iVOD / 165660

Field Value
IVOD_ID 165660
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165660
日期 2025-11-20
會議資料.會議代碼 委員會-11-4-19-11
會議資料.會議代碼:str 第11屆第4會期經濟委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第11次全體委員會議
影片種類 Clip
開始時間 2025-11-20T09:47:38+08:00
結束時間 2025-11-20T09:56:15+08:00
影片長度 00:08:37
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/972124280c86b913260926da07af7e90558ea7a01fa7587926f9ed453590123bef8a19ad8d4174405ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 09:47:38 - 09:56:15
會議時間 2025-11-20T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第11次全體委員會議(事由:邀請國家發展委員會主任委員、經濟部部長、數位發展部首長、國家科學及技術委員會首長、教育部首長及勞動部首長就「攸關臺灣未來的競爭力,值此AI時代,臺灣如何贏得新人才戰?」進行報告,並備質詢。 【11月19日及20日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.55409375
transcript.pyannote[0].end 4.33409375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.33409375
transcript.pyannote[1].end 4.82346875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 4.82346875
transcript.pyannote[2].end 4.85721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 13.61534375
transcript.pyannote[3].end 15.26909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 15.82596875
transcript.pyannote[4].end 17.74971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 18.93096875
transcript.pyannote[5].end 19.36971875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 19.53846875
transcript.pyannote[6].end 20.82096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 21.37784375
transcript.pyannote[7].end 22.67721875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 24.63471875
transcript.pyannote[8].end 25.36034375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 25.36034375
transcript.pyannote[9].end 25.37721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 25.71471875
transcript.pyannote[10].end 25.98471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 29.14034375
transcript.pyannote[11].end 32.36346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 32.95409375
transcript.pyannote[12].end 35.24909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 36.31221875
transcript.pyannote[13].end 39.02909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 39.56909375
transcript.pyannote[14].end 41.00346875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 41.89784375
transcript.pyannote[15].end 43.41659375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 44.96909375
transcript.pyannote[16].end 47.43284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 47.95596875
transcript.pyannote[17].end 50.47034375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 50.53784375
transcript.pyannote[18].end 52.47846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 53.06909375
transcript.pyannote[19].end 56.25846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 56.32596875
transcript.pyannote[20].end 56.86596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 57.03471875
transcript.pyannote[21].end 60.08909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 60.49409375
transcript.pyannote[22].end 65.03346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 65.48909375
transcript.pyannote[23].end 67.12596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 67.41284375
transcript.pyannote[24].end 70.73721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 73.03221875
transcript.pyannote[25].end 75.29346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 75.96846875
transcript.pyannote[26].end 77.14971875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 77.40284375
transcript.pyannote[27].end 79.10721875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 79.88346875
transcript.pyannote[28].end 80.87909375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 81.97596875
transcript.pyannote[29].end 83.42721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 83.98409375
transcript.pyannote[30].end 86.14409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 86.97096875
transcript.pyannote[31].end 89.92409375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 90.88596875
transcript.pyannote[32].end 92.23596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 92.37096875
transcript.pyannote[33].end 93.34971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 93.83909375
transcript.pyannote[34].end 95.22284375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 95.69534375
transcript.pyannote[35].end 98.91846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 101.19659375
transcript.pyannote[36].end 102.79971875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 103.10346875
transcript.pyannote[37].end 106.14096875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 106.36034375
transcript.pyannote[38].end 109.09409375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 109.34721875
transcript.pyannote[39].end 110.95034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 111.55784375
transcript.pyannote[40].end 113.31284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 113.46471875
transcript.pyannote[41].end 116.78909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 118.62846875
transcript.pyannote[42].end 120.65346875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 121.68284375
transcript.pyannote[43].end 124.14659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 124.93971875
transcript.pyannote[44].end 127.40346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 128.48346875
transcript.pyannote[45].end 129.15846875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 129.56346875
transcript.pyannote[46].end 129.96846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 131.06534375
