iVOD / 165356

Field Value
IVOD_ID 165356
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165356
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-20-8
會議資料.會議代碼:str 第11屆第4會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-11-13T09:50:37+08:00
結束時間 2025-11-13T10:02:37+08:00
影片長度 00:12:00
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fffa2c65c610face5ea3b376ac6d01c5fa47f864c5dfb45a999b3dda738276807bd1442b9f89c7a65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:50:37 - 10:02:37
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第8次全體委員會議(事由:一、邀請財政部莊部長翠雲、行政院主計總處陳主計長淑姿、中央銀行副總裁、國家發展委員會葉主任委員俊顯、經濟部次長、勞動部次長、衛生福利部次長就「經濟成長讓全民共享:政府如何縮短所得差距暨改善相對貧窮化之對策」進行專題報告,並備質詢。 二、審查本院民進黨黨團擬具「財政收支劃分法第十六條之一未分配款運用暫行條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_05
transcript.pyannote[0].start 3.65909375
transcript.pyannote[0].end 5.63346875
transcript.pyannote[1].speaker SPEAKER_05
transcript.pyannote[1].start 6.15659375
transcript.pyannote[1].end 9.68346875
transcript.pyannote[2].speaker SPEAKER_05
transcript.pyannote[2].start 9.86909375
transcript.pyannote[2].end 11.99534375
transcript.pyannote[3].speaker SPEAKER_05
transcript.pyannote[3].start 12.36659375
transcript.pyannote[3].end 14.27346875
transcript.pyannote[4].speaker SPEAKER_05
transcript.pyannote[4].start 14.91471875
transcript.pyannote[4].end 16.75409375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 16.80471875
transcript.pyannote[5].end 20.66909375
transcript.pyannote[6].speaker SPEAKER_05
transcript.pyannote[6].start 17.85096875
transcript.pyannote[6].end 18.18846875
transcript.pyannote[7].speaker SPEAKER_05
transcript.pyannote[7].start 21.52971875
transcript.pyannote[7].end 22.12034375
transcript.pyannote[8].speaker SPEAKER_05
transcript.pyannote[8].start 22.69409375
transcript.pyannote[8].end 27.38534375
transcript.pyannote[9].speaker SPEAKER_05
transcript.pyannote[9].start 27.97596875
transcript.pyannote[9].end 35.11409375
transcript.pyannote[10].speaker SPEAKER_05
transcript.pyannote[10].start 35.38409375
transcript.pyannote[10].end 37.25721875
transcript.pyannote[11].speaker SPEAKER_05
transcript.pyannote[11].start 37.78034375
transcript.pyannote[11].end 38.99534375
transcript.pyannote[12].speaker SPEAKER_05
transcript.pyannote[12].start 39.82221875
transcript.pyannote[12].end 41.23971875
transcript.pyannote[13].speaker SPEAKER_05
transcript.pyannote[13].start 41.83034375
transcript.pyannote[13].end 43.28159375
transcript.pyannote[14].speaker SPEAKER_05
transcript.pyannote[14].start 43.58534375
transcript.pyannote[14].end 46.06596875
transcript.pyannote[15].speaker SPEAKER_05
transcript.pyannote[15].start 46.84221875
transcript.pyannote[15].end 48.59721875
transcript.pyannote[16].speaker SPEAKER_05
transcript.pyannote[16].start 49.20471875
transcript.pyannote[16].end 54.87471875
transcript.pyannote[17].speaker SPEAKER_05
transcript.pyannote[17].start 55.07721875
transcript.pyannote[17].end 59.56596875
transcript.pyannote[18].speaker SPEAKER_05
transcript.pyannote[18].start 60.05534375
transcript.pyannote[18].end 60.74721875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 61.33784375
transcript.pyannote[19].end 71.96909375
transcript.pyannote[20].speaker SPEAKER_05
transcript.pyannote[20].start 66.51846875
transcript.pyannote[20].end 66.85596875
transcript.pyannote[21].speaker SPEAKER_05
transcript.pyannote[21].start 71.96909375
transcript.pyannote[21].end 75.93471875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 75.46221875
transcript.pyannote[22].end 81.03096875
transcript.pyannote[23].speaker SPEAKER_05
transcript.pyannote[23].start 81.03096875
transcript.pyannote[23].end 83.73096875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 81.41909375
transcript.pyannote[24].end 81.94221875
transcript.pyannote[25].speaker SPEAKER_05
transcript.pyannote[25].start 84.00096875
transcript.pyannote[25].end 84.16971875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 84.74346875
transcript.pyannote[26].end 85.09784375
transcript.pyannote[27].speaker SPEAKER_05
transcript.pyannote[27].start 85.35096875
transcript.pyannote[27].end 86.02596875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 87.02159375
transcript.pyannote[28].end 90.53159375
transcript.pyannote[29].speaker SPEAKER_05
transcript.pyannote[29].start 91.32471875
transcript.pyannote[29].end 94.39596875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 93.68721875
transcript.pyannote[30].end 93.88971875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 93.90659375
transcript.pyannote[31].end 94.48034375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 95.76284375
transcript.pyannote[32].end 96.77534375
transcript.pyannote[33].speaker SPEAKER_05
transcript.pyannote[33].start 97.19721875
transcript.pyannote[33].end 98.32784375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 98.81721875
