iVOD / 165284

Field Value
IVOD_ID 165284
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165284
日期 2025-11-12
會議資料.會議代碼 委員會-11-4-26-9
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-12T11:40:34+08:00
結束時間 2025-11-12T11:51:22+08:00
影片長度 00:10:48
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a35f0de19abcdbe3fd8d03330f327a74b62a46119727b9b9a983a90274432617d86c46796a0cfb5a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 11:40:34 - 11:51:22
會議時間 2025-11-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 2.34284375
transcript.pyannote[0].end 6.94971875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 8.38409375
transcript.pyannote[1].end 12.82221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.77596875
transcript.pyannote[2].end 12.67034375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 12.95721875
transcript.pyannote[3].end 17.22659375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 15.15096875
transcript.pyannote[4].end 15.40409375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.36159375
transcript.pyannote[5].end 18.10409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 20.55096875
transcript.pyannote[6].end 21.20909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 24.24659375
transcript.pyannote[7].end 29.34284375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 29.84909375
transcript.pyannote[8].end 33.76409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 35.41784375
transcript.pyannote[9].end 37.25721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 35.43471875
transcript.pyannote[10].end 35.80596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 36.83534375
transcript.pyannote[11].end 37.20659375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 37.25721875
transcript.pyannote[12].end 37.86471875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 37.86471875
transcript.pyannote[13].end 37.88159375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 39.07971875
transcript.pyannote[14].end 44.93534375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 48.56346875
transcript.pyannote[15].end 49.03596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 49.03596875
transcript.pyannote[16].end 50.43659375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 52.39409375
transcript.pyannote[17].end 54.77346875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 55.81971875
transcript.pyannote[18].end 57.91221875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 58.50284375
transcript.pyannote[19].end 69.28596875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 69.69096875
transcript.pyannote[20].end 72.20534375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 73.08284375
transcript.pyannote[21].end 73.33596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 74.12909375
transcript.pyannote[22].end 75.15846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 76.13721875
transcript.pyannote[23].end 79.69784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 80.20409375
transcript.pyannote[24].end 83.24159375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 83.71409375
transcript.pyannote[25].end 92.53971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 93.58596875
transcript.pyannote[26].end 96.15096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 96.38721875
transcript.pyannote[27].end 103.22159375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 103.77846875
transcript.pyannote[28].end 107.87909375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 108.95909375
transcript.pyannote[29].end 124.68659375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 126.47534375
transcript.pyannote[30].end 132.92159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 133.27596875
transcript.pyannote[31].end 136.92096875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 138.87846875
transcript.pyannote[32].end 143.53596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 143.58659375
transcript.pyannote[33].end 143.89034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 144.21096875
transcript.pyannote[34].end 152.12534375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 152.49659375
transcript.pyannote[35].end 152.51346875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 152.51346875
transcript.pyannote[36].end 155.53409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 152.53034375
transcript.pyannote[37].end 152.69909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 157.37346875
transcript.pyannote[38].end 157.39034375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 157.39034375
transcript.pyannote[39].end 173.06721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 173.96159375
transcript.pyannote[40].end 176.10471875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 176.84721875
