iVOD / 165322

Field Value
IVOD_ID 165322
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165322
日期 2025-11-12
會議資料.會議代碼 委員會-11-4-26-9
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-12T12:37:11+08:00
結束時間 2025-11-12T12:57:42+08:00
影片長度 00:20:31
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a35f0de19abcdbe343a42bebb4373cb2b62a46119727b9b985b487800f2765301257d1c12132fb9b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林淑芬
委員發言時間 12:37:11 - 12:57:42
會議時間 2025-11-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 2.51159375
transcript.pyannote[0].end 5.22846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 5.98784375
transcript.pyannote[1].end 6.98346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 11.77596875
transcript.pyannote[2].end 12.53534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 12.92346875
transcript.pyannote[3].end 18.64409375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 18.98159375
transcript.pyannote[4].end 21.90096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 22.27221875
transcript.pyannote[5].end 43.14659375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 43.58534375
transcript.pyannote[6].end 47.02784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 47.24721875
transcript.pyannote[7].end 100.70721875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 101.97284375
transcript.pyannote[8].end 102.66471875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 102.66471875
transcript.pyannote[9].end 104.48721875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 104.04846875
transcript.pyannote[10].end 116.45159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 116.45159375
transcript.pyannote[11].end 124.16346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 124.34909375
transcript.pyannote[12].end 131.47034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 132.38159375
transcript.pyannote[13].end 142.77659375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 142.91159375
transcript.pyannote[14].end 146.21909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 146.57346875
transcript.pyannote[15].end 165.22034375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 165.91221875
transcript.pyannote[16].end 178.56846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 179.00721875
transcript.pyannote[17].end 180.10409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 181.33596875
transcript.pyannote[18].end 185.70659375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 186.26346875
transcript.pyannote[19].end 189.79034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 190.36409375
transcript.pyannote[20].end 198.98721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 199.99971875
transcript.pyannote[21].end 203.49284375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 203.66159375
transcript.pyannote[22].end 206.80034375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 207.69471875
transcript.pyannote[23].end 209.53409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 210.00659375
transcript.pyannote[24].end 222.81471875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 224.18159375
transcript.pyannote[25].end 229.07534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 230.62784375
transcript.pyannote[26].end 231.99471875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 232.12971875
transcript.pyannote[27].end 237.98534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 238.98096875
transcript.pyannote[28].end 240.70221875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 241.69784375
transcript.pyannote[29].end 258.99471875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 259.63596875
transcript.pyannote[30].end 260.41221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 260.68221875
transcript.pyannote[31].end 264.17534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 264.66471875
transcript.pyannote[32].end 279.22784375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 279.32909375
transcript.pyannote[33].end 286.06221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 287.39534375
transcript.pyannote[34].end 288.96471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 289.45409375
transcript.pyannote[35].end 290.46659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 290.80409375
transcript.pyannote[36].end 292.40721875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 292.40721875
