iVOD / 165311

Field Value
IVOD_ID 165311
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165311
日期 2025-11-12
會議資料.會議代碼 委員會-11-4-26-9
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-12T12:02:10+08:00
結束時間 2025-11-12T12:16:49+08:00
影片長度 00:14:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a35f0de19abcdbe38632c2cc43896bb0b62a46119727b9b9cc7208a858208f5c81d98ccfcd6d1fbb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 12:02:10 - 12:16:49
會議時間 2025-11-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.11534375
transcript.pyannote[0].end 1.98846875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.43534375
transcript.pyannote[1].end 4.55346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 4.55346875
transcript.pyannote[2].end 4.58721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 4.58721875
transcript.pyannote[3].end 4.62096875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 4.62096875
transcript.pyannote[4].end 6.29159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 4.85721875
transcript.pyannote[5].end 5.09346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 6.69659375
transcript.pyannote[6].end 8.08034375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 10.10534375
transcript.pyannote[7].end 14.03721875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 14.37471875
transcript.pyannote[8].end 16.97346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 14.42534375
transcript.pyannote[9].end 14.88096875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 14.88096875
transcript.pyannote[10].end 14.89784375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 14.89784375
transcript.pyannote[11].end 14.91471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 14.91471875
transcript.pyannote[12].end 14.96534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 17.69909375
transcript.pyannote[13].end 19.57221875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 20.29784375
transcript.pyannote[14].end 24.90471875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 25.66409375
transcript.pyannote[15].end 26.64284375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 28.04346875
transcript.pyannote[16].end 29.86596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 30.22034375
transcript.pyannote[17].end 31.60409375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 32.12721875
transcript.pyannote[18].end 33.22409375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 33.86534375
transcript.pyannote[19].end 34.60784375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 35.06346875
transcript.pyannote[20].end 35.31659375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 36.49784375
transcript.pyannote[21].end 38.69159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 40.69971875
transcript.pyannote[22].end 41.00346875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 41.79659375
transcript.pyannote[23].end 42.20159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 43.39971875
transcript.pyannote[24].end 44.10846875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 46.23471875
transcript.pyannote[25].end 47.60159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 51.68534375
transcript.pyannote[26].end 55.61721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 55.70159375
transcript.pyannote[27].end 58.78971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 59.12721875
transcript.pyannote[28].end 72.28971875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 72.35721875
transcript.pyannote[29].end 89.21534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 89.58659375
transcript.pyannote[30].end 97.11284375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 98.64846875
transcript.pyannote[31].end 104.30159375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 104.80784375
transcript.pyannote[32].end 107.44034375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 108.06471875
transcript.pyannote[33].end 109.09409375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 109.66784375
transcript.pyannote[34].end 110.73096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 110.96721875
transcript.pyannote[35].end 115.28721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 116.51909375
transcript.pyannote[36].end 131.99346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 132.39846875
transcript.pyannote[37].end 135.06471875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 134.96346875