transcript.pyannote[41].end 177.43784375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 178.43346875
transcript.pyannote[42].end 181.01534375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 181.72409375
transcript.pyannote[43].end 203.15534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 204.08346875
transcript.pyannote[44].end 205.85534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 207.67784375
transcript.pyannote[45].end 215.28846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 215.54159375
transcript.pyannote[46].end 220.45221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 221.17784375
transcript.pyannote[47].end 221.70096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 223.06784375
transcript.pyannote[48].end 227.57346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 227.75909375
transcript.pyannote[49].end 230.74596875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 231.30284375
transcript.pyannote[50].end 233.04096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 234.37409375
transcript.pyannote[51].end 236.29784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 236.83784375
transcript.pyannote[52].end 240.29721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 236.88846875
transcript.pyannote[53].end 237.31034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 241.34346875
transcript.pyannote[54].end 242.10284375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 242.10284375
transcript.pyannote[55].end 245.73096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 245.73096875
transcript.pyannote[56].end 245.76471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 246.42284375
transcript.pyannote[57].end 246.47346875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 246.47346875
transcript.pyannote[58].end 248.51534375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 248.78534375
transcript.pyannote[59].end 249.56159375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 249.76409375
transcript.pyannote[60].end 252.16034375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 252.85221875
transcript.pyannote[61].end 255.60284375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 255.99096875
transcript.pyannote[62].end 256.44659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 257.29034375
transcript.pyannote[63].end 258.03284375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 258.94409375
transcript.pyannote[64].end 261.32346875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 262.25159375
transcript.pyannote[65].end 267.44909375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 268.69784375
transcript.pyannote[66].end 269.84534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 269.15346875
transcript.pyannote[67].end 317.63534375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 317.28096875
transcript.pyannote[68].end 330.29159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 329.21159375
transcript.pyannote[69].end 342.79596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 333.51471875
transcript.pyannote[70].end 334.03784375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 343.52159375
transcript.pyannote[71].end 345.79971875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 346.32284375
transcript.pyannote[72].end 355.84034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 357.66284375
transcript.pyannote[73].end 365.03721875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 365.89784375
transcript.pyannote[74].end 369.45846875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 369.55971875
transcript.pyannote[75].end 381.42284375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 382.31721875
transcript.pyannote[76].end 382.35096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 382.35096875
transcript.pyannote[77].end 382.77284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 382.36784375
transcript.pyannote[78].end 384.03846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 384.03846875
transcript.pyannote[79].end 389.89409375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 389.47221875
transcript.pyannote[80].end 391.66596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 391.26096875
transcript.pyannote[81].end 391.58159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 391.66596875
transcript.pyannote[82].end 391.81784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 391.81784375
transcript.pyannote[83].end 392.22284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 392.22284375
transcript.pyannote[84].end 396.44159375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 392.37471875
transcript.pyannote[85].end 394.41659375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 397.16721875