transcript.pyannote[47].end 132.17909375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 132.49971875
transcript.pyannote[48].end 133.17471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 134.06909375
transcript.pyannote[49].end 135.09846875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 135.58784375
transcript.pyannote[50].end 136.60034375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 137.89971875
transcript.pyannote[51].end 140.93721875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 141.51096875
transcript.pyannote[52].end 144.21096875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 145.05471875
transcript.pyannote[53].end 146.99534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 148.05846875
transcript.pyannote[54].end 149.71221875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 150.48846875
transcript.pyannote[55].end 151.14659375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 151.43346875
transcript.pyannote[56].end 152.44596875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 153.71159375
transcript.pyannote[57].end 155.23034375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 156.02346875
transcript.pyannote[58].end 156.59721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 157.40721875
transcript.pyannote[59].end 160.52909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 160.95096875
transcript.pyannote[60].end 162.26721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 162.73971875
transcript.pyannote[61].end 165.16971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 165.81096875
transcript.pyannote[62].end 168.10596875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 168.56159375
transcript.pyannote[63].end 169.97909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 170.58659375
transcript.pyannote[64].end 171.58221875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 172.32471875
transcript.pyannote[65].end 175.09221875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 175.85159375
transcript.pyannote[66].end 176.64471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 177.45471875
transcript.pyannote[67].end 178.21409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 178.34909375
transcript.pyannote[68].end 179.74971875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 180.55971875
transcript.pyannote[69].end 181.92659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 182.34846875
transcript.pyannote[70].end 183.02346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 184.27221875
transcript.pyannote[71].end 186.29721875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 187.41096875
transcript.pyannote[72].end 191.59596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 192.23721875
transcript.pyannote[73].end 194.90346875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 195.56159375
transcript.pyannote[74].end 205.02846875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 205.07909375
transcript.pyannote[75].end 206.02409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 206.95221875
transcript.pyannote[76].end 208.57221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 208.96034375
transcript.pyannote[77].end 210.86721875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 211.82909375
transcript.pyannote[78].end 212.40284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 213.82034375
transcript.pyannote[79].end 215.22096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 216.33471875
transcript.pyannote[80].end 218.12346875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 217.63409375
transcript.pyannote[81].end 217.97159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 219.62534375
transcript.pyannote[82].end 220.72221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 221.68409375
transcript.pyannote[83].end 226.13909375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 226.89846875
transcript.pyannote[84].end 228.46784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 228.65346875
transcript.pyannote[85].end 229.44659375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 230.23971875
transcript.pyannote[86].end 232.41659375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 232.58534375
transcript.pyannote[87].end 233.44596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 233.71596875
transcript.pyannote[88].end 235.87596875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 236.24721875
transcript.pyannote[89].end 236.83784375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 237.09096875
transcript.pyannote[90].end 243.19971875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 243.35159375
transcript.pyannote[91].end 309.70409375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 260.68221875
transcript.pyannote[92].end 260.76659375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 309.90659375
transcript.pyannote[93].end 321.63471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 321.73596875
transcript.pyannote[94].end 325.24596875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 326.32596875
transcript.pyannote[95].end 329.02596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 329.41409375
transcript.pyannote[96].end 332.13096875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 332.58659375
transcript.pyannote[97].end 333.68346875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 334.25721875
transcript.pyannote[98].end 335.32034375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 335.96159375
transcript.pyannote[99].end 336.80534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 337.41284375
