iVOD / 165327

Field Value
IVOD_ID 165327
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165327
日期 2025-11-12
會議資料.會議代碼 委員會-11-4-26-9
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-12T13:17:14+08:00
結束時間 2025-11-12T13:25:37+08:00
影片長度 00:08:23
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a35f0de19abcdbe34a570029e5fa6fcdb62a46119727b9b985b487800f2765308b382dd59e615ff75ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 13:17:14 - 13:25:37
會議時間 2025-11-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.64596875
transcript.pyannote[0].end 11.01659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 15.87659375
transcript.pyannote[1].end 23.75721875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.11284375
transcript.pyannote[2].end 16.51784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 24.55034375
transcript.pyannote[3].end 27.18284375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 27.43596875
transcript.pyannote[4].end 30.50721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 31.43534375
transcript.pyannote[5].end 32.85284375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 33.59534375
transcript.pyannote[6].end 38.52284375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 39.11346875
transcript.pyannote[7].end 43.21409375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 43.70346875
transcript.pyannote[8].end 45.00284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 45.72846875
transcript.pyannote[9].end 46.63971875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 47.36534375
transcript.pyannote[10].end 48.22596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 48.76596875
transcript.pyannote[11].end 51.11159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 51.76971875
transcript.pyannote[12].end 52.07346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 52.91721875
transcript.pyannote[13].end 54.94221875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 55.27971875
transcript.pyannote[14].end 58.84034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 59.32971875
transcript.pyannote[15].end 63.88596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 64.40909375
transcript.pyannote[16].end 68.35784375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 69.23534375
transcript.pyannote[17].end 72.82971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 73.13346875
transcript.pyannote[18].end 74.11221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 74.70284375
transcript.pyannote[19].end 75.73221875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 76.06971875
transcript.pyannote[20].end 77.92596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 78.65159375
transcript.pyannote[21].end 81.43596875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 81.62159375
transcript.pyannote[22].end 82.26284375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 83.12346875
transcript.pyannote[23].end 84.49034375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 85.68846875
transcript.pyannote[24].end 86.44784375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 86.78534375
transcript.pyannote[25].end 87.46034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 89.41784375
transcript.pyannote[26].end 90.48096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 91.03784375
transcript.pyannote[27].end 94.93596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 94.95284375
transcript.pyannote[28].end 94.96971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 95.57721875
transcript.pyannote[29].end 98.12534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 98.83409375
transcript.pyannote[30].end 101.77034375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 102.49596875
transcript.pyannote[31].end 103.64346875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 104.21721875
transcript.pyannote[32].end 106.49534375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 107.15346875
transcript.pyannote[33].end 110.59596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 111.08534375
transcript.pyannote[34].end 112.01346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 112.87409375
transcript.pyannote[35].end 114.29159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 115.20284375
transcript.pyannote[36].end 116.45159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 117.17721875
transcript.pyannote[37].end 118.98284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 120.02909375
transcript.pyannote[38].end 123.97784375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 125.34471875
transcript.pyannote[39].end 126.96471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 127.53846875
transcript.pyannote[40].end 131.55471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 133.10721875
transcript.pyannote[41].end 133.34346875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 134.11971875
transcript.pyannote[42].end 135.13221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 135.75659375
transcript.pyannote[43].end 140.70096875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 141.12284375
transcript.pyannote[44].end 143.55284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 144.34596875
transcript.pyannote[45].end 144.59909375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 148.04159375
transcript.pyannote[46].end 150.08346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 150.74159375
transcript.pyannote[47].end 151.97346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 152.32784375
