iVOD / 165389

Field Value
IVOD_ID 165389
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165389
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-26-10
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-11-13T11:06:11+08:00
結束時間 2025-11-13T11:21:32+08:00
影片長度 00:15:21
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610facef47f8db80d8a45738ff38efa2589ba080f406a00a8f97c06a4fe3771cb6bf56e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 11:06:11 - 11:21:32
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第10次全體委員會議(事由:邀請衛生福利部部長及行政院主計總處就「癌症新藥暫時性支付及罕見疾病藥物專款預算運用成效及政策檢討」進行專題報告,並備質詢。 (討論事項) 審查 一、委員羅廷瑋等16人擬具「癌症防治法第十三條及第十六條條文修正草案」案。 二、委員陳菁徽等16人擬具「癌症防治法第十六條條文修正草案」案。 三、委員邱鎮軍等19人擬具「癌症防治法第五條及第十六條條文修正草案」案。 四、委員劉建國等17人擬具「癌症防治法第十六條條文修正草案」案。 五、委員王正旭等17人擬具「癌症防治法第十六條條文修正草案」案。 六、委員顏寬恒等21人擬具「癌症防治法第十三條條文修正草案」案。 七、委員林淑芬等20人擬具「癌症防治法第十六條條文修正草案」案。 八、委員盧縣一等17人擬具「癌症防治法第八條及第十六條條文修正草案」案。 九、委員顏寬恒等24人擬具「癌症防治法第十六條條文修正草案」案。 十、委員蘇巧慧等30人擬具「癌症防治法修正草案」案。 十一、委員林月琴等16人擬具「癌症防治法第十六條條文修正草案」案。 十二、委員邱議瑩等16人擬具「癌症防治法第十六條條文修正草案」案。 十三、委員羅智強等18人擬具「癌症防治法第十六條條文修正草案」案。 十四、台灣民眾黨黨團擬具「癌症防治法第一條、第十三條及第十六條條文修正草案」案。 十五、委員陳亭妃等17人擬具「癌症防治法第十六條條文修正草案」案。 十六、委員黃秀芳等21人擬具「癌症防治法第十六條條文修正草案」案。 十七、委員馬文君等16人擬具「癌症防治法第十六條條文修正草案」案。 【專題報告及討論事項綜合詢答;討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.46971875
transcript.pyannote[0].end 0.85784375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 3.92909375
transcript.pyannote[1].end 4.24971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.73846875
transcript.pyannote[2].end 8.77221875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 8.77221875
transcript.pyannote[3].end 11.10096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 11.33721875
transcript.pyannote[4].end 11.52284375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 11.89409375
transcript.pyannote[5].end 11.91096875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 12.02909375
transcript.pyannote[6].end 12.13034375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 12.29909375
transcript.pyannote[7].end 16.31534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 16.51784375
transcript.pyannote[8].end 16.53471875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 16.53471875
transcript.pyannote[9].end 26.59221875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 17.80034375
transcript.pyannote[10].end 18.13784375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 19.13346875
transcript.pyannote[11].end 19.33596875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 20.43284375
transcript.pyannote[12].end 20.95596875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 23.82471875
transcript.pyannote[13].end 24.04409375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 28.00971875
transcript.pyannote[14].end 29.00534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 29.64659375
transcript.pyannote[15].end 38.60721875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 38.97846875
transcript.pyannote[16].end 39.33284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 39.87284375
transcript.pyannote[17].end 40.15971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 42.55596875
transcript.pyannote[18].end 43.07909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 43.51784375
transcript.pyannote[19].end 49.05284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 49.69409375
transcript.pyannote[20].end 51.24659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 51.90471875
transcript.pyannote[21].end 53.71034375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 52.57971875
transcript.pyannote[22].end 52.71471875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 53.28846875
transcript.pyannote[23].end 53.89596875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 54.50346875
transcript.pyannote[24].end 57.92909375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 57.96284375
transcript.pyannote[25].end 75.46221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 74.23034375
transcript.pyannote[26].end 76.03596875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 76.28909375
transcript.pyannote[27].end 79.91721875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 80.92971875
