iVOD / 165440

Field Value
IVOD_ID 165440
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165440
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-20-8
會議資料.會議代碼:str 第11屆第4會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-11-13T12:39:36+08:00
結束時間 2025-11-13T12:46:48+08:00
影片長度 00:07:12
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610faced72e49da021a03eafa47f864c5dfb45a0834c22697b3aa2af61d29bd310f8b835ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 12:39:36 - 12:46:48
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第8次全體委員會議(事由:一、邀請財政部莊部長翠雲、行政院主計總處陳主計長淑姿、中央銀行副總裁、國家發展委員會葉主任委員俊顯、經濟部次長、勞動部次長、衛生福利部次長就「經濟成長讓全民共享:政府如何縮短所得差距暨改善相對貧窮化之對策」進行專題報告,並備質詢。 二、審查本院民進黨黨團擬具「財政收支劃分法第十六條之一未分配款運用暫行條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 8.85659375
transcript.pyannote[0].end 12.88971875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 13.37909375
transcript.pyannote[1].end 13.83471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 13.37909375
transcript.pyannote[2].end 14.44221875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 14.76284375
transcript.pyannote[3].end 14.93159375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.05784375
transcript.pyannote[4].end 18.03659375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 17.19284375
transcript.pyannote[5].end 18.50909375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 21.66471875
transcript.pyannote[6].end 25.71471875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 25.90034375
transcript.pyannote[7].end 29.74784375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 30.65909375
transcript.pyannote[8].end 32.88659375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 33.12284375
transcript.pyannote[9].end 33.39284375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 33.93284375
transcript.pyannote[10].end 34.92846875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 35.68784375
transcript.pyannote[11].end 36.68346875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 37.25721875
transcript.pyannote[12].end 38.16846875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 38.65784375
transcript.pyannote[13].end 39.88971875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 40.17659375
transcript.pyannote[14].end 41.35784375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 42.06659375
transcript.pyannote[15].end 44.04096875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 44.86784375
transcript.pyannote[16].end 47.36534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 47.66909375
transcript.pyannote[17].end 48.85034375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 49.84596875
transcript.pyannote[18].end 54.45284375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 55.46534375
transcript.pyannote[19].end 56.29221875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 57.97971875
transcript.pyannote[20].end 61.94534375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 62.95784375
transcript.pyannote[21].end 63.29534375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 63.68346875
transcript.pyannote[22].end 64.20659375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 64.69596875
transcript.pyannote[23].end 67.42971875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 67.56471875
transcript.pyannote[24].end 69.52221875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 71.14221875
transcript.pyannote[25].end 71.98596875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 73.52159375
transcript.pyannote[26].end 76.91346875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 77.45346875
transcript.pyannote[27].end 79.14096875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 79.64721875
transcript.pyannote[28].end 81.97596875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 82.41471875
transcript.pyannote[29].end 89.55284375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 90.98721875
transcript.pyannote[30].end 91.91534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 92.89409375
transcript.pyannote[31].end 98.96909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 99.27284375
transcript.pyannote[32].end 102.42846875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 102.63096875
transcript.pyannote[33].end 112.90784375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 111.50721875
transcript.pyannote[34].end 113.51534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 113.31284375