transcript.pyannote[34].end 101.55096875
transcript.pyannote[35].speaker SPEAKER_05
transcript.pyannote[35].start 99.96471875
transcript.pyannote[35].end 101.73659375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 101.73659375
transcript.pyannote[36].end 101.87159375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 102.00659375
transcript.pyannote[37].end 105.06096875
transcript.pyannote[38].speaker SPEAKER_05
transcript.pyannote[38].start 104.58846875
transcript.pyannote[38].end 104.75721875
transcript.pyannote[39].speaker SPEAKER_05
transcript.pyannote[39].start 105.41534375
transcript.pyannote[39].end 107.92971875
transcript.pyannote[40].speaker SPEAKER_05
transcript.pyannote[40].start 109.06034375
transcript.pyannote[40].end 115.42221875
transcript.pyannote[41].speaker SPEAKER_05
transcript.pyannote[41].start 115.87784375
transcript.pyannote[41].end 116.31659375
transcript.pyannote[42].speaker SPEAKER_05
transcript.pyannote[42].start 116.73846875
transcript.pyannote[42].end 117.19409375
transcript.pyannote[43].speaker SPEAKER_05
transcript.pyannote[43].start 117.58221875
transcript.pyannote[43].end 119.15159375
transcript.pyannote[44].speaker SPEAKER_05
transcript.pyannote[44].start 119.96159375
transcript.pyannote[44].end 121.90221875
transcript.pyannote[45].speaker SPEAKER_05
transcript.pyannote[45].start 122.30721875
transcript.pyannote[45].end 129.63096875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 130.86284375
transcript.pyannote[46].end 153.28971875
transcript.pyannote[47].speaker SPEAKER_05
transcript.pyannote[47].start 135.73971875
transcript.pyannote[47].end 138.91221875
transcript.pyannote[48].speaker SPEAKER_05
transcript.pyannote[48].start 140.68409375
transcript.pyannote[48].end 142.40534375
transcript.pyannote[49].speaker SPEAKER_05
transcript.pyannote[49].start 142.50659375
transcript.pyannote[49].end 144.17721875
transcript.pyannote[50].speaker SPEAKER_05
transcript.pyannote[50].start 145.99971875
transcript.pyannote[50].end 146.86034375
transcript.pyannote[51].speaker SPEAKER_05
transcript.pyannote[51].start 147.34971875
transcript.pyannote[51].end 148.22721875
transcript.pyannote[52].speaker SPEAKER_05
transcript.pyannote[52].start 150.52221875
transcript.pyannote[52].end 153.01971875
transcript.pyannote[53].speaker SPEAKER_05
transcript.pyannote[53].start 153.28971875
transcript.pyannote[53].end 154.74096875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 154.04909375
transcript.pyannote[54].end 154.58909375
transcript.pyannote[55].speaker SPEAKER_05
transcript.pyannote[55].start 154.97721875
transcript.pyannote[55].end 157.22159375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 155.14596875
transcript.pyannote[56].end 155.26409375
transcript.pyannote[57].speaker SPEAKER_05
transcript.pyannote[57].start 157.37346875
transcript.pyannote[57].end 158.33534375
transcript.pyannote[58].speaker SPEAKER_05
transcript.pyannote[58].start 159.26346875
transcript.pyannote[58].end 162.50346875
transcript.pyannote[59].speaker SPEAKER_05
transcript.pyannote[59].start 162.72284375
transcript.pyannote[59].end 164.32596875
transcript.pyannote[60].speaker SPEAKER_05
transcript.pyannote[60].start 164.56221875
transcript.pyannote[60].end 166.19909375
transcript.pyannote[61].speaker SPEAKER_05
transcript.pyannote[61].start 166.55346875
transcript.pyannote[61].end 168.81471875
transcript.pyannote[62].speaker SPEAKER_05
transcript.pyannote[62].start 169.75971875
transcript.pyannote[62].end 170.60346875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 169.91159375
transcript.pyannote[63].end 170.38409375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 170.99159375
transcript.pyannote[64].end 176.62784375
transcript.pyannote[65].speaker SPEAKER_05
transcript.pyannote[65].start 176.02034375
transcript.pyannote[65].end 179.19284375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 177.37034375
transcript.pyannote[66].end 179.98596875
transcript.pyannote[67].speaker SPEAKER_05
transcript.pyannote[67].start 179.74971875
transcript.pyannote[67].end 180.13784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 180.13784375
transcript.pyannote[68].end 180.15471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 180.45846875
transcript.pyannote[69].end 181.79159375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 182.48346875
transcript.pyannote[70].end 185.45346875
transcript.pyannote[71].speaker SPEAKER_05
transcript.pyannote[71].start 182.55096875
transcript.pyannote[71].end 183.20909375
transcript.pyannote[72].speaker SPEAKER_05
transcript.pyannote[72].start 184.84596875
transcript.pyannote[72].end 185.60534375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 186.49971875
transcript.pyannote[73].end 188.27159375