transcript.pyannote[38].end 135.31784375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 135.31784375
transcript.pyannote[39].end 140.31284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 140.24534375
transcript.pyannote[40].end 140.29596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 140.31284375
transcript.pyannote[41].end 176.15534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 177.10034375
transcript.pyannote[42].end 192.16971875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 192.84471875
transcript.pyannote[43].end 193.72221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 194.53221875
transcript.pyannote[44].end 198.10971875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 198.73409375
transcript.pyannote[45].end 203.66159375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 203.76284375
transcript.pyannote[46].end 204.64034375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 204.80909375
transcript.pyannote[47].end 205.29846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 205.65284375
transcript.pyannote[48].end 206.19284375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 206.86784375
transcript.pyannote[49].end 207.10409375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 207.10409375
transcript.pyannote[50].end 208.60596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 209.01096875
transcript.pyannote[51].end 209.04471875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 209.04471875
transcript.pyannote[52].end 209.87159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 209.06159375
transcript.pyannote[53].end 213.53346875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 214.07346875
transcript.pyannote[54].end 218.52846875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 218.61284375
transcript.pyannote[55].end 222.37596875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 222.54471875
transcript.pyannote[56].end 225.19409375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 227.01659375
transcript.pyannote[57].end 227.45534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 228.72096875
transcript.pyannote[58].end 233.27721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 229.27784375
transcript.pyannote[59].end 229.44659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 231.97784375
transcript.pyannote[60].end 246.94596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 248.39721875
transcript.pyannote[61].end 252.97034375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 253.07159375
transcript.pyannote[62].end 253.47659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 253.29096875
transcript.pyannote[63].end 255.53534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 254.43846875
transcript.pyannote[64].end 258.18471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 258.53909375
transcript.pyannote[65].end 260.04096875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 260.46284375
transcript.pyannote[66].end 263.24721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 263.87159375
transcript.pyannote[67].end 269.72721875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 265.15409375
transcript.pyannote[68].end 265.52534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 266.45346875
transcript.pyannote[69].end 266.82471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 268.73159375
transcript.pyannote[70].end 272.93346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 271.46534375
transcript.pyannote[71].end 272.84909375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 272.93346875
transcript.pyannote[72].end 274.53659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 274.48596875
transcript.pyannote[73].end 274.90784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 275.22846875
transcript.pyannote[74].end 279.95346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 282.80534375
transcript.pyannote[75].end 288.84659375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 289.11659375
transcript.pyannote[76].end 291.81659375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 292.32284375
transcript.pyannote[77].end 297.26721875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 297.82409375
transcript.pyannote[78].end 298.88721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 299.49471875
transcript.pyannote[79].end 301.45221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 302.14409375