transcript.pyannote[35].end 127.69034375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 125.85096875
transcript.pyannote[36].end 133.59659375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 133.73159375
transcript.pyannote[37].end 134.86221875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 134.30534375
transcript.pyannote[38].end 136.17846875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 137.91659375
transcript.pyannote[39].end 148.34534375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 148.51409375
transcript.pyannote[40].end 154.62284375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 154.23471875
transcript.pyannote[41].end 154.45409375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 154.62284375
transcript.pyannote[42].end 158.80784375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 158.97659375
transcript.pyannote[43].end 162.73971875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 163.19534375
transcript.pyannote[44].end 164.96721875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 165.40596875
transcript.pyannote[45].end 171.39659375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 171.91971875
transcript.pyannote[46].end 173.08409375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 173.72534375
transcript.pyannote[47].end 179.32784375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 179.71596875
transcript.pyannote[48].end 181.48784375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 181.75784375
transcript.pyannote[49].end 183.20909375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 183.61409375
transcript.pyannote[50].end 184.84596875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 185.80784375
transcript.pyannote[51].end 186.38159375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 186.80346875
transcript.pyannote[52].end 188.40659375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 189.09846875
transcript.pyannote[53].end 190.43159375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 191.27534375
transcript.pyannote[54].end 200.87721875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 201.50159375
transcript.pyannote[55].end 205.46721875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 206.41221875
transcript.pyannote[56].end 209.07846875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 209.23034375
transcript.pyannote[57].end 212.08221875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 212.65596875
transcript.pyannote[58].end 215.20409375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 215.84534375
transcript.pyannote[59].end 220.33409375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 220.65471875
transcript.pyannote[60].end 242.79471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 243.87471875
transcript.pyannote[61].end 273.77721875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 273.49034375
transcript.pyannote[62].end 274.68846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 275.00909375
transcript.pyannote[63].end 277.91159375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 278.75534375
transcript.pyannote[64].end 283.48034375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 280.61159375
transcript.pyannote[65].end 285.20159375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 284.05409375
transcript.pyannote[66].end 287.05784375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 287.69909375
transcript.pyannote[67].end 288.66096875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 288.96471875
transcript.pyannote[68].end 292.20471875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 292.91346875
transcript.pyannote[69].end 295.74846875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 296.25471875
transcript.pyannote[70].end 301.31721875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 301.68846875
transcript.pyannote[71].end 302.58284375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 302.98784375
transcript.pyannote[72].end 308.13471875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 309.18096875
transcript.pyannote[73].end 311.77971875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 311.25659375
transcript.pyannote[74].end 313.02846875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 313.24784375
transcript.pyannote[75].end 314.66534375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 315.45846875
