iVOD / 165329

Field Value
IVOD_ID 165329
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165329
日期 2025-11-12
會議資料.會議代碼 委員會-11-4-26-9
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-12T13:35:36+08:00
結束時間 2025-11-12T13:48:22+08:00
影片長度 00:12:46
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a35f0de19abcdbe3f0f947ffe3e9453eb62a46119727b9b985b487800f276530d53b19a6b4a7811c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳瑩
委員發言時間 13:35:36 - 13:48:22
會議時間 2025-11-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 2.79846875
transcript.pyannote[0].end 4.38471875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.82346875
transcript.pyannote[1].end 5.63346875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 6.83159375
transcript.pyannote[2].end 8.45159375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 9.14346875
transcript.pyannote[3].end 10.13909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 10.86471875
transcript.pyannote[4].end 11.57346875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 11.65784375
transcript.pyannote[5].end 12.48471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 14.00346875
transcript.pyannote[6].end 14.56034375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 14.66159375
transcript.pyannote[7].end 14.67846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 14.67846875
transcript.pyannote[8].end 23.62221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 24.61784375
transcript.pyannote[9].end 28.68471875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 28.02659375
transcript.pyannote[10].end 29.12346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 29.12346875
transcript.pyannote[11].end 29.35971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 30.10221875
transcript.pyannote[12].end 30.35534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 31.24971875
transcript.pyannote[13].end 33.37596875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 33.62909375
transcript.pyannote[14].end 36.21096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 35.94096875
transcript.pyannote[15].end 36.76784375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 36.93659375
transcript.pyannote[16].end 38.03346875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 37.35846875
transcript.pyannote[17].end 42.79221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 41.34096875
transcript.pyannote[18].end 46.09971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 44.15909375
transcript.pyannote[19].end 44.73284375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 44.85096875
transcript.pyannote[20].end 46.18409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 46.42034375
transcript.pyannote[21].end 46.79159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 47.02784375
transcript.pyannote[22].end 49.60971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 50.06534375
transcript.pyannote[23].end 51.22971875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 51.22971875
transcript.pyannote[24].end 55.63409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 56.10659375
transcript.pyannote[25].end 59.24534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 60.44346875
transcript.pyannote[26].end 61.59096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 62.31659375
transcript.pyannote[27].end 64.10534375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 64.32471875
transcript.pyannote[28].end 65.87721875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 68.39159375
transcript.pyannote[29].end 69.30284375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 69.43784375
transcript.pyannote[30].end 96.75846875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 97.34909375
transcript.pyannote[31].end 98.42909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 98.76659375
transcript.pyannote[32].end 104.31846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 104.79096875
transcript.pyannote[33].end 110.39346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 110.68034375
transcript.pyannote[34].end 113.58284375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 114.40971875
