iVOD / 165416

Field Value
IVOD_ID 165416
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165416
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-15-10
會議資料.會議代碼:str 第11屆第4會期內政委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第4會期內政委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-11-13T11:46:47+08:00
結束時間 2025-11-13T11:53:12+08:00
影片長度 00:06:25
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610facefb462476545a15be4fb19a1d580694890f406a00a8f97c06f2ef179986d190cb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 葉元之
委員發言時間 11:46:47 - 11:53:12
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期內政委員會第10次全體委員會議(事由:邀請內政部、財政部、數位發展部、金融監督管理委員會、交通部就「普發現金一萬元之跨部會防詐及查緝作為」進行專題報告,並備質詢。【11月12日及13日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.76909375
transcript.pyannote[0].end 3.50721875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 4.41846875
transcript.pyannote[1].end 5.44784375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.40909375
transcript.pyannote[2].end 11.40471875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 11.70846875
transcript.pyannote[3].end 13.32846875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 13.32846875
transcript.pyannote[4].end 13.83471875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 14.25659375
transcript.pyannote[5].end 17.91846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.23909375
transcript.pyannote[6].end 29.52846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 29.71409375
transcript.pyannote[7].end 31.18221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 31.58721875
transcript.pyannote[8].end 34.67534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 35.04659375
transcript.pyannote[9].end 59.02596875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 59.02596875
transcript.pyannote[10].end 60.32534375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 60.05534375
transcript.pyannote[11].end 61.81034375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 61.38846875
transcript.pyannote[12].end 64.76346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 62.08034375
transcript.pyannote[13].end 62.21534375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 64.84784375
transcript.pyannote[14].end 69.26909375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 69.75846875
transcript.pyannote[15].end 72.30659375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 72.52596875
transcript.pyannote[16].end 73.92659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 75.09096875
transcript.pyannote[17].end 76.64346875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 77.41971875
transcript.pyannote[18].end 80.20409375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 80.59221875
transcript.pyannote[19].end 82.75221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 83.64659375
transcript.pyannote[20].end 90.83534375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 91.72971875
transcript.pyannote[21].end 93.34971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 93.72096875
transcript.pyannote[22].end 104.13284375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 104.26784375
transcript.pyannote[23].end 105.12846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 105.66846875
transcript.pyannote[24].end 107.52471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 108.46971875
transcript.pyannote[25].end 115.25346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 115.82721875
transcript.pyannote[26].end 117.95346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 118.69596875
transcript.pyannote[27].end 120.73784375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 121.26096875
transcript.pyannote[28].end 126.94784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 127.28534375
transcript.pyannote[29].end 127.90971875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 128.14596875
transcript.pyannote[30].end 128.98971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 129.49596875
transcript.pyannote[31].end 129.86721875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 130.15409375
transcript.pyannote[32].end 133.91721875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 134.28846875
transcript.pyannote[33].end 138.35534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 138.70971875
transcript.pyannote[34].end 140.73471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 145.62846875
transcript.pyannote[35].end 146.45534375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 147.21471875
transcript.pyannote[36].end 148.48034375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 147.70409375
transcript.pyannote[37].end 153.27284375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 156.78284375