transcript.pyannote[28].end 84.28784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 81.53721875
transcript.pyannote[29].end 82.09409375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 83.19096875
transcript.pyannote[30].end 85.28346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 85.92471875
transcript.pyannote[31].end 87.88221875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 89.40096875
transcript.pyannote[32].end 90.70034375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 91.22346875
transcript.pyannote[33].end 97.95659375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 98.76659375
transcript.pyannote[34].end 103.66034375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 104.11596875
transcript.pyannote[35].end 107.60909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 108.09846875
transcript.pyannote[36].end 114.03846875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 114.96659375
transcript.pyannote[37].end 116.01284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 116.50221875
transcript.pyannote[38].end 122.93159375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 123.72471875
transcript.pyannote[39].end 129.78284375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 130.18784375
transcript.pyannote[40].end 132.17909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 132.82034375
transcript.pyannote[41].end 135.40221875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 136.19534375
transcript.pyannote[42].end 137.52846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 138.01784375
transcript.pyannote[43].end 138.08534375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 142.62471875
transcript.pyannote[44].end 143.26596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 144.31221875
transcript.pyannote[45].end 146.89409375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 147.48471875
transcript.pyannote[46].end 148.37909375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 148.90221875
transcript.pyannote[47].end 149.50971875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 149.13846875
transcript.pyannote[48].end 149.88096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 149.88096875
transcript.pyannote[49].end 150.79221875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 150.74159375
transcript.pyannote[50].end 153.76221875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 154.20096875
transcript.pyannote[51].end 156.85034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 155.68596875
transcript.pyannote[52].end 156.73221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 157.10346875
transcript.pyannote[53].end 161.15346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 159.41534375
transcript.pyannote[54].end 159.83721875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 161.27159375
transcript.pyannote[55].end 162.65534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 162.97596875
transcript.pyannote[56].end 164.93346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 165.37221875
transcript.pyannote[57].end 165.38909375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 165.38909375
transcript.pyannote[58].end 165.43971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 165.43971875
transcript.pyannote[59].end 165.60846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 165.60846875
transcript.pyannote[60].end 169.92846875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 169.92846875
transcript.pyannote[61].end 171.64971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 172.03784375
transcript.pyannote[62].end 178.31534375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 178.36596875
transcript.pyannote[63].end 179.10846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 179.14221875
transcript.pyannote[64].end 183.69846875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 183.25971875
transcript.pyannote[65].end 185.94284375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 185.26784375
transcript.pyannote[66].end 186.22971875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 186.06096875