transcript.pyannote[35].end 115.06784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 115.06784375
transcript.pyannote[36].end 116.62034375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 117.04221875
transcript.pyannote[37].end 118.54409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 118.89846875
transcript.pyannote[38].end 139.18221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 140.16096875
transcript.pyannote[39].end 147.19784375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 147.09659375
transcript.pyannote[40].end 147.45096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 147.45096875
transcript.pyannote[41].end 158.31846875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 158.94284375
transcript.pyannote[42].end 164.14034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 164.14034375
transcript.pyannote[43].end 169.84409375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 170.50221875
transcript.pyannote[44].end 172.98284375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 172.88159375
transcript.pyannote[45].end 173.45534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 173.42159375
transcript.pyannote[46].end 175.27784375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 173.99534375
transcript.pyannote[47].end 178.09596875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 175.90221875
transcript.pyannote[48].end 177.04971875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 177.40409375
transcript.pyannote[49].end 188.49096875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 186.39846875
transcript.pyannote[50].end 189.43596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 189.95909375
transcript.pyannote[51].end 215.03534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 198.61596875
transcript.pyannote[52].end 199.02096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 215.54159375
transcript.pyannote[53].end 221.97096875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 222.51096875
transcript.pyannote[54].end 231.89346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 232.21409375
transcript.pyannote[55].end 257.42534375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 258.16784375
transcript.pyannote[56].end 264.34409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 265.77846875
transcript.pyannote[57].end 267.75284375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 268.10721875
transcript.pyannote[58].end 274.51971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 274.99221875
transcript.pyannote[59].end 289.85909375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 290.12909375
transcript.pyannote[60].end 291.44534375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 292.22159375
transcript.pyannote[61].end 297.58784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 297.89159375
transcript.pyannote[62].end 299.07284375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 299.35971875
transcript.pyannote[63].end 300.23721875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 299.56221875
transcript.pyannote[64].end 302.12721875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 303.57846875
transcript.pyannote[65].end 306.53159375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 307.12221875
transcript.pyannote[66].end 310.17659375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 309.83909375
transcript.pyannote[67].end 310.00784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 310.17659375
transcript.pyannote[68].end 310.36221875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 310.36221875
transcript.pyannote[69].end 310.42971875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 310.42971875
transcript.pyannote[70].end 310.71659375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 310.71659375
transcript.pyannote[71].end 311.94846875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 313.38284375
transcript.pyannote[72].end 324.09846875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 324.23346875
transcript.pyannote[73].end 332.01284375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 327.22034375
transcript.pyannote[74].end 327.62534375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 332.23221875
