iVOD / 165380

Field Value
IVOD_ID 165380
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165380
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-20-8
會議資料.會議代碼:str 第11屆第4會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-11-13T10:41:13+08:00
結束時間 2025-11-13T10:53:04+08:00
影片長度 00:11:51
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610face13b0b7728d8c40e9fa47f864c5dfb45a999b3dda7382768056ee6e04b9c1f51b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 10:41:13 - 10:53:04
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第8次全體委員會議(事由:一、邀請財政部莊部長翠雲、行政院主計總處陳主計長淑姿、中央銀行副總裁、國家發展委員會葉主任委員俊顯、經濟部次長、勞動部次長、衛生福利部次長就「經濟成長讓全民共享:政府如何縮短所得差距暨改善相對貧窮化之對策」進行專題報告,並備質詢。 二、審查本院民進黨黨團擬具「財政收支劃分法第十六條之一未分配款運用暫行條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 13.42971875
transcript.pyannote[0].end 16.63596875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 16.63596875
transcript.pyannote[1].end 16.66971875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 16.82159375
transcript.pyannote[2].end 16.85534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 16.85534375
transcript.pyannote[3].end 16.90596875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 16.90596875
transcript.pyannote[4].end 17.19284375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.19284375
transcript.pyannote[5].end 17.66534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 17.66534375
transcript.pyannote[6].end 17.68221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 26.40659375
transcript.pyannote[7].end 28.06034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 28.31346875
transcript.pyannote[8].end 31.63784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 32.04284375
transcript.pyannote[9].end 33.83159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 34.20284375
transcript.pyannote[10].end 38.77596875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 39.19784375
transcript.pyannote[11].end 47.26409375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 44.47971875
transcript.pyannote[12].end 44.56409375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 44.58096875
transcript.pyannote[13].end 44.71596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 47.44971875
transcript.pyannote[14].end 52.90034375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 49.86284375
transcript.pyannote[15].end 50.01471875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 53.52471875
transcript.pyannote[16].end 55.39784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 56.22471875
transcript.pyannote[17].end 62.67096875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 63.09284375
transcript.pyannote[18].end 81.85784375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 63.16034375
transcript.pyannote[19].end 64.03784375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 78.58409375
transcript.pyannote[20].end 78.70221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 82.26284375
transcript.pyannote[21].end 93.82221875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 94.00784375
transcript.pyannote[22].end 100.63971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 101.38221875
transcript.pyannote[23].end 102.02346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 102.07409375
transcript.pyannote[24].end 103.44096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 103.69409375
transcript.pyannote[25].end 105.51659375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 105.97221875
transcript.pyannote[26].end 107.33909375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 108.25034375
transcript.pyannote[27].end 110.76471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 110.93346875
transcript.pyannote[28].end 111.22034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 112.04721875
transcript.pyannote[29].end 114.03846875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 114.69659375
transcript.pyannote[30].end 115.21971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 115.50659375
transcript.pyannote[31].end 117.14346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 117.46409375