transcript.pyannote[67].end 186.19596875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 186.22971875
transcript.pyannote[68].end 186.41534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 186.41534375
transcript.pyannote[69].end 186.44909375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 186.63471875
transcript.pyannote[70].end 190.02659375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 188.89596875
transcript.pyannote[71].end 190.39784375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 190.39784375
transcript.pyannote[72].end 191.10659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 192.00096875
transcript.pyannote[73].end 193.38471875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 193.90784375
transcript.pyannote[74].end 195.39284375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 195.57846875
transcript.pyannote[75].end 195.61221875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 195.61221875
transcript.pyannote[76].end 195.83159375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 195.83159375
transcript.pyannote[77].end 195.88221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 196.32096875
transcript.pyannote[78].end 201.14721875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 202.05846875
transcript.pyannote[79].end 204.53909375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 205.82159375
transcript.pyannote[80].end 208.03221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 208.38659375
transcript.pyannote[81].end 209.06159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 209.90534375
transcript.pyannote[82].end 218.17409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 218.84909375
transcript.pyannote[83].end 224.72159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 226.22346875
transcript.pyannote[84].end 228.77159375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 229.24409375
transcript.pyannote[85].end 235.21784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 236.23034375
transcript.pyannote[86].end 238.86284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 239.21721875
transcript.pyannote[87].end 246.52409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 247.18221875
transcript.pyannote[88].end 248.58284375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 250.08471875
transcript.pyannote[89].end 251.04659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 251.45159375
transcript.pyannote[90].end 258.64034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 259.23096875
transcript.pyannote[91].end 262.67346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 263.65221875
transcript.pyannote[92].end 266.13284375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 266.21721875
transcript.pyannote[93].end 267.34784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 268.44471875
transcript.pyannote[94].end 271.98846875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 272.76471875
transcript.pyannote[95].end 278.29971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 278.46846875
transcript.pyannote[96].end 278.85659375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 278.90721875
transcript.pyannote[97].end 281.21909375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 281.50596875
transcript.pyannote[98].end 283.68284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 284.39159375
transcript.pyannote[99].end 286.33221875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 287.37846875
transcript.pyannote[100].end 292.72784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 294.01034375
transcript.pyannote[101].end 296.42346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 296.87909375
transcript.pyannote[102].end 301.03034375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 299.78159375
transcript.pyannote[103].end 305.87346875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 306.16034375
transcript.pyannote[104].end 307.56096875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 308.42159375
transcript.pyannote[105].end 309.13034375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 309.53534375
