iVOD / 165388

Field Value
IVOD_ID 165388
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165388
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-20-8
會議資料.會議代碼:str 第11屆第4會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-11-13T11:05:26+08:00
結束時間 2025-11-13T11:16:40+08:00
影片長度 00:11:14
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610facef3a36a6428b4cb74fa47f864c5dfb45a0f406a00a8f97c06e845366a77bfd4645ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林思銘
委員發言時間 11:05:26 - 11:16:40
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第8次全體委員會議(事由:一、邀請財政部莊部長翠雲、行政院主計總處陳主計長淑姿、中央銀行副總裁、國家發展委員會葉主任委員俊顯、經濟部次長、勞動部次長、衛生福利部次長就「經濟成長讓全民共享:政府如何縮短所得差距暨改善相對貧窮化之對策」進行專題報告,並備質詢。 二、審查本院民進黨黨團擬具「財政收支劃分法第十六條之一未分配款運用暫行條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.63784375
transcript.pyannote[0].end 5.48159375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 6.47721875
transcript.pyannote[1].end 8.45159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 9.73409375
transcript.pyannote[2].end 11.18534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 11.45534375
transcript.pyannote[3].end 12.65346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 20.38221875
transcript.pyannote[4].end 21.07409375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 20.41596875
transcript.pyannote[5].end 25.66409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.59284375
transcript.pyannote[6].end 22.64346875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 26.08596875
transcript.pyannote[7].end 38.74221875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 39.06284375
transcript.pyannote[8].end 45.34034375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 45.94784375
transcript.pyannote[9].end 54.52034375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 54.68909375
transcript.pyannote[10].end 60.66284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 61.27034375
transcript.pyannote[11].end 66.28221875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 66.82221875
transcript.pyannote[12].end 67.34534375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 67.39596875
transcript.pyannote[13].end 73.04909375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 73.60596875
transcript.pyannote[14].end 76.69409375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 77.30159375
transcript.pyannote[15].end 91.44284375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 79.20846875
transcript.pyannote[16].end 80.79471875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 82.34721875
transcript.pyannote[17].end 83.02221875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 88.89471875
transcript.pyannote[18].end 89.36721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 91.59471875
transcript.pyannote[19].end 122.05409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 105.92159375
transcript.pyannote[20].end 106.39409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 114.49409375
transcript.pyannote[21].end 114.93284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 119.77596875
transcript.pyannote[22].end 125.14221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 123.57284375
transcript.pyannote[23].end 124.06221875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 125.58096875
transcript.pyannote[24].end 138.08534375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 138.47346875
transcript.pyannote[25].end 146.82659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 145.96596875
transcript.pyannote[26].end 146.67471875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 147.14721875
transcript.pyannote[27].end 153.17159375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 153.37409375
transcript.pyannote[28].end 159.58409375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 158.47034375
transcript.pyannote[29].end 158.82471875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 159.75284375