transcript.pyannote[38].end 157.66034375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 157.05284375
transcript.pyannote[39].end 157.18784375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 157.96409375
transcript.pyannote[40].end 159.39846875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 158.11596875
transcript.pyannote[41].end 162.62159375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 162.40221875
transcript.pyannote[42].end 163.63409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 164.25846875
transcript.pyannote[43].end 165.00096875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 164.54534375
transcript.pyannote[44].end 169.65846875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 169.65846875
transcript.pyannote[45].end 179.24346875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 178.26471875
transcript.pyannote[46].end 178.78784375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 183.61409375
transcript.pyannote[47].end 183.88409375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 183.96846875
transcript.pyannote[48].end 184.03596875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 184.64346875
transcript.pyannote[49].end 188.10284375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 187.05659375
transcript.pyannote[50].end 191.05596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 192.33846875
transcript.pyannote[51].end 194.93721875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 195.13971875
transcript.pyannote[52].end 200.05034375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 201.14721875
transcript.pyannote[53].end 201.67034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 201.94034375
transcript.pyannote[54].end 208.04909375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 209.31471875
transcript.pyannote[55].end 212.38596875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 213.19596875
transcript.pyannote[56].end 213.34784375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 213.60096875
transcript.pyannote[57].end 216.13221875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 216.48659375
transcript.pyannote[58].end 219.11909375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 219.96284375
transcript.pyannote[59].end 221.43096875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 222.02159375
transcript.pyannote[60].end 223.72596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 225.39659375
transcript.pyannote[61].end 226.08846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 226.69596875
transcript.pyannote[62].end 228.51846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 229.21034375
transcript.pyannote[63].end 229.80096875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 229.80096875
transcript.pyannote[64].end 229.81784375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 231.64034375
transcript.pyannote[65].end 233.71596875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 234.13784375
transcript.pyannote[66].end 253.83096875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 252.56534375
transcript.pyannote[67].end 257.47596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 258.94409375
transcript.pyannote[68].end 274.09784375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 274.46909375
transcript.pyannote[69].end 277.96221875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 279.36284375
transcript.pyannote[70].end 285.57284375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 286.24784375
transcript.pyannote[71].end 289.06596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 289.53846875
transcript.pyannote[72].end 296.49096875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 296.89596875
transcript.pyannote[73].end 297.75659375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 298.66784375
transcript.pyannote[74].end 300.10221875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 301.06409375
transcript.pyannote[75].end 304.42221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 304.10159375
transcript.pyannote[76].end 304.64159375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 305.19846875
transcript.pyannote[77].end 308.94471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 309.53534375
transcript.pyannote[78].end 310.04159375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 310.34534375
transcript.pyannote[79].end 314.53034375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 312.82596875
transcript.pyannote[80].end 313.90596875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 313.95659375
transcript.pyannote[81].end 320.30159375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 320.65596875
