iVOD / 165519

Field Value
IVOD_ID 165519
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165519
日期 2025-11-17
會議資料.會議代碼 委員會-11-4-26-11
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第11次全體委員會議
影片種類 Clip
開始時間 2025-11-17T12:19:40+08:00
結束時間 2025-11-17T12:29:21+08:00
影片長度 00:09:41
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ff1e125e807f56ab813d2dfd0a7bcfcebfb6dfa65ed0fc1ddbd0c7f9f51010c40fb57351b41a9d0d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 12:19:40 - 12:29:21
會議時間 2025-11-17T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第11次全體委員會議(事由:一、審查 (一)委員黃健豪等16人、委員陳超明等16人、委員蘇清泉等17人、委員呂玉玲等16人及委員柯志恩等16人擬具「勞工保險條例第六十三條條文修正草案」案。 (二)委員陳瑩等19人擬具「勞工保險條例第五十八條條文修正草案」案。 (三)委員許宇甄等19人、委員林國成等32人、委員王育敏等20人、委員蔡其昌等19人、委員羅廷瑋等16人、委員蔡易餘等18人、委員王美惠等17人、委員徐欣瑩等22人、委員翁曉玲等19人、委員楊曜等25人及委員王鴻薇等22人擬具「勞工保險條例第六十六條及第六十九條條文修正草案」案。 (四)委員邱鎮軍等19人擬具「勞工保險條例第三十一條條文修正草案」案。 (五)委員李昆澤等25人及委員賴瑞隆等17人擬具「勞工保險條例第六十九條條文修正草案」案。 (六)委員廖先翔等18人擬具「勞工保險條例第十九條條文修正草案」案。 (七)委員葉元之等21人、委員何欣純等17人及委員陳超明等16人擬具「勞工保險條例第五十八條條文修正草案」案。 (八)委員陳秀寳等21人擬具「勞工保險條例部分條文修正草案」案。 (九)委員王鴻薇等17人擬具「勞工保險條例第七十四條之二條文修正草案」案。 (十)委員林倩綺等32人及委員傅崐萁等19人擬具「勞工保險條例第五十九條條文修正草案」案。 (十一)委員陳瑩等19人擬具「勞工保險條例第六條條文修正草案」案。 (十二)委員李昆澤等19人擬具「勞工保險條例第二十九條條文修正草案」案。 二、審查 (一)委員陳玉珍等18人擬具「就業服務法第二十四條及第二十七條條文修正草案」案。 (二)委員涂權吉等17人擬具「就業服務法第二十四條條文修正草案」案。 (三)委員許宇甄等18人擬具「就業服務法第二十四條條文修正草案」案。 (四)委員翁曉玲等22人擬具「就業服務法第二十四條條文修正草案」案。 (五)委員蘇清泉等18人擬具「就業服務法第二十四條條文修正草案」案。 (六)委員廖偉翔等16人擬具「就業服務法第二十四條條文修正草案」案。 (七)委員洪孟楷等16人擬具「就業服務法第二十四條條文修正草案」案。 (八)台灣民眾黨黨團擬具「就業服務法第二十四條條文修正草案」案。 (九)委員柯志恩等18人擬具「就業服務法第二十四條條文修正草案」案。 (十)委員王育敏等17人擬具「就業服務法第二十四條、第二十七條及第二十八條條文修正草案」案。 (十一)委員楊瓊瓔等27人擬具「就業服務法第二十四條條文修正草案」案。 (十二)委員郭國文等19人擬具「就業服務法第二十四條及第二十六條之一條文修正草案」案。 【綜合詢答,僅詢答】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.21596875
transcript.pyannote[0].end 5.92034375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 6.17346875
transcript.pyannote[1].end 8.18159375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 8.70471875
transcript.pyannote[2].end 9.53159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 15.80909375
transcript.pyannote[3].end 16.38284375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.61909375
transcript.pyannote[4].end 16.63596875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 16.63596875
transcript.pyannote[5].end 17.69909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 19.43721875
transcript.pyannote[6].end 23.09909375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 23.55471875
transcript.pyannote[7].end 26.30534375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 23.74034375
transcript.pyannote[8].end 23.87534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 24.14534375
transcript.pyannote[9].end 24.16221875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 24.26346875
transcript.pyannote[10].end 24.71909375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 24.71909375
transcript.pyannote[11].end 24.92159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 24.92159375
transcript.pyannote[12].end 25.30971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 27.28409375
transcript.pyannote[13].end 28.24596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 30.05159375
transcript.pyannote[14].end 31.80659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 32.05971875
transcript.pyannote[15].end 32.39721875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 32.92034375
transcript.pyannote[16].end 33.79784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 33.81471875
transcript.pyannote[17].end 33.84846875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 33.84846875
transcript.pyannote[18].end 36.80159375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 37.25721875
transcript.pyannote[19].end 39.53534375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 39.82221875
transcript.pyannote[20].end 40.63221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 39.87284375
transcript.pyannote[21].end 43.60221875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 43.88909375
transcript.pyannote[22].end 44.80034375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 45.07034375
transcript.pyannote[23].end 47.80409375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 47.90534375
transcript.pyannote[24].end 48.83346875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 49.23846875
transcript.pyannote[25].end 49.96409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 50.06534375