transcript.pyannote[30].end 165.01784375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 165.37221875
transcript.pyannote[31].end 185.36909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 185.53784375
transcript.pyannote[32].end 189.79034375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 190.09409375
transcript.pyannote[33].end 200.94471875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 201.36659375
transcript.pyannote[34].end 209.77034375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 210.31034375
transcript.pyannote[35].end 212.11596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 210.68159375
transcript.pyannote[36].end 211.39034375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 212.06534375
transcript.pyannote[37].end 215.99721875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 215.25471875
transcript.pyannote[38].end 215.69346875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 216.63846875
transcript.pyannote[39].end 222.96659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 218.52846875
transcript.pyannote[40].end 218.56221875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 222.69659375
transcript.pyannote[41].end 223.81034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 224.01284375
transcript.pyannote[42].end 226.94909375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 224.46846875
transcript.pyannote[43].end 226.89846875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 227.38784375
transcript.pyannote[44].end 236.14596875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 236.26409375
transcript.pyannote[45].end 253.49346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 247.92471875
transcript.pyannote[46].end 250.79346875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 253.10534375
transcript.pyannote[47].end 255.46784375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 253.76346875
transcript.pyannote[48].end 254.10096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 255.48471875
transcript.pyannote[49].end 271.34721875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 257.13846875
transcript.pyannote[50].end 257.52659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 266.68971875
transcript.pyannote[51].end 267.02721875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 271.98846875
transcript.pyannote[52].end 277.60784375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 274.41846875
transcript.pyannote[53].end 274.75596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 278.51909375
transcript.pyannote[54].end 289.70721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 290.06159375
transcript.pyannote[55].end 291.98534375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 292.39034375
transcript.pyannote[56].end 294.97221875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 295.49534375
transcript.pyannote[57].end 298.53284375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 298.93784375
transcript.pyannote[58].end 302.86971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 303.00471875
transcript.pyannote[59].end 311.59409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 311.86409375
transcript.pyannote[60].end 320.04846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 320.28471875
transcript.pyannote[61].end 335.01659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 335.89409375
transcript.pyannote[62].end 346.30596875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 346.52534375
transcript.pyannote[63].end 350.00159375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 350.35596875
transcript.pyannote[64].end 358.69221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 359.28284375
transcript.pyannote[65].end 372.64784375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 373.28909375
transcript.pyannote[66].end 383.59971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 383.83596875