transcript.pyannote[75].end 339.65721875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 339.65721875
transcript.pyannote[76].end 368.76659375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 367.53471875
transcript.pyannote[77].end 367.92284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 368.68221875
transcript.pyannote[78].end 377.91284375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 377.69346875
transcript.pyannote[79].end 381.00096875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 381.91221875
transcript.pyannote[80].end 382.31721875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 382.73909375
transcript.pyannote[81].end 385.86096875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 386.26596875
transcript.pyannote[82].end 386.63721875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 387.27846875
transcript.pyannote[83].end 391.76721875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 392.71221875
transcript.pyannote[84].end 394.31534375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 394.87221875
transcript.pyannote[85].end 399.46221875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 400.40721875
transcript.pyannote[86].end 407.91659375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 408.52409375
transcript.pyannote[87].end 409.75596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 409.97534375
transcript.pyannote[88].end 410.02596875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 410.17784375
transcript.pyannote[89].end 412.01721875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 412.79346875
transcript.pyannote[90].end 413.40096875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 414.00846875
transcript.pyannote[91].end 414.44721875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 415.17284375
transcript.pyannote[92].end 418.46346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 418.98659375
transcript.pyannote[93].end 421.68659375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 422.10846875
transcript.pyannote[94].end 425.58471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 426.91784375
transcript.pyannote[95].end 427.49159375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 426.93471875
transcript.pyannote[96].end 428.04846875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 427.99784375
transcript.pyannote[97].end 430.15784375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 430.09034375
transcript.pyannote[98].end 430.78221875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 431.18721875
transcript.pyannote[99].end 431.69346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 431.69346875
transcript.pyannote[100].end 432.41909375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 432.40221875
transcript.pyannote[101].end 438.52784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 438.73034375
transcript.pyannote[102].end 440.38409375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 440.78909375
transcript.pyannote[103].end 446.20596875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 446.91471875
transcript.pyannote[104].end 450.81284375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 451.11659375
transcript.pyannote[105].end 455.08221875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 456.04409375
transcript.pyannote[106].end 456.66846875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 456.76971875
transcript.pyannote[107].end 462.05159375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 462.18659375
transcript.pyannote[108].end 481.20471875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 482.25096875
transcript.pyannote[109].end 499.86846875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 501.58971875
transcript.pyannote[110].end 504.39096875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 504.49221875
transcript.pyannote[111].end 507.15846875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 507.20909375
transcript.pyannote[112].end 508.59284375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 507.88409375
transcript.pyannote[113].end 512.50784375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 511.02284375