transcript.pyannote[48].end 153.22221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 153.39096875
transcript.pyannote[49].end 156.41159375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 157.12034375
transcript.pyannote[50].end 158.50409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 158.79096875
transcript.pyannote[51].end 160.69784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 161.79471875
transcript.pyannote[52].end 163.56659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 164.35971875
transcript.pyannote[53].end 166.97534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 168.00471875
transcript.pyannote[54].end 169.97909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 170.63721875
transcript.pyannote[55].end 171.80159375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 172.39221875
transcript.pyannote[56].end 174.19784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 175.07534375
transcript.pyannote[57].end 175.71659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 176.34096875
transcript.pyannote[58].end 176.61096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 177.03284375
transcript.pyannote[59].end 177.85971875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 178.83846875
transcript.pyannote[60].end 180.30659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 180.72846875
transcript.pyannote[61].end 182.87159375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 183.49596875
transcript.pyannote[62].end 185.57159375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 185.95971875
transcript.pyannote[63].end 186.90471875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 188.17034375
transcript.pyannote[64].end 189.62159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 190.02659375
transcript.pyannote[65].end 191.29221875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 191.95034375
transcript.pyannote[66].end 193.63784375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 195.35909375
transcript.pyannote[67].end 197.60346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 198.02534375
transcript.pyannote[68].end 199.15596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 199.59471875
transcript.pyannote[69].end 202.71659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 202.88534375
transcript.pyannote[70].end 204.42096875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 205.51784375
transcript.pyannote[71].end 207.18846875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 207.76221875
transcript.pyannote[72].end 208.53846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 208.89284375
transcript.pyannote[73].end 210.34409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 210.96846875
transcript.pyannote[74].end 214.46159375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 215.37284375
transcript.pyannote[75].end 217.14471875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 217.97159375
transcript.pyannote[76].end 219.38909375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 220.18221875
transcript.pyannote[77].end 223.03409375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 223.52346875
transcript.pyannote[78].end 223.91159375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 225.83534375
transcript.pyannote[79].end 226.35846875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 226.99971875
transcript.pyannote[80].end 228.02909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 228.36659375
transcript.pyannote[81].end 232.70346875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 232.97346875
transcript.pyannote[82].end 234.12096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 235.08284375
transcript.pyannote[83].end 236.16284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 236.41596875
transcript.pyannote[84].end 237.64784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 237.74909375
transcript.pyannote[85].end 238.96409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 239.31846875
transcript.pyannote[86].end 240.06096875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 240.60096875
transcript.pyannote[87].end 241.19159375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 241.88346875
transcript.pyannote[88].end 243.58784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 244.54971875
transcript.pyannote[89].end 245.59596875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 245.59596875
transcript.pyannote[90].end 245.64659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 246.43971875
transcript.pyannote[91].end 256.09221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 256.09221875
transcript.pyannote[92].end 256.54784375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 256.54784375
transcript.pyannote[93].end 256.58159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 257.50971875
transcript.pyannote[94].end 263.31471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 263.90534375
transcript.pyannote[95].end 265.87971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 266.52096875
transcript.pyannote[96].end 273.01784375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 274.08096875
transcript.pyannote[97].end 274.82346875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 275.80221875
transcript.pyannote[98].end 277.08471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 277.28721875
transcript.pyannote[99].end 277.72596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 278.33346875