transcript.pyannote[74].speaker SPEAKER_05
transcript.pyannote[74].start 187.49534375
transcript.pyannote[74].end 189.97596875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 189.13221875
transcript.pyannote[75].end 189.89159375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 190.24596875
transcript.pyannote[76].end 193.35096875
transcript.pyannote[77].speaker SPEAKER_05
transcript.pyannote[77].start 191.95034375
transcript.pyannote[77].end 195.34221875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 193.55346875
transcript.pyannote[78].end 193.97534375
transcript.pyannote[79].speaker SPEAKER_05
transcript.pyannote[79].start 196.92846875
transcript.pyannote[79].end 199.12221875
transcript.pyannote[80].speaker SPEAKER_05
transcript.pyannote[80].start 199.51034375
transcript.pyannote[80].end 202.05846875
transcript.pyannote[81].speaker SPEAKER_05
transcript.pyannote[81].start 203.29034375
transcript.pyannote[81].end 205.63596875
transcript.pyannote[82].speaker SPEAKER_05
transcript.pyannote[82].start 206.26034375
transcript.pyannote[82].end 208.50471875
transcript.pyannote[83].speaker SPEAKER_05
transcript.pyannote[83].start 208.80846875
transcript.pyannote[83].end 209.95596875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 209.73659375
transcript.pyannote[84].end 210.76596875
transcript.pyannote[85].speaker SPEAKER_05
transcript.pyannote[85].start 210.27659375
transcript.pyannote[85].end 213.56721875
transcript.pyannote[86].speaker SPEAKER_05
transcript.pyannote[86].start 213.83721875
transcript.pyannote[86].end 215.30534375
transcript.pyannote[87].speaker SPEAKER_05
transcript.pyannote[87].start 215.87909375
transcript.pyannote[87].end 217.75221875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 217.38096875
transcript.pyannote[88].end 218.03909375
transcript.pyannote[89].speaker SPEAKER_05
transcript.pyannote[89].start 218.47784375
transcript.pyannote[89].end 231.03284375
transcript.pyannote[90].speaker SPEAKER_05
transcript.pyannote[90].start 231.47159375
transcript.pyannote[90].end 236.78721875
transcript.pyannote[91].speaker SPEAKER_05
transcript.pyannote[91].start 237.09096875
transcript.pyannote[91].end 239.13284375
transcript.pyannote[92].speaker SPEAKER_05
transcript.pyannote[92].start 239.47034375
transcript.pyannote[92].end 240.02721875
transcript.pyannote[93].speaker SPEAKER_05
transcript.pyannote[93].start 241.22534375
transcript.pyannote[93].end 242.76096875
transcript.pyannote[94].speaker SPEAKER_05
transcript.pyannote[94].start 243.38534375
transcript.pyannote[94].end 246.69284375
transcript.pyannote[95].speaker SPEAKER_05
transcript.pyannote[95].start 246.77721875
transcript.pyannote[95].end 247.50284375
transcript.pyannote[96].speaker SPEAKER_05
transcript.pyannote[96].start 248.09346875
transcript.pyannote[96].end 252.83534375
transcript.pyannote[97].speaker SPEAKER_05
transcript.pyannote[97].start 254.79284375
transcript.pyannote[97].end 257.40846875
transcript.pyannote[98].speaker SPEAKER_05
transcript.pyannote[98].start 258.08346875
transcript.pyannote[98].end 264.02346875
transcript.pyannote[99].speaker SPEAKER_05
transcript.pyannote[99].start 264.07409375
transcript.pyannote[99].end 267.29721875
transcript.pyannote[100].speaker SPEAKER_05
transcript.pyannote[100].start 267.75284375
transcript.pyannote[100].end 268.63034375
transcript.pyannote[101].speaker SPEAKER_05
transcript.pyannote[101].start 269.25471875
transcript.pyannote[101].end 271.58346875
transcript.pyannote[102].speaker SPEAKER_05
transcript.pyannote[102].start 272.57909375
transcript.pyannote[102].end 273.91221875
transcript.pyannote[103].speaker SPEAKER_05
transcript.pyannote[103].start 274.68846875
transcript.pyannote[103].end 275.70096875
transcript.pyannote[104].speaker SPEAKER_05
transcript.pyannote[104].start 276.03846875
transcript.pyannote[104].end 276.86534375
transcript.pyannote[105].speaker SPEAKER_05
transcript.pyannote[105].start 277.08471875
transcript.pyannote[105].end 279.19409375
transcript.pyannote[106].speaker SPEAKER_05
transcript.pyannote[106].start 279.80159375
transcript.pyannote[106].end 281.52284375
transcript.pyannote[107].speaker SPEAKER_05
transcript.pyannote[107].start 282.01221875
transcript.pyannote[107].end 282.80534375
transcript.pyannote[108].speaker SPEAKER_05
transcript.pyannote[108].start 283.04159375
transcript.pyannote[108].end 286.19721875
transcript.pyannote[109].speaker SPEAKER_05
transcript.pyannote[109].start 286.46721875
transcript.pyannote[109].end 295.68096875
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 296.32221875
transcript.pyannote[110].end 298.04346875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 298.78596875
transcript.pyannote[111].end 314.91846875
transcript.pyannote[112].speaker SPEAKER_05
transcript.pyannote[112].start 302.65034375