transcript.pyannote[67].end 400.03596875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 395.95221875
transcript.pyannote[68].end 396.35721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 400.52534375
transcript.pyannote[69].end 415.51034375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 406.80284375
transcript.pyannote[70].end 407.10659375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 407.91659375
transcript.pyannote[71].end 408.33846875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 415.89846875
transcript.pyannote[72].end 434.96721875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 434.86596875
transcript.pyannote[73].end 452.98971875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 452.98971875
transcript.pyannote[74].end 453.47909375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 453.64784375
transcript.pyannote[75].end 455.40284375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 455.65596875
transcript.pyannote[76].end 458.49096875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 457.74846875
transcript.pyannote[77].end 467.16471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 459.82409375
transcript.pyannote[78].end 461.12346875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 467.01284375
transcript.pyannote[79].end 470.91096875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 467.31659375
transcript.pyannote[80].end 468.36284375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 469.72971875
transcript.pyannote[81].end 474.64034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 472.36221875
transcript.pyannote[82].end 472.85159375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 473.88096875
transcript.pyannote[83].end 474.40409375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 475.28159375
transcript.pyannote[84].end 477.49221875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 477.79596875
transcript.pyannote[85].end 481.37346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 481.87971875
transcript.pyannote[86].end 509.03159375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 509.53784375
transcript.pyannote[87].end 531.07034375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 526.58159375
transcript.pyannote[88].end 527.03721875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 527.23971875
transcript.pyannote[89].end 527.39159375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 528.08346875
transcript.pyannote[90].end 528.10034375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 528.10034375
transcript.pyannote[91].end 528.82596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 532.26846875
transcript.pyannote[92].end 533.95596875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 539.47409375
transcript.pyannote[93].end 540.65534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 539.52471875
transcript.pyannote[94].end 539.81159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 540.90846875
transcript.pyannote[95].end 543.57471875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 543.69284375
transcript.pyannote[96].end 546.05534375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 546.40971875
transcript.pyannote[97].end 548.89034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 549.63284375
transcript.pyannote[98].end 554.76284375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 554.89784375
transcript.pyannote[99].end 575.04659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 576.29534375
transcript.pyannote[100].end 578.64096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 579.94034375
transcript.pyannote[101].end 580.27784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 581.02034375
transcript.pyannote[102].end 581.03721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 581.03721875
transcript.pyannote[103].end 586.43721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 586.84221875
transcript.pyannote[104].end 592.05659375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 592.56284375