transcript.pyannote[114].end 511.68096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 512.81159375
transcript.pyannote[115].end 517.70534375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 519.12284375
transcript.pyannote[116].end 520.69221875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 519.42659375
transcript.pyannote[117].end 520.91159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 521.94096875
transcript.pyannote[118].end 524.10096875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 523.67909375
transcript.pyannote[119].end 527.86409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 524.48909375
transcript.pyannote[120].end 526.96971875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 528.10034375
transcript.pyannote[121].end 531.25596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 532.01534375
transcript.pyannote[122].end 532.36971875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 533.07846875
transcript.pyannote[123].end 549.32909375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 549.98721875
transcript.pyannote[124].end 557.85096875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 558.23909375
transcript.pyannote[125].end 560.70284375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 561.49596875
transcript.pyannote[126].end 562.91346875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 563.55471875
transcript.pyannote[127].end 565.91721875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 566.59221875
transcript.pyannote[128].end 567.50346875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 568.09409375
transcript.pyannote[129].end 570.60846875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 571.23284375
transcript.pyannote[130].end 573.22409375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 573.54471875
transcript.pyannote[131].end 579.11346875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 579.24846875
transcript.pyannote[132].end 584.58096875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 585.18846875
transcript.pyannote[133].end 591.53346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 591.88784375
transcript.pyannote[134].end 595.16159375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 595.98846875
transcript.pyannote[135].end 598.09784375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 598.82346875
transcript.pyannote[136].end 607.83471875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 607.86846875
transcript.pyannote[137].end 613.08284375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 613.58909375
transcript.pyannote[138].end 615.56346875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 616.13721875
transcript.pyannote[139].end 617.80784375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 617.82471875
transcript.pyannote[140].end 618.83721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 618.51659375
transcript.pyannote[141].end 619.09034375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 619.12409375
transcript.pyannote[142].end 622.38096875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 622.61721875
transcript.pyannote[143].end 623.39346875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 622.71846875
transcript.pyannote[144].end 626.92034375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 625.78971875
transcript.pyannote[145].end 628.77659375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 630.12659375
transcript.pyannote[146].end 645.46596875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 645.53346875
transcript.pyannote[147].end 655.70909375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 655.74284375
transcript.pyannote[148].end 660.90659375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 661.19346875
transcript.pyannote[149].end 663.65721875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 665.12534375
transcript.pyannote[150].end 666.67784375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 667.08284375
transcript.pyannote[151].end 676.60034375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 671.01471875
transcript.pyannote[152].end 671.45346875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 676.61721875