transcript.pyannote[32].end 118.51034375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 119.03346875
transcript.pyannote[33].end 126.00284375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 126.50909375
transcript.pyannote[34].end 130.86284375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 131.65596875
transcript.pyannote[35].end 132.98909375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 133.86659375
transcript.pyannote[36].end 137.83221875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 138.57471875
transcript.pyannote[37].end 139.62096875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 139.73909375
transcript.pyannote[38].end 140.53221875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 141.84846875
transcript.pyannote[39].end 143.80596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 144.34596875
transcript.pyannote[40].end 148.32846875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 148.64909375
transcript.pyannote[41].end 169.43909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 154.75784375
transcript.pyannote[42].end 154.87596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 154.87596875
transcript.pyannote[43].end 154.97721875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 154.97721875
transcript.pyannote[44].end 155.12909375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 170.08034375
transcript.pyannote[45].end 171.00846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 171.39659375
transcript.pyannote[46].end 172.05471875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 173.48909375
transcript.pyannote[47].end 173.91096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 174.75471875
transcript.pyannote[48].end 175.95284375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 176.40846875
transcript.pyannote[49].end 177.72471875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 178.78784375
transcript.pyannote[50].end 184.30596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 184.64346875
transcript.pyannote[51].end 206.47971875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 188.67659375
transcript.pyannote[52].end 188.99721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 206.81721875
transcript.pyannote[53].end 210.56346875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 210.79971875
transcript.pyannote[54].end 211.98096875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 213.01034375
transcript.pyannote[55].end 213.85409375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 214.03971875
transcript.pyannote[56].end 215.94659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 217.04346875
transcript.pyannote[57].end 219.37221875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 220.41846875
transcript.pyannote[58].end 224.89034375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 225.56534375
transcript.pyannote[59].end 234.72846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 234.89721875
transcript.pyannote[60].end 235.28534375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 235.28534375
transcript.pyannote[61].end 251.65409375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 252.22784375
transcript.pyannote[62].end 261.12096875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 261.74534375
transcript.pyannote[63].end 269.84534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 263.36534375
transcript.pyannote[64].end 263.71971875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 270.40221875
transcript.pyannote[65].end 281.18534375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 281.18534375
transcript.pyannote[66].end 281.42159375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 281.42159375
transcript.pyannote[67].end 282.18096875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 282.92346875
transcript.pyannote[68].end 291.64784375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 291.96846875
transcript.pyannote[69].end 309.58596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 309.88971875
transcript.pyannote[70].end 312.60659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 312.79221875