transcript.pyannote[100].end 280.03784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 280.71284375
transcript.pyannote[101].end 281.65784375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 282.60284375
transcript.pyannote[102].end 286.29846875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 286.63596875
transcript.pyannote[103].end 288.35721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 288.74534375
transcript.pyannote[104].end 290.61846875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 291.32721875
transcript.pyannote[105].end 292.37346875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 293.74034375
transcript.pyannote[106].end 298.90409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 296.42346875
transcript.pyannote[107].end 297.30096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 299.37659375
transcript.pyannote[108].end 301.90784375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 302.34659375
transcript.pyannote[109].end 313.16346875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 313.16346875
transcript.pyannote[110].end 313.18034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 314.42909375
transcript.pyannote[111].end 314.44596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 314.44596875
transcript.pyannote[112].end 316.58909375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 316.06596875
transcript.pyannote[113].end 318.27659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 316.97721875
transcript.pyannote[114].end 322.51221875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 319.05284375
transcript.pyannote[115].end 319.13721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 320.60534375
transcript.pyannote[116].end 321.01034375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 321.85409375
transcript.pyannote[117].end 321.98909375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 322.56284375
transcript.pyannote[118].end 324.35159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 325.07721875
transcript.pyannote[119].end 331.43909375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 334.57784375
transcript.pyannote[120].end 337.64909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 338.05409375
transcript.pyannote[121].end 342.69471875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 343.06596875
transcript.pyannote[122].end 344.82096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 345.44534375
transcript.pyannote[123].end 346.89659375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 347.92596875
transcript.pyannote[124].end 349.10721875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 350.03534375
transcript.pyannote[125].end 352.98846875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 353.59596875
transcript.pyannote[126].end 359.33346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 360.34596875
transcript.pyannote[127].end 361.84784375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 362.89409375
transcript.pyannote[128].end 364.32846875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 364.80096875
transcript.pyannote[129].end 366.85971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 367.63596875
transcript.pyannote[130].end 368.88471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 369.54284375
transcript.pyannote[131].end 370.94346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 372.27659375
transcript.pyannote[132].end 374.79096875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 375.68534375
transcript.pyannote[133].end 376.54596875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 377.47409375
transcript.pyannote[134].end 378.31784375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 378.67221875
transcript.pyannote[135].end 385.52346875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 386.23221875
transcript.pyannote[136].end 388.74659375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 388.74659375
transcript.pyannote[137].end 390.11346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 388.76346875
transcript.pyannote[138].end 388.78034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 389.08409375
transcript.pyannote[139].end 391.34534375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 391.51409375
transcript.pyannote[140].end 396.94784375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 391.56471875
transcript.pyannote[141].end 392.72909375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 395.20971875
transcript.pyannote[142].end 395.66534375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 397.55534375
transcript.pyannote[143].end 400.35659375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 401.25096875
transcript.pyannote[144].end 409.13159375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 409.36784375
transcript.pyannote[145].end 411.64596875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 411.96659375
transcript.pyannote[146].end 418.76721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 419.00346875
transcript.pyannote[147].end 421.28159375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 421.55159375
transcript.pyannote[148].end 422.74971875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 421.65284375
transcript.pyannote[149].end 422.07471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 422.74971875
transcript.pyannote[150].end 445.00784375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 423.67784375
transcript.pyannote[151].end 428.23409375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 445.34534375