transcript.pyannote[86].end 397.63971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 397.42034375
transcript.pyannote[87].end 397.55534375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 397.87596875
transcript.pyannote[88].end 399.14159375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 399.22596875
transcript.pyannote[89].end 399.51284375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 400.13721875
transcript.pyannote[90].end 404.42346875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 401.65596875
transcript.pyannote[91].end 401.94284375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 404.76096875
transcript.pyannote[92].end 406.60034375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 406.92096875
transcript.pyannote[93].end 408.43971875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 409.09784375
transcript.pyannote[94].end 411.46034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 411.84846875
transcript.pyannote[95].end 415.10534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 415.57784375
transcript.pyannote[96].end 416.91096875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 417.61971875
transcript.pyannote[97].end 422.96909375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 424.11659375
transcript.pyannote[98].end 432.57096875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 433.48221875
transcript.pyannote[99].end 436.90784375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 437.09346875
transcript.pyannote[100].end 445.09221875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 445.75034375
transcript.pyannote[101].end 452.92221875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 452.92221875
transcript.pyannote[102].end 461.57909375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 461.88284375
transcript.pyannote[103].end 483.07784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 483.19596875
transcript.pyannote[104].end 484.00596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 483.21284375
transcript.pyannote[105].end 505.38659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 505.72409375
transcript.pyannote[106].end 516.96284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 518.29596875
transcript.pyannote[107].end 520.81034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 520.45596875
transcript.pyannote[108].end 522.27846875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 522.24471875
transcript.pyannote[109].end 536.25096875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 536.36909375
transcript.pyannote[110].end 540.89159375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 540.87471875
transcript.pyannote[111].end 550.57784375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 541.21221875
transcript.pyannote[112].end 544.62096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 546.84846875
transcript.pyannote[113].end 547.18596875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 551.74221875
transcript.pyannote[114].end 552.94034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 554.72909375
transcript.pyannote[115].end 563.30159375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 563.80784375
transcript.pyannote[116].end 565.56284375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 566.81159375
transcript.pyannote[117].end 567.48659375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 568.00971875
transcript.pyannote[118].end 573.84846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 574.50659375
transcript.pyannote[119].end 581.57721875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 574.67534375
transcript.pyannote[120].end 575.29971875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 582.20159375
transcript.pyannote[121].end 589.52534375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 590.45346875
transcript.pyannote[122].end 592.03971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 592.54596875
transcript.pyannote[123].end 595.06034375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 595.06034375
transcript.pyannote[124].end 595.11096875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 595.54971875
transcript.pyannote[125].end 595.58346875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 595.58346875
transcript.pyannote[126].end 596.15721875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 596.15721875
transcript.pyannote[127].end 605.40471875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 605.82659375
transcript.pyannote[128].end 611.00721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 611.47971875
transcript.pyannote[129].end 618.21284375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 618.73596875
transcript.pyannote[130].end 621.08159375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 618.76971875