transcript.pyannote[106].end 326.61284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 326.81534375
transcript.pyannote[107].end 327.33846875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 326.84909375
transcript.pyannote[108].end 328.73909375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 331.00034375
transcript.pyannote[109].end 333.02534375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 331.89471875
transcript.pyannote[110].end 336.36659375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 335.30346875
transcript.pyannote[111].end 337.46346875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 337.75034375
transcript.pyannote[112].end 342.03659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 342.79596875
transcript.pyannote[113].end 343.65659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 344.09534375
transcript.pyannote[114].end 345.56346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 346.20471875
transcript.pyannote[115].end 348.88784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 350.60909375
transcript.pyannote[116].end 355.36784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 355.67159375
transcript.pyannote[117].end 356.63346875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 357.29159375
transcript.pyannote[118].end 359.02971875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 360.16034375
transcript.pyannote[119].end 360.63284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 363.16409375
transcript.pyannote[120].end 365.29034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 365.96534375
transcript.pyannote[121].end 373.42409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 374.45346875
transcript.pyannote[122].end 375.38159375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 375.38159375
transcript.pyannote[123].end 375.66846875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 375.66846875
transcript.pyannote[124].end 377.15346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 378.43596875
transcript.pyannote[125].end 388.30784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 388.94909375
transcript.pyannote[126].end 393.03284375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 393.79221875
transcript.pyannote[127].end 420.28596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 421.83846875
transcript.pyannote[128].end 431.62596875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 431.96346875
transcript.pyannote[129].end 433.49909375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 433.97159375
transcript.pyannote[130].end 437.53221875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 438.15659375
transcript.pyannote[131].end 439.28721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 439.86096875
transcript.pyannote[132].end 443.77596875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 445.41284375
transcript.pyannote[133].end 446.18909375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 447.69096875
transcript.pyannote[134].end 454.86284375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 455.89221875
transcript.pyannote[135].end 457.27596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 460.58346875
transcript.pyannote[136].end 461.68034375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 462.00096875
transcript.pyannote[137].end 466.62471875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 467.85659375
transcript.pyannote[138].end 469.64534375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 471.40034375
transcript.pyannote[139].end 474.53909375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 474.84284375
transcript.pyannote[140].end 476.26034375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 476.26034375
transcript.pyannote[141].end 477.84659375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 478.23471875
transcript.pyannote[142].end 493.52346875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 481.89659375
transcript.pyannote[143].end 482.20034375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 483.39846875
transcript.pyannote[144].end 483.87096875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 484.84971875