transcript.pyannote[26].end 54.85784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 55.56659375
transcript.pyannote[27].end 56.35971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 57.49034375
transcript.pyannote[28].end 59.21159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 61.54034375
transcript.pyannote[29].end 67.42971875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 68.12159375
transcript.pyannote[30].end 73.36971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 73.79159375
transcript.pyannote[31].end 76.39034375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 76.94721875
transcript.pyannote[32].end 79.61346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 79.95096875
transcript.pyannote[33].end 83.12346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 82.00971875
transcript.pyannote[34].end 83.17409375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 83.17409375
transcript.pyannote[35].end 86.39721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 85.43534375
transcript.pyannote[36].end 87.37596875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 87.84846875
transcript.pyannote[37].end 88.48971875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 88.92846875
transcript.pyannote[38].end 91.72971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 91.72971875
transcript.pyannote[39].end 92.05034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 92.70846875
transcript.pyannote[40].end 93.80534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 94.19346875
transcript.pyannote[41].end 96.15096875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 96.79221875
transcript.pyannote[42].end 98.58096875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 98.95221875
transcript.pyannote[43].end 100.92659375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 101.44971875
transcript.pyannote[44].end 104.47034375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 105.22971875
transcript.pyannote[45].end 108.03096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 108.82409375
transcript.pyannote[46].end 116.38409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 116.90721875
transcript.pyannote[47].end 125.64846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 125.93534375
transcript.pyannote[48].end 130.13721875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 129.95159375
transcript.pyannote[49].end 135.11534375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 135.30096875
transcript.pyannote[50].end 141.08909375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 137.24159375
transcript.pyannote[51].end 138.59159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 141.24096875
transcript.pyannote[52].end 144.22784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 144.36284375
transcript.pyannote[53].end 145.57784375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 145.66221875
transcript.pyannote[54].end 148.04159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 150.21846875
transcript.pyannote[55].end 156.73221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 151.04534375
transcript.pyannote[56].end 151.48409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 156.73221875
transcript.pyannote[57].end 167.66721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 167.86971875
transcript.pyannote[58].end 168.98346875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 169.33784375
transcript.pyannote[59].end 170.33346875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 170.99159375
transcript.pyannote[60].end 173.89409375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 173.25284375
transcript.pyannote[61].end 174.68721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 174.83909375
transcript.pyannote[62].end 177.91034375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 180.79596875
transcript.pyannote[63].end 180.81284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 180.81284375
transcript.pyannote[64].end 184.45784375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 181.11659375
transcript.pyannote[65].end 181.23471875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 181.23471875
transcript.pyannote[66].end 181.25159375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 185.28471875
transcript.pyannote[67].end 186.11159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 186.71909375
