannote[2701].start 17600.16659375
transcript.pyannote[2701].end 17612.09721875
transcript.pyannote[2702].speaker SPEAKER_14
transcript.pyannote[2702].start 17611.92846875
transcript.pyannote[2702].end 17617.61534375
transcript.pyannote[2703].speaker SPEAKER_02
transcript.pyannote[2703].start 17617.07534375
transcript.pyannote[2703].end 17617.09221875
transcript.pyannote[2704].speaker SPEAKER_04
transcript.pyannote[2704].start 17617.09221875
transcript.pyannote[2704].end 17618.56034375
transcript.pyannote[2705].speaker SPEAKER_14
transcript.pyannote[2705].start 17617.68284375
transcript.pyannote[2705].end 17620.56846875
transcript.pyannote[2706].speaker SPEAKER_02
transcript.pyannote[2706].start 17620.56846875
transcript.pyannote[2706].end 17623.26846875
transcript.pyannote[2707].speaker SPEAKER_04
transcript.pyannote[2707].start 17620.68659375
transcript.pyannote[2707].end 17620.70346875
transcript.pyannote[2708].speaker SPEAKER_14
transcript.pyannote[2708].start 17620.70346875
transcript.pyannote[2708].end 17620.73721875
transcript.pyannote[2709].speaker SPEAKER_04
transcript.pyannote[2709].start 17620.73721875
transcript.pyannote[2709].end 17622.82971875
transcript.pyannote[2710].speaker SPEAKER_04
transcript.pyannote[2710].start 17623.26846875
transcript.pyannote[2710].end 17623.50471875
transcript.pyannote[2711].speaker SPEAKER_02
transcript.pyannote[2711].start 17623.50471875
transcript.pyannote[2711].end 17623.52159375
transcript.pyannote[2712].speaker SPEAKER_04
transcript.pyannote[2712].start 17623.52159375
transcript.pyannote[2712].end 17623.58909375
transcript.pyannote[2713].speaker SPEAKER_02
transcript.pyannote[2713].start 17623.58909375
transcript.pyannote[2713].end 17623.60596875
transcript.pyannote[2714].speaker SPEAKER_04
transcript.pyannote[2714].start 17623.60596875
transcript.pyannote[2714].end 17623.62284375
transcript.pyannote[2715].speaker SPEAKER_02
transcript.pyannote[2715].start 17624.71971875
transcript.pyannote[2715].end 17626.25534375
transcript.pyannote[2716].speaker SPEAKER_02
transcript.pyannote[2716].start 17627.50409375
transcript.pyannote[2716].end 17632.76909375
transcript.pyannote[2717].speaker SPEAKER_02
transcript.pyannote[2717].start 17633.12346875
transcript.pyannote[2717].end 17635.65471875
transcript.pyannote[2718].speaker SPEAKER_02
transcript.pyannote[2718].start 17636.27909375
transcript.pyannote[2718].end 17638.86096875
transcript.pyannote[2719].speaker SPEAKER_02
transcript.pyannote[2719].start 17639.40096875
transcript.pyannote[2719].end 17645.12159375
transcript.pyannote[2720].speaker SPEAKER_02
transcript.pyannote[2720].start 17645.54346875
transcript.pyannote[2720].end 17648.09159375
transcript.pyannote[2721].speaker SPEAKER_02
transcript.pyannote[2721].start 17648.61471875
transcript.pyannote[2721].end 17651.41596875
transcript.pyannote[2722].speaker SPEAKER_02
transcript.pyannote[2722].start 17651.68596875
transcript.pyannote[2722].end 17656.91721875
transcript.pyannote[2723].speaker SPEAKER_02
transcript.pyannote[2723].start 17657.50784375
transcript.pyannote[2723].end 17660.30909375
transcript.pyannote[2724].speaker SPEAKER_02
transcript.pyannote[2724].start 17660.59596875
transcript.pyannote[2724].end 17663.85284375
transcript.pyannote[2725].speaker SPEAKER_02
transcript.pyannote[2725].start 17663.90346875
transcript.pyannote[2725].end 17665.01721875
transcript.pyannote[2726].speaker SPEAKER_17
transcript.pyannote[2726].start 17669.57346875
transcript.pyannote[2726].end 17670.68721875
transcript.pyannote[2727].speaker SPEAKER_02
transcript.pyannote[2727].start 17670.68721875
transcript.pyannote[2727].end 17671.56471875
transcript.pyannote[2728].speaker SPEAKER_02
transcript.pyannote[2728].start 17673.96096875
transcript.pyannote[2728].end 17674.21409375
transcript.pyannote[2729].speaker SPEAKER_17
transcript.pyannote[2729].start 17675.56409375
transcript.pyannote[2729].end 17676.10409375
transcript.pyannote[2730].speaker SPEAKER_17
transcript.pyannote[2730].start 17676.96471875
transcript.pyannote[2730].end 17688.89534375
transcript.pyannote[2731].speaker SPEAKER_17
transcript.pyannote[2731].start 17690.04284375
transcript.pyannote[2731].end 17699.22284375
transcript.pyannote[2732].speaker SPEAKER_17
transcript.pyannote[2732].start 17699.64471875
transcript.pyannote[2732].end 17700.97784375
transcript.pyannote[2733].speaker SPEAKER_17
transcript.pyannote[2733].start 17702.22659375
transcript.pyannote[2733].end 17702.54721875
transcript.pyannote[2734].speaker SPEAKER_18
transcript.pyannote[2734].start 17702.54721875
transcript.pyannote[2734].end 17702.56409375
transcript.pyannote[2735].speaker SPEAKER_17
transcript.pyannote[2735].start 17702.91846875
transcript.pyannote[2735].end 17702.95221875
transcript.pyannote[2736].speaker SPEAKER_18
transcript.pyannote[2736].start 17702.95221875
transcript.pyannote[2736].end 17703.25596875
transcript.pyannote[2737].speaker SPEAKER_04
transcript.pyannote[2737].start 17703.25596875
transcript.pyannote[2737].end 17704.06596875
transcript.pyannote[2738].speaker SPEAKER_18
transcript.pyannote[2738].start 17704.06596875
transcript.pyannote[2738].end 17704.11659375
transcript.pyannote[2739].speaker SPEAKER_04
transcript.pyannote[2739].start 17704.11659375
transcript.pyannote[2739].end 17704.13346875
transcript.pyannote[2740].speaker SPEAKER_18
transcript.pyannote[2740].start 17704.13346875
transcript.pyannote[2740].end 17710.32659375
transcript.pyannote[2741].speaker SPEAKER_04
transcript.pyannote[2741].start 17707.82909375
transcript.pyannote[2741].end 17707.96409375
transcript.pyannote[2742].speaker SPEAKER_18
transcript.pyannote[2742].start 17710.79909375
transcript.pyannote[2742].end 17727.97784375
transcript.pyannote[2743].speaker SPEAKER_17
transcript.pyannote[2743].start 17727.97784375
transcript.pyannote[2743].end 17728.01159375
transcript.pyannote[2744].speaker SPEAKER_18
transcript.pyannote[2744].start 17728.01159375
transcript.pyannote[2744].end 17728.02846875
transcript.pyannote[2745].speaker SPEAKER_17
transcript.pyannote[2745].start 17728.02846875
transcript.pyannote[2745].end 17732.56784375
transcript.pyannote[2746].speaker SPEAKER_18
transcript.pyannote[2746].start 17732.68596875
transcript.pyannote[2746].end 17735.55471875
transcript.pyannote[2747].speaker SPEAKER_17
transcript.pyannote[2747].start 17734.50846875
transcript.pyannote[2747].end 17735.53784375
transcript.pyannote[2748].speaker SPEAKER_17
transcript.pyannote[2748].start 17735.55471875
transcript.pyannote[2748].end 17735.58846875
transcript.pyannote[2749].speaker SPEAKER_18
transcript.pyannote[2749].start 17735.58846875
transcript.pyannote[2749].end 17735.63909375
transcript.pyannote[2750].speaker SPEAKER_18
transcript.pyannote[2750].start 17735.89221875
transcript.pyannote[2750].end 17739.55409375
transcript.pyannote[2751].speaker SPEAKER_17
transcript.pyannote[2751].start 17740.54971875
transcript.pyannote[2751].end 17740.93784375
transcript.pyannote[2752].speaker SPEAKER_17
transcript.pyannote[2752].start 17741.44409375
transcript.pyannote[2752].end 17754.03284375
transcript.pyannote[2753].speaker SPEAKER_18
transcript.pyannote[2753].start 17754.30284375
transcript.pyannote[2753].end 17769.28784375
transcript.pyannote[2754].speaker SPEAKER_17
transcript.pyannote[2754].start 17769.28784375
transcript.pyannote[2754].end 17769.32159375
transcript.pyannote[2755].speaker SPEAKER_17
transcript.pyannote[2755].start 17769.65909375
transcript.pyannote[2755].end 17778.45096875
transcript.pyannote[2756].speaker SPEAKER_18
transcript.pyannote[2756].start 17779.29471875
transcript.pyannote[2756].end 17786.33159375
transcript.pyannote[2757].speaker SPEAKER_17
transcript.pyannote[2757].start 17785.72409375
transcript.pyannote[2757].end 17796.18659375
transcript.pyannote[2758].speaker SPEAKER_18
transcript.pyannote[2758].start 17788.25534375
transcript.pyannote[2758].end 17790.66846875
transcript.pyannote[2759].speaker SPEAKER_18
transcript.pyannote[2759].start 17796.77721875
transcript.pyannote[2759].end 17805.48471875
transcript.pyannote[2760].speaker SPEAKER_17
transcript.pyannote[2760].start 17805.53534375
transcript.pyannote[2760].end 17812.74096875
transcript.pyannote[2761].speaker SPEAKER_18
transcript.pyannote[2761].start 17814.39471875
transcript.pyannote[2761].end 17843.40284375
transcript.pyannote[2762].speaker SPEAKER_17
transcript.pyannote[2762].start 17842.54221875
transcript.pyannote[2762].end 17846.49096875
transcript.pyannote[2763].speaker SPEAKER_18
transcript.pyannote[2763].start 17843.65596875
transcript.pyannote[2763].end 17844.12846875
transcript.pyannote[2764].speaker SPEAKER_17
transcript.pyannote[2764].start 17847.35159375
transcript.pyannote[2764].end 17848.36409375
transcript.pyannote[2765].speaker SPEAKER_17
transcript.pyannote[2765].start 17849.47784375
transcript.pyannote[2765].end 17851.60409375
transcript.pyannote[2766].speaker SPEAKER_18
transcript.pyannote[2766].start 17851.60409375
transcript.pyannote[2766].end 17851.63784375
transcript.pyannote[2767].speaker SPEAKER_17
transcript.pyannote[2767].start 17852.49846875
transcript.pyannote[2767].end 17852.51534375
transcript.pyannote[2768].speaker SPEAKER_18
transcript.pyannote[2768].start 17852.51534375
transcript.pyannote[2768].end 17861.86409375
transcript.pyannote[2769].speaker SPEAKER_17
transcript.pyannote[2769].start 17861.99909375
transcript.pyannote[2769].end 17863.77096875
transcript.pyannote[2770].speaker SPEAKER_17
transcript.pyannote[2770].start 17863.90596875
transcript.pyannote[2770].end 17863.93971875
transcript.pyannote[2771].speaker SPEAKER_18
transcript.pyannote[2771].start 17863.93971875
transcript.pyannote[2771].end 17864.78346875
transcript.pyannote[2772].speaker SPEAKER_18
transcript.pyannote[2772].start 17864.96909375
transcript.pyannote[2772].end 17866.75784375
transcript.pyannote[2773].speaker SPEAKER_17
transcript.pyannote[2773].start 17867.28096875
transcript.pyannote[2773].end 17867.78721875
transcript.pyannote[2774].speaker SPEAKER_18
transcript.pyannote[2774].start 17867.78721875
transcript.pyannote[2774].end 17868.12471875
transcript.pyannote[2775].speaker SPEAKER_17
transcript.pyannote[2775].start 17868.37784375
transcript.pyannote[2775].end 17875.02659375
transcript.pyannote[2776].speaker SPEAKER_18
transcript.pyannote[2776].start 17875.63409375
transcript.pyannote[2776].end 17880.62909375
transcript.pyannote[2777].speaker SPEAKER_17
transcript.pyannote[2777].start 17880.98346875
transcript.pyannote[2777].end 17881.43909375
transcript.pyannote[2778].speaker SPEAKER_17
transcript.pyannote[2778].start 17881.47284375
transcript.pyannote[2778].end 17881.52346875
transcript.pyannote[2779].speaker SPEAKER_18
transcript.pyannote[2779].start 17881.52346875
transcript.pyannote[2779].end 17882.85659375
transcript.pyannote[2780].speaker SPEAKER_17
transcript.pyannote[2780].start 17881.97909375
transcript.pyannote[2780].end 17928.03096875
transcript.pyannote[2781].speaker SPEAKER_17
transcript.pyannote[2781].start 17929.02659375
transcript.pyannote[2781].end 17934.67971875
transcript.pyannote[2782].speaker SPEAKER_17
transcript.pyannote[2782].start 17935.01721875
transcript.pyannote[2782].end 17947.92659375
transcript.pyannote[2783].speaker SPEAKER_17
transcript.pyannote[2783].start 17949.37784375
transcript.pyannote[2783].end 17950.03596875
transcript.pyannote[2784].speaker SPEAKER_04
transcript.pyannote[2784].start 17950.64346875
transcript.pyannote[2784].end 17951.48721875
transcript.pyannote[2785].speaker SPEAKER_04
transcript.pyannote[2785].start 17952.02721875
transcript.pyannote[2785].end 17958.59159375
transcript.pyannote[2786].speaker SPEAKER_04
transcript.pyannote[2786].start 17959.06409375
transcript.pyannote[2786].end 17964.58221875
transcript.pyannote[2787].speaker SPEAKER_04
transcript.pyannote[2787].start 17964.81846875
transcript.pyannote[2787].end 17976.04034375
transcript.pyannote[2788].speaker SPEAKER_04
transcript.pyannote[2788].start 17976.31034375
transcript.pyannote[2788].end 17981.87909375
transcript.pyannote[2789].speaker SPEAKER_04
transcript.pyannote[2789].start 17982.30096875
transcript.pyannote[2789].end 17990.26596875
transcript.pyannote[2790].speaker SPEAKER_20
transcript.pyannote[2790].start 17982.94221875
transcript.pyannote[2790].end 17984.52846875
transcript.pyannote[2791].speaker SPEAKER_00
transcript.pyannote[2791].start 17984.52846875
transcript.pyannote[2791].end 17984.62971875
transcript.pyannote[2792].speaker SPEAKER_20
transcript.pyannote[2792].start 17984.74784375
transcript.pyannote[2792].end 17984.78159375
transcript.pyannote[2793].speaker SPEAKER_20
transcript.pyannote[2793].start 17985.03471875
transcript.pyannote[2793].end 17985.10221875
transcript.pyannote[2794].speaker SPEAKER_04
transcript.pyannote[2794].start 17990.72159375
transcript.pyannote[2794].end 17991.68346875
transcript.pyannote[2795].speaker SPEAKER_04
transcript.pyannote[2795].start 17992.12221875
transcript.pyannote[2795].end 17996.10471875
transcript.pyannote[2796].speaker SPEAKER_17
transcript.pyannote[2796].start 17996.10471875
transcript.pyannote[2796].end 18021.41721875
transcript.pyannote[2797].speaker SPEAKER_04
transcript.pyannote[2797].start 18005.70659375
transcript.pyannote[2797].end 18005.74034375
transcript.pyannote[2798].speaker SPEAKER_04
transcript.pyannote[2798].start 18005.82471875
transcript.pyannote[2798].end 18007.05659375
transcript.pyannote[2799].speaker SPEAKER_04
transcript.pyannote[2799].start 18012.62534375
transcript.pyannote[2799].end 18014.43096875
transcript.pyannote[2800].speaker SPEAKER_04
transcript.pyannote[2800].start 18020.70846875
transcript.pyannote[2800].end 18024.23534375
transcript.pyannote[2801].speaker SPEAKER_04
transcript.pyannote[2801].start 18024.35346875
transcript.pyannote[2801].end 18029.01096875
transcript.pyannote[2802].speaker SPEAKER_04
transcript.pyannote[2802].start 18029.36534375
transcript.pyannote[2802].end 18033.34784375
transcript.pyannote[2803].speaker SPEAKER_17
transcript.pyannote[2803].start 18033.29721875
transcript.pyannote[2803].end 18060.63471875
transcript.pyannote[2804].speaker SPEAKER_04
transcript.pyannote[2804].start 18035.77784375
transcript.pyannote[2804].end 18036.90846875
transcript.pyannote[2805].speaker SPEAKER_20
transcript.pyannote[2805].start 18060.63471875
transcript.pyannote[2805].end 18060.80346875
transcript.pyannote[2806].speaker SPEAKER_17
transcript.pyannote[2806].start 18060.80346875
transcript.pyannote[2806].end 18068.41409375
transcript.pyannote[2807].speaker SPEAKER_17
transcript.pyannote[2807].start 18068.49846875
transcript.pyannote[2807].end 18073.08846875
transcript.pyannote[2808].speaker SPEAKER_17
transcript.pyannote[2808].start 18073.25721875
transcript.pyannote[2808].end 18084.47909375
transcript.pyannote[2809].speaker SPEAKER_17
transcript.pyannote[2809].start 18086.31846875
transcript.pyannote[2809].end 18093.03471875
transcript.pyannote[2810].speaker SPEAKER_26
transcript.pyannote[2810].start 18093.03471875
transcript.pyannote[2810].end 18137.31471875
transcript.pyannote[2811].speaker SPEAKER_26
transcript.pyannote[2811].start 18137.33159375
transcript.pyannote[2811].end 18140.60534375
transcript.pyannote[2812].speaker SPEAKER_17
transcript.pyannote[2812].start 18140.60534375
transcript.pyannote[2812].end 18146.84909375
transcript.pyannote[2813].speaker SPEAKER_17
transcript.pyannote[2813].start 18147.43971875
transcript.pyannote[2813].end 18153.29534375
transcript.pyannote[2814].speaker SPEAKER_17
transcript.pyannote[2814].start 18153.88596875
transcript.pyannote[2814].end 18162.55971875
transcript.pyannote[2815].speaker SPEAKER_17
transcript.pyannote[2815].start 18163.58909375
transcript.pyannote[2815].end 18170.03534375
transcript.pyannote[2816].speaker SPEAKER_17
transcript.pyannote[2816].start 18170.30534375
transcript.pyannote[2816].end 18174.96284375
transcript.pyannote[2817].speaker SPEAKER_02
transcript.pyannote[2817].start 18175.48596875
transcript.pyannote[2817].end 18175.78971875
transcript.pyannote[2818].speaker SPEAKER_17
transcript.pyannote[2818].start 18175.78971875
transcript.pyannote[2818].end 18175.80659375
transcript.pyannote[2819].speaker SPEAKER_02
transcript.pyannote[2819].start 18175.80659375
transcript.pyannote[2819].end 18175.82346875
transcript.pyannote[2820].speaker SPEAKER_02
transcript.pyannote[2820].start 18176.19471875
transcript.pyannote[2820].end 18177.46034375
transcript.pyannote[2821].speaker SPEAKER_02
transcript.pyannote[2821].start 18177.69659375
transcript.pyannote[2821].end 18179.97471875
transcript.pyannote[2822].speaker SPEAKER_02
transcript.pyannote[2822].start 18180.26159375
transcript.pyannote[2822].end 18180.66659375
transcript.pyannote[2823].speaker SPEAKER_02
transcript.pyannote[2823].start 18190.58909375
transcript.pyannote[2823].end 18193.00221875
transcript.pyannote[2824].speaker SPEAKER_02
transcript.pyannote[2824].start 18193.30596875
transcript.pyannote[2824].end 18201.10221875
transcript.pyannote[2825].speaker SPEAKER_02
transcript.pyannote[2825].start 18201.49034375
transcript.pyannote[2825].end 18215.90159375
transcript.pyannote[2826].speaker SPEAKER_02
transcript.pyannote[2826].start 18216.40784375
transcript.pyannote[2826].end 18219.19221875
transcript.pyannote[2827].speaker SPEAKER_02
transcript.pyannote[2827].start 18219.39471875
transcript.pyannote[2827].end 18221.65596875
transcript.pyannote[2828].speaker SPEAKER_02
transcript.pyannote[2828].start 18221.84159375
transcript.pyannote[2828].end 18222.24659375
transcript.pyannote[2829].speaker SPEAKER_02
transcript.pyannote[2829].start 18227.96721875
transcript.pyannote[2829].end 18227.98409375
transcript.pyannote[2830].speaker SPEAKER_02
transcript.pyannote[2830].start 18228.00096875
transcript.pyannote[2830].end 18228.03471875
transcript.pyannote[2831].speaker SPEAKER_02
transcript.pyannote[2831].start 18228.32159375
transcript.pyannote[2831].end 18228.49034375
transcript.pyannote[2832].speaker SPEAKER_04
transcript.pyannote[2832].start 18245.66909375
transcript.pyannote[2832].end 18245.93909375
transcript.pyannote[2833].speaker SPEAKER_11
transcript.pyannote[2833].start 18245.93909375
transcript.pyannote[2833].end 18246.31034375
transcript.pyannote[2834].speaker SPEAKER_04
transcript.pyannote[2834].start 18247.30596875
transcript.pyannote[2834].end 18249.02721875
transcript.pyannote[2835].speaker SPEAKER_04
transcript.pyannote[2835].start 18249.06096875
transcript.pyannote[2835].end 18249.58409375
transcript.pyannote[2836].speaker SPEAKER_26
transcript.pyannote[2836].start 18249.16221875
transcript.pyannote[2836].end 18249.17909375
transcript.pyannote[2837].speaker SPEAKER_11
transcript.pyannote[2837].start 18249.17909375
transcript.pyannote[2837].end 18249.56721875
transcript.pyannote[2838].speaker SPEAKER_11
transcript.pyannote[2838].start 18249.58409375
transcript.pyannote[2838].end 18250.17471875
transcript.pyannote[2839].speaker SPEAKER_04
transcript.pyannote[2839].start 18250.17471875
transcript.pyannote[2839].end 18252.33471875
transcript.pyannote[2840].speaker SPEAKER_11
transcript.pyannote[2840].start 18250.20846875
transcript.pyannote[2840].end 18250.79909375
transcript.pyannote[2841].speaker SPEAKER_04
transcript.pyannote[2841].start 18252.65534375
transcript.pyannote[2841].end 18252.90846875
transcript.pyannote[2842].speaker SPEAKER_11
transcript.pyannote[2842].start 18252.90846875
transcript.pyannote[2842].end 18252.97596875
transcript.pyannote[2843].speaker SPEAKER_04
transcript.pyannote[2843].start 18252.97596875
transcript.pyannote[2843].end 18253.11096875
transcript.pyannote[2844].speaker SPEAKER_04
transcript.pyannote[2844].start 18253.19534375
transcript.pyannote[2844].end 18253.70159375
transcript.pyannote[2845].speaker SPEAKER_04
transcript.pyannote[2845].start 18267.87659375
transcript.pyannote[2845].end 18268.02846875
transcript.pyannote[2846].speaker SPEAKER_04
transcript.pyannote[2846].start 18268.21409375
transcript.pyannote[2846].end 18268.87221875
transcript.pyannote[2847].speaker SPEAKER_04
transcript.pyannote[2847].start 18274.69409375
transcript.pyannote[2847].end 18275.63909375
transcript.whisperx[0].start 22.071
transcript.whisperx[0].end 23.815
transcript.whisperx[0].text 嗯嗯嗯
transcript.whisperx[1].start 540.421
transcript.whisperx[1].end 541.288
transcript.whisperx[1].text 早安 早安
transcript.whisperx[2].start 1180.48
transcript.whisperx[2].end 1180.501