transcript.pyannote[71].end 314.68221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 314.93534375
transcript.pyannote[72].end 322.96784375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 321.12846875
transcript.pyannote[73].end 321.17909375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 321.19596875
transcript.pyannote[74].end 321.22971875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 322.96784375
transcript.pyannote[75].end 323.32221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 323.32221875
transcript.pyannote[76].end 323.38971875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 323.60909375
transcript.pyannote[77].end 323.71034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 323.71034375
transcript.pyannote[78].end 353.02221875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 335.94471875
transcript.pyannote[79].end 336.45096875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 349.56284375
transcript.pyannote[80].end 350.67659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 351.28409375
transcript.pyannote[81].end 382.08096875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 357.32534375
transcript.pyannote[82].end 358.25346875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 362.91096875
transcript.pyannote[83].end 363.72096875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 382.08096875
transcript.pyannote[84].end 382.63784375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 382.63784375
transcript.pyannote[85].end 386.35034375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 387.27846875
transcript.pyannote[86].end 394.50096875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 391.68284375
transcript.pyannote[87].end 391.90221875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 394.50096875
transcript.pyannote[88].end 394.70346875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 394.70346875
transcript.pyannote[89].end 402.09471875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 402.61784375
transcript.pyannote[90].end 402.90471875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 402.83721875
transcript.pyannote[91].end 425.90534375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 409.51971875
transcript.pyannote[92].end 409.73909375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 425.90534375
transcript.pyannote[93].end 426.34409375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 426.15846875
transcript.pyannote[94].end 429.24659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 429.90471875
transcript.pyannote[95].end 431.42346875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 431.42346875
transcript.pyannote[96].end 431.89596875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 431.91284375
transcript.pyannote[97].end 443.89409375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 443.99534375
transcript.pyannote[98].end 445.91909375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 446.34096875
transcript.pyannote[99].end 450.61034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 450.91409375
transcript.pyannote[100].end 451.97721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 451.97721875
transcript.pyannote[101].end 453.46221875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 452.85471875
transcript.pyannote[102].end 460.46534375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 454.20471875
transcript.pyannote[103].end 454.33971875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 455.09909375
transcript.pyannote[104].end 457.79909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 460.58346875
transcript.pyannote[105].end 461.76471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 462.89534375
transcript.pyannote[106].end 463.97534375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 463.97534375
transcript.pyannote[107].end 464.02596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 464.02596875
transcript.pyannote[108].end 464.16096875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 464.16096875
