iVOD / 165376

Field Value
IVOD_ID 165376
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165376
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-20-8
會議資料.會議代碼:str 第11屆第4會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-11-13T10:28:08+08:00
結束時間 2025-11-13T10:41:06+08:00
影片長度 00:12:58
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610face8f4454bb89fdb904fa47f864c5dfb45a999b3dda7382768027a1751fd121cdf95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:28:08 - 10:41:06
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第8次全體委員會議(事由:一、邀請財政部莊部長翠雲、行政院主計總處陳主計長淑姿、中央銀行副總裁、國家發展委員會葉主任委員俊顯、經濟部次長、勞動部次長、衛生福利部次長就「經濟成長讓全民共享:政府如何縮短所得差距暨改善相對貧窮化之對策」進行專題報告,並備質詢。 二、審查本院民進黨黨團擬具「財政收支劃分法第十六條之一未分配款運用暫行條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 3.97971875
transcript.pyannote[0].end 17.14221875
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 17.37846875
transcript.pyannote[1].end 31.94159375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 24.17909375
transcript.pyannote[2].end 24.85409375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 30.99659375
transcript.pyannote[3].end 36.00846875
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 32.04284375
transcript.pyannote[4].end 32.70096875
transcript.pyannote[5].speaker SPEAKER_04
transcript.pyannote[5].start 35.95784375
transcript.pyannote[5].end 38.52284375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 37.08846875
transcript.pyannote[6].end 37.30784375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 38.10096875
transcript.pyannote[7].end 40.64909375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 41.29034375
transcript.pyannote[8].end 42.10034375
transcript.pyannote[9].speaker SPEAKER_04
transcript.pyannote[9].start 42.10034375
transcript.pyannote[9].end 43.38284375
transcript.pyannote[10].speaker SPEAKER_04
transcript.pyannote[10].start 43.93971875
transcript.pyannote[10].end 46.11659375
transcript.pyannote[11].speaker SPEAKER_04
transcript.pyannote[11].start 46.55534375
transcript.pyannote[11].end 50.62221875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 51.04409375
transcript.pyannote[12].end 57.01784375
transcript.pyannote[13].speaker SPEAKER_04
transcript.pyannote[13].start 53.49096875
transcript.pyannote[13].end 53.81159375
transcript.pyannote[14].speaker SPEAKER_04
transcript.pyannote[14].start 55.70159375
transcript.pyannote[14].end 59.61659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 57.89534375
transcript.pyannote[15].end 61.91159375
transcript.pyannote[16].speaker SPEAKER_04
transcript.pyannote[16].start 61.77659375
transcript.pyannote[16].end 72.28971875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 65.97846875
transcript.pyannote[17].end 66.24846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 69.77534375
transcript.pyannote[18].end 70.06221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 72.03659375
transcript.pyannote[19].end 76.00221875
transcript.pyannote[20].speaker SPEAKER_04
transcript.pyannote[20].start 72.76221875
transcript.pyannote[20].end 73.67346875
transcript.pyannote[21].speaker SPEAKER_04
transcript.pyannote[21].start 75.54659375
transcript.pyannote[21].end 90.22784375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 76.60971875
transcript.pyannote[22].end 77.43659375
transcript.pyannote[23].speaker SPEAKER_04
transcript.pyannote[23].start 90.71721875
transcript.pyannote[23].end 92.48909375
transcript.pyannote[24].speaker SPEAKER_04
transcript.pyannote[24].start 92.53971875
transcript.pyannote[24].end 96.33659375
transcript.pyannote[25].speaker SPEAKER_04
transcript.pyannote[25].start 96.80909375
transcript.pyannote[25].end 110.46096875
transcript.pyannote[26].speaker SPEAKER_04
transcript.pyannote[26].start 110.73096875
transcript.pyannote[26].end 113.43096875
transcript.pyannote[27].speaker SPEAKER_04
transcript.pyannote[27].start 114.30846875
transcript.pyannote[27].end 115.45596875
transcript.pyannote[28].speaker SPEAKER_04
transcript.pyannote[28].start 115.60784375
transcript.pyannote[28].end 116.62034375
transcript.pyannote[29].speaker SPEAKER_04
transcript.pyannote[29].start 117.22784375
transcript.pyannote[29].end 120.70409375
transcript.pyannote[30].speaker SPEAKER_04
transcript.pyannote[30].start 121.76721875
transcript.pyannote[30].end 126.47534375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 123.01596875
transcript.pyannote[31].end 123.20159375