transcript.whisperx[2].text
transcript.whisperx[3].start 1218.292
transcript.whisperx[3].end 1218.517
transcript.whisperx[3].text by bwd6
transcript.whisperx[4].start 1743.485
transcript.whisperx[4].end 1756.18
transcript.whisperx[4].text 報告委員會 出席委員人數12人 已組法定人數 請主席宣布開會好來 請各位回座好不好好 現在開會 請議事人員宣讀上次會議議事錄
transcript.whisperx[5].start 1757.443
transcript.whisperx[5].end 1766.692
transcript.whisperx[5].text 立法院第十一屆第三會期社會福利及衛生環境委員會第五次全體委員會議議事錄時間114年4月9日星期三9時至13時55分地點群賢樓801會議室出席委員陳委員趙姿等15人列席委員楊委員瓊英等13人列席官員勞動部部長洪生翰等相關人員主席蘇兆吉委員清泉
transcript.whisperx[6].start 1781.367
transcript.whisperx[6].end 1797.833
transcript.whisperx[6].text 報告事項宣讀上次會議議事錄決定確定邀請勞動部部長對於勞動部所屬基金違規使用如何追回及究責進行專題報告並備質詢本日會議由行政院主計總處副主計長陳慧娟審計部副審計長李順寶及勞動部部長報告後委員陳昭志等16人提出質詢均經勞動部部長審計部副審計長及行政院主計總處副主計長
transcript.whisperx[7].start 1808.177
transcript.whisperx[7].end 1809.517
transcript.whisperx[7].text 好 經文會上次依述有錯誤或遺漏之處
transcript.whisperx[8].start 1837.742
transcript.whisperx[8].end 1860.392
transcript.whisperx[8].text 好如果沒有那我們就一次入來做確定那本會議已成為邀請維護部部長就面對國際經貿情勢順變我國如何因應並確保藥品醫療器材等各面向公平正常保障國人權利進行專題報告並被質詢那現在來介紹在場委員及列席官員那我們
transcript.whisperx[9].start 1862.174
transcript.whisperx[9].end 1890.131
transcript.whisperx[9].text 就依照直接介紹陳昭志 陳委員蘇慶泉 趙薇王振旭 委員林月琴 委員衛福部的部長 邱太元中央健保署署長 施忠良機關署署長 專能祥
transcript.whisperx[10].start 1895.181
transcript.whisperx[10].end 1903.248
transcript.whisperx[10].text 食藥署的署長江志剛機關署的副署長曾淑慧國健署的副署長魏錫倫副署醫療及社會福利機構管理會執行長林慶豐144的副市長劉玉清
transcript.whisperx[11].start 1922.213
transcript.whisperx[11].end 1925.908
transcript.whisperx[11].text 好 那接下來我們就直接請我們衛福部的部長來作為報告
transcript.whisperx[12].start 1933.138
transcript.whisperx[12].end 1950.007
transcript.whisperx[12].text 主席、各位委員、女士先生今天答應第十一屆第三會期社會福利及衛生環境委員會召開全體委員會議本部呈要列席報告深感榮幸知就面對國際經貿情勢順變或國如何應應並確保藥品、醫療器材
transcript.whisperx[13].start 1955.722
transcript.whisperx[13].end 1972.656
transcript.whisperx[13].text 等各面向供应正常保障国人权益进行专题报告进行各位委员不吝会议指教全球经贸情势正处于快速变革之际面对全球经贸动荡恐造成药品及医疗器材供应之冲击
transcript.whisperx[14].start 1973.277
transcript.whisperx[14].end 1991.704
transcript.whisperx[14].text 本部已建構相關應用機制措施以確保藥品及醫療器材穩定供應為確保藥品及醫材之供應穩定首先為預防及應用藥品及醫材供應不止之情形化生本部透過既有之通報處理機制
transcript.whisperx[15].start 1994.212
transcript.whisperx[15].end 2003.511
transcript.whisperx[15].text 得及時進行短期情形評估並啟動應應措施保障民眾醫療權益第二本部已制定必要
transcript.whisperx[16].start 2004.861
transcript.whisperx[16].end 2029.098
transcript.whisperx[16].text 必要藥品及必要醫材清單將持續滾動式調整產品清單內容強化藥商預先通報之責任及應變措施第三主動提升我國藥品及醫材供應鏈韌性鼓勵者增加原料來源及儲備以避免國內廠商應單一來源供應異常而過度集中影響供應鏈
transcript.whisperx[17].start 2031.48
transcript.whisperx[17].end 2059.38
transcript.whisperx[17].text 並透過專業輔導及加速審查等方式協助業者儘速取得許可證強化國內自主供應韌性最後本部將持續主動監控藥品及依採國外短缺警訊及國內臨床需求預先盤點整備品及其原物料的庫存以確保供應鏈之穩定
transcript.whisperx[18].start 2061.521
transcript.whisperx[18].end 2077.06
transcript.whisperx[18].text 為確保藥品及醫材之合理價格本部確實盤點藥品清單適時調整藥價鼓勵並支持賢明藥及生物相似性藥之使用支持新藥在地製造
transcript.whisperx[19].start 2078.081
transcript.whisperx[19].end 2097.334
transcript.whisperx[19].text 加強我國製藥韌性確保藥品供應維持合理要價持續推動健保藥品政策改革修法以獎勵國內外藥商在國內製造國內藥廠投入資源及擴充生產量能如果一定條件則製藥品
transcript.whisperx[20].start 2098.915
transcript.whisperx[20].end 2118.033
transcript.whisperx[20].text 價格不予調整達到鼓勵在地製造強化藥品公用韌性保障合理藥品價格等三大目的自有國公會疫苗抗病毒藥品節電試劑以儀器及防疫物質等供應及價格針對已簽訂合約之產品經評估占有立即影響
transcript.whisperx[21].start 2123.158
transcript.whisperx[21].end 2148.493
transcript.whisperx[21].text 因應國際經貿情勢順變,本部將持續強化藥品及醫材供應鏈韌性以確保藥品及醫材之穩定供應,保障國人健康潛力本部曾答應各位委員之指教及監督,在此靜置謝陳,並期各位委員繼續予以支持,謝謝好,謝謝部長的報告
transcript.whisperx[22].start 2150.407
transcript.whisperx[22].end 2178.837
transcript.whisperx[22].text 那接下來呃有關於本次會議各項書面資料列均列入紀錄刊登公報現在開始來做詢答作為下宣告本會委員詢答時間為6加2分鐘列席委員4加1分鐘10點半截止歡迎登記委員如果順便質詢請於稍微前提出預期不受理暫定10點半休息10分鐘原則上時間11點30分處理臨時提案10點半截止收件然後呃現在請登記第一位委員林月琴委員來做詢答
transcript.whisperx[23].start 2186.954
transcript.whisperx[23].end 2189.615
transcript.whisperx[23].text 主席麻煩我們的邱部長來請部長委員長部長早上現在台灣我覺得我們長期處在一種地緣政治的風險當中而且現在因為我們的物質缺乏導致我們很仰賴進口的貿易
transcript.whisperx[24].start 2211.59
transcript.whisperx[24].end 2230.296
transcript.whisperx[24].text 所以完善的藥品供應鏈的韌性跟降低我們的缺藥危機本來就事實上是台灣一直要固守的那個碉堡但這個堡壘當下受到美國關稅的政策的一個衝擊呢那所以就會引發一些問題藥品供應鏈有關我們國家安全
transcript.whisperx[25].start 2237.877
transcript.whisperx[25].end 2265.522
transcript.whisperx[25].text 藥品當下受到我們的關稅豁免的確現在當時是現在是此時此刻這樣可是兩個月內將以我們的獨立關稅的項目來徵收關稅所以我們可以預期藥品不可能排除在國際關稅的競爭之外結果將引發藥品的價格波動所以當然目前整個也會去衝擊到我們的藥品的供應鏈所以可能會造成國產藥品的出口受阻和進口要價
transcript.whisperx[26].start 2266.909
transcript.whisperx[26].end 2288.157
transcript.whisperx[26].text 那個可能會比較貴還有我們的藥品的供應呢也會產生新藥退出台灣市場而且國產藥事實上是會缺乏原料藥所以想問部長這是攸關我們國家藥品供應鏈的事也是整個藥醫界所關注的大事衛福部不能沒有對策你這邊要怎麼應對好謝謝委員的詢問那我想我們
transcript.whisperx[27].start 2292.406
transcript.whisperx[27].end 2310.458
transcript.whisperx[27].text 足夠的藥品、醫材、相關的一個物品的確是對保護我們全國人民健康非常重要的事情所以這個事情是平常我們就在做的事情因為因應不時之需所以我們在藥品方面我們當然第一個會有
transcript.whisperx[28].start 2317.452
transcript.whisperx[28].end 2339.479
transcript.whisperx[28].text 會列出一個藥品的必要清單那當然在藥事法也有規定如果在六個月當中可能會將來會切法六個月應該要在六個月前就應該要告知我們來做應應的一個前瞻性的處理那第二個當然就是如果藥品短缺有一個通報平台
transcript.whisperx[29].start 2340.419
transcript.whisperx[29].end 2358.29
transcript.whisperx[29].text 那這個平台也能夠隨時來營營第三個當然我們有更不管是在食藥署這邊或是在健保署因為大部分的藥物都是健保署所以那個所以如果說它的成本真的有增加
transcript.whisperx[30].start 2359.35
transcript.whisperx[30].end 2375.496
transcript.whisperx[30].text 那麼當然可以提報它的成本來申請然後我們有一個公式來做一個調整這些機制其實過去都已經進行得很順暢那目前來講並沒有對這個藥品直接的衝擊
transcript.whisperx[31].start 2379.442
transcript.whisperx[31].end 2390.731
transcript.whisperx[31].text 當然我們覺得我們一定要非常的小心預先來準備那至於說如果可以的話是不是我們兩位署長有沒有要補充的請我們食藥署的江署長做簡要的補充一下
transcript.whisperx[32].start 2396.309
transcript.whisperx[32].end 2417.615
transcript.whisperx[32].text 食藥署這邊做我們做檢要補充我們做了整體的盤點因為以食藥署就是藥物供給跟藥物有效性跟安全性是我們最主要的一個前提所以美國的衝擊這一次我們其實對於進口跟國內的輸入的藥大概是佔27%其中美國的部分呢其實佔1.86%我們用藥證來講總共216下
transcript.whisperx[33].start 2421.596
transcript.whisperx[33].end 2450.721
transcript.whisperx[33].text 整體我覺得衝擊特別特別明顯的會是在所謂他在專利期內的有60張看起來是佔0.5%那其中我們特別特別要去注意的是因為美國進來的幾項我們會提早因應也跟健保署這邊做很好的溝通包含我們的血液的製劑然後抗腫瘤的藥物神經疾病的用藥那我們也有看到有少部分是罕見疾病的部分那這部分我們也充分的溝通
transcript.whisperx[34].start 2451.301
transcript.whisperx[34].end 2474.854
transcript.whisperx[34].text 因為現在所謂的關稅的衝擊的部分就如部長剛才提到的因為還沒有明顯的變動雙方都是零關稅的對於這個藥因為健康的部分藥物的部分值得高的規格跟高的高度因此就互相是豁免了相關的關稅所以因此我們好 等一下我覺得再讓署長再做補充因為下一頁也是剛剛講的零關稅
transcript.whisperx[35].start 2476.194
transcript.whisperx[35].end 2493.249
transcript.whisperx[35].text 所以台灣健保的那個收窄的藥品大概一萬四千多項其中從美國進口的藥品品項大概一百七十七項一年占我們健保藥費的支出大概十%左右所以台灣藥品的超過六成都是來自國外
transcript.whisperx[36].start 2493.829
transcript.whisperx[36].end 2520.99
transcript.whisperx[36].text 所以對藥價跟供應波動非常的敏感所以這次波這一波的危機不是只有在美國可能還是上次可能是全球所以石蘇朗這邊西藥進口商他倡議就是說是不是應該要承認以獲得美國FDA或歐盟的EMA核准的處方簽以縮短我們的查驗登記的程序跟時間降低國際藥品輸入門檻
transcript.whisperx[37].start 2523.832
transcript.whisperx[37].end 2538.581
transcript.whisperx[37].text 所以健保署對此的態度如何甚至是不是可以能夠兩方在美國那邊甚至在我們台灣是不是也都可以爭取彼此的承認先做一點點補充因為是新藥
transcript.whisperx[38].start 2542.864
transcript.whisperx[38].end 2568.839
transcript.whisperx[38].text 精準的高高精準的藥物新藥在國際上FDA審過了是不是所謂的平行的一個承認的概念嗎那我們對於精準的一些高度的新的用藥來講對於一些疾病尖端的治療我們認為這個是有很大的空間可以去討論的因為國內目前對於藥證的審查裡面有幾種一般普通的審查那有部分其實是加速的審查
transcript.whisperx[39].start 2569.35
transcript.whisperx[39].end 2575.052
transcript.whisperx[39].text 對 那我們現在是不是可以 因為孝敬偶像去倡議說是不是可以
transcript.whisperx[40].start 2575.854
transcript.whisperx[40].end 2600.163
transcript.whisperx[40].text 整個查驗的那個可以縮短查驗登記的程序跟時間來降低這個部分是縮短查驗登記的時間事實上我們食藥署這邊持續在進行當中那至於我們剛才看到的是說我們假如國外FDA承認的它的藥物裡面非常多種舉例它有很多的學民的用藥它勢必如果是直接平行的話那這部分我們其實不是那麼支持
transcript.whisperx[41].start 2600.623
transcript.whisperx[41].end 2613.009
transcript.whisperx[41].text 因為它很快速就會佔據整個台灣的學民用藥以及本土的藥業的發展的所以這個知識體大也我們要重新思考但對於新的藥物專利期的藥物假如有個機會讓
transcript.whisperx[42].start 2614.929
transcript.whisperx[42].end 2643.406
transcript.whisperx[42].text 民眾提早可以用到這是我們持續在做加速審查也是我們持續在做的那再麻煩我們的食藥署這邊那那西藥進口商比較擔心產業受到的衝擊所以國產製藥也在4月藥商也在4月14號也提出幾項訴求了所以首先先問部長三大公協會他要求政府在健康台灣全社會訪問任性政策推動上
transcript.whisperx[43].start 2644.626
transcript.whisperx[43].end 2660.419
transcript.whisperx[43].text 應該把社區藥局跟藥廠還有我們的醫財廠整個產業界的都能夠在你們開會裡邊納入他們一起來做討論那在這邊你可不可以給出具體的承諾
transcript.whisperx[44].start 2661.693
transcript.whisperx[44].end 2686.272
transcript.whisperx[44].text 如果在全社會防疫任性裡面我們很清楚委員裡面就是有藥界的代表所以大概有什麼意見在這個防疫任性的一個委員會裡面都會有重複的有藥廠跟醫材廠嗎 甚至社區藥局足夠代表嗎應該是 因為民和有限嘛所以我們目前是邀請藥師公會理事長
transcript.whisperx[45].start 2687.433
transcript.whisperx[45].end 2705.924
transcript.whisperx[45].text 在裡面擔任委員,他也提供很寶貴的意見,協助我們整個醫療的一個韌性那至於剛剛您提的這三大公會的訴求,我們很感謝我們健保署非常的用心針對這些本一直的訴求在去年11月21號公告的一些預告的一些政策
transcript.whisperx[46].start 2710.667
transcript.whisperx[46].end 2738.329
transcript.whisperx[46].text 那到1月20已經那個 那這段期間真的健保署的同仁也很辛苦把大家的意見在整理的好希望送到部裡面的時候能夠很快的來公告 來真正給給國內的製藥最大的一個幫助這部分請那個市署長補充一下市長這邊也在他的第二個訴求事實上是能夠促進學民藥的替代所以你這部分 因為我看你們製藥事實上是規劃當中可不可以加速
transcript.whisperx[47].start 2739.249
transcript.whisperx[47].end 2753.915
transcript.whisperx[47].text 跟委員報告對於這個我們國內的整個健保一萬四千多個品項裡頭其實83%是屬於國內製造是佔了很大宗的那但是呢它的整個申報金額大概只有23%所以如何就簡單的講說它是這個
transcript.whisperx[48].start 2756.696
transcript.whisperx[48].end 2781.426
transcript.whisperx[48].text 物聯價美啦所以我們是很希望去多鼓勵這個學民藥或者生物相似藥的使用所以我們在去年開始推動這個學民使用這個生物相似藥的這個獎勵措施所以本來它的佔率只有7%今年一年直施下來大概提升到13%那我們希望朝向30%這個目標來前進所以今年下半年還會再擴大那麼這個化學
transcript.whisperx[49].start 2784.787
transcript.whisperx[49].end 2800.785
transcript.whisperx[49].text 化療的學名藥大概什麼時候下半年因為我們還要經過那個專家會議清單出來然後共同擬定會議通過就可以那楊署長這邊他的第三個訴求是因為未來預期我們國際藥價的漲價對國產
transcript.whisperx[50].start 2804.264
transcript.whisperx[50].end 2824.43
transcript.whisperx[50].text 我們的藥商一定會產生一些衝擊那健保要價要及時反映市場價格做調動是不是說到這邊也有我們在這個藥品支付標準第34條跟35條他都有因應這個如果生產供應鏈改變成本不敷的時候可以提出這個臨時的調整藥價這個是有這個機制可以來進行所以這個機制都有
transcript.whisperx[51].start 2831.089
transcript.whisperx[51].end 2838.096
transcript.whisperx[51].text 本來原定4月要公布實施的叫做全民健康保險藥物起伏項目跟支付標準跟全民健康保險
transcript.whisperx[52].start 2839.071
transcript.whisperx[52].end 2860.622
transcript.whisperx[52].text 藥品價格跟調整的作業辦法這兩項那請問一下署長月底前可不可以如期公布實施跟委員報告謝謝委員很關切這兩個法案這一個是藥價調整辦法主要是要針對如果有國內製造屬於必要藥品品項在三項以下的當年度不調整藥價所以這個我們已經修好了
transcript.whisperx[53].start 2863.684
transcript.whisperx[53].end 2884.677
transcript.whisperx[53].text 還有一個是支付標準對於國內製造使用國內的原料要都有加成的規定還有鼓勵這個新藥首先在台灣上市或者是在國外上市的兩年內到台灣來製造都有鼓勵的措施那因為是1月20號完成預告所以我們把大家的意見整理之後已經現在在做簽辦這個月底
transcript.whisperx[54].start 2889.139
transcript.whisperx[54].end 2890.96
transcript.whisperx[54].text 因為現在是按照程序然後把所有的意見都弄好就麻煩你們4月底能夠如期因為我時間有稍微再給我一點時間藥品價格波動同樣衝擊我們國產的那個製藥的原
transcript.whisperx[55].start 2910.615
transcript.whisperx[55].end 2929.274
transcript.whisperx[55].text 原料料的一個價格那我們看那個官務署的那個海關統計2022年自中國進口的原料的金額佔總金額的54%那如果由於中國原料料的價格都是比印度的原料料價格打7折所以從數量來看的話大概中國是佔70%
transcript.whisperx[56].start 2931.144
transcript.whisperx[56].end 2949.672
transcript.whisperx[56].text 所以不只台灣全球都因為受到這種低價的吸引所以想問部長如果接下來要是抓住原藥料不出口的話台灣的國產制藥必定陷入在困境裡面所以在台灣對中國的高度依賴狀況下你怎麼去因應這個問題
transcript.whisperx[57].start 2950.831
transcript.whisperx[57].end 2971.538
transcript.whisperx[57].text 好我想這個不管是燃料要用相關的物品第一個真的是全球的趨勢都是強調就地生產就地行銷這個部分可能未來要加強的那當然我們也會所以能不能考量多元化的用分散市場的觀念來處理那這個食藥署的署長再補充一下
transcript.whisperx[58].start 2976.175
transcript.whisperx[58].end 3002.324
transcript.whisperx[58].text 我想委員這邊提到非常關鍵的議題的確我們在原料藥的來源中國跟印度佔的比相當高超過近50%以上所以近年來我們其實是極度的在支持跟國內的新的原料藥的生產比如說在去年裡面我們國內的申請的張數其實高達27張那我們希望未來能夠做分散我們可以看到不管是在歐洲系統
transcript.whisperx[59].start 3003.144
transcript.whisperx[59].end 3025.107
transcript.whisperx[59].text 還是在亞洲地區的日本都是有機會讓我們去爭取的方向所以我想問一下部長能不能對我們的國產製藥廠做價差的貼布因為畢竟我們台灣有三十幾間的原藥藥廠可是每年反而是去外銷所以能不能讓國產的原藥料留在台灣
transcript.whisperx[60].start 3027.181
transcript.whisperx[60].end 3050.478
transcript.whisperx[60].text 這個請你們去做考慮然後也請食藥署這邊是不是立刻盤點我們覺得政府應該要去充分掌握說那我們使用中國原藥料這樣的一個潛在危機所以你應該要去了解整個去針對中國的原藥料應該從政府手中的資料去勾結出來能夠去做對照到底哪些
transcript.whisperx[61].start 3051.397
transcript.whisperx[61].end 3077.09
transcript.whisperx[61].text 優先品項你們這邊要充分掌握最後就是期待是不是因為八大藥業的工會上週都提出說縮短不利醫院採購藥品到期前有效期8個月縮短到6個月那食藥署這邊對這個表示說只要藥品只要在出廠標示的有效期限內都能確保藥效因此有效期限縮短不影響藥效的話那
transcript.whisperx[62].start 3078.905
transcript.whisperx[62].end 3097.604
transcript.whisperx[62].text 可是卻可以降低到我們的藥商庫存的藥品壓力 我不知道部長你可不可以回應這個呼籲那個藥界的訴求都有它的道理 但是它有採購有一定的專家的一個會議這個在部立 因為你問部立業嘛 我請林青峰執行長簡料的回答一下
transcript.whisperx[63].start 3098.304
transcript.whisperx[63].end 3114.912
transcript.whisperx[63].text 報告委員 最主要是我們的整個聯標是26家部裡還有18個縣市還有所有的這個縣市衛生局所所以它這個所謂的大小規模不一樣地域不一樣所以它在這個部分裡面有偏鄉離島所以他們牽涉到他們裡面的
transcript.whisperx[64].start 3115.952
transcript.whisperx[64].end 3131.952
transcript.whisperx[64].text 需求剛剛部長特別提到因為我們是一個藥聯標委員會所以裡面有含有各醫院的院長還有藥劑主任還有專家學者所以他們都在統籌裡面也調查所有的醫院還有衛生所的需求所以在這個部分裡面我們也是尊重我們的現在藥聯標委員會它裡面的決議
transcript.whisperx[65].start 3134.295
transcript.whisperx[65].end 3161.101
transcript.whisperx[65].text 第三個其實現在現行的體系的醫院包含台大或是退府會或是說軍方還有一些是聯義他們都是在八個月以上甚至還有一年所以在這個部分裡面其實我們都是交給我們的聯邦委員會因為我這邊最後就提出這五項請我們的部長這邊針對這五項後面待會我們會再持續追蹤後面我也有那個臨時提案我們聯義會持續努力謝謝
transcript.whisperx[66].start 3164.98
transcript.whisperx[66].end 3189.757
transcript.whisperx[66].text 好 謝謝 請回 案例要安裝一點 不然時間有限 時間已經過很久了接下來請陳昭志陳委員謝謝主席 麻煩請邱部長兩位署長 江署長跟石署長麻煩帶一份今天的書面資料 一份就放桌上因為我對資料有點 今天看到有點問題兩位署長
transcript.whisperx[67].start 3196.991
transcript.whisperx[67].end 3197.513
transcript.whisperx[67].text 就江處長 施處長
transcript.whisperx[68].start 3205.719
transcript.whisperx[68].end 3227.515
transcript.whisperx[68].text 好部長跟兩位首長早那個對於藥品穩定供應的相關機制裡面再請看第二頁對於必要藥品的清單是很重要的那不好意思我可不可以麻煩那個江署長您可不可以念一下這一段因為這一段是您的你們署寫的來制定必要藥品清單請問是書面報告還是口頭報告你讀一下因為才三行字來麻煩快點
transcript.whisperx[69].start 3230.057
transcript.whisperx[69].end 3246.749
transcript.whisperx[69].text 對,請署長讀,署長來第二頁,第二頁,制定必要清單呢?滾動式呢?您自己稍微了解一下你時間稍微考起來,時間稍微考起來,他們找不到自己的資料,拜託拜託時間給你考起來制定必要藥品
transcript.whisperx[70].start 3247.549
transcript.whisperx[70].end 3263.767
transcript.whisperx[70].text 清單 滾動式檢討藥品清單以強化藥商預先通報的責任及必要藥品供應不足之與之實之因應之道好 請暫停 必要清單你知道有幾項嗎 必要藥品你知道大概有幾項嗎 誰決定的我們現在是訂了584項然後是誰決定的
transcript.whisperx[71].start 3267.924
transcript.whisperx[71].end 3273.749
transcript.whisperx[71].text 是在我們這邊的盤點之後最後的確定下來就是誰決定誰去做這個必要清單的決定我們在食藥署這邊盤點確定下來的不是他一定有認定啊必要有一個認定過程啊這是第一個第二個你有這個名單你的目的是為了強化廠商通報嗎對
transcript.whisperx[72].start 3285.939
transcript.whisperx[72].end 3312.706
transcript.whisperx[72].text 他不是為了強化廠商 因為我們最主要是要穩定嘛所以如果是一個寡占 我們的所謂的你說得好 署長所以他不是為了強化他通報機制廠商啊責任不在廠商啊你中央要有一個知道說我訂了必要清單你現在講不出必要清單是誰訂的OK啦 沒有就是說再去了解必要清單訂下來以後你要知道我要穩定供應不是廠商因為他不需要知道別人怎麼供應法
transcript.whisperx[73].start 3313.286
transcript.whisperx[73].end 3337.861
transcript.whisperx[73].text 你同意嗎?你要有這個中央的監控我稍微提一下我這邊是我們針對這個必要的藥品清單確立之後他就會有相對的供應的廠商那我們會有一個登錄的系統底下能夠照他們藥庫裡面來要求因為你管的是幾百項你竟然訂了幾百項把我嚇到了好幾百項必要那我再問你一件事你知道健保署有他自己的另外一套清單
transcript.whisperx[74].start 3339.481
transcript.whisperx[74].end 3358.479
transcript.whisperx[74].text 你知道嗎 我現在知道 你知道嗎這個我沒有很確定你們兩個從來沒有牽手 該我承受一下食藥署跟這個下游的 這就從來沒有牽手過好 那個施署長就麻煩你念一下第五頁黑是你的 所以我請你念來 第四項第五頁那個黑是 確保藥品供應維持合理請你念一下那一段 快一點 謝謝
transcript.whisperx[75].start 3359.9
transcript.whisperx[75].end 3383.973
transcript.whisperx[75].text 確保藥品供應維持合理要價冒號經主管機關公告之必要藥品並符合同分組內有國內製造品項並符合同分組內有國內製造品項抗維生物質既不在此限這個重複了抱歉即從分組分類未遇及同分組分類
transcript.whisperx[76].start 3386.08
transcript.whisperx[76].end 3387.765
transcript.whisperx[76].text 這個好像有三個品項的條件當年度要駕步與調整
transcript.whisperx[77].start 3393.547
transcript.whisperx[77].end 3415.692
transcript.whisperx[77].text 以確保藥品供貨穩定 平衡藥價調整與健保支出再為我今天要多一點點時間 你看都是他們資料有問題第一個署長你讀不懂嘛對不對讀不通讀不通因為沒有整理文字 沒有確定就把它交上來嘛那對我們來說這很重要然後請問你健保署有所謂的必要藥品嗎
transcript.whisperx[78].start 3416.943
transcript.whisperx[78].end 3444.464
transcript.whisperx[78].text 我們是參考這個FDA所訂的那個必要藥品清單為主請等一下健保署沒有必要藥品這四個字育文組長對不對沒有我們這個這次修法才有你的名稱是什麼你的名稱是什麼你不叫必要藥品因為你為了當年為了怕跟食藥署混在一起叫什麼特什麼他只要回答名字就好了我時間也很寶貴叫特殊叫我們特殊品
transcript.whisperx[79].start 3444.864
transcript.whisperx[79].end 3473.821
transcript.whisperx[79].text 早就改了嗎我們叫特殊品對你們沒有必要藥品清單石組長你們沒有必要而且是2016年之前就改了現在我們在修法就是修這個就是藥價調整辦法修進來的這是新的草案條文石組長你剛剛第一個就是文字儀化整理大家看不懂而且我覺得三項以內應該就是不予調整要予調整這個讀起來都很奇怪還有兩位署長再麻煩你看部長就在旁邊了解你們兩個的必要藥品括號你叫特殊藥品你叫必要品
transcript.whisperx[80].start 3474.701
transcript.whisperx[80].end 3496.058
transcript.whisperx[80].text 你有幾項 石鼠爪你有幾項必要 那個特殊品項我們現在有幾項我們現在以這個新的修法的剛剛這個條文的話是跟石藥署是一致的我們是用必要藥品一樣的名稱現在我們一直在處理啊你是叫特殊品項 而且你還裡面分兩類嘛沒有替代性跟有替代性的嘛然後你現在有幾項
transcript.whisperx[81].start 3497.321
transcript.whisperx[81].end 3518.118
transcript.whisperx[81].text 你還沒修法都不要講我們現在有800多項啦好 你看 你倆有避過嗎?你的800跟你的500 你們有避過嗎?好 光光這個問題要解決這個什麼關稅的那個彩效你們的必要清單就都沒有了我今天在諮詢我們都有涵納啦那個FDA的必要藥品清單都在我們這個裡面
transcript.whisperx[82].start 3520.902
transcript.whisperx[82].end 3535.473
transcript.whisperx[82].text 我們都包含在裡頭了好像不是喔 署長我對他置身三十年好像不是這樣 都是有專家認定的部長 你看 我先問你 不然兩位先回座好了這個署長 施署長 我等一下其實本來要告訴你你說可以調整 因為更不夠 必須調整但是你知道調整的過程要多久嗎
transcript.whisperx[83].start 3542.938
transcript.whisperx[83].end 3551.923
transcript.whisperx[83].text 還有什麼步驟嗎 你知道嗎我們當然調整的過程還是需要跟廠商去議價那也要經過共同議會議通過不是不是 你要經過專家會議他經過共同議會議然後你要認定調價你允許 因為這太特別了這一次的調價你平常不是這麼做的你平常就算他們提出成本分析你都要去判斷說有沒有類似藥品其實成分不一樣有沒有類似藥品可以用有沒有 那個很判斷
transcript.whisperx[84].start 3571.213
transcript.whisperx[84].end 3596.561
transcript.whisperx[84].text 很主觀的東西所以第一個你還說這個是必要品你先讓他申請你要不要認定認定可不可以調之後第二個才我怎麼調法或不調然後你的屬下堅持要分開會議處理要兩次會議處理我曾經提案在你還沒有開除我之前我曾經提案說兩件事一起處理不要等時間因為既然是重要的藥品缺藥過去也有缺藥不是現在才缺藥啊
transcript.whisperx[85].start 3597.341
transcript.whisperx[85].end 3619.172
transcript.whisperx[85].text 但是你的步驟是這樣跟委員報告在這次輸液的時候我們就查取了快速的處理那個沒有問題我們這次已經有經驗了你的專家群會再去認定啊所以你這次報告寫的東西不對嘛因為報告寫裡面的必要清單我們就會給予這個如果說因為關稅等等要這樣改變我們就去處理但是你的專家可不是這樣講因為你的上情從來不下達專家還是用他原來那一套在跑好嗎
transcript.whisperx[86].start 3625.601
transcript.whisperx[86].end 3649.326
transcript.whisperx[86].text 不過這個現在我們就很清楚了我們跟這次的修正辦法就是跟食藥署同步我們採用一樣的標準他認定的過程喔而且他認定還分兩次會議對不對 藝文組長沒錯吧結果我這次先認定你是不是屬於我們認為我們需要的不是你講的必要名單喔不是說放在必要清單特殊品項就直接調不是喔你就先說好
transcript.whisperx[87].start 3650.606
transcript.whisperx[87].end 3673.817
transcript.whisperx[87].text 我先認定一次好下次會議也不知道一次個月還兩個月後好我再來認定好可能還是不調喔可能還是不調喔因為調價是兩件事認定跟調價兩件事情你們現在作業是這樣做的對當然是要有必要裁調當然是這樣啊這個藥品一定要分開嗎沒有可替代的我們裁調有替代的我們當然用替代還是要為健保省錢啊保管啊都在清單裡面啊那你的清單是假的
transcript.whisperx[88].start 3677.158
transcript.whisperx[88].end 3703.479
transcript.whisperx[88].text 清單有兩種處理在這個必要藥品 清單剛剛我提到的是在調整藥價的時候它是稀缺品項 我們不予調價另外一個是調整 要調高調高那個是根據34條 35條你怎麼不簽手 你還跟他說800多項 你這個500多項你認定是必要藥品 那你又去設條件 設品牌特殊品項是800多 必要藥品我們現在是跟FDA同步了所以我們才在修這個辦法的目的就是在這裡 讓它同步
transcript.whisperx[89].start 3704.795
transcript.whisperx[89].end 3718.909
transcript.whisperx[89].text 是他跟你同步你跟他同步你是要付錢的喔他的必要品可能不付錢喔你這個兩位署長你們要搞清楚你一個是負責發證讓這個藥品可以進來必要藥品我們一定會納入給付必要藥品一定納入給付
transcript.whisperx[90].start 3719.98
transcript.whisperx[90].end 3739.499
transcript.whisperx[90].text 你過去不是這樣的原則的喔那我再跟你講一次你現在沒有必要藥品從我在這裡就是用這個原則在處理這件事你一直上情不下達你沒有進去開會啊你沒有進去開專家會議啊我在那邊30年了你沒有進去開會啊一直都不是這樣所以我今天真的是為了這個報告我今天的質詢稿都不能講了
transcript.whisperx[91].start 3740.82
transcript.whisperx[91].end 3755.635
transcript.whisperx[91].text 我今天看你們第一個你們兩個數很重要一個上游是許可證進來進來後大家等著要健保給付你這個兩端大家從來不牽手各自做各自的你看大家也聽到到目前為止因為你說要準備修法
transcript.whisperx[92].start 3756.035
transcript.whisperx[92].end 3773.487
transcript.whisperx[92].text 可是到目前為止你的必要清單跟你的以前叫必要清單後來叫特殊因為你們怕confuse在一起你們還擔心混淆在一起所以你們特別切割特別去切割然後又為了怕這個跟什麼WHO的必要品清單混在一起這件事一塌糊塗
transcript.whisperx[93].start 3774.648
transcript.whisperx[93].end 3778.992
transcript.whisperx[93].text 然後處理方式都不一樣啊那現在說你要跟他看齊欸這麼快嗎幾百項要跟他看齊但是看齊了以後等到缺藥那你也不去處理要價啊那個處理要價另外一套規則你那幾十個專家委員從來沒有聽過你這套規則他們處理的方法幾十年都一樣還是用他們主觀的感覺去決定我要不要給你調降啊就算他給你成本分析你還是不給他動啊
transcript.whisperx[94].start 3799.229
transcript.whisperx[94].end 3805.341
transcript.whisperx[94].text 我們今年在要價調整的時候就已經調整了200項都是調整要價油啊
transcript.whisperx[95].start 3806.345
transcript.whisperx[95].end 3835.254
transcript.whisperx[95].text 有這個機制啊那不是必要藥品反正我今天因為我是針對你們的題目你們的書面資料我也讓部長知道部長當然不會知道這麼仔細第一個兩個各自有他的自己清單從來幾十年來從來不簽手的各自做各自的那健保署為了付錢有他自己的遊戲規則而且就是盡量時間很慢幾個月會通過一半以上都不給予調整
transcript.whisperx[96].start 3836.554
transcript.whisperx[96].end 3857.336
transcript.whisperx[96].text 調生價錢或是調尤其是調生你們是非常非常小氣的完全就是等等等等然後到最後導致生理食鹽水嘛剩一家嘛對不對江署長生理食鹽水會搞到這樣就是因為他後來剩一家你不知道你的監測機制出問題嘛剩一家你都不注意你叫要他通報你一直盯他可是其他人沒有辦法再備著支援備用所以你這邊斷了
transcript.whisperx[97].start 3858.217
transcript.whisperx[97].end 3866.961
transcript.whisperx[97].text 然後斷了以後健保署才不知道說我今天沒辦法談要價差你付25他賣18其他人撐不住就這一家長在撐用18塊撐到他也撐不住品質了出問題了然後林社長去國外買買51塊不准有要價差而且去年花了三四億今年又變了11億11億等著犯錯穩定生理食鹽水穩定專案經濟有責任
transcript.whisperx[98].start 3883.504
transcript.whisperx[98].end 3889.886
transcript.whisperx[98].text 謝謝委員那我們其實特別跟委員報告我們3月24號這個供應的國內的廠已經恢復他的產線所以我們3月24號的監督機制就是怎麼去訪問我剛剛的重點說你哪必要清單都不一樣但是你們只記得以強化我特別讓你們以強化廠商的通報責任在廠商嘛你要通報廠商沒有必要負責我總共台灣有幾家在供應嘛所以這個供應的問題中央公司監測是由我們官方要來處理嘛不能當一家獨大然後那一家品質出問題
transcript.whisperx[99].start 3912.893
transcript.whisperx[99].end 3929.181
transcript.whisperx[99].text 可能就是藥價差搞成沒有辦法沒有辦法用錢去生產有品質的所以全國大斷藥啊基本用就沒有了健保署是很後來的事情去調整的事情我今天你看以後把資料弄清楚然後把名詞弄清楚
transcript.whisperx[100].start 3929.881
transcript.whisperx[100].end 3952.439
transcript.whisperx[100].text 食藥署迄今沒有必要藥品的清單食藥署的必要清單是用自己管理的不是為了讓廠商通報廠商通報只是其中他們要做的一件工作你要從中央控制不要再讓生理食鹽水這麼它還不算必要藥品我認為它是基本的用藥你沒有生理食鹽水更不能開業好嗎台灣的醫療業都不要營業了它是基本的用藥還不是必要必不必要的問題
transcript.whisperx[101].start 3953.561
transcript.whisperx[101].end 3954.302
transcript.whisperx[101].text 非常謝謝我們委員做專業的一個建議要簽手 多簽手要簽手 要公開簽手
transcript.whisperx[102].start 3969.742
transcript.whisperx[102].end 3982.495
transcript.whisperx[102].text 特別年紀相當 因為你上游發許可證 下游健保給付 大家要多合作我們共同為人民的健康 藥品的同意來一起努力非常謝謝委員長的指教 謝謝謝謝主席接下來請陳清威委員來做選擇
transcript.whisperx[103].start 3998.791