transcript.pyannote[76].end 317.73659375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 317.77034375
transcript.pyannote[77].end 318.69846875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 319.01909375
transcript.pyannote[78].end 323.65971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 325.68471875
transcript.pyannote[79].end 325.93784375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 325.93784375
transcript.pyannote[80].end 325.97159375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 325.97159375
transcript.pyannote[81].end 333.61596875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 330.32534375
transcript.pyannote[82].end 330.88221875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 334.30784375
transcript.pyannote[83].end 336.46784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 334.61159375
transcript.pyannote[84].end 336.48471875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 336.48471875
transcript.pyannote[85].end 339.50534375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 337.07534375
transcript.pyannote[86].end 337.71659375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 339.57284375
transcript.pyannote[87].end 355.58721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 344.50034375
transcript.pyannote[88].end 345.09096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 346.03596875
transcript.pyannote[89].end 347.06534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 355.58721875
transcript.pyannote[90].end 355.60409375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 355.60409375
transcript.pyannote[91].end 355.63784375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 355.92471875
transcript.pyannote[92].end 355.99221875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 355.99221875
transcript.pyannote[93].end 362.03346875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 362.03346875
transcript.pyannote[94].end 362.05034375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 362.05034375
transcript.pyannote[95].end 362.06721875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 362.06721875
transcript.pyannote[96].end 362.11784375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 362.37096875
transcript.pyannote[97].end 362.42159375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 362.42159375
transcript.pyannote[98].end 367.45034375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 368.07471875
transcript.pyannote[99].end 368.09159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 368.09159375
transcript.pyannote[100].end 368.47971875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 368.47971875
transcript.pyannote[101].end 368.51346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 369.10409375
transcript.pyannote[102].end 373.50846875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 373.76159375
transcript.pyannote[103].end 378.87471875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 378.97596875
transcript.pyannote[104].end 382.41846875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 382.53659375
transcript.pyannote[105].end 385.82721875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 385.94534375
transcript.pyannote[106].end 387.85221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 387.90284375
transcript.pyannote[107].end 391.27784375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 391.42971875
transcript.pyannote[108].end 401.63909375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 401.84159375
transcript.pyannote[109].end 402.09471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 402.09471875
transcript.pyannote[110].end 404.98034375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 402.21284375
transcript.pyannote[111].end 402.26346875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 402.28034375
transcript.pyannote[112].end 402.98909375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 402.98909375
transcript.pyannote[113].end 403.00596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 403.00596875
transcript.pyannote[114].end 403.03971875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 403.03971875
transcript.pyannote[115].end 417.51846875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 404.98034375
transcript.pyannote[116].end 405.06471875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 405.06471875