transcript.pyannote[68].end 189.16596875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 190.19534375
transcript.pyannote[69].end 197.28284375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 197.58659375
transcript.pyannote[70].end 199.18971875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 199.69596875
transcript.pyannote[71].end 204.99471875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 205.16346875
transcript.pyannote[72].end 206.29409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 206.95221875
transcript.pyannote[73].end 209.02784375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 209.29784375
transcript.pyannote[74].end 213.41534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 214.05659375
transcript.pyannote[75].end 218.02221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 216.13221875
transcript.pyannote[76].end 222.46034375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 220.04721875
transcript.pyannote[77].end 221.19471875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 222.29159375
transcript.pyannote[78].end 222.54471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 222.84846875
transcript.pyannote[79].end 227.11784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 227.43846875
transcript.pyannote[80].end 229.34534375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 229.54784375
transcript.pyannote[81].end 231.31971875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 231.64034375
transcript.pyannote[82].end 234.99846875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 235.57221875
transcript.pyannote[83].end 237.32721875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 238.47471875
transcript.pyannote[84].end 239.62221875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 240.90471875
transcript.pyannote[85].end 241.96784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 241.96784375
transcript.pyannote[86].end 245.56221875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 244.49909375
transcript.pyannote[87].end 245.35971875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 245.81534375
transcript.pyannote[88].end 248.78534375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 249.24096875
transcript.pyannote[89].end 254.28659375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 254.38784375
transcript.pyannote[90].end 256.10909375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 256.48034375
transcript.pyannote[91].end 268.17471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 267.61784375
transcript.pyannote[92].end 271.34721875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 269.15346875
transcript.pyannote[93].end 269.35596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 270.52034375
transcript.pyannote[94].end 271.26284375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 271.65096875
transcript.pyannote[95].end 288.08721875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 275.48159375
transcript.pyannote[96].end 276.29159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 288.28971875
transcript.pyannote[97].end 290.12909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 289.50471875
transcript.pyannote[98].end 292.06971875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 290.56784375
transcript.pyannote[99].end 296.81159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 296.92971875
transcript.pyannote[100].end 298.21221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 298.39784375
transcript.pyannote[101].end 303.86534375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 299.73096875
transcript.pyannote[102].end 304.27034375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 304.05096875
transcript.pyannote[103].end 304.08471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 304.11846875
transcript.pyannote[104].end 345.58034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 304.60784375
transcript.pyannote[105].end 306.48096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 323.03534375
transcript.pyannote[106].end 323.99721875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 324.48659375
transcript.pyannote[107].end 329.09346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 340.43346875
transcript.pyannote[108].end 341.29409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 346.22159375
transcript.pyannote[109].end 355.62096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 355.21596875