transcript.pyannote[32].speaker SPEAKER_04
transcript.pyannote[32].start 126.82971875
transcript.pyannote[32].end 135.65534375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 127.35284375
transcript.pyannote[33].end 127.40346875
transcript.pyannote[34].speaker SPEAKER_04
transcript.pyannote[34].start 136.56659375
transcript.pyannote[34].end 137.03909375
transcript.pyannote[35].speaker SPEAKER_04
transcript.pyannote[35].start 137.61284375
transcript.pyannote[35].end 138.52409375
transcript.pyannote[36].speaker SPEAKER_04
transcript.pyannote[36].start 138.82784375
transcript.pyannote[36].end 139.53659375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 139.03034375
transcript.pyannote[37].end 140.09346875
transcript.pyannote[38].speaker SPEAKER_04
transcript.pyannote[38].start 140.09346875
transcript.pyannote[38].end 176.47596875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 143.43471875
transcript.pyannote[39].end 144.49784375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 144.64971875
transcript.pyannote[40].end 144.76784375
transcript.pyannote[41].speaker SPEAKER_05
transcript.pyannote[41].start 144.76784375
transcript.pyannote[41].end 144.80159375
transcript.pyannote[42].speaker SPEAKER_05
transcript.pyannote[42].start 148.44659375
transcript.pyannote[42].end 148.96971875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 148.96971875
transcript.pyannote[43].end 149.05409375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 149.22284375
transcript.pyannote[44].end 149.23971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 157.69409375
transcript.pyannote[45].end 158.43659375
transcript.pyannote[46].speaker SPEAKER_05
transcript.pyannote[46].start 167.46471875
transcript.pyannote[46].end 168.05534375
transcript.pyannote[47].speaker SPEAKER_05
transcript.pyannote[47].start 169.32096875
transcript.pyannote[47].end 169.70909375
transcript.pyannote[48].speaker SPEAKER_05
transcript.pyannote[48].start 170.72159375
transcript.pyannote[48].end 171.61596875
transcript.pyannote[49].speaker SPEAKER_05
transcript.pyannote[49].start 171.81846875
transcript.pyannote[49].end 172.03784375
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 176.62784375
transcript.pyannote[50].end 178.53471875
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 178.63596875
transcript.pyannote[51].end 178.77096875
transcript.pyannote[52].speaker SPEAKER_05
transcript.pyannote[52].start 178.77096875
transcript.pyannote[52].end 179.12534375
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 179.12534375
transcript.pyannote[53].end 181.55534375
transcript.pyannote[54].speaker SPEAKER_05
transcript.pyannote[54].start 181.79159375
transcript.pyannote[54].end 184.96409375
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 184.96409375
transcript.pyannote[55].end 195.83159375
transcript.pyannote[56].speaker SPEAKER_05
transcript.pyannote[56].start 186.44909375
transcript.pyannote[56].end 186.75284375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 189.73971875
transcript.pyannote[57].end 190.63409375
transcript.pyannote[58].speaker SPEAKER_04
transcript.pyannote[58].start 196.52346875
transcript.pyannote[58].end 197.89034375
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 198.68346875
transcript.pyannote[59].end 206.02409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 201.90659375
transcript.pyannote[60].end 203.02034375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 204.55596875
transcript.pyannote[61].end 205.95659375
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 206.58096875
transcript.pyannote[62].end 220.57034375
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 220.84034375
transcript.pyannote[63].end 225.00846875
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 225.64971875
transcript.pyannote[64].end 242.87909375
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 243.58784375
transcript.pyannote[65].end 258.10034375
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 258.72471875
transcript.pyannote[66].end 259.61909375
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 260.12534375
transcript.pyannote[67].end 274.08096875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 264.02346875
transcript.pyannote[68].end 266.03159375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 266.03159375
transcript.pyannote[69].end 266.36909375
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 274.21596875