transcript.pyannote[112].end 303.47721875
transcript.pyannote[113].speaker SPEAKER_05
transcript.pyannote[113].start 304.45596875
transcript.pyannote[113].end 305.67096875
transcript.pyannote[114].speaker SPEAKER_05
transcript.pyannote[114].start 307.44284375
transcript.pyannote[114].end 307.88159375
transcript.pyannote[115].speaker SPEAKER_05
transcript.pyannote[115].start 309.97409375
transcript.pyannote[115].end 313.51784375
transcript.pyannote[116].speaker SPEAKER_05
transcript.pyannote[116].start 314.71596875
transcript.pyannote[116].end 319.35659375
transcript.pyannote[117].speaker SPEAKER_05
transcript.pyannote[117].start 319.67721875
transcript.pyannote[117].end 320.01471875
transcript.pyannote[118].speaker SPEAKER_05
transcript.pyannote[118].start 320.26784375
transcript.pyannote[118].end 322.07346875
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 323.00159375
transcript.pyannote[119].end 328.30034375
transcript.pyannote[120].speaker SPEAKER_05
transcript.pyannote[120].start 328.65471875
transcript.pyannote[120].end 334.99971875
transcript.pyannote[121].speaker SPEAKER_05
transcript.pyannote[121].start 335.59034375
transcript.pyannote[121].end 335.97846875
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 335.97846875
transcript.pyannote[122].end 336.01221875
transcript.pyannote[123].speaker SPEAKER_04
transcript.pyannote[123].start 336.72096875
transcript.pyannote[123].end 341.34471875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 341.64846875
transcript.pyannote[124].end 342.66096875
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 343.13346875
transcript.pyannote[125].end 348.65159375
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 348.83721875
transcript.pyannote[126].end 352.02659375
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 352.51596875
transcript.pyannote[127].end 353.42721875
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 354.22034375
transcript.pyannote[128].end 362.05034375
transcript.pyannote[129].speaker SPEAKER_05
transcript.pyannote[129].start 355.67159375
transcript.pyannote[129].end 357.20721875
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 362.13471875
transcript.pyannote[130].end 363.80534375
transcript.pyannote[131].speaker SPEAKER_05
transcript.pyannote[131].start 362.57346875
transcript.pyannote[131].end 363.26534375
transcript.pyannote[132].speaker SPEAKER_05
transcript.pyannote[132].start 363.80534375
transcript.pyannote[132].end 363.87284375
transcript.pyannote[133].speaker SPEAKER_04
transcript.pyannote[133].start 363.87284375
transcript.pyannote[133].end 363.94034375
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 365.93159375
transcript.pyannote[134].end 368.07471875
transcript.pyannote[135].speaker SPEAKER_04
transcript.pyannote[135].start 369.10409375
transcript.pyannote[135].end 371.58471875
transcript.pyannote[136].speaker SPEAKER_04
transcript.pyannote[136].start 372.10784375
transcript.pyannote[136].end 378.30096875
transcript.pyannote[137].speaker SPEAKER_05
transcript.pyannote[137].start 376.34346875
transcript.pyannote[137].end 376.52909375
transcript.pyannote[138].speaker SPEAKER_05
transcript.pyannote[138].start 377.54159375
transcript.pyannote[138].end 381.43971875
transcript.pyannote[139].speaker SPEAKER_04
transcript.pyannote[139].start 382.45221875
transcript.pyannote[139].end 385.16909375
transcript.pyannote[140].speaker SPEAKER_05
transcript.pyannote[140].start 382.53659375
transcript.pyannote[140].end 383.11034375
transcript.pyannote[141].speaker SPEAKER_05
transcript.pyannote[141].start 385.06784375
transcript.pyannote[141].end 386.13096875
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 385.42221875
transcript.pyannote[142].end 385.62471875
transcript.pyannote[143].speaker SPEAKER_05
transcript.pyannote[143].start 386.72159375
transcript.pyannote[143].end 389.26971875
transcript.pyannote[144].speaker SPEAKER_05
transcript.pyannote[144].start 390.87284375
transcript.pyannote[144].end 392.64471875
transcript.pyannote[145].speaker SPEAKER_05
transcript.pyannote[145].start 393.20159375
transcript.pyannote[145].end 394.97346875
transcript.pyannote[146].speaker SPEAKER_05
transcript.pyannote[146].start 395.66534375
transcript.pyannote[146].end 399.20909375
transcript.pyannote[147].speaker SPEAKER_05
transcript.pyannote[147].start 400.69409375
transcript.pyannote[147].end 403.78221875
transcript.pyannote[148].speaker SPEAKER_05
transcript.pyannote[148].start 404.10284375
transcript.pyannote[148].end 407.05596875
transcript.pyannote[149].speaker SPEAKER_05
transcript.pyannote[149].start 407.52846875
transcript.pyannote[149].end 408.49034375
transcript.pyannote[150].speaker SPEAKER_05
transcript.pyannote[150].start 409.62096875