transcript.pyannote[100].end 339.87659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 340.78784375
transcript.pyannote[101].end 342.55971875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 342.93096875
transcript.pyannote[102].end 344.29784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 344.51721875
transcript.pyannote[103].end 346.33971875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 346.86284375
transcript.pyannote[104].end 348.65159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 349.25909375
transcript.pyannote[105].end 350.18721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 350.52471875
transcript.pyannote[106].end 352.17846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 352.90409375
transcript.pyannote[107].end 354.84471875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 355.58721875
transcript.pyannote[108].end 357.15659375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 357.83159375
transcript.pyannote[109].end 361.47659375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 358.65846875
transcript.pyannote[110].end 359.60346875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 361.47659375
transcript.pyannote[111].end 376.05659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 372.49596875
transcript.pyannote[112].end 373.59284375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 373.93034375
transcript.pyannote[113].end 375.56721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 376.05659375
transcript.pyannote[114].end 376.12409375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 376.22534375
transcript.pyannote[115].end 384.64596875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 378.16596875
transcript.pyannote[116].end 381.97971875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 383.41409375
transcript.pyannote[117].end 386.14784375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 385.06784375
transcript.pyannote[118].end 385.10159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 385.13534375
transcript.pyannote[119].end 390.92346875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 386.14784375
transcript.pyannote[120].end 386.48534375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 386.48534375
transcript.pyannote[121].end 387.46409375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 387.46409375
transcript.pyannote[122].end 387.73409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 387.73409375
transcript.pyannote[123].end 387.78471875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 390.97409375
transcript.pyannote[124].end 391.05846875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 391.05846875
transcript.pyannote[125].end 402.29721875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 391.07534375
transcript.pyannote[126].end 392.13846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 402.29721875
transcript.pyannote[127].end 409.23284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 404.89596875
transcript.pyannote[128].end 405.55409375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 410.02596875
transcript.pyannote[129].end 414.22784375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 414.75096875
transcript.pyannote[130].end 416.05034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 416.57346875
transcript.pyannote[131].end 423.30659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 418.00784375
transcript.pyannote[132].end 418.54784375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 423.54284375
transcript.pyannote[133].end 426.04034375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 426.42846875
transcript.pyannote[134].end 435.57471875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 435.92909375
transcript.pyannote[135].end 437.38034375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 437.66721875
transcript.pyannote[136].end 440.18159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 440.78909375
transcript.pyannote[137].end 442.42596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 442.84784375
transcript.pyannote[138].end 443.69159375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 443.96159375
transcript.pyannote[139].end 444.94034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 446.57721875
transcript.pyannote[140].end 448.21409375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 448.63596875
transcript.pyannote[141].end 451.03221875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 451.20096875
transcript.pyannote[142].end 453.61409375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 454.18784375
transcript.pyannote[143].end 455.94284375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 456.83721875
transcript.pyannote[144].end 457.17471875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 458.06909375
transcript.pyannote[145].end 459.04784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 459.55409375
transcript.pyannote[146].end 461.08971875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 461.68034375
transcript.pyannote[147].end 464.65034375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 465.05534375
transcript.pyannote[148].end 465.94971875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 466.37159375
transcript.pyannote[149].end 467.83971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 468.44721875
transcript.pyannote[150].end 469.00409375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 469.47659375
transcript.pyannote[151].end 470.50596875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 470.92784375