transcript.pyannote[152].end 447.97784375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 447.97784375
transcript.pyannote[153].end 456.76971875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 457.17471875
transcript.pyannote[154].end 458.01846875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 459.25034375
transcript.pyannote[155].end 463.03034375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 463.28346875
transcript.pyannote[156].end 464.92034375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 465.17346875
transcript.pyannote[157].end 466.96221875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 467.45159375
transcript.pyannote[158].end 469.74659375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 470.20221875
transcript.pyannote[159].end 470.57346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 470.91096875
transcript.pyannote[160].end 471.87284375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 472.26096875
transcript.pyannote[161].end 473.42534375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 475.72034375
transcript.pyannote[162].end 477.18846875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 477.32346875
transcript.pyannote[163].end 485.65971875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 487.48221875
transcript.pyannote[164].end 489.82784375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 489.23721875
transcript.pyannote[165].end 490.94159375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 490.14846875
transcript.pyannote[166].end 494.33346875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 495.02534375
transcript.pyannote[167].end 499.63221875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 501.91034375
transcript.pyannote[168].end 502.60221875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 502.97346875
transcript.pyannote[169].end 503.76659375
transcript.whisperx[0].start 6.927
transcript.whisperx[0].end 29.497
transcript.whisperx[0].text 主席 各位委員有請部長來 請部長部長好 辛苦了這個原住民的就業這個我們一直希望能夠有更好但是以目前的狀況並沒有更好雖然我們的
transcript.whisperx[1].start 33.72
transcript.whisperx[1].end 50.855
transcript.whisperx[1].text 前任的總統蔡總統他的原住民族就業政策要保障上望新的工作機會但是很遺憾的我們的原住民保障的就業的條文
transcript.whisperx[2].start 52.984
transcript.whisperx[2].end 81.113
transcript.whisperx[2].text 本來在一開始的時候就業服務法46條所授權訂定的外國人從事就業服務法第46條第一項第8款至第11款工作資格及審查標準這是民國93年1月13號訂定發布的這裡面特別規定每禁用言住民一人得申請引進外國人兩人
transcript.whisperx[3].start 83.448
transcript.whisperx[3].end 97.729
transcript.whisperx[3].text 這樣的一個條文在109年7月31號被刪除了所以這個保障條款就變沒有了
transcript.whisperx[4].start 98.905
transcript.whisperx[4].end 123.3
transcript.whisperx[4].text 然後在111年4月29號就全文修正整個65條全文修正當然也沒有回復到我們的剛才講的被刪除的這個條文在這樣一個情況之下你看為了外勞現在為了外籍外勞不斷的修正這個
transcript.whisperx[5].start 126.35
transcript.whisperx[5].end 149.239
transcript.whisperx[5].text 這個審查標準工作資格及審查標準已經修了23次我們不反對啦我們確實也需要但是原住民為什麼要被犧牲呢所以這個部分尤其是我們原住民族的就業狀況
transcript.whisperx[6].start 150.834
transcript.whisperx[6].end 177.495
transcript.whisperx[6].text 我們主要是最高的最多的人數最多的比例最高的營建工程業百分之十八點五九這個比比例很高當然你勞動部一定很清楚現在進來的這些外勞營建工程非常最多然後我們
transcript.whisperx[7].start 178.871
transcript.whisperx[7].end 204.144
transcript.whisperx[7].text 我們就業的比例從事的行業製造業14.03%這是第二高而製造業進來的也越來越多所以這個23次的資格及審查標準的修正影響的都是原住民的勞工而且是我們就業的比例
transcript.whisperx[8].start 205.543
transcript.whisperx[8].end 233.817
transcript.whisperx[8].text 低高跟第二高的都受到很嚴重的影響接下來就是住宿及餐飲業這是我們的第三這是我們就業的第三現在也在受影響剛才羅廷偉委員講的這個跟教學跟這個就業合作的那個部分也影響到我們
transcript.whisperx[9].start 235.154
transcript.whisperx[9].end 256.205
transcript.whisperx[9].text 所以這個部分要請部長要能夠重視怎麼樣去解決把我們的條款能不能再列回來跟委員說其實現在在救福法裡面第24條其實是有把原住民納入成我們的特定對象裡面的部長
transcript.whisperx[10].start 257.566
transcript.whisperx[10].end 281.493
transcript.whisperx[10].text 就業服務法24條現在已經形同稀釋因為根據24條根據24條才會有46條授權訂定的一個保障條款現在沒有了這個保障條款的 沒了所以在這樣一個情形之下我剛剛說了
transcript.whisperx[11].start 282.923
transcript.whisperx[11].end 291.982
transcript.whisperx[11].text 現在外勞進來的營建工程業最多正好是我們就業比例最高的第二 製造業
transcript.whisperx[12].start 293.769
transcript.whisperx[12].end 311.423
transcript.whisperx[12].text 外勞進來的很多我們都不反對外勞進來但是怎麼樣不要影響到我們的就業我們現在在原民會提供的這個失業率的數字上面其實的確沒有看到原住民族的失業率特別高他大概是3%左右
transcript.whisperx[13].start 314.765
transcript.whisperx[13].end 342.052
transcript.whisperx[13].text 還是比一般的其實跟一般跟權力還是差不多的還是比一般的高大概就是在3%左右其實跟其他是差不多的這個部長不能因為這個數字不能因為這個數字就認為說沒有影響到事實上是有影響到在審查已經通過了立法院已經通過了在外國人外國人專業的那個那個辦法
transcript.whisperx[14].start 343.137
transcript.whisperx[14].end 365.912
transcript.whisperx[14].text 外國專業人才禁用的那個辦法又擴大連副協士連副協士都算是一個專業人才外國專業人才副協士以前這個外國專業人才這個辦法副協士沒有列進去這是特別列進去我問教育部 問國發會他說因為勞動部支持
transcript.whisperx[15].start 372.355
transcript.whisperx[15].end 400.004
transcript.whisperx[15].text 所以這個部分的都是影響到影響到這個部分當然我們臺灣的就業的問題很多眼沒有錯但是不要犧牲原住民原來的我們不會再就位去犧牲原住民就絕對不會在老就是有啊我才會如果沒有的話就是我們的勞工跟我反映了
transcript.whisperx[16].start 401.311
transcript.whisperx[16].end 422.556
transcript.whisperx[16].text 老公原住民的老公跟我反映了我才會去仔細的去看這些條文我才知道啊所以這個部分的部長如果你一開始現在我經過這樣的質詢之後這麼詳細的說明之後你都還認為沒有的話這樣是不好的
transcript.whisperx[17].start 423.056
transcript.whisperx[17].end 447.024
transcript.whisperx[17].text 跟委員說我不是認為沒有你可以說你回去再去考量我們可以跟原民會再來了解他這個數字統計數字背後是不是有什麼地方應該要多做考慮然後在這個考慮下我們既有的機制跟既有的這個法條包括特定對象的部分我們怎麼來去協助我們很願意來去檢視這些事情對但我們會要去跟原民會一起來討論
transcript.whisperx[18].start 448.184
transcript.whisperx[18].end 473.184
transcript.whisperx[18].text 不過那個部長現在不是延民會議是你們主動把這個我問過延民會當初你們是不是有同意把這個這個授權就業服務法46條所授權訂定的這個資格及審查標準他們說當初他們也反對啊但是就當然不是你部長任內啦就這樣啊所以這個部分
transcript.whisperx[19].start 475.748
transcript.whisperx[19].end 498.4
transcript.whisperx[19].text 我都不反對外勞進來我們是確實是需要但是不要把原住民的保障條款給刪除回去好好的去評估我們再思考一下能夠再把它回復我只有沒有沒有別的要求只是要求把它回復而已好不好謝謝謝謝好謝謝接下來請