transcript.pyannote[145].end 485.98034375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 494.01284375
transcript.pyannote[146].end 496.15596875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 496.61159375
transcript.pyannote[147].end 497.18534375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 498.07971875
transcript.pyannote[148].end 498.75471875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 499.21034375
transcript.pyannote[149].end 500.12159375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 501.80909375
transcript.pyannote[150].end 505.84221875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 506.50034375
transcript.pyannote[151].end 516.45659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 517.48596875
transcript.pyannote[152].end 520.20284375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 520.82721875
transcript.pyannote[153].end 521.95784375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 522.51471875
transcript.pyannote[154].end 523.99971875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 523.47659375
transcript.pyannote[155].end 525.48471875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 525.88971875
transcript.pyannote[156].end 526.71659375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 527.71221875
transcript.pyannote[157].end 529.31534375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 529.75409375
transcript.pyannote[158].end 531.96471875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 532.55534375
transcript.pyannote[159].end 535.01909375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 535.69409375
transcript.pyannote[160].end 548.33346875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 548.85659375
transcript.pyannote[161].end 550.03784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 550.17284375
transcript.pyannote[162].end 551.21909375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 551.47221875
transcript.pyannote[163].end 554.45909375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 554.86409375
transcript.pyannote[164].end 564.04409375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 564.33096875
transcript.pyannote[165].end 569.15721875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 570.20346875
transcript.pyannote[166].end 582.48846875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 582.58971875
transcript.pyannote[167].end 587.73659375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 588.25971875
transcript.pyannote[168].end 591.09471875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 590.35221875
transcript.pyannote[169].end 590.53784375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 592.44471875
transcript.pyannote[170].end 593.91284375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 593.96346875
transcript.pyannote[171].end 595.61721875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 595.90409375
transcript.pyannote[172].end 627.03846875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 627.03846875
transcript.pyannote[173].end 633.82221875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 634.80096875
transcript.pyannote[174].end 643.52534375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 644.30159375
transcript.pyannote[175].end 648.26721875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 648.75659375
transcript.pyannote[176].end 655.00034375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 656.51909375
transcript.pyannote[177].end 671.03159375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 671.08221875
transcript.pyannote[178].end 674.08596875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 674.96346875
transcript.pyannote[179].end 677.44409375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 677.76471875
transcript.pyannote[180].end 679.43534375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 680.65034375
transcript.pyannote[181].end 686.25284375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 686.38784375
transcript.pyannote[182].end 687.73784375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 688.12596875