transcript.pyannote[150].end 410.12721875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 411.35909375
transcript.pyannote[151].end 413.63721875
transcript.pyannote[152].speaker SPEAKER_05
transcript.pyannote[152].start 413.63721875
transcript.pyannote[152].end 415.51034375
transcript.pyannote[153].speaker SPEAKER_05
transcript.pyannote[153].start 415.66221875
transcript.pyannote[153].end 417.53534375
transcript.pyannote[154].speaker SPEAKER_05
transcript.pyannote[154].start 417.92346875
transcript.pyannote[154].end 420.31971875
transcript.pyannote[155].speaker SPEAKER_05
transcript.pyannote[155].start 420.92721875
transcript.pyannote[155].end 424.94346875
transcript.pyannote[156].speaker SPEAKER_05
transcript.pyannote[156].start 425.58471875
transcript.pyannote[156].end 427.98096875
transcript.pyannote[157].speaker SPEAKER_05
transcript.pyannote[157].start 428.30159375
transcript.pyannote[157].end 431.00159375
transcript.pyannote[158].speaker SPEAKER_05
transcript.pyannote[158].start 432.92534375
transcript.pyannote[158].end 433.87034375
transcript.pyannote[159].speaker SPEAKER_05
transcript.pyannote[159].start 434.96721875
transcript.pyannote[159].end 436.89096875
transcript.pyannote[160].speaker SPEAKER_05
transcript.pyannote[160].start 437.73471875
transcript.pyannote[160].end 442.56096875
transcript.pyannote[161].speaker SPEAKER_05
transcript.pyannote[161].start 442.72971875
transcript.pyannote[161].end 444.21471875
transcript.pyannote[162].speaker SPEAKER_05
transcript.pyannote[162].start 445.02471875
transcript.pyannote[162].end 449.05784375
transcript.pyannote[163].speaker SPEAKER_05
transcript.pyannote[163].start 449.91846875
transcript.pyannote[163].end 459.46971875
transcript.pyannote[164].speaker SPEAKER_05
transcript.pyannote[164].start 460.17846875
transcript.pyannote[164].end 463.60409375
transcript.pyannote[165].speaker SPEAKER_05
transcript.pyannote[165].start 464.48159375
transcript.pyannote[165].end 471.24846875
transcript.pyannote[166].speaker SPEAKER_05
transcript.pyannote[166].start 471.94034375
transcript.pyannote[166].end 476.27721875
transcript.pyannote[167].speaker SPEAKER_05
transcript.pyannote[167].start 477.12096875
transcript.pyannote[167].end 477.88034375
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 479.01096875
transcript.pyannote[168].end 486.95909375
transcript.pyannote[169].speaker SPEAKER_05
transcript.pyannote[169].start 485.67659375
transcript.pyannote[169].end 486.03096875
transcript.pyannote[170].speaker SPEAKER_05
transcript.pyannote[170].start 487.26284375
transcript.pyannote[170].end 488.89971875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 491.21159375
transcript.pyannote[171].end 495.32909375
transcript.pyannote[172].speaker SPEAKER_05
transcript.pyannote[172].start 494.90721875
transcript.pyannote[172].end 501.57284375
transcript.pyannote[173].speaker SPEAKER_05
transcript.pyannote[173].start 503.04096875
transcript.pyannote[173].end 505.04909375
transcript.pyannote[174].speaker SPEAKER_05
transcript.pyannote[174].start 505.16721875
transcript.pyannote[174].end 507.22596875
transcript.pyannote[175].speaker SPEAKER_05
transcript.pyannote[175].start 508.42409375
transcript.pyannote[175].end 510.83721875
transcript.pyannote[176].speaker SPEAKER_05
transcript.pyannote[176].start 511.69784375
transcript.pyannote[176].end 516.01784375
transcript.pyannote[177].speaker SPEAKER_05
transcript.pyannote[177].start 516.28784375
transcript.pyannote[177].end 517.16534375
transcript.pyannote[178].speaker SPEAKER_05
transcript.pyannote[178].start 518.12721875
transcript.pyannote[178].end 519.29159375
transcript.pyannote[179].speaker SPEAKER_05
transcript.pyannote[179].start 519.83159375
transcript.pyannote[179].end 520.21971875
transcript.pyannote[180].speaker SPEAKER_05
transcript.pyannote[180].start 520.59096875
transcript.pyannote[180].end 522.85221875
transcript.pyannote[181].speaker SPEAKER_05
transcript.pyannote[181].start 523.13909375
transcript.pyannote[181].end 527.91471875
transcript.pyannote[182].speaker SPEAKER_05
transcript.pyannote[182].start 528.65721875
transcript.pyannote[182].end 532.18409375
transcript.pyannote[183].speaker SPEAKER_05
transcript.pyannote[183].start 532.53846875
transcript.pyannote[183].end 533.01096875
transcript.pyannote[184].speaker SPEAKER_05
transcript.pyannote[184].start 533.36534375
transcript.pyannote[184].end 535.93034375
transcript.pyannote[185].speaker SPEAKER_05
transcript.pyannote[185].start 537.02721875
transcript.pyannote[185].end 537.48284375
transcript.pyannote[186].speaker SPEAKER_05
transcript.pyannote[186].start 537.61784375
transcript.pyannote[186].end 540.30096875
transcript.pyannote[187].speaker SPEAKER_05
transcript.pyannote[187].start 541.17846875
transcript.pyannote[187].end 541.97159375
transcript.pyannote[188].speaker SPEAKER_05