transcript.pyannote[80].end 303.86534375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 303.96659375
transcript.pyannote[81].end 304.00034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 304.15221875
transcript.pyannote[82].end 310.21034375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 310.66596875
transcript.pyannote[83].end 311.50971875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 315.89721875
transcript.pyannote[84].end 321.14534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 321.41534375
transcript.pyannote[85].end 323.76096875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 324.87471875
transcript.pyannote[86].end 325.51596875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 325.51596875
transcript.pyannote[87].end 326.66346875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 327.06846875
transcript.pyannote[88].end 328.03034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 328.80659375
transcript.pyannote[89].end 331.23659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 331.82721875
transcript.pyannote[90].end 333.61596875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 333.66659375
transcript.pyannote[91].end 338.05409375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 334.59471875
transcript.pyannote[92].end 335.37096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 338.32409375
transcript.pyannote[93].end 341.93534375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 341.93534375
transcript.pyannote[94].end 346.64346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 346.35659375
transcript.pyannote[95].end 346.93034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 346.87971875
transcript.pyannote[96].end 347.90909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 347.31846875
transcript.pyannote[97].end 347.77409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 347.99346875
transcript.pyannote[98].end 348.04409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 348.09471875
transcript.pyannote[99].end 348.55034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 349.44471875
transcript.pyannote[100].end 350.30534375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 350.44034375
transcript.pyannote[101].end 355.53659375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 355.63784375
transcript.pyannote[102].end 356.07659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 355.95846875
transcript.pyannote[103].end 358.38846875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 358.52346875
transcript.pyannote[104].end 359.35034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 359.56971875
transcript.pyannote[105].end 368.22659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 368.66534375
transcript.pyannote[106].end 379.17846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 379.66784375
transcript.pyannote[107].end 381.62534375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 382.28346875
transcript.pyannote[108].end 392.49284375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 394.02846875
transcript.pyannote[109].end 398.26409375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 398.34846875
transcript.pyannote[110].end 400.37346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 401.90909375
transcript.pyannote[111].end 408.52409375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 401.97659375
transcript.pyannote[112].end 403.34346875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 409.82346875
transcript.pyannote[113].end 414.83534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 415.67909375
transcript.pyannote[114].end 417.65346875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 418.27784375
transcript.pyannote[115].end 419.91471875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 420.69096875
transcript.pyannote[116].end 422.42909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 423.00284375
transcript.pyannote[117].end 423.27284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 424.69034375
transcript.pyannote[118].end 425.39909375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 427.57596875
transcript.pyannote[119].end 428.70659375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 430.39409375
transcript.pyannote[120].end 432.16596875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 432.46971875
transcript.pyannote[121].end 434.03909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 436.31721875