transcript.pyannote[109].end 465.19034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 470.23596875
transcript.pyannote[110].end 477.17159375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 477.52596875
transcript.pyannote[111].end 479.02784375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 479.93909375
transcript.pyannote[112].end 494.80596875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 494.97471875
transcript.pyannote[113].end 520.99596875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 521.35034375
transcript.pyannote[114].end 551.92784375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 552.85596875
transcript.pyannote[115].end 553.58159375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 554.45909375
transcript.pyannote[116].end 554.72909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 555.99471875
transcript.pyannote[117].end 556.72034375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 556.75409375
transcript.pyannote[118].end 559.60596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 560.31471875
transcript.pyannote[119].end 594.21659375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 594.62159375
transcript.pyannote[120].end 596.00534375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 597.15284375
transcript.pyannote[121].end 610.24784375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 610.95659375
transcript.pyannote[122].end 612.50909375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 613.16721875
transcript.pyannote[123].end 673.64721875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 673.07346875
transcript.pyannote[124].end 674.15346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 674.15346875
transcript.pyannote[125].end 675.03096875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 674.52471875
transcript.pyannote[126].end 674.84534375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 675.03096875
transcript.pyannote[127].end 701.82846875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 677.25846875
transcript.pyannote[128].end 679.65471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 680.83596875
transcript.pyannote[129].end 680.85284375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 699.01034375
transcript.pyannote[130].end 703.16159375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 702.65534375
transcript.pyannote[131].end 702.68909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 702.68909375
transcript.pyannote[132].end 707.95409375
transcript.whisperx[0].start 13.814
transcript.whisperx[0].end 17.343
transcript.whisperx[0].text 謝謝主席 我請衛福部女次長請女次長
transcript.whisperx[1].start 26.431
transcript.whisperx[1].end 50.797
transcript.whisperx[1].text 王委員好 理事長我很高興你今天做了這一份報告我三個禮拜前提出我是針對主技術他們的統計我認為這幾年我們國家經濟情勢一片大好確實整個社會財富是成長的但是社會財富分配的不均導致我們國內有相當數字的
transcript.whisperx[2].start 58.135
transcript.whisperx[2].end 75.709
transcript.whisperx[2].text 這個貧窮黑數那我估計是大概貧窮黑數有250萬所以我在意的是我們怎麼拉低這個貧富差距以外那怎麼樣對中低收入戶跟低收入戶這些貧窮黑數我們社會
transcript.whisperx[3].start 76.489
transcript.whisperx[3].end 104.161
transcript.whisperx[3].text 怎麼樣去救助他們那你今天提的這個報告是很不錯我們根據社會救助法那麼給中低收入戶低收入戶來增加他們的生活輔助急難救助這個急難紓困等等這些都很好那這個甚至食物的補給這些都有你都寫得很詳細不過我們社會上有貧窮黑數
transcript.whisperx[4].start 106.515
transcript.whisperx[4].end 128.865
transcript.whisperx[4].text 相對的也有假低收黑數這些假低收黑數啊這個其實財稅單位他們查不到為什麼財稅單位是依法你有收入你有財產那財稅單位會登錄所以他們有辦法去查查據以來對他們這個徵稅
transcript.whisperx[5].start 133.922
transcript.whisperx[5].end 140.173
transcript.whisperx[5].text 但是很多所謂的假低收這個部分比方說
transcript.whisperx[6].start 142.352
transcript.whisperx[6].end 168.753
transcript.whisperx[6].text 這個在我們的檢調單位他們已經去查查光這兩三年啊這個資料我一查哇 數十件之多都已經被起訴啦都已經被起訴的這一個部分所謂的假低收就是說財產放他的名下然後他名下沒有任何的財產或者透過假離婚或者他的收入都是現金的這個部分
transcript.whisperx[7].start 170.374
transcript.whisperx[7].end 195.072
transcript.whisperx[7].text 這些人他們住透天豪宅開特斯拉生活很優渥這樣的情況下還可以領取中低收甚至低收的補助那這樣子的案例好多我光是查查幾件比方說有夫妻
transcript.whisperx[8].start 196.013
transcript.whisperx[8].end 222.953
transcript.whisperx[8].text 就我剛剛講的住豪宅開名車的假低收去詐領補助這個每年啊每年喔經常性的就領十幾萬查獲他八年領了一百多萬那也有這個因為我們對於中低收低收這個給付沒有附審機制所以導致
transcript.whisperx[9].start 225.629
transcript.whisperx[9].end 251.405