transcript.pyannote[70].end 281.47221875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 278.19846875
transcript.pyannote[71].end 278.24909375
transcript.pyannote[72].speaker SPEAKER_05
transcript.pyannote[72].start 278.24909375
transcript.pyannote[72].end 279.56534375
transcript.pyannote[73].speaker SPEAKER_04
transcript.pyannote[73].start 281.69159375
transcript.pyannote[73].end 284.72909375
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 285.20159375
transcript.pyannote[74].end 286.88909375
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 287.63159375
transcript.pyannote[75].end 293.53784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 293.89221875
transcript.pyannote[76].end 294.66846875
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 294.90471875
transcript.pyannote[77].end 298.48221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 298.65096875
transcript.pyannote[78].end 303.51096875
transcript.pyannote[79].speaker SPEAKER_04
transcript.pyannote[79].start 300.55784375
transcript.pyannote[79].end 301.33409375
transcript.pyannote[80].speaker SPEAKER_04
transcript.pyannote[80].start 303.15659375
transcript.pyannote[80].end 306.19409375
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 306.53159375
transcript.pyannote[81].end 315.23909375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 315.76221875
transcript.pyannote[82].end 320.68971875
transcript.pyannote[83].speaker SPEAKER_04
transcript.pyannote[83].start 320.13284375
transcript.pyannote[83].end 327.38909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 327.08534375
transcript.pyannote[84].end 333.48096875
transcript.pyannote[85].speaker SPEAKER_04
transcript.pyannote[85].start 331.20284375
transcript.pyannote[85].end 336.02909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 336.26534375
transcript.pyannote[86].end 337.63221875
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 337.02471875
transcript.pyannote[87].end 338.18909375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 337.93596875
transcript.pyannote[88].end 338.37471875
transcript.pyannote[89].speaker SPEAKER_04
transcript.pyannote[89].start 338.45909375
transcript.pyannote[89].end 341.36159375
transcript.pyannote[90].speaker SPEAKER_04
transcript.pyannote[90].start 341.88471875
transcript.pyannote[90].end 344.63534375
transcript.pyannote[91].speaker SPEAKER_04
transcript.pyannote[91].start 344.85471875
transcript.pyannote[91].end 345.71534375
transcript.pyannote[92].speaker SPEAKER_04
transcript.pyannote[92].start 346.01909375
transcript.pyannote[92].end 350.60909375
transcript.pyannote[93].speaker SPEAKER_05
transcript.pyannote[93].start 350.01846875
transcript.pyannote[93].end 350.32221875
transcript.pyannote[94].speaker SPEAKER_05
transcript.pyannote[94].start 350.60909375
transcript.pyannote[94].end 350.64284375
transcript.pyannote[95].speaker SPEAKER_04
transcript.pyannote[95].start 351.03096875
transcript.pyannote[95].end 351.50346875
transcript.pyannote[96].speaker SPEAKER_04
transcript.pyannote[96].start 351.87471875
transcript.pyannote[96].end 353.68034375
transcript.pyannote[97].speaker SPEAKER_04
transcript.pyannote[97].start 354.22034375
transcript.pyannote[97].end 355.67159375
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 356.07659375
transcript.pyannote[98].end 359.51909375
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 359.95784375
transcript.pyannote[99].end 362.05034375
transcript.pyannote[100].speaker SPEAKER_05
transcript.pyannote[100].start 362.52284375
transcript.pyannote[100].end 364.00784375
transcript.pyannote[101].speaker SPEAKER_04
transcript.pyannote[101].start 363.14721875
transcript.pyannote[101].end 365.76284375
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 366.04971875
transcript.pyannote[102].end 373.62659375
transcript.pyannote[103].speaker SPEAKER_04
transcript.pyannote[103].start 374.23409375
transcript.pyannote[103].end 375.02721875
transcript.pyannote[104].speaker SPEAKER_05
transcript.pyannote[104].start 376.42784375
transcript.pyannote[104].end 378.28409375
transcript.pyannote[105].speaker SPEAKER_04
transcript.pyannote[105].start 377.71034375
transcript.pyannote[105].end 378.75659375
transcript.pyannote[106].speaker SPEAKER_05
transcript.pyannote[106].start 378.75659375
transcript.pyannote[106].end 378.95909375
transcript.pyannote[107].speaker SPEAKER_04
transcript.pyannote[107].start 378.95909375