transcript.pyannote[105].end 602.72159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 597.52409375
transcript.pyannote[106].end 598.13159375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 602.89034375
transcript.pyannote[107].end 606.78846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 607.19346875
transcript.pyannote[108].end 610.16346875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 610.34909375
transcript.pyannote[109].end 613.84221875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 615.02346875
transcript.pyannote[110].end 619.88346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 618.97221875
transcript.pyannote[111].end 620.91284375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 620.33909375
transcript.pyannote[112].end 624.13596875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 624.13596875
transcript.pyannote[113].end 624.55784375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 624.55784375
transcript.pyannote[114].end 625.24971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 626.27909375
transcript.pyannote[115].end 633.68721875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 633.92346875
transcript.pyannote[116].end 634.31159375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 634.49721875
transcript.pyannote[117].end 635.57721875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 634.56471875
transcript.pyannote[118].end 636.74159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 635.72909375
transcript.pyannote[119].end 636.10034375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 636.74159375
transcript.pyannote[120].end 637.21409375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 637.21409375
transcript.pyannote[121].end 637.72034375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 637.80471875
transcript.pyannote[122].end 650.56221875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 650.68034375
transcript.pyannote[123].end 665.63159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 663.91034375
transcript.pyannote[124].end 664.75409375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 666.49221875
transcript.pyannote[125].end 670.98096875
transcript.whisperx[0].start 4.679
transcript.whisperx[0].end 7.225
transcript.whisperx[0].text 好 我們請主席長
transcript.whisperx[1].start 20.427
transcript.whisperx[1].end 42.998
transcript.whisperx[1].text 委員好是 署長我們在主席總處的辛勤平台的網站可以查詢到從101年到112年我們每年度的全年總薪資的分布以全年薪資60萬為例101年有超過7成的壽星者但是到了112年同樣全年薪資60萬只剩下6成
transcript.whisperx[2].start 46.579
transcript.whisperx[2].end 65.208
transcript.whisperx[2].text 這個現象表示說我們整體的薪資結構被往上拉但中位數的族群被擠下去整體的薪資結構不再是平均往上而是差距越來越明顯為什麼同樣全年薪資60萬
transcript.whisperx[3].start 67.59
transcript.whisperx[3].end 76.36
transcript.whisperx[3].text 到了112年會從101年的七成降到六成主席長為什麼有這個現象可以請你說明一下嗎
transcript.whisperx[4].start 77.549
transcript.whisperx[4].end 106.75
transcript.whisperx[4].text 它有成長只是成長的成長的幅度沒有那麼高是這樣子對這個部分因為我們現在好像D1 D2和這個部分我們就是有所謂的低薪的調薪基本工資的一個保障所以它的成長幅度就會比較高還要包括我們政府也保障低薪的部分有一個做一些的政策所以這個部分3萬1以下的部分我們都調到3萬1這是最基本
transcript.whisperx[5].start 107.31
transcript.whisperx[5].end 124.945
transcript.whisperx[5].text 基本的低薪的调整中位数的部分一般是比较平稳比较平稳是这样子高薪的部分比较特殊因为它是有一些的比较AI的或者是通业的市长 我知道我想妳就回答到这里其实我们看到一个现象就是说
transcript.whisperx[6].start 126.406
transcript.whisperx[6].end 146.096
transcript.whisperx[6].text 這個高薪者其實他的平均數越來越高就是因為中位數就是我們剛才講的平均60萬薪資的這個族群就他竟然掉了一層所以這個現象當然都有上升但是他掉了一層我想你要觀察到這個現象我請你要注意要去注意
transcript.whisperx[7].start 147.356
transcript.whisperx[7].end 164.649
transcript.whisperx[7].text 我們再看這個主計總數薪資分布的資料我們整理出來你剛才講的D1到D9雖然我們這個所有的實質的成長率都有成長剛才主席講的但是我們看到實質的成長卻落差很大喔落差很大
transcript.whisperx[8].start 165.45
transcript.whisperx[8].end 173.336
transcript.whisperx[8].text 我們看D1是從23.2萬我的表是2023現在實質到2024是提升到31.6萬那D9從101萬提高到到2024是提高到127.9萬但是我們要去看這個通膨率這11年間通膨率成長了13.7%
transcript.whisperx[9].start 190.268
transcript.whisperx[9].end 212.455