transcript.pyannote[183].end 689.94846875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 689.96534375
transcript.pyannote[184].end 689.98221875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 690.04971875
transcript.pyannote[185].end 705.06846875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 705.94596875
transcript.pyannote[186].end 706.16534375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 707.38034375
transcript.pyannote[187].end 709.64159375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 709.87784375
transcript.pyannote[188].end 710.45159375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 712.67909375
transcript.pyannote[189].end 724.27221875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 725.53784375
transcript.pyannote[190].end 730.07721875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 727.00596875
transcript.pyannote[191].end 730.75221875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 730.16159375
transcript.pyannote[192].end 740.89409375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 732.25409375
transcript.pyannote[193].end 733.62096875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 744.15096875
transcript.pyannote[194].end 745.24784375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 746.49659375
transcript.pyannote[195].end 753.11159375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 753.29721875
transcript.pyannote[196].end 764.92409375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 764.92409375
transcript.pyannote[197].end 765.05909375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 765.05909375
transcript.pyannote[198].end 765.09284375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 765.78471875
transcript.pyannote[199].end 768.43409375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 765.81846875
transcript.pyannote[200].end 768.88971875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 768.63659375
transcript.pyannote[201].end 768.83909375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 768.88971875
transcript.pyannote[202].end 769.54784375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 769.80096875
transcript.pyannote[203].end 772.24784375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 771.65721875
transcript.pyannote[204].end 772.14659375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 772.53471875
transcript.pyannote[205].end 779.26784375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 780.01034375
transcript.pyannote[206].end 781.76534375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 782.10284375
transcript.pyannote[207].end 782.84534375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 783.06471875
transcript.pyannote[208].end 784.07721875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 784.68471875
transcript.pyannote[209].end 791.75534375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 792.36284375
transcript.pyannote[210].end 804.19221875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 804.81659375
transcript.pyannote[211].end 807.73596875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 808.57971875
transcript.pyannote[212].end 809.71034375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 810.75659375
transcript.pyannote[213].end 844.52346875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 843.15659375
transcript.pyannote[214].end 848.62409375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 848.62409375
transcript.pyannote[215].end 868.36784375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 869.27909375
transcript.pyannote[216].end 874.07159375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 874.07159375
transcript.pyannote[217].end 874.45971875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 874.91534375
transcript.pyannote[218].end 877.53096875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 877.83471875
transcript.pyannote[219].end 880.02846875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 880.41659375
transcript.pyannote[220].end 883.04909375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 883.42034375
transcript.pyannote[221].end 891.04784375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 889.93409375