transcript.pyannote[82].end 322.81596875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 323.32221875
transcript.pyannote[83].end 331.96221875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 332.58659375
transcript.pyannote[84].end 343.28534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 343.97721875
transcript.pyannote[85].end 345.52971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 345.71534375
transcript.pyannote[86].end 351.03096875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 351.16596875
transcript.pyannote[87].end 352.24596875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 352.76909375
transcript.pyannote[88].end 355.51971875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 356.58284375
transcript.pyannote[89].end 356.92034375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 356.66721875
transcript.pyannote[90].end 364.73346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 364.21034375
transcript.pyannote[91].end 366.31971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 366.99471875
transcript.pyannote[92].end 371.21346875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 371.66909375
transcript.pyannote[93].end 374.48721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 375.36471875
transcript.pyannote[94].end 377.13659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 377.44034375
transcript.pyannote[95].end 378.58784375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 378.84096875
transcript.pyannote[96].end 380.19096875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 381.16971875
transcript.pyannote[97].end 382.01346875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 382.24971875
transcript.pyannote[98].end 384.12284375
transcript.whisperx[0].start 1.766
transcript.whisperx[0].end 5.088
transcript.whisperx[0].text 我先請那個財政部請財政部這個是副署長嘛我想問一下因為昨天大家開始陸陸續續有收到這1萬塊那如果用匯款的話有兩種標註記的方式一種叫行政院發另外一個叫全民加一政府相挺請教一下這是為了防詐嗎還是
transcript.whisperx[1].start 31.693
transcript.whisperx[1].end 32.033
transcript.whisperx[1].text 這筆錢是行政院發的
transcript.whisperx[2].start 61.451
transcript.whisperx[2].end 89.869
transcript.whisperx[2].text 喔 那政府鄉庭是為什麼會有這四個字那是這個普發現金一萬的專案的名稱喔 這個現金專案叫政府鄉庭喔我以為叫做違憲欸我以為叫掏空國庫啊我以為叫做債留子孫啊不是啦 我覺得你們政府怎麼會這樣啊當時我們國民黨民眾黨在立法院說要普發現金一萬的時候行政院把我們講那麼難聽
transcript.whisperx[3].start 92.99
transcript.whisperx[3].end 116.823
transcript.whisperx[3].text 說這個錢違憲啊 掏空國庫債留子孫啊然後院長講說這個錢拿去買遙控飛機 冰箱就沒了讓那些領到錢的人覺得很不好意思對 我怎麼去貪那一萬塊就現在發錢的時候說 欸 這我挺你啊我很贊同你們現在的態度啊可是為什麼當時大家在討論這件事情的時候你不是說 對 我們大家來看看怎麼挺一起來挺人民 拚經濟
transcript.whisperx[4].start 118.775
transcript.whisperx[4].end 140.388
transcript.whisperx[4].text 所以很多民眾啊本來說到一萬塊很開心啊很開心然後看到那個政府相挺就開始怎麼有這四個字就開始覺得很奇怪了所以希望我們的政府啦如果覺得這個事情是挺的話一開始就不要為反對而反對啦謝謝 謝謝這個財安部請問 那我現在講抒發部是市長啊
transcript.whisperx[5].start 147.868
transcript.whisperx[5].end 153.153
transcript.whisperx[5].text 市長那個最近速發部說有統計一個名人最容易受到詐騙的第一名是誰市長市長我想要問市長啊你們今天部長都沒有來了然後問個市長然後市長又再找別人回答
transcript.whisperx[6].start 172.141
transcript.whisperx[6].end 179.027
transcript.whisperx[6].text 這個我們整體的詐騙業務的話是在我們部裡面分公司在素產組這邊所以我請素產組這邊可以幫忙做一個回答不用啦不用啦因為我們在這邊時間非常有限第一名叫吳淡如啦那為什麼我會知道呢其實素發部平常在發這些新聞有時候我們沒看到但吳淡如我為什麼會知道因為吳淡如出來罵素發部啊
transcript.whisperx[7].start 201.155
transcript.whisperx[7].end 229.689
transcript.whisperx[7].text 他說 訴發部不要只會在那邊統計到底哪一些名人最容易被詐騙好不好這是吳淡如講的 不是我講的他說你們也訴 這是他講 引述原話訴發部就是一個養肥貓的單位政務官沒有解決問題的能力只會在這邊統計哪些名人 你是不會解決喔我不知道訴發部的人聽到被這樣批評有什麼感想
transcript.whisperx[8].start 231.947
transcript.whisperx[8].end 256.874
transcript.whisperx[8].text 跟委員報告這個部分的話當然我們現在的機制是民眾可以來這個通報然後我們自己也會有這個自動的一個機制去查這一些的這個ES廣告啊這一些那如果說我們發現說這樣子的一個廣告可能是有這個詐騙的一個風險的話我們會跟這些名人直接去跟他們去對你們都是有機制啦但是為什麼人家就人家會覺得你們是一個養肥貓單位
transcript.whisperx[9].start 259.008
transcript.whisperx[9].end 277.358
transcript.whisperx[9].text 你絕對是有做事啊你不可能四味素餐啊 領高興什麼事都不做嘛但是現在是做得夠不夠 好不好的問題嘛那現在你統計一個名人最容易被詐騙理論上來講我相信你是想要提醒大家說哎呦 吳淡如他很容易被冒名喔大家只要看到吳淡如要小心喔 對不對
transcript.whisperx[10].start 279.414
transcript.whisperx[10].end 308.607
transcript.whisperx[10].text 利益也是良善啊可是為什麼被提醒的那個主角他會這麼生氣因為他會覺得自己生病不要叫別人吃藥嘛你抒發部應該要先把這個詐騙的問題解決啊你們現在跟那些社群網站的聯繫到底暢不暢通啊跟FB有聯繫嗎這邊跟委員報告我們目前跟這些平台我們都保持密切對那如果很密切的話為什麼還會這個狀況而且除了FB 翠友嗎
transcript.whisperx[11].start 309.591
transcript.whisperx[11].end 336.279
transcript.whisperx[11].text 翠友嗎對 因為他一樣都是那個Meta旗下Meta旗下所以你會針對他旗下各個平台平常都會一直提醒他我在翠上面也看到非常多的詐騙昨天網路上有一個我看到了有一個什麼女老師說她PO一個照片在教室裡面拍的她說她是基隆某個國小的女老師47歲單身然後在留言那邊要附上她的ID然後結果網友抓包你說你在基隆的學校可是課桌椅是
transcript.whisperx[12].start 336.892
transcript.whisperx[12].end 366.028
transcript.whisperx[12].text 另外一個國小就很擺明就是詐騙像這麼明顯的按讚一堆留言一堆的我不知道像這種平常到底有沒有去抓這種看你就知道他的模式嘛你加了他的ID他就叫你投資然後你接下來了詐騙嘛這麼猖獗所以大家真的期待速發部多做一點事啦可以嗎這邊是跟委員報告就是說我們跟Meta這一邊就是說因為我們都會做定期的這些掃描機制那如果我們有發現一些好沒關係因為今天速發部
transcript.whisperx[13].start 367.202
transcript.whisperx[13].end 383.652
transcript.whisperx[13].text 長官沒有來我不為難你們啦好不好我只是希望你那個講一下我相信吳淡如講的肥貓不是兩位啦至少你們願意來國會接受監督你們不是但是那些不願意來的你可以問他們吳淡如是不是在講他們啦好謝謝