transcript.pyannote[188].start 542.29221875
transcript.pyannote[188].end 544.82346875
transcript.pyannote[189].speaker SPEAKER_05
transcript.pyannote[189].start 545.39721875
transcript.pyannote[189].end 547.35471875
transcript.pyannote[190].speaker SPEAKER_05
transcript.pyannote[190].start 547.77659375
transcript.pyannote[190].end 552.55221875
transcript.pyannote[191].speaker SPEAKER_05
transcript.pyannote[191].start 553.37909375
transcript.pyannote[191].end 554.05409375
transcript.pyannote[192].speaker SPEAKER_05
transcript.pyannote[192].start 554.49284375
transcript.pyannote[192].end 556.24784375
transcript.pyannote[193].speaker SPEAKER_04
transcript.pyannote[193].start 558.98159375
transcript.pyannote[193].end 564.63471875
transcript.pyannote[194].speaker SPEAKER_05
transcript.pyannote[194].start 564.63471875
transcript.pyannote[194].end 564.65159375
transcript.pyannote[195].speaker SPEAKER_05
transcript.pyannote[195].start 565.79909375
transcript.pyannote[195].end 568.70159375
transcript.pyannote[196].speaker SPEAKER_05
transcript.pyannote[196].start 568.97159375
transcript.pyannote[196].end 569.52846875
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 570.25409375
transcript.pyannote[197].end 581.62784375
transcript.pyannote[198].speaker SPEAKER_05
transcript.pyannote[198].start 578.69159375
transcript.pyannote[198].end 579.41721875
transcript.pyannote[199].speaker SPEAKER_05
transcript.pyannote[199].start 581.67846875
transcript.pyannote[199].end 588.52971875
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 588.52971875
transcript.pyannote[200].end 590.57159375
transcript.pyannote[201].speaker SPEAKER_04
transcript.pyannote[201].start 591.53346875
transcript.pyannote[201].end 591.55034375
transcript.pyannote[202].speaker SPEAKER_05
transcript.pyannote[202].start 591.55034375
transcript.pyannote[202].end 592.63034375
transcript.pyannote[203].speaker SPEAKER_04
transcript.pyannote[203].start 593.17034375
transcript.pyannote[203].end 595.17846875
transcript.pyannote[204].speaker SPEAKER_05
transcript.pyannote[204].start 596.12346875
transcript.pyannote[204].end 601.42221875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 601.45596875
transcript.pyannote[205].end 612.40784375
transcript.pyannote[206].speaker SPEAKER_05
transcript.pyannote[206].start 611.29409375
transcript.pyannote[206].end 615.68159375
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 612.42471875
transcript.pyannote[207].end 612.44159375
transcript.pyannote[208].speaker SPEAKER_05
transcript.pyannote[208].start 616.32284375
transcript.pyannote[208].end 616.98096875
transcript.pyannote[209].speaker SPEAKER_05
transcript.pyannote[209].start 618.22971875
transcript.pyannote[209].end 620.22096875
transcript.pyannote[210].speaker SPEAKER_05
transcript.pyannote[210].start 620.71034375
transcript.pyannote[210].end 629.16471875
transcript.pyannote[211].speaker SPEAKER_05
transcript.pyannote[211].start 629.83971875
transcript.pyannote[211].end 631.13909375
transcript.pyannote[212].speaker SPEAKER_05
transcript.pyannote[212].start 631.37534375
transcript.pyannote[212].end 632.79284375
transcript.pyannote[213].speaker SPEAKER_05
transcript.pyannote[213].start 633.43409375
transcript.pyannote[213].end 637.36596875
transcript.pyannote[214].speaker SPEAKER_05
transcript.pyannote[214].start 638.36159375
transcript.pyannote[214].end 639.03659375
transcript.pyannote[215].speaker SPEAKER_05
transcript.pyannote[215].start 639.18846875
transcript.pyannote[215].end 641.46659375
transcript.pyannote[216].speaker SPEAKER_05
transcript.pyannote[216].start 642.46221875
transcript.pyannote[216].end 644.23409375
transcript.pyannote[217].speaker SPEAKER_04
transcript.pyannote[217].start 646.07346875
transcript.pyannote[217].end 646.90034375
transcript.pyannote[218].speaker SPEAKER_05
transcript.pyannote[218].start 646.90034375
transcript.pyannote[218].end 649.11096875
transcript.pyannote[219].speaker SPEAKER_05
transcript.pyannote[219].start 649.71846875
transcript.pyannote[219].end 649.97159375
transcript.pyannote[220].speaker SPEAKER_04
transcript.pyannote[220].start 649.97159375
transcript.pyannote[220].end 650.25846875
transcript.pyannote[221].speaker SPEAKER_05
transcript.pyannote[221].start 650.25846875
transcript.pyannote[221].end 650.27534375
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 650.27534375
transcript.pyannote[222].end 650.68034375
transcript.pyannote[223].speaker SPEAKER_05
transcript.pyannote[223].start 650.68034375
transcript.pyannote[223].end 650.96721875
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 650.96721875
transcript.pyannote[224].end 651.22034375
transcript.pyannote[225].speaker SPEAKER_04
transcript.pyannote[225].start 652.46909375
transcript.pyannote[225].end 658.05471875
transcript.pyannote[226].speaker SPEAKER_05