transcript.pyannote[117].end 405.19971875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 413.80596875
transcript.pyannote[118].end 413.90721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 413.90721875
transcript.pyannote[119].end 414.51471875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 414.51471875
transcript.pyannote[120].end 414.58221875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 416.48909375
transcript.pyannote[121].end 417.07971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 417.58596875
transcript.pyannote[122].end 422.34471875
transcript.whisperx[0].start 9.025
transcript.whisperx[0].end 14.967
transcript.whisperx[0].text 薛主席 是不是請財政部莊部長金管會沒有金管會那就莊部長委員好部長好 幾個問題請教就是說所謂賴總統的整個政策大運也是均衡台灣均衡台灣叫世代均衡 區域均衡
transcript.whisperx[1].start 36.254
transcript.whisperx[1].end 56.509
transcript.whisperx[1].text 產業均衡所得均衡各部位各司其職產業均衡是經濟部世代均衡可能國化會做長期規劃所得均衡當然今天的主題是財政部來主政那有很多的方式可以達成可是我看到你的報告通常是比較長期性而且正在做的你看那個高市這個首相日本新任的首相
transcript.whisperx[2].start 62.964
transcript.whisperx[2].end 89.44
transcript.whisperx[2].text 他這個他就任首相之後成立一個這個國家這個經濟成長戰略部國家經濟成長這個你的所得才能均衡成長之外所得才能均衡所以地方創生他們也同時在所以應該有一個專職的機關啊怎麼樣讓國家整體的新智能夠成長是跨部位的協調而不是單獨你這個財政部的主管業務而已部長您同意嗎
transcript.whisperx[3].start 93.09
transcript.whisperx[3].end 101.595
transcript.whisperx[3].text 我想委員對這個部分非常的重視那當然就財政部來講我們是透過稅制的部分來做一個所謂的均衡性比如說對於
transcript.whisperx[4].start 102.694
transcript.whisperx[4].end 120.063
transcript.whisperx[4].text 中低收入戶我們減輕他在租稅的負擔所以這個部分在所得稅制優化裡面呢不斷的在往前推進那這個部分在我們的報告裡面也都有寫到主要是用租稅的手段嘛對這是租稅手段那當然還有所謂的移轉性政府有移轉性的支出那就透過社會福利的方式來輔助我們中低收入戶讓他們可以獲得比較多的政府的一個補助這是移轉性的支出
transcript.whisperx[5].start 128.007
transcript.whisperx[5].end 135.914
transcript.whisperx[5].text 你說出了這個付稅政策應該所有的各種世代各種所得都能夠受惠特別是相對低的所得
transcript.whisperx[6].start 137.91
transcript.whisperx[6].end 162.523
transcript.whisperx[6].text 所得在租稅負擔上給予減輕那另外政府所收的稅收呢然後透過移轉性的支出給需要輔助跟補助的民眾可以獲得他們生活上一定的必須的一些所得這個部分是另外有其他部會再來做譬如說衛福部所以你知道高市首相上台短短一個月他的內閣的滿意度接近八成 七成多
transcript.whisperx[7].start 163.283
transcript.whisperx[7].end 190.158
transcript.whisperx[7].text 就是說他間集旅集一決定政策馬上由他的部大臣馬上對外公佈整個細節整個政策內涵讓所有民眾都了解一清二楚然後間集旅集這才是一個政府該有的效率跟效果那前天我看了一個文章關於這個TISATISA您了解嘛那個金管會跟財政部有不同立場
transcript.whisperx[8].start 191.331
transcript.whisperx[8].end 205.267
transcript.whisperx[8].text 金款會希望能夠這個是屬於這個低風險或者是長期投資特別對年輕人比較一定的吸引力對不對他為了這個養老這個退休第三支柱
transcript.whisperx[9].start 206.545
transcript.whisperx[9].end 231.393
transcript.whisperx[9].text 我覺得利益良善但為什麼開戶那麼少金管會是希望說這個能夠有租稅優惠包括這個綜合所得稅的扣除額等等財政部好像反對這個我沒有特定立場我只要請教先請教部長這個如果對青年在未來的儲蓄有更多的幫助我覺得金管會他有講也有道理但你如果從租稅公平的角度來看
transcript.whisperx[10].start 233.094
transcript.whisperx[10].end 242.501
transcript.whisperx[10].text 這個已經有在制度上面已經有設計了不需要再從綜合所得稅綜合所得稅扣除而來處理那我想請教您的意見
transcript.whisperx[11].start 244.082
transcript.whisperx[11].end 272.913
transcript.whisperx[11].text 從委員說就是所謂的TISA那TISA這個部分呢是金管會目前在推動的一個新的一個措施希望有這個退休制度第三支柱那對於這個TISA的投資他所獲得的租稅優惠的部分我們也都把它整理出來給了金管會然後讓他在推動這個TISA的時候可以讓投資的民眾可以理解也就是說我們現在其實我們的優惠租稅的優惠制度其實是比日本或其他國家NISA更好那一個讓他們可以理解來做這方面的投資
transcript.whisperx[12].start 273.553
transcript.whisperx[12].end 291.786
transcript.whisperx[12].text 日本沒有租稅優惠嗎日本有 但他們沒有我們這麼好所以你說現行現行不需要另外再加相關的租稅優惠都已經羅列出來了可是為什麼誘因還是不夠那個開戶的這個數量還是不多對 那我覺得可以再多加以宣導跟推廣
transcript.whisperx[13].start 293.184
transcript.whisperx[13].end 307.356
transcript.whisperx[13].text 另外一個議題就是兒少帳戶這個兒少帳戶這個部分有很多低收入的家庭我們也協助他們那這個部分將近有四成未開戶這個是衛福部主管還是財政部來協助
transcript.whisperx[14].start 309.586
transcript.whisperx[14].end 323.589
transcript.whisperx[14].text 應該是衛福部的部分衛福部那個女市長在市長這個應該對於孩童的未來這帳戶應該是要這個每一個家庭需要住的家庭應該要開戶為什麼開戶率那麼低呢謝謝我們現在目前的兒童帳戶現在目前開戶率大概是八成有八成的嗎已經有八成的包圍我們現在已經
transcript.whisperx[15].start 334.352
transcript.whisperx[15].end 355.51
transcript.whisperx[15].text 那另外兩層沒有開戶的原因是什麼另外兩層沒有開戶的原因是什麼呢另外兩層沒有開戶的原因是什麼報告委員 我更正不是八層是六層對嘛 我說我掌握是四層從2018到現在還有四層沒有開戶沒錯 沒錯那有沒有區域別它們集中在非都會區呢還是集中在中南部
transcript.whisperx[16].start 356.17
transcript.whisperx[16].end 367.039
transcript.whisperx[16].text 包委員現在我們按照我們現在目前的區域分布其實基本上大概沒有特定的區域上的差異那你未來有沒有什麼具體的做法在對待的時間之內讓這個市城能夠順利開戶包委員我們現在目前是這樣主要我們現在目前在地方政府這邊我們有那個社安網社安網這邊我們會來針對這些家庭會來有一些更多的一些鼓勵
transcript.whisperx[17].start 381.872
transcript.whisperx[17].end 399.109
transcript.whisperx[17].text 因為這裡面 我想委員知道現在目前就是說它是一個Matching Fund的概念嘛現在你存一筆 那政府也跟你存一筆嘛那現在目前我們會社工我們有一個脫貧社工 來社安網那邊我們來加強對於這些社會救助的家庭他們來鼓勵他們在做這部分的遊說啦
transcript.whisperx[18].start 402.112
transcript.whisperx[18].end 421.1
transcript.whisperx[18].text 是不是那個完整資料再給邱委員就是說好的政策需要質詢力當然當然所以你從2018年才六成經過七年才六成恐怕還有這個努力的空間當然再請市長努力好 謝謝OK 非常感謝邱委員 謝謝好 謝謝邱委員接下來我們請張祺凱委員