transcript.pyannote[222].end 899.63721875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 899.87346875
transcript.pyannote[223].end 906.64034375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 907.75409375
transcript.pyannote[224].end 908.22659375
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 908.22659375
transcript.pyannote[225].end 912.81659375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 908.26034375
transcript.pyannote[226].end 911.70284375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 915.61784375
transcript.pyannote[227].end 915.68534375
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 915.68534375
transcript.pyannote[228].end 915.97221875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 915.97221875
transcript.pyannote[229].end 921.38909375
transcript.whisperx[0].start 13.157
transcript.whisperx[0].end 20.801
transcript.whisperx[0].text 謝謝 謝謝主席那我們請柏定你先休息一下柏定先休息一下石耀署署長石耀署署長來你今天點閱率該關點閱率該關你有什麼意見
transcript.whisperx[1].start 29.69
transcript.whisperx[1].end 39.974
transcript.whisperx[1].text 因為說癌症 我先說癌症我先說癌症啦剛才大家就在跟你請教來我們看第一張的那個slide首長你先給人家告白你先人家說你對癌症沒信心你就不要吃你有說這個嗎不是啊我應該講的快一點我覺得應該要修正啦因為就是說
transcript.whisperx[2].start 58.64
transcript.whisperx[2].end 86.731
transcript.whisperx[2].text 現在這個蛋我們蠻精準的知道在那一家的蛋廠那時候我知道那一家蛋廠的部分我們先特別把它精準的能夠框住那真的是不是很確定的時候稍微聽可是呢這其實這個蛋量其實很大我告訴你這就是我們台灣一年要吃五次蛋你知不知道一天大概一人一顆平均我們台灣一年需要的蛋八十二億顆
transcript.whisperx[3].start 89.431
transcript.whisperx[3].end 113.927
transcript.whisperx[3].text 喔 怕死人喔八十二億顆 不要說是兩千四百三十萬人差不多大家都吃一顆乘以三百六十五 差不多八十五億顆這食蟲量很高 我也很高八十二億顆以上 你看我們的蛋積喔我們的蛋積差不多有三千萬隻 三千萬隻喔
transcript.whisperx[4].start 116.65
transcript.whisperx[4].end 122.016
transcript.whisperx[4].text 因為雞一隻雞一年三八六十五天一年可以產三百顆差不多一年三八六十五天可以生三八顆育成第一名到第二年差不多剩兩百多到差不多八五年就要淘汰了
transcript.whisperx[5].start 142.742
transcript.whisperx[5].end 170.773
transcript.whisperx[5].text 所以大埔的雞丁都這樣你看到沒有 這樣這種品質 這種品質在融釋的我問你 這雞兩匙 這是你管的嗎這不是我管的 這裡在農場裡面後市場在水洗淡了之後呢我們就開始管道跟市場端了所以綁出來的兩處就算你的了 這樣就綁出來要離開養雞場之後才算我的這就像我之前說的
transcript.whisperx[6].start 172.173
transcript.whisperx[6].end 200.942
transcript.whisperx[6].text 那台滴啊有沒有這間滴肉出事或是說滴肉浸那個什麼什麼什麼雙陽水雙陽水啦或是那個符合馬鈴有人泡符合馬鈴嗎沒有啦符合馬鈴要做檢體的不行啦所以吃泉那一類的啦或是說雙陽水雙陽水在屠宰場出屠宰場要勝利的對啊你英文就跟中央市長會搞不清楚啊這都中央市長會在那亂步的啊
transcript.whisperx[7].start 202.093
transcript.whisperx[7].end 211.08
transcript.whisperx[7].text 我們看到這個家庭,三千萬家的情人家,都這樣他剛開始的胖子,跟吃飼料,跟洗腦,剛才跟死,在台上都在家裡那些家庭都很寂寞、寂靜,我那時候看過很多家庭,我都去那裡看
transcript.whisperx[8].start 226.903
transcript.whisperx[8].end 244.991
transcript.whisperx[8].text 這種的芥菜土土的去發酵做堆肥也好這種地方的品質這種地方的雞的心情這心情不要生出來都會好吃啦不然你後面癌症啊 寒病啊都會有什麼那就是後面嘛來你看看 現在下一張這就是水蓮式的
transcript.whisperx[9].start 250.24
transcript.whisperx[9].end 259.626
transcript.whisperx[9].text 你看這個雞肚子很爽脆 生出來的肉也很讚這最重要的 這比較重要所以你們的輔導都做得好 雞肉比較貴 沒關係這個大家每天都要吃的現在以前一斤雞肉差不多高了幾十年 我們吃了算好了
transcript.whisperx[10].start 273.17
transcript.whisperx[10].end 284.64
transcript.whisperx[10].text 以前一斤雞蛋才有30塊而已 我家庭出來的你到市民才有50幾塊 以前在欠雞蛋的時候一斤不到100幾塊現在像這種的 這種的出來一斤差不多一顆才有11塊
transcript.whisperx[11].start 294.102
transcript.whisperx[11].end 306.428
transcript.whisperx[11].text 我比你瘦掉 比你更清楚你只叫人家不要吃 你有在吃嗎有啦 我在爆爆日月還有兩顆沒拿出來我每天吃兩顆水煮蛋 有吃有吃所以這個 來
transcript.whisperx[12].start 308.542
transcript.whisperx[12].end 327.769
transcript.whisperx[12].text 下一張 你看這個就水田市的我是 我們的期待啦我們的醫療水平那麼高我們健保的做得那麼好全世界第一名那我們這個應該要改善啦是低的啦 是低的啦普天有這個比較重要啦這比什麼更重要你這個衝得好 後面就沒了嘛人家不歸我們兩個管你不要說了 你不要要求了看不會我們有說 應該聽我們一定接著說
transcript.whisperx[13].start 338.093
transcript.whisperx[13].end 360.434
transcript.whisperx[13].text 來 這椰子喔 這椰子 這種吃的喔 這個是用泡的水給它吃它吃了 它還可以當冬甘苦這冬 整年喔 半年以上但是這椰子 畢業的那分埔年 多少 幾月了你知道嗎 一百倍
transcript.whisperx[14].start 363.358
transcript.whisperx[14].end 371.928
transcript.whisperx[14].text 分分是什麼 用噴的啦像葡萄園那樣 全都假裝整個 剛才你看到整個 全都亂噴一塊所以我們查出來假裝的毛 它也有它沒有長到那邊
transcript.whisperx[15].start 378.582
transcript.whisperx[15].end 389.557
transcript.whisperx[15].text 你這種東西 這麼貴 要不要把它賣掉大量使用就賣掉了 三千萬才賣兩個賣兩個賣耶你檢保局可以給我介紹 每個人都在抬起眉毛對不對
transcript.whisperx[16].start 393.842
transcript.whisperx[16].end 400.408
transcript.whisperx[16].text 都說你抬得很迷茫 你這要抬 抬得比較高讓他用那個磁 用泡在嘴上很簡單空間比較好 比較有人性 比較優雅這樣這瓶子就提高 而且不會有病要不然你那瓶子一整瓶 裡面都會有雞腎 什麼的 跳蚤它燒也燒 肚子痛肚子痛 刷下去 生的殘疾你也放下了
transcript.whisperx[17].start 422.312
transcript.whisperx[17].end 442.521