transcript.pyannote[226].start 655.72596875
transcript.pyannote[226].end 656.51909375
transcript.pyannote[227].speaker SPEAKER_04
transcript.pyannote[227].start 658.69596875
transcript.pyannote[227].end 661.10909375
transcript.pyannote[228].speaker SPEAKER_05
transcript.pyannote[228].start 661.10909375
transcript.pyannote[228].end 661.12596875
transcript.pyannote[229].speaker SPEAKER_04
transcript.pyannote[229].start 661.19346875
transcript.pyannote[229].end 662.03721875
transcript.pyannote[230].speaker SPEAKER_05
transcript.pyannote[230].start 662.03721875
transcript.pyannote[230].end 663.62346875
transcript.pyannote[231].speaker SPEAKER_04
transcript.pyannote[231].start 663.62346875
transcript.pyannote[231].end 663.69096875
transcript.pyannote[232].speaker SPEAKER_05
transcript.pyannote[232].start 663.69096875
transcript.pyannote[232].end 663.79221875
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 663.79221875
transcript.pyannote[233].end 664.39971875
transcript.pyannote[234].speaker SPEAKER_05
transcript.pyannote[234].start 664.39971875
transcript.pyannote[234].end 664.70346875
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 664.70346875
transcript.pyannote[235].end 664.72034375
transcript.pyannote[236].speaker SPEAKER_05
transcript.pyannote[236].start 664.72034375
transcript.pyannote[236].end 665.02409375
transcript.pyannote[237].speaker SPEAKER_05
transcript.pyannote[237].start 665.31096875
transcript.pyannote[237].end 673.32659375
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 666.47534375
transcript.pyannote[238].end 666.79596875
transcript.pyannote[239].speaker SPEAKER_05
transcript.pyannote[239].start 673.57971875
transcript.pyannote[239].end 677.20784375
transcript.pyannote[240].speaker SPEAKER_04
transcript.pyannote[240].start 673.78221875
transcript.pyannote[240].end 673.93409375
transcript.pyannote[241].speaker SPEAKER_04
transcript.pyannote[241].start 677.20784375
transcript.pyannote[241].end 683.21534375
transcript.pyannote[242].speaker SPEAKER_05
transcript.pyannote[242].start 677.22471875
transcript.pyannote[242].end 677.83221875
transcript.pyannote[243].speaker SPEAKER_05
transcript.pyannote[243].start 681.46034375
transcript.pyannote[243].end 681.54471875
transcript.pyannote[244].speaker SPEAKER_05
transcript.pyannote[244].start 681.56159375
transcript.pyannote[244].end 681.61221875
transcript.pyannote[245].speaker SPEAKER_04
transcript.pyannote[245].start 683.87346875
transcript.pyannote[245].end 684.44721875
transcript.pyannote[246].speaker SPEAKER_04
transcript.pyannote[246].start 685.37534375
transcript.pyannote[246].end 691.07909375
transcript.pyannote[247].speaker SPEAKER_04
transcript.pyannote[247].start 691.63596875
transcript.pyannote[247].end 693.40784375
transcript.pyannote[248].speaker SPEAKER_05
transcript.pyannote[248].start 692.76659375
transcript.pyannote[248].end 698.80784375
transcript.pyannote[249].speaker SPEAKER_04
transcript.pyannote[249].start 694.20096875
transcript.pyannote[249].end 694.67346875
transcript.pyannote[250].speaker SPEAKER_05
transcript.pyannote[250].start 699.09471875
transcript.pyannote[250].end 701.28846875
transcript.pyannote[251].speaker SPEAKER_04
transcript.pyannote[251].start 701.87909375
transcript.pyannote[251].end 702.99284375
transcript.pyannote[252].speaker SPEAKER_05
transcript.pyannote[252].start 702.99284375
transcript.pyannote[252].end 705.50721875
transcript.pyannote[253].speaker SPEAKER_05
transcript.pyannote[253].start 707.39721875
transcript.pyannote[253].end 708.69659375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 709.43909375
transcript.pyannote[254].end 711.07596875
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 711.90284375
transcript.pyannote[255].end 714.13034375
transcript.whisperx[0].start 4.029
transcript.whisperx[0].end 11.534
transcript.whisperx[0].text 謝謝主席以及各位先進有請財政部的莊部長主計總署的主計長還有莊營郎的原副總裁一起好不好三個一起請莊部長陳主計長那原副總裁
transcript.whisperx[1].start 21.581
transcript.whisperx[1].end 38.74
transcript.whisperx[1].text 委員好好 三位長官好先請教兩位兩位女士這個今天有個題目統籌分配稅款所以有剩345億來分配可是實際的情況我們很快就刪除了
transcript.whisperx[2].start 39.881
transcript.whisperx[2].end 45.182
transcript.whisperx[2].text 離島條例要改這個財務法16條是3離島要支付這個2.5%就220億所以實際上只有剩125億啦沒有345億啦我這樣算法對吧 那個部長這樣講對嗎
transcript.whisperx[3].start 61.666
transcript.whisperx[3].end 82.152
transcript.whisperx[3].text 委員因為16條11除了離島當然也有本島這個整個分母的問題所以會有345億沒有辦法做分配是這樣子但離島221億是法定的2.5%如果用計算如果你把它變成分母把它調整的話它大概就是221億吧這個對吧本島是225離島是12119
transcript.whisperx[4].start 91.335
transcript.whisperx[4].end 107.352
transcript.whisperx[4].text 李導要再給他兩百二十億啦一百二十一百二十還兩百二十一百二十可是我們算都是兩百二十你們算每次就算得跟我們不一樣奇怪勒 你把我少算這麼多
transcript.whisperx[5].start 109.247
transcript.whisperx[5].end 114.412
transcript.whisperx[5].text 跑啦 就算你對好不好也沒有345啊 也剩下200多而已啊對不對 這個我比較關心的喔卓院長不斷的說年底要送出行政院班的才化法請問財政部你送給行政院沒有