transcript.pyannote[153].end 678.03471875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 678.32159375
transcript.pyannote[154].end 679.21596875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 680.26221875
transcript.pyannote[155].end 682.37159375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 682.62471875
transcript.pyannote[156].end 684.53159375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 683.62034375
transcript.pyannote[157].end 686.97846875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 685.84784375
transcript.pyannote[158].end 686.40471875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 686.59034375
transcript.pyannote[159].end 711.73409375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 712.00409375
transcript.pyannote[160].end 717.13409375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 717.52221875
transcript.pyannote[161].end 720.20534375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 720.74534375
transcript.pyannote[162].end 722.48346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 722.70284375
transcript.pyannote[163].end 724.37346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 724.67721875
transcript.pyannote[164].end 725.74034375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 726.17909375
transcript.pyannote[165].end 726.66846875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 727.17471875
transcript.pyannote[166].end 729.50346875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 729.82409375
transcript.pyannote[167].end 733.11471875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 733.53659375
transcript.pyannote[168].end 738.61596875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 738.76784375
transcript.pyannote[169].end 761.58284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 761.88659375
transcript.pyannote[170].end 762.30846875
transcript.whisperx[0].start 2.807
transcript.whisperx[0].end 23.393
transcript.whisperx[0].text 好 麻煩請洪聖翰部長來 請部長部長都還沒有吃 你們都吃飽了很好 沒事 市長好好 村委員好部長好我想先請教你那個就是說我們一般整體的這個失業率跟原住民的失業率各是多少
transcript.whisperx[1].start 24.673
transcript.whisperx[1].end 49.38
transcript.whisperx[1].text 目前應該都是3%出頭然後原名我剛看到是3.08我們在3出頭3點零幾是都一樣嗎兩個數字都一樣嗎很接近就原名會給我們原住民的原住民族的事業的數字所以這個部分是原名會做的不是你們去統計的好那所以是你們委託原名會做
transcript.whisperx[2].start 50.08
transcript.whisperx[2].end 61.447
transcript.whisperx[2].text 不是他們自己做的他們自己做所以你們做的失業率就不會再分不會再特別分族群去做研究是嗎他們數據3.43抱歉好那整體的呢
transcript.whisperx[3].start 69.451
transcript.whisperx[3].end 96.288
transcript.whisperx[3].text 3.38好那我想是这样因为今天前面有好几位原住民的立委来这来未还关心原住民的这个就业的问题那虽然这个没有在我的咨询稿里面但是就说刚刚他们所提到的其实我很早以前我都有问过了但是我想我刚在这边听好我想点出一些问题就是说
transcript.whisperx[4].start 98.931
transcript.whisperx[4].end 113.307
transcript.whisperx[4].text 我们其实常常在部落也好或者是在很多地方我们在跑原住民的这个行程的时候也很巧你说3.48的失业率是吗
transcript.whisperx[5].start 115.531
transcript.whisperx[5].end 138.879
transcript.whisperx[5].text 3.43的失业率那我们怎么走动好神奇哦就这3.43%的人我们走没几步就会遇到所以为什么刚刚有委员说你们那个不能光看你这个数字啊是不准那是因为我们出去走确实有遇到这样的现象所以我就要请教你了就是说
transcript.whisperx[6].start 140.205
transcript.whisperx[6].end 158.1
transcript.whisperx[6].text 你們原住民失業率的這個到底就是說這個採樣是怎麼樣那你們說是原民會做的那我現在因為我不太清楚說做這個是原民會的工作還是你們的工作還是你們有講好說就是讓他們做還是你們覺得他們做了你們就不用做了
transcript.whisperx[7].start 158.991
transcript.whisperx[7].end 172.904
transcript.whisperx[7].text 因為畢竟我認為勞動部在做這些研究或許是比較專業的我想委員針對你剛才講的這個現象我覺得我們可以來跟原民會來討論就是說到底了解一下他的調查方法如何
transcript.whisperx[8].start 174.446
transcript.whisperx[8].end 189.142
transcript.whisperx[8].text 了解一下它的那個樣本對 更好的調查方法那大家在不同的調查方法上面就是說不同的調查單位其實能夠去做對接在方法上面比較奇異比較能也能夠去做可行性的比較那我是不是也建議你們也做一下
transcript.whisperx[9].start 190.143
transcript.whisperx[9].end 214.765
transcript.whisperx[9].text 因為其實在做這個失業率的統計當然有很多的技巧我相信勞動部的各位應該都比我還熟那起碼看你們是質化還是量化或者兩個並行怎麼樣做比較準這個還牽扯到這個區域的問題因為我們原鄉跟都會區的原住民的工作型態是差距是非常大的
transcript.whisperx[10].start 215.566
transcript.whisperx[10].end 230.635
transcript.whisperx[10].text 好所以這個部分因為我這樣聽起來我認為部長對於原住民的這個整個生活型態並不是很了解我們也可以體諒但是不能一直包容下去因為您坐這個位置原住民的勞工
transcript.whisperx[11].start 231.215
transcript.whisperx[11].end 257.073
transcript.whisperx[11].text 好跟跟这个其他劳工朋友本国的劳工朋友外籍的劳工朋友都一样都是劳工也都是劳动部需要关心的对象那所以这个部分我本期建议就是说劳动部你们可以也邀集好先讨论一下就是说看要你们自己研究所要做还是你们委外给哪个单位做但是要做之前
transcript.whisperx[12].start 258.234
transcript.whisperx[12].end 264.061