transcript.pyannote[152].end 472.02471875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 472.64909375
transcript.pyannote[153].end 473.98221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 474.43784375
transcript.pyannote[154].end 476.02409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 476.61471875
transcript.pyannote[155].end 484.83284375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 485.54159375
transcript.pyannote[156].end 486.58784375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 487.21221875
transcript.pyannote[157].end 488.88284375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 489.35534375
transcript.pyannote[158].end 498.07971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 495.04221875
transcript.pyannote[159].end 495.64971875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 498.19784375
transcript.pyannote[160].end 501.57284375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 501.99471875
transcript.pyannote[161].end 505.63971875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 506.11221875
transcript.pyannote[162].end 506.14596875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 506.38221875
transcript.pyannote[163].end 509.33534375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 509.38596875
transcript.pyannote[164].end 511.03971875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 511.07346875
transcript.pyannote[165].end 512.15346875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 514.41471875
transcript.pyannote[166].end 515.83221875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 517.21596875
transcript.pyannote[167].end 518.27909375
transcript.whisperx[0].start 1.038
transcript.whisperx[0].end 3.999
transcript.whisperx[0].text 謝謝 我們現在請鄭天才委員請鄭委員選擇召委 有請經濟部長還有勞動部的代表好 我們請兩位 謝謝鄭委員早
transcript.whisperx[1].start 29.175
transcript.whisperx[1].end 40.371
transcript.whisperx[1].text 好今天我就先引用這個國發會的報告國會的報告裡面特別提到這個國發會這個要會同
transcript.whisperx[2].start 45.431
transcript.whisperx[2].end 70.164
transcript.whisperx[2].text 會同協調國科會還有經濟部、速發部、教育部、勞動部等相關部會共同推動AI新十大建設而從智慧運用關鍵技術與數位基礎三大面向最重要的就是加速產業升級以創新轉型擴大產值創造高薪就業的機會
transcript.whisperx[3].start 73.089
transcript.whisperx[3].end 98.436
transcript.whisperx[3].text 所以這樣的一個AI新時代建設就是要培育新時代人才培育產業始作人才當然這邊有提到延展專業人才所以很重要就是經濟部跟勞動部當然跟教育部也有關係也有很大的關係
transcript.whisperx[4].start 101.226
transcript.whisperx[4].end 129.683
transcript.whisperx[4].text 那經濟部當然很多除了中小企業還有更大型的企業服務業 製造業等AI運用及AI新秀AI市場線計畫吸索產業 蓄積人才實力現在都在做了 現在就是因為我是原住民的立委那我們原住民的勞工啊普遍都
transcript.whisperx[5].start 131.124
transcript.whisperx[5].end 154.987
transcript.whisperx[5].text 这个在制造业或是营造业积多了那这样在其他的中小企业或是其他的这些产业就比较少所以如果也有的时候所以经济部这边能不能救这个有原住民的
transcript.whisperx[6].start 156.135
transcript.whisperx[6].end 182.863
transcript.whisperx[6].text 企业也能够有相关这些重要的这些延展人才或是相关的训练企业自己办的训练的时候能够鼓励他们也能够将原住民的这些他们的职业能够纳入当然很重要的就是劳动部
transcript.whisperx[7].start 184.695
transcript.whisperx[7].end 211.883
transcript.whisperx[7].text 勞動部你們在辦理的時候你的報告裡面有提到為加強人才韌性鼓勵勞工自主學習新知推動產業人才投資方案再指勞工參加經審查核定資物聯網大書記及人工智慧等實務課程所以你們在擠辦的時候就是能夠特別能夠
transcript.whisperx[8].start 214.455
transcript.whisperx[8].end 228.808
transcript.whisperx[8].text 保障這個原住民的名額這個這樣的話無論是經濟部或是勞動部共同的去推動的時候原住民也能夠在這個
transcript.whisperx[9].start 230.287
transcript.whisperx[9].end 251.44
transcript.whisperx[9].text AI的这样的一个产业能够被纳入然后相关的他的就业他的薪资当然就会跟着增加劳动部可以先说明一下谢谢政委员的指教原住民朋友相应的所需我们一定会尽全力来加以协助那我们在
transcript.whisperx[10].start 252.062
transcript.whisperx[10].end 270.14
transcript.whisperx[10].text AI这一边其实政府各部会根据AI的使用开发跟研究不同的面向教育部经济部劳动部速发部国科会国发会通通都会一起来努力那就劳动部跟经济部而言
transcript.whisperx[11].start 270.72
transcript.whisperx[11].end 284.588
transcript.whisperx[11].text 我們其實針對產業所需要的人才他們會透過iPath我們會透過iCAP去把AI所需要的部分透過智能基準的開發去做相應的處理原住民朋友過往在製造業
transcript.whisperx[12].start 287.009
transcript.whisperx[12].end 309.087
transcript.whisperx[12].text 营造业现在又有一大部分在服务业那就劳动部的角度而言使用AI可以预防灾害降灾减灾在职安位上一定会有比较多的琢磨那这一部分会有助援助朋友的职场安全卫生那至于技能落差的部分不管是在企业内部的办讯
transcript.whisperx[13].start 310.454
transcript.whisperx[13].end 339.732
transcript.whisperx[13].text 人力提升计划或者是说技能方面的衔接或者是相关的部分我们都会来提供必要的协助那如果将来在开班的课程上面我们也会鼓励原住民朋友来参加那个很重要的其实就是你在相关的这些简章的时候有特别明定的话才会有特别这样的一个相关的
transcript.whisperx[14].start 341.615
transcript.whisperx[14].end 356.973
transcript.whisperx[14].text 比如说地方政府的劳工单位或是相关的你们的地方的你们的所属的在地方的这些机构他就会主动去
transcript.whisperx[15].start 358.158
transcript.whisperx[15].end 373.294
transcript.whisperx[15].text 去邀請就會鼓勵他們參加這部分對原住民朋友因為我們如果匡列一定的名額有些時候如果原住民朋友剛好沒有這樣的需求就會變成名額浪子但是我們針對原住民朋友來參訊的時候我們會加分優先錄取
transcript.whisperx[16].start 376.357
transcript.whisperx[16].end 401.663
transcript.whisperx[16].text 不是你可以寫優先 優先多少的比例如果沒有人報名當然就其他人那額外要更好啊那這個部長可以嗎我們方向也是像勞動部這樣來辦就是鼓勵啦 用鼓勵的形式但是要不要用硬性一定的比例這個我們再來研究看看
transcript.whisperx[17].start 402.787
transcript.whisperx[17].end 408.943
transcript.whisperx[17].text 不是说一定要而是说你有列出这样的话这些
transcript.whisperx[18].start 410.083
transcript.whisperx[18].end 435.29
transcript.whisperx[18].text 基层的或者是中小企业他就会主动去有没有就是有这种鼓励的一个性质所以这个部分在推动青年训练这些这方面尤其是尤其是你们这边也有提到那个这个失业的对不对你们的劳动部也有提到所以这个部分是不是往这方向去去推动的话
transcript.whisperx[19].start 436.05
transcript.whisperx[19].end 455.689
transcript.whisperx[19].text 所以对于你们在推动青年的训练提升核心竞争力这方面尤其是即将就业的这些比如说15岁到29岁你一开始就有这方面的规划的时候自然
transcript.whisperx[20].start 458.16
transcript.whisperx[20].end 475.611
transcript.whisperx[20].text 自然而然相關的企業或者是說尤其是地方政府你們的這個在各地區的就業服務機構他就會去主動因為有這樣的一個
transcript.whisperx[21].start 477.253
transcript.whisperx[21].end 505.127
transcript.whisperx[21].text 一個名額的或者是優先的時候他當然就會往這方面如果都沒有寫的時候就會被忽略因為我們很多都是會原住民就是那個資訊就是傳達的時候都已經來不及了會有這種情形這部分我們來加強這個部分就請經濟部跟勞動部這個不會沒有說一定要怎麼樣就是不要影響到
transcript.whisperx[22].start 506.808
transcript.whisperx[22].end 514.495
transcript.whisperx[22].text 原來的計畫但是能夠有優先的一個機會好不好好謝謝謝謝好謝謝鄭委員接下來我們請