transcript.pyannote[122].end 440.65409375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 441.24471875
transcript.pyannote[123].end 443.33721875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 443.67471875
transcript.pyannote[124].end 446.40846875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 449.07471875
transcript.pyannote[125].end 451.04909375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 452.06159375
transcript.pyannote[126].end 452.65221875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 453.63096875
transcript.pyannote[127].end 455.06534375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 455.50409375
transcript.pyannote[128].end 457.76534375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 458.23784375
transcript.pyannote[129].end 461.68034375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 462.18659375
transcript.pyannote[130].end 466.62471875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 467.78909375
transcript.pyannote[131].end 469.25721875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 470.72534375
transcript.pyannote[132].end 472.93596875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 473.59409375
transcript.pyannote[133].end 477.96471875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 479.93909375
transcript.pyannote[134].end 481.42409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 481.67721875
transcript.pyannote[135].end 493.55721875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 494.43471875
transcript.pyannote[136].end 497.52284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 498.40034375
transcript.pyannote[137].end 499.75034375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 500.20596875
transcript.pyannote[138].end 500.50971875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 501.13409375
transcript.pyannote[139].end 502.80471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 503.42909375
transcript.pyannote[140].end 507.07409375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 507.32721875
transcript.pyannote[141].end 512.35596875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 513.13221875
transcript.pyannote[142].end 522.27846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 522.98721875
transcript.pyannote[143].end 524.89409375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 525.56909375
transcript.pyannote[144].end 531.98159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 532.40346875
transcript.pyannote[145].end 533.28096875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 533.85471875
transcript.pyannote[146].end 534.74909375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 534.96846875
transcript.pyannote[147].end 535.79534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 536.16659375
transcript.pyannote[148].end 538.83284375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 539.49096875
transcript.pyannote[149].end 541.12784375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 541.65096875
transcript.pyannote[150].end 542.88284375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 543.20346875
transcript.pyannote[151].end 544.23284375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 544.80659375
transcript.pyannote[152].end 546.24096875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 547.01721875
transcript.pyannote[153].end 547.57409375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 547.81034375
transcript.pyannote[154].end 549.48096875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 549.95346875
transcript.pyannote[155].end 550.91534375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 551.50596875
transcript.pyannote[156].end 552.65346875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 555.57284375
transcript.pyannote[157].end 556.70346875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 557.22659375
transcript.pyannote[158].end 561.29346875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 559.48784375
transcript.pyannote[159].end 560.19659375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 561.37784375
transcript.pyannote[160].end 563.55471875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 563.55471875
transcript.pyannote[161].end 564.44909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 564.97221875
transcript.pyannote[162].end 565.76534375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 565.93409375