transcript.whisperx[103].end 4023.669
transcript.whisperx[103].text 謝謝主席 謝謝各位委員還有官員我們請邱部長 謝謝來 請部長委員長邱部長是現在已經是4月16號請問你過去做立委的時候啊這是您109年 110年 111年 112年啊您過去做立委的時候 您還記得這些時間你們都在幹嘛嗎
transcript.whisperx[104].start 4027.344
transcript.whisperx[104].end 4032.746
transcript.whisperx[104].text 都在努力為人民的健康在奮鬥這個時候你們都在提出解凍報告還有解凍預算了甚至呢110年雖然稍晚是5月9號可是呢當時你們這個胃黃委員會有128案提案預算提案凍結各類的預算提案還發新聞稿行政院還發新聞稿說最後感謝三讀通過所以胃黃委員在5月9號也排了預算解凍的處理
transcript.whisperx[105].start 4057.077
transcript.whisperx[105].end 4063.041
transcript.whisperx[105].text 那現在也讓您稍微回憶一下其實您過去這個110年111年也是大刀闊斧啦您又砍蔡政府砍蘇貞昌內閣的預算是不手軟那我有把您的一些緣由啊理由啊都有讀完了
transcript.whisperx[106].start 4075.009
transcript.whisperx[106].end 4078.091
transcript.whisperx[106].text 110年您砍了防疫業務的錢砍了少子化降低家庭負擔經費的錢到110年呢你一樣是砍了防疫的錢砍了傳染病防治業務的錢砍了WHO業務的錢但是
transcript.whisperx[107].start 4091.242
transcript.whisperx[107].end 4107.919
transcript.whisperx[107].text 當時陳時中部長是非常積極的把解凍的報告我查了一下您當4年的這個立委期間陳時中部長呢都是大概在3月3月初就把解凍報告全部都送進來了所以我在這邊也很想問您啊
transcript.whisperx[108].start 4109.581
transcript.whisperx[108].end 4137.543
transcript.whisperx[108].text 這個今年的解凍這個凍結案有藍的有綠的有白的為什麼你遲遲不把解凍報告送進來讓我們解凍經費呢因為我們看了一些其他委員會的質詢也有部長看起來像是覺得好像有上級授意還是說柯總召的指示你們是整齊劃一的動作在遲遲不提出解凍報告但是您擔任立委的期間我看您是非常負責在
transcript.whisperx[109].start 4138.904
transcript.whisperx[109].end 4163.138
transcript.whisperx[109].text 砍預算而且非常負責在監督政府也非常負責在審這些解凍的報告然後也協助衛環委員會跟陳時中部長配合解凍請問有什麼緣由嗎到現在還沒有辦法提出解凍報告謝謝委員我可不可以先針對你這兩張PowerPoint解釋一下第一個我當了兩屆的立委
transcript.whisperx[110].start 4164.562
transcript.whisperx[110].end 4180.575
transcript.whisperx[110].text 我的核酸這樣好像不太盡責但是我很用心在審查預算都覺得行政部門真的是有需要為了人民的健康在努力所以我們也盡量讓不應該酸的就不要去酸不應該凍的也不要影響人家去凍
transcript.whisperx[111].start 4182.697
transcript.whisperx[111].end 4193.202
transcript.whisperx[111].text 所以我要解釋的第一你剛列出來的都是動的我可以把我可以可以可以我唸完了我已經把你的理由我已經把你的理由都已經我已經把你的理由都讀完了我覺得是合理的合理的沒錯
transcript.whisperx[112].start 4199.145
transcript.whisperx[112].end 4217.924
transcript.whisperx[112].text 我現在只想問你嘛因為你過去這四年你也很認真的看了陳時中部長的解凍報告那你也來配合做解凍的動作嘛所以為什麼你現在不送解凍報告嘛因為你完全了解這個流程啊所以現在在卡解凍的人是你啊
transcript.whisperx[113].start 4220.574
transcript.whisperx[113].end 4224.936
transcript.whisperx[113].text 你什麼時候要送馬因為前幾天教育部部長說前幾天教育部部長說大概兩到三週那您可以給我們一個時程嗎
transcript.whisperx[114].start 4235.299
transcript.whisperx[114].end 4250.971
transcript.whisperx[114].text 我想我們的思想因為因為這整個相當的一個這次的動山預算跟以前是不一樣的完全的不一樣所以有點出乎意料之外所以有很多事情要處理而且必須要去
transcript.whisperx[115].start 4251.271
transcript.whisperx[115].end 4259.973
transcript.whisperx[115].text 完全的不一樣其實我有核對一下您對小子化的評論還有我有核對您對疫情愛滋病防治的評論很多都跟我們現在的看法是相同的喔很多都跟我們現在看法相同的喔你當時覺得防治愛滋病做得不夠好然後你當時也覺得有些小子化做得不夠好所以其實我們現在只是想要問你我們現在只是想要問你依照您
transcript.whisperx[116].start 4279.617
transcript.whisperx[116].end 4300.841
transcript.whisperx[116].text 當時擔任委員的經驗還有您當時解凍報告的經驗請問你大概還需要幾週我其實就是很簡單的問你你大概幾週內想要提出解凍報告嗎我只是要問你這個問題因為這次我們的委員的確要求的比較嚴格所以我們非常謹慎所以你的意思是說你回答不出來所以你回答不出來不是你回答不出來我們在努力當中所以你講不出幾個禮拜講不出幾個禮拜我覺得
transcript.whisperx[117].start 4308.822
transcript.whisperx[117].end 4331.224
transcript.whisperx[117].text 我們會盡快 請委員放心可以 教育部長也說盡快 所以他講兩到三週那您的盡快是多少我想我們衛福部也要至少要跟教育部一起兩到三週你要追求教育部兩到三週我們期待那個你要不要先從你覺得最重要的開始 要不要
transcript.whisperx[118].start 4333.851
transcript.whisperx[118].end 4348.655
transcript.whisperx[118].text 呃...也可以啊而且我查了一下哈當時陳時中部長一邊在應付疫情非常的忙碌但是他交這個結論報告從來沒有delay過都是3月初喔好 那...好 你也是2到3週嘛你是2到3週嘛 對吧 是嘛是...是2到3週
transcript.whisperx[119].start 4354.881
transcript.whisperx[119].end 4370.915
transcript.whisperx[119].text 我想我們時間上我想我們不要去做那個你剛才說你會配合教育部對 但是但是如果說你說要我醫院要兩到三週我當然就會接著說我們希望兩到三週送你覺得最重要的這樣怎麼樣我們來努力
transcript.whisperx[120].start 4374.778
transcript.whisperx[120].end 4378.881
transcript.whisperx[120].text 沒有答案再來我們來問經濟部有沒有發現我們藥品的逆差是48.2億元所以剛雖然有講到說進口的藥美國的藥 歐洲的藥不管進口的藥雖然數量佔的不多但其他的價值佔了七成因為它的藥費是貴的
transcript.whisperx[121].start 4397.913
transcript.whisperx[121].end 4418.821
transcript.whisperx[121].text 這是貴的這也是我們的製藥工會統計出來的所以當然您有提到說這個供應鏈的生態啊原物料的漲價一定會造成藥價變貴那我現在是想問啊您有提到說您為扶植在地的廠商所以有兩個行政辦法修正按碼剛剛也有許多人講到了
transcript.whisperx[122].start 4419.261
transcript.whisperx[122].end 4429.526
transcript.whisperx[122].text 之前好像有點嚴當但是最近的新聞又說4月要上路請問這個4月要上路是確定要上路是會跳票還是不會因為之前跳票了一次
transcript.whisperx[123].start 4430.373
transcript.whisperx[123].end 4449.439
transcript.whisperx[123].text 好 我跟委員報告齁 我們完全 據瞭解完全沒有延擋而且還 我還敬佩健保署的同仁在時事長領導之下把這兩個政策做得非常的完美而且在11月20號就預告那因為有很多的一些意見所以我們必須 這已經是
transcript.whisperx[124].start 4451.039
transcript.whisperx[124].end 4472.114
transcript.whisperx[124].text 其他在對等其他的法案規定已經是最快的速度很快會送到衛福部來那我想一定會是4月上路符合大家的需要4月會上路那現在是4月中嘛如果我想這幾天應該就會完成我們用最快的速度來公告所以您預計做出應該4月底好我們也想問因為這個也是台灣致藥業滿關切的你預計做出什麼成績那民眾會對藥價會有什麼感受
transcript.whisperx[125].start 4479.719
transcript.whisperx[125].end 4499.758
transcript.whisperx[125].text 您預計做出什麼成績這個請那個政策擬定則實施長來跟委員跟委員報告這裡面分成幾塊那第一個當然就是剛剛提到對國內的國內製藥的支持所以我們在這個藥價調整辦法裡面有新修對於這個
transcript.whisperx[126].start 4501.089
transcript.whisperx[126].end 4520.078
transcript.whisperx[126].text 必要藥品清單裡頭那麼國內的這個品項有國內製造的品項然後那個該組裡面少於三個品項以下的那我們就免於這個當年度我們就不調藥價所以藥價不會一直往下砍的意思那同時這裡面呢如果是有一個必要抗生素的話
transcript.whisperx[127].start 4521.799
transcript.whisperx[127].end 4534.284
transcript.whisperx[127].text 連國際進來的我們也都一起比照所以這個是第一個那第二個呢我們在這個資物標準裡面也有一些支持的措施那麼譬如說呢你是使用國內的原料藥我們加價10%在國內做過的臨床試驗有發表paper這個讓這個學名藥有這個
transcript.whisperx[128].start 4540.086
transcript.whisperx[128].end 4559.221
transcript.whisperx[128].text 公信力那這個我們也是加價10%的那另外我們也去鼓勵這個這個新藥的上市過去我們只有對於台灣的首發新藥就全球首發我們才有這個優惠的價但我們現在也去鼓勵如果你是在國際先上市的兩年內到國內來製造
transcript.whisperx[129].start 4560.822
transcript.whisperx[129].end 4575.051
transcript.whisperx[129].text 的這種新藥我們也有合價的優惠措施這邊我也是幫他們請命啦因為他們有提到說之後如果他們證明他們生產成本有增加的話其實你也會適當反應在藥價調整機制中嘛這個不管對於進口廠商還有國內廠商您都會一樣做但是國內呢他們還有面臨一個隱形的成本也就是說水費啊電費啊通膨啊所以他們希望在這個您可不可以考慮把它納入
transcript.whisperx[130].start 4589.286
transcript.whisperx[130].end 4605.772
transcript.whisperx[130].text 就是水電費我記得上次的電費有特別有處理過委員也有協助醫院 醫療端還有通棚那再來想問一下因為部長非常在意的是這個
transcript.whisperx[131].start 4607.412
transcript.whisperx[131].end 4624.979
transcript.whisperx[131].text 戰備任性的藥品的這個list因為您現在上次我們經歷了生理鹹水這個混亂其實藥品它是一個非常重要的戰略物資所以未來一旦發生供應鏈中斷或是遞原的風險我們應該要怎麼辦請問我們可以跟你要到這個list嗎因為裡面一定有東西是
transcript.whisperx[132].start 4626.399
transcript.whisperx[132].end 4648.817
transcript.whisperx[132].text 獨佔或是寡佔我們絕對只能仰賴進口的你想得出來哪一些嘛比如說剛剛有提到的癌藥啊 罕病藥啊還有在專利期之內的啊COVID的用藥啊 COVID的疫苗啊等等這個您定不定義為是一個戰略物資我們戰略物資是另外一塊我們是定義的就是跟食藥署合作的必要藥品清單
transcript.whisperx[133].start 4649.637
transcript.whisperx[133].end 4663.713
transcript.whisperx[133].text 所以我們之後可以跟您要到這個清單嗎報告委員這584項所謂必要藥品的清單是我們已經在今年2月份已經公佈完全已經確立下來所以可以提供給委員
transcript.whisperx[134].start 4664.714
transcript.whisperx[134].end 4685.286
transcript.whisperx[134].text 另外第二個部分特別提到所謂的戰備的相關的藥物的韌性的時候是有25項的舉例是抗生素裡面的Amoxicillin的抗生素比如說Epinephrine, Arthropine等等的我們比較在意的是這個戰備清單裡面有沒有一定會是大部分仰賴進口的因為這個絕對有
transcript.whisperx[135].start 4688.321
transcript.whisperx[135].end 4694.306
transcript.whisperx[135].text 我們目前都是國產的那我們希望COVID用藥還在專利期所以COVID用藥我們大部分是仰賴進口對這個是
transcript.whisperx[136].start 4696.98
transcript.whisperx[136].end 4704.523
transcript.whisperx[136].text 你沒有把它放進戰備物資?並不是特別的戰備 戰備物資是在暫時平時轉鑽石非常非常關鍵的用藥特別是在戰傷的那個部分好 沒關係 這個我們等拿到您的這份list我們可以再一樣樣逐項討論那再來也問一個這個醫界非常關心的問題因為下一波呢
transcript.whisperx[137].start 4718.267
transcript.whisperx[137].end 4743.786
transcript.whisperx[137].text 川普要談判的就是對於這個藥品那藥品他目前很強調的這個也是我們都在業內所以我們也知道現在這些美商啦美國的藥廠啊他其實長期就是非常介意我們有許多的非關稅貿易壁壘你審查他的新藥太久啦你給付他的藥價太低啊等等其實也嚴重的妨礙到我們病人的權益尤其是有一些
transcript.whisperx[138].start 4744.306
transcript.whisperx[138].end 4759.424
transcript.whisperx[138].text 癌症病人他們希望可以用到新藥等等的所以在這未來90天的談判藥品的談判藥品進口的談判一定會是很重要的一環我想知道這個你們有沒有派出衛福部的代表一起參與這一次的談判我想要
transcript.whisperx[139].start 4764.643
transcript.whisperx[139].end 4791.734
transcript.whisperx[139].text 藥品醫材是雙方面的啦互相所以至少到現在是用零關稅在互相對待部長我先跟你解釋一下我們比較擔心的是說在整個關稅的這樣的一個變動當中的確成本會增加那這個部分我們國內已經很早都有一個從一個及早來監測然後缺藥的一個處理然後藥價的一個調整都已經很完整了
transcript.whisperx[140].start 4792.254
transcript.whisperx[140].end 4806.289
transcript.whisperx[140].text 所以現階段是沒有缺藥的問題我現在沒有在跟你講缺藥第一個是成本增加第二個他要談的是很多非關稅貿易壁壘也就是他希望打破以前他禁藥禁台灣的這些障礙他要把它列入他的談判項目白話文來說白話文來說
transcript.whisperx[141].start 4813.496
transcript.whisperx[141].end 4821.647
transcript.whisperx[141].text 就是如果我們價格談不攏他就不想進台灣影響到病人的權益但是如果我們硬著頭皮把這些進口藥買進來
transcript.whisperx[142].start 4823.697
transcript.whisperx[142].end 4848.423
transcript.whisperx[142].text 很多醫生真的很擔心會壓縮到我們的健保點子啊所以我想問你的因應是什麼因為這個就是他們放在非關稅貿易壁壘裡面很重要的一個項目也是長期我們看這些外商的藥廠來跟我們遊說的嘛他們就是說我們這審查很慢嘛然後給他的價格非常的低有的人就乾脆不想進來了嘛
transcript.whisperx[143].start 4849.858
transcript.whisperx[143].end 4864.699
transcript.whisperx[143].text 好 包委我想在談判的事情並不是非A及B而是有雙方共同創造利益共同創造三領的局面站在我們的政府絕對是站在人民健康的維護
transcript.whisperx[144].start 4866.661
transcript.whisperx[144].end 4869.462
transcript.whisperx[144].text 那個立場上來做相關的談判那中間有很多很有智慧的一個互動所以你會派代表一起參與我們一直在因為他有各種層次的一個幕僚我們當然都有充分的把我們的這一邊的醫藥品醫療的醫療體系
transcript.whisperx[145].start 4886.111
transcript.whisperx[145].end 4891.973
transcript.whisperx[145].text 藥品醫材方面的一個資訊以及我們盤點的進入一個幕僚在盤判的我先在這邊跟部長示警因為我覺得未來我們勢必這個健保總額一定是不足的因為你說他是零關稅沒錯但是我們現在第一波所有這些鋁
transcript.whisperx[146].start 4906.856
transcript.whisperx[146].end 4928.467
transcript.whisperx[146].text 包裝的材料啊玻璃瓶啊等等就是我們藥品製造裡面大量用到的包裝材料所以他賣進來的錢是一定增加的他賣進來的錢是一定增加的所以未來這個是部長你很大的一個挑戰我相信我們還會在這邊就健保點值在同樣一個問題我們還會再談論到他
transcript.whisperx[147].start 4931.508
transcript.whisperx[147].end 4936.351
transcript.whisperx[147].text 委員報告一下真的很感謝我們立法院尤其衛反這些委員前輩們的努力我們今年的健保總額成長是有史以來最高的同時政府也給了...我知道你們在訂立成長總額的...你訂立成長總額的時候還沒發生這件事情如果未來我們當然有一個機制如果需要的話我相信政府一樣
transcript.whisperx[148].start 4954.88
transcript.whisperx[148].end 4967.826
transcript.whisperx[148].text 會秉持著像今年給我們這麼多的一個預算一樣來充分的讓我們的人民健康得到最好的保障這邊就是先給您一個示警一個提醒大家一起努力 不好意思召委 謝謝那接下來請王毓民委員來做選擇
transcript.whisperx[149].start 4984.093
transcript.whisperx[149].end 4986.803
transcript.whisperx[149].text 好 謝謝趙偉 我們是不是有請我們邱部長
transcript.whisperx[150].start 4992.782
transcript.whisperx[150].end 4998.924
transcript.whisperx[150].text 委員好部長好部長是這個有關於川普他要提高關稅這件事情其實是讓很多的行業都受到衝擊那對於衛福部來講其實本席覺得最重要的是在這一次的談判當中我們能不能守住國人健康作為最優先的底線而且不要把國人的健康
transcript.whisperx[151].start 5019.969
transcript.whisperx[151].end 5049.37
transcript.whisperx[151].text 拿出去談判這個是重中之重喔部長你有沒有看過2025年美國貿易代表署他所提交的外貿的這個障礙評估報告點名台灣有幾件事都跟你有關喔是你有關注到嗎好那我們就來探討一下這次他所提到的幾個重點喔第一個他竟然要求我們美豬美牛不可以再標示
transcript.whisperx[152].start 5050.689
transcript.whisperx[152].end 5067.299
transcript.whisperx[152].text 這個你同意嗎好 我想我們的原則非常簡單一定以我們台灣人民的健康守護為最優先那第二個就是我們要有科學的根據來做基礎當然要符合國際的標準
transcript.whisperx[153].start 5068.8
transcript.whisperx[153].end 5077.422
transcript.whisperx[153].text 我想以這樣的情況來做未來的不管是任何的一個所以部長你這樣子講我們就很擔心了因為你說符合國際的標準我這邊就特別點出來請問豬的腎臟就是我們台語講的郵寄這件事情他竟然要求我們就是應該要開放這個部分那你知道當時我們為什麼針對豬的內臟
transcript.whisperx[154].start 5098.708
transcript.whisperx[154].end 5121.52
transcript.whisperx[154].text 這個特別是腎臟的部分去做一些的進食為什麼坐月子啊我就直接講了齁那個食藥署的江署長是腎臟科的教授好來食藥署署長是腎臟科教授你有贊成這個美國的豬的腎臟進口到台灣讓我們的婦女坐月子的時候可以大吃特吃沒有關係嗎
transcript.whisperx[155].start 5123.842
transcript.whisperx[155].end 5148.257
transcript.whisperx[155].text 報告委員就腎臟部分我算有研究那就我們的國人的飲食的特殊性那對於坐月子的時候涉食我們的豬腎臟那這個豬腰子特別是麻油麻油腰子那我們特殊的情形下我們也精算過相關的可能的潛在的風險所以就兩個層次第一個就是
transcript.whisperx[156].start 5149.518
transcript.whisperx[156].end 5166.54
transcript.whisperx[156].text 剛才提到的標示的問題的部分那我們的標示目前是一體私用豬肉的部分是不跟國內國外任何國家一律標示那這樣子的做法其實在美國提出來的議題當中其實我們沒有特別針對什麼做歧視的
transcript.whisperx[157].start 5167
transcript.whisperx[157].end 5176.688
transcript.whisperx[157].text 所以這個部分是我們不會退讓嗎很重要的一件事情是對於你要回答我們是不是堅持還是會繼續標示我們現在既定的就是做標示這件事情我覺得未來我們國內呢我們非常非常鼓勵我們積極的去持續的標示這件事情是我們對於國內相關的產業能夠持續的支持的一個很重要的一點那就關於剛才提到第二點
transcript.whisperx[158].start 5190.92
transcript.whisperx[158].end 5211.101
transcript.whisperx[158].text 所謂動物殘餘裡面的腎臟有更嚴格的標準裡面因為我們盤點過也算過精算過裡面的數字我們了解它的整個殘餘的過程所以我們會基於科學的基礎因為是要用風險評估的一個基礎那有必要的時候我可以協助做很精細的一個計算我們整體的曝露量
transcript.whisperx[159].start 5212.743
transcript.whisperx[159].end 5223.09
transcript.whisperx[159].text 讓國人在面對食品安全國外的相關進口的食品的時候了解他潛在的風險是怎麼樣這是我可以做得到的地方跟委員做進一步的報告我是說美方這樣子要求我們有要退讓嗎還是維持原來的我們的一個
transcript.whisperx[160].start 5230.215
transcript.whisperx[160].end 5248.619
transcript.whisperx[160].text 範定的標準跟規定豬的腎臟你有要開放嗎我們針對食品安全世界都是用WHO或者是FL Codex其實用同樣的標準還有食用量的問題還有我們的飲食文化所以當時為什麼對於豬腎臟特別提出來就是因為我們的飲食文化比較特殊
transcript.whisperx[161].start 5255.661
transcript.whisperx[161].end 5282.432
transcript.whisperx[161].text 這個一定要納入考量啊所以你們現在的立場我們有把相關的基準其實都給我們整個談判的一個過程當中我們這個也很好我們的建議我們對於它整個風險的部分其實我們特別特別提出來你們已經有給談判代表一個你們的建議了嗎我們有特別提到我們過去的一個風險的一個情形歷史上的因素所以你們的最終的建議是什麼就是維持現行的做法不用調整還是你們是持一個彈性可以讓他們去談
transcript.whisperx[162].start 5284.25
transcript.whisperx[162].end 5309.363
transcript.whisperx[162].text 因為我們是以它的數字它的風險的鋪路這個署長你回答比較直接一點告訴我你們衛福部的立場到底是什麼當美國提出這樣的貿易障礙報告的時候我們的底線是什麼我們堅持的原則是什麼我們的底線就是以科學評估出來的數字當作是一個基準來做雙方去做最重要的談判的基準事實上目前我們能夠做的也是只有這一點
transcript.whisperx[163].start 5310.003
transcript.whisperx[163].end 5334.182
transcript.whisperx[163].text 我覺得你們缺乏一個態度就是捍衛國人的健康你們講的這樣子就是模糊以對然後說什麼標準什麼標準就一句話就可以結束嗎如果過去我們認為這個是對的即使美國他提出了貿易障礙報告我們應該站在國人的健康的原則上面就是我們維持我們一貫的標準這個是我們不會去退讓的底線這句話不敢講嗎
transcript.whisperx[164].start 5335.903
transcript.whisperx[164].end 5340.427
transcript.whisperx[164].text 還是你們根本就是鬆動了 所以才不敢講因為美國的壓力太大了報導委員 我們這邊其實是會計算我們國人設施的一個特殊所以要不要維持原來的標準嘛 我就問這句話嘛我們過去已經執行好多年了那是不是要繼續往下執行 就這樣就好
transcript.whisperx[165].start 5359.206
transcript.whisperx[165].end 5382.527
transcript.whisperx[165].text 以科學的評估出來的標準當作是談判的基礎那你有沒有改變嗎因為他在萊克多巴胺局說以前交感神經的制度在哪裡都是一樣的我只是要行政部門一個答案那部長你回答好了我覺得署長的回答就是沒有辦法讓外界很清楚就是一個你的底線是什麼過去我們都
transcript.whisperx[166].start 5383.248
transcript.whisperx[166].end 5401.387
transcript.whisperx[166].text 都守住這一個標準這一次美國貿易代表署他們又提出來了貿易障礙報告我們要退讓了嗎我想我剛剛再重複一下我想政府以及我們衛福部一樣都絕對是堅守人民的健康為最重要的一個立場
transcript.whisperx[167].start 5402.208
transcript.whisperx[167].end 5413.576
transcript.whisperx[167].text 那剛剛署長也有提到我們提供我們衛福部是以專業的角色提供了科學的分析風險的一個分析給我們那個談判的團隊那你有沒有改變你的標準嗎我們的標準就是依照跟過去都一模一樣嗎還是你們有鬆動你們有沒有改變我在問的是這個嘛
transcript.whisperx[168].start 5430.1
transcript.whisperx[168].end 5444.383
transcript.whisperx[168].text 我們是國人要知道是說你現在是不是還是繼續守住過去以來你們的標準然後你們態度立場還是要去限制我想政府對於人民的健康的守護是絕對不會鬆動的好你就是這句話不會鬆動這個才是重點不會鬆動對人民健康維護的決心好
transcript.whisperx[169].start 5451.025
transcript.whisperx[169].end 5474.705
transcript.whisperx[169].text 所以部長你這句話我要的就是這句話就是要非常明確的一個底線跟立場那所以另外一個問題就是所以當然就是要依照基改食品依照當然就是風險評估還有科學這過去都評估過了嘛所以才會做出政策嘛所以我們過去都已經評估過了嘛還有加上我們的文化因素所以才會是訂定這樣的一個標準嘛那另外一個玉米跟大豆的基改
transcript.whisperx[170].start 5475.606
transcript.whisperx[170].end 5503.759
transcript.whisperx[170].text 的這一些食品他也覺得不可以有兩種稅號應該要全面的解禁這件事情你們的態度跟立場是什麼有鬆動嗎就我們現在對於基因改造的玉米大豆這部分是列在食品安全管理法內的所以在食品安全管理法沒有在修正之前我們的是依法的行政來執行那會不會因為美國的壓力你們自己就要提出修法要去修食安法裡面的第24條
transcript.whisperx[171].start 5505.3
transcript.whisperx[171].end 5518.865
transcript.whisperx[171].text 現在24條裡面我們是很明確的規定吼含有基改食品的這個原料成分都是要標示的未來你們會不會因為美方的壓力你們自己就提出修法要把這一條改掉了 會不會你們的底線是什麼 會會不會
transcript.whisperx[172].start 5523.973
transcript.whisperx[172].end 5549.028
transcript.whisperx[172].text 我想針對基因改造相關的食品這個議題其實在先進的國家目前在叫基因編輯非常精準的農業的部分那個部分可能是在跨在另外一個農業部的裡面的專業底下所以在不同的一個時空背景底下會不會有進一步的一個調整這目前我們在食安法裡面24條的列的是條列是非常非常清楚的我們是依照上面條列的在執行
transcript.whisperx[173].start 5550.014
transcript.whisperx[173].end 5563.245
transcript.whisperx[173].text 就是將來即使談判完之後你們敢不敢保證這一條衛福部的立場是不會鬆動的在食安法裡面現行的規定不可能再去提出修法的改變你們基本的態度跟立場是什麼 部長
transcript.whisperx[174].start 5564.69
transcript.whisperx[174].end 5581.108
transcript.whisperx[174].text 你現在敢回答嗎一切的一個決策我想政府跟衛福部都一樣真的還是考慮的最重要的還是一定要守護人民的健康好 守護人民的健康不要因為政治壓力而轉彎為什麼我在這邊要問得這麼的清楚
transcript.whisperx[175].start 5583.951
transcript.whisperx[175].end 5589.916
transcript.whisperx[175].text 因為如果我們看到從蔡英文總統到賴清德總統基本上兩個總統的立場就不一樣了蔡英文總統的時候他就是落實食品標示食品來源國到了賴清德總統的時候他主動提到他要排除非關稅貿易障礙而剛剛我讓你看到的這個由美國他的貿易代表所提出來的報告他就是認定剛剛講的
transcript.whisperx[176].start 5613.135
transcript.whisperx[176].end 5622.944
transcript.whisperx[176].text 這一些是關稅貿易障礙但我們的賴總統說要排除所以當然國人就很擔心啊不同的總統立場不一樣所以當賴總統說要開放的時候部長你敢反對嗎
transcript.whisperx[177].start 5628.171
transcript.whisperx[177].end 5646.558
transcript.whisperx[177].text 我想我歷任兩任的總統,我都很了解他們對於人民的健康的維護,絕對是不以一例這是沒有變的所以你對賴總統有信心?當然對,有信心好,那我希望我們是可以捍衛住,因為我現在看到賴總統態度是鬆動的接下來我就問這個藥品跟醫材的部分
transcript.whisperx[178].start 5651.14
transcript.whisperx[178].end 5678.239
transcript.whisperx[178].text 現在美方還沒有公布他關於藥品的這個關稅但是我們看到事實上我們跟美國的這個藥品的相關進出口的情況我們對美國是逆差其實我們從美方進口的藥品還比較多我們是逆差那出現逆差又不是順差的情況他還要再提高我們的關稅 部長這樣合理嗎目前目前藥品還沒有還是沒關稅啊
transcript.whisperx[179].start 5679.865
transcript.whisperx[179].end 5704.03
transcript.whisperx[179].text 但是他說藥品的部分下一步會不會在這個談但是我們已變應變我們已經過去我們已經很好的一個體系在應變了所以基本上我們是可以迎接任何的挑戰所以也不應該再加關稅對不對因為基本上現在美國進口到我們的藥品還挺多我們當然盡量爭取互惠跟三贏的機會
transcript.whisperx[180].start 5706.031
transcript.whisperx[180].end 5709.755
transcript.whisperx[180].text 但是最近這個議題行政院編的880億裡面我們的衛福部其實是零預算就是在各部會的預算裡面你們沒有被安排那萬一在我們的一些相關的藥廠他們受到衝擊的時候需要補助的時候
transcript.whisperx[181].start 5723.51
transcript.whisperx[181].end 5728.515
transcript.whisperx[181].text 部長你錢從哪裡來為什麼獨漏我們的衛福部他忽略了這個整個關稅之戰可能對於藥品類也會產生衝擊從原料的部分的成本的提高然後到後面的這一些我們的進出口可能受到衝擊為什麼獨漏衛福部衛福部在這一波裡面你們是話外之地沒有關係
transcript.whisperx[182].start 5747.474
transcript.whisperx[182].end 5764.386
transcript.whisperx[182].text 謝謝委員的垂行 那我想社會的挑戰 國際的挑戰是一波一波的那第一波裡面就沒有藥品這個部分你覺得你們從幾處要講而且我們也不會有缺藥的 也沒有缺藥已經那如果萬一有到藥品的時候 你的錢要從哪裡來
transcript.whisperx[183].start 5768.189
transcript.whisperx[183].end 5790.455
transcript.whisperx[183].text 我相信政府有必要政府就會像今天你會行政院就馬上會給你錢今年一樣能夠給不管是在我們的健保的成長率或者是公務預算的部分我相信政府都會準備好那至於現在就沒有這個問題所以大家也不要過度擔心我們已經都我們要提早做好風險的管控就是因為我們做好提早的準備所以才不用擔心
transcript.whisperx[184].start 5792.022
transcript.whisperx[184].end 5814.507
transcript.whisperx[184].text 你們是連預算都沒有準備所以我才很擔心啦這個我覺得還是要好好的去因應啦現在第一波的時候行政院是沒有想到這一塊所以也沒有給你們錢所以我今天早上已經談很久就是我們不管是在藥品醫材所以我只問你啦如果有衝擊到的時候你的預算從哪裡來880億沒裂魂啦那你的錢要從哪裡來你告訴大家就好
transcript.whisperx[185].start 5815.305
transcript.whisperx[185].end 5836.952
transcript.whisperx[185].text 我想我們就要看他的到底長的量這整個國際的情勢的一個變化我們隨時如果有人家其他部會勞動部也有一百多億就是傳在那裡農業部也有一百多億放在那裡但是衛福部是沒有聽的每一個預算都是有他要去用的地方那我們現在目前在要價這個部分
transcript.whisperx[186].start 5837.894
transcript.whisperx[186].end 5848.665
transcript.whisperx[186].text 這在至少在第一個階段裡面我們目前你們覺得不會受衝擊不是不會受衝擊是足可應付衝擊的那你是用你健保的錢嗎你的錢從哪裡來
transcript.whisperx[187].start 5854.325
transcript.whisperx[187].end 5875.793
transcript.whisperx[187].text 因為健保的成長率今年也比較高,所以我們比較有空間來做成長但如果有必要會去影響到健保,我相信我們政府絕對會沒有把握去增值到預算就對了,但是你現在其實沒有880億是還沒拿到錢因為第一階段不會有影響我要確定的就是這個,好謝謝
transcript.whisperx[188].start 5880.96
transcript.whisperx[188].end 5888.784
transcript.whisperx[188].text 這邊做一個公告,我們到盧縣議委員催省完之後就休息,接下來請林淑雯委員謝謝主席,我們先請邱部長邱部長來
transcript.whisperx[189].start 5914.011
transcript.whisperx[189].end 5917.123
transcript.whisperx[189].text 委員好部長你說到現在為止沒有缺藥漲價之餘這句話說得很快
transcript.whisperx[190].start 5919.741
transcript.whisperx[190].end 5946.031
transcript.whisperx[190].text 我聽到覺得膽戰心驚最好是如此你今天的書面報告裡面直接就講了你們的因應作為對穩定這個藥品的供應的相關機制因應作為第一建立藥品短缺通報處理機制第二個制定必要藥品的清單第三鼓勵業者增加原料來源和儲備建立原料要加速審查機制最後還主動監控國內外藥品的供應我現在要問你第三點第四點
transcript.whisperx[191].start 5947.472
transcript.whisperx[191].end 5971.21
transcript.whisperx[191].text 叫大家囤比較多原料欸這些原料都沒有效期嗎?這一批原料用完了以後如果國際間大家都知道中國和印度如果為了因應美國的這一波關稅的這個調整那他們在原料供應上也漲價呢?或者是沒有機遇漲價自然的供需失衡因為大家都要搶 你要搶大部分人也要搶原料
transcript.whisperx[192].start 5973.992
transcript.whisperx[192].end 5995.696
transcript.whisperx[192].text 在這個供需失衡大量之間瞬間的需求大量增加大家都知道價格一定上漲光是這樣子價格就會上漲你還敢說現在沒有當然現在沒有啊但是未來就有啊所以你來講建立原料要的加速審查機制加速審查跟價格上漲供需失衡這樣的問題有相關嗎你講了這樣子就可以穩定了嗎
transcript.whisperx[193].start 6000.497
transcript.whisperx[193].end 6027.584
transcript.whisperx[193].text 價格上漲以後藥品的價格上漲當然會排擠到整個健保預算所以這一些醫生在擔心的是排擠到他們的點值會下降他們醫院擔心的是藥品的成本上漲這個通通都是一環扣一環非常嚴重的事你制定藥品清單我就不好意思講了以前生理食鹽水之亂生理食鹽水之亂它不是必要的藥品
transcript.whisperx[194].start 6029.659
transcript.whisperx[194].end 6045.377
transcript.whisperx[194].text 你說你們要這個有短缺通報機制然後監控國內外藥品的供應哪一次你們沒有監控啊 我不好意思說你們的鮮血水之亂還不是必要藥品 你就沒得了 有監控就沒得了啊
transcript.whisperx[195].start 6046.314
transcript.whisperx[195].end 6071.865
transcript.whisperx[195].text 哪一次沒有監控完藥品還是短缺啦休暑它的藥品組的監控能力在哪裡連國內藥品都沒有能力監控了現在要監控國外的藥品我們的能力你真的對自己這麼百分之百的自負嗎更不要講光是食鹽水之亂我就提出了一個清單叫你們盤點
transcript.whisperx[196].start 6073.362
transcript.whisperx[196].end 6082.57
transcript.whisperx[196].text 你們盤點了多久啊我說國內藥品 市占不均容易發生原料短缺的藥品名單如果沒有我叫你們去盤點 你們沒有盤點我叫你們盤點 講過幾遍 你清單搞不出來問幾遍啦 搞不出來所以食藥署跟衛福部一直被人家講管理食品也不行 藥品也不行
transcript.whisperx[197].start 6101.705
transcript.whisperx[197].end 6109.249
transcript.whisperx[197].text 現在我更高興的是 保證你第一次跟他說有恃無恐跟他說我都喘得好好的 沒事情沒問題今天你說的這幾項就答非所問了常常出問題 不是沒問題我...我...好啦 我現在從頭問起好了啦
transcript.whisperx[198].start 6123.656
transcript.whisperx[198].end 6130.761
transcript.whisperx[198].text 現在我問你們說光是盤點美國製造的美國當地製造進來的藥品或醫材清單品項數量光是這個喔多少喔 我不懂怎麼說只要你們自己補你今天報告的跟食藥署提供的跟健保署提供的就倒不會罵啦
transcript.whisperx[199].start 6148.783
transcript.whisperx[199].end 6161.232
transcript.whisperx[199].text 倒不會嗎跟他一個數量的盤點你的數據提供出來都不會正確了那我跟他講缺藥的問題缺藥的問題在關稅這個政策以前早就存在了缺藥的問題講多久了沒有美國關稅這個題目我們國內問題就很嚴重了這又不是現在你還說現在都沒問題
transcript.whisperx[200].start 6178.444
transcript.whisperx[200].end 6201.297
transcript.whisperx[200].text 沒有美國關稅這一題 現在問題就很嚴重現在是美國關稅政策的之下會不會更嚴重所以醫改會在講說啊我們高度仰賴進口仰賴美國供應的 特別他指出癌症用藥疫苗聽得清楚 疫苗
transcript.whisperx[201].start 6203.018
transcript.whisperx[201].end 6224.007
transcript.whisperx[201].text 高階醫材 小兒醫材 抗生素等美國供應商常連扮演著關鍵性的角色所以關稅上路這些進口的產品成本一定會上升而最終成本一定轉嫁到民眾身上