transcript.whisperx[9].text 所以我們以這個購買率來講的話等於說101年的100元到了112年底大概已經變成113元了因為通膨增長了13%所以主席講扣掉通膨之後我們整體薪資仍然是成長嗎你認為扣除空還是成長嗎是的成長1.78我記得是這樣子
transcript.whisperx[10].start 217.037
transcript.whisperx[10].end 235.699
transcript.whisperx[10].text 成长1.7%所以11年成长1.7%但是我们从这个这是年啊年增1.7%我想今天召委排这个专题政府要如何缩短我们整个所得的差距即改善相对贫穷化的对策
transcript.whisperx[11].start 236.42
transcript.whisperx[11].end 253.365
transcript.whisperx[11].text 其實剛才你講雖然有成長但是我們看到就是說實質上我們中位數的這個族群的薪資停滯不前雖然有成長但是它幅度很低中位數也有成長但是跟我們的通膨區再加以比較的話通膨也是成長
transcript.whisperx[12].start 255.546
transcript.whisperx[12].end 277.467
transcript.whisperx[12].text 就成長不多嘛但是看到就是說越有錢的人他越有錢啦他所得越高嘛那低薪族剛才你們用很多政策去加以這個去加以彌補嘛但是這個中位數的我們就一直覺得奇怪為什麼他的所得就有增加但是他的幅度很低啊你可以看你可以看出來嘛我們看那個表啊
transcript.whisperx[13].start 278.584
transcript.whisperx[13].end 293.132
transcript.whisperx[13].text 我們看到這個最低薪資的D1 D3的30%的族群換算實質薪資後 它是最低三個十分位的成長率D1是成長19.8% D2成長17.2% D3成長11.4%反而中位數收入的族群就D4到D7
transcript.whisperx[14].start 303.677
transcript.whisperx[14].end 319.049
transcript.whisperx[14].text 實質成長都很低 不到7%其中最低的第六只有3.8%所以我們低薪階層或者領最低基本工資的階層向來我們就剛才講最需要被照顧
transcript.whisperx[15].start 320.41
transcript.whisperx[15].end 347.668
transcript.whisperx[15].text 但是最低薪資他不但有提高到100從101年1月1日的18780元到2023年的1月1號是26400元到這個明年1月1號我們基本工資已經調高到29500元所以主委長我要請問你從這個現象是否反映出基本工資雖然經過幾次的調高
transcript.whisperx[16].start 350.77
transcript.whisperx[16].end 372.2
transcript.whisperx[16].text 後來確實也有讓我們的低薪族受惠但是整個中位數的階層被卡在原地薪水幾乎不太動沒什麼動所以這樣的結構是否會讓我們的社會結構這種結構讓我們薪資的結構陷入一個中位數它是一個天坑
transcript.whisperx[17].start 373.32
transcript.whisperx[17].end 399.266
transcript.whisperx[17].text 他的所得永遠就是停留在那個階段沒有辦法再往上拉即便你把這個基本工資往上調那你那個中位數的他的薪資就不動啊報告委員我們政府這方面來做的部分包括我們公務人員的部分我們是帶頭加薪連續好幾年都做調薪那第二個我們也鼓勵企業來做調薪所以然後也像金管會他也鼓勵就是說
transcript.whisperx[18].start 400.586
transcript.whisperx[18].end 410.05
transcript.whisperx[18].text 公司如果獲利要分配分配給那個這樣的話他會給他一些稅務方面的一個優待所以這個部分那包括產業他要賺錢所以我們都會輔導產業讓他賺錢然後讓他能夠把
transcript.whisperx[19].start 416.153
transcript.whisperx[19].end 434.207
transcript.whisperx[19].text 員工的薪資調整所以這個部分主要是要鼓勵企業對員工加薪所以這個部分我們也在經濟部做很大的一個努力所以這個部分包括公務人員帶頭加薪然後再來就是要鼓勵企業加薪然後也鼓勵所謂企業要分紅
transcript.whisperx[20].start 435.227
transcript.whisperx[20].end 455.18
transcript.whisperx[20].text 市長我想你要用這個現象你看到了嘛我剛才都點出來了嘛當然你認為說你剛才是提到如何這個企業要怎麼做政府要怎麼做讓這個我一直關心的這個中介中位數的這些族群啊讓他的成長性讓我們看到不是這個成長率那麼低啊
transcript.whisperx[21].start 455.72
transcript.whisperx[21].end 461.004
transcript.whisperx[21].text 剛剛我們在講的就是針對我們會覺得說平復的差距就會越拉越高雖然你一直照顧低薪的族群但是中位數的你也要去照顧他有…所以這個部分政府也有帶頭來做 謝謝否則主席長我看到一個社會現象就是說
transcript.whisperx[22].start 475.353
transcript.whisperx[22].end 499.176
transcript.whisperx[22].text 高薪階層遙遙領先中低薪資階層卻望塵莫及這個中位數的族群就是一直被這個壓縮減少所以這個現象就反映出我們雖然看起來是平等但實質是不均所以所得差距在數字上你看是平穩但實際上越拉越開
transcript.whisperx[23].start 500.157
transcript.whisperx[23].end 525.976
transcript.whisperx[23].text 就我剛才一開始點出來的平均60萬的族群竟然過了11年之後減少了一成所以這個現象我希望政府要看到這個現象對中位數的族群要如何的讓他請這些企業界要去幫他們加薪讓貧富所的差距不要再繼續擴大我覺得我們要去努力
transcript.whisperx[24].start 526.576
transcript.whisperx[24].end 533.56
transcript.whisperx[24].text 是 謝謝你請為時間暫停一下我們現在請央行我們請央行 嚴副總裁副總裁我想房價持續還是高漲房貸的壓力全面擴散所以我們目前的房市政策是不是仍然微微達效果
transcript.whisperx[25].start 555.174
transcript.whisperx[25].end 578.375
transcript.whisperx[25].text 讓我們年輕人的薪水全部就被這些貸款或者通膨吃光了尤其我們家戶負債比高達可支配所得的1.55倍在這樣艱困的環境下我們如何讓年輕人共享經濟的成長所以你打房的成效到底如何
transcript.whisperx[26].start 581.327
transcript.whisperx[26].end 597.36
transcript.whisperx[26].text 報告委員如果比較在去年我們看到去年下半年或去年七八月九月十月的時候整個房地產大家對於房地產的那種購買的熱潮或者是炒作熱潮現在是相對的平淡平穩很多
transcript.whisperx[27].start 598.641
transcript.whisperx[27].end 625.024
transcript.whisperx[27].text 其實我們也一直在注意說到底我們的政策它實際執行的效果上次剛才我也在回答委員的時候我們每一季我們都會去檢視我們的過去的政策的效果情形我們會做適當的調整所以打房的政策還是會滾動式的做一個檢討是 我們一直都是這樣子做未來還會不會提出其他的管制措施有沒有可能
transcript.whisperx[28].start 626.345
transcript.whisperx[28].end 653.608
transcript.whisperx[28].text 我剛才回答的意思是說這個房地產政策基本上還是由我們的貨幣政策理事會這邊在討論的所以我沒辦法在這邊抱歉其實總理我還是希望你們對房市的熱度你要持續去觀察它因為年輕人現在真的買不起這個房子房貸的壓力太大了我們剛才一直講薪資又沒有這個它的漲幅跟不上房價的漲幅
transcript.whisperx[29].start 654.989
transcript.whisperx[29].end 665.022
transcript.whisperx[29].text 所以造成整個我們年輕人可以說吃不消了所以希望央行在這個方面持續密切的做觀察是 謝謝委員指示以上 謝謝好 謝謝林思敏在位我們現在休息十分鐘