transcript.pyannote[163].end 566.22096875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 566.92971875
transcript.pyannote[164].end 567.30096875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 567.41909375
transcript.pyannote[165].end 567.65534375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 567.82409375
transcript.pyannote[166].end 568.97159375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 571.33409375
transcript.pyannote[167].end 572.46471875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 573.00471875
transcript.pyannote[168].end 574.60784375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 574.82721875
transcript.pyannote[169].end 577.44284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 577.67909375
transcript.pyannote[170].end 578.72534375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 578.87721875
transcript.pyannote[171].end 578.94471875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 580.86846875
transcript.pyannote[172].end 581.93159375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 586.84221875
transcript.pyannote[173].end 587.01096875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 588.44534375
transcript.pyannote[174].end 593.65971875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 593.59221875
transcript.pyannote[175].end 594.95909375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 596.05596875
transcript.pyannote[176].end 629.18159375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 599.65034375
transcript.pyannote[177].end 600.03846875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 629.31659375
transcript.pyannote[178].end 629.87346875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 630.12659375
transcript.pyannote[179].end 644.03159375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 644.45346875
transcript.pyannote[180].end 650.61284375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 652.03034375
transcript.pyannote[181].end 656.16471875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 656.41784375
transcript.pyannote[182].end 657.34596875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 658.32471875
transcript.pyannote[183].end 671.92596875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 672.28034375
transcript.pyannote[184].end 679.41846875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 680.63346875
transcript.pyannote[185].end 681.78096875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 681.76409375
transcript.pyannote[186].end 682.06784375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 682.38846875
transcript.pyannote[187].end 692.10846875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 692.26034375
transcript.pyannote[188].end 694.72409375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 696.09096875
transcript.pyannote[189].end 713.55659375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 714.02909375
transcript.pyannote[190].end 733.80659375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 735.05534375
transcript.pyannote[191].end 743.77971875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 737.51909375
transcript.pyannote[192].end 737.78909375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 744.37034375
transcript.pyannote[193].end 745.53471875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 746.17596875
transcript.pyannote[194].end 747.42471875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 748.26846875
transcript.pyannote[195].end 749.01096875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 750.47909375
transcript.pyannote[196].end 752.75721875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 753.22971875
transcript.pyannote[197].end 760.75596875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 761.63346875
transcript.pyannote[198].end 767.70846875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 767.74221875
transcript.pyannote[199].end 770.81346875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 771.33659375
transcript.pyannote[200].end 773.98596875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 774.37409375
transcript.pyannote[201].end 792.81846875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 793.12221875
transcript.pyannote[202].end 794.35409375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 794.77596875
transcript.pyannote[203].end 828.20534375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 828.23909375