transcript.whisperx[202].start 6225.187
transcript.whisperx[202].end 6233.717
transcript.whisperx[202].text 甚至大家都知道會這是剛性需求而你真的沒藥缺藥危及病人的用藥權益知識體大餒知識體大餒
transcript.whisperx[203].start 6239.628
transcript.whisperx[203].end 6265.804
transcript.whisperx[203].text 所以這個我們缺藥是因為我們台灣的市場小 利潤低我們只有單一買家叫健保署仰賴特定供應商那一旦進口變貴或者是供應中斷根本找不到替代品那這對長照的病人特別是兒童長者身障 癌症
transcript.whisperx[204].start 6267.065
transcript.whisperx[204].end 6268.048
transcript.whisperx[204].text 這個衝擊很大 你怎麼會有很多人在問你 你都說要煮成丸丸這樣
transcript.whisperx[205].start 6273.151
transcript.whisperx[205].end 6300.739
transcript.whisperx[205].text 然後健保 健保問題很大捏健保的財務壓力很大捏 緊繃捏你不是說癌症給付的那個幾十億移出去 公務預算給了就沒問題捏他這個財務壓力這麼大壓縮給付醫生擔心的是點子下降可是我們擔心的是病人就醫的權益啊就醫的可敬性會受影響
transcript.whisperx[206].start 6302.751
transcript.whisperx[206].end 6315.978
transcript.whisperx[206].text 所以台灣的健保制度為了財務平衡已經從區域總額已經改到大醫院你要個別醫院總額制了所以各項的醫療給付都受限於總額的管制一旦採購成本上升 藥品成本上升
transcript.whisperx[207].start 6327.895
transcript.whisperx[207].end 6348.681
transcript.whisperx[207].text 他一定會壓縮到醫生的點子要不然就是醫院面臨經營的壓力所以呢 縮減開支 降低禁藥量降低禁藥量也是影響到用藥人耶那你沒有降低禁藥量 全部都轉嫁費用給病患
transcript.whisperx[208].start 6351.89
transcript.whisperx[208].end 6366.834
transcript.whisperx[208].text 欸 你這樣什麼都去掛貨費啊 去部分負擔啊 去大行農莊 去現在再來藥品 這樣是要再去 要再去所以 健保才會這麼困難還要承擔 額外承擔關稅上升的額外成本我跟你說 你不是說 你現在都一句話說沒關係 我們學名藥 國藥國用 國產國藥國用你講得太簡單了
transcript.whisperx[209].start 6378.459
transcript.whisperx[209].end 6380.4
transcript.whisperx[209].text 台灣要做藥學名藥原料都很靠的中國跟印度我們都要中國的比較多中國不會棄價嗎瞬間需求量大增怎麼會不會棄價
transcript.whisperx[210].start 6395.283
transcript.whisperx[210].end 6418.056
transcript.whisperx[210].text 這個影響衝擊最大的很多人其實是有商業保險的 有自費能力的可是更多人是偏鄉的低收入戶人 長期病患的弱勢族群他們首當其衝 他們沒有商業保險醫療領域他是陽剛性需求如果今天癌症用藥缺了 不可能叫病人等兩個月
transcript.whisperx[211].start 6419.938
transcript.whisperx[211].end 6435.927
transcript.whisperx[211].text 是不是 柏定你也說說看 我說這個問題你都認為沒問題嗎報告委員 委員所提的真的都非常的深入跟專業個人表達最大的敬意那你剛剛的問題 其實我們長期在醫藥 醫藥藉 藥藉 醫材藉
transcript.whisperx[212].start 6442.378
transcript.whisperx[212].end 6452.245
transcript.whisperx[212].text 生醫界都一直在努力希望把我們的一個醫療體系長期在努力在長期被詬病長期處理不好長期沒有能力應變沒有一下子就滿分但是我們一定好中在好一直在改善我想這個部分經委員也要珍惜我們國內這些醫藥 醫材 特種
transcript.whisperx[213].start 6466.575
transcript.whisperx[213].end 6474.082
transcript.whisperx[213].text 這麼多同仁在努力的應該給他們鼓勵那我們還做不到的我們繼續來努力他們在期望政府的政策引導他們在期待有政府會做事有政府能帶領有政府可以帶領他們看到到底他們要怎麼應變特別廠商 特別藥商有辦法應變嗎
transcript.whisperx[214].start 6491.277
transcript.whisperx[214].end 6494.499
transcript.whisperx[214].text 我們的政策一直努力守護人民的健康 這是第一個你跟我說 當前仰賴美國進口的藥品和醫材我沒有要跟你說幾張藥證啦
transcript.whisperx[215].start 6502.967
transcript.whisperx[215].end 6510.51
transcript.whisperx[215].text 哪有這麼簡單的 來 你看你報告你說我們現在看到美國的藥品有幾種藥精有幾個品項 這麼簡單喔可替代我沒有要問你啊 我要問你的是無替代性或者是可替代性低 但是使用頻率高的有幾個品項有幾張藥證 有哪些用藥 你現在回答我是不是食藥食肺 還是
transcript.whisperx[216].start 6531.821
transcript.whisperx[216].end 6548.393
transcript.whisperx[216].text 食藥署回答我本人的辦公室這裡有寫啦他說除了罕見疾病14張許可證以外所有的適應症的疾病臨床上都有其他藥品可供替代啦所以他現在在歡樂的說他現在在歡樂的都杞人憂天啦
transcript.whisperx[217].start 6550.555
transcript.whisperx[217].end 6559.517
transcript.whisperx[217].text 我立委現在在問的 都恥人憂天 都沒有那個不可替代除了罕見疾病 這是食藥署給我回答的現在健保署來回答 敢真的這樣食藥署回答林淑芬委員辦公室 她說你放心嘛 美國來的除了罕見疾病 每一種藥都有替代性 都沒有問題
transcript.whisperx[218].start 6575.054
transcript.whisperx[218].end 6597.299
transcript.whisperx[218].text 健保署你回答看看跟委員報告就是我們從健保給付的品項裡頭屬於美國產地進來的大概是176項啦這176項裡面又是屬於這個食藥署的必要藥品清單的是72項那72項裡面最多的是抗腫瘤藥物我現在沒有講那個我現在問你說
transcript.whisperx[219].start 6598.746
transcript.whisperx[219].end 6607.074
transcript.whisperx[219].text 無可替代性或替代性很低但是使用頻率高我不是在問你必要藥品清單歌詐食鹽水之論我就跟你說了一生原料短缺 市占不均你盤點給我看 你們也盤點不出來
transcript.whisperx[220].start 6619.216
transcript.whisperx[220].end 6634.366
transcript.whisperx[220].text 現在我告訴你 美國做的 美國進口進來但是我們不用它 不過沒有替代性或是很少其他國家 其他藥廠在做但是使用頻率高的是哪些藥
transcript.whisperx[221].start 6635.475
transcript.whisperx[221].end 6662.338
transcript.whisperx[221].text 你回答我跟委員報告這個不能用使用頻率來講使用頻率最多的這些什麼降血壓啦糖尿病的藥那個都有可替代最重要就是我剛剛提到的抗腫瘤的藥物因為很多都在專利期以內那這個呢使用頻率不是很高但是卻是必要藥品被我們列進來但是你食藥署講說除了罕見疾病都沒有了都可以有替代
transcript.whisperx[222].start 6663.666
transcript.whisperx[222].end 6681.794
transcript.whisperx[222].text 報告委員那我們特別提到我們盤出來裡面因為我們這邊對於藥證可以確立出來美國廠製造的藥證美國來的藥證是有214張那這214張裡面假如是在專利期裡面又是單獨的他的替代性就很低因為只有他有而已對啊有60種其實
transcript.whisperx[223].start 6682.994
transcript.whisperx[223].end 6700.786
transcript.whisperx[223].text 你回答我的 你們今天在這裡答的跟書面給我資料的跟今天報告的數據都不一樣你們 我們當初跟你索取資料說自美國進口 製造成立為美國的藥品和醫材清單你告訴我們說 食藥署告訴我說藥品清單150張要證 今天講214張你的書面報告寫215張 健保署講176項
transcript.whisperx[224].start 6709.452
transcript.whisperx[224].end 6731.949
transcript.whisperx[224].text 報告委員你可誤會了因為它的替代性如果在專利期內的這張有60張它的可替代性幾乎是等於0因為只有它有你在這裡面告訴我只有14張是不可替代其他都有你的公文書在這裡你說只有14張是不可取代其他都有替代14張是罕病
transcript.whisperx[225].start 6733.435
transcript.whisperx[225].end 6746.396
transcript.whisperx[225].text 你的文字我講除了罕見疾病藥品共14張許可證以外其餘適應症疾病於臨床上有其他藥品可供使用
transcript.whisperx[226].start 6747.386
transcript.whisperx[226].end 6763.367
transcript.whisperx[226].text 你的公文書都沒有講到癌症專利都還沒過期謝謝委員這邊可以有機會我們可以補充一下我的意思是說立委所知林農青菜公共好回答給立委在這裡在講又不一樣
transcript.whisperx[227].start 6764.984
transcript.whisperx[227].end 6778.297
transcript.whisperx[227].text 報告委員吼 我們立委的所思真的都很認真昨天 十多點都江署長還打電話給我說他們前署幾乎都在加班他告訴立委說沒問題啦 沒大事啦 除了罕見經營 十四郎今天你說沒夠感情 六十多個郵 六十種的郵啊建保署長是幾種主席我沒有叫他講 他一直說不知道在說什麼 我也聽不懂
transcript.whisperx[228].start 6790.557
transcript.whisperx[228].end 6808.29
transcript.whisperx[228].text 這樣健保署我現在說的是你們每天都退回去了保證你們不會忘記喔前幾天人家受訪時你表示面對關稅的轉變進口藥品確實是有價格上漲的可能但國內缺藥平台已經非常有經驗健保有因應的制度你剛才在這裡自己說沒有缺藥漲價之餘喔
transcript.whisperx[229].start 6813.564
transcript.whisperx[229].end 6828.504
transcript.whisperx[229].text 你受訪跟在裡面你回答你自己就說不一樣啦現在是沒有缺藥但是漲價是有可能但是我們不要我們已經準備好了所以不用太擔心這樣子你剛才回答你以為王育民說沒有缺藥也沒有漲價之餘欸
transcript.whisperx[230].start 6831.107
transcript.whisperx[230].end 6840.934
transcript.whisperx[230].text 那可能有可能 我的觀念裡面的確是有漲價的可能性我講了早幾次 今天早上我講了好幾次說我一直跟你說 我說了從美國進口的無可替代性或替代性使用替代性低 使用頻率高的藥品和醫材喔這個你們去盤點 到底 雖然有缺藥平台但是即使缺藥平台你們有遇過缺藥的經驗但一直以來缺藥的次數都沒有少過
transcript.whisperx[231].start 6860.629
transcript.whisperx[231].end 6882.582
transcript.whisperx[231].text 你哪來的信心覺得有缺藥平台就不會發生缺藥危機有缺藥的經驗也不代表可以克服缺藥的危機對吧所以健保署署長來進口清單清單中進口藥品有沒有這個我剛剛講的無可替代 可替代性高 使用頻率高的藥品和藥材各有幾項
transcript.whisperx[232].start 6884.462
transcript.whisperx[232].end 6885.464
transcript.whisperx[232].text 剛我提到從美國進來的在這個必要藥品裡面那個是72項啦
transcript.whisperx[233].start 6892.694
transcript.whisperx[233].end 6903.883
transcript.whisperx[233].text 阿裡面又以抗腫瘤的藥物 不可替代的那這些都是專利 我剛剛提到抗腫瘤你說72項 阿實藥署說60項欸不不不 不是不是 這裡面有的可以替代裡面有的像那個什麼抗生素啦 你到底不可替代的幾項啦這是必要藥品裡面72項啦阿不是全部都不可替代有些還是可以替代 我在問你不可替代的啦
transcript.whisperx[234].start 6916.312
transcript.whisperx[234].end 6922.236
transcript.whisperx[234].text 不可替代最主要就是那些腫瘤藥啊我們再把它盤點出來讓用藥人讓醫師未來有心理準備吧癌症病患未來可能會欠藥嗎價格大幅上漲嗎這個我們有調整調價的機制
transcript.whisperx[235].start 6940.19
transcript.whisperx[235].end 6960.318
transcript.whisperx[235].text 食藥署署長你們提供的醫材清單不是藥品醫材初步評估各項醫材上有產品或其他療法可替代所以你們還要跟相關醫學會去確認醫材你們從今天的報告然後川普宣布這個4月4號宣布到現在10天了有沒有完成盤點你們要跟醫學會確認到底有沒有醫材是不可替代的盤點完了沒
transcript.whisperx[236].start 6967.401
transcript.whisperx[236].end 6982.031
transcript.whisperx[236].text 跟委員這邊特別報告因為整個醫材使用裡面絕對的所謂必要性的醫材我們有盤了33支必要性的醫材不可避難所以必要性的醫材裡面我們可以看到其中有235張是來自於美國廠的 登記的
transcript.whisperx[237].start 6986.334
transcript.whisperx[237].end 7000.07
transcript.whisperx[237].text 其中有三項必要性的醫材三項必要性的醫材裡面呢 共用有八張在占比是大概是0.018%是屬於所以只有三項而已 所以只有三項然後可能有八張藥證
transcript.whisperx[238].start 7003.755
transcript.whisperx[238].end 7014.442
transcript.whisperx[238].text 所以只有三項我們現在是談他可能沒有辦法替代的絕對的沒辦法替代對第一線裡面謝謝委員這邊提醒你也應該告訴大家第一線的讓他能夠清楚你要讓醫生知道那你要趕快讓使用這醫產的人知道
transcript.whisperx[239].start 7021.906
transcript.whisperx[239].end 7042.02
transcript.whisperx[239].text 那我現在還要講我最後 我其實還有很多但我現在因為時間的關係所以我就不要講那麼多不論是健保署或食藥署你們去盤點出來以後你們有沒有包含癌症的標靶藥物或是類似治療風濕免疫最常使用的生物製劑這些自費品項的藥點在不在你們盤點的清單裡面自費自費沒有盤沒有盤
transcript.whisperx[240].start 7050.592
transcript.whisperx[240].end 7066.299
transcript.whisperx[240].text 我們盤的當然就是以健保給付為主你知道有多少人需要使用這一些東西嗎所以自費的人政府沒有盤點出來你們難道不應該納入嗎那你們真的面對這個關稅的衝擊漲價原料漲價的衝擊連國內學民藥國內藥廠都受到衝擊了更何況從美國的進口的然後自費的沒有盤
transcript.whisperx[241].start 7076.883
transcript.whisperx[241].end 7088.489
transcript.whisperx[241].text 你們真的準備好了嗎現在如果是以標靶要務來看的話我們幾乎都已經納入將近都納入幾戶了啦只是那個幾戶標靶要務將近都納入幾戶幾戶的條件不同啦就是他不是全市一陣子不是啦所以你說的自費指的是我跟你講你知道你賣公共語言來欺騙我們符合資格的納入幾戶不符合資格的也自費再買再用有多少人啊
transcript.whisperx[242].start 7102.913
transcript.whisperx[242].end 7113.94
transcript.whisperx[242].text 有多少人啊你們沒有盤點對這些用藥人應該沒有衝擊而且為什麼還需要自費去用這些生物資訊標靶藥物就是因為要救命啊最急的比人好人還要急的萬一開集青家大餐開這麼多集就是因為要救命然後這一波會不會受到衝擊政府不知道沒有盤點所以
transcript.whisperx[243].start 7131.846
transcript.whisperx[243].end 7151.273
transcript.whisperx[243].text 我們一直在講盤點評估是要談什麼重點為什麼一直提醒你這個是因為這個剛性需求是要救命的救人救命的還有另外一個議題我還來不及講下一次再講你們要真的要認真準備已經講過那只是哪一期用什麼藥其實也都盤點在裡面你今天說的
transcript.whisperx[244].start 7160.957
transcript.whisperx[244].end 7188.718
transcript.whisperx[244].text 要醫材跟他三行癌症的那個只有60項但願如此喔把那些都公佈出來要不要提供給我們讓所有的人都知道用藥癌人用的這醫材人他們要清楚知道自己未來面臨的風險和衝擊是什麼這個只是我今天質詢的第一部分抱歉我還有其他但時間來不及所以就下次再談好謝謝林委謝謝部長來
transcript.whisperx[245].start 7190.691
transcript.whisperx[245].end 7190.771
transcript.whisperx[245].text 謝謝主席
transcript.whisperx[246].start 7206.828
transcript.whisperx[246].end 7215.512
transcript.whisperx[246].text 我請部長,不然部長不會這麼客,時從兩開就好了你先休息一下部長休息一下請時書長他很聰明,不用玩弄阿維也好我們剛才全世界都有一個神經病的川普,不夠大家都氣笑
transcript.whisperx[247].start 7229.007
transcript.whisperx[247].end 7233.529
transcript.whisperx[247].text 無來無去 每天早上進展說一項 吃飯包說一項 睡覺又一項今天還可以說不一樣的
transcript.whisperx[248].start 7238.383
transcript.whisperx[248].end 7265.558
transcript.whisperx[248].text 大家都對他都要洗臉 都沒有意義嘛我講 我們講國內的 先講國內的署長 你現在要跟醫療院所簽約 特款辦法我這段時間觀察齁你跟保定 跟市長來很認真 去弄了很多公務預算進來然後拿了500億左右嘛 今年差不多多了500億不只不只
transcript.whisperx[249].start 7266.719
transcript.whisperx[249].end 7286.297
transcript.whisperx[249].text 我們的那個總額的成長比去年增加530億億但是還有原本去年的總額支應的用公務預算編列110億億然後再加上癌藥基金的50億、癌藥加20億又加了180億億都到位了都到位了所以一共是730億億我感覺你昨天把你10年來要做的工作都在這間要給付完了什麼
transcript.whisperx[250].start 7292.902
transcript.whisperx[250].end 7315.286
transcript.whisperx[250].text 什麼東西欠就說沒關係我現在有錢可以開我現在有錢可以開那上個禮拜質詢的時候我還救了我們醫事室為什麼陳雲委員在門外部立醫院的放射師約聘人員剛剛來報到起薪才三萬多塊三萬多塊喔那你現在說要兩倍
transcript.whisperx[251].start 7320.883
transcript.whisperx[251].end 7342.943
transcript.whisperx[251].text 兩倍是多少?現在兩萬九千多了,兩倍要六萬,有六萬嗎?沒有我媽最喜歡茶,我自己買了,我水、茶、取血取血放射師的薪水差不多四萬五、四萬六,基本薪水然後大小業拿了之後才五萬多塊
transcript.whisperx[252].start 7343.905
transcript.whisperx[252].end 7358.107
transcript.whisperx[252].text 那COVID-19三年每一個月可以拿到一萬塊的津貼因為UGB照片子所以那三年就是說12萬、12萬、12萬、36萬所以現在的放射式也是五、六萬
transcript.whisperx[253].start 7359.545
transcript.whisperx[253].end 7375.33
transcript.whisperx[253].text 所以你說要給人家一份就要六萬塊有的14個師,醫事相關人員,14個師字輩的有困難所以就跳起來了,連王振旭也跳起來了我都不說話,我今天要問你,你現在的態度是什麼
transcript.whisperx[254].start 7379.776
transcript.whisperx[254].end 7407.041
transcript.whisperx[254].text 確實啦 就是說我們今年的預算也比較多也很希望來調整第一線醫護人員的薪資啦所以我們在這個修法裡面希望把它納入大家一起來替第一線人員加薪啦至於說幅度要多少啊倍數怎麼計算啊有沒有這個醫院成績之間的落差我想後面的細節我們都可以再跟大家溝通討論這個只是在草案階段而已診所都嘩嘩叫嘛
transcript.whisperx[255].start 7407.661
transcript.whisperx[255].end 7422.234
transcript.whisperx[255].text 而且我們部長應該感受到基層給他的回饋所以還是要好好的討論討論一下當然我們希望每一個議事人員每一個都領十萬塊我個人覺得從現在開始這兩三年
transcript.whisperx[256].start 7424.177
transcript.whisperx[256].end 7443.437
transcript.whisperx[256].text 醫療院所如果有決議,應該大幅來挑釁醫護人員,因為醫護相關人力是我們的寶貝啦,不然這個人你也是別人擋的。所以我感覺,我眼睛看的差不多就是說,要挑釁,讓他們做得到啦,不然就慘了。
transcript.whisperx[257].start 7445.459
transcript.whisperx[257].end 7459.825
transcript.whisperx[257].text 第二要說的那些福利的,真的我這兩天又接到很多就是像在我們北陰、西陵東那些街坊生小孩現在在騙小孩,現在小孩比較大,在看郵輪、在看國號但是你要叫他回來做負貨攤,沒辦法,他絕對沒辦法,如果叫他做貨攤4點鐘,這樣他沒辦法他還很希望,因為前兩個小孩、前三個小孩,對他來說,一個人的賺錢是不夠的
transcript.whisperx[258].start 7474.201
transcript.whisperx[258].end 7495.827
transcript.whisperx[258].text 所以這個在美國很多啊,美國就是有那個醫管公司啊,人力中介公司,它全部都在登錄下面就一兩百個護理師啊,我很多朋友的太太都在那邊,工作嘛這個很好,收入也不錯,所以這個我等一下算一算應該有五六萬人,保證五六萬人,沒錯
transcript.whisperx[259].start 7499.108
transcript.whisperx[259].end 7516.376
transcript.whisperx[259].text 所以這個醫事相關人力的薪資我是覺得要好好的來研究啦你做補助你跟署長你們兩個有這個委員會有這個管理還有這個機會就要好好來調整啦那如果處理廠職車職應該補助也夠了啦這件比較繁細沒處理多少八百八十萬我看你都沒處理廠啦
transcript.whisperx[260].start 7527.56
transcript.whisperx[260].end 7548.432
transcript.whisperx[260].text 因為環境部長跟我說,讓我去找部長,很難找到,都不想,很厲害。第二個,我們的燃料藥。燃料藥剛剛林淑芬也講了,很多人都講了,我不要再贅述。我們的燃料藥本土開發廠,燃料廠。
transcript.whisperx[261].start 7550.814
transcript.whisperx[261].end 7564.039
transcript.whisperx[261].text 他的製造原料的成本是進口進來的多了40%到50%所以假使我寫的成本你當然也在印度買,也在中國大陸買所以自己要開發,這你要聽手你要給他紋爛,幫他補充,或是小忙幫他補條不然的話這個隨時會打仗,看起來隨時會出問題所以這些原料要長,你要下去盤點
transcript.whisperx[262].start 7579.944
transcript.whisperx[262].end 7598.539
transcript.whisperx[262].text 潘典光對這件事在做,我們就要把他勾勒他要做完之後就不簡單了,因為我們市場太小嘛再來我看到白亞啦,Pfizer啦什麼什麼,里來啦,全部都已經跟川普promise說他們要回去美國設廠這個要投資200億,那個要投資300億,我們不可以真的假啦
transcript.whisperx[263].start 7605.407
transcript.whisperx[263].end 7626.206
transcript.whisperx[263].text 可能會讓我們給川普去送一下真的會到位嗎 我很懷疑那這些 譬如說輝瑞他的廠有在澳大利亞有在馬來西亞 都有去看過這些進來進來台灣就算美國廠的藥還是算澳大利亞來的藥你們現在在盤點的時候我們盤點的話是以他的進口美國製造
transcript.whisperx[264].start 7632.219
transcript.whisperx[264].end 7635.73
transcript.whisperx[264].text 那如果澳大利亞,是澳洲出道的還是馬來西亞,馬來西亞有藏的
transcript.whisperx[265].start 7637.626
transcript.whisperx[265].end 7661.525
transcript.whisperx[265].text 那個我們是看他進來的那個製造地點製造廠啦那個製造廠啦製造廠好所以他的工廠在哪裡你就要送所以你剛才在說的這樣有精確嗎像你美國進來的藥就是那個176項對那個金額好像會有出入啦會不會差不多200億左右啦差不多200億所以也佔了我們
transcript.whisperx[266].start 7664.989
transcript.whisperx[266].end 7670.056
transcript.whisperx[266].text 10%有喔我們大概一年藥費大概在2500億左右所以最後一個問題就是稀產地
transcript.whisperx[267].start 7672.99
transcript.whisperx[267].end 7692.226
transcript.whisperx[267].text 我們昨天一直在講,昨天也在講嘛,好施展地,台南的東西拿來我們家然後這邊轉口賣到美國,MIC變成MIT,會不會這樣我昨天接到一個很大廠的那個醫事商,美國的他說他們不能,他們進到大陸要125%嘛他說他們不能進到台灣來,然後再轉去大陸
transcript.whisperx[268].start 7698.973
transcript.whisperx[268].end 7721.932
transcript.whisperx[268].text 他從美國進來幾乎是零我們這邊去大陸幾乎是零這變成他們在洗我們會不會 這個也有可能所以這個都要很注意好不好我們也很鼓勵在台灣製造啦在台灣製造其實對我們的供應韌性也是可以增強
transcript.whisperx[269].start 7723.613
transcript.whisperx[269].end 7751.501
transcript.whisperx[269].text 十大藥廠世界十大藥廠在20年前都在台灣有設廠現在連一家都沒有全部跑光了為什麼量太少所以就跑到東南亞去跑到中國大陸去這是事實所以一家都沒有現在一家都沒有全部都賣給扁桃藥廠所以這個是知識體大所以跟部長還有署長你們要你們很認真
transcript.whisperx[270].start 7753.302
transcript.whisperx[270].end 7753.502
transcript.whisperx[270].text 請盧委員來做選擇來請部長
transcript.whisperx[271].start 7777.642
transcript.whisperx[271].end 7791.521
transcript.whisperx[271].text 委員好部長好因為前面幾個委員都講到美國的問題了大概這邊還是要提一下民眾的擔憂是剛才講了就是說最受影響就是血液製劑或者是腫瘤製劑跟神經藥品
transcript.whisperx[272].start 7793.484
transcript.whisperx[272].end 7813.053
transcript.whisperx[272].text 那再來我們健保支出的10%上面寫說176項嘛那我想知道說如果真的是增加了關稅的話那我們是不是民眾的負擔使用這些藥品的民眾的負擔增加多少比如說它增加了10%那轉嫁到民眾這邊或者是健保這邊我們有算過一個比例嗎
transcript.whisperx[273].start 7816.007
transcript.whisperx[273].end 7836.178
transcript.whisperx[273].text 有 我們有請健保署去針對他現在的藥物的一個狀況做盤點 可不可以實事掌心跟委員報告 當然我們有掌握這一些藥品的品項啦那未來到底影響會多少 並不知道不過呢 我們在總額裡面有編了一個叫做非預息風險款
transcript.whisperx[274].start 7837.839
transcript.whisperx[274].end 7864.367
transcript.whisperx[274].text 那像去年我們就用在那個輸液上面那我想知道說如果說這些關稅金真正在我們這邊的話我是想知道說一個癌症病人他會增加多少的支出因為我們現在的這個健保裡面有所謂的重大傷病所以癌症的病人基本上都是屬於重大傷病是免部分負擔所以這些是有健保負擔的不會加重這個癌友的負擔好那我知道了
transcript.whisperx[275].start 7864.867
transcript.whisperx[275].end 7891.954
transcript.whisperx[275].text 我剛剛有看到你們的報告裡面說針對我們的罕見疾病增加了20億的一個新藥還有重症的話是增加50億可是我上次有提到一個小朋友就是ITP的部分我想知道說到後續你們有沒有去追蹤或者是去協助解決他的問題就是苗栗的一個原住民小朋友他家境非常清寒家裡有非常多小朋友結果家長每個月的負擔大概3萬塊左右的那個自備藥品
transcript.whisperx[276].start 7892.774
transcript.whisperx[276].end 7918.226
transcript.whisperx[276].text 那我想說 又不列入罕病 又不是重大傷病然後要一直叫這個家庭一直在負擔這個三萬塊每個月三萬塊的一個自費藥品嘛我想 我看到這個二十億增加 五十億增加可是對一個真正看得到 卻用不到的一個原住民家庭我要替他說話 好不好所以這個部分我想 如果就個別來講我想應該要去從中去關心我們這個苗栗的太陽族小朋友
transcript.whisperx[277].start 7918.866
transcript.whisperx[277].end 7924.083
transcript.whisperx[277].text 第二個就是說我們意思原因我剛剛看到的就是剛剛蘇委員講的就兩倍 1.5倍 這個
transcript.whisperx[278].start 7926.6
transcript.whisperx[278].end 7951.562
transcript.whisperx[278].text 你們當初的利益是什麼?是為了要增加我們醫護人員的薪水嗎?對對對,原本也是希望說因為今年的總額的整個成長啊預算都是過去增加很多對,可是這個離職潮有被解決了嗎?目前我們當然想說希望調高薪資是留人的一個很重要的工具啦所以我們就提出這個想法可是你們一推出這個很多人都反彈啊那接下來你們要怎麼辦?
transcript.whisperx[279].start 7952.646
transcript.whisperx[279].end 7977.112
transcript.whisperx[279].text 當然這個是我們的草案啦那個還是會持續的跟大家來溝通那部長也特別昨天已經提到短期來說要解決護理人員離職草是不是應該有邊公務預算讓他們的薪資馬上就增加呢有有有另外也有邊公務預算是嗎有有有 有六十幾億大概什麼時候會到位已經第一波的話理論上應該在四月底五月初就會下去了
transcript.whisperx[280].start 7977.503
transcript.whisperx[280].end 8003.888
transcript.whisperx[280].text 好那我就今天的一個新聞看到個別醫院的總和製度來就教一下這600塊的那個診察費的一個依據或者是說有沒有除了600元以外有沒有其他的不一樣比如說你說就診察費增加到600塊第二個就是說我們的慢性脂肪腺從上個月背到半年第三個是部分負擔可能要調整或是說轉診制度的這個因為我想知道這600元只是單純的600元嗎有沒有別的一個
transcript.whisperx[281].start 8005.128
transcript.whisperx[281].end 8026.782
transcript.whisperx[281].text 因為跟委員報告這個只是還在討論當中主要是針對我們目前在醫院的醫師的診察費不論這個難易啦 時間花多少都是一樣所以就是說診所也要增加然後地區醫院也要增加而不是只有在醫院是600元然後是不是應該是pay for performance而不是pay for service這個部分
transcript.whisperx[282].start 8027.082
transcript.whisperx[282].end 8042.464
transcript.whisperx[282].text 那在這個診所的部分因為這兩個是不同的總額所以我們分開去討論診所的部分因為過去呢有所謂的合理門診量他的概念其實也是這個類似如果說超過50人以後是不是你這個600元也是要遞減是有這樣的計畫嗎
transcript.whisperx[283].start 8043.505
transcript.whisperx[283].end 8053.433
transcript.whisperx[283].text 因為在醫院裡面我們希望朝向醫學中心最後以轉診為主所以不會去用合理的診療這個今年就要實施嗎應該是下半年的時候也就是悶性磁發性會變到半年
transcript.whisperx[284].start 8058.176
transcript.whisperx[284].end 8076.584
transcript.whisperx[284].text 這個都要繼續討論希望能夠延長那按照這個醫師的判斷跟病人的病情那部分負擔的部分能不能就是早點讓國人知道說他以後到醫學中心的部分負擔會是多少會會會好 針對第四個就是說缺藥的問題就是當然是常說是30年來最大的問題
transcript.whisperx[285].start 8077.324
transcript.whisperx[285].end 8098.791
transcript.whisperx[285].text 那我們有建議的議題就是希望是不是把它的期限能夠用場是不是看一下藥品的穩定供應它有一個八大藥業供應協會的建議希望能夠看看我們下一頁是不是能夠從我們的放寬採購藥品的效期來看看來做改進
transcript.whisperx[286].start 8100.267
transcript.whisperx[286].end 8124.642
transcript.whisperx[286].text 好 這個部分部立院醫護會的林執行長剛剛已經回應是不是再跟委員說明一下有關這個校期 各位再報告其實我們是26家部立院其實我們有一個叫做藥品聯標委員會那不只是我們醫院還有全國18個縣市衛生局跟衛生所的聯標用藥那我們都是8個院有沒有可能放寬
transcript.whisperx[287].start 8125.642
transcript.whisperx[287].end 8151.467
transcript.whisperx[287].text 跟委員報告 其實我們在所有的體系裡面包含教育部 退輔會 軍方 還有司令他們都是八個月以上那當然這個部分其實考量特別是偏鄉離島剛提到的我們的醫院那另外是衛生局所其實他們藥師人力都非常有限如果說把它降低的話其實會增加他們的一個行政的那個loading所以其實我們也有接到一些醫院的藥師包含那個藥局主任都說如果這樣增加他們的loading會讓他們會覺得是
transcript.whisperx[288].start 8153.927
transcript.whisperx[288].end 8176.826
transcript.whisperx[288].text 壓力增加反而會促成他們離職 要失離職那當然我們還是有考量在這塊裡面如果真的有缺藥我們會有一個機制就是所謂的安全的存量這塊那其實我們在14天裡面如果真的有缺藥我們會再盡量再跟我們的FDA在裡面所謂的庫存的相關的一些所以我這邊才會提出希望能夠放寬它的效期
transcript.whisperx[289].start 8177.466
transcript.whisperx[289].end 8205.385
transcript.whisperx[289].text 是 有好 最後一個問題就是請問部長就是關於偏鄉地區就是我上次一直在提的我們花林縣南區就是玉里鎮附近周圍還有我們海縣就是海岸山脈那邊如果發生心導管需要心導管手術或是洗腎這個部分的盤點有沒有這個量能或者說不管有沒有這個量能應該提供這方面的一個醫療的一個準備那我想知道到底有沒有在規劃或者是有沒有一個時間表
transcript.whisperx[290].start 8207.513
transcript.whisperx[290].end 8212.725
transcript.whisperx[290].text 讓在那個地方的民眾在生活上有一個安全感好 謝謝委員 委員的
transcript.whisperx[291].start 8214.628
transcript.whisperx[291].end 8240.057
transcript.whisperx[291].text 前一陣子有質詢我們義務會其實有去做了解我們在這塊裡面會評估那當然育理醫院是一個精神專科醫院所以他在設置標準裡面是沒有這個所謂的精神科以外的但我們可以思考就是在這個部分裡面其實他們有些慢性疾病比如說洗腎這塊其實我們可以連結旁邊的農民育理醫院這個部分其實我是希望能夠早點因為他畢竟是我們退伏會的醫院
transcript.whisperx[292].start 8240.757
transcript.whisperx[292].end 8259.345
transcript.whisperx[292].text 然後如果說有不利院這邊來協助看看能不能把我們的心臟科的專科醫師能夠留在那裡第二個就是我上次去牡丹鄉的時候遇到一個事情就是說他是在假日發生的一個車禍他的住宅住家會發生的地點剛好在衛生所前面然後結果發生車禍了
transcript.whisperx[293].start 8260.465
transcript.whisperx[293].end 8279.06
transcript.whisperx[293].text 結果一般的民眾會看到救護車明明就在他的眼前可是當下發生的時候是假日所以說衛生所的回應說沒有時機所以救護車不能開那里當要有119來送119在哪裡呢他的距離衛生所的距離要開車28分鐘才會到也就是說這個民眾他發
transcript.whisperx[294].start 8285.385
transcript.whisperx[294].end 8305.809
transcript.whisperx[294].text 發生的當下當然可能是比較嚴重然後家屬在眼睜睜看著救護車然後抱著他的母親就看著他母親慢慢斷氣也就是說在救護車到了以後其實他母親已經呈現O卡的現象了那我現在要提出這個問題就是說明明救護車就在他眼前
transcript.whisperx[295].start 8306.289
transcript.whisperx[295].end 8334.75
transcript.whisperx[295].text 然后卫生所就在他前面可是却没有办法在当下有人去可以开这副车当然那是因为有他的所谓的法律的责任所以我的意思就是希望在偏远地区的救护车如果你有救护车的编制应该就要有人力来提供比如说假日的值班或者说12小时或20小时那个轮子才不造成当地明明有救护车却没有救护车可以用的一个状况
transcript.whisperx[296].start 8335.41
transcript.whisperx[296].end 8341.5
transcript.whisperx[296].text 可以嗎 部長我想我們偏鄉的醫療 真的是我們
transcript.whisperx[297].start 8342.813
transcript.whisperx[297].end 8367.567
transcript.whisperx[297].text 非常希望去把它做好,也是我們在這些年來,從幾十年來我當住院醫師的時候就常常在偏鄉服務,完全了解到偏鄉的一個困難那當然我們也不斷的有醫療網的計畫,還有偏鄉醫療的提升計畫這個部分如果有剛剛您講的這些切動的話,我們一定去了解,盡量來改善
transcript.whisperx[298].start 8367.847
transcript.whisperx[298].end 8373.156
transcript.whisperx[298].text 那就麻煩部長再去多關心一下偏遠地區好謝謝好謝謝盧委員謝謝部長來我們現在休息10分鐘謝謝
transcript.whisperx[299].start 8405.466
transcript.whisperx[299].end 8406.347
transcript.whisperx[299].text 好好好
transcript.whisperx[300].start 9080.373
transcript.whisperx[300].end 9097.136
transcript.whisperx[300].text 好 我們繼續開會 接下來請楊耀委員來做詢答謝謝主席 主席我請一下邱部長請部長江署長委員長部長早 署長早
transcript.whisperx[301].start 9106.912
transcript.whisperx[301].end 9130.48
transcript.whisperx[301].text 我們根據經濟部今年1月份的新聞稿指出在113年也是去年我們的醫療器材業出口大概有25.4億美元那出口的地區美國大概就佔了將近三成
transcript.whisperx[302].start 9132.955
transcript.whisperx[302].end 9136.097
transcript.whisperx[302].text 製藥業112年這個兩個年度的數據的年度是不同的112年的出口產值製藥業大概是18億
transcript.whisperx[303].start 9148.055
transcript.whisperx[303].end 9166.013