transcript.pyannote[37].end 292.72784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 293.43659375
transcript.pyannote[38].end 294.53346875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 295.02284375
transcript.pyannote[39].end 296.37284375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 296.42346875
transcript.pyannote[40].end 303.49409375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 305.36721875
transcript.pyannote[41].end 308.26971875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 308.69159375
transcript.pyannote[42].end 310.86846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 310.29471875
transcript.pyannote[43].end 311.62784375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 312.20159375
transcript.pyannote[44].end 336.06284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 337.04159375
transcript.pyannote[45].end 337.83471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 339.79221875
transcript.pyannote[46].end 346.12034375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 340.02846875
transcript.pyannote[47].end 340.90596875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 347.63909375
transcript.pyannote[48].end 350.84534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 350.96346875
transcript.pyannote[49].end 354.86159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 354.40596875
transcript.pyannote[50].end 355.21596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 355.57034375
transcript.pyannote[51].end 355.87409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 355.87409375
transcript.pyannote[52].end 357.07221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 357.13971875
transcript.pyannote[53].end 358.35471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 358.35471875
transcript.pyannote[54].end 359.83971875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 359.87346875
transcript.pyannote[55].end 361.29096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 361.35846875
transcript.pyannote[56].end 363.29909375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 363.29909375
transcript.pyannote[57].end 363.41721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 363.48471875
transcript.pyannote[58].end 363.87284375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 363.97409375
transcript.pyannote[59].end 364.02471875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 364.37909375
transcript.pyannote[60].end 366.85971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 367.12971875
transcript.pyannote[61].end 372.91784375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 374.16659375
transcript.pyannote[62].end 378.23346875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 379.41471875
transcript.pyannote[63].end 385.52346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 386.65409375
transcript.pyannote[64].end 387.32909375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 388.45971875
transcript.pyannote[65].end 389.35409375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 390.06284375
transcript.pyannote[66].end 392.29034375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 394.26471875
transcript.pyannote[67].end 397.13346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 396.71159375
transcript.pyannote[68].end 397.26846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 397.75784375
transcript.pyannote[69].end 398.75346875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 399.46221875
transcript.pyannote[70].end 421.58534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 421.93971875
transcript.pyannote[71].end 439.69221875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 441.31221875
transcript.pyannote[72].end 457.79909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 458.50784375
transcript.pyannote[73].end 461.98409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 463.06409375
transcript.pyannote[74].end 469.94909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 471.18096875
transcript.pyannote[75].end 490.50284375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 490.78971875
transcript.pyannote[76].end 495.80159375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 496.27409375
transcript.pyannote[77].end 497.43846875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 498.28221875
transcript.pyannote[78].end 506.82096875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 507.36096875