transcript.pyannote[110].end 364.42971875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 364.73346875
transcript.pyannote[111].end 371.41596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 371.55096875
transcript.pyannote[112].end 372.44534375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 371.63534375
transcript.pyannote[113].end 379.92096875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 380.07284375
transcript.pyannote[114].end 380.29221875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 380.39346875
transcript.pyannote[115].end 382.50284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 382.50284375
transcript.pyannote[116].end 398.63534375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 383.49846875
transcript.pyannote[117].end 383.88659375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 398.80409375
transcript.pyannote[118].end 401.01471875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 399.17534375
transcript.pyannote[119].end 399.34409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 400.60971875
transcript.pyannote[120].end 401.23409375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 401.48721875
transcript.pyannote[121].end 404.32221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 401.79096875
transcript.pyannote[122].end 401.97659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 403.56284375
transcript.pyannote[123].end 404.60909375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 404.94659375
transcript.pyannote[124].end 406.97159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 406.17846875
transcript.pyannote[125].end 406.71846875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 406.76909375
transcript.pyannote[126].end 406.80284375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 406.81971875
transcript.pyannote[127].end 406.83659375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 406.97159375
transcript.pyannote[128].end 414.48096875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 407.32596875
transcript.pyannote[129].end 408.27096875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 414.86909375
transcript.pyannote[130].end 425.48346875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 423.08721875
transcript.pyannote[131].end 427.49159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 427.49159375
transcript.pyannote[132].end 428.11596875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 427.77846875
transcript.pyannote[133].end 429.34784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 429.34784375
transcript.pyannote[134].end 430.02284375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 430.10721875
transcript.pyannote[135].end 441.97034375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 439.03409375
transcript.pyannote[136].end 446.56034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 447.99471875
transcript.pyannote[137].end 450.52596875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 450.76221875
transcript.pyannote[138].end 450.77909375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 450.77909375
transcript.pyannote[139].end 452.19659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 451.75784375
transcript.pyannote[140].end 456.66846875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 454.39034375
transcript.pyannote[141].end 456.16221875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 457.10721875
transcript.pyannote[142].end 458.06909375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 458.77784375
transcript.pyannote[143].end 463.03034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 463.89096875
transcript.pyannote[144].end 469.52721875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 470.47221875
transcript.pyannote[145].end 471.50159375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 471.97409375
transcript.pyannote[146].end 472.98659375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 473.25659375
transcript.pyannote[147].end 473.91471875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 474.16784375
transcript.pyannote[148].end 475.01159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 475.21409375
transcript.pyannote[149].end 478.06596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 478.33596875
transcript.pyannote[150].end 478.79159375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 480.46221875