transcript.whisperx[303].text 美國大概沾了四成所以因為現在受到美國關稅政策的影響除了醫療器材製藥業以外衛福部是不是有盤點其他衛福部主管受到衝擊的產業清單
transcript.whisperx[304].start 9168.755
transcript.whisperx[304].end 9195.294
transcript.whisperx[304].text 有 我們一有這個政策川普宣布這個政策以後我們就衛福部所有司署全部盤點包括連我們的長照的府紀會不會受到怎麼樣的影響我們都站在人民的角度來看看會影響到城市那一個一個都有盤點以及都有請各司署提出一個因應的建議好
transcript.whisperx[305].start 9196.155
transcript.whisperx[305].end 9223.561
transcript.whisperx[305].text 那是不是有跟經濟部等相關機關做聯繫協調相關產業的因應對策有沒有包委員那個因為我們自己的一個盤點以及我們跟我們的各自的產業的了解現在還在盤點中那如果需要跟其他部會做互動的話除了在
transcript.whisperx[306].start 9225.277
transcript.whisperx[306].end 9241.155
transcript.whisperx[306].text 談判小組我們當成一個專業的幕僚提供一些專業的科學的以及我們的狀況給幕僚在那邊可能有彼此的互動以外我們等我們盤點到清楚會再跟經濟部
transcript.whisperx[307].start 9243.414
transcript.whisperx[307].end 9266.346
transcript.whisperx[307].text 來攜手來看看有哪些需要他們來幫忙也就是說現在現在只到盤點的受到衝擊產業的盤點沒有新一步的我們這個盤點已經是先預先修了因為現在還沒有到幾乎還沒有到衛福部的所有的藥品醫材反而
transcript.whisperx[308].start 9267.446
transcript.whisperx[308].end 9272.836
transcript.whisperx[308].text 美國進口給我們還比較多但是我們還是一定要做好準備
transcript.whisperx[309].start 9275.14
transcript.whisperx[309].end 9301.601
transcript.whisperx[309].text 所以因應對策就是你們已經先備足了資料因為美國關稅政策是一個動態的過程所以相關的資料衛福部這邊會先備足謝謝委員的關心我們都需要跨部位因應的時候才不會措手不及當然是 謝謝
transcript.whisperx[310].start 9303.162
transcript.whisperx[310].end 9325.091
transcript.whisperx[310].text 財政部曾經表示過我們的健康食品的進口稅率是30%那他們要延逸分年分階段逐步調降為了要降低我國
transcript.whisperx[311].start 9327.833
transcript.whisperx[311].end 9330.195
transcript.whisperx[311].text 保健食品產業的衝擊經濟部的建議對國內製造團因為國內也有一些保健食品的製造業適度鬆綁國內
transcript.whisperx[312].start 9342.924
transcript.whisperx[312].end 9366.749
transcript.whisperx[312].text 食品管理的相關法規在確保食安的前提下怎麼完善產業經濟環境衛福部這邊有沒有什麼看法我想這是一個一直在談論的議題啦就中間怎麼樣利弊得失當然會做更精密的一個分析那是不是我先
transcript.whisperx[313].start 9368.829
transcript.whisperx[313].end 9375.012
transcript.whisperx[313].text 有關於國內的所謂的保健相關的食品的那整個的產值膠囊定狀的那經濟部盤出來跟我們這邊盤出來的大概是將近400多接近500億
transcript.whisperx[314].start 9390.18
transcript.whisperx[314].end 9413.118
transcript.whisperx[314].text 那由於這樣子的在生產完之後我們銷往美國的量其實只有上百萬美金這樣的量其實相當相當的少可是相對的我們看到所謂的保健食品的這些產線跟我們的製藥的產線GMP的產線其實有時候是平行同一個產面生產
transcript.whisperx[315].start 9414.079
transcript.whisperx[315].end 9438.884
transcript.whisperx[315].text 在關稅在食品那一端我們看到的是反而是希望有機會導引整個台灣的學民的用藥達到自給自足的方向更能夠去滿足那因為我們看到的是這次本身的食品這個保健相關食品的是因為藥物的衝擊下來食品的關稅衝擊下來相對它的利潤如果我們能夠往這邊倒
transcript.whisperx[316].start 9440.464
transcript.whisperx[316].end 9459.816
transcript.whisperx[316].text 那食藥署這邊針對學民藥的發展其實積極的在處理跟我們的東南亞國協達成的GMP廠之間的監管上面的一致性所以我們的學民藥的藥廠它有這個機會產出的學民藥直接在東南亞就可以被認可
transcript.whisperx[317].start 9460.837
transcript.whisperx[317].end 9480.656
transcript.whisperx[317].text 所以目前已經有這樣子的已經完成了這樣的對接除了這以外呢我們在面對這藥物的攻擊的過程中那全世界都面臨這個藥物韌性的議題在歐盟EMA的向下呢也有所謂的歐盟的關鍵用藥的一些法案
transcript.whisperx[318].start 9481.776
transcript.whisperx[318].end 9500.845
transcript.whisperx[318].text 這個法案因為也在食藥署的努力之下跟歐盟這邊一馬做了一些對接之後我們這邊的藥物也有機會能夠直接在那邊成為關鍵用藥裡面被認列因此我們發現這一個學名藥的產線以及它發展的方向
transcript.whisperx[319].start 9501.505
transcript.whisperx[319].end 9522.165
transcript.whisperx[319].text 其實可以更為多元那因為我們的對接讓這樣子的一個產線國內的意願我們這個歐盟的部分呢其實有三家廠商其實非常積極的做鏈接我們希望把這個訊息也跟工協會能夠更討論那我自二月份上任以來其實跟藥品界食品界等等的工協會做了完整的溝通
transcript.whisperx[320].start 9522.945
transcript.whisperx[320].end 9543.402
transcript.whisperx[320].text 也把他們的訴求我們都積極的也把相關的訊息給他們那現在我們持續在做的是我們國內的所謂藥物自給自足公藥的一個基礎的功能底下我們持續在增加我們的藥物韌性也謝謝委員的一些關心 以上說明好 謝謝署長很詳細的說明就是我們的藥物韌性
transcript.whisperx[321].start 9547.265
transcript.whisperx[321].end 9567.013
transcript.whisperx[321].text 不只要安全而且必須要跟國際接軌我們必須要確保國內的廠商可以在國際有競爭力對不對部長我時間的關係所以我最後有一個
transcript.whisperx[322].start 9567.973
transcript.whisperx[322].end 9579.319
transcript.whisperx[322].text 有一個澎湖的問題就讓部長可能也沒有辦法回答答覆就是全國各縣市的早療兒童通報率都在提升
transcript.whisperx[323].start 9592.54
transcript.whisperx[323].end 9621.439
transcript.whisperx[323].text 代表地方政府其實是很積極的在尋找發展遲緩的兒童那這個早期發現 早期治療要避免錯過黃金治癒澎湖縣反而是是早療兒童通報率唯一退步的縣市那我知道澎湖就是評估的量能不足這個第一第二就是澎湖
transcript.whisperx[324].start 9622.915
transcript.whisperx[324].end 9645.319
transcript.whisperx[324].text 有住人的島嶼就有19個所以確實是一件很困難的事情那它的聯絡評估中心也只有一家醫院我這邊建議一下就是你們會後再跟我討論一下可是我還是必須要在這邊講就是說我們
transcript.whisperx[325].start 9649.502
transcript.whisperx[325].end 9674.444
transcript.whisperx[325].text 有沒有辦法透過因為現在澎湖縣有打算澎湖縣政府有打算要成立第二家那這個是一件很困難的事情這個問題在澎湖縣存在很久有沒有可能用演劇醫療的方式來代替副處長有沒有
transcript.whisperx[326].start 9676.239
transcript.whisperx[326].end 9679.79
transcript.whisperx[326].text 因為北一已經有去欺美做過一次
transcript.whisperx[327].start 9683.75
transcript.whisperx[327].end 9708.101
transcript.whisperx[327].text 請護士長報告委員,北醫那個是外展他們就是北醫他去外展,我們給他們有外展的費用那的確澎湖現在想要努力我們昨天也跟澎湖衛生局的局長討論就是說看是部棚或軍棚可以再幫忙成立第二個聯合評估中心那未來的確會在乘坐費還有所謂的評估報告費看是不是偏鄉離島比較特殊的需求會再做一個討論我覺得這個費用
transcript.whisperx[328].start 9712.583
transcript.whisperx[328].end 9732.937
transcript.whisperx[328].text 不多給澎湖一些是真的不行因為它人口實在是散佈在海中太多了啦太多點所以費用的部分我們來想辦法反而比較小勢我覺得是人力
transcript.whisperx[329].start 9734.437
transcript.whisperx[329].end 9756.942
transcript.whisperx[329].text 這問題比較是問題好不好這個麻煩你們待會去做個詳細的研究好謝謝部長謝謝主席好謝謝在這邊做公告等一下帶王振興委員詢答結束之後來處理臨時提案接下來請廖偉祥委員來做詢答
transcript.whisperx[330].start 9773.688
transcript.whisperx[330].end 9775.969
transcript.whisperx[330].text 謝謝主席有請我們邱部長委員好部長好部長第一個我想要請問一下這次這個有關於美國對於關稅的事件然後他其實有提到
transcript.whisperx[331].start 9794.042
transcript.whisperx[331].end 9821.864
transcript.whisperx[331].text 有關於這個非關稅的貿易障礙那它裡面有提到說所謂的這個食品相關的問題那所以在我們的食品安全衛生管理法的第二四條有規定到這個部分就是說在基改食品的標示等等的所以我想要請教一下如果接下來的談判我是不是可以請部長這裡是不是可以宣示不會因為這個事件來犧牲國人的食品安全
transcript.whisperx[332].start 9822.833
transcript.whisperx[332].end 9845.644
transcript.whisperx[332].text 因為不只是這個部分還有包含學校衛生法其實都有提到相關的事情那看起來他除了關稅的部分他就是特別要求這一塊那這也是很重要的一塊但是我在這裡希望部長可以宣示而且也可以告訴國人你不會犧牲我們的這個人民和民眾百姓或是學生的這種食品安全的部分
transcript.whisperx[333].start 9846.445
transcript.whisperx[333].end 9864.112
transcript.whisperx[333].text 好 謝謝委員的隨行我想我們政府以及衛福部就是為人民健康一直日夜在努力的所以我想我們絕對堅持以人民健康維護的為最大的指導原則那至於在各種
transcript.whisperx[334].start 9865.433
transcript.whisperx[334].end 9890.824
transcript.whisperx[334].text 各種政策的擬定當然最重要就是要有科學根據的分析科學分析的一個根據所以部長你等於是宣示說不會犧牲國人的安全在這次的貿民會一切會按照風險的評估跟科學的一個根據來做專業的建議好謝謝那所以部長您是宣示就是不會犧牲國人安全對不對我們絕對站在人民的健康維護
transcript.whisperx[335].start 9892.004
transcript.whisperx[335].end 9917.613
transcript.whisperx[335].text 為最高的原則好謝謝來那部長下一個題目我想要請問一下請教一下我們健康台灣推動委員會在去年的8月22號的時候召開了第一次委員會那部長您當天報告事項的簡報其中有提到優化醫療環境然後確保全民健康十大策略中的第六點也就是檢討健保藥品政策扶植國內的製藥產業
transcript.whisperx[336].start 9919.522
transcript.whisperx[336].end 9946.963
transcript.whisperx[336].text 那另外在報告事項的二是健保永續改革及優化那會議記錄中也提到賴總統自己也提到政府會繼續努力讓台灣的藥品工藝無論是品質或者是供應鏈的韌性都能夠不斷的提升那請教部長這些簡報資料跟賴總統的講話是否還算數還是會如同這次賴總統在福倫社的年會上面說的事後故意拿掉這吃苦當吃補這句話
transcript.whisperx[337].start 9948.479
transcript.whisperx[337].end 9967.584
transcript.whisperx[337].text 好 謝謝委員的關心健康台灣的一個推動也敬佩委員這麼了解到我們提到的一些重點那我跟委員報告說你剛剛所提的幾點我們都說到做到包括健保的改革在大家委員們的努力以及行政院的幫忙好 謝謝部長說到做到
transcript.whisperx[338].start 9969.986
transcript.whisperx[338].end 9987.082
transcript.whisperx[338].text 然後有關藥品這個部分我想我們那個健保署馬上擬定兩大政策那部長沒問題我就繼續講這一部分在穩定這個藥品供應鏈的事情上反正你說說都要做到但是本席其實在去年3月的時候就已經曾經在這裡做出組決議
transcript.whisperx[339].start 9988.183
transcript.whisperx[339].end 10007.736
transcript.whisperx[339].text 那當時是主要是為了避免缺藥後來衛福部跟健保署也接受就是修正後納入藥價改革的辦法之中那健保署供你會議其實在8月中就通過了那本席在10月9號質詢的時候也問說何時會預告那結果其實後來是拖到了11月19日衛福部才預告
transcript.whisperx[340].start 10009.997
transcript.whisperx[340].end 10023.868
transcript.whisperx[340].text 然後再來就是1月22日的預告截止後那到現在又過了三個月那這個要價改革也是健保改革中的一個重點之一那當然不僅是健保財務上的考量還有避免缺藥的風險
transcript.whisperx[341].start 10025.129
transcript.whisperx[341].end 10045.364
transcript.whisperx[341].text 那更重要的是在國際跟這些區域情勢不穩定的情況之下其實各國都是注意這個所謂的藥品的穩定供應都是在強化這個部分那剛剛也講到你們在健康台灣政策裡面有提到要鼓勵在台製造國藥國用才能夠避免缺藥危機變成國安風險可是
transcript.whisperx[342].start 10047.345
transcript.whisperx[342].end 10063.255
transcript.whisperx[342].text 這個部分就是拖了很久沒有公告我想要請問到底是什麼原因是因為台灣價值不夠嗎還是賴總統所謂的這個宣誓都是口號呢為什麼這件事情是一拖二拖三拖那在今天的報告當中你們是有提到預計本月會公告
transcript.whisperx[343].start 10063.815
transcript.whisperx[343].end 10091.389
transcript.whisperx[343].text 那4月27日即將要舉辦這個健康台灣的全國論壇請問能否在4月27號之前這個舉辦健康台灣論壇之前公告那我想要提醒一下部長因為這個藥物的給付項目跟支付標準的供你會議作業辦法的第4跟第6條你們今年2月13號其實就預告了那7天後的2月20號就預告終止然後再過15天就正式公告
transcript.whisperx[344].start 10091.869
transcript.whisperx[344].end 10107.454
transcript.whisperx[344].text 所以整個法規其實從預告到公告是不到一個月就公告實行所以如果這些要價改革如果再沒有在4月27號前公告不就是證明你們是有沒有雙標或者是沒有這個好好的執行我想要請問一下
transcript.whisperx[345].start 10108.154
transcript.whisperx[345].end 10132.677
transcript.whisperx[345].text 好 謝謝委員的隨行那我必須要說明一下預告兩個月以後叫1月20左右嘛那其實有不少的意見那這兩個政策是對於未來國內製藥還有我們的產業鏈非常重要這兩個政策也是委員你一直在關心的所以要面面俱到 希望不要說走下去還要改所以我想感謝健保署的同仁可以說是針對這個
transcript.whisperx[346].start 10134.678
transcript.whisperx[346].end 10155.724
transcript.whisperx[346].text 這兩個政策非常的用心在研擬那應該也部長是4月27號以前確定可以公告嗎有說到做到嗎我想很快的健保署就會送到部裡面我們會用最快的速度應該在4月27號以前我們盡量完成自慢在4月底以前會公告
transcript.whisperx[347].start 10156.324
transcript.whisperx[347].end 10172.34
transcript.whisperx[347].text 那部長要拜託你說到做到希望在4.27以前公告不然你健康台灣的時候要講些什麼對不對這個部分就會漏掉我們要講的非常的多當然很多當然很多我相信我相信但是我說這是其中一塊因為這個拖了很久這個的確一定要做因為我先說明一下真的也沒有拖很久
transcript.whisperx[348].start 10173.922
transcript.whisperx[348].end 10193.595
transcript.whisperx[348].text 您剛剛把整個時序弄出來其實那個都是要做很詳盡的討論好沒關係我再問下一題1月20號到現在才有一段時間部長希望就是4月底前說到做到我想署長也說沒問題我知道大家都辛苦了但是希望可以說到做到
transcript.whisperx[349].start 10194.696
transcript.whisperx[349].end 10212.361
transcript.whisperx[349].text 部長這個醫藥品跟醫材的供應鏈穩定性很重要嘛我相信你們都就是拼拼點頭那萬一戰爭發生時藥品的自主這件事情就會變得極度的重要所以我想要請問一下目前衛福部為了供應穩定性有沒有哪些更具體的作為
transcript.whisperx[350].start 10213.001
transcript.whisperx[350].end 10232.281
transcript.whisperx[350].text 到目前為止有編列什麼預算或經費維持這個供應鏈穩定性嗎因為我想問一下我想跟部長說一下像美國呢已經啟動對於藥品跟其原料進口的國安調查對不對那將涵蓋所謂的學名藥非學名藥成品跟生產這些藥物所需要的原料跟關鍵成分
transcript.whisperx[351].start 10233.522
transcript.whisperx[351].end 10243.871
transcript.whisperx[351].text 那部長他們在啟動調查當然是為了現在的關稅嘛要加徵關稅的部分但是在我們國家的部分我們可能要為了避免戰爭風險是不是應該也要進行所謂的這個藥品的國安調查那
transcript.whisperx[352].start 10249.035
transcript.whisperx[352].end 10276.816
transcript.whisperx[352].text 就是除了這個穩定供應鏈的這個量之外這個值也要有韌性所以否則就會發生劣幣趨良幣的情況所以根據我想要講的事情就是第一個是不是應該也要啟動國安調查這第一個第二個就是說我們在2022年這個進出口的統計裡面2022到2023原料要進口國的前五名分別是中國大陸、日本、印度、義大利跟南韓
transcript.whisperx[353].start 10277.765
transcript.whisperx[353].end 10292.742
transcript.whisperx[353].text 那中國大陸的部分都有30億以上那第二名是日本但是是第二名的日本的三倍以上所以政策上是不是也應該要更具體的去鼓勵藥廠尋求原料藥的第二國的供應來源
transcript.whisperx[354].start 10294.352
transcript.whisperx[354].end 10309.651
transcript.whisperx[354].text 是不是應該要這樣子所以大家都知道中國大陸跟印度是原料藥的主要輸出國所以但是當我們如果要減少來自中國大陸的原料藥的時候就必須要先盤點那也應該要更具體的鼓勵這個藥商尋找第二原料藥的供應來源
transcript.whisperx[355].start 10310.532
transcript.whisperx[355].end 10334.128
transcript.whisperx[355].text 那我想要問的就是說第一個剛剛有說要國安調查第二個就是除了口頭的鼓勵之外有沒有更實質的作為啊比如說在藥價上面的給藥價政策上面的給予優惠那讓廠商願意尋求這個原料藥的第二個來源那因為其實今天你們的報告裡面啊是提到的是說建立原料藥的加速審查機制啊
transcript.whisperx[356].start 10334.528
transcript.whisperx[356].end 10355.219
transcript.whisperx[356].text 那我覺得這的確是一個很好的方式沒有錯但是我覺得這個誘因究竟夠不夠所以想要請教部長這部分是不是這兩個題目好謝謝委員那因為這個有關於剛好上有食藥署然後下有健保署由他們檢要的來把你串聯跟委員報告一下好了
transcript.whisperx[357].start 10357.802
transcript.whisperx[357].end 10377.648
transcript.whisperx[357].text 報告委員 針對現在提到的原料藥的部分以及我們藥物的韌性這一段那我們分成平時跟潛在的暫時的會有不一樣的想法我們平時我們在這一次在去年年底盤到二月份已經確立下來有584種的所謂的必要藥品
transcript.whisperx[358].start 10378.268
transcript.whisperx[358].end 10401.426
transcript.whisperx[358].text 那我們針對必要藥品也在這一次美國關稅的議題之下我們特別去盤了一下關稅議題上可能會看到的這些必要的藥品如果針對是美國這個單一個美國來提的話那大概製造在美國大概有214張因為我們盤的是在所謂的許可證的部分那我們剛才也特別提到有60
transcript.whisperx[359].start 10403.128
transcript.whisperx[359].end 10423.647
transcript.whisperx[359].text 這樣裡面呢是屬於真的是完全美國製造的所以我們會讓大家知道我們初步了解這個必要的藥品第一個584種加下來接下來是美國這一次的衝擊底下那第二個部分是針對所謂可潛在的有的暫時的一個必要的藥品那藥物的韌性的部分我們希望在那個瞬間
transcript.whisperx[360].start 10424.488
transcript.whisperx[360].end 10438.447
transcript.whisperx[360].text 我們希望未來有更高強度的機會可能也需要各位委員們的一個協助因為要有很強烈法源的依據如果在暫時有一個徵召的這樣子的一個機會才能夠去讓我們台灣的
transcript.whisperx[361].start 10440.949
transcript.whisperx[361].end 10466.578
transcript.whisperx[361].text 製藥的部分我們有25種是必要的藥品的但是這個部分我主要還是針對說現在我們的原料藥的進口這個大陸的部分大多數來自於中國大陸的部分那是不是應該要更有具體的這個政策去誘引去鼓勵這些去開拓第二來源國我剛剛想要問的是這個那您剛剛講的我都我可以理解喔你說有這個關稅的應對可是其實我的問題是這個
transcript.whisperx[362].start 10468.038
transcript.whisperx[362].end 10490.331
transcript.whisperx[362].text 就接下來原料料這個特定的部分我們知道中國印度其實一直是以價格取勝那國內的原料料它本身的產值我們知道整個的原料料是大概1.75億的出口的一個狀況那我們可以進口的部分是2.3億那它本身產值其實是小的
transcript.whisperx[363].start 10490.97
transcript.whisperx[363].end 10505.921
transcript.whisperx[363].text 那在原料藥它的特殊性是它本身高污染所以我們希望能夠我們也希望會積極的鼓勵能夠在不同的方式對我就是講這個就是要積極的鼓勵是不是不要只是口頭鼓勵你又沒有什麼實質的比如說藥價偵測的作為
transcript.whisperx[364].start 10507.362
transcript.whisperx[364].end 10524.378
transcript.whisperx[364].text 因為我要提醒因為時間關係我要提醒署長因為藥品可能不同於一般的商品嘛所以不太可能說時間到了或是戰爭到了我再去做這個準備我們現在在提早就是因應嘛提早在講的這個政策就是希望可以提早因應讓他們提早有準備第二個原料果
transcript.whisperx[365].start 10524.958
transcript.whisperx[365].end 10552.304
transcript.whisperx[365].text 所以我是希望這個部分應該是要透過政策有更具體的誘因這樣才可以確保提早準備而且確保國人的用藥的健康的權益跟委員報告在這一次我們委員關心的藥品的支付標準修正裡面我們也加了這個如果使用台灣的原料藥的話產地是台灣的原料藥我們藥價加4%另外的譬如說其他部分的來源國有沒有需要再鼓勵
transcript.whisperx[366].start 10553.726
transcript.whisperx[366].end 10567.543
transcript.whisperx[366].text 我們是以在地為優先在地優先嘛那好那在地優先之外如果說在地短時間做不到的情況之下你可能也要去盤點他有沒有其他誘因要從其他國家進來我覺得這部分也也可以請這個署長去研擬一下
transcript.whisperx[367].start 10570.467
transcript.whisperx[367].end 10593.59
transcript.whisperx[367].text 那另外最後一題就是國健署的癌症篩檢是降低癌症死亡率我覺得很重要的關鍵但是並非每一種癌症都適合篩檢或是有篩檢技術那現在公費的篩檢有五種那分別是口腔癌對不對乳癌大腸癌子宮頸癌跟肺癌那當然胃癌是在這個所謂的公費篩檢算是在事半計畫
transcript.whisperx[368].start 10594.854
transcript.whisperx[368].end 10608.132
transcript.whisperx[368].text 研究也有顯示50%到90%的胃癌可以歸因於幽門螺旋桿菌的感染國內20歲以上幽門螺旋桿菌感染的標準化盛行率大概是32%主要當然包含
transcript.whisperx[369].start 10610.034
transcript.whisperx[369].end 10635.074
transcript.whisperx[369].text 經口傳染、飲水食物等等所以其實基本上我們要根絕胃癌就是基本上要根絕幽門螺旋桿菌所以我想要請教部長就是說從這個癌登報告中可以看出107年開始每一年的胃癌都是癌症死亡率的第八名我想要問的是說明年是不是可以我也想要在這裡爭取是不是將胃癌篩檢正式列為第六種公費篩檢
transcript.whisperx[370].start 10636.135
transcript.whisperx[370].end 10656.158
transcript.whisperx[370].text 那現在事辦計畫大概是45到75歲族群那去年是9個縣市共有9個縣市今年是17個縣市參與所以明年全台20個縣市應該都可以納入那我想要請教部長因為行政部門現在在編列明年的預算那公費胃癌的篩檢的費用是否已經編列進去有編列進去好謝謝部長
transcript.whisperx[371].start 10666.467
transcript.whisperx[371].end 10694.732
transcript.whisperx[371].text 剛剛委員跟委員報告的確今年是已經有17個縣市那其實我們各縣市大概都跟他們報告說會在明年全國全國開辦啦對所以就是一樣是45歲到74歲的國人通通可以好謝謝所以跟委員報告其實我們也鼓勵國人自費篩檢所以如果我們是自費篩檢出來吹氣也好或者是糞便的抗原的檢查出來那麼有陽性的那健保也給付這個除菌的這個藥費
transcript.whisperx[372].start 10696.599
transcript.whisperx[372].end 10716.27
transcript.whisperx[372].text 好 謝謝部長我這邊也要爭取也要建議反正有鑒於現在癌症的年輕化的趨勢所以我覺得不僅將這個胃癌列為第六種的癌別的公費篩檢也最好是比照大腸癌補助45到74歲的民眾40歲到44歲具有家族病史的民眾每兩年一次好不好
transcript.whisperx[373].start 10717.608
transcript.whisperx[373].end 10737.304
transcript.whisperx[373].text 好我們檢討不過如果查出來是陽性的話一般來講就會就等於是殺那一次就OK了啦他出鏡的效果很好所以他的聯賭我們可以再討論好先請部長回去再演繹一下我們再演繹謝謝好謝謝六位謝謝部長主長謝謝接下來請王振旭委員來做選答
transcript.whisperx[374].start 10746.812
transcript.whisperx[374].end 10748.838
transcript.whisperx[374].text 謝謝主席我們還是請邱部長
transcript.whisperx[375].start 10754.877
transcript.whisperx[375].end 10783.396
transcript.whisperx[375].text 今天有聽到你那個很完整的報告那我們也知道這次關稅的議題引起這麼大的衝擊美國其實在許可證的部分佔的並不多只有佔了1.86%不過前三大列裡面我們所知道的就是包括人體血液製劑抗腫瘤藥品還有神經系統用藥有一些單價真的是非常高
transcript.whisperx[376].start 10784.276
transcript.whisperx[376].end 10810.654
transcript.whisperx[376].text 所以到底衝擊會如何我們可能還是要小心應應不過我想就其他議題我們就逐一的來跟部長討論請教一下包括這個產業的穩定供應還有房息產地有沒有機會透過這個危機來創造轉機這是我們非常期待一開始我們還是先關心一下世界各國其實都非常挺台灣
transcript.whisperx[377].start 10811.974
transcript.whisperx[377].end 10836.251
transcript.whisperx[377].text 來參與世界衛生大會今年5月19號會在Zenewa舉行那這部分之前部長也接受了媒體的訪問也發表一些準備的部分的一些資訊給大家做參考那這部分不知道部長有沒有要利用這個機會在稍微做一些說明包括世界各國的各個不同的這個領域的
transcript.whisperx[378].start 10838.032
transcript.whisperx[378].end 10849.722
transcript.whisperx[378].text 國家或者是跟我們理念相同的這些地方跟我們加入這個WHA這個大會的一個支持的部分可不可以請部長稍微再說明一下
transcript.whisperx[379].start 10850.578
transcript.whisperx[379].end 10867.057
transcript.whisperx[379].text 好的,非常感謝我們王勝旭委員問這個題目,那也感謝王委員去年參加立委的市導團,真的他的辛苦度不輸我們的衛福部這個叫做行動團
transcript.whisperx[380].start 10869.299
transcript.whisperx[380].end 10889.736
transcript.whisperx[380].text 異位行動團真的非常的辛苦我們共同的目的就是利用那個WHA這個短短的一個禮拜當中怎麼樣去創造這個機會跟各國來做互動所以有明的也有私下的像我們就跟可能有幾十個國家
transcript.whisperx[381].start 10891.016
transcript.whisperx[381].end 10909.201
transcript.whisperx[381].text 衛福部的長官們做雙方的一個互動其實都因為這樣的互動建立了很好的關係這個非常重要當然現在委員去做國會的外交
transcript.whisperx[382].start 10909.941
transcript.whisperx[382].end 10921.382
transcript.whisperx[382].text 也讓瑞士的國會跟其他如果有過去的國會議員有對台灣更多的了解跟支持特別感謝的就是說像去年我們可能有
transcript.whisperx[383].start 10922.816
transcript.whisperx[383].end 10941.825
transcript.whisperx[383].text 近百個來自行政及立法部門專業議會團體智庫協會、意見領袖及公民社會特別像年輕的醫學生又組團過去所以大家共同把WHA把台灣的一個人民照顧的權益
transcript.whisperx[384].start 10942.925
transcript.whisperx[384].end 10963.615
transcript.whisperx[384].text 雖然我們一年365天都在做努力但是在那個時機是我們在日元瓦把它展現出來那裡面也有開不少一個專業的論壇所以我想今年我們雖然經費少了很多但是我們還是一樣希望能夠維持這樣的一個努力的量能
transcript.whisperx[385].start 10964.971
transcript.whisperx[385].end 10988.227
transcript.whisperx[385].text 來幫台灣在國際化上是而且這一次我們前副總統也會去參與的同時也會發表重要的演講我們很期待大家都能夠更了解台灣透過這個管道可以讓全球看到台灣在做相關衛生行政各方面針對民眾健康福祉的一個努力
transcript.whisperx[386].start 10989.347
transcript.whisperx[386].end 11007.554
transcript.whisperx[386].text 我們從總統府到行政院都很重視這樣的一個國際活動不過聽說明年美国就不參加了因為今年還要參加啦所以我覺得我們該做的還是要做因為畢竟很難得的機會我想我們還是
transcript.whisperx[387].start 11008.934
transcript.whisperx[387].end 11031.249
transcript.whisperx[387].text 我們不是說完全WHO的問題而是我們是理念相近國家的一個互動這是一個很難得的機會明年再相機行事再過來就是我們看到今天的報告裡面針對藥品醫材的這個穩定供應的策略就包括這四大項大家已經都討論很多那我們也了解其實除了這些藥品醫材以外
transcript.whisperx[388].start 11032.15
transcript.whisperx[388].end 11056.584
transcript.whisperx[388].text 有兩個部分可能要特別麻煩部長再說明的更清楚一點尤其是針對血液製劑還有疫苗 疫苗剛才都沒有說到這部分有沒有特別要再加強那個疫苗我們當然做好準備而且它都長期 很多都是長期簽約的基本上我們都有去盤點是不是要請那個集管署莊仁祥署長先跟委員報告
transcript.whisperx[389].start 11057.364
transcript.whisperx[389].end 11080.793
transcript.whisperx[389].text 疫苗的事情那有關疫苗的部分其實我們目前其實都是多是長年的合約啦那而且大部分都也大部分都不是美國廠的那另外這個因為我們買公費疫苗其實我們的關稅也都是零啦這個部分這個我們也會嘗試就是說針對多多年的合約然後多家的這個
transcript.whisperx[390].start 11081.733
transcript.whisperx[390].end 11106.038
transcript.whisperx[390].text 和的廠商來一起來來購置這個疫苗所以我們在短暫的這個預期是目前是不會有什麼太大的影響以上是好所以民眾是可以放心不過國產疫苗他對於整體的這些防疫各方面也有他的重要性所以我了解有這樣的方向正在努力我們有成立這個疫苗
transcript.whisperx[391].start 11108.119
transcript.whisperx[391].end 11129.801
transcript.whisperx[391].text 產業推動的一個小組在健康臺灣推動委員會正在執行來扶植我們特別是國內的疫苗的產業保護人民的健康那至於血液製劑是不是容我給江署長有關於我們血液製劑因為有國血國用的一些政策在
transcript.whisperx[392].start 11130.462
transcript.whisperx[392].end 11153.015
transcript.whisperx[392].text 所以我們以目前的狀況特別是在我們的IVIG的部分我們使用的從九成現在是五成是國內的白蛋白的部分也占了一定的比例至於凝血因子的部分因為已經改用基因工程的方式來生產所以在國血國用的狀況特別血漿的部分我們目前是五萬公升的血漿
transcript.whisperx[393].start 11153.755
transcript.whisperx[393].end 11172.12
transcript.whisperx[393].text 那正在找希望找第二個代工廠能夠把它提升到10萬公升的血漿的供給量對於血源的不足的部分我們也修正了捐血的健康標準的部分我們從原來的年齡上限從65歲提升到70歲所以總整的一個政策
transcript.whisperx[394].start 11172.9
transcript.whisperx[394].end 11186.95
transcript.whisperx[394].text 希望我們在國血國用以及國血補充的部分能夠持續的緊緊 以上說明好 有備無犯 我們可以把事情做得更好剛剛我們也聽到其他委員會談到有關於這個
transcript.whisperx[395].start 11188.331
transcript.whisperx[395].end 11212.716
transcript.whisperx[395].text 很多我們的原料要是來自中國有部分來自印度那這部分如果說我們希望能夠有更好的一些防患措施的話我們很擔心會不會有反傾銷或者是大量傾銷的問題就是說他們這次因為有其他的這個關稅議題所以無法銷售他們自己已經產好的這些產品會不會
transcript.whisperx[396].start 11213.436
transcript.whisperx[396].end 11240.031
transcript.whisperx[396].text 透過這樣的傾銷進到台灣造成這個衝擊那這部分有沒有應用措施我想防中國或者防其他的地方來把台灣當成稀產地這個絕對是完全的禁止所以我想經濟部也有監測特別這個新聞報導有特別的來監測啦那不曉得食藥署在這個部分在稀產地這個部分有沒有什麼
transcript.whisperx[397].start 11241.634
transcript.whisperx[397].end 11266.477
transcript.whisperx[397].text 我們針對這中國的藥品的部分我們的所有的用藥都有很清楚要有缺去的所謂的許可證的情況之下才會讓他進來我們的臺灣所以我們在審查的過程中呢是他也製造廠原始的製造廠在哪當作是我們審查最重要的基準我們對於所有的藥廠裡面我們必須要符合PIC GMP的廠而且我們能夠確定茶廠
transcript.whisperx[398].start 11267.197
transcript.whisperx[398].end 11279.505
transcript.whisperx[398].text 准許他輸入才能夠甘給他的許可證所以這部分我們透過這樣的機制之下所以可以確定我們現在的藥物的許可證來源是在哪裡的生產那以上說明
transcript.whisperx[399].start 11280.596
transcript.whisperx[399].end 11300.997
transcript.whisperx[399].text 所以也希望能夠非常緊密的去監測這些藥品的流向再過來我們也理解這個其實就是一個轉機因為如果我們透過好的方式跟美國達成更好的關稅協議的話其實我們能夠引進很多新的生技製藥產業
transcript.whisperx[400].start 11302.979
transcript.whisperx[400].end 11318.331
transcript.whisperx[400].text 變成一個新的供應鏈的好的一個基地這部分不知道未來有沒有什麼規劃或者是可以處理的部分好這個部分健保署可以來補充一下剛剛今天已經談了很多那個
transcript.whisperx[401].start 11319.861
transcript.whisperx[401].end 11341.714
transcript.whisperx[401].text 鼓勵的措施但是應應剛剛您提的要前面一張提的說危機就是轉機我非常敬佩我們委員的高瞻眼足的那因為的確面對挑戰我們怎麼樣除了解決危機以外我們是不是應該尋求創造更紮實的一個的一個工作包括譬如說我們國內的產鏈產業鏈的把它落實讓
transcript.whisperx[402].start 11347.598
transcript.whisperx[402].end 11374.601
transcript.whisperx[402].text 我們就地生產就地行銷來自己可以光榮自己那當然我們也可以再利用這個機會是不是在將來在市場的分散方面也可以尤其在醫藥生技這個部分其實也必須要往這方面來努力當然我們本身對於可能關稅影響的各種狀況我們必須要有各種應應的因素這個我們也都在都已經end了那至於說怎麼樣鼓勵我們
transcript.whisperx[403].start 11376.67
transcript.whisperx[403].end 11396.661
transcript.whisperx[403].text 國內製藥的韌性是不是署署長簡單跟委員報告一下跟委員報告我們從這個短期跟長期來看那短期當然是在我們每年的藥價調整上面對於這個必要藥品品項那麼有國內製造三個品項以下的那麼我們那一年就不會調整它的藥價
transcript.whisperx[404].start 11397.481
transcript.whisperx[404].end 11425.541