transcript.pyannote[79].end 512.71034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 513.06471875
transcript.pyannote[80].end 536.95971875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 537.92159375
transcript.pyannote[81].end 546.02159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 546.59534375
transcript.pyannote[82].end 547.86096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 548.77221875
transcript.pyannote[83].end 550.94909375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 553.61534375
transcript.pyannote[84].end 554.49284375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 556.33221875
transcript.pyannote[85].end 558.35721875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 558.94784375
transcript.pyannote[86].end 563.41971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 563.82471875
transcript.pyannote[87].end 568.51596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 569.08971875
transcript.pyannote[88].end 574.23659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 574.82721875
transcript.pyannote[89].end 580.59846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 581.34096875
transcript.pyannote[90].end 584.24346875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 585.08721875
transcript.pyannote[91].end 585.86346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 586.40346875
transcript.pyannote[92].end 588.81659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 590.62221875
transcript.pyannote[93].end 593.42346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 593.82846875
transcript.pyannote[94].end 601.40534375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 601.72596875
transcript.pyannote[95].end 602.60346875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 603.91971875
transcript.pyannote[96].end 608.00346875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 609.03284375
transcript.pyannote[97].end 610.58534375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 613.92659375
transcript.pyannote[98].end 617.09909375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 617.65596875
transcript.pyannote[99].end 619.00596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 619.29284375
transcript.pyannote[100].end 621.04784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 621.45284375
transcript.pyannote[101].end 628.00034375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 630.31221875
transcript.pyannote[102].end 632.64096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 632.82659375
transcript.pyannote[103].end 635.37471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 637.02846875
transcript.pyannote[104].end 646.98471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 647.50784375
transcript.pyannote[105].end 652.50284375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 652.85721875
transcript.pyannote[106].end 657.70034375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 659.69159375
transcript.pyannote[107].end 662.18909375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 662.83034375
transcript.pyannote[108].end 665.39534375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 667.47096875
transcript.pyannote[109].end 669.66471875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 669.74909375
transcript.pyannote[110].end 679.94159375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 680.49846875
transcript.pyannote[111].end 685.99971875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 686.20221875
transcript.pyannote[112].end 704.49471875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 705.00096875
transcript.pyannote[113].end 714.04596875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 714.56909375
transcript.pyannote[114].end 718.83846875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 719.31096875
transcript.pyannote[115].end 726.33096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 726.92159375
transcript.pyannote[116].end 734.76846875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 736.77659375
transcript.pyannote[117].end 740.15159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 740.82659375
transcript.pyannote[118].end 745.41659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 744.82596875
transcript.pyannote[119].end 749.31471875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 748.40346875
transcript.pyannote[120].end 755.65971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 755.84534375