transcript.pyannote[107].end 381.84471875
transcript.pyannote[108].speaker SPEAKER_04
transcript.pyannote[108].start 381.96284375
transcript.pyannote[108].end 382.04721875
transcript.pyannote[109].speaker SPEAKER_04
transcript.pyannote[109].start 382.08096875
transcript.pyannote[109].end 382.75596875
transcript.pyannote[110].speaker SPEAKER_04
transcript.pyannote[110].start 383.63346875
transcript.pyannote[110].end 388.45971875
transcript.pyannote[111].speaker SPEAKER_04
transcript.pyannote[111].start 389.77596875
transcript.pyannote[111].end 390.63659375
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 391.15971875
transcript.pyannote[112].end 394.58534375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 394.66971875
transcript.pyannote[113].end 396.89721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 397.08284375
transcript.pyannote[114].end 399.86721875
transcript.pyannote[115].speaker SPEAKER_04
transcript.pyannote[115].start 398.97284375
transcript.pyannote[115].end 403.05659375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 403.83284375
transcript.pyannote[116].end 409.94159375
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 408.11909375
transcript.pyannote[117].end 409.40159375
transcript.pyannote[118].speaker SPEAKER_04
transcript.pyannote[118].start 409.94159375
transcript.pyannote[118].end 411.74721875
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 412.16909375
transcript.pyannote[119].end 415.69596875
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 415.79721875
transcript.pyannote[120].end 417.29909375
transcript.pyannote[121].speaker SPEAKER_05
transcript.pyannote[121].start 417.94034375
transcript.pyannote[121].end 418.51409375
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 418.15971875
transcript.pyannote[122].end 427.81221875
transcript.pyannote[123].speaker SPEAKER_05
transcript.pyannote[123].start 428.01471875
transcript.pyannote[123].end 428.45346875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 428.62221875
transcript.pyannote[124].end 432.94221875
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 433.92096875
transcript.pyannote[125].end 434.95034375
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 435.64221875
transcript.pyannote[126].end 437.09346875
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 438.10596875
transcript.pyannote[127].end 441.71721875
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 442.39221875
transcript.pyannote[128].end 444.51846875
transcript.pyannote[129].speaker SPEAKER_04
transcript.pyannote[129].start 445.31159375
transcript.pyannote[129].end 446.27346875
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 447.37034375
transcript.pyannote[130].end 449.90159375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 447.55596875
transcript.pyannote[131].end 454.23846875
transcript.pyannote[132].speaker SPEAKER_04
transcript.pyannote[132].start 453.98534375
transcript.pyannote[132].end 456.11159375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 456.36471875
transcript.pyannote[133].end 456.87096875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 457.32659375
transcript.pyannote[134].end 463.60409375
transcript.pyannote[135].speaker SPEAKER_04
transcript.pyannote[135].start 461.54534375
transcript.pyannote[135].end 464.46471875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 464.02596875
transcript.pyannote[136].end 464.48159375
transcript.pyannote[137].speaker SPEAKER_04
transcript.pyannote[137].start 464.48159375
transcript.pyannote[137].end 474.92721875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 475.16346875
transcript.pyannote[138].end 483.75284375
transcript.pyannote[139].speaker SPEAKER_04
transcript.pyannote[139].start 483.14534375
transcript.pyannote[139].end 490.43534375
transcript.pyannote[140].speaker SPEAKER_04
transcript.pyannote[140].start 490.82346875
transcript.pyannote[140].end 493.48971875
transcript.pyannote[141].speaker SPEAKER_04
transcript.pyannote[141].start 493.89471875
transcript.pyannote[141].end 501.11721875
transcript.pyannote[142].speaker SPEAKER_05
transcript.pyannote[142].start 500.72909375
transcript.pyannote[142].end 502.21409375
transcript.pyannote[143].speaker SPEAKER_04
transcript.pyannote[143].start 502.21409375
transcript.pyannote[143].end 503.53034375
transcript.pyannote[144].speaker SPEAKER_04
transcript.pyannote[144].start 503.80034375