transcript.whisperx[404].text 所以就不會有越來越低的情形所以他不需要去跟大家share那個DET超過的部分這個是短期我們今年就已經開始這樣做了那其他的呢還包含鼓勵這個國產新藥所以如果是在全球首發或者是在其他世界上有發行兩年內在台灣製造的那我們也都有特殊的比照台灣首發的要價的那個優惠合價那另外呢也對國內
transcript.whisperx[405].start 11427.342
transcript.whisperx[405].end 11446.381
transcript.whisperx[405].text 製造那麼過專利期那麼前兩張的這個這個學名藥呢我們給他等同於原廠藥的價格對都有實質的鼓勵OK了解那剛剛部長有提到這個生技產業其實我們知道2024年經濟部產業發展署有提出這個2024生技產業的白皮書
transcript.whisperx[406].start 11450.525
transcript.whisperx[406].end 11464.413
transcript.whisperx[406].text 裡面也說了一些相關的發展的類似部長不知道有沒有好去了解、關心包括還有第2、第4、第5點都有提到相關需要麻煩衛護部來做相關應用作為的地方
transcript.whisperx[407].start 11465.713
transcript.whisperx[407].end 11487.523
transcript.whisperx[407].text 我們也理解他也提到了這個所提到政策建議的方向包括人才培育資料利用法源建立資料庫接軌國際資訊還有導入AI強化CDMO等等的這個關鍵原料物資組等等保證可能現在也沒有時間給你再做報告所以我們是不是可以請
transcript.whisperx[408].start 11489.264
transcript.whisperx[408].end 11517.857
transcript.whisperx[408].text 其實裡面給我們相關報告好沒問題跟委員報告一下其實裡面大部分都我們都在進行那我們會給我們進行的狀況會給委員報告是好 最難忘的就是剛剛有提到這些相關包括韌性的如何能夠讓台灣有很好的這個藥品的準備那陳靜惠委員也很關心她也說是不是能夠提供一個清單給大家做參考
transcript.whisperx[409].start 11518.857
transcript.whisperx[409].end 11543.586
transcript.whisperx[409].text 不過我想要提醒的就是說這樣的清單有一些會不會牽扯到國安問題等等所以在提供這個清單的同時是不是要注意一些謝謝委員 專業的鑑解其實的確公告清單是一個有它不適合性除了說國安的問題以外另外就是可能如果你變成
transcript.whisperx[410].start 11545.209
transcript.whisperx[410].end 11548.413
transcript.whisperx[410].text 變成不可期待的話 那要價可能會被調高
transcript.whisperx[411].start 11549.78
transcript.whisperx[411].end 11577.855
transcript.whisperx[411].text 會面臨很大的衝擊,所以我們在這個部分的確要很小心好,謝謝副市長,抱歉出現,交給習竿不會不會,謝謝王委員、謝謝副市長跟委員報告,我們剛剛是有跟大家說明說到王振興委員宣達結束後就來處理臨時提案但是王委員有跟那個圖委員對調,圖委員又跟賴思寶委員對調所以就是賴思寶委員這個追尋完之後我們再來做臨時提案的處理,謝謝
transcript.whisperx[412].start 11582.692
transcript.whisperx[412].end 11587.178
transcript.whisperx[412].text 謝謝主席的體恤喔那麼各位先請有請邱部長來 請部長委員好請教你 我有兩大問題第一大問題就是全台醫院的個別總額是不是上路了
transcript.whisperx[413].start 11602.459
transcript.whisperx[413].end 11616.172
transcript.whisperx[413].text 對 因為什麼時候上路台北區在4月會上路了4月第一季嘛所以是全國上路了全國上路了結果上路來講的話就馬上產生問題台大已經產生問題了台大的處分集它只看80個掛號100個 後面20個幾乎都沒有辦法看這問題已經產生了
transcript.whisperx[414].start 11627.722
transcript.whisperx[414].end 11637.551
transcript.whisperx[414].text 因為這個又跟你的因為你們要配為了要配合達到總額總額的等於是要.95嘛為了要.92.90是.95吧.95嘛因為這個東西啊就有一點朝三暮四朝四暮三的這有點騙社會的感覺喔你.95就讚的啊結果不是啊結果結果一來的話大醫院根本就砍光封了後面就砍掉了啊
transcript.whisperx[415].start 11653.065
transcript.whisperx[415].end 11669.971
transcript.whisperx[415].text 這個情況是已經發生了台大醫院已經發生了主任級的他的一個他的掛號的掛100個 原來看100個因為實施了這個總額醫院的總額入治然後就變成是看80個 剩下20個是怎麼辦
transcript.whisperx[416].start 11670.982
transcript.whisperx[416].end 11694.808
transcript.whisperx[416].text 報告委員 委員真的也是醫師家庭不可能 也了解醫界的環境我在台大看那麼多人的病每次剛好看完走回來跟心臟科教授講說我今天好累喔 我今天看了50個病人其中只有 其中真的可以看他心臟科只需要2 這裡面只有20個其他根本就應該screen在基層醫院 所以那是強迫強迫做好分期的工作 所以如果說
transcript.whisperx[417].start 11700.309
transcript.whisperx[417].end 11714.098
transcript.whisperx[417].text 這第七遍啦所以他30歲沒辦法在他看所以把他搞得把一個心臟科的教授搞得很累來影響到20個可能真正需要做導管心力不整所以這個是過去不好的現象
transcript.whisperx[418].start 11715.066
transcript.whisperx[418].end 11741.354
transcript.whisperx[418].text 我們現在利用這樣的機會如果做區域的整合那也可以做分級的醫療我覺得這是一個非常重要的你這個做的話我不知道了以我們市場機制來講只有一條路嘛你把這個醫學中心的關號會提高了這樣而已大家乖乖的去遞去醫院去醫院以台大醫院農總幾個醫院都有先示不會去提高關號會
transcript.whisperx[419].start 11742.774
transcript.whisperx[419].end 11765.46
transcript.whisperx[419].text 那我們要做的 我想委員也是專家啦我們最重要就是要讓他分級醫療落實我們政府的工作以及所有我們已經叫了十幾十年了都落實不了咧所以要努力所以要想盡辦法如果真的好做的工作也不會我們做了幾十年還在做啦這個跟你的DRG有沒有關係DRG啊DRG喔有一點關係喔
transcript.whisperx[420].start 11772.873
transcript.whisperx[420].end 11776.797
transcript.whisperx[420].text 以診斷來講 門診應該是沒有作用門診跟糖尿病是一個診斷來講是沒有關係的我想慢慢的讓我們好 第二個大的問題這個賴清德總統說到不同工不同酬什麼時候可以開始試試
transcript.whisperx[421].start 11791.912
transcript.whisperx[421].end 11797.097
transcript.whisperx[421].text 我想這個部分健保署做很多賴總統這句話是講對的比如我們這樣講同樣的醫生看感冒的跟看心臟的很複雜看癌症的很複雜解釋的個別幾乎都10m看感冒的幾乎都很接近老鼻水
transcript.whisperx[422].start 11815.772
transcript.whisperx[422].end 11829.968
transcript.whisperx[422].text 可受的啦 基本上來講都是很接近的啊 你們現在看整個是一樣的啊所以賴總統講這句話是對的不同共 不同仇對 你們是不是可以實施我這個一直在努力喔 我想不是 要是告訴我們時間不要啊
transcript.whisperx[423].start 11831.451
transcript.whisperx[423].end 11836.715
transcript.whisperx[423].text 蘇蘇長跟委員報告一樣跟委員報告確實像一個診能夠看到100個表示都很簡單所以那個診察費不用太高可是相對的如果一個病人要看二三十分鐘我們應該要給他高的診察費所以我們要會分成現在正在研議中的那麼下半年就會實施有所謂一般診察費因為我們的程序還要經過專家會議跟共同擬定會議大概什麼時間嗎給我們講一下大概最rough的
transcript.whisperx[424].start 11861.031
transcript.whisperx[424].end 11888.308
transcript.whisperx[424].text 最保守的應該在第三季啦第三季嗎所以明年的等於明年的十月之前今年喔今年的十月之前我們可以落實賴總統所講的不同工不同酬我們是先從診察費那事實上我們今年上半年五月開始就已經先調了這個加護病房的費用急診的那些費用就調了42億了所以其實一直在進行
transcript.whisperx[425].start 11888.928
transcript.whisperx[425].end 11910.984
transcript.whisperx[425].text 那我剛剛提到的是門診在醫院的門診的診察費那麼把它分成一般跟複雜現在不認真做這個事情喔真的到後來找不到醫生喔那個醫生都跑去做美容的喔一天也要多對不對 一樣是醫生喔這辛苦得要死做功德啦因為怎麼內科外科都做功德啦真的 做功德啦
transcript.whisperx[426].start 11911.644
transcript.whisperx[426].end 11921.39
transcript.whisperx[426].text 是不是這樣最後一個小問題是大問題這次川普的關稅我們總統說要從零開始大家就馬上想到什麼關稅其實中華民國最高的關稅是什麼你知道嗎跟你有關係不知道喔30% 第一名30%不是
transcript.whisperx[427].start 11937.54
transcript.whisperx[427].end 11948.963
transcript.whisperx[427].text 跟他叫做其他項目的什麼我查了一下就是什麼進口藥品30%是全國第一名的進口藥品以健康食品不是藥品的進口健康食品
transcript.whisperx[428].start 11950.069
transcript.whisperx[428].end 11956.09
transcript.whisperx[428].text 堅果健康食品是NO.1保健食品為什麼要克這樣你們講話就是要保護國內的健康食品業者為什麼要保護你告訴我跟委員報告一下訂關稅訂多少其實跟食藥署跟衛福部應該是沒有關係是關務署跟產發署因為不是我們訂的是產發署跟財政部訂出來的關稅的
transcript.whisperx[429].start 11979.955
transcript.whisperx[429].end 12003.894
transcript.whisperx[429].text 就是你們管他 鑰匙管他 進口食品你不管嗎進口這個食品是在一般的食品的進口裡面呢 要關稅的部分呢是在那裡 可是不是關稅要管食品進來這個安全性有效性等等是我們在管的可是要定多少關稅的部分其實是不是我們 不是你們定的對 不是我們定的 可是你們可以提供意見啊對 所以我們其實面對這個議題之下就
transcript.whisperx[430].start 12005.996
transcript.whisperx[430].end 12017.144
transcript.whisperx[430].text 提到因為談從零談起應該會往下降所以這些食品保健相關食品的產線跟藥品會重疊所以我們希望有機會導演到生命用藥會變成零這意想不大的因為老實講這個國外的健康食品進來實在太貴了降為零國內的業者應該不會講投入話
transcript.whisperx[431].start 12031.772
transcript.whisperx[431].end 12049.387
transcript.whisperx[431].text 我們希望國內的業者如果能夠製造協名藥的話,能夠盡量他的產線來製造協名藥才能夠就地生產就地來行銷,保障我們的一個產業鏈經果藥有沒有客觀稅?沒有都沒有客觀稅?藥品沒有好謝謝委員謝謝好謝謝,那我們繼續來處理臨時提案
transcript.whisperx[432].start 12060.8
transcript.whisperx[432].end 12089.662
transcript.whisperx[432].text 現在有三案請一併宣讀第一案有鑒於美國政府對我國實施對等關稅政策國產製藥產業工協會於4月14日發表聯合聲明呼籲政府應將全國社區藥局與藥廠及藥材廠並為衛福部醫療韌性計劃參與對象之邀請加速健保化療學名藥P4P政策之制定健保藥價要及時反映市場價格做調整
transcript.whisperx[433].start 12090.803
transcript.whisperx[433].end 12117.688
transcript.whisperx[433].text 以扶植學民藥產業發展之具體作為確保台灣藥品供應鏈之韌性綜上所述請衛生福利部於二週內提出書面報告具體說明提案人委員林月琴 劉建國 王振旭第二案有鑒於契約規範藥品驗收入庫時之有效期限需達八個月以上並對未滿八個月效期之藥品逐月扣除3%至6%之價金
transcript.whisperx[434].start 12119.208
transcript.whisperx[434].end 12125.995
transcript.whisperx[434].text 食品藥物管理署架設之西藥供應資訊平台一旦公布缺藥便罰扣藥商採購價格3%等同客與藥品供應商擔當全國藥品之數量管控調度與庫存之責任綜上所述請衛生福利部於一週內提出書面檢討報告
transcript.whisperx[435].start 12140.529
transcript.whisperx[435].end 12167.201
transcript.whisperx[435].text 提案人委員林月琴 劉建國 王振旭第三案建議衛福部應於4月27日前正式公告全民健康保險藥物給付項目及支付標準修正案並持續開展各項醫療健保制度改革以確保國家安全國人醫療健康權益並使健保財務健康達到健保永續等目的提案人委員廖偉祥 陳清輝 盧憲一 蘇清泉宣讀完畢
transcript.whisperx[436].start 12171.806
transcript.whisperx[436].end 12181.134
transcript.whisperx[436].text 好我們請問各位人針對第一案行政大臣有意見這個這個沒有問題啊沒有問題那各位有沒有其他問題本來在所有的討論裡面就有邀請要這個進來討論這沒有問題好那委員有沒有其他來OK
transcript.whisperx[437].start 12200.643
transcript.whisperx[437].end 12207.795
transcript.whisperx[437].text 蛤 可以啦 OK 好沒有議論我們就在案通過接下來第二案來 第二案來來 那個
transcript.whisperx[438].start 12215.117
transcript.whisperx[438].end 12242.339
transcript.whisperx[438].text 好那個有我們有跟那個委員這邊有溝通過就是第五行那邊就是扣除3%或6%那個或6%拿掉因為縣行文不立院是3%那再來就是倒數第五行那個蛋食品藥物那個地方那個蛋就拿掉然後就是請醫院善用食品藥物管理署架設之需要供應資訊平臺
transcript.whisperx[439].start 12244.24
transcript.whisperx[439].end 12271.81
transcript.whisperx[439].text 然後一旦公佈缺藥那在後面那個變罰扣藥商一直到倒數第二行那個據點就是有不盡合理之疑慮那邊刪掉然後改成盡量使用替代用藥這點避免契約罰扣眾上所述到最後一行請衛生福利部於一個月內提出書面檢討報告以上所以有跟委員這邊有溝通過
transcript.whisperx[440].start 12274.101
transcript.whisperx[440].end 12282.329
transcript.whisperx[440].text 好 同意各位有沒有其他意見那如果沒有我們就照這樣修正來通過第三案來 選舉機關有沒有意見
transcript.whisperx[441].start 12291.115
transcript.whisperx[441].end 12318.522
transcript.whisperx[441].text 我想廖委員一直期待我們能夠展現成果那我們用最快的我們非常用心的把這兩個政策做了很多的討論希望一公告就真的很大的幫助但是我覺得時間還是要趕那感謝委員的督促那我們就同意在4月27號前來公告好 那各位有沒有其他好 我們那個
transcript.whisperx[442].start 12319.332
transcript.whisperx[442].end 12324.354
transcript.whisperx[442].text 陽瓊議員一併來連署好謝謝那各位有沒有其他意見我們就這樣通過好謝謝好臨時提案已經處理完畢那接下來請劉建國委員發言
transcript.whisperx[443].start 12348.143
transcript.whisperx[443].end 12354.714
transcript.whisperx[443].text 我們就麻煩劉建國委員歡迎謝謝主席 有請部長
transcript.whisperx[444].start 12360.792
transcript.whisperx[444].end 12382.357
transcript.whisperx[444].text 莊委好部長好部長一早上我都有聆聽你在達沃說文的提出質疑還有一些相關重點的一些回應謝謝基本上都還蠻OK不過我這個請在修正後整理幾個點也請給部長做一些參考請指教
transcript.whisperx[445].start 12383.297
transcript.whisperx[445].end 12389.039
transcript.whisperx[445].text 其實這個川普預告藥品也可能納入關稅的清單在這個當下同時在14日就前天也啟動了調查半導體與半導體製造設備及藥品與藥物原料
transcript.whisperx[446].start 12405.143
transcript.whisperx[446].end 12425.507
transcript.whisperx[446].text 包含成品藥進口對美國國家的安全的影響所以他就會繼續引發各國對進口藥價的上漲的高度緊張這個是必然但是台灣的健保也是高度依賴進口藥物尤其是癌症藥的藥品應該有18次來自美國
transcript.whisperx[447].start 12430.748
transcript.whisperx[447].end 12457.453
transcript.whisperx[447].text 這也是不爭的事實對不對那同時國際藥廠在台灣剛剛已經有講到已經就是沒有直接在這邊投資生產的這個藥廠啦以前還有石家嘛但是講那個說因為台灣的市場很小所以所以就是這樣離開這個我倒很難認同我在這邊就我的理解像新加坡新加坡有些藥廠是這個
transcript.whisperx[448].start 12461.195
transcript.whisperx[448].end 12480.701
transcript.whisperx[448].text 阿斯利康他次之數億美元在新加坡的國內去設廠,按人口、按土地面積,台灣都大過於新加坡了。所以這個等一下我們再來討論,我是先跟部長提醒。那同時國際藥廠,原廠要仰賴進口輸入,那佔健保會的支出高達七成以上。
transcript.whisperx[449].start 12487.583
transcript.whisperx[449].end 12498.549
transcript.whisperx[449].text 然後另外根據經濟部的統計藥品及醫用化學品2023出口值是17.8億那進口值是66億所以藥品貿易的利差高達48.2億的美元我想從這些數據會顯示台灣這個醫藥品依賴進口的程度是非常大的
transcript.whisperx[450].start 12509.288
transcript.whisperx[450].end 12535.381
transcript.whisperx[450].text 這也是一個事實嘛對不對所以部長昨天我接受媒體採訪的時候你的回應是這樣表示全民健康保險要務幾戶項目及支付標準已訂定明確規範未來藥品價格調漲將依照規定進行成本分析並向健保署提出相關申請再依據這個核准結果調整要價不會影響國內藥品進口這是部長的答案嗎
transcript.whisperx[451].start 12539.398
transcript.whisperx[451].end 12566.848
transcript.whisperx[451].text 這不正確這可能要分兩段一個是在福祉國內婚禮在達成的時候有沒有分兩段對我的意思就是說只要進口的有漲價有社道專制的影響當然我們有一個機制來讓他來不要賠本就是能夠在健保就會漲價那當然第二個就是我們在盡量
transcript.whisperx[452].start 12568.902
transcript.whisperx[452].end 12585.12
transcript.whisperx[452].text 剛剛委員也提到嘛,我們盡量來扶植國內的,這又是另外一個很重要的一個政策在努力我只是要再請教說,部長如果達戶這樣是正確的,只不過是分兩段我把它併在一塊,這樣說明是比較
transcript.whisperx[453].start 12586.414
transcript.whisperx[453].end 12613.353
transcript.whisperx[453].text 比較不精準啦,是不是這樣?還是其實你確實就是講這樣嘛對啦,我要講的就是這樣子這個有工會是有提出相關的一些警告啦他們表示今年健保要求正在進行健保要價的政策改革嘛那現在你又遇到美國關稅變革之際是不是會衝擊這個國外藥廠蘇台的意願啊所以到時候不是只有價格的問題
transcript.whisperx[454].start 12615.013
transcript.whisperx[454].end 12619.14
transcript.whisperx[454].text 絕對不是只有價格的問題然後國外的藥廠到底願不願意把藥賣到台灣的問題喔這個你們有沒有評估過
transcript.whisperx[455].start 12628.589
transcript.whisperx[455].end 12651.487
transcript.whisperx[455].text 來跟委員說明一下就是說在我們這一次的這個藥價調整裡面呢對於這個過專利期的我們就是所謂的第二類藥我們會去參考10國的藥價去做藥價的調整我想大家可能在關切這個這些進口商關切的是這一種可是因為他是過了專利期在其他各國都是快速的調整
transcript.whisperx[456].start 12652.668
transcript.whisperx[456].end 12672.283
transcript.whisperx[456].text 藥價來節省藥費那麼對於參考10國我們參考這10國都是比我們GDP高的國家所以我們也不認為說這樣是會強害到台灣的進口商的意願只要是成本不合都可以按照我們支付標準的34條來提出申請來適時的調整
transcript.whisperx[457].start 12677.267
transcript.whisperx[457].end 12692.584
transcript.whisperx[457].text 好,這個是署長你的答覆嘛公會現在有提出三個建言嘛你們看一下,請部長跟署長看一下第一個是由經濟部,其實今天經濟部沒有來是很奇怪一件事情經濟部設立生技外銷統籌窗口那積極協助國內廠商
transcript.whisperx[458].start 12695.285
transcript.whisperx[458].end 12719.337
transcript.whisperx[458].text 那第二項是簡化台灣藥品市場准錄程序經美國歐盟核准處方藥建立簡化縮短台灣食藥署藥品查驗流程加速提升新藥可進國外藥廠輸給醫院那第三是調整健保署藥價改革措施你們怎麼看這樣的建議好我想第一個當然經濟部這個部分我相信是應該有
transcript.whisperx[459].start 12720.678
transcript.whisperx[459].end 12741.517
transcript.whisperx[459].text 有這樣的窗口那當然這個部分我們再跟經濟部來請教那第二項就請食藥署江署長跟委員報告一下蔡委這邊我簡單的說明有關於台灣藥品市場進入的程序裡面特別提到美國的話就是FDA歐盟叫做EMA裡面的核准的處方用藥
transcript.whisperx[460].start 12742.338
transcript.whisperx[460].end 12765.531
transcript.whisperx[460].text 那我們針對處方的用藥其實在國內的審核的機制裡面我們也有一些加速審核的機制如果國外已經審核的部分我們目前其實希望能夠去簡化它能夠達成新藥能夠新的療效國人有機會能夠快速使用到這些先進的用藥的方式這剛剛你都有答悟過我說針對這樣的一個
transcript.whisperx[461].start 12767.912
transcript.whisperx[461].end 12790.182
transcript.whisperx[461].text 對,國會提出的健額對策,你們原則上可以接受吧?這個90天內,剩下不到90天,到時候會有什麼變化?沒有誰抓得準,對不對?因為這個川普的變化太大了,現在當然幕僚給他什麼建立?他或許會聽,也或許不會聽,也或許聽了他又改變
transcript.whisperx[462].start 12791.488
transcript.whisperx[462].end 12794.135
transcript.whisperx[462].text 所以你很難抓個準嘛但是因為這種重要的物資
transcript.whisperx[463].start 12797.925
transcript.whisperx[463].end 12824.204
transcript.whisperx[463].text 我們不能等到缺藥的時候才來做相關的應用那又沒辦法嘛所以我們要相關的預防機制嘛原則上是沒有錯嘛 對不對對啊對於新藥的部分加速對於一般學名藥的部分我們其實覺得它會強力的衝擊到國內的的一些藥廠的發展啦所以要做整體的一些考量以上的說明好 反正我們就納入參考然後積極來做一些應變嘛齁應該是這樣齁我想不只是這個
transcript.whisperx[464].start 12825.625
transcript.whisperx[464].end 12852.882
transcript.whisperx[464].text 現在帶以上的公會發聲,連國內的三大製藥公會都有一些建議也領得外表聲明台灣應該哄笑歐美、日本國家以政策手段引導國產藥品、薰衣藥提升療效跟品質這剛剛特別都有提到建立醫病對國產藥品的信心並鼓勵醫院採購但是不想台灣一年的藥品及醫用化學品進口就高達62億美元
transcript.whisperx[465].start 12855.423
transcript.whisperx[465].end 12882.943
transcript.whisperx[465].text 這額度也蠻大的然後顯示台灣在藥品的戰略物資上它還是嚴重的依賴國外的資源所以因此大家才會如此擔憂美國關稅貿易戰對台灣的藥品市場帶來的衝擊所以我們一定要強化我們自製藥品的能力都要補兌也都有說都有承諾但是我們有什麼樣的一個掀起計畫還是一個事辦計畫還是你這樣到目前為止你們早已經有形成相關的政策
transcript.whisperx[466].start 12883.383
transcript.whisperx[466].end 12907.055
transcript.whisperx[466].text 準備要再推了嗎?有嗎?有,我們即將公告的這兩個政策就是在增加我們的產業鏈的能力即將公告我那次要的能力這樣子有嗎?你們有即將公告然後兩項請說明一下一個是我們健保的藥品、藥價調整辦法還有一個是藥品的支付標準就剩這兩個法規這個就是剛剛說4月27號前要公告的
transcript.whisperx[467].start 12912.35
transcript.whisperx[467].end 12928.702
transcript.whisperx[467].text 這樣就可以讓台灣強化自治藥品的能力所以是剛剛那國內三大製藥公會聯合聲明希望趕快推動的三大公會聯合聲明趕快推動跟台灣要強化自治藥品的能力有關係嗎沒有吧
transcript.whisperx[468].start 12932.799
transcript.whisperx[468].end 12961.545
transcript.whisperx[468].text 有啊,他們最近的一個聯合聲明就是希望那兩個政策趕快來實施不是啊,我們是,我剛剛最後的一點,時間到了啦我是要強化台灣知識藥品的能力我想講這句話這兩個政策是一定有我們不僅要加強在台製造,更需要鼓勵投資生技產業嘛然後再來,因為未來不是搶藥啦
transcript.whisperx[469].start 12962.901
transcript.whisperx[469].end 12980.248
transcript.whisperx[469].text 因為未來不是只有疫道搶藥,我們是應該搶製藥生產線搶製藥生產線嘛,所以在這個疫情的時候就已經發現掌握藥品或是疫苗的國家,他就有話語權嘛我們現在有什麼樣的計畫,現在就來處理這些事情嗎?
transcript.whisperx[470].start 12983.399
transcript.whisperx[470].end 13001.349
transcript.whisperx[470].text 我再跟委員簡單的說明就是我們分成幾段一個是對於台灣首發新藥的優惠價包含他是全球第一個或者是在國外然後兩年內國外上市兩年內到台灣來製造發行我們都有優惠合價另外對於國內製造的品項
transcript.whisperx[471].start 13004.15
transcript.whisperx[471].end 13017.315
transcript.whisperx[471].text 那麼用國內製造的原料藥我們藥價加10%在國內做臨床試驗我們也加10%這個都是鼓勵讓這個在國內來製造會不會就是鼓勵的一種我接受啦前面那個我覺得倒還好
transcript.whisperx[472].start 13019.398
transcript.whisperx[472].end 13040.926
transcript.whisperx[472].text 如果只有這樣這坦白講江蘇長應該來答問才對因為進一步的是在國藥能夠國用國產的其實在學名藥的這個門檻相對的對接的機會大所以我們對於必要藥品的盤點那種已經過了專利期的用藥裡面有三百多種用藥我們其實看過了那我們為了讓國內的藥廠有吸引力所以我們針對東南亞國協之間
transcript.whisperx[473].start 13046.089
transcript.whisperx[473].end 13073.561
transcript.whisperx[473].text 我們的藥廠的PIC GMP的認證我們產的藥就有機會往東南亞銷對於歐盟的所謂關鍵藥品的法案底下我們國內的藥廠的製作因為是PIC GMP也可以對接到那邊的銷售所以整體來講我們針對這一次剛才提到了健康保健相關食品的部分的產線因為是藥廠跟食品廠之間的產線之間的競合那未來因為關稅在
transcript.whisperx[474].start 13075.261
transcript.whisperx[474].end 13097.127
transcript.whisperx[474].text 保健相關食品的一些差異之下我們希望能夠積極的往他導引在這個部分讓他能夠有利可圖讓這些廠商都能夠把台灣的製藥的產線能夠積極的能夠完成現在署長我時間已經超過一些了我剛剛特別提醒部長還有兩位署長我們未來恐怕不是只有搶藥就是搶藥就是搶製藥生產線那台灣成績何時有這麼多的
transcript.whisperx[475].start 13103.028
transcript.whisperx[475].end 13131.988
transcript.whisperx[475].text 這個國外大廠來設廠,那曾幾何時這些大廠都不見了那我們收穫我們的市場很小在講這一話好像滅自己威風啊那我就疲於了新加坡,人家就可以成功去去招到這麼大的藥廠所以我們是不只要能夠自製藥品,也是要能夠吸引國際的藥廠來台來設廠啊,我想這個必須要鬆軟旗下嘛我記得我去年六月五號的時候還在委員會,甚至在院會也都指引過部長說台灣的能力
transcript.whisperx[476].start 13132.728
transcript.whisperx[476].end 13158.932
transcript.whisperx[476].text 我們就有辦法舉辦這個台北國際電腦展我們應該也有能力來舉辦國際AI展智慧展都可以嘛對不對我也不曉得部長什麼時候可以成行是不是在短時間內啦包含這個相關的提升台灣自己製藥的能力招募國際大廠來這邊設廠的相關的一些計畫跟辦法是不是可以提供給委會做參考
transcript.whisperx[477].start 13159.432
transcript.whisperx[477].end 13188.972
transcript.whisperx[477].text 有相關的流程跟計畫都很重要我們重新來檢討來研究報告所以我最後有三個要求第一個請部長看一下沒有強化在台製造藥品同時增加大眾對國產學名藥的信心這個一周內可能要請部長提出報告那與經濟部共同年齡一個月內提出強化國際藥廠在台設廠制醫院及規劃那第三本期就去年已經有要求了今年何時可以舉辦國際醫療AI展智慧展
transcript.whisperx[478].start 13190.533
transcript.whisperx[478].end 13195.177
transcript.whisperx[478].text 也請易中烈提出了好不好好謝謝好謝謝部長好謝謝謝謝劉建國、趙偉的發言謝謝部長跟署長的答詢下一位請楊崇英委員發言
transcript.whisperx[479].start 13219.114
transcript.whisperx[479].end 13221.378
transcript.whisperx[479].text 謝主席 邀請部長請協部長委員好
transcript.whisperx[480].start 13228.606
transcript.whisperx[480].end 13249.825
transcript.whisperx[480].text 那美國總統川普祭出了對等的關稅政策雖然在第一波沒有藥品跟醫材但是關稅的政策它是變化非常的大那外界也預期藥品可能成為下一波加徵關稅的對象更憂心它會衝擊到我們整個台灣的健保用藥的市場
transcript.whisperx[481].start 13250.906
transcript.whisperx[481].end 13254.108
transcript.whisperx[481].text 醫界也擔心在製藥成本上漲導致售價也提高那在這種情況之下會不會導致一波缺藥潮那當然部長你昨天受訪的時候你也提到從美國進口的癌症藥品可能會漲價
transcript.whisperx[482].start 13271.579
transcript.whisperx[482].end 13286.835
transcript.whisperx[482].text 可能會漲價所以在這邊首先來請教部長我們政府要如何的來因應你認為是否有可能會引發的缺藥潮那藥品的這個漲價它是不是就直接會衝擊到我們的這個患者的一個權益請做說明
transcript.whisperx[483].start 13290.839
transcript.whisperx[483].end 13314.922
transcript.whisperx[483].text 好 我先簡略回應 回答那個委員的垂行第一個 因為現在關稅這一波還沒有到我們預要的頻所以目前並沒有直接的影響但是我們必須機安思維所以我們來看看檢討我們目前的機制我們從列必要的清單
transcript.whisperx[484].start 13316.303
transcript.whisperx[484].end 13334.018
transcript.whisperx[484].text 然後有缺藥的平台監測然後如果有漲價的話在健保的部分也有一定的機制來給幾戶更多這樣的一個完整的情況之下目前是沒有缺藥的一個擔心來給目前是沒有來給幾戶更多在健保
transcript.whisperx[485].start 13334.178
transcript.whisperx[485].end 13350.532
transcript.whisperx[485].text 我們依照全民健康保險要務解副項目以及支付的辦法支付的標準喔那麼你們原本喔是在今年的1月20號就已經預告中止但是為什麼到現在還沒公告呢所以在剛剛的這個臨時提案裡頭本席也聽到喔那部長說
transcript.whisperx[486].start 13355.897
transcript.whisperx[486].end 13379.17
transcript.whisperx[486].text 本來應該要該趕快決定的就要決定因為大家現在心很慌健康是不容許打折的所以提案是說希望能夠在4月27號以前正式公告純民健康保險要務給付的項目以及支付的標準這個修正案那是不是會在如期的這個時間來完成
transcript.whisperx[487].start 13381.671
transcript.whisperx[487].end 13387.993
transcript.whisperx[487].text 報告委員 至少讓大家有一個依據啊對 我們這樣的時程 其實我們還是要感佩健保署的同仁收集了所有的意見 然後預告了兩個月以後所以你在1月份就已經預告終止了嘛因為我們必須要把他的意見 一旦公告我們就是要有好的政策來幫助
transcript.whisperx[488].start 13406.597
transcript.whisperx[488].end 13418.803
transcript.whisperx[488].text 當然我們現在目前應該應該整個健保署已經完成了那時辰什麼時候會公佈那它完成的要送到我們衛福部我們立即來送這個流程當然行政部門辛苦要去把它完成4月27號以前就位公告
transcript.whisperx[489].start 13423.146
transcript.whisperx[489].end 13436.482
transcript.whisperx[489].text 確定4月27號以前會公告4月27號以前會來公告全民健康保險要緊負的項目以及支付的標準因為必須先安內
transcript.whisperx[490].start 13437.683
transcript.whisperx[490].end 13459.275
transcript.whisperx[490].text 必須先安慰你至少讓大家能夠了解我們現在重新檢討的這個給付標準跟以及項目到底是什麼至少要讓我們的健保能夠穩定下來讓我們的這個患者都能夠安心這個是非常重要所以我們確定在4月27號以前會來做公告這兩個辦法會公告
transcript.whisperx[491].start 13462.297
transcript.whisperx[491].end 13486.955
transcript.whisperx[491].text 好 謝謝部長那接下來本席要請教那我們安慰了之後那你認為目前是不會有缺藥潮但是如果在關稅啟動的時候大家都很緊張在這樣的情況之下你關稅啟動就陳如寧說的從美國進口的癌症藥一定會漲價那在這樣的情況之下我們要怎麼樣應對
transcript.whisperx[492].start 13488.476
transcript.whisperx[492].end 13517.426
transcript.whisperx[492].text 我們要怎麼應對要保障讓我們的患者的權利不受打折請做說明報告委員現在藥品進到我們台灣是零關稅所以這個現在目前是如此所有的媒體你每天在看他說下一波所以大家就很緊張我們現在一起的只是一起說在整個世界關稅的一個情況是不是它的在美國發生成本貴一點點
transcript.whisperx[493].start 13518.348
transcript.whisperx[493].end 13525.035
transcript.whisperx[493].text 所以他進口會賣貴一點點可是他到台灣還是零關稅嘛所以這個基本上的影響我們是覺得有限當然我們絕對不管有限我們都要盤點我們都盤點一定盤點而且是已經盤點盤點好了盤點好了
transcript.whisperx[494].start 13539.09
transcript.whisperx[494].end 13544.552
transcript.whisperx[494].text 盤點好了也有應對的措施關於它漲價了進來了以目前來講健保是足夠來應對因為昨天你講了從美國進口的這個海洋藥會增加會漲價你現在改口說可能我也聽到有這個可能
transcript.whisperx[495].start 13562.919
transcript.whisperx[495].end 13575.825
transcript.whisperx[495].text 因為現在還沒有發生所以我們當然是加可能有可能就表示你們有在盤點有在應對但是一個結果也就是要不會有缺藥而且目前在我們健保的範疇內不會影響到我們患者的權益我們再怎麼樣都不會影響到患者的權益
transcript.whisperx[496].start 13588.231
transcript.whisperx[496].end 13612.35
transcript.whisperx[496].text 加油接下來本席要跟你討論的也就是我們護理師人員的問題那之前本席有問過你喔總統先生在選舉的時候說兩年內要醫病這個這個這個三班護病筆要入法當然上一次本席跟你討論你也拿出了誠意你說在你的任內會完成到目前為止是否也是如此呢
transcript.whisperx[497].start 13614.274
transcript.whisperx[497].end 13642.302
transcript.whisperx[497].text 應該是總統的任內吧是總統的任內好沒關係我們理清楚就好總統的任內但是依照我們中華民國護理師公會全國聯合會所提出他們幾點的建議第一個他們說希望用公務預算來補資第二個他們希望提升健保的點子確保醫院用於提升護理人員的薪資所以本席要請教這麼長的時間了我們護理人員的薪資有沒有提升
transcript.whisperx[498].start 13645.681
transcript.whisperx[498].end 13671.592
transcript.whisperx[498].text 我想我們政府這邊是用十二大策略譬如說補月班的啦你現在是用這個補助獎勵嗎那個是月班就直接到直接到護理人員的身上當然啊那其他的呢那其他的護病比達到譬如說醫學中心現在達到六成他有很多都拿到獎勵那當然就是給醫院去我們希望他能夠
transcript.whisperx[499].start 13672.152
transcript.whisperx[499].end 13692.414
transcript.whisperx[499].text 多補到護理人員或者給護理人員加薪部長你昨天有沒有看到這個新聞他指出成大醫院因護理人力流失要關閉部分的病房院方預計五月份關病房目前他已經關了四十多床要再關閉三十床左右
transcript.whisperx[500].start 13693.154
transcript.whisperx[500].end 13709.84
transcript.whisperx[500].text 這也顯示出這個護理人員的一個人力的一個流失所以我在這邊建議你目前是用獎勵用補助的方式但是我們還是要朝著路法讓大家都能夠安心
transcript.whisperx[501].start 13711.021
transcript.whisperx[501].end 13730.022
transcript.whisperx[501].text 那你剛剛回答的說是原本總統在選舉的時候他說是兩年內那你現在邱部長告訴我們的是說在總統的任內會完成三班互併筆錄法是不是如此我們會往這個目標現在也都是進行式嘛是不是
transcript.whisperx[502].start 13730.908
transcript.whisperx[502].end 13737.932
transcript.whisperx[502].text 是不是 現在有在推動嗎 有沒有在推動 入法的部分有沒有在推動當然就是說要先獎勵 獎勵先行 然後等溝通差不多有共識你預計溝通共識大概在什麼時間開始推動這個醫療的體系很複雜 我們大大小小的醫院那麼多所以你現在給我們的答案就是說總統任內會完成三班互併比的入法 是不是