transcript.pyannote[121].end 757.04346875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 756.04784375
transcript.pyannote[122].end 756.79034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 757.04346875
transcript.pyannote[123].end 763.06784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 763.86096875
transcript.pyannote[124].end 768.18096875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 768.40034375
transcript.pyannote[125].end 774.84659375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 775.70721875
transcript.pyannote[126].end 777.15846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 777.74909375
transcript.pyannote[127].end 778.93034375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 780.70221875
transcript.pyannote[128].end 781.61346875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 783.58784375
transcript.pyannote[129].end 786.25409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 787.11471875
transcript.pyannote[130].end 793.61159375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 794.05034375
transcript.pyannote[131].end 799.06221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 799.70346875
transcript.pyannote[132].end 807.71909375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 808.10721875
transcript.pyannote[133].end 809.60909375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 811.60034375
transcript.pyannote[134].end 815.32971875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 816.67971875
transcript.pyannote[135].end 826.95659375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 830.06159375
transcript.pyannote[136].end 830.17971875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 830.17971875
transcript.pyannote[137].end 830.23034375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 830.23034375
transcript.pyannote[138].end 830.28096875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 831.36096875
transcript.pyannote[139].end 832.28909375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 832.39034375
transcript.pyannote[140].end 832.40721875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 832.40721875
transcript.pyannote[141].end 834.55034375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 832.60971875
transcript.pyannote[142].end 839.96721875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 841.04721875
transcript.pyannote[143].end 842.46471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 842.32971875
transcript.pyannote[144].end 846.75096875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 847.91534375
transcript.pyannote[145].end 848.05034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 848.05034375
transcript.pyannote[146].end 849.95721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 849.70409375
transcript.pyannote[147].end 850.53096875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 850.73346875
transcript.pyannote[148].end 853.01159375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 853.66971875
transcript.pyannote[149].end 856.28534375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 857.87159375
transcript.pyannote[150].end 868.84034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 869.59971875
transcript.pyannote[151].end 871.91159375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 872.70471875
transcript.pyannote[152].end 886.66034375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 886.93034375
transcript.pyannote[153].end 889.49534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 890.35596875
transcript.pyannote[154].end 894.47346875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 898.94534375
transcript.pyannote[155].end 899.29971875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 900.93659375
transcript.pyannote[156].end 902.48909375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 903.46784375
transcript.pyannote[157].end 913.99784375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 916.05659375
transcript.pyannote[158].end 920.15721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 921.32159375
transcript.pyannote[159].end 922.53659375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 923.29596875
transcript.pyannote[160].end 924.94971875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 925.28721875
transcript.pyannote[161].end 930.06284375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 930.61971875