transcript.whisperx[17].text 所以台灣這種市街這要改變 不能再這樣了炒到實在是要解散就可以做堆肥 發酵現在有很多地方在做這個就可以改善這市街如果不適合這個 它是很好賺的但是如果像我們中邦的就沒辦法了你可以
transcript.whisperx[18].start 447.762
transcript.whisperx[18].end 457.01
transcript.whisperx[18].text 有啊 那塊Full Render 要給台階小 叫大家都贏普隆的布 誰贏誰贏啦我都不會謹慎啦你來 標示一下我時間要沒了喔 好啦 你 寶丁來寶丁 我要跟你們解釋這個問題解釋這個問題我給你啦
transcript.whisperx[19].start 472.232
transcript.whisperx[19].end 498.493
transcript.whisperx[19].text 來來來 保證這現金一定大贏的你到底是有在做嗎有有 在進行進行喔 因為我們總院長答應說年底嘛我會一直追喔好我每次都會追你好你看年輕醫師現在的住院醫師現在的那個那個那個PGY那個錢都太少了啦他們同樣年齡的住院醫師像我兒子還下輪的
transcript.whisperx[20].start 502.017
transcript.whisperx[20].end 529.198
transcript.whisperx[20].text 他說他們的同學有資工的 去也常常在讀班他在旁邊也在讀班 我在三天四天讀班他們在一個紅海裡頭也常常讀班他們要讀班的人年薪就250多條我們PGY一直待在那裡七、八班八班嘛 差不多十一班而已 十一班而已那十班也才八、二班而已
transcript.whisperx[21].start 529.847
transcript.whisperx[21].end 534.547
transcript.whisperx[21].text 所以你覺得很不值得嘛所以一批外料就糟糕了
transcript.whisperx[22].start 535.908
transcript.whisperx[22].end 560.877
transcript.whisperx[22].text 重症的沒人要走 你沒辦法給人家加薪水你說一年多 多少 多多 真的有多邱太元很好 石崇良也很好都去要了一大堆的經費但是都是在幫醫事人員 護理人員加薪而且我們衛護部盯得很緊 健保署也盯得很緊你這個錢不能給我亂用亂用的話要追回 還要處罰 這很好
transcript.whisperx[23].start 563.278
transcript.whisperx[23].end 589.053
transcript.whisperx[23].text 所以醫界也很有認同說你給我錢 我都來給你調薪但是醫生不調薪喔國健署的署長你都要先帶來你先帶來的薪水也不夠嘛 對不對所以醫生十五年沒加薪這樣你不重振 要捐多少錢你說值班費 加班費 要捐多少錢看財政部這樣擱擱擱擱擱擱擱擱擱擱擱擱擱擱
transcript.whisperx[24].start 592.532
transcript.whisperx[24].end 618.923
transcript.whisperx[24].text 最新的結構是什麼頭部的結構是什麼委員報告啦我們從稅負公平正義的角度來看因為醫師確實他的工時比一般的人長加班的收入比照我們所得稅法的規定本來就是可以免稅啦所以我們跟財政部公他們也認同現在就是執行的細節的部分
transcript.whisperx[25].start 621.024
transcript.whisperx[25].end 645.158
transcript.whisperx[25].text 到底是多少個小時這個時薪要怎麼計算我們再處理這個加班費 值班 值班那是待命嘛不然待命被你扔掉會很累的你現在要去看看你現在這個年紀要去看看所以川普說的說加班費 值班費 到消費都免稅人家最近要發錢要發2500元 現在要發60000元
transcript.whisperx[26].start 648.82
transcript.whisperx[26].end 673.228
transcript.whisperx[26].text 我們這裡發生了一萬個病例像這個一定是改改舊的我們一塊換了六萬所以沒比率所以這個你沒辦法給他加薪你就給他減一點稅那個差很多你看那個產值還有一般診所的我就不好意思是K診所醫師都要用兩個半月到三個月的全薪去繳稅
transcript.whisperx[27].start 675.429
transcript.whisperx[27].end 688.34
transcript.whisperx[27].text 會很嚴重的事情所以這個是一定要用心馬上趕快解決 年底之前所以你大慈欣台這款大型的最後一個 36話 主席
transcript.whisperx[28].start 690.342
transcript.whisperx[28].end 710.192
transcript.whisperx[28].text 這今天怎麼說這個啦這對我來說這都不重要啦這修法就是要用一個框住有法律的效率讓難免能夠有點保障不然的話有一餐沒一餐的每一年都用公務預算在撥補那個錢有沒有來源下一張有沒有 沒有了
transcript.whisperx[29].start 713.474
transcript.whisperx[29].end 739.624
transcript.whisperx[29].text 來 這寒病啊你要請他用什麼公務預算啊用什麼煙煙煙啊什麼的這一些那現在最近你們國電署也通過那個加熱菸嘛加熱菸加熱菸可以用的嘛電子菸不行嘛電子菸絕對不行裡面都是化學成分 那是西人的所以加熱菸好像主席也偶爾嘛
transcript.whisperx[30].start 744.381
transcript.whisperx[30].end 771.874
transcript.whisperx[30].text 聽不聽得到所以你這個來源要看得清楚讓這裡有補充不然黃證續營這個癌症在這裡大家都要挨挨救我們這裡創造的方法可以安心做然後能夠達到我們在榮同的健康台灣把癌症的那個是發生率還是死亡率死亡率 標準化死亡率死亡率延長下降啦下降標準化死亡率
transcript.whisperx[31].start 772.634
transcript.whisperx[31].end 791.345
transcript.whisperx[31].text 癌症病人活得越久 大家有一個觀念各位媒體朋友 癌症病人活得越久 花越多錢他本來要嫌疑 結果不嫌疑 又繼續挖 又開了很多錢所以癌症的死亡率減少 癌症的存活率越高是表示要花更多更多的錢
transcript.whisperx[32].start 792.561
transcript.whisperx[32].end 806.828
transcript.whisperx[32].text 所以大家觀念要改過來以為說這樣可以省錢沒有 花更多的錢年齡的老化平均壽命的延長就是要付出無窮無盡的代價啦這個是大家要了解的阿我認為很辛苦今天跟阿伯講真的沒問題
transcript.whisperx[33].start 811.76
transcript.whisperx[33].end 828.991
transcript.whisperx[33].text 確實像委員提到的因為隨著醫藥科技的進步現在慢慢的癌症從過去的絕症變成慢性病他確實如果能夠好好的治療他的餘命是可以延長的但是新的藥物確實是不便宜所以我們
transcript.whisperx[34].start 830.332
transcript.whisperx[34].end 848.269
transcript.whisperx[34].text 這個很努力的在找財源那也希望讓這個健保能夠永續下去持續的照顧民眾不要讓人民會因病而病把這個健保的精神最後一個喊病的前線這是用公務預算還是用健保
transcript.whisperx[35].start 848.749
transcript.whisperx[35].end 867.984
transcript.whisperx[35].text 主要還是由健保費的來源就是說我們還是編在整個總額裡面只不過它我們總額分成專款跟一般服務一般服務就是在總額分配時南京大公園醫院個別總額它是一般服務專款是另外用多少給多少的所以它不會有浮動點子的問題
transcript.whisperx[36].start 869.338
transcript.whisperx[36].end 886.492
transcript.whisperx[36].text 所以現在健保連愛滋病的你也自己 你也付啦對以前在第八屆的時候為了愛滋病要讓它延後納入健保給付有公務預算那個時候我跟有限國會大家很努力把它延了三年
transcript.whisperx[37].start 887.413
transcript.whisperx[37].end 909.921
transcript.whisperx[37].text 才納入健保支付 你知道嗎我知道 其實愛滋病現在也是一個慢性病啦所以前兩年的費用是由公務預算支應之後才納入健保那現在連寒病的健保護 癌症的健保護健保的健保要怎麼可能不會到啦不會啦 健保不會到啦好 謝謝委員 謝謝
transcript.whisperx[38].start 917.385
transcript.whisperx[38].end 920.862
transcript.whisperx[38].text 一碗煎骨沙茶 比阿姑最好吃的一碗茶你覺得阿姑幾公尺?