transcript.pyannote[144].end 506.17971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 505.31909375
transcript.pyannote[145].end 513.57096875
transcript.pyannote[146].speaker SPEAKER_04
transcript.pyannote[146].start 507.00659375
transcript.pyannote[146].end 507.56346875
transcript.pyannote[147].speaker SPEAKER_04
transcript.pyannote[147].start 509.82471875
transcript.pyannote[147].end 511.51221875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 512.71034375
transcript.pyannote[148].end 519.19034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 519.19034375
transcript.pyannote[149].end 519.42659375
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 519.42659375
transcript.pyannote[150].end 522.95346875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 523.08846875
transcript.pyannote[151].end 523.49346875
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 523.61159375
transcript.pyannote[152].end 527.66159375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 528.38721875
transcript.pyannote[153].end 529.70346875
transcript.pyannote[154].speaker SPEAKER_04
transcript.pyannote[154].start 529.61909375
transcript.pyannote[154].end 535.15409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 529.82159375
transcript.pyannote[155].end 530.54721875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 530.71596875
transcript.pyannote[156].end 530.86784375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 534.76596875
transcript.pyannote[157].end 536.06534375
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 535.42409375
transcript.pyannote[158].end 536.84159375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 536.65596875
transcript.pyannote[159].end 537.12846875
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 537.06096875
transcript.pyannote[160].end 542.78159375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 542.44409375
transcript.pyannote[161].end 546.71346875
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 545.51534375
transcript.pyannote[162].end 547.00034375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 546.91596875
transcript.pyannote[163].end 547.30409375
transcript.pyannote[164].speaker SPEAKER_04
transcript.pyannote[164].start 547.23659375
transcript.pyannote[164].end 551.53971875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 551.99534375
transcript.pyannote[165].end 553.93596875
transcript.pyannote[166].speaker SPEAKER_04
transcript.pyannote[166].start 552.07971875
transcript.pyannote[166].end 552.88971875
transcript.pyannote[167].speaker SPEAKER_04
transcript.pyannote[167].start 553.48034375
transcript.pyannote[167].end 554.42534375
transcript.pyannote[168].speaker SPEAKER_04
transcript.pyannote[168].start 554.89784375
transcript.pyannote[168].end 565.51221875
transcript.pyannote[169].speaker SPEAKER_05
transcript.pyannote[169].start 567.19971875
transcript.pyannote[169].end 575.23221875
transcript.pyannote[170].speaker SPEAKER_04
transcript.pyannote[170].start 574.42221875
transcript.pyannote[170].end 574.79346875
transcript.pyannote[171].speaker SPEAKER_04
transcript.pyannote[171].start 575.23221875
transcript.pyannote[171].end 575.28284375
transcript.pyannote[172].speaker SPEAKER_05
transcript.pyannote[172].start 575.28284375
transcript.pyannote[172].end 575.97471875
transcript.pyannote[173].speaker SPEAKER_04
transcript.pyannote[173].start 575.97471875
transcript.pyannote[173].end 576.02534375
transcript.pyannote[174].speaker SPEAKER_05
transcript.pyannote[174].start 576.02534375
transcript.pyannote[174].end 576.07596875
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 576.07596875
transcript.pyannote[175].end 576.09284375
transcript.pyannote[176].speaker SPEAKER_05
transcript.pyannote[176].start 576.09284375
transcript.pyannote[176].end 576.53159375
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 576.53159375
transcript.pyannote[177].end 576.54846875
transcript.pyannote[178].speaker SPEAKER_05
transcript.pyannote[178].start 576.54846875
transcript.pyannote[178].end 576.64971875
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 576.64971875
transcript.pyannote[179].end 576.71721875
transcript.pyannote[180].speaker SPEAKER_05
transcript.pyannote[180].start 576.71721875
transcript.pyannote[180].end 578.89409375
transcript.pyannote[181].speaker SPEAKER_04
transcript.pyannote[181].start 576.85221875
transcript.pyannote[181].end 577.89846875