transcript.pyannote[162].end 931.48034375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 931.64909375
transcript.pyannote[163].end 933.47159375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 935.88471875
transcript.pyannote[164].end 937.50471875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 935.96909375
transcript.pyannote[165].end 936.64409375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 938.23034375
transcript.pyannote[166].end 943.00596875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 943.27596875
transcript.pyannote[167].end 946.02659375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 946.54971875
transcript.pyannote[168].end 951.22409375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 951.51096875
transcript.pyannote[169].end 958.63221875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 958.80096875
transcript.pyannote[170].end 963.45846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 963.91409375
transcript.pyannote[171].end 968.50409375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 969.12846875
transcript.pyannote[172].end 970.41096875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 971.33909375
transcript.pyannote[173].end 977.63346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 977.93721875
transcript.pyannote[174].end 981.58221875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 981.80159375
transcript.pyannote[175].end 994.30596875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 994.93034375
transcript.pyannote[176].end 1000.31346875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 1000.78596875
transcript.pyannote[177].end 1003.77284375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 1002.37221875
transcript.pyannote[178].end 1004.21159375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 1004.02596875
transcript.pyannote[179].end 1005.69659375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 1005.19034375
transcript.pyannote[180].end 1008.09284375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 1008.66659375
transcript.pyannote[181].end 1024.63034375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 1009.15596875
transcript.pyannote[182].end 1010.15159375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 1022.79096875
transcript.pyannote[183].end 1025.45721875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 1025.28846875
transcript.pyannote[184].end 1025.57534375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 1025.57534375
transcript.pyannote[185].end 1025.65971875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 1025.77784375
transcript.pyannote[186].end 1043.09159375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 1043.95221875
transcript.pyannote[187].end 1045.79159375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 1045.09971875
transcript.pyannote[188].end 1047.90096875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 1047.54659375
transcript.pyannote[189].end 1049.68971875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 1050.39846875
transcript.pyannote[190].end 1057.67159375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 1058.71784375
transcript.pyannote[191].end 1061.18159375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 1061.02971875
transcript.pyannote[192].end 1067.13846875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 1067.54346875
transcript.pyannote[193].end 1070.95221875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 1067.57721875
transcript.pyannote[194].end 1081.60034375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 1082.83221875
transcript.pyannote[195].end 1083.38909375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 1083.30471875
transcript.pyannote[196].end 1084.26659375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 1084.11471875
transcript.pyannote[197].end 1091.92784375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 1089.37971875
transcript.pyannote[198].end 1090.20659375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 1092.07971875
transcript.pyannote[199].end 1093.49721875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 1093.58159375
transcript.pyannote[200].end 1095.67409375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 1095.91034375
transcript.pyannote[201].end 1105.54596875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 1104.60096875
transcript.pyannote[202].end 1108.16159375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 1108.93784375