transcript.whisperx[503].start 13760.186
transcript.whisperx[503].end 13761.63
transcript.whisperx[503].text 我們會朝這樣來努力啦而且你們現在是溝通中是不是
transcript.whisperx[504].start 13765.745
transcript.whisperx[504].end 13791.165
transcript.whisperx[504].text 因為獎勵先行 那審理先行如果大家覺得這個做得到 便宜也能夠調整而且包括醫學中心區醫院 地區醫院 還有偏鄉等是這個醫療體系所以我們也聽到一個答案就是說有兩年改為任內 就是四年要完成這是您現在部長告訴我們的那最後一個議題也就是川普上任之後他
transcript.whisperx[505].start 13792.306
transcript.whisperx[505].end 13813.067
transcript.whisperx[505].text 上個數小時馬上宣布說這個要退出這個世衛那聯合國也表示美國在會2026年1月22號會退出WHO那過去美國很積極的協助台灣來加入WHO甚至或者是以觀察員的身份來參與WHA但是如果他真的
transcript.whisperx[506].start 13813.587
transcript.whisperx[506].end 13823.158
transcript.whisperx[506].text 如果萬一真的退出的時候 那我方我們要怎麼辦呢我們是否會失去了最主要的這個支持者那我們會怎麼樣
transcript.whisperx[507].start 13825.795
transcript.whisperx[507].end 13847.801
transcript.whisperx[507].text 來努力那我們是不是會加強透過雙邊的合作比如說台美台日台歐盟建立國際醫療的夥伴的關係來提升整個台灣在全球醫療政策的一個影響力請說明好謝謝我想美國對於退出WHO這樣的一個
transcript.whisperx[508].start 13850.081
transcript.whisperx[508].end 13862.81
transcript.whisperx[508].text 一個策略 到底是一個策略或者是暫時的還是永久的 這個我們要小心應應不能說我們發覺 我們就知道不要做了我們照常5月16號WHA開會的時候我們還是照常 議會行動團甚至我們的立委 督導團都還是會去成行那像去年總共有大概
transcript.whisperx[509].start 13877.06
transcript.whisperx[509].end 13886.601
transcript.whisperx[509].text 近百個團體台灣來自海外的華人或是台灣人到那一邊去努力
transcript.whisperx[510].start 13887.645
transcript.whisperx[510].end 13896.488
transcript.whisperx[510].text 那這個一定要去把握這一個禮拜的時間一定要把握這個重要關鍵時刻跟許許多多國家做互動所以怎麼樣建立我們醫療夥伴的關係我想邱部長這個是我們非常關鍵因為台灣的醫療是世界級的我們一定在國際的接軌要好好的去應對去聯繫
transcript.whisperx[511].start 13908.252
transcript.whisperx[511].end 13922.198
transcript.whisperx[511].text 謝謝委員所以肯定我們醫療的努力加油那我們一定會把它在國際運用醫療的國際的力量來連結來增加台灣的能見度感謝委員謝謝好謝謝楊瓊英委員的發言也謝謝部長我們下一位請王煥薇委員發言好謝謝主席我請我們
transcript.whisperx[512].start 13938.179
transcript.whisperx[512].end 13943.668
transcript.whisperx[512].text 部長 邱部長還有我們石崇良石署長
transcript.whisperx[513].start 13945.535
transcript.whisperx[513].end 13968.543
transcript.whisperx[513].text 蘇書長 委員好部長好我先順著剛才楊瓊英委員講的我覺得我們確實不需要跟著川普隨之起舞我覺得WHO WHA這樣的一個國際的這個舞台我們不要放棄所以我覺得剛才那個部長的
transcript.whisperx[514].start 13969.423
transcript.whisperx[514].end 13972.146
transcript.whisperx[514].text 我是覺得是正確的肯定的但是呢針對我們這一次美國要準備對藥品也要可以關稅我們現在雖然不曉得稅率是多少但是我覺得衛福部到現在為止的態度我認為是掩飾太平
transcript.whisperx[515].start 13989.145
transcript.whisperx[515].end 13998.751
transcript.whisperx[515].text 事實上是偏於事實好譬如說在第一時間我們的林靜儀次長他直接講說這就變成衛福部冒號囉無直接衝擊而且反而對台有利我不曉得為什麼次長常常因為我們這個次長是常常在施言的到底對台灣有利什麼到底沒有衝擊什麼
transcript.whisperx[516].start 14013.2
transcript.whisperx[516].end 14017.422
transcript.whisperx[516].text 如果一個次長連功課都不做就直接這樣的粉飾太平這完全是錯誤的態度因為珍珠後面我們不管是我們的醫界我們的藥商我們的代理商我們的藥師大家所反映出來的根本不是沒有衝擊而且對台灣本來就有一些影響為什麼我們今天會有專題報告
transcript.whisperx[517].start 14039.753
transcript.whisperx[517].end 14056.449
transcript.whisperx[517].text 不過我覺得部長你說沒有發生的事情不要擔心我覺得這個態度也是不對因為今天大家都鎖定說未來缺藥會不會是癌症又要會不會是抗生素那對於現在很多的癌症病患病友來說那麼
transcript.whisperx[518].start 14058.411
transcript.whisperx[518].end 14082.058
transcript.whisperx[518].text 他們可能還在服用就是還在療程之中老師說啦 部長你跟他講說還沒有發生的事情不要擔心我如果是癌症病患或者我是他的家屬我會非常非常擔心第一個我會擔心會不會缺藥開玩笑 怎麼會不擔心呢第二我擔心這個藥會不會變得很貴
transcript.whisperx[519].start 14083.758
transcript.whisperx[519].end 14085.579
transcript.whisperx[519].text 第三個我擔心健保的給付夠不夠這都是一般民眾針對這樣的一個衝擊他們會想要問的事情所以部長我還是奉勸我覺得衛福部要直接的跟我們人民說真話這樣的衝擊確實並不操之在我們
transcript.whisperx[520].start 14105.253
transcript.whisperx[520].end 14116.04
transcript.whisperx[520].text 那麼美國發起風來我怎麼曉得他到時候他要課多少關稅但是我覺得這個態度是不對的接下來我想請問一下剛才有特別提到因為對台灣來說我們事實上在藥品的部分我們是逆差我們的貿易逆差是48.2億美元
transcript.whisperx[521].start 14130.649
transcript.whisperx[521].end 14133.053
transcript.whisperx[521].text 因為台灣藥品非常的仰賴從國外進口所以現在包含藥師公會這個理事長也說了說藥廠在台灣的利潤過低所以容易會出現缺藥潮
transcript.whisperx[522].start 14146.192
transcript.whisperx[522].end 14162.483
transcript.whisperx[522].text 那我想請問一下我們的健保署的署長因為你也說你們有去盤點我覺得這是正確的比如說我們對美國進口的藥品的項目有幾項佔我們的健保支出是多少是一成左右
transcript.whisperx[523].start 14163.203
transcript.whisperx[523].end 14169.807
transcript.whisperx[523].text 好所以呢我想請問一下如果在美國針對好藥品課徵關稅而導致我們的進口的用藥的價格提升的話那麼我們健保會完全的吸收嗎我覺得這是很多的病患關心的事情我可以請教署長
transcript.whisperx[524].start 14187.596
transcript.whisperx[524].end 14202.404
transcript.whisperx[524].text 在組長講以前我先謝謝委員的指教其實在川普的關稅宣布以後我們當然所有的衛務部所有的司署都針對他們的業務做了很多的盤點跟應用之道這是正確的
transcript.whisperx[525].start 14202.984
transcript.whisperx[525].end 14225.757
transcript.whisperx[525].text 那我們在缺藥這個部分因為一開始就大家擔心缺藥這會造成一個不好的一個現象因為我們目前的確的一個韌性是相當的夠我們從那個監測部長我請問一下你是不是擔心大家認為會缺藥然後進而造成豚藥你是不是有這個擔心當然我也不希望沒有
transcript.whisperx[526].start 14226.317
transcript.whisperx[526].end 14244.51
transcript.whisperx[526].text 不希望這樣子去做啦所以我的意思有時候他下的標並不是我講的話我的講的話是說我們已經做好準備所以請大家不用擔心這個我先說明一下啦謝謝委員的指教我想我的態度一向都是機安思惟
transcript.whisperx[527].start 14245.41
transcript.whisperx[527].end 14274.68
transcript.whisperx[527].text 對 要居安思維 然後跟民眾說真話絕對是 我們就是照顧民眾的健康嘛當然給民眾的都是最真實的理解但是不要造成無謂的惶恐 這樣也不好我知道 我剛才問部長說你是不是擔心因為擔心大家說缺藥缺藥缺藥我們很多講缺藥之後就會出現囤積嘛但是如果過去也有一些經驗囤積一些貨品的時候我們也應該也有一些非常的手段嘛
transcript.whisperx[528].start 14275.18
transcript.whisperx[528].end 14292.711
transcript.whisperx[528].text 那個委員過去在防疫規劃面也都幫忙我們醫生很多你知道這個大概民眾的安撫給民眾真實的狀況是很重要的事情好那我請問那個署長就是大家擔心未來第一個大家擔心缺藥第二擔心價格過
transcript.whisperx[529].start 14294.192
transcript.whisperx[529].end 14313.627
transcript.whisperx[529].text 提高那第三個那我們未來健保還是不是照常給付也就是說屬於我們健保給付的用藥裡面如果未來因為這一次的這個關稅的關係而調高價格我們的健保藥要怎麼樣因應好跟我們報告謝謝您的關心那我們盤點過在健保給付的14000多項裡頭屬於美國製造的大概是176項金額大概一年大概在200億左右啦
transcript.whisperx[530].start 14321.593
transcript.whisperx[530].end 14340.745
transcript.whisperx[530].text 那這裡面我們再比對的必要品項就是必要藥品的話是72項這72項的健保的申報大概在84億所以這個規模我們大概已經列出來了所以未來如果萬一那麼發生有這個成本上漲那麼藥商他是可以依照我們的這個藥價支付
transcript.whisperx[531].start 14342.946
transcript.whisperx[531].end 14365.819
transcript.whisperx[531].text 標準我們藥品置物標準裡頭的第34條裡面就特別針對罕藥跟這個所謂的特殊藥品就是會沒有可替代性的藥品可以來提這個調升這個藥價所以有這個機制存在至於在費用的部分呢我們在健保的總額裡面特別有一個特別其他部門裡頭有一塊叫做非預期風險的這個這個預算的調控那我們是編了20億
transcript.whisperx[532].start 14370.602
transcript.whisperx[532].end 14383.387
transcript.whisperx[532].text 那當然如果不足的部分 那麼我們會再繼續的爭取那我們目前的健保的安全準備金也還有1600億可以緊急的支應然後再來跟行政院爭取額外的預算所以剛才書長講的重點就是非預期風險你現在這個準備金是20億那所以因為現在行政院不是在盤點整個去因應
transcript.whisperx[533].start 14392.371
transcript.whisperx[533].end 14398.213
transcript.whisperx[533].text 整個的這個對等關稅所造成的衝擊我覺得這部分你們應該報到行政院要給我們一些團性我在這邊的質詢其實最主要的目的就是在我們所有的病患他就是可能這些都是他的長期用藥那麼到時候他如果因為關稅關係也是被預期的這個這些因素的影響
transcript.whisperx[534].start 14414.56
transcript.whisperx[534].end 14439.137
transcript.whisperx[534].text 那麼不要因此而造成我們這些病患沉重的負擔好不好所以這個部分就拜託可能要你們就要報到行政院因為行政院現在可能都是針對外銷廠商的一些紓困嘛好或者勞工的紓困好不好好謝謝好謝謝委員謝謝好謝謝王宏偉委員的發言謝謝部長跟署長的答詢我們下一位委員請李彥秀
transcript.whisperx[535].start 14440.851
transcript.whisperx[535].end 14462.547
transcript.whisperx[535].text 李彥秀委員 李彥秀委員 李彥秀委員不在下一位請圖全齊委員圖全齊委員圖全齊委員他改書面質詢所以相關紀錄會列入公報下一位我們請洪孟凱委員 洪孟凱委員 洪孟凱委員洪委員不在我們下一位請黃秀芳委員發言
transcript.whisperx[536].start 14468.788
transcript.whisperx[536].end 14469.55
transcript.whisperx[536].text 謝謝主席,我們請部長
transcript.whisperx[537].start 14475.208
transcript.whisperx[537].end 14501.583
transcript.whisperx[537].text 委員好部長好部長這個最近這幾天大家都非常的關心不論是產業或者是我們跟衛福部相關的這個業務大家都關心這個川普對等關稅這個生效之後那雖然還有90天的一個喘息的機會啦那我覺得說衛福部應該針對這部分跟你們相關的這些產業應該也要去關心或者是
transcript.whisperx[538].start 14502.503
transcript.whisperx[538].end 14518.932
transcript.whisperx[538].text 未來會不會影響到我們所有的這個藥品那我首先先請部長就今天大家關心的這個議題就是說未來我們對於我們的藥品或者是我們的這個醫療器材因為
transcript.whisperx[539].start 14520.012
transcript.whisperx[539].end 14547.881
transcript.whisperx[539].text 很多譬如說我們國內自己本身也有做那有很多也是從靠國外國外進來那今天很多委員也會擔心這樣子一個關稅的問題那會不會影響到我們健保的這個用藥的穩定性那我是不是可以請教部長就我們這個藥品跟醫療器材的這個短中長期的發展那會有什麼樣的影響那衛福部針對這部分你們有什麼樣的因應
transcript.whisperx[540].start 14549.755
transcript.whisperx[540].end 14567.025
transcript.whisperx[540].text 好是的我想謝謝委員我們第一時間在關稅的宣布以後我們就馬上衛福部所有的部門就盤點然後他們各個相關的業務裡面包括像疫苗包括藥品醫材生技醫療生技甚至連
transcript.whisperx[541].start 14568.386
transcript.whisperx[541].end 14583.943
transcript.whisperx[541].text 你們都有盤點過我們都有去盤點到到底會對民眾衝擊多少也提出的因應之道如果委員需要這個資料我們也可以提供給委員來參考那至於藥品的一個
transcript.whisperx[542].start 14585.465
transcript.whisperx[542].end 14598.718
transcript.whisperx[542].text 或者是醫療生技的應用之道當然我們最終的目標都希望能夠這也是全球的趨勢能夠就地生產就地行銷以避免這樣關稅的衝擊
transcript.whisperx[543].start 14600.76
transcript.whisperx[543].end 14619.105
transcript.whisperx[543].text 那在對外的話當然分散市場方面也是在醫療生技方面也是相當重要也是他們現在目前在演繹的一個對策啦那至於說進口最重要是我們人民所要用的藥我們是不是讓他充分那或者是第二個建議
transcript.whisperx[544].start 14621.266
transcript.whisperx[544].end 14644.661
transcript.whisperx[544].text 產業鏈讓我們的本土或協名要的產業鏈能夠更加的扎實能夠提升我們在就地生產就地行銷這個部分在食藥署跟健保署這個部分都有相關的鼓勵的一個措施我相信這樣的應用方式就可以在各方面都能夠避免這一次的衝擊就不影響人民的健康造物權益
transcript.whisperx[545].start 14645.942
transcript.whisperx[545].end 14670.114
transcript.whisperx[545].text 好 謝謝 谢谢部長那我想請教就是說之前我們在也聽到就是說很多的這個藥廠這個藥就退出台灣的市場那很多是因為這個健保給付的關係嘛那我想請教就是說其實有很多的品項就是有的是使用替代替代的藥品或者是可能用這個低價
transcript.whisperx[546].start 14670.874
transcript.whisperx[546].end 14692.543
transcript.whisperx[546].text 低價的製品也許醫材可能用比較低價的製品來取代使用那我想請教就是說對於我們之前還沒有這個對等關稅的就有這樣類似一個問題出現那現在川普提出來這個對等關稅那對於我們的這個藥品的穩定性還有未來我們這個醫材
transcript.whisperx[547].start 14695.939
transcript.whisperx[547].end 14713.455
transcript.whisperx[547].text 之前很多是因為健保給付不高啦所以很多就是退出台灣的市場那像這樣子的話衛福部要怎麼去解決這樣的一個問題那另外我想請教就是說如果像中國中國他現在可能
transcript.whisperx[548].start 14714.031
transcript.whisperx[548].end 14735.506
transcript.whisperx[548].text 川普這邊就是說要課一百多趴的這個稅那會不會是有一些劣質的或者是比較低價的或是比較就轉銷到其他國家轉銷到其他國家那台灣可能也是他的這個其中的一個國家之一那我想請教就是說如果有類似的這樣的一個狀況那衛福部要怎麼去因應
transcript.whisperx[549].start 14736.291
transcript.whisperx[549].end 14750.902
transcript.whisperx[549].text 好,謝謝委員的關心,所有會到台灣的藥品都是經過食藥室,非常嚴格的審查,而且都有他的藥證等等的,所以這個部分我們會嚴格的來處理。
transcript.whisperx[550].start 14752.003
transcript.whisperx[550].end 14764.287
transcript.whisperx[550].text 那至於說其實我們國際健保在有限的資源裡面我們已經做最大的努力那當然這中間怎麼樣取捨還有都是跟專家做很多的討論那這個部分是不是請時事長來看說我們這個
transcript.whisperx[551].start 14769.244
transcript.whisperx[551].end 14784.478
transcript.whisperx[551].text 是不是有退出市場等等跟我們報告我們也有在盤點這些醫材項目我們醫材大概是幾乎7000多個品項我們有盤但目前真的是中國大陸值的是低於1%非常少
transcript.whisperx[552].start 14785.038
transcript.whisperx[552].end 14804.438
transcript.whisperx[552].text 所以我們現在多數都是國內產品或者是美國大概來的也不少還有歐洲這些國家都是品質上相當都不錯因為醫材我們分兩種一種是包裹式脊腹含鈉在醫療服務項目裡頭
transcript.whisperx[553].start 14805.999
transcript.whisperx[553].end 14812.124
transcript.whisperx[553].text 一種是特別是像一些植入性的像這個支架或者是心臟結粒型這種我們就用特採來給付那特採我們也有它的合價的方式那麼也都會採取市場價的平均來考量所以應該我想請教就是說未來有沒有可能就是說中國這邊的
transcript.whisperx[554].start 14827.635
transcript.whisperx[554].end 14851.061
transcript.whisperx[554].text 醫材也好或者是藥品或者是原料就是可能美國那邊可能他進不去那就轉銷其他國家那台灣也是其中一個那我想請教就是說未來像類似這樣的一個狀況我們要如何再嚴格的把關因為我知道很多的譬如說我們的針筒什麼很多都是可能都是來自中國
transcript.whisperx[555].start 14853.312
transcript.whisperx[555].end 14879.074
transcript.whisperx[555].text 這邊跟委員回應一下就所有的醫材要進入台灣的醫藥的照護的系統都必須經過食藥署我們有一個醫莊組針對每一項的醫材那進一步的做審核審核通過之後才能發給他所謂的許可證許可證才能夠作為進出口進來的一個憑據說的話就是不法的醫材
transcript.whisperx[556].start 14879.554
transcript.whisperx[556].end 14905.923
transcript.whisperx[556].text 所以這部分呢我們每一項這個我們都會嚴格的去把關這個部分那這個部分跟委員進一步的說明以上那另外我想請教就是說我們在全球就是說醫療器材這個產業可能在2027年可能就有原本的這個400億美元會提升到700億美元那其實我們在禮拜一那個劉建國召委有安排
transcript.whisperx[557].start 14906.483
transcript.whisperx[557].end 14911.265
transcript.whisperx[557].text 就是到彰化的那個秀傳醫院的那個微創中心有去看他們這個微創還有他們一些比較他們自己研發的一些醫療器材那其實我覺得這個未來我們台灣的這個醫療產業其實也可以成為另外一個護國神山所以我想請教部長針對這樣子的不論是我們的藥品也好或者是我們所有的醫療器材或者是我們的醫療
transcript.whisperx[558].start 14937.457
transcript.whisperx[558].end 14958.208
transcript.whisperx[558].text 醫療產業可能大家會覺得說台灣的醫療水準非常的高甚至其他國家的人也會希望來台灣這邊可能來醫治那我想請教就是說部長針對這樣子的話我們國家要怎麼去扶植或怎麼去這個那個輔導他們這個走向國際跟國際接軌我相信這些
transcript.whisperx[559].start 14964.591
transcript.whisperx[559].end 14990.49
transcript.whisperx[559].text 他們應該都走在我們政府的前面了只是說我們要怎麼再用政府的力量讓我們這個醫療產業我們不能至於有這麼大的一個商機我們當然也要有一個角色所以我想請教部長未來我們這樣的一個醫療產業你要怎麼去扶植我們這些產業然後變成我們另一座的護國神山
transcript.whisperx[560].start 14991.492
transcript.whisperx[560].end 15001.555
transcript.whisperx[560].text 謝謝委員的催省,我想我們在大概四年前左右,我們共同在衛環委員會努力,讓醫藥生技的經濟部的
transcript.whisperx[561].start 15007.237
transcript.whisperx[561].end 15034.231
transcript.whisperx[561].text 那個等於是獎勵這個辦的一個條例把他從智慧醫療甚至再生醫療等等的這些醫療科技這個部分給他做一個獎勵這個就是很重要的來扶植那也是以這樣的為基礎所以我們可以看到我們現在每次在醫療科技的展真的是越來越龐大但是面對這樣的當然面對未來的挑戰或者競爭我們
transcript.whisperx[562].start 15037.405
transcript.whisperx[562].end 15062.932
transcript.whisperx[562].text 將來可能再也要有一些應用之道啦譬如說我們的出口是不是需要分散市場所以在國內我們絕對是扶植他啦但是我們要讓他有出路所以我們也連結到很多東南亞甚至歐洲讓他們有更有市場那這個部分大概我想再秀傳這個去看他的
transcript.whisperx[563].start 15063.692
transcript.whisperx[563].end 15082.865
transcript.whisperx[563].text 它這個是一個微創的教學中心我們上次我想委員已經去過第二次了那個都會深深的impressive我們台灣的醫療的科技這麼的好醫療的技術那麼的好教了很多國外的學生這個都是我們
transcript.whisperx[564].start 15084.546
transcript.whisperx[564].end 15095.131
transcript.whisperx[564].text 所以像我們上次去訪視的,這是第二次啦秀傳說已經開了四十天,也不是說立法委員會來看就是說我們現在,現在你再試就再去,表示說真的很重視他們的一個醫療科技的發展還是醫療技術的推廣那這個部分我想
transcript.whisperx[565].start 15107.116
transcript.whisperx[565].end 15132.259
transcript.whisperx[565].text 在台灣的政府是一定全力在支持這個部分不曉得兩位有沒有補充委員這邊做特別的補充因為台灣的ICT的產業科技產業非常的進步加上臨床醫療產業所以我們結合了智慧的醫療的產業作為智慧醫療的醫材的部分我們成立智慧醫療的研發的輔導的機制那在我們的
transcript.whisperx[566].start 15134.061
transcript.whisperx[566].end 15147.512
transcript.whisperx[566].text 食藥署這邊呢 持續在推展 那目前進來呢 也有合可的許可證的持續的增加 已經有上百家的一個合可有關於人工智慧醫材的 這部分是我們持續推展的一個部分 以上說明好 先生我們看到這個
transcript.whisperx[567].start 15151.196
transcript.whisperx[567].end 15178.033
transcript.whisperx[567].text 這個川普提出來對等關稅其實我覺得說危機也許是一個轉機也是一個契機啦那我覺得很多企業他是走在我們政府前面的那當然就是說如果要把醫療產業成為另一座護國神山的話應該也是政府要有一些角色來扶植那有很多譬如說現在川普也希望說能夠投資美國那其實如果可以在我們的這個產業醫療產業如果投資美國
transcript.whisperx[568].start 15180.775
transcript.whisperx[568].end 15197.971
transcript.whisperx[568].text 能夠取得他們的這個認證其實應該也可以打開其他國家的市場所以我覺得這也許是一個很好的方式也不一定所以我希望就是說我們衛福部在這一次應該要有一些角色然後扶植我們的這些醫療產業好不好
transcript.whisperx[569].start 15199.753
transcript.whisperx[569].end 15219.419
transcript.whisperx[569].text 不管是方委員剛剛你提的,以及剛剛王成熙委員提的,就是我們危機就是轉機第一就是我們台灣人的追準,台灣人的去拼尤其台灣醫療科技的水準,我們真的要氣魄去把它做,不但是國內做好,也要推導到國際的一個紅艷這樣子好,謝謝謝謝黃學凰委員的發言,也謝謝部長跟署長的回答我們下一位請吳麗華委員發言
transcript.whisperx[570].start 15237.415
transcript.whisperx[570].end 15241.596
transcript.whisperx[570].text 謝謝主席有請部長麻煩邱部長委員好部長好部長我在2023年的12月曾經跟陳培宇委員開了一個記者會那主要的訴求是因為我們有族人廚師那他做了叫做老葉香腸這樣的一個食品在市面上販售
transcript.whisperx[571].start 15266.405
transcript.whisperx[571].end 15287.68
transcript.whisperx[571].text 被人檢舉就收到罰單六萬塊那為什麼要開記者會因為其實我之前在這個更早之前也為了月桃能夠入菜也做過但是我覺得很辛苦因為一個一個個案來然後也不知道要怎麼樣到什麼時候才能夠納入食品安全
transcript.whisperx[572].start 15288.3
transcript.whisperx[572].end 15308.247
transcript.whisperx[572].text 那開罰的依據當然是因為有一個叫食品安全衛生管理法第十五條然後第一項的第九款從未於國內工作飲食且未經證明為無害人體健康所以就不得製造加工販售等等甚至是做贈品也不行
transcript.whisperx[573].start 15309.807
transcript.whisperx[573].end 15319.694
transcript.whisperx[573].text 我很感謝就是多次的關心之後其實我也在2月14號有拿到你們衛福部的回函他有提到說食藥署其實在112年的10月26號曾經有發文
transcript.whisperx[574].start 15325.237
transcript.whisperx[574].end 15349.239
transcript.whisperx[574].text 就是食品如果有違反食安法剛才的第一項第九款他有特別提到說勿僅依食品原料整合查詢平台作為裁罰依據就是蠻人性化那在113年4月30號也曾經重申就是不要將食品原料整合查詢平台作為裁罰的依據可是就是沒辦法嘛
transcript.whisperx[575].start 15350.08
transcript.whisperx[575].end 15365.466
transcript.whisperx[575].text 那甚至是什麼呢像這些有機認證的也很苦惱因為我們看一下這些品項像南瓜嫩芯很好啊然後農糧署有推廣的番杏啊或者紫貝草啊木草芯啊等等等非常的多芋頭梗啊這些都是很好的一個入菜對身體有健康營養
transcript.whisperx[576].start 15372.469
transcript.whisperx[576].end 15391.024
transcript.whisperx[576].text 但是它就是因為沒有列在食品原料整合平台所以它連有機驗證也沒有辦法進行我們看一下你們的食品原料整合平台的查詢系統我以老葉為例輸入進去它會出現未確認安全性尚不得使用之原料
transcript.whisperx[577].start 15392.024
transcript.whisperx[577].end 15419.751
transcript.whisperx[577].text 所以呢很多的key進去甚至連資料都沒有連都零那我們來看一下的一個原因就是因為這個申請作業指引這個所謂的非傳統性食品原料的定義他是提到說台灣境內無實用歷史經驗者然後呢是一個排除條件僅有某特定區域或族群之消費者使用經驗他是被排除的他是有歧視性的一個意思所以呢
transcript.whisperx[578].start 15420.531
transcript.whisperx[578].end 15434.519
transcript.whisperx[578].text 經過反應之後也很感謝這一次出來的一個草案114年3月13號有你們有修正把非傳統性食品原料已經改成新興食品原料安全性評估作業原則
transcript.whisperx[579].start 15435.76
transcript.whisperx[579].end 15452.234
transcript.whisperx[579].text 那目前是在預告期間但是呢就是有把那個某特定區域族群我剛剛講那個比較歧視性的排除他現在呢已經把它就是改為一個名稱叫新興食品原料但是這個當中第一個他是要1999年12月31日以前
transcript.whisperx[580].start 15455.316
transcript.whisperx[580].end 15477.508
transcript.whisperx[580].text 也就是25年前了那為什麼要這樣我是不太了解那但是這個沒有關係但是我比較在意的是你食用方式與傳統食用經驗不同者那都是創意料理啊那創意料理怎麼辦因為你們裡面有規定例如限定要用先煮還規定說要怎麼煮所以那個創意料理怎麼辦
transcript.whisperx[581].start 15478.288
transcript.whisperx[581].end 15501.218
transcript.whisperx[581].text 那另外是說無足夠安全實用經驗但是我之前就是一直提因為你們這個之前的作業指引申請你們都說是要收集國際間就是國際的期刊的研究資料可是你們的國際期刊大多為歐美日啊問題我們是南島民族啊你們有沒有採用南島民族的實用經驗
transcript.whisperx[582].start 15502.478
transcript.whisperx[582].end 15530.479
transcript.whisperx[582].text 你們好像沒有採納那國內的研究算不算數像這個PPT上面的這是國內的野菜學校一個老師叫吳雪月你看她出版的書啊那我們來翻譯一下喔她的書喔不但有實用經驗還有研究還有食譜喔我們來Key in進去木鱉子共有零筆搜尋結果它裡面有一道叫做紙被草搜尋進去零筆搜尋結果這些都不合法
transcript.whisperx[583].start 15531.34
transcript.whisperx[583].end 15539.927
transcript.whisperx[583].text 都必須要收到罰單都不能推廣所以呢更麻煩這一途走不動的時候是要做什麼呢要做
transcript.whisperx[584].start 15541.381
transcript.whisperx[584].end 15569.141
transcript.whisperx[584].text 進行一 90天餵食毒性試驗二 基因毒性試驗三 致肌畸形試驗那誰來做試驗而且經費很貴每一項需要500萬那我們這樣一項一項各個急迫曠日費時又要經費龐大如果要走這一圖根本誰有辦法哪一個廚師有辦法哪一個公司有辦法所以這個部分我還是希望就是再一次訴求
transcript.whisperx[585].start 15569.801
transcript.whisperx[585].end 15588.551
transcript.whisperx[585].text 因為你們是3月到5月預告三個月嘛目前正在預告期間那我是希望說我們衛福部跟農業部跟園民會是不是應該全面的來重新盤點這些食品原料整合查詢平台然後希望能夠納入各民族的食用經驗啦
transcript.whisperx[586].start 15589.591
transcript.whisperx[586].end 15608.177
transcript.whisperx[586].text 那第二個就是說希望這個部分能夠參採國內研究跟南島地區的實用經驗來認定原住民的傳統食材那請教一下部長這樣可以嗎謝謝委員這麼重要的一個我確定能真的非常感動的一個
transcript.whisperx[587].start 15610.206
transcript.whisperx[587].end 15621.198
transcript.whisperx[587].text 催省跟訴求這個部分其實我們一直在在針對這樣的一個方向在一直都在前進中那是比較具體的現在做法是不行時要數江署長好謝謝謝謝署長謝謝委員這邊做一個補充
transcript.whisperx[588].start 15625.242
transcript.whisperx[588].end 15648.169
transcript.whisperx[588].text 我們針對所謂原住民食材我們其實不只是原住民其實不同的譬如說客家的 閩南的等等不管任何一種我們是尊重原型的食材這件事情其實沒有什麼問題的這件事情特別提到跨部會的部分我們其實直接的收集跟各部會之間的協作我們會持續的進進
transcript.whisperx[589].start 15649.269
transcript.whisperx[589].end 15663.268
transcript.whisperx[589].text 第三個是特別提到的我們在食品原料整合平台裡面查詢的特別特別提它不是正念表列它其實在食物裡面有一個很重要的原則叫做GRASSGenerally recognized as safe就是整體來
transcript.whisperx[590].start 15664.529
transcript.whisperx[590].end 15686.892
transcript.whisperx[590].text 我們前輩前輩一直傳下來都算是安全的我知道所以在這種前提之下我們特別特別強調不以正面表列不是說以上面沒有的就成為裁罰但是地方政府搞不清楚就是會開放這部分我們會特別特別的就要加強的就這樣子宣布所以我希望能夠改善你們的那個平台輸入的那個平台
transcript.whisperx[591].start 15687.492
transcript.whisperx[591].end 15710.928
transcript.whisperx[591].text 我們在這個部分會把更多的資訊能夠導入以上謝謝主長那再給我一分鐘就是還有一個我很關心的問題就是謝謝部長因為我長期以來其實我家是沒有洗腎患者我們親戚間也沒有但是我在原鄉部落我很心疼這些洗腎患者因為他們很辛苦根本沒有辦法找到正職
transcript.whisperx[592].start 15712.253
transcript.whisperx[592].end 15726.301
transcript.whisperx[592].text 然後呢會變成家裡的依賴人口很辛苦所以我一直很關心的是他們有一些是居住在深山我以司馬庫斯來講他要到竹東他最近的就是竹東要開車三個小時
transcript.whisperx[593].start 15727.822
transcript.whisperx[593].end 15750.175
transcript.whisperx[593].text 然後再加上坐的時間跟回來的時間一整天很辛苦 舟車勞頓所以我一直很關心說可不可以怎麼樣去幫助他們那園民會那邊很謝謝他們有做安心上工就是讓他們可以在鄉裡面部落裡面做一些簡單的工作那衛福部這邊我也很感謝因為我有看到你們說要把
transcript.whisperx[594].start 15751.536
transcript.whisperx[594].end 15768.447
transcript.whisperx[594].text 居家血月透析要納入健保給付了而且會在最快5月上路我非常的高興肯定但是我很擔心我們很多原鄉的病人看得到吃不到用不到為什麼因為他的要求很高病人及家屬要經過8到12週的訓練
transcript.whisperx[595].start 15771.529
transcript.whisperx[595].end 15799.307
transcript.whisperx[595].text 那當然我覺得訓練是一定要的而且那些水用的水啊等等應該都需要規格很高這個我都知道但是我在這個地方是說可不可以把好事做盡是不是可以考量有一些特別偏遠的像納瑪夏像這種司馬庫斯這種特別遠的其實就可以在衛生所有衛生所他們有正式的場域有合格的護理人員等等讓他們能夠就近部長您覺得如何
transcript.whisperx[596].start 15800.339
transcript.whisperx[596].end 15825.065
transcript.whisperx[596].text 我覺得這個方向是值得研議的啦因為我以前多年來也負責新竹縣的醫療像竹東那邊提供的像司馬庫斯各方面的那個都真的我的朋友在竹東服務常常要仿仿是一家第二家就要過另外一個山頭所以表示說這個真的醫療資源是相當的辛苦
transcript.whisperx[597].start 15825.905
transcript.whisperx[597].end 15850.552
transcript.whisperx[597].text 那相關的一個當然要我們怎麼樣去符合醫療法然後在健保上面給他鼓勵這部分那個時事長你有沒有要補充的好 謝謝跟委員說明因為這個居家透析這件事情是全球的趨勢這個對剛剛您提到的對民眾的便利性還有他這個透析的舒適度其實是比較高的
transcript.whisperx[598].start 15851.372
transcript.whisperx[598].end 15871.799
transcript.whisperx[598].text 但是我們現在開放的是在家裡面至於在衛生所實施等於是說他家裡面沒有人然後他就必須要到衛生所來做那因為衛生所是屬於醫療機構那他有一些設置標準的要求所以能不能夠做透析我想我們來研究看看可不可以在兩個星期內做一個報告可以嗎
transcript.whisperx[599].start 15872.719
transcript.whisperx[599].end 15876.723
transcript.whisperx[599].text 好 謝謝署長 謝謝部長 謝謝主席好 謝謝部長好 謝謝吳立老委員的發言也謝謝部長跟署長的答詢我們下一位請葉元之委員發言麻煩請部長 謝謝請邱部長
transcript.whisperx[600].start 15902.952
transcript.whisperx[600].end 15921.237
transcript.whisperx[600].text 委員好部長好因為我接觸到非常多藥師還有一些病有一些會擔心自己買不到藥的病人他還是很擔心說會因為川普關稅戰的因素造成未來缺藥我看到部長這兩天都一直在信心喊話
transcript.whisperx[601].start 15922.037
transcript.whisperx[601].end 15948.909
transcript.whisperx[601].text 比如包括像癌症包括像其他的藥都不會缺啦你是說不一定發生的事情大家不用先擔心啦即便是有缺藥也都是會做好準備可是大家還是很擔心為什麼呢因為我們衛福部在年初的時候就已經訂了新藥的基準價嘛那現在美國的藥會上漲這個是大家可以預期的為什麼呢因為他們現在美中在關稅戰那美國的藥很多原料是來自於中國跟印度
transcript.whisperx[602].start 15949.485
transcript.whisperx[602].end 15966.994
transcript.whisperx[602].text 那如果中國的藥的原料進到美國去成本上升那當然它製藥的價格就會提高那提高之後來台灣那因為我們年初就已經訂了藥的基準嘛所以如果假設我們沒有辦法去買這個藥就缺藥啦就會造成缺藥
transcript.whisperx[603].start 15967.734
transcript.whisperx[603].end 15989.01