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 578.15159375
transcript.pyannote[182].end 578.37096875
transcript.pyannote[183].speaker SPEAKER_05
transcript.pyannote[183].start 579.53534375
transcript.pyannote[183].end 586.45409375
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 581.69534375
transcript.pyannote[184].end 581.99909375
transcript.pyannote[185].speaker SPEAKER_04
transcript.pyannote[185].start 584.81721875
transcript.pyannote[185].end 590.03159375
transcript.pyannote[186].speaker SPEAKER_04
transcript.pyannote[186].start 590.36909375
transcript.pyannote[186].end 594.67221875
transcript.pyannote[187].speaker SPEAKER_04
transcript.pyannote[187].start 594.89159375
transcript.pyannote[187].end 596.24159375
transcript.pyannote[188].speaker SPEAKER_04
transcript.pyannote[188].start 596.46096875
transcript.pyannote[188].end 597.18659375
transcript.pyannote[189].speaker SPEAKER_04
transcript.pyannote[189].start 597.49034375
transcript.pyannote[189].end 605.15159375
transcript.pyannote[190].speaker SPEAKER_04
transcript.pyannote[190].start 605.82659375
transcript.pyannote[190].end 610.26471875
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 610.58534375
transcript.pyannote[191].end 613.33596875
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 613.82534375
transcript.pyannote[192].end 615.71534375
transcript.pyannote[193].speaker SPEAKER_04
transcript.pyannote[193].start 616.15409375
transcript.pyannote[193].end 620.79471875
transcript.pyannote[194].speaker SPEAKER_04
transcript.pyannote[194].start 621.21659375
transcript.pyannote[194].end 621.72284375
transcript.pyannote[195].speaker SPEAKER_04
transcript.pyannote[195].start 622.33034375
transcript.pyannote[195].end 623.08971875
transcript.pyannote[196].speaker SPEAKER_04
transcript.pyannote[196].start 623.47784375
transcript.pyannote[196].end 623.96721875
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 624.60846875
transcript.pyannote[197].end 627.56159375
transcript.pyannote[198].speaker SPEAKER_04
transcript.pyannote[198].start 627.79784375
transcript.pyannote[198].end 629.53596875
transcript.pyannote[199].speaker SPEAKER_04
transcript.pyannote[199].start 629.85659375
transcript.pyannote[199].end 632.06721875
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 632.91096875
transcript.pyannote[200].end 639.66096875
transcript.pyannote[201].speaker SPEAKER_04
transcript.pyannote[201].start 640.33596875
transcript.pyannote[201].end 642.78284375
transcript.pyannote[202].speaker SPEAKER_04
transcript.pyannote[202].start 644.20034375
transcript.pyannote[202].end 645.02721875
transcript.pyannote[203].speaker SPEAKER_05
transcript.pyannote[203].start 645.02721875
transcript.pyannote[203].end 654.42659375
transcript.pyannote[204].speaker SPEAKER_04
transcript.pyannote[204].start 653.07659375
transcript.pyannote[204].end 655.35471875
transcript.pyannote[205].speaker SPEAKER_05
transcript.pyannote[205].start 655.57409375
transcript.pyannote[205].end 655.94534375
transcript.pyannote[206].speaker SPEAKER_04
transcript.pyannote[206].start 656.16471875
transcript.pyannote[206].end 658.71284375
transcript.pyannote[207].speaker SPEAKER_05
transcript.pyannote[207].start 658.62846875
transcript.pyannote[207].end 659.01659375
transcript.pyannote[208].speaker SPEAKER_04
transcript.pyannote[208].start 658.94909375
transcript.pyannote[208].end 660.11346875
transcript.pyannote[209].speaker SPEAKER_04
transcript.pyannote[209].start 660.68721875
transcript.pyannote[209].end 665.26034375
transcript.pyannote[210].speaker SPEAKER_04
transcript.pyannote[210].start 665.58096875
transcript.pyannote[210].end 670.01909375
transcript.pyannote[211].speaker SPEAKER_04
transcript.pyannote[211].start 670.64346875
transcript.pyannote[211].end 673.36034375
transcript.pyannote[212].speaker SPEAKER_04
transcript.pyannote[212].start 673.47846875
transcript.pyannote[212].end 674.84534375
transcript.pyannote[213].speaker SPEAKER_04
transcript.pyannote[213].start 675.03096875
transcript.pyannote[213].end 676.22909375
transcript.pyannote[214].speaker SPEAKER_04
transcript.pyannote[214].start 676.39784375
transcript.pyannote[214].end 679.92471875
transcript.pyannote[215].speaker SPEAKER_04
transcript.pyannote[215].start 680.36346875
transcript.pyannote[215].end 695.95596875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 696.24284375
transcript.pyannote[216].end 711.66659375
transcript.pyannote[217].speaker SPEAKER_04