transcript.pyannote[203].end 1112.41409375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 1114.15221875
transcript.pyannote[204].end 1120.36221875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 1115.23221875
transcript.pyannote[205].end 1122.30284375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 1122.33659375
transcript.pyannote[206].end 1128.90096875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 1130.47034375
transcript.pyannote[207].end 1131.60096875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 1134.06471875
transcript.pyannote[208].end 1135.85346875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 1135.97159375
transcript.pyannote[209].end 1139.16096875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 1139.83596875
transcript.pyannote[210].end 1141.28721875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 1140.54471875
transcript.pyannote[211].end 1146.04596875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 1141.35471875
transcript.pyannote[212].end 1141.50659375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 1147.24409375
transcript.pyannote[213].end 1168.59096875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 1168.94534375
transcript.pyannote[214].end 1174.14284375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 1174.51409375
transcript.pyannote[215].end 1185.33096875
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 1185.53346875
transcript.pyannote[216].end 1188.72284375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 1188.89159375
transcript.pyannote[217].end 1190.37659375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 1190.56221875
transcript.pyannote[218].end 1193.39721875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 1194.46034375
transcript.pyannote[219].end 1197.12659375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 1197.46409375
transcript.pyannote[220].end 1199.21909375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 1197.48096875
transcript.pyannote[221].end 1197.81846875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 1200.29909375
transcript.pyannote[222].end 1204.24784375
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 1204.61909375
transcript.pyannote[223].end 1207.45409375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 1207.69034375
transcript.pyannote[224].end 1209.96846875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 1210.28909375
transcript.pyannote[225].end 1213.69784375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 1214.52471875
transcript.pyannote[226].end 1217.49471875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 1218.00096875
transcript.pyannote[227].end 1219.18221875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 1220.09346875
transcript.pyannote[228].end 1227.99096875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 1220.11034375
transcript.pyannote[229].end 1221.73034375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 1228.04159375
transcript.pyannote[230].end 1228.36221875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 1228.76721875
transcript.pyannote[231].end 1230.38721875
transcript.whisperx[0].start 2.537
transcript.whisperx[0].end 12.278
transcript.whisperx[0].text 好 謝謝主席 是不是要請我們洪部長有請洪部長蘇分委員好
transcript.whisperx[1].start 13.107
transcript.whisperx[1].end 36.605
transcript.whisperx[1].text 部長在政策上面最近拋出了一個小孩的家庭也可以聘外籍家庭幫傭行政院在研議就是說只要現行的家庭幫傭每個月5000元的就業安定費提高到8000元就可以以價值量大概朝著這個方向去開放
transcript.whisperx[2].start 37.225
transcript.whisperx[2].end 46.63
transcript.whisperx[2].text 你覺得勞動部在行政院的指示之下你會這樣子做嗎我想我們都是綜合的在評估中
transcript.whisperx[3].start 47.524
transcript.whisperx[3].end 73.98
transcript.whisperx[3].text 綜合式評估在這裡我讓我提醒你幾個問題婦女薪資還有勞政發布的新聞稿反對他們認為放寬聘僱家庭幫傭這樣的人力市場只能加惠少數富貴人家凸顯社會不公平的現象會使現行公共托育服務倒退回家庭化過度市場化的模式
transcript.whisperx[4].start 74.44
transcript.whisperx[4].end 97.537
transcript.whisperx[4].text 好 我就我剛才講行政院指示的就業安定費用從五千提高到八千可以以價質量這一句話來講這一句話顯然以價質量就不是每個人可以負擔得起的嘛就不是要讓每個人負擔得起嘛就是為了某個經濟能力以上的人在開這一個方便門的嘛不是嗎 這一句話
transcript.whisperx[5].start 102.691
transcript.whisperx[5].end 131.137
transcript.whisperx[5].text 就業安定費要繳八千喔因為剛剛委員在講到一些民間團體的聲音我們其實也有聽到也有看到所以現在就是各種不同的聲音因為的確有人講到他的需求然後各種不同的聲音但就綜合在屏幕那有人是誰啊現在行政院講的是一個月就業安定費八千以價值量他就不是要讓大家來用的嘛以價值量就是要限縮在用得起的人才能用嘛
transcript.whisperx[6].start 132.438
transcript.whisperx[6].end 152.641
transcript.whisperx[6].text 你覺得這樣的政策會是一個好的政策嗎你的政策目標鎖定的是有消費能力有經濟能力高的那一些婦女嗎那我現在就再跟你提醒第二件事當全世界所有的國家都在對公共政策就是在