transcript.pyannote[151].end 481.06971875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 481.59284375
transcript.pyannote[152].end 482.36909375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 483.60096875
transcript.pyannote[153].end 484.91721875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 488.54534375
transcript.pyannote[154].end 490.65471875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 492.12284375
transcript.pyannote[155].end 494.38409375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 495.14346875
transcript.pyannote[156].end 498.73784375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 499.14284375
transcript.pyannote[157].end 501.03284375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 501.52221875
transcript.pyannote[158].end 509.20034375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 503.10846875
transcript.pyannote[159].end 503.56409375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 504.79596875
transcript.pyannote[160].end 505.03221875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 509.28471875
transcript.pyannote[161].end 520.47284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 520.72596875
transcript.pyannote[162].end 526.95284375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 526.80096875
transcript.pyannote[163].end 549.32909375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 527.05409375
transcript.pyannote[164].end 527.44221875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 532.36971875
transcript.pyannote[165].end 533.31471875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 533.31471875
transcript.pyannote[166].end 533.33159375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 546.94971875
transcript.pyannote[167].end 550.62846875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 551.05034375
transcript.pyannote[168].end 551.67471875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 551.25284375
transcript.pyannote[169].end 551.42159375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 552.28221875
transcript.pyannote[170].end 553.59846875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 554.25659375
transcript.pyannote[171].end 556.97346875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 557.49659375
transcript.pyannote[172].end 559.47096875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 559.77471875
transcript.pyannote[173].end 562.44096875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 563.26784375
transcript.pyannote[174].end 563.60534375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 563.92596875
transcript.pyannote[175].end 567.09846875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 566.59221875
transcript.pyannote[176].end 566.96346875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 567.30096875
transcript.pyannote[177].end 569.41034375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 569.96721875
transcript.pyannote[178].end 571.35096875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 570.84471875
transcript.pyannote[179].end 572.11034375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 572.22846875
transcript.pyannote[180].end 573.29159375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 573.40971875
transcript.pyannote[181].end 575.83971875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 576.46409375
transcript.pyannote[182].end 578.91096875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 578.91096875
transcript.pyannote[183].end 580.12596875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 579.11346875
transcript.pyannote[184].end 579.41721875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 580.81784375
transcript.pyannote[185].end 582.50534375
transcript.whisperx[0].start 4.658
transcript.whisperx[0].end 31.682
transcript.whisperx[0].text 謝謝主席 一起各位先進 又請勞動部的洪部長請洪部長代言好 是 洪部長你好那麼關於今天談到大家要給老闆 勞保這個挹注每年要1000億以上你應該很高興的我們都要持續爭取啊
transcript.whisperx[1].start 32.967
transcript.whisperx[1].end 58.986
transcript.whisperx[1].text 都要持續爭取給你錢你當然這個眼睛閉起來就是可能說因為我要砍武漢林啊那不是嗎還是什麼我們都還在爭取啊不是我們現在我原本就提案說要最少給你一千億難道你還有點猶豫主要是我們現在其實金額都我們現在爭取都是超過一千億啦一千億太少這兩年其實都超過一千億啊
transcript.whisperx[2].start 61.567
transcript.whisperx[2].end 79.413
transcript.whisperx[2].text 我們都超過一千億啊所以我們希望爭取的金額是當然都是可能是要超過一千億啊所以你爭取多少今年明年的公務預算其實是一千兩百億然後再加上特別條例特別條例裡面一百億所以一年大概可以高達大概一千五差不多
transcript.whisperx[3].start 79.997
transcript.whisperx[3].end 107.902