transcript.pyannote[217].start 702.18284375
transcript.pyannote[217].end 702.52034375
transcript.pyannote[218].speaker SPEAKER_04
transcript.pyannote[218].start 711.76784375
transcript.pyannote[218].end 715.64909375
transcript.pyannote[219].speaker SPEAKER_04
transcript.pyannote[219].start 715.80096875
transcript.pyannote[219].end 732.69284375
transcript.pyannote[220].speaker SPEAKER_04
transcript.pyannote[220].start 733.48596875
transcript.pyannote[220].end 733.97534375
transcript.pyannote[221].speaker SPEAKER_04
transcript.pyannote[221].start 734.21159375
transcript.pyannote[221].end 736.99596875
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 737.40096875
transcript.pyannote[222].end 738.14346875
transcript.pyannote[223].speaker SPEAKER_04
transcript.pyannote[223].start 738.51471875
transcript.pyannote[223].end 740.30346875
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 740.53971875
transcript.pyannote[224].end 746.14221875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 746.58096875
transcript.pyannote[225].end 748.16721875
transcript.pyannote[226].speaker SPEAKER_04
transcript.pyannote[226].start 747.91409375
transcript.pyannote[226].end 756.36846875
transcript.pyannote[227].speaker SPEAKER_04
transcript.pyannote[227].start 756.72284375
transcript.pyannote[227].end 767.77596875
transcript.pyannote[228].speaker SPEAKER_04
transcript.pyannote[228].start 768.28221875
transcript.pyannote[228].end 769.75034375
transcript.pyannote[229].speaker SPEAKER_03
transcript.pyannote[229].start 769.88534375
transcript.pyannote[229].end 774.37409375
transcript.whisperx[0].start 4.133
transcript.whisperx[0].end 25.106
transcript.whisperx[0].text 主席在場的委員先進列席的中午金剛市長官員會長工作夥伴媒體記者女士先生依序要請這幾位首長來接受質詢第一位是我們的陳祖濟長第二位是莊部長那麼第三位是衛福部的呂次長再來是勞動部的李次長然後經濟部的何次長
transcript.whisperx[1].start 25.646
transcript.whisperx[1].end 50.396
transcript.whisperx[1].text 以及國發會的高副主委那我問了我就請不再問了就請他們先回座休息好 那就請剛剛中委員要求的與會的次長還有副主委因為這樣可以節省時間我不用再秒數暫停高副主委 何市長 李市長好 李市長那麼陳主席長我們去年國人的經常性平均薪資跟中位數分別是多少
transcript.whisperx[2].start 51.698
transcript.whisperx[2].end 72.002
transcript.whisperx[2].text 九月是四萬八啦 一到九月是四萬七這是經常性的平均薪資那中位數呢中位數是三萬八那大家都很清楚知道平均薪資是全部的薪資的平均但是中位數意思說有一半的人的薪水不到三萬八但是平均薪水是在四萬八四萬七
transcript.whisperx[3].start 75.592
transcript.whisperx[3].end 89.747
transcript.whisperx[3].text 好那沒關係這不是重點重點是什麼重點是什麼叫做縮短所得差距怎麼樣減少相對的貧窮感假設說十年前我你還沒結束我十年前月領三萬
transcript.whisperx[4].start 90.828
transcript.whisperx[4].end 115.79
transcript.whisperx[4].text 我跟另外一位月領三萬十年後我領到了五萬我應該很開心吧超過我們運薪資啦但是另外那位跟我同時進來的呢他領到了十萬因為他進入了台積電的關聯產業他不是在那邊做晶片他可能幫他們工廠做維護我呢 漲了兩萬塊的薪水但是你覺得我有沒有相對的貧窮感他領十萬 我領五萬
transcript.whisperx[5].start 117.284
transcript.whisperx[5].end 135.29
transcript.whisperx[5].text 我只多了兩萬他多了七萬主席長知道原因了是那你認為這就是我們國人相對貧窮感的原因是是所得的增加因為產業別沒有平均的照顧到每個人好那麼接下來我要請教一下我們的請回請回請旅事長
transcript.whisperx[6].start 140.24
transcript.whisperx[6].end 155.149
transcript.whisperx[6].text 剛剛我們的委員 剛剛是李彥秀委員提到了我們的國民年金保險國保年金有200多萬人對不對請問他們平均每個月可以領多少錢報告委員我們現在目前有這個A4 B4還有另外大概是多少錢
transcript.whisperx[7].start 155.649
transcript.whisperx[7].end 180.668
transcript.whisperx[7].text 大概有四千上下吧大概四千四零九六那請問你知道目前年金在進行改革現階段的公教退休人員大概平均月領多少大概五萬八是教育人員五萬一是公務人員那你覺得同樣是退休人員退休生活所需要的基礎物質基礎差不多吧對沒錯那你覺得這樣會不會有相對的貧窮感
transcript.whisperx[8].start 181.849
transcript.whisperx[8].end 197.717
transcript.whisperx[8].text 包委員這個應該會造成不光相對貧窮感而且相對剝奪感相對剝奪感所以我們我很認同剛剛那個那個李燕秀委員所說的我們對於這208萬的國保年金的這個月薪月薪的
transcript.whisperx[9].start 198.735
transcript.whisperx[9].end 224.464
transcript.whisperx[9].text 年金的月領人我們覺得很辛苦謝謝請回來我們請勞動部次長所有人國民都應該有平等的保護謝謝所以衛福部支持讓所有的年金族都能夠有一個比較公平的年金制度來請問一下目前次長我們勞動人口勞保是不是1048萬48萬對不對這當中有多少人是受雇的可以有他雇主幫他勞退幫他提撥的
transcript.whisperx[10].start 225.774
transcript.whisperx[10].end 241.949
transcript.whisperx[10].text 受雇受雇者大概是854萬那目前有雇主幫他做勞退提撥的多少大概770多萬大概770萬請問這770萬雇主受雇者雇主幫他提撥勞退6%的有多少自己有自提1到6%
transcript.whisperx[11].start 245.09
transcript.whisperx[11].end 257.682
transcript.whisperx[11].text 全部129萬但其中受僱勞工115萬好 所以非常少不到兩成所以相對的這些受僱的上班族有將近超過八成他自己沒有自行提撥為什麼你知道嗎
transcript.whisperx[12].start 258.769
transcript.whisperx[12].end 283.419
transcript.whisperx[12].text 你覺得什麼原因我們根據我們的數據大概就是比較低薪他覺得自己的薪水少嘛我才月領三萬 五萬我怎麼會去提呢那這些自提的是不是都是平均月薪資比較高的你們的統計大概九成左右都是比較高薪的對不對 月薪都很高好 謝謝請回好 現在我們要請教財政部長財政部長
transcript.whisperx[13].start 288.378
transcript.whisperx[13].end 293.42
transcript.whisperx[13].text 剛剛有李議員要問到說財化法現在是不是有行政院版即將推出會的
transcript.whisperx[14].start 295.103
transcript.whisperx[14].end 315.012
transcript.whisperx[14].text 裡面有沒有包括對16條之一公式的一些調整我們是重新規劃讓它在水平分配更為合理所以你行政院的版本未來會不會比現在這些受到16條之一公式錯誤影響這幾個縣市你們的版本有沒有讓未來這幾個縣市可以得到的統籌分配更多