transcript.whisperx[7].start 153.382
transcript.whisperx[7].end 177.789
transcript.whisperx[7].text 解決少子化幫女性幫年輕人的家庭解決托育的問題的時候都是往國家幫忙養的方向不是嗎我們也是如此號稱啊但是當我們也跟著全世界潮流再往國家幫忙養的方向的時候怎麼會突然轉彎變成孩子自己找外擁帶自己養
transcript.whisperx[8].start 181.343
transcript.whisperx[8].end 197.206
transcript.whisperx[8].text 你覺得這樣的轉彎適合嗎那我再提醒你第三件事移工政策的最核心是什麼移工政策的最核心是它只能是補充原則絕對不能夠產生替代你們說你們要做政策評估你心裡面也有數這個東西會不會搶走了國內從業人員的工作
transcript.whisperx[9].start 210.066
transcript.whisperx[9].end 220.553
transcript.whisperx[9].text 大家都知道即便是補充原則他也會產生另一種效果對國內的員工衝擊很大是什麼這30年來你知道的部長是什麼即便是補充原則對國內的勞工還是產生很大的衝擊是什麼勞動條件上面勞動條件簡單來講薪資的滑坡薪資的滑坡
transcript.whisperx[10].start 239.462
transcript.whisperx[10].end 258.694
transcript.whisperx[10].text 低薪化本來我們是有國內的就業人員如果你政策適當你不是補充你搶走了國內不管是家庭幫傭的家事服務的國內居家托育的或是保姆在宅這個托育的
transcript.whisperx[11].start 259.693
transcript.whisperx[11].end 282.487
transcript.whisperx[11].text 或是幼兒園的 幼兒園的生意也都一樣啊本來是這樣的 而且每個保姆每一個人都要有合格的證照要上過課 要訓練當國內的托育是這樣子專業化在前進的時候你們外籍移工的開放有可能要證照嗎會跟保姆一樣要證照嗎
transcript.whisperx[12].start 287.441
transcript.whisperx[12].end 303.201
transcript.whisperx[12].text 委員這真的是在總體的評估之中欸啊 抽屜裡面喔總體的評估之中總體的評估 你先就我問就教於你的你提一下你個人的看法 回應一下
transcript.whisperx[13].start 305.751
transcript.whisperx[13].end 314.822
transcript.whisperx[13].text 任何外國人力的開放與否的政策當然都要...那我先問你一句話啦提供家事勞動服務的還有保母的 顧小孩的還有幼兒園從業的你覺得這個產業 這一些產業
transcript.whisperx[14].start 324.014
transcript.whisperx[14].end 345.915
transcript.whisperx[14].text 服務業支援服務業從業人員有多少在家庭幫傭家事勞動托兒育兒這個領域總的加起來的總就業人口數是多少你告訴我清潔人員保姆家事服務家事勞動有多少人有多少就業人口
transcript.whisperx[15].start 347.657
transcript.whisperx[15].end 372.051
transcript.whisperx[15].text 家事服務大概是數千到萬吧你有沒有聽到家事服務數千到一萬家事服務 家事服務的部分家事服務保姆餒對 保姆不是家事服務我現在問你重的啊重的我可能要另外再講家庭幫傭他要來取代誰的工作啊難道不是保姆嗎不是家事服務嗎家事勞動家庭幫傭啊
transcript.whisperx[16].start 374.232
transcript.whisperx[16].end 398.576
transcript.whisperx[16].text 然後小孩就從公共領域公共托育回到家庭但沒有衝擊到幼兒園沒有衝擊到托兒那個保母的這個托兒產業嗎衝擊多大我先問你是從業人員有多少目前詳細的數字我可能手邊沒有好我現在告訴你
transcript.whisperx[17].start 399.54
transcript.whisperx[17].end 419.953
transcript.whisperx[17].text 保姆清潔人員等其他服務業還有所謂的資源服務業從這一些來看家庭幫傭所替代掉的從業的女性比例這一些從業女性大概佔整體女性的從業人口的有人推估是7.7%所以推估起來總的
transcript.whisperx[18].start 422.114
transcript.whisperx[18].end 439.232
transcript.whisperx[18].text 女性就業人數是510萬以7.7%去推估從業人員有三四十萬三四十萬保母家庭幫傭清潔人員還有這個公共托育托兒這一些總的加起來幾十萬
transcript.whisperx[19].start 441.964
transcript.whisperx[19].end 469.626
transcript.whisperx[19].text 你可能會說我可能人家這樣講法是高推估那也不管兩萬也很多三萬保姆三萬也很多人家剛才就是這樣在質疑你當初開放這個長照的外傭外籍移工不是也是這樣推估嗎那我現在也是這樣推估給你看嘛所以在這樣子裡面會受到這幾十萬的人的就業會受到多大的衝擊我現在還在講喔
transcript.whisperx[20].start 471.226
transcript.whisperx[20].end 495.428
transcript.whisperx[20].text 沒有這個政策以前 你們還沒有開放嘛現在評估嘛 沒有開放以前很多職業婦女仰賴就是她二度就業就去當終點費的清潔或是到府服務的保姆他們去取得證照所以這是從業人員都是中高齡的台灣婦女然後如果你們把這個門檻鬆綁以後呢大家都去請外籍幫佣的話這個會失業的啊
transcript.whisperx[21].start 498.725
transcript.whisperx[21].end 518.43
transcript.whisperx[21].text 再來我剛剛講孩子留在家裡面衝擊的也是幼兒園托兒所托嬰中心也是女性衝擊的也是女性再來我剛剛講的從業人員要證照你現在把他外籍化了他連語言能力都不一定好你顯然你們覺得看顧孩子就是吃喝拉撒睡
transcript.whisperx[22].start 519.21
transcript.whisperx[22].end 545.856
transcript.whisperx[22].text 整個國家在整個公共托育還有這個保母上照顧幼兒上我們都專業化的往證照制度在推結果國家在前進的時候你們如果政策轉彎專業化 證照化在轉彎那你們就是認為說啊這個幼兒只需要照顧他嬰兒吃喝拉撒睡幼兒看顧他不要跌倒不要有危險這樣子而已嗎
transcript.whisperx[23].start 548.938
transcript.whisperx[23].end 554.279
transcript.whisperx[23].text 語言文化上的隔閡也不重要然後再來呢
transcript.whisperx[24].start 556.363
transcript.whisperx[24].end 582.832
transcript.whisperx[24].text 我們在講說這個經濟能力誰可以可以負擔經濟能力誰可以負擔你們以價質量你們已經宣稱了這不是給一般婦女用的光沒有聘僱的成本你就要先繳8000元的就業安定基金那再加上聘僱的我現在在講外籍移工不是源源不絕你還要產業界在搶
transcript.whisperx[25].start 585.331
transcript.whisperx[25].end 600.837
transcript.whisperx[25].text 還有跟這個長照看護的在搶移工的價格是不便宜的不便宜的再加上你的就業安定基金 一個月不是3萬 4萬啦 最少5萬但是呢什麼人負擔不去 每個月5萬 8萬 什麼人負擔不去保證什麼人負擔不去
transcript.whisperx[26].start 613.956
transcript.whisperx[26].end 635.098
transcript.whisperx[26].text 金字塔頂端的家庭一個月可以花八萬金字塔頂端哪有一個國家的誘餌開放家庭幫傭 你是服務你的國家政策是服務有錢人而已這樣的政策是最好的政策嗎還直接說我要以價值量
transcript.whisperx[27].start 637.079
transcript.whisperx[27].end 665.206
transcript.whisperx[27].text 你們要 你們瓦解了這個公共托育的政策大家都大肚子餓 去請一個人來顧公共托育瓦解誰受災受災的當然是那個經濟能力負擔不起不要以為你們不會衝擊到產業衝擊到婦女 中高齡婦女的就業你們還衝擊到產業而你們還說你們在評估 我覺得你們就是要 因為這麼多年來一直都是要啦
transcript.whisperx[28].start 667.846
transcript.whisperx[28].end 679.355
transcript.whisperx[28].text 再來我再教你部長你覺得一個個人僱主個人聘僱一個家事個人聘僱的家事幫傭或是其實外籍移工看護的也一樣
transcript.whisperx[29].start 680.566
transcript.whisperx[29].end 703.133
transcript.whisperx[29].text 作為一個個人僱主他真的有能力把勞動條件給看守好嗎更不要講他的勞動環境你可以給人家一個單獨的獨立的然後勞動條件你的勞動條件要怎麼定難道要放任跟看護長照一樣嗎24小時全年無休給那麼一點點的加班費就買斷了他
transcript.whisperx[30].start 705.334