transcript.whisperx[3].text 我們都希望能夠持續在爭取因為確實勞保的財務確實勞保的財務都需要大家的幫忙請教一個問題勞工退休那個字體的6%這部分是我看了一下勞工真的只有字體這個是政府鼓勵6%的部分是免稅的那這個比例很低大概16%不到那這個原因你要不要講原因到底是什麼
transcript.whisperx[4].start 108.851
transcript.whisperx[4].end 115.53
transcript.whisperx[4].text 各位說明其實我們在基金在運用的收益其實這20年平均起來都是大概6%以上
transcript.whisperx[5].start 116.977
transcript.whisperx[5].end 137.838
transcript.whisperx[5].text 那其實字體比例比較低 如果仔細去看的話 其實比較高收入的勞工他比例就蠻高的那低收入的勞工 薪資比較低收入的勞工 他比例就比較低那個東西就是很簡單的一句話就打死了就可以回答了嘛阿請這麼多沒搞 又爬冠你拿六爬出來 來我就問你一個問題
transcript.whisperx[6].start 142.272
transcript.whisperx[6].end 170.209
transcript.whisperx[6].text 一般的勞工退下來勞保加勞退一個月大概多少錢現在嗎現在但是因為現在勞保的勞保年金其實時間在還20年而已嘛不不不這可以大概你隨便Google一下都有這個數字大概多少勞保加勞退就等於是勞工退下來對他的生活的保障到底保障到哪裡大概兩萬多吧
transcript.whisperx[7].start 171.718
transcript.whisperx[7].end 188.905
transcript.whisperx[7].text 兩萬多啦 加起來大概兩萬四左右那你知道現在一般的生活會要多少錢當然你會說 你開什麼火啦但是我們就平均嘛平均我看一下平均要三萬 喔起跳
transcript.whisperx[8].start 190.273
transcript.whisperx[8].end 205.848
transcript.whisperx[8].text 所以對於就是說以現在的制度對於勞工的退下來的保障是不夠的這也就是為什麼6%來講的話一些收入比較低的根本就欠一家人不夠要拔光所以我剛剛講
transcript.whisperx[9].start 206.977
transcript.whisperx[9].end 234.614
transcript.whisperx[9].text 我們勞保加勞退就等於是我一個勞工他推下來的一個所得大概兩萬四左右 兩萬四 兩萬五目前啦 因為很多勞保的年資還沒有到那麼長所以目前的數字是這樣那生活費 以目前的生活費大概三萬二起跳所以這個很明顯就是有一個gap大概有八千塊左右啊你再加一個勞動等於勞工的大家長啊
transcript.whisperx[10].start 235.629
transcript.whisperx[10].end 255.722
transcript.whisperx[10].text 我們全台灣的勞工人數多少啊超過千萬差不多一千萬左右啦有人說九百多有人說一千萬你等於是一千萬勞工的大家長你要不要站在你的立場怎麼樣讓勞工退下來他的生活又暴漲
transcript.whisperx[11].start 256.562
transcript.whisperx[11].end 271.092
transcript.whisperx[11].text 跟文說明其實第一個我們當然很希望更大的程度的來鼓勵勞工的自體因為目前以基金的收益率6%的話其實等一下 你是講6% 不願意講8月31號公佈的勞退基金只有4.78還有比舊資的少 舊資的8.19還有融退基金6.33同樣一個Umbrella你們在操作的
transcript.whisperx[12].start 285.262
transcript.whisperx[12].end 299.191
transcript.whisperx[12].text 差賊 新制的勞退其實是不好的你是要6% 我看不到6%公佈到最新的9月底為止新制是7.697.69 就是勒就是是12.56對嘛
transcript.whisperx[13].start 300.652
transcript.whisperx[13].end 323.058
transcript.whisperx[13].text 那我補充說明一下為什麼都輸給救治啊為什麼薪資要輸給救治啊沒有沒有差一截大概幾個一半啦為什麼我們對於基金的操作是公平對待所有金管的基金然後我們追求的是長期投資的效益那所以我們來看長期投資的效益其實我們就我們薪資跟救治其實收益都差不多
transcript.whisperx[14].start 324.438
transcript.whisperx[14].end 329.702
transcript.whisperx[14].text 如果來看近10年救治7.92國保是7.69薪資也差不多這樣那如果15年其實反而救治是6.85國保是7.23薪資15年的話15年是
transcript.whisperx[15].start 346.495
transcript.whisperx[15].end 362.586
transcript.whisperx[15].text 等一下喔 15年是6.91也是比舊制好 但是大概都差不多因為我們長期的消費是 沒沒沒 你聽好 你剛講的矛盾喔我要講最新的 你講舊制12點多 新制呢7點多 差這個
transcript.whisperx[16].start 364.787
transcript.whisperx[16].end 378.982
transcript.whisperx[16].text 跟委員說明 因為這真的都要看比較看長期啦所以整體長期平均的話 大概都是6% 7%啦這樣子所以這個 我問部長啦 你有沒有什麼具體的做法或者政治的宣 政策上的宣 宣示
transcript.whisperx[17].start 380.844
transcript.whisperx[17].end 403.38
transcript.whisperx[17].text 讓勞工的自體的比例提高跟文說明第一個我們當然現在我們其實也在研議那要怎麼樣來讓勞工的自體提高因為這個6%的假設6%以上7%的收益率的確會可以對於勞工的退休生活是有幫助的那要不要把6%提高到8%只是其實我覺得都是可以考慮的因為這是免稅
transcript.whisperx[18].start 406.172
transcript.whisperx[18].end 429.095
transcript.whisperx[18].text 因為這個是免稅的部分我想我們都願意來跟其他部會來做討論但是第一個事情是的確我們看到比例提高重點是現在是確實比較低薪的勞工他自體的意願比較低我覺得我們要先克服這一段因為的確比較低薪的勞工他是更需要這件事情的那就是如何讓加薪嘛那你要怎麼提出
transcript.whisperx[19].start 430.516
transcript.whisperx[19].end 446.389
transcript.whisperx[19].text 除了加薪我們也希望能夠再提出更多的誘因比方說如果勞工願意自提的話我們可以給他什麼樣子再多的誘因的協助我們也希望朝這個方向來提你知不知道我們現在勞工的平均薪資多少
transcript.whisperx[20].start 448.069
transcript.whisperx[20].end 452.816
transcript.whisperx[20].text 目前如果老保的話大概3.63.6萬總出的主計長公佈了4萬8平均4萬8結果你們是中位數據有3萬6
transcript.whisperx[21].start 464.125
transcript.whisperx[21].end 490.085
transcript.whisperx[21].text 然後退下來就全部加起來阿布拉登加起來老退加老保兩萬四你雞派鬼啦老公退休的請問你一千萬個老公退休老公有多少有多少人每年嗎有沒有這個數字退休老公有多少人可能要看一下新舊制的差別
transcript.whisperx[22].start 492.165
transcript.whisperx[22].end 508.225
transcript.whisperx[22].text 我就是一個啦 你要想辦法你站在勞工的大家長的位置上想辦法大家是勞有所保啦 對不對這個老了退下來的我這個最少
transcript.whisperx[23].start 509.426
transcript.whisperx[23].end 526.617
transcript.whisperx[23].text minimum的生活能夠維持嗎剛才講老退家老保只有兩萬四生活的基本要三萬二最低三萬二我還沒跟你講到三萬五對不對而且你平均薪資就是三萬六這個東西來講來講的話是差很多的啦
transcript.whisperx[24].start 526.837
transcript.whisperx[24].end 549.214
transcript.whisperx[24].text 跟我們說這也是為什麼我們連續10年調漲最低工資從原本最低工資2萬左右那現在已經接近到3萬那這也是其實都是希望對於相對比較辛苦的勞工朋友能夠從政府的角度來幫他們多幫忙的部分這是為什麼連續10年做最低工資調升的很重要的原因我就講說你要每年要1500億左右
transcript.whisperx[25].start 552.335
transcript.whisperx[25].end 568.903
transcript.whisperx[25].text 我希望你plus把6%再往上調去找財經部這個我在財委會裡面我們都可以支持對不對這6%我們要誘引提高到10%可以嗎我覺得我們來評估跟研議吧這個事情這個方向一個月可以出來嗎一個月兩個月好不好兩個月把6%
transcript.whisperx[26].start 574.152
transcript.whisperx[26].end 577.881
transcript.whisperx[26].text 那個天花板再往上掀up to18好不好好謝謝賴世寶委員發言人