transcript.whisperx[6].start 131.743
transcript.whisperx[6].end 156.241
transcript.whisperx[6].text 財政部已經開過試試會那都有大的架構什麼時候可以送給財政部 行政院什麼時候 我們近期送什麼時候可以送 什麼時候問你問 什麼時候可以送近期已經送了 已經送了但是因為那個內容還需要再進一步整理我知道內容 我沒問你 你已經送了好 已經送了喔那我就問主計長
transcript.whisperx[7].start 159.298
transcript.whisperx[7].end 180.014
transcript.whisperx[7].text 你剛才這樣說我嘴角全破 說我這家你贊這樣喔我贊就我贊 我請問你現在台灣的工資 平均工資多少錢平均薪資平均薪資大概是四萬七左右平均薪資四萬八八 四萬你講得這麼客氣四萬七八啦平均多少
transcript.whisperx[8].start 187.861
transcript.whisperx[8].end 201.48
transcript.whisperx[8].text 四萬八啦 不是四萬一啦齁四萬八啦 我跟你講啦齁但是今天就主席英明排這個題目三分之二領不到這個錢
transcript.whisperx[9].start 203.365
transcript.whisperx[9].end 212.853
transcript.whisperx[9].text 所以你要看的不是平均薪資你的薪資一年一千萬啊 金控 董事長 總經理你不要急 你不要急喔要看中匯數 中匯數只有三萬多而已啊三萬多啦 所以沒有想像過二華站 吐華站三萬多其實辛苦啦 還是辛苦啦所以貧富差距非常的嚴重
transcript.whisperx[10].start 231.528
transcript.whisperx[10].end 236.41
transcript.whisperx[10].text 非常嚴重 靠什麼呢 最好的方式就是稅制來 我們看第二張 莊部長我幫你統計了一下 黃帝河一稅減少了133億代表在央行 副總裁你就有角色 那個土地產可以清回的
transcript.whisperx[11].start 254.824
transcript.whisperx[11].end 262.267
transcript.whisperx[11].text 那個央行副總裁這個角色喔黃帝河一歲少了133億 政交稅少了5.5%但是 銀索稅增加了4800多億這什麼意思我們的產業很賺錢
transcript.whisperx[12].start 272.812
transcript.whisperx[12].end 292.527
transcript.whisperx[12].text 銀索稅做很多 站腳 但是呢 集中在AI概念股你看股票市場就好啦 大部分漲的都是AI概念股啊非AI概念股跌的都比漲的多啊 很清楚來看啦 對不對所以今年到現在為止是負的馬拉斯0.2我就先問副總裁 先問副總裁 來來來 副總裁
transcript.whisperx[13].start 299.092
transcript.whisperx[13].end 305.876
transcript.whisperx[13].text 這邊那個數據做一個說明 銀索稅的佔角是4881 增加715不是增加 增加715總數是4881 增加700多 總數4881也是很多啦 因為其他都減少來 副總裁 我就問你
transcript.whisperx[14].start 323.246
transcript.whisperx[14].end 334.565
transcript.whisperx[14].text 黃帝合一減少了133億代表房地產不好嘛這時候 你的第七波的信用管制有沒有考慮要鬆綁一點 有沒有
transcript.whisperx[15].start 336.735
transcript.whisperx[15].end 363.626
transcript.whisperx[15].text 那個報告委員我們在上一次理事會的時候我們也的確做了一點點調整啊怎麼調整我們每一次的理事會之前我們都會去檢討當前的房地產政策我們在下一次理事會我們會做一些內部的檢討所以進一步的鬆綁是可以預期的是不是這個我們要等理事會開會才知道上一次有沒有鬆綁一定
transcript.whisperx[16].start 366.033
transcript.whisperx[16].end 388.948
transcript.whisperx[16].text 上一次開會有沒有鬆綁一點上一次有啊上一次我們對那個我們的換屋的那個從一年改成18個月然後我們也放寬了一些就已經確定不會有第八波的信用管制了是不是目前沒有這個都是由理事會來決定目前沒有嘛那我再回到財政部的莊部長
transcript.whisperx[17].start 390.919
transcript.whisperx[17].end 406.996
transcript.whisperx[17].text 健保署在衛福部打你的主意啊說鼓勵加租金加利息你知道有人現金鼓勵最多的領多少錢你知道嗎不要講名字幾十億吧有沒有
transcript.whisperx[18].start 412.575
transcript.whisperx[18].end 416.838
transcript.whisperx[18].text 這個個人的資料我們沒有個人資料我沒有講名字啊我所知道是幾十億啊幾十年前就幾十億現在更多啦一個人就領幾十億的現金鼓勵要課要課他們啊你不要課這個純鼓足而且他憑什麼
transcript.whisperx[19].start 435.297
transcript.whisperx[19].end 439.52
transcript.whisperx[19].text 衛福部憑什麼要求你把這個稅的資料給他做一個統計 攬傘部長啊 你聽好以後喔如果這個要做的話等於他成立第二個國稅局喔建保署就變成第二個國稅局喔因為你要把股利加租金加利息要大於兩萬 這要攬傘現在的補充保費是救援課稅 沒問題
transcript.whisperx[20].start 464.634
transcript.whisperx[20].end 469.219
transcript.whisperx[20].text 對不對 但是你這個Lamsam就要經過你啊你睡 你就要給這個衛福部啊他侵占你地盤啊 你要講話啊你要反對啊
transcript.whisperx[21].start 477.113
transcript.whisperx[21].end 486.122
transcript.whisperx[21].text 你有沒有反對我問你你有沒有反對報告有關補充保費這個部分目前來說會是暫緩然後衛福部會重新再來思考他要跟你討論啦對不對你要反對他等於當然會有跨部會來做一個討論因為這個我再講一遍這是三個把它加總年度加總這只有你才有的資料
transcript.whisperx[22].start 503.066
transcript.whisperx[22].end 507.229
transcript.whisperx[22].text 他怎麼可以來佔你的地盤呢他變成第二個國稅局啊對不對 你地盤被人家瓜分了 你都不知道對不對 你要大聲講話拍桌說反對 不可以這樣子除非修法修法當然可以 對不對我們是反對對純苦族這樣子的剝削因為他已經教了嘛 現在目前已經教了啊
transcript.whisperx[23].start 528.717
transcript.whisperx[23].end 534.219
transcript.whisperx[23].text 目前已經交了你還進一步交這沒有道理好這個你可以請回了我們問問副總裁那個部長先不要先不要走來來來部長等一下來兩位一起聽說台美關稅確定了差不多確定了但是呢美國要求我們投資3500億美金到5000億美金副總裁這會不會動到我們的外匯存底
transcript.whisperx[24].start 558.991
transcript.whisperx[24].end 564.475
transcript.whisperx[24].text 那個報告委員因為整個案子我們我們也還沒有定案所以我也不知道最後那你如果要投資美國會不會動到外匯存底我就問你
transcript.whisperx[25].start 570.547
transcript.whisperx[25].end 590.483
transcript.whisperx[25].text 外匯存底是央行自己在保管運用的那會不會影響其實是我們在看我們在外匯市場有沒有做很大的調節你要看當時候的外匯市場的供需情況吧今天我是廠商我要投資美國我用台幣跟你買美金就動到你的外匯存底啊難道不是嗎那要看央行有沒有進去干預啦你們會進去干預嗎我們看市場的情況
transcript.whisperx[26].start 597.03
transcript.whisperx[26].end 615.304
transcript.whisperx[26].text 這個部長啊 你有沒有聽說這個確定了要投資3千億美金到五千我想這個有關台美關稅談判我們有行政院的經貿談判小組在持續進行那最後的一個結果我想在適當時機談判團隊會問三千億美金是什麼概念就10兆新台幣以上
transcript.whisperx[27].start 618.291
transcript.whisperx[27].end 637.175
transcript.whisperx[27].text 然後我們的size比韓國也不如比日本也不如為什麼我們投資金額要比照韓國跟日本日本五千五韓國三千五為什麼要比照這樣子太敲得起我們了最後一個小問題問一下副總裁你再講一下現在你的外匯存底的配置有沒有大幅的改變有沒有
transcript.whisperx[28].start 646.104
transcript.whisperx[28].end 651.165
transcript.whisperx[28].text 你說外匯存底的改變有沒有大幅改變因為我們主要持有的還是以美元計價的為主有八成接近八成差不多八成有沒有買一點黃金跟加密貨幣目前沒有目前都沒有買我跟你數字你看全世界其他國家的央行平均的配置美元46
transcript.whisperx[29].start 673.712
transcript.whisperx[29].end 700.891
transcript.whisperx[29].text 黃金20%歐元小於20%給你當參考那個報告委員那個其實你的資料是平均的其實各國央行的差異還很大的什麼意思各國央行持有譬如說美國德國義大利他們那種傳統的國家他持有黃金的數量是以台灣來講持有美元的資產美元計價的資產大概全世界第一喔我們占八成全世界第一喔對吧
transcript.whisperx[30].start 702.204
transcript.whisperx[30].end 702.684
transcript.whisperx[30].text 謝謝賴委員接下來我們請郭國文委員