transcript.whisperx[603].text 那即便是衛福部這邊有做出因應方案根據過去缺藥的經驗往往藥商都是提供給有合約的大型醫院然後社區診所就拿不到藥所以過去很多次缺藥其實都是這樣的情形所以我們不知道因為部長現在都席至如今對於這個事情都席至如今都說有因應但是大家都不知道方案
transcript.whisperx[604].start 15989.81
transcript.whisperx[604].end 15998.597
transcript.whisperx[604].text 所以可不可以如果你認為你已經準備好了可不可以很清楚的告訴大家你現在所做的準備到底是什麼為什麼台灣不會面臨到缺藥的危機
transcript.whisperx[605].start 16002.679
transcript.whisperx[605].end 16026.321
transcript.whisperx[605].text 好 謝謝委員的關心 這的確是非常重要當然最重要就是要盤點現在的狀況那等一下食藥署市長再報告盤點的狀況那我們過去缺藥的狀況的因應也不是最近其實也是長久以來都一直設立一個機制我們從列必要的一個藥品清單這些都要如果說
transcript.whisperx[606].start 16027.222
transcript.whisperx[606].end 16049.441
transcript.whisperx[606].text 不夠可能六個月前就要來通知來處理那另外另外一個當然我們有缺藥的平台如果有任何問題不要不希望讓所有的醫療院所剛剛你講的包括診所都有一個反應這本來都一直有那在健保的一個局部裡面其實也不是說年初定了以後就就沒辦法調整啦他如果有改變
transcript.whisperx[607].start 16050.462
transcript.whisperx[607].end 16056.814
transcript.whisperx[607].text 成本提高其實就可以把他的藥商可以來申請那這個部分的機制也都順暢所以這個部分
transcript.whisperx[608].start 16059.699
transcript.whisperx[608].end 16083.347
transcript.whisperx[608].text 這是大概我們這樣的一個機制過去來應應各種缺藥的狀況這是可能啦但是所以有時候會發生那是因為各種原因我們都會去解決有時候是說要拍電影就是要想想啊有些廠商不要不想做這樣子所以這也是一個問題啊你不可能叫廠商做肥本的生意所以這個部分也都是一個問題所以你們假如說藝術這怎麼處理呢這當然所以剛剛
transcript.whisperx[609].start 16087.528
transcript.whisperx[609].end 16095.752
transcript.whisperx[609].text 我跟時事長都一直在已經講過跟大家報告過好幾次我們將有兩個辦法將會在4月27號以前來公告嘛那個就是扶植我們國內的製藥我現在不是問國內製藥我們先針對這個問題回答啦因為大家擔心的是缺藥問題缺藥你是要說缺國內的藥還是說缺國際的
transcript.whisperx[610].start 16112.521
transcript.whisperx[610].end 16134.751
transcript.whisperx[610].text 我記得嘛我剛講了嘛就是說美國關稅因為他比如說他美中貿易大戰嘛美國的藥他的成本提高嘛提高之後那我們對藥價有控制嘛那可能就沒有辦法買嘛沒有辦法買就會缺藥那即便是要供應也是供應給大型醫院嘛所以社區醫院跟診所或者是社區藥局會擔心嘛現在是問題在這裡嘛
transcript.whisperx[611].start 16136.132
transcript.whisperx[611].end 16163.422
transcript.whisperx[611].text 而且因為剛剛部長你提到的一些方法並沒有過去曾經並沒有面對到類似這樣的大型的突發事件因為這是一個比較大型的突發事件美國川普他忽然間宣布藥的關稅漲多少就是多少他忽然宣布多少就是多少你剛剛說缺藥的監測是六個月半年你的半年的監測可能沒有辦法應付他忽然出現的突發事件
transcript.whisperx[612].start 16164.102
transcript.whisperx[612].end 16171.185
transcript.whisperx[612].text 所以你不能用過去的經驗來來沙盤推演未來可能遇見的狀況我現在是提醒這件事關稅進口到台灣是零關稅啦所以我們會預期它會增加是因為美國的原料美國的藥本身變貴了嘛我們就算零關稅它的藥還是變貴啦這個量是會多少那是哪一種種類我們都已經盤點
transcript.whisperx[613].start 16186.85
transcript.whisperx[613].end 16201.168
transcript.whisperx[613].text 那盤點以後當然我們就會去應應嘛不是啦總之讓人們有需要我問你一個問題啦你現在你能夠預測說到時候川普他對美國對中國的要的關稅他會提高多少你可以預測這件事嗎
transcript.whisperx[614].start 16202.059
transcript.whisperx[614].end 16217.799
transcript.whisperx[614].text 他們現在講的全部的對等關稅是100多%欸那你今天美國的藥跟中國進原料他的成本是提高很多欸不是你想的這樣欸那他的藥的成本提高那麼多以後台灣這邊編的藥價就沒有辦法購買嘛沒辦法購買就會缺藥嘛
transcript.whisperx[615].start 16220.703
transcript.whisperx[615].end 16246.454
transcript.whisperx[615].text 那你現在你剛剛講一堆機制都是過去的經驗嘛我現在問的是說你有沒有針對這個關稅可能會造成的影響你有做因應啊因為你現在講的都是過去的機制比如說藥缺藥用六個月去監測或什麼之類平台或是你現在是如果假設藥變非常貴你是會用補助還是怎麼樣還是說健保之外要叫那些病友自費你的方案到底是什麼嘛
transcript.whisperx[616].start 16247.711
transcript.whisperx[616].end 16266.079
transcript.whisperx[616].text 我們基本上那個這個因為你講的很模糊嘛對 你的方案到底是什麼還是說如果說您不清楚的話請處長回答還可以方案就是說如果成本成本提高我們健保本來就有機制來幾戶多那我們也有準備剛剛處長有提我們有那個風險基金
transcript.whisperx[617].start 16271.261
transcript.whisperx[617].end 16297.407
transcript.whisperx[617].text 會一起風險的基金來補這個那另外我們還有安全準備基金所以這個部分都是可以來所以意思是什麼意思是說比如美國的藥它變高了然後第一個你會去調整調漲藥價基準是不是讓那些代理商可以買到比較貴的藥那病友就要花比較多錢去買這個藥不是這個藥都是健保給付健保通通會健保給付然後會補貼
transcript.whisperx[618].start 16300.84
transcript.whisperx[618].end 16322.468
transcript.whisperx[618].text 全部都健保給付自費都不會受影響跟委員報告因為這些藥品裡面我們剛剛盤點過在美國以美國製造的為例的話72項的必要藥品裡頭大概有24項是癌藥那癌藥呢在我們目前是屬於重大傷病所以是不用部分負擔等於健保全部cover了
transcript.whisperx[619].start 16322.768
transcript.whisperx[619].end 16329.073
transcript.whisperx[619].text 健保會宣布哈佛然後你們確定就是藥價基準會提高絕對不會因為藥品支付標準34條來調整絕對不會因為美國的藥的成本變高之後然後讓我們的買不到藥沒有藥價絕對不會
transcript.whisperx[620].start 16339.142
transcript.whisperx[620].end 16354.85
transcript.whisperx[620].text 所以你認為你們在那邊確定說不會有缺藥的標準不會有缺藥確定如果這個是全球性的原料不足而缺藥那當然我們沒有辦法如果是價格的問題我先講價格的問題所以好啦 魏浦浦在這邊有做出保證絕對不會因為價格的關係
transcript.whisperx[621].start 16357.891
transcript.whisperx[621].end 16382.891
transcript.whisperx[621].text 第二個我再問一個簡單問一個議題啦因為這個滿嚴重的跟器官捐贈有關最近很多民進黨的人在網路上帶風向我想請衛福部做一個嚴正的澄清下一頁他們的邏輯是這樣啦就是說以來有一個羅東的不愛醫院因為他的孫女嫁給了薄瓜瓜薄熙來的兒子
transcript.whisperx[622].start 16383.769
transcript.whisperx[622].end 16409.606
transcript.whisperx[622].text 然後呢好像這個羅東醫院就跟中國大陸有連結啦然後剛好羅東醫院又跟北醫有做一個器官捐贈的平台然後呢再加上剛好陳玉珍委員他們有推一個離島建設條例裡面有說要引進外國資源來解決離島的醫療問題其實外國引進外國資源不包括中國大陸嘛因為按照我們中華民國憲法外國就不包括中國大陸但是
transcript.whisperx[623].start 16410.447
transcript.whisperx[623].end 16436.35
transcript.whisperx[623].text 民進黨的人就做一個連結就說你看宜蘭羅東醫院搞這個東西然後就有中國醫生進來中國醫生進來之後呢會不會我們的器官就移植到中國去這幾天在網路上討論很熱烈然後有一個曾經代表民進黨選過立委的一個學者他就說他收到很多媽媽的憂心都很害怕他的小朋友的器官被摘掉
transcript.whisperx[624].start 16437.355
transcript.whisperx[624].end 16447.667
transcript.whisperx[624].text 我想問部長我們現在台灣包括羅東醫院包括北醫有在做這種事嗎會把我們的器官弄到中國去嗎有這種事嗎
transcript.whisperx[625].start 16450.017
transcript.whisperx[625].end 16474.995
transcript.whisperx[625].text 我們的一個器官的移植的辦法相當的嚴格而且現在都是AI在做 你怎麼可能 不可能嘛但是你知道他們在網路上帶這種風向會造成什麼結果嗎你知道多少醫護人員他要勸說家屬把器官捐贈出來其實要花很多的心力因為捐贈器官其實是救人的包括賴清德總統在2015年都曾經宣導過請大家捐贈器官
transcript.whisperx[626].start 16476.036
transcript.whisperx[626].end 16502.833
transcript.whisperx[626].text 我認識的一個朋友他從小心臟不好爸媽都已經簽了急救的放棄書了後來因為等到一顆心臟重獲新生所以很多人其實在等別人捐器官在重獲新生結果最近居然為了搞政治在網路上帶這種風向請部長嚴正的斥責這樣的行為我覺得是對醫護人員很大的打擊而且是對這些等器官的病人是很大的傷害
transcript.whisperx[627].start 16503.573
transcript.whisperx[627].end 16529.063
transcript.whisperx[627].text 要搞政治可以啊 為什麼要去傷害醫護咧為什麼要傷害大家健康呢作為健康主管機關的衛福部部長你看到這樣的言論你可以接受嗎我想我們都不能做沒有根據的一種傳言或者論述啦那這第一個 這樣是不好的那第二個 那個我們台灣的一個器官的管理是相當的嚴格嘛 跟中國有關係嗎
transcript.whisperx[628].start 16530.592
transcript.whisperx[628].end 16553.528
transcript.whisperx[628].text 沒有關係宜蘭羅東醫院跟北醫有在跟中國搞什麼器官捐贈嗎?或器官移植有沒有?北醫有嗎?北醫以前陳時中部長都是北醫出來的北醫有搞這種事嗎?有嗎?在我們的ANGLE管理之下應該不會發生不可能的事嘛我希望衛福部可以去查這些假消息好不好
transcript.whisperx[629].start 16554.926
transcript.whisperx[629].end 16580.964
transcript.whisperx[629].text 他在破壞我們好不容易建立的制度啦影響到衛福部我希望衛福部去查這個事啊是真的很不可取啦好不好部長可以去查嗎網路上現在超多在帶這個風向請拿出破例出來叫他們不要破壞我們醫療體系啦可以嗎幫北醫幫宜蘭羅東博愛醫院幫所有辛苦的醫護人員討個公道也幫我們病人
transcript.whisperx[630].start 16582.436
transcript.whisperx[630].end 16587.9
transcript.whisperx[630].text 幫我們的病人努力維繫他們的健康可以嗎好 我們一起往這方面來努力 謝謝好 謝謝接下來請陳穎委員來做懸導
transcript.whisperx[631].start 16616.694
transcript.whisperx[631].end 16639.404
transcript.whisperx[631].text 謝謝主席 麻煩請衛福部長請 部長委員好部長好 之前呢我跟莊瑞雄委員有積極處理這個台東馬街醫護宿舍改建的事情那在這邊也非常感謝部長大力的支持真的是功德一見創全力支持好 謝謝
transcript.whisperx[632].start 16642.786
transcript.whisperx[632].end 16661.683
transcript.whisperx[632].text 但是我想在這個過程當中我們跟院方有很多的對談那特別就是馬街的這個王院長他有跟我提到一件事就是說他在台東服務30年那看這個就是說來來去去的這個醫護人員太多了
transcript.whisperx[633].start 16662.344
transcript.whisperx[633].end 16689
transcript.whisperx[633].text 那很多就是政府希望在這個補充偏鄉醫療資源的政策往往沒有辦法實際留住這個偏鄉的醫護人才因為很多有時候政策的這些辦法沒有政策沒有辦法到位就像之前我有提過就是偏鄉的這個醫院住院的護理偏鄉醫院住院護理費根本是沒有反映到這個護理師的所得那
transcript.whisperx[634].start 16690.54
transcript.whisperx[634].end 16706.167
transcript.whisperx[634].text 很多的偏鄉的醫師為什麼留不住因為在偏鄉醫院看診的收入幾乎都是全部要列入所得課稅如果是在西部地區開診所
transcript.whisperx[635].start 16707.527
transcript.whisperx[635].end 16731.853
transcript.whisperx[635].text 那这些医生的这个医疗收入有八成他是可以被认列在这个成本里面所以很多偏乡的医师最后呢干脆就到西部自己去开诊所也不会留在偏乡那因为同样的收入他去开诊所要缴的税相对是可以少掉许多特别
transcript.whisperx[636].start 16732.873
transcript.whisperx[636].end 16759.951
transcript.whisperx[636].text 这个王院长还有跟我提到一个建议那本席这样听了也觉得非常的不错我想这样这个意见这个样的一个建议是绝对可以直接让偏乡的医护受惠然后我们政府也不用再编列什么补助而且可以直接反映到这个偏乡医护的身上就是我们来规划偏乡医护税制的优惠
transcript.whisperx[637].start 16760.831
transcript.whisperx[637].end 16780.681
transcript.whisperx[637].text 好那增加這個偏鄉醫護特別扣除額部長您也是醫師我這樣的建議我想相信部長應該很有感那麼我們針對這個偏鄉醫護特別扣除額呢也跟這個也會同這個衛福部跟財政部一起開過會
transcript.whisperx[638].start 16782.802
transcript.whisperx[638].end 16800.531
transcript.whisperx[638].text 但是我要提醒就是說這件事情需要這個目的事業主管機關來發起財政部是不會主動幫你們提出這樣子的一個方案所以這件事情是不是部長可以由衛福部盡快來研議提出好我想
transcript.whisperx[639].start 16805.858
transcript.whisperx[639].end 16831.511
transcript.whisperx[639].text 協助那個偏鄉醫療的人力是我們非常重要的工作跟目標啦用任何的方法能夠把它留出來我們都一定當然要合乎法規 合乎規定的方法或者創造更多的計畫包括譬如說醫中計畫啦 各種計畫但是如果實行到一段時間覺得那些計畫好像王院長還會覺得不夠
transcript.whisperx[640].start 16834.653
transcript.whisperx[640].end 16848.378
transcript.whisperx[640].text 我想這個也不是王院長一個人王院長在那邊服務很久他也很瞭解像馬捷醫院要把人到那邊真的是非常的
transcript.whisperx[641].start 16849.418
transcript.whisperx[641].end 16876.578
transcript.whisperx[641].text 對 我們也不要離題太多啦就是針對這個偏鄉醫護特別扣除了的部分是不是衛福部可以盡快來演繹好 我們盡快來演繹好 那另外就是說在討論的過程也有講到我們有提到幾個問題就是說這個醫院的適用對象你們提到這個偏鄉醫院的認定通常都是山地離島地區的醫院那或者是醫療資源缺乏地區醫院
transcript.whisperx[642].start 16877.939
transcript.whisperx[642].end 16893.447
transcript.whisperx[642].text 可是用兩個框架下去看我們去看花蓮的慈濟或者是台東幾家大的醫院全部都是被排除在外
transcript.whisperx[643].start 16895.148
transcript.whisperx[643].end 16922.024
transcript.whisperx[643].text 因为这些医院的所在地不会是医疗资源缺乏地区但是他的生活机能确实是无法和西部地区来相比较愿意到东部服务的医护确实是比较好甚至在台东开到一个月51万的薪水都没有医生要去所以我在这里建议到第三个就是说原住民原住民族地区的医院
transcript.whisperx[644].start 16922.944
transcript.whisperx[644].end 16945.423
transcript.whisperx[644].text 那這三個認定標準之外本席還想就是說列出第四個有些醫院可能就是說他地處偏鄉那比較不容易在這個前三項的不是在這個前三項的範圍內譬如說這個南投的竹山秀傳醫院也是不容易留住醫護人才的地方
transcript.whisperx[645].start 16946.184
transcript.whisperx[645].end 16958.775
transcript.whisperx[645].text 所以我希望說可以在這個稅制的優惠上讓偏鄉增加一點誘因然後也感謝所有這些醫護人員為偏鄉的奉獻我不曉得這樣的建議部長怎麼看
transcript.whisperx[646].start 16961.179
transcript.whisperx[646].end 16965.581
transcript.whisperx[646].text 我相當的支持我們過去的確跟我曾經在財委會過也爭取了特別的課諸額但是都不太會成功所以這個我們會特別來補
transcript.whisperx[647].start 16980.805
transcript.whisperx[647].end 17007.865
transcript.whisperx[647].text 要跟財政部好好來溝通一下很多的時候我是吉祥物所以我覺得我們這個有時候時間點不一樣或者他比較成熟或有一些這個很多的因素加起來搞不好這是一個好時機對 如果說像王院長他們只有這樣是有幫助的話表示他們已經想很久覺得這是有幫助那你感謝委員這麼關心而且能夠提議這麼具體我想衛福部一定來研議
transcript.whisperx[648].start 17008.746
transcript.whisperx[648].end 17030.481
transcript.whisperx[648].text 好那因為接下來是繳稅的季節今年肯定是來不及啦所以我們再加把勁希望就是說看看明年可不可以有好消息這樣子好的好的謝謝那另外這邊還有個問題也要特別另外請這個食藥署署長江署長一起上來好師生同台嗎
transcript.whisperx[649].start 17034.349
transcript.whisperx[649].end 17045.045
transcript.whisperx[649].text 那個我就直接問了就是兩位都是醫學院的教授首先想要請到江署長醫療效果跟健康效應是不是一樣有沒有不同的意義
transcript.whisperx[650].start 17048.347
transcript.whisperx[650].end 17075.569
transcript.whisperx[650].text 醫療效果是某一個疾病診斷治療前後健康的效應它是一個通稱那有時候跟委員那個垂尋壓力相對放下那個健康效果效應就是比較好所以中間其實是會有不一樣的意義在因為本期不是食品OK好再請教部長如果不一樣的話我們可不可以這樣解讀就是說
transcript.whisperx[651].start 17076.63
transcript.whisperx[651].end 17077.631
transcript.whisperx[651].text 看起來是OK的
transcript.whisperx[652].start 17104.284
transcript.whisperx[652].end 17131.363
transcript.whisperx[652].text 只要是藥物都是他治療的是療效可是對於一般的食品你不能宣稱任何的療效他就會違反到我剛剛應該沒有說錯什麼啦是好那我們對於這個健康跟醫療的差別其實是很容易溝通啦那可是呢當我看到食品安全衛生法的一個認定規則當下還有點傻眼就是說兩位看一下這個規定
transcript.whisperx[653].start 17133.584
transcript.whisperx[653].end 17155.695
transcript.whisperx[653].text 名称叫做食品及相关产品标示宣导广告涉及不实夸张一身误解或医疗效果的认定准则来看一下准则第五条食品之标示宣传或广告有下列情形之一认定为涉及医疗效能
transcript.whisperx[654].start 17156.335
transcript.whisperx[654].end 17173.387
transcript.whisperx[654].text 那涉及預防改善減輕診斷或治療疾病症候群或症狀好再來就是涉及減輕或降低導致疾病有關之體內成分那第三個是涉及中藥材效能
transcript.whisperx[655].start 17176.789
transcript.whisperx[655].end 17198.538
transcript.whisperx[655].text 所以藥品是針對已經有疾病症狀來治療用的它本身不是用來預防改善的目的本席這樣子表述有沒有錯誤我沒有設定沒有設定任何陷阱讓大家跳我們只是釐清一些概念而已我稍微說明一下如果是藥品
transcript.whisperx[656].start 17199.329
transcript.whisperx[656].end 17213.649
transcript.whisperx[656].text 它對於一定是來自於這個藥物的治療之下產生的效果對特定產生 比如說膽固醇的下降那我們下降到什麼程度其實是有實證科學的證據底下最後
transcript.whisperx[657].start 17214.875
transcript.whisperx[657].end 17236.588
transcript.whisperx[657].text 核給他這個藥物的適應症所以他的上市是從藥物的開始前期以及中間的臨床的試驗確定到開始的我們長期的療效這個是屬於藥品的適應的食品的部分其實我們是最基本的食品其實是為了我們的生活跟生命的延續所以他是必須要的
transcript.whisperx[658].start 17237.268
transcript.whisperx[658].end 17261.277
transcript.whisperx[658].text 我想但是就是說這個食品或者保健食品它所強調的或是大家所關切的就是涉及一些症狀及預防改善那現在準則的這一條規定已經把所有涉及苗樹健康效應的範疇通通把它納為醫療效能連這個營養成分都不可以講因為涉及減輕疾病有關的這個體內成分也都不可以講
transcript.whisperx[659].start 17266.619
transcript.whisperx[659].end 17287.831
transcript.whisperx[659].text 那明明你們主管的這個營養及健康飲食促進法所定義的營養成分例如糖類蛋白質維生素礦物質要求食品業者要多添加及宣導結果只要講了任何的這個健康效應就會變成不實的醫療效果的廣告
transcript.whisperx[660].start 17288.591
transcript.whisperx[660].end 17302.863
transcript.whisperx[660].text 那這樣子不就是只准週關放火然後不准百姓點燈嗎因為這個動輒裁罰有收幾百萬上千萬那甚至就是有些公司因此不得不關門大吉
transcript.whisperx[661].start 17305.905
transcript.whisperx[661].end 17325.716
transcript.whisperx[661].text 就是說我們這樣看起來說原來說消滅產業才是準則的最大功效看起來好像變成是這樣因為業者他不敢就是說完整標示完整然後讓消費者就是說我們現在很多就是我們不知道自己在買什麼吃什麼
transcript.whisperx[662].start 17327.157
transcript.whisperx[662].end 17345.878
transcript.whisperx[662].text 比較誠實的業者然後就是說寫了經過實驗認證的功效反而也是被罰的所以最後大家怎麼樣會變成說好像大家改做進口商當然很多消費者就是專門去買日韓的健康食品
transcript.whisperx[663].start 17347.059
transcript.whisperx[663].end 17364.95
transcript.whisperx[663].text 所以我不希望說這個衛福部變成是促進日韓健康食品產業的最大幫手因為這些國家他們沒有這樣子像筷子手一樣的準則我今天用詞比較重一點啦因為你們這個有時候這個比例裁罰也是很重的
transcript.whisperx[664].start 17365.55
transcript.whisperx[664].end 17390.524
transcript.whisperx[664].text 這個都是為了國人的健康但是我想在很多的面向到底合不合理有沒有跟上時代這個是大家要去深思因為畢竟目前這個賴總統很重要國政健康台灣不就是要培養我們國人的這個健康的觀念從飲食上好的這個健康促進來提升免疫力然後減少這個癌症及慢性病的發生率可是因為這些法規過時狹隘
transcript.whisperx[665].start 17392.785
transcript.whisperx[665].end 17411.174
transcript.whisperx[665].text 以及這些好像感覺很威權的這樣的一個觀念然後不准這個實名業者去宣導經過學術認證的健康效應我想這個有時候我們誤把風景這個當作馬良所以我想今天提出這樣子的一個一些這樣的議題我們來溝通啊
transcript.whisperx[666].start 17414.367
transcript.whisperx[666].end 17434.417
transcript.whisperx[666].text 謝謝委員的詮詢特別是針對食品的部分在台灣是健康食品法針對我們的食品有宣稱它的所謂的功效的部分我們有13種的認定那這認定我們會給小綠人標章至於委員順便提到的有相當多的保健相關的食品
transcript.whisperx[667].start 17435.057
transcript.whisperx[667].end 17457.271
transcript.whisperx[667].text 那因為健康食品強調是保健功效嘛所以很多我們一般的食品呢他宣稱他是叫做所謂的保健食品在這種情形之下呢裡面有很多重要的所謂的功能性的一些成分所以目前我們署內也是積極的在研議希望把這些功能性的成分能夠納入我們納管的範圍裡面
transcript.whisperx[668].start 17459.352
transcript.whisperx[668].end 17483.155
transcript.whisperx[668].text 那最近呢我們其實是遇到的一個最重要的一個議題或許委員也了解那因為有很多很多的採購購買在電視裡面的廣告裡面有很多的家長長輩們的採用之下其實它相對於它的所謂的功效的部分會有相對的是讓人家是覺得是神乎其技的
transcript.whisperx[669].start 17483.695
transcript.whisperx[669].end 17507.619
transcript.whisperx[669].text 那我覺得這部分我們在廣告這部分特別會注意本席剛剛提的我要討論的內容並不是要去討論這個被業者誇大的層面而是經實驗證實它有這個效應的部分是不是可以如實的納入而不被當作是好像誇大或者是宣稱了什麼醫療的這個的
transcript.whisperx[670].start 17511.201
transcript.whisperx[670].end 17525.834
transcript.whisperx[670].text 功效去被裁罰所以我想這個是兩個議題本席肯定你們去把這些誇大不實的這些業者狠狠的給他罰但是有些在
transcript.whisperx[671].start 17526.534
transcript.whisperx[671].end 17532.881
transcript.whisperx[671].text 法規的這個擴大的這個有點無限上綱的這個不合理的這個規範我覺得我們應該要與時俱進畢竟有日本韓國這樣子的國家我們是可以去參考的
transcript.whisperx[672].start 17542.731
transcript.whisperx[672].end 17562.709
transcript.whisperx[672].text 那因为我知道你们一定会去提到这个健康食品的认证其实坦白讲健康食品的认证也产生了一样类似的问题他能讲的提到的也还是很局限所以这个部分本席真的要拜托你们好好的去做一个检讨
transcript.whisperx[673].start 17563.109
transcript.whisperx[673].end 17591.141
transcript.whisperx[673].text 特別是部長也是在總統府的健康台灣推動委員會裡面擔任執行秘書所以這個部分我希望就是說大家來為這個發展台灣健康產業的經濟規模來做努力而不是去限縮國人的健康權所以這個部分我希望你們是不是可以在能不能在多久內來檢討完畢然後修訂這個不合理的行政命令
transcript.whisperx[674].start 17593.281
transcript.whisperx[674].end 17597.626
transcript.whisperx[674].text 協力使用署可不可以先到委員辦公室去了解一下整個
transcript.whisperx[675].start 17600.345
transcript.whisperx[675].end 17621.892
transcript.whisperx[675].text 因為這限制到蠻多要處理的了解一下,然後兩個月內提出怎麼樣改善、怎麼樣處理的報告好,那就兩個月到中間也歡迎我們大家來多溝通謝謝因為我對新的署長有很大的期待謝謝,他是實戰專家署長就趕快去
transcript.whisperx[676].start 17627.817
transcript.whisperx[676].end 17656.757
transcript.whisperx[676].text 來接下來鄭天才委員鄭天才委員鄭天才委員不在羅美玲委員羅美玲委員羅美玲委員不在麥玉珍委員麥玉珍委員麥玉珍委員不在鄭振誠委員鄭振誠委員鄭振誠委員不在顏匡衡委員顏匡衡委員顏匡衡委員不在鍾嘉斌委員鍾嘉斌委員鍾嘉斌委員不在何欣存委員何欣存委員何欣存委員不在林儲英委員林儲英委員林儲英委員不在蔡義瑜委員蔡義瑜委員蔡義瑜委員不在黃捷委員黃捷委員黃捷委員不在
transcript.whisperx[677].start 17657.54
transcript.whisperx[677].end 17670.225
transcript.whisperx[677].text 林德虎委員林德虎委員林德虎委員不在邱志偉委員邱志偉委員邱志偉委員不在來請陳冠廷委員慢慢請部長來有請部長
transcript.whisperx[678].start 17675.615
transcript.whisperx[678].end 17700.822
transcript.whisperx[678].text 委員好部長好部長我們最近健保署有發生一個比較重大的一個資安的案件甚至不是資安是跟國安相關的我們是不是也請署長也一併來這個前健保署主密他好像有倒賣一些重要的資訊給中國目前這樣的狀況掌握到什麼樣的情形
transcript.whisperx[679].start 17704.458
transcript.whisperx[679].end 17727.217
transcript.whisperx[679].text 跟委員報告因為這個健保署的月前阻密它是在112年間檢調開始啟動調查那1月的時候開始調查112年1月開始調查那因為到目前為止都還沒有偵查終結起訴所以等於是還在偵查中所以我們就內部有沒有
transcript.whisperx[680].start 17728.158
transcript.whisperx[680].end 17753.569
transcript.whisperx[680].text 掌握到說是不是有些重要的資訊已經洩漏出去了因為我們是配合這個行政的部分配合檢方的調查那目前並沒有被告知這樣那我想請教一下那整個健保署也好或者衛福部裡面針對這一些在行政上面的調查有沒有已經開始或者是說有之前就已經有些報告
transcript.whisperx[681].start 17754.909
transcript.whisperx[681].end 17778.315
transcript.whisperx[681].text 因為我們剛剛跟委員我們是針對說我們如何繼續的強化那因為這個是在司法部公開的原則上我們大概不便對外說明但是我們內部上的有做若干的這個強化措施這樣我想請教一下像是前組密他們會不要經過公務人員的基本的背景查核就是做一些安全審核等等的
transcript.whisperx[682].start 17780.064
transcript.whisperx[682].end 17795.957
transcript.whisperx[682].text 當任公務員的時候除了一些特殊的職類之外一般並沒有通常是有正面表列他是不是在正面表列裡面他是不是他不是你覺得他是不是應該要理論上這樣子的職位是不是應該要列入這些表列中
transcript.whisperx[683].start 17796.817
transcript.whisperx[683].end 17812.192
transcript.whisperx[683].text 因為他的職位是主任秘書啦那這個職位其實在各個單位也都有類似的職位所以目前並沒有被列入我剛才問題不是說有沒有被列入的事你覺得是不是應該就你一個機關的首長你的看法認為呢
transcript.whisperx[684].start 17815.592
transcript.whisperx[684].end 17842.826
transcript.whisperx[684].text 就我們現在健保當然他是有很多的這個個資的資料在所以我們在內部的這個機制上的是十分的強調這個內控的機制包含他的授權還有最小範圍授權哪些人可以接觸到資料然後這個資料調閱的時候要以最小範圍為原則同時呢盡可能的要去掉這個可辨識資料等等最小範圍
transcript.whisperx[685].start 17844.428
transcript.whisperx[685].end 17851.059
transcript.whisperx[685].text 為主然後然後授權主秘需要知道嗎主秘需要知道這些資訊嗎
transcript.whisperx[686].start 17852.717
transcript.whisperx[686].end 17874.839
transcript.whisperx[686].text 要看他的業務,我們會根據他的業務那他要調閱資料的時候,都要他的直屬長官要同意才可以每一個我們的規定是這樣逐一的直屬長官是...那就會到那個署長署長,會到署長,那署長知不知情啊像這些最近他的這些重大的已經上新聞的事情他應該知道吧
transcript.whisperx[687].start 17875.94
transcript.whisperx[687].end 17899.131
transcript.whisperx[687].text 因為那個時候不是我還沒到這個署裡面我現在講簡單一點我把這個總的統整起來跟大家講一下我們現在在做的是機關保防那其實現在我們正面表列主要都是以安全人員情報人員或者是會接觸機密資訊的國防外交安全為主安全保安局等等
transcript.whisperx[688].start 17899.711
transcript.whisperx[688].end 17927.524
transcript.whisperx[688].text 但是現在看起來中國的它的能量它的滲透的部分它已經是不包含一個機關了它是跨部會的那跨部會裡面就過去我們認為說社福相關的未還等等它可能不是會接觸到基民資訊的人但是因為就不管是在新聞上媒體所揭露出來的我們的國家安全情報人員等等他們還是有健保他們也要用健保的資訊所以這些資訊還是有可能會去被滲透所以我是希望說
transcript.whisperx[689].start 17929.979
transcript.whisperx[689].end 17957.39
transcript.whisperx[689].text 這個部長你們可以給我一個出面的報告認為說哪些人員會接觸到機敏資訊的人員是不是要納入那些正面表列接受一些安全的核可所有安全的核可包含出入境紀錄包含他的財務等等是不是要有最基本的這樣的做法部長怎麼看我們大概能在的就是衛福部主管的範圍嘛這保持要
transcript.whisperx[690].start 17959.187
transcript.whisperx[690].end 17981.75
transcript.whisperx[690].text 是一個啦 當然衛生資料有幾十個那大概是健保資料一般來講是最為重要所以我們現在也剛好在行政院審議這個健保資料的一個使用的狀況表示我們對這個是很重視那這個案例好像祖密這個部分是無權去接觸到資料的啦
transcript.whisperx[691].start 17982.39
transcript.whisperx[691].end 18004.946
transcript.whisperx[691].text 是業務單位,是業務單位嘛,業務單位才有辦法接觸所以這個怎麼防弊,不是防阻密,我的看法是防那個接觸到資料的這就是我們剛才講的嘛,這個機關保防裡面哪些人員他需要接觸到這些資訊嘛那需要知道這些資訊的人才會要被授權知道這些資訊
transcript.whisperx[692].start 18006.467
transcript.whisperx[692].end 18021.538
transcript.whisperx[692].text 這個之外這些人是不是有最基本的背景合格這個可能我們也是希望納入在裡面正面表列現在整個行政院他整個正面表列的大概是有一千多個職務嘛那我想說是不是有一些健保署相關的也要把他納入職務我們來檢討一下因為從櫃檯就開始有接觸了
transcript.whisperx[693].start 18025.16
transcript.whisperx[693].end 18045.627
transcript.whisperx[693].text 就開始有接觸相關的資料所以可能還有就是接觸整個比較大的庫的這可能比較沒關係這個部長這個可能內部幕僚在想要趕快再補充最後一個問題關於這個也是跟國家安全比較有關的跟部長請教一下之前我們有討論到這個戰備醫療物資整備的狀況那我們也是希望
transcript.whisperx[694].start 18049.648
transcript.whisperx[694].end 18066.349
transcript.whisperx[694].text 國防部 權動署來去監測等等但是去年5月到現在因為去年5月到去年12月大概花了大概半年的時間我們才把這個輸液短缺的情況來解決那輸液短缺的問題可能它不是量而是傷源就是說我們現在是監測的話是監測量
transcript.whisperx[695].start 18068.712
transcript.whisperx[695].end 18084.205
transcript.whisperx[695].text 之外有沒有監測商源夠不夠還有一些商源國的包括我們自己本國還有其他國家如果你開發多重商源但是這些商源國有沒有在他們地緣政策上面有沒有一些或者是在他們的物流等等一些問題這些有沒有納入考量
transcript.whisperx[696].start 18086.363
transcript.whisperx[696].end 18106.706
transcript.whisperx[696].text 有沒有制定出安全的存量還有安全存量之外它的商源量還有這些國內備援的生產機制現在狀況是怎麼樣好 這邊跟委員回應就針對輸液這個特定的議題來講我們跟委員先報告我們今年3月24號已經整個完整回到自由的市場的機制但是我們持續還是維持著去協調
transcript.whisperx[697].start 18107.867
transcript.whisperx[697].end 18136.374
transcript.whisperx[697].text 那能夠假如有需要的時候做搭配因為就是來自於不同的來源的這個原料輸液各家的產線總量跟國內的使用量目前都是已經可以達到平衡所以從這個例子裡面針對剛才提到的所謂的國家醫藥的韌性的部分在所謂的平轉戰的一個階段我們也有進一步的去做一些考量因為這個部分的確是牽涉到國安的議題我們實際上一直都跟
transcript.whisperx[698].start 18137.954
transcript.whisperx[698].end 18161.776
transcript.whisperx[698].text 國家的國安的部分呢做一些些的一些考量謝謝喔因為我再次強調因為那是最近的事情而已喔那我們要花八九個月才可以把基本的這個物資來調配完畢那更不用在成品狀況是這樣那在不成品的狀況的話有衝突的狀況在封鎖或者是阻隔的狀況我不知道要幾個月那所以這個要
transcript.whisperx[699].start 18163.649
transcript.whisperx[699].end 18173.959
transcript.whisperx[699].text 要納入考量 因為你剛剛講到量也是但是當初國內市場市佔率是70%所以說商源也是很重要的這個要一併幫我們納入 謝謝謝謝陳偉 謝謝部長 兩位署長
transcript.whisperx[700].start 18190.632
transcript.whisperx[700].end 18215.62
transcript.whisperx[700].text 好 本會議詢問全部結束那委員圖權及林德福 邱振軍 徐欣盈 黃婕所提書面質詢列入紀錄刊登公報現在做以下決定第一 報告及詢問完畢第二 委員質詢未及答覆或請補充資料者請相關機關於兩週內以書面答覆為另要求期限者從期所定
transcript.whisperx[701].start 18216.66
transcript.whisperx[701].end 18220.484
transcript.whisperx[701].text 本部會議到此結束,現在休息,星期四上午九點繼續開會,謝謝
transcript.whisperx[702].start 18241.008
transcript.whisperx[702].end 18242.028
transcript.whisperx[702].text 要回去用餐了
transcript.whisperx[703].start 18262.775
transcript.whisperx[703].end 18263.435
transcript.whisperx[703].text 這張是武漢的畫面