transcript.whisperx[12].text 我覺得你們要去找就是說對於這個原住民整個生活型態很了解的因為畢竟過去
transcript.whisperx[13].start 265.974
transcript.whisperx[13].end 291.106
transcript.whisperx[13].text 我曾經聽到在這個公部門有人很得意的講這個不小心讓我聽到就是說因為我們要降低這個數據我們就其實就有很多這個臨時的工作跑出來當這個臨時的工作跑出來的時候你當然在做說他這個失業率在做的時候當然跟當然
transcript.whisperx[14].start 292.327
transcript.whisperx[14].end 311.833
transcript.whisperx[14].text 到底說他是誤差還是他是技巧性的美化這個我們就不知道了啊好部長你覺得這個部份我們統一處這邊來說明報告委員是這樣子就是我們國家的那個政府統計他是你可以大聲一點我們國家的
transcript.whisperx[15].start 313.447
transcript.whisperx[15].end 330.265
transcript.whisperx[15].text 我們國家的政府統計它是依據主席總署的各部會統計範圍劃分方案來分工的這個原因是因為你分什麼工分工 譬如說哪個統計是哪個部會負責
transcript.whisperx[16].start 333.789
transcript.whisperx[16].end 348.312
transcript.whisperx[16].text 那因為各部會的這個職權多少有點重複的地方好沒關係我了解你要講什麼我想如果是如果是已經有這個分工所以你這個分工確定是
transcript.whisperx[17].start 349.133
transcript.whisperx[17].end 364.854
transcript.whisperx[17].text 那個原住民的失業率是由原民會來做是嗎好那這個部分本席在這裡要求那你們是不是可以討論一下就是說也理解了解一下那提供你們平常在做那個失業率的部分好怎麼樣做然後也跟原住民的部分
transcript.whisperx[18].start 365.314
transcript.whisperx[18].end 390.905
transcript.whisperx[18].text 就是說大家做一下意見交流我覺得在做之前我們這樣好不好我們來跟原住民原民會討論一下他們做的方法上面有沒有什麼地方可以我們有提供建議的地方我們會來找他們因為以前你們勞動部應該是自己也有做過啦可以去了解一下看看我印象中是這樣子的那另外就是說我要講的是
transcript.whisperx[19].start 392.782
transcript.whisperx[19].end 407.621
transcript.whisperx[19].text 再來就是說大家如果不是在數據上琢磨的話那我認為就是說剛剛前面委員提到了在這個營造業好特別蓋房子
transcript.whisperx[20].start 408.961
transcript.whisperx[20].end 424.233
transcript.whisperx[20].text 這個部分其實不談先不談這個失業率我們談的是說在我們現在的這個逃逸的外籍勞工人數已經邁入
transcript.whisperx[21].start 428.881
transcript.whisperx[21].end 454.816
transcript.whisperx[21].text 10萬9萬也快10萬多少9萬4很快啊可能可能你再過一兩個禮拜搞不好就變10萬了啊好所以這個部分喔你們倒是可以好好的去了解一下因為這個部分影響的是我們原來從事這些營造業的我們原住民的朋友的日薪他們的收入
transcript.whisperx[22].start 456.089
transcript.whisperx[22].end 481.011
transcript.whisperx[22].text 因為就請這個逃逸的就比較便宜啊那當然大家都會去請那我們也遇到就是說之前有原住民的朋友拿不到工資的來跟我們懲請我們有協助去溝通那拿到以後他生氣不聘請這個正常的原住民的這個老公朋友現在就轉而去聘請這些逃逸的
transcript.whisperx[23].start 482.321
transcript.whisperx[23].end 499.669
transcript.whisperx[23].text 所以你們應該也要我要在這邊也要請你們再做一個研究跟評估就是這個逃逸的這個外籍勞工對營造業的勞工的就業影響好以及這個衝擊評估好特別是原住民的部分
transcript.whisperx[24].start 501.598
transcript.whisperx[24].end 530.957
transcript.whisperx[24].text 我們綜合的來思考一下好了這部分對不是我不曉得你的思考是什麼就是我們來看一下你要思考什麼我請你做這個評估你要思考什麼就是可以跟不可以我們來看一下這個評估現在有沒有一些資料可以來提供我們請我們研究所來看一下對有嗎現在有嗎現在沒有嗎就請你們做啊對他說沒有能做嗎如果沒有的話我們就來進行吧對好這部分也請你們一併就做一下
transcript.whisperx[25].start 532.045
transcript.whisperx[25].end 560.485
transcript.whisperx[25].text 好那大概我想就针对原住民的部分大概是这样那我最后提一下比较具体一点的在我也想同步了解一下就是这个缺工缺工因为那个目前目前统计出来就是那个旅宿业流动率就特别高嘛我们在这个表上面很清楚
transcript.whisperx[26].start 561.55
transcript.whisperx[26].end 587.782
transcript.whisperx[26].text 平均就花了花了大概三個月的招募然後也很難找到人所以我想從這個表我們今天都脫稿來質詢那這個部分我們就是因為我觀察到的在台東那個勞動部去辦理這個
transcript.whisperx[27].start 589.286
transcript.whisperx[27].end 597.867
transcript.whisperx[27].text 就是說就業的這些這些媒合那是就是等於大雜燴各類型的全部都在一起
transcript.whisperx[28].start 599.368
transcript.whisperx[28].end 627.934
transcript.whisperx[28].text 也很好也认真但是呢我们有没有考虑过就是说我们在未来是不是就是说分类更集中比如说我今天我针对的是这个吕树叶的我们就今天就来一个好来一个吕树叶很集中有之前做过我不知道因为我在台东我是没有看到我刚好之前针对吕树叶我们其实有进专案媒合有媒合到我们那里去吗
transcript.whisperx[29].start 630.565
transcript.whisperx[29].end 658.292
transcript.whisperx[29].text 那個不要緊我是說建議我不是說只有鋁樹葉啦我說未來你們就是說整體綜合的那是不是未來有幾項抽出來我們也就是分類型去辦理我在這裡我沒有沒有責備的意思啦我是說我們可以好調整一下那我也想了解就是說因為我去台東我有去參加那個就是那個中高齡的
transcript.whisperx[30].start 659.437
transcript.whisperx[30].end 678.746
transcript.whisperx[30].text 那個就業的你們有一個就業的那個中心開幕我有去那這半年就是台東縣銀髮人才服務據點的這個部分可能已經經過6個月了我想了解一下這6個月你們的成效怎麼樣
transcript.whisperx[31].start 680.507
transcript.whisperx[31].end 705.861
transcript.whisperx[31].text 大概我想大概是這樣所以我們一周內把相關的資料送到委員辦公室好不好你們在會後再麻煩一下那因為剛剛就是有那個剛剛也有原住民的立委特別有提到就是說好像我們常在做那個就業的那個訓練啊執訓都是固定的好像都只有那幾種類型而且不是很高階的
transcript.whisperx[32].start 707.081
transcript.whisperx[32].end 727.782
transcript.whisperx[32].text 我要在這裡點出一個問題啦因為我知道你們資訊有時候也是委外那在我們台東確實有一些有奇特的現象長期以來呢可能就是單一的協會在辦理那這個單一協會的辦理就很容易他就是會有集中在幾項的這個
transcript.whisperx[33].start 730.945
transcript.whisperx[33].end 746.802
transcript.whisperx[33].text 我們的這個執訓的部分那除了表面上是這樣那實質上有沒有其他的目的我覺得你們應該也要關心一下我今天在這裡我就不要講的太明講出來就傷感情了我想這個部分未來
transcript.whisperx[34].start 748.084
transcript.whisperx[34].end 760.934
transcript.whisperx[34].text 就是說我們在這個執訓的委外單位的這個訓練跟培養其實也可以更多元好到機會可以給更多的人去參與好 以上謝謝