transcript.whisperx[9].text 很多在這個崗位上 社福人員他堅守自盜比方說在台中和平區公所抓到的就是這樣他用這個因為沒有附審機制沒有去查查所以竟然把沒有資格的用他自己的父親自己的弟弟 炸零用這樣炸零的進來也是非常龐大那因為自首所以
transcript.whisperx[10].start 252.315
transcript.whisperx[10].end 267.45
transcript.whisperx[10].text 把他減輕其罪都100多萬以上這樣子的例子我想其他我就不用再念了太多太多所以我是希望衛福單位在我們對低收中低收弱勢貧窮黑數的部分
transcript.whisperx[11].start 270.493
transcript.whisperx[11].end 291.09
transcript.whisperx[11].text 我們甚至很多找不到的貧窮歸宿都要透過訪源去實際了解來補助他們來接住他們結果這樣的情況下是對的相對我們也要透過我們的這些訪源實際去了解去調查
transcript.whisperx[12].start 292.111
transcript.whisperx[12].end 308.225
transcript.whisperx[12].text 有沒有假低收的因為假低收啊它佔據了我們社會的資源它也是擴大貧富差距的幫兇之一元兇之一啦因為它用到了我們社會
transcript.whisperx[13].start 309.986
transcript.whisperx[13].end 326.098
transcript.whisperx[13].text 那個難得的大家辛苦擠出來的這些救助的金額所以我希望說在這個部分你們去落實好不好這個是這個情況你曉得嗎包委員我過去在台中擔任過社會局局長
transcript.whisperx[14].start 327.439
transcript.whisperx[14].end 348.897
transcript.whisperx[14].text 委員剛才說的問題,我了解,尤其甚至還有一個那裡,大家的名字,大家的家都過去小弟那裡啦,類似像這個情況,我了解但是這個部分,我們在地方的社會局還有公所那邊,跟委員報告,我們現在都有那個所謂的資產調查社工都會去,當然就是說我們現在社會救助,大概主要三個要件嘛,動產不動產,還有誰算所得
transcript.whisperx[15].start 351.58
transcript.whisperx[15].end 352.361
transcript.whisperx[15].text 我認為檢舉制度我們要做調整
transcript.whisperx[16].start 370.103
transcript.whisperx[16].end 386.066
transcript.whisperx[16].text 你們一再的說這個檢舉啊必須實名具名檢舉是沒錯奇怪人家財稅單位人家有的匿名檢舉人家也是去查財啊不是嗎那你知道嘛現在社會上大家
transcript.whisperx[17].start 387.335
transcript.whisperx[17].end 401.892
transcript.whisperx[17].text 大家就是不希望說把透露個人的資料出去所以是不是既然有這樣的情況有接到這樣的檢舉不管是實名匿名都應該去了解去調查好不好
transcript.whisperx[18].start 403.088
transcript.whisperx[18].end 429.001
transcript.whisperx[18].text 那我們對低收入的補助本來社會的制度可能我們甚至在教育上面你看台大 清大 交大都有希望入學續日計畫這本來設計很好是要給中低收入的家庭能夠不要把他們的優秀的子弟們把他埋沒掉所以讓他們可以透過他們的努力
transcript.whisperx[19].start 429.961
transcript.whisperx[19].end 450.422
transcript.whisperx[19].text 他們的聰明才智可以創造未來子弟們他們的新的命運可以去改變他家庭的命運這本來很好啊結果這樣的制度如果有假低收假中低收的話他們也會享用到這個制度的漏洞好不好
transcript.whisperx[20].start 450.962
transcript.whisperx[20].end 461.291
transcript.whisperx[20].text OK 好 鮑委員我們一定會來 這部分來交要你具體的做 過一陣子這個確實要精準 好不好 好 時間暫停 你請回OK 非常感謝委員 謝謝主席 我請我請財政部長 來 莊部長請委員好莊部長 老問題啦 我去年提到現在我不曉得這一年來這個成績做得怎麼樣就是說我們國內
transcript.whisperx[21].start 480.735
transcript.whisperx[21].end 493.124
transcript.whisperx[21].text 受險業可運用資金有35兆那麼他們已經把這裡面的7成25兆拿去海外購買海外的債券基金那這有兩大風險一個戰爭風險一個
transcript.whisperx[22].start 495.766
transcript.whisperx[22].end 510.594
transcript.whisperx[22].text 這個匯率的風險結果這兩個風險在這一年多來我們都碰到了我相信你都很清楚所以我當時我具體建議因為他們要去海外他們是說國內利息低國內市場小他們是用這兩個理由我是認為國內利息低低不能當他藉口因為國內利息低我承認
transcript.whisperx[23].start 521.48
transcript.whisperx[23].end 539.501
transcript.whisperx[23].text 但是這些保險公司也是以這個低利息當作期望值去做成他的商品來賣給保險的民眾們所以利息低他不能當藉口好啦 另外一個他說市場小那市場小我認為這個就必須
transcript.whisperx[24].start 541.443
transcript.whisperx[24].end 551.819
transcript.whisperx[24].text 總部長必須你財政部來去規劃這些規劃哪一些規劃是不是我們國內需要建設那的
transcript.whisperx[25].start 556.258
transcript.whisperx[25].end 581.927
transcript.whisperx[25].text 資金 我們不要說每一筆都用預算大家變異形式預算編了就有不是 我們有自償性的建設喔 比方像社會住宅 比方說交通的各項建設啊我們鐵公路 高速公路的修建等等這一些 捷運 捷運等通車以後售票喔 那就有自償性嘛所以我們是不是來
transcript.whisperx[26].start 583.888
transcript.whisperx[26].end 612.324
transcript.whisperx[26].text 設需要的交通建設基金設宅基金長照債券這些可以設這些需要的建設的債券公債然後鼓勵甚至具體要求這些保險公司把在海外的這25兆一部分一部分挪回來買我們的建設公債表示對我們台灣對我們自己國家有信心那這個部分你做了沒
transcript.whisperx[27].start 613.186
transcript.whisperx[27].end 638.079
transcript.whisperx[27].text 跟委員報告謝謝委員的指教行政院有一個兆元投資方案在這裡面很重要的就提出更大的案源所謂就是要有投資的標的那第二個部分就是要放寬保險業投資國內的公共建設跟基礎建設那金管會呢對於這相關保險業投資的相關的項目都有做法令的調整那我想這個部分我們可以把它羅列又提供給委員也就是說把法規鬆綁
transcript.whisperx[28].start 639.7
transcript.whisperx[28].end 647.242
transcript.whisperx[28].text 讓保險業可以有更多的資金投資到國內的公共建設跟基礎建設而同樣的我們在這邊也釋出更大的一個案源讓他們可以投資那另外剛剛委員提到的就是發公債的部分對於有自償性的乙類公債那財政部這個部分也一直在請地方政府也好中央政府也好能夠發行乙類公債讓保險業可以也透過公債的模式來投入公共建設那這個部分大概有1494億大家從
transcript.whisperx[29].start 668.628
transcript.whisperx[29].end 694.334
transcript.whisperx[29].text 今年也會發70億的民航 交通部民航局這邊會發所以委員您所提的部分 今年會發齁好 那今年現在已經11月了是 我也許可以把資料整理給委員你剛剛念的那些法條都很認真但是我再提醒你 其實為什麼你的重責大任在你身上因為中央政府建設公債條例第四條就寫得很清楚啦授權其實直接就是授權財政部只要你核准
transcript.whisperx[30].start 695.675
transcript.whisperx[30].end 707.476
transcript.whisperx[30].text 報請行政院 那就可以發行了好不好所以重責大任就在財政部好 謝謝王委員 謝謝莊部長接下來有請李坤臣召委質詢