transcript.pyannote[204].end 841.21596875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 841.73909375
transcript.pyannote[205].end 846.19409375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 846.70034375
transcript.pyannote[206].end 862.52909375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 849.45096875
transcript.pyannote[207].end 849.85596875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 853.16346875
transcript.pyannote[208].end 854.44596875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 861.80346875
transcript.pyannote[209].end 868.31721875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 865.12784375
transcript.pyannote[210].end 865.41471875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 868.62096875
transcript.pyannote[211].end 874.40909375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 871.75971875
transcript.pyannote[212].end 871.96221875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 871.96221875
transcript.pyannote[213].end 873.05909375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 874.96596875
transcript.pyannote[214].end 879.97784375
transcript.whisperx[0].start 4.707
transcript.whisperx[0].end 26.406
transcript.whisperx[0].text 好 謝謝主席 有請部長好 有請洪部長那感謝洪部長今天精闢的這個報告跟說明整本業務的報告有28頁我真的很用心的拜讀部長有詳細的說明勞動部在你帶領之下的方向與願景但我很遺憾
transcript.whisperx[1].start 28.55
transcript.whisperx[1].end 47.149
transcript.whisperx[1].text 這個整本的議務報告裡面找不到英文三個字部長知道是哪三個嗎找不到英文對找不到三個的英文字母沒有知道嗎猜到有講猜不到要把胡錫刮掉
transcript.whisperx[2].start 53.104
transcript.whisperx[2].end 56.21
transcript.whisperx[2].text 應該是關注EAP的問題那你不用掛了
transcript.whisperx[3].start 59.249
transcript.whisperx[3].end 88.949
transcript.whisperx[3].text 就算是中文的員工協助方案很抱歉這六個字也沒有在這本報告裡面出現過當然在十五頁的時候你有針對這個加強營造友善職場環境落實這個職場的工作平權勞動部有很多的說明那諸如有提供這個安心生養的職場環境支持企業提供友善職場也加強這個宣導職場平權消米懷孕歧視等等等
transcript.whisperx[4].start 89.85
transcript.whisperx[4].end 114.591
transcript.whisperx[4].text 這些確實都有說明但唯獨沒有提到勞動部到底要如何協助企業建立推動EAP因為去年在責安署霸凌事件中勞動部 衛福部等相關單位都認同AAP的重要性但沒有一個單位去落實能做好的就連勞動部 自己也離譜了去年12月也在這個質詢台本期特別質詢
transcript.whisperx[5].start 116.607
transcript.whisperx[5].end 124.659
transcript.whisperx[5].text 也提醒部長 就是說 勞動部的EAP平均一人500元左右而勞動部底下的2899 2899名的這個承攬人員
transcript.whisperx[6].start 129.56
transcript.whisperx[6].end 157.518
transcript.whisperx[6].text 不是用勞動部的員工協助方案那當時什麼部長有允諾會來改善是對 那今年啊到底現今的改善狀況怎麼樣部長可以說明一下嗎好 跟委員說明剛剛委員在講的是兩個部分第一個部分是針對企業的部分其實我們在114年2025年的時候其實我們辦了市場的教育的訓練那總共有超過2000人次的企業代表來參訓那就是希望能夠把
transcript.whisperx[7].start 158.098
transcript.whisperx[7].end 174.502
transcript.whisperx[7].text 主管在這方面的敏感度跟關懷的部分能夠做到更到位那我們也有大概超過50家的入場的輔導這都是在針對企業的部分來進行那針對部裡面的部分的話因為委員其實也很關注所以我們那時候其實也承諾我們會把這個
transcript.whisperx[8].start 177.263
transcript.whisperx[8].end 193.278
transcript.whisperx[8].text EAP的範圍不只是放在我們的正式人力上面也包括我們的約聘的人員這些人員一併的納入到這裡面所以我們現在應該都已經放入到這裡面都變成是我們EAP的相關的對象但是部長
transcript.whisperx[9].start 195.519
transcript.whisperx[9].end 218.252
transcript.whisperx[9].text 114年度勞動部的EAP預算是45萬115年度的勞動部EAP預算也是45萬那是部本部的對 部本部就不增加了那因為 抗論底下的所屬單位會增加那我們就拭目以待在審查預算的時候就好好來救教部長
transcript.whisperx[10].start 218.652
transcript.whisperx[10].end 245.702
transcript.whisperx[10].text 因為比較多的越過人其實坦白說是在我們的所屬啦是 對 所以所屬都有增加有嗎我想預算審查時我一定會好好請教部長報告委員 我們今年的EAP的那個契約的那個預算是本來是235萬多那因為那個諮商的時數有擴增所以我們後來擴增到280萬
transcript.whisperx[11].start 248.544
transcript.whisperx[11].end 263.065
transcript.whisperx[11].text 兩百八十萬 三千多萬 三千九百二十六元你講今年的嘛 對不對今年的 對嘛那明年我們也有在擴增擴增多少 大約明年我們擴增到三百五十萬左右
transcript.whisperx[12].start 263.945
transcript.whisperx[12].end 279.059
transcript.whisperx[12].text 增加百分之二十 差不多嘛就那個單位而已還是總TOTAL 部跟所屬總TOTAL增加百分之二十到時候我們再好好討論好不好 謝謝那請部長看這個新聞
transcript.whisperx[13].start 282.95
transcript.whisperx[13].end 311.216
transcript.whisperx[13].text 這家公司承攬多項政府部門的員工協助方案委外契約嘛依照採購契約要有合格的心理諮商等專業服務但政府員工在尋求諮商服務時察覺有異陳警檢舉發現創意老闆根本沒有心理師的證書卻親自提供諮商服務這台北體驗署已經在12日違反心理師法將這個老闆提起公訴了這部長知道嗎
transcript.whisperx[14].start 315.936
transcript.whisperx[14].end 337.499
transcript.whisperx[14].text 你們有委外他來做員工寫書方案嗎有做心理諮商的部分嗎有嗎勞動部有嗎你們不是這一家不是不是是哪一家報告委員我們不是這一家你們不是這一家好那你們不是這一家你們有這一家的狀況嗎
transcript.whisperx[15].start 338.427
transcript.whisperx[15].end 358.1
transcript.whisperx[15].text 我們了解這一家的狀況 可是我們沒有這一家對啊 你們不是委任這一家嗎那你們委任別家 別家有像這一家的狀況嗎沒有 你確定要不要再想一下我們目前的這一家是有合格的心理諮商的專業服務都直接在線上就直接有這個服務
transcript.whisperx[16].start 359.801
transcript.whisperx[16].end 381.343
transcript.whisperx[16].text 你看這個是新聞已經出來了根據採購企業內容該公司需指派具有心理師資格的人來負責接聽電話接聽電話有些企業更要求有心理諮商這個諮商心理臨床心理相關工作必須達兩年以上的這樣的一個工作經驗但是實際上這個就是沒有
transcript.whisperx[17].start 382.344
transcript.whisperx[17].end 408.326