transcript.whisperx[30].end 733.971
transcript.whisperx[30].text 當成21世紀把他當成現代奴隸一樣的驅使嗎你們如果去你們對他的勞動條件要怎麼把關你有辦法把關在私領域在私宅裡面有辦法把關嗎勞動條件你要怎麼設定你沒有辦法設定要再一次的步入我們長照長照看護的外籍移工的那種處境嗎你的想像是什麼你就這一點你來談談看
transcript.whisperx[31].start 738.038
transcript.whisperx[31].end 762.71
transcript.whisperx[31].text 這個相關的政策的確各方有不太一樣的意見然後不太一樣的需求所以我們現在針對這些不同的各方少數的各方啦少數你要忘了講兩個字然後我們針對這些各方的需求就是在做評估跟各種可能效應等等的評估目前的情況就是這樣從長照看護裡面我們已經看到很多了就是說大家玩家衝突
transcript.whisperx[32].start 764.182
transcript.whisperx[32].end 785.698
transcript.whisperx[32].text 脅迫雇主 逼迫雇主說你非得同意我轉換雇主不可那我現在在問你說 家庭幫傭也一樣啊是不是可能成為移工轉換行業的跳板有沒有可能 管理上的漏洞啊有沒有可能 阿洗澡這要再算什麼 要再換駕 要再炒
transcript.whisperx[33].start 787.145
transcript.whisperx[33].end 815.086
transcript.whisperx[33].text 大家都覺得這是外籍移工的問題 可是事實上是嗎你如果沒有訂出好的勞動條件然後人家產業產業上虛空集啊然後在那裡人家用好的薪資而且固定的工時而且要符合勞基法的規定人家就挖走了啊然後流動性也會跟著跳啊跟搶 流動性高啊
transcript.whisperx[34].start 816.718
transcript.whisperx[34].end 826.988
transcript.whisperx[34].text 不是嗎 柏中 你都不敢說 你一句話就不敢說你都不敢說 你都知道啦 心知肚明可是呢 你們會不會還是要繼續要這樣做我曉得我問你這樣好了 我這樣做好了第一個你說要做評估 請問你們產業衝擊評估有沒有做了 委託了沒
transcript.whisperx[35].start 841.107
transcript.whisperx[35].end 868.283
transcript.whisperx[35].text 就是各方面我們都在評估你誰評估啊 你要專業去評估還是你們自己評估 怎麼評估有些部分我們會跟衛福部討論第二個 有沒有做過性別平等評估有沒有做出符合兒童最佳利益的評估你難道不需要嗎你這樣子交給外籍移工來吃拉撒碎的顧小孩跟我們朝向證照制度專業化的顧小孩 保姆都要證照
transcript.whisperx[36].start 869.639
transcript.whisperx[36].end 893.918
transcript.whisperx[36].text 你這樣子沒有損及兒童最佳利益嗎你在性別上面對我們二度就業的婦女就業難道沒有衝擊嗎你們在性平上產業衝擊上要怎麼評估你說你們評估你們怎麼評估不是都要說我要做評估我要做評估五個字不是你們要請誰做要怎麼做要做哪些評估
transcript.whisperx[37].start 901.155
transcript.whisperx[37].end 924.557
transcript.whisperx[37].text 現在就是綜合在評估中你不敢講你也回答不出來連說你們有沒有做這一些評估好那我問你你認不認為需要做兒童最佳福利的這個評估你認不認為應該要做是不是符合兒童最佳福利啊要不要做這種評估我覺得各個層面都必須考慮
transcript.whisperx[38].start 925.316
transcript.whisperx[38].end 933.253
transcript.whisperx[38].text 好 你繼續打高空 你講不出來好 沒關係 我知道因為真的是回答不出來啦
transcript.whisperx[39].start 936.225
transcript.whisperx[39].end 963.127
transcript.whisperx[39].text 我也是傻眼啦那我問你別的問題好了現在呢旅遊業開放中階移工那以薪資門檻三萬二要求要有華語能力技能資格啊大家知道旅宿業這個不是地帶啦這補充啦因為沒人要走嘛但是最怕衝擊的就是薪資衝擊嘛但是在這種狀況裡面我要問你我也時間有限我只問你一件事情啦
transcript.whisperx[40].start 963.968
transcript.whisperx[40].end 968.235
transcript.whisperx[40].text 你知道旅宿業大家流行一句話 整本店都要倒了啦都要倒了啦
transcript.whisperx[41].start 972.681
transcript.whisperx[41].end 993.121
transcript.whisperx[41].text 你在審核他缺工的相關資訊的時候要不要審核他的營運狀況那特別是大家都知道台灣旅宿業的環境不好經營不善如果倒閉了這個移工被迫要失業然後這些失業因為關閉倒閉的移工你的管理配套是什麼
transcript.whisperx[42].start 994.966
transcript.whisperx[42].end 1005.514
transcript.whisperx[42].text 跟委員說明第一個我們目前其實目前開放的比較是在這個觀光旅館跟飯店旅館對啊那這個觀光旅館跟飯店現在倒閉潮很多嗎倒閉潮當然這個企業的狀況我想
transcript.whisperx[43].start 1013.88
transcript.whisperx[43].end 1028.258
transcript.whisperx[43].text 目前他有這個缺工的需求包括我們在我們自己的調查你也看出他有這個這個缺工尤其是比較基層的工作的缺工的需求是有的所以我說補充原則不是替代啊是台灣人不要做嘛所以補充啊沒關係啊
transcript.whisperx[44].start 1028.999
transcript.whisperx[44].end 1057.165
transcript.whisperx[44].text 但我現在在說的是倒閉潮倒閉潮可是你申請了一大堆外籍移工進來這個旅館這個飯店倒閉以後這些移工的安置的配套未來的管理配套是什麼你總不能叫他在那裡漫長的等待吧當然如果這個企業遇到了比方說經營不善的狀況無法再經營下去那當然這個移工就變成是我們要來協助全力協助他轉換
transcript.whisperx[45].start 1058.926
transcript.whisperx[45].end 1081.318
transcript.whisperx[45].text 就慢慢的等待這樣子嗎其實不是慢慢等待因為接下來其實我們也把現在在技術能力的需求給打開了所以我們認為對於轉換也會比較有利所以你叫下游去幫他擦屁股那你為什麼不再上游你需不需要在他申請的時候要對於他的營運狀況也要一併考量從上游源頭管理嘛
transcript.whisperx[46].start 1082.881
transcript.whisperx[46].end 1112.012
transcript.whisperx[46].text 不用嗎然後大家進來然後一直管理不善的營運不善的也申請了可是做沒幾個月就倒了你還要幫他處理跟委員說明第一個當然這部分這個飯店業他的管理或他的經營這部分可能很難是勞動部這邊來去說我要對你設一個我現在講是他要申請外籍移工你在審查的時候要不要框一個要件
transcript.whisperx[47].start 1114.198
transcript.whisperx[47].end 1128.412
transcript.whisperx[47].text 我不知道這是不是一定要啦但是我想到的是倒閉的時候要怎麼處理就算要檢視的話我們可能要跟交通部一起討論那我再問你如果這個倒閉非自願性失業的移工那他會不會適用這個那個失業給付失業給付目前是沒有的因為失業給付主要是來自救保
transcript.whisperx[48].start 1141.473
transcript.whisperx[48].end 1168.005
transcript.whisperx[48].text 所以我才講作為一個個人雇主是不是有能力cover起來他其實連勞動條件都很難去cover起來所以個人雇主我們一直在主張個人雇主的這一個制度要不要落日作為外籍移工的雇主從長照到現在你要再開放我們都一直在討論說要不要落日結果你們一直在討論要不要再開更多的門
transcript.whisperx[49].start 1168.985
transcript.whisperx[49].end 1193.272
transcript.whisperx[49].text 那個人聘僱外籍移工的僱主他的能力就是這麼的有限他就是在勞動條件上沒有辦法去支撐然後呢你如果再叫他講說如果失業在那裡漫長等待對人家如果一般勞工也是不公平的啊那在這種狀況裡面你叫他救保費用你也繼續繳幫這些移工也繳那是不可能的啊
transcript.whisperx[50].start 1194.605
transcript.whisperx[50].end 1207.123
transcript.whisperx[50].text 對不對 我問你啦 廠工有沒有繳救保沒有廠工的老闆也沒有因為廠工不會 他們就三年一聘不會突然倒了嘛廠工沒有算 因為他補充人力 所以他沒有算在救保裡面
transcript.whisperx[51].start 1207.865
transcript.whisperx[51].end 1227.61
transcript.whisperx[51].text 對啊少數嘛就是基本上還算穩定的嘛但是飯店旅宿可能那不穩性定很高你要去想一想啦稍微要想一下好 重點是剛才在講的只為少數人服務的那一個開放那個門要好好的想啦 謝謝好 謝謝