transcript.whisperx[15].start 316.094
transcript.whisperx[15].end 335.78
transcript.whisperx[15].text 我们的公司会做一个合理的分配不合理的分配所以保证这几个受到这个16条之一受影响的县市他可以更得到更多的合理分配16条之一这样的一个分母的问题事实上每个县市或者问你行政院法以后会不会比只修16条之一你觉得更好
transcript.whisperx[16].start 336.761
transcript.whisperx[16].end 350.161
transcript.whisperx[16].text 當然好謝謝請回是來我們現在請那個還有經濟部跟國發會來那個先請經濟部次長來我們往下看今天我的主題來了很快的音樂時間有限往下看
transcript.whisperx[17].start 351.089
transcript.whisperx[17].end 374.839
transcript.whisperx[17].text 好來那個次長 何次長傳產是不是變成傳產在第二季電子業跟傳產是兩樣情是不是經濟部有沒有看到這個現象有嘛那你們哪些政策工具我們來看一下你們政策工具融資給他低利貸款給他還款斬鹽地租的減免租金的減免水電房租運費行銷費用你們都有補貼哪一個最有效
transcript.whisperx[18].start 376.539
transcript.whisperx[18].end 402.119
transcript.whisperx[18].text 第一個融資的部分你覺得第一個有效我告訴你通通有效但是通通都不夠用往下看四大基金能做什麼來四大基金高富主委四大基金能做什麼是不是這些穩健股市以基金投資收益來支持產業多元佈局執行各種策略投資是不是這樣子基金有他的運用的對那你瞭解他們目前持股是不是以半導體資通金融這個龍頭股為主
transcript.whisperx[19].start 404.208
transcript.whisperx[19].end 430.036
transcript.whisperx[19].text 我覺得他們會按照那個他在股市在那個我了解我了解大概是這樣的情況往下看那麼協助傳產有一個叫CITD這是經濟部負責對不對是不是說寫的製造業跟技術服務他上限是200萬研發是1000萬他目前呢補助上限低其實很短只有一年規模小是不是這樣子是那麼是從到90年到110年4655萬投入多少錢
transcript.whisperx[20].start 433.953
transcript.whisperx[20].end 446.049
transcript.whisperx[20].text 不到60億啊這是不是傳產可以得到的是不是 目前傳產可以得到嗎還有沒有其他傳產可以得到往下看來 產業製造基金有沒有這個東西這是誰負責的
transcript.whisperx[21].start 448.067
transcript.whisperx[21].end 472.126
transcript.whisperx[21].text 來 國發會你說你們怎麼進行產業再造基金我們有投資一個VC然後他是要協助那個傳產產業做轉型是不是創業投資事業可以申請我們沒有這個基金的名稱我們沒有這個基金只是有一個VC是不是以創業投資為主是好 那現在問題來了現在面臨轉型困境遇到了這個關稅衝擊的他不是要新創他不是要創業投資 他要轉型何市長是不是這樣子
transcript.whisperx[22].start 475.628
transcript.whisperx[22].end 502.943
transcript.whisperx[22].text 跟委員報告我們這一個我們投的這個VC不是火星創它是投資上市櫃公司裡面需要上市櫃公司更好目標是30億上市櫃公司何市長請你告訴高副主委我們的傳產有多少是在上市櫃何市長請說我們的中小企業你過去來自於中小企業的照顧的這個團體我們是不是幾成都是中小企業九成以上嗎大概九成八以上九成八
transcript.whisperx[23].start 503.863
transcript.whisperx[23].end 527.57
transcript.whisperx[23].text 高副主委2%的上市會可以得到委員我跟您報告我剛剛講的只是這一檔基金那我們國發基金非常多元的投資方式我後面就有來看一下國發基金投資的業務融資的業務其他業務有這麼多是不是是的沒有冤枉嘛都幫你寫出來你們這邊有個百億主題投資對他是包括資本支出的融資周轉的融資利息的補貼信用的保證有沒有
transcript.whisperx[24].start 528.604
transcript.whisperx[24].end 551.099
transcript.whisperx[24].text 這是融資業務對 都有嘛那你們福島轉型的對象就不限定上市貴了嘛對不對是 當然很好 就這樣往下看所以有沒有個天使創投目前國發基金有在對新創事業有這樣的一個基金對不對有 我們現在我們的額度增加到100億對 這是對新創嘛對新創嘛 傳產要轉型的看得到這不是對他的 對不對
transcript.whisperx[25].start 552.1
transcript.whisperx[25].end 565.309
transcript.whisperx[25].text 是另外的嗎對 另外的有好 往下看所以我認為新創產業需要天使基金國發已經準備好了傳統產業的轉型需要轉型投資資金何市長你同不同意
transcript.whisperx[26].start 567.576
transcript.whisperx[26].end 586.09
transcript.whisperx[26].text 跟委員報告 其實國際基金給經濟部的100億裡面我們其實也有做這方面的投資這方面 哪方面 傳產對不對轉型對不對 大概多少我們經濟部有製造業 有服務業 也有中小企業總共有300億我告訴你 現在傳產分兩種 私私有兩種
transcript.whisperx[27].start 590.853
transcript.whisperx[27].end 604.144
transcript.whisperx[27].text 傳傳有的他真的是老闆說我要收起來為什麼 坐不下去了可能我是連特登連我的用地都不是符合的我要去特登特登要輔導我我看關稅衝擊我坐不下去了我們有沒有輔導退場會不會
transcript.whisperx[28].start 605.865
transcript.whisperx[28].end 631.614
transcript.whisperx[28].text 福島退場之後 勞動部 衛護部要接手啊要照顧所有人家的勞工啊但是另外有一些 他不是沒有競爭力他只是撐不過去這個延東他已經看準了未來的市場投資佈局 買了機器 擴充了土地 借了錢現在美國市場既有手上的訂單縮減了未來的訂單還在努力市長換成是你 你會怎麼辦
transcript.whisperx[29].start 632.95
transcript.whisperx[29].end 642.389
transcript.whisperx[29].text 把新買的廠房賣掉先還新界的錢把員工就叫他們回家吃自己你覺得要面臨轉型的企業主他會這樣做嗎
transcript.whisperx[30].start 644.229
transcript.whisperx[30].end 669.851
transcript.whisperx[30].text 如果是你你會這樣做嗎跟委員報告其實員工是企業最重要的資產一般來講企業主基本上都船產顧了200到300萬嘛是其實企業主當然珍惜他的員工嘛對10年20年縱使是二三十人的船產都有二三十個家庭靠他照顧對不對所以這些船產的企業主需要什麼需要經濟部跟國發的支持往下看
transcript.whisperx[31].start 670.712
transcript.whisperx[31].end 694.914
transcript.whisperx[31].text 是不是我可以來請經濟部跟國外思考一下我們在國發基金給傳產的部分現有的投資有生物科技文化創意半導體航太未來如果傳產部分如果有是投資而非借貸投資而非借貸政府來參與請問兩位請問高副主委你認為這樣的方向符不符合我們支持傳統中小企業來轉型
transcript.whisperx[32].start 696.331
transcript.whisperx[32].end 710.107
transcript.whisperx[32].text 我們國發基金其實一直以來都用不同的管道支持傳產的轉型升級那譬如說我們剛剛講到次長講到了我們匡列一個三個百億基金還有我們很多的VC還有直投我們都支持傳統產業轉型升級
transcript.whisperx[33].start 711.809
transcript.whisperx[33].end 736.275
transcript.whisperx[33].text 好我們看一下很快的30秒回顧一下下一頁台積電成立初期我們開發基金的投資方式現在台積電我們政府的持股就成為我們國發基金協助其他新創產業的一個基礎往下看所以隱形冠軍遭遇寒冬產值減少訂單不配看他借不到錢市長要不要支持這些隱形冠軍渡過難關
transcript.whisperx[34].start 737.795
transcript.whisperx[34].end 745.966
transcript.whisperx[34].text 當然要好 高副主委我們是不是比照我們護國神山來守護傳產的隱形冠軍要不要
transcript.whisperx[35].start 746.856
transcript.whisperx[35].end 774.057
transcript.whisperx[35].text 我們一直都在這樣做所以最後兩個要求請看我就不再重述主席站起來了希望我們國發會跟經濟部攜手幫助這些不是上市櫃中小企業占我們九成八的中小企業當中有未來競爭轉型能力的協助他們度過寒冬用你們手中的政策工具增加在我們傳產中小企業的身上好不好好謝謝兩位謝謝主席謝謝總委員接下來我們請王世堅委員