transcript.whisperx[17].text 本身沒有心理師的這個證書然後也沒有 當然就沒有什麼兩年以上的這些經驗嘛 對不對所以你們確定苗東部都有齁 都有具備嘛齁好 謝謝你知道我們工部門目前 尤其中央機關有多少 多少個單位委託這家公司嗎環境部 外交部 農業部 經濟部 教育部還有金門縣政府
transcript.whisperx[18].start 409.861
transcript.whisperx[18].end 433.409
transcript.whisperx[18].text 我要提這個就是台灣現金在處理這個員工協助方案的一個處境不僅做不好甚至被人家騙了而且是一堆公部門被騙還好你們勞動部沒有被騙到歐密頭火部長也在做功德那公部門都會這個樣子你看民間企業會什麼樣子
transcript.whisperx[19].start 436.363
transcript.whisperx[19].end 444.29
transcript.whisperx[19].text 你看中央幾個部會啊 我剛練了五六個以上還有包含地方政府那如果公部門都這個樣子的我再強調一次 那企業部門會怎麼樣我們再看一個報導 天下雜誌有專題
transcript.whisperx[20].start 453.666
transcript.whisperx[20].end 477.82
transcript.whisperx[20].text 霸凌性侵平轉為何企業員工協助方案失靈那這邊報導指出是EAP淪為刑事然後缺乏人性關懷企業引進EAP是基於企業形象而會真正關心員工所以我們勞動部在做EAP是要塑造勞動部的形象還是要真正關心我們相關的同仁
transcript.whisperx[21].start 480.284
transcript.whisperx[21].end 497.24
transcript.whisperx[21].text 裡面提到一般企業組不太主動會提供EAP的協助很多是等到出事的時候甚至員工親身才會積極的去連結還是再去啟動這類的資源所以現今的企業EAP更像是事後補救
transcript.whisperx[22].start 498.642
transcript.whisperx[22].end 522.075
transcript.whisperx[22].text 絕對不是事前的預防部長你再看一個數據我真的不曉得為什麼這樣因為這個EAP我已經講了兩三年而且是不只是部會我連院的層級我都一個一個一個去講在司法法制委員會在其他的委員會我都一而再再而三去講不厭其晚的講一而再而三的提醒
transcript.whisperx[23].start 523.035
transcript.whisperx[23].end 539.56
transcript.whisperx[23].text 那我現在講說 不然你看這個協助事業單位辦理員工協助方案我們108年 這個是在疫情前嘛 對不對還有18場 人數是15 1500多109 110 11是疫情它降下來了 沒話講12 一樣10場 人數有多一點點113 一樣有10場 人數再往下降一點點今年是114 請教今年辦了幾場了
transcript.whisperx[24].start 555.832
transcript.whisperx[24].end 581.825
transcript.whisperx[24].text 勞動部嗎?對這個就是勞動部協助事業單位辦理的員工協助方案到今年為止已經辦了幾場?今年辦了10場辦了10場了嗎?對確定?對我的資料怎麼是7場?我們今年辦10場好 你辦10場是人數多少?目前是2200左右2200左右也多了沒有很多啊
transcript.whisperx[25].start 588.47
transcript.whisperx[25].end 613.272
transcript.whisperx[25].text 我們目前是規劃應該會有2200大概的人次的企業代表來參選所以部長認定有達標了我想這不是我們從我們的角度不一定叫做達標但是如果做得更多更好我們會盡量來進行那的確現在部裡面也非常關注就是怎麼樣來規劃友善職場的部分那友善職場的配套所以剛剛委員講的我非常同意
transcript.whisperx[26].start 613.852
transcript.whisperx[26].end 629.494
transcript.whisperx[26].text 其實EAP當然是一個工具可是最重要的目的還是要改變企業的文化讓企業有辦法可以更大程度去支持勞工我們從這個角度其實也會規劃一些相關其他的配套那能夠讓這個配套起來以後能夠更善用EAP這樣的工具OK
transcript.whisperx[27].start 630.325
transcript.whisperx[27].end 657.122
transcript.whisperx[27].text 我再補充一個數據給部長通考台灣中小企業約莫大概是167萬家左右嘛占這個台灣全體的企業98%那提供將近917萬的就業數所以我們常說企業是台灣的中小企業是台灣的骨幹但EAP對中小企業而言是什麼這個專題中有這邊提到了稱EAP對中小企業來講就是奢侈品
transcript.whisperx[28].start 658.379
transcript.whisperx[28].end 679.17
transcript.whisperx[28].text 尤其小企業要內要去建立一個EAP幾乎是不可能的任務因素很多甚至有很多就像環境部農業部找一間公司外包結果到底是不是真的EAP也不知道然後要協助中國企業解決這個問題不要讓EAP變成這個奢侈品推廣EAP是勞動部的工作
transcript.whisperx[29].start 680.86
transcript.whisperx[29].end 693.722
transcript.whisperx[29].text 這是勞動部的工作而且是要守重的因為勞動部每年如果這樣召開市長教育訓練對中小企業設立EAP來協助員工部長你的看法到底有沒有實質的協助
transcript.whisperx[30].start 696.461
transcript.whisperx[30].end 712.755
transcript.whisperx[30].text 的確中小企業因為在相比於比較大規大規模的企業上面其實包括他的人資的制度包括他整體的這個企業內部的治理的狀況有的時候真的比大比較大型的企業會差一點這是事實
transcript.whisperx[31].start 714.196
transcript.whisperx[31].end 733.613
transcript.whisperx[31].text 所以我们在推广的时候比方说我们确实看到确实比较有人资制度的企业他对EAP的掌握度会比较高那所以我们的确可能会需要在中小企业的协助上面更花一些心力因为如果他没有很健全的人资制度的时候确实要设置这个的挑战会比较大
transcript.whisperx[32].start 735.097
transcript.whisperx[32].end 760.439
transcript.whisperx[32].text 部長要講HR嘛對不對這個報導的專題中也有提到就是說他有明確建議EAP要入法強化企業的責任部長怎麼看而且政府要扮演更積極的角色才能促使企業從出事再處理轉向預防式的管理這樣才能夠真正建立起這個堅固的社會安全網
transcript.whisperx[33].start 761.684
transcript.whisperx[33].end 777.631
transcript.whisperx[33].text 就像委員現在秀出來的報導他其實也強調這裡面就是人資跟HR的在使用EAP上的角色因為EAP是一個系統可是要怎麼真的能夠把它使用的好其實要有一些人而且專責性的人去使用這部分其實這就是人資系統
transcript.whisperx[34].start 778.391
transcript.whisperx[34].end 799.708
transcript.whisperx[34].text 但是我說中小企業有時候他有人資的比例會比較低這也會讓他們去投入這個事情的意願會比較低其實同樣的狀況所以我們自己是希望說當然我們從大型的開始做可是我們其實現在也有一個規劃我們跟我們的這個福祉師其實我們也希望把這個企業友善職場的做法能夠建立一個資料庫
transcript.whisperx[35].start 800.929
transcript.whisperx[35].end 827.434
transcript.whisperx[35].text 然後讓這個資料庫讓大家都知道不同規模的企業在支持勞工上面做了哪些事情大家可以在不同層級上面或不同規模上面去互相的學習那因為可能30人的企業他很難去學習2000人的企業但30人的企業也許他比較有條件去學習40人50人的企業那我們怎麼把這樣子的這個友善職場的資料庫給做出來讓大家可以互相比較互相競爭我們是有這樣的考慮跟規劃
transcript.whisperx[36].start 828.835
transcript.whisperx[36].end 845.829
transcript.whisperx[36].text 好 部長這邊有一段話你要看一下這是現狀推動EAP對HR來說是一個高風險的工作許多HR的主管缺乏高層的支持所以他就很難說服他的老闆所以我們就應該扮演更記憶角色所以你對路華你的看法怎麼樣
transcript.whisperx[37].start 846.73
transcript.whisperx[37].end 874.274
transcript.whisperx[37].text 我覺得當然是可以大家可以來評估跟考慮的啦只是重點入法以後還是重點是怎麼去落實啦對啊沒有錯法規在台灣的中小企業跟產業的情境裡面其實落實都是反而我們會需要更花心力去去去思考的一個沒有錯啦但是有法治化之後落實會比較實際一點啦是速度也會加快一點好不好一個月內可以吧我們來做一些這個可行性的評估這樣好一個月內好謝謝謝謝主席
transcript.whisperx[38].start 875.977
transcript.whisperx[38].end 878.366
transcript.whisperx[38].text 好 謝謝劉建國召委的發言謝謝部長的答詢