transcript.pyannote[131].end 619.86659375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 620.77784375
transcript.pyannote[132].end 622.92096875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 623.17409375
transcript.pyannote[133].end 623.47784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 624.52409375
transcript.pyannote[134].end 626.75159375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 626.19471875
transcript.pyannote[135].end 628.82721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 629.51909375
transcript.pyannote[136].end 633.38346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 633.63659375
transcript.pyannote[137].end 636.03284375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 636.92721875
transcript.pyannote[138].end 639.77909375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 641.12909375
transcript.pyannote[139].end 641.39909375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 644.55471875
transcript.pyannote[140].end 649.14471875
transcript.whisperx[0].start 2.39
transcript.whisperx[0].end 4.472
transcript.whisperx[0].text 謝謝主席 我們請部長勞動力發展署黃署長來 黃署長說得很好
transcript.whisperx[1].start 24.301
transcript.whisperx[1].end 49.824
transcript.whisperx[1].text 我今天問你三個問題 我簡單啦 我在形容外殼 沒辦法 拖不下去了第一個問題 你今年11月25 九陣嘛 對不對你怎麼知道你同時九陣都不知道啊我有點忘了日期了我都要給你monitor 要一年啊你對你一年來的表現 你自己判幾分自己打分數
transcript.whisperx[2].start 52.421
transcript.whisperx[2].end 72.011
transcript.whisperx[2].text 很不會被我覺得不用自己打分數吧我用比較客觀看啦 我覺得你很幼老啦很細膩但是細膩有餘啦 私立有餘 開創不太夠這伴隨第二個問題我問 如果我跟國昌有說
transcript.whisperx[3].start 80.27
transcript.whisperx[3].end 101.143
transcript.whisperx[3].text 這八十回以上不用用八十兩票這也是柯文哲提出來 也是侯友宜提出來我這裡要跟你說就是侯友宜這個案子是我提的所以我給他提出來是要做他的競選的政見所以我對這個我非常關心我們要過這個法的時候
transcript.whisperx[4].start 109.011
transcript.whisperx[4].end 136.679
transcript.whisperx[4].text 大家都說會加幾萬尤其是我們這些女性的那個立法委員都一直說會增加十萬二十萬會增加多少的會排擠但是我看因為像這個外籍看護沒有在縮沒有在縮不然大家都很害怕台灣台灣善戒還是比較多不然這點你有同意嗎
transcript.whisperx[5].start 139.045
transcript.whisperx[5].end 155.097
transcript.whisperx[5].text 當然政府的政策上面希望盡量的去拉近不同家庭的處境所以你這樣考慮太多結果呢 實施了到現在看起來也沒有像我們想的那麼嚴重我們花了很大的力氣去設計配套
transcript.whisperx[6].start 157.438
transcript.whisperx[6].end 170.946
transcript.whisperx[6].text 不可以說大家像八十幾歲的人用身體運用會跑會跳 要穿著做看護 還要花這麼多錢我感覺那是不可能的事情 賺錢不太好賺 勞工改革賺錢不太好賺所以我早就預測說 不像你這麼嚴重
transcript.whisperx[7].start 181.749
transcript.whisperx[7].end 187.292
transcript.whisperx[7].text 第二就是我比較高興的因為現在24個24萬個外籍看護裡面以前是21萬變22萬變23萬現在這裡面你說發揮去捨棄重的然後他會去要跟人照顧比較輕盈的這是我們高興的嘛會排除一些重症的沒有人要照顧結果我看也不是這樣
transcript.whisperx[8].start 207.714
transcript.whisperx[8].end 230.049
transcript.whisperx[8].text 我想外籍康復來講 他要捱的可能是待遇啦還有工作的磁場 還有氛圍啦你如果說僱主的人對他比較好 或是說再給他一點養活這樣 他如果沒有那樣照顧重症的跟照顧輕症的 我看差不多啦照顧重症的反而是壓力變那麼大反正聰明就聰明啦
transcript.whisperx[9].start 234.44
transcript.whisperx[9].end 260.83
transcript.whisperx[9].text 照顧親政的反省還會出問題呢這個這樣的敘述行政部門不能講啊你不能講啊而且我們不能這樣想啊好我們不能這樣想啊就是說重症會沒人顧他會選僱主然後跑掉也沒有像我們想的那麼的嚴重啦對不對黃署長署長有沒有你看到這個情形沒有
transcript.whisperx[10].start 262.304
transcript.whisperx[10].end 290.811
transcript.whisperx[10].text 就是說大家都跑去照顧年輕的然後就自己選僱主然後跑來跑去那個我來回答啦第一個是其實我們還是有聽到會有一些重症的家庭跟我們反映其實家裡的看護外籍看護工其實的確這個在好像有點想要在外面去找工作然後找比較輕的工作這個狀況現象不是沒有有這樣的聲音我們陸續都有聽到
transcript.whisperx[11].start 292.051
transcript.whisperx[11].end 314.511
transcript.whisperx[11].text 但第二個事情是的確我們從行政部門角度我們本來就要為比較嚴峻的狀況去做設想我們不能都假設我都不去設想大家又會說很輕忽我們要為比較嚴峻的狀況去做設想並擬定相關的配套所以當初在上路的時候我們也提出六大配套也希望能夠透過配套來減少可能原本大家擔心的衝擊
transcript.whisperx[12].start 315.772
transcript.whisperx[12].end 342.508
transcript.whisperx[12].text 這也是我們在設計配套的原因所以你們的設計配套盡了很多力你們還有什麼量化的data讓我們可以感覺你們有努力或是你們有 我想這種data吃牌吃牌吃牌其實包括我們在這次我們擴大了直接擴大免評這擴大免評也讓申請的件數從申請的案件數從五成變七成其實現在有高達七成其實都適用多元免評的資格
transcript.whisperx[13].start 343.601
transcript.whisperx[13].end 364.567
transcript.whisperx[13].text 所以其實很多的配套 配套的範圍也擴大那這都是我們希望符合大家民眾的需求之下 盡量來減少衝擊的做法我倒是覺得啦 很多的北省 像我去屏東高秋那一席家家屬在懷念的是什麼呢
transcript.whisperx[14].start 365.953
transcript.whisperx[14].end 380.609
transcript.whisperx[14].text 他說我這個老人都重症有的重大三病等等我已經跟經濟的人不是很好聽這個話就好來做康復是薄不理睬下面的要到處去你又把我收到救援安定會這種的收減免沒有啦
transcript.whisperx[15].start 382.592
transcript.whisperx[15].end 403.169
transcript.whisperx[15].text 是減免還是免除如果他的經濟弱勢比方是相對是經濟上比較弱勢的其實是不用 是免救安費的是免交的 還要三千塊嘛 對吧兩千是免救安費的免交還是減免他如果是經濟弱勢的話是減免減免 那有的是免費對不過這個要弱勢啦如果我們大家相當的反應是這一點
transcript.whisperx[16].start 404.87
transcript.whisperx[16].end 429.55
transcript.whisperx[16].text 所以你就知道你嫁到那裡是對人來說有多重要好啦 這個就衍生第三個問題我們賴總統就是要叫婦女來參與勞動力這也是很好的事情啊讓這些女性投入出場我們現在的勞工是一千兩百萬人嘛 對不對你如果這些女性這裡有的請都特勤館 年齡也好你到處顧孩子 能娶給他 我也是幫養
transcript.whisperx[17].start 433.733
transcript.whisperx[17].end 461.17
transcript.whisperx[17].text 來出國 現在我們兩千多個這要怎麼做呢對我們女性就業的參與率增加社會勞動率也增加 品質也提高你們就從補助 從那點起總統一個很好的想法你現在 你還在考慮 你是在考慮什麼跟委員說明這幾個月我想我們都在評估中然後也把各種可能的情境行政院也
transcript.whisperx[18].start 462.071
transcript.whisperx[18].end 484.577
transcript.whisperx[18].text 指示了幾個原則包括必須考慮本國的勞工的狀況也必須去考慮多元家庭的需求也包括一些也許在照顧上面或者是在這個工作上面的品質然後最後也包括就是最重要的事情是說這個政策如果要實行的話那是要能夠真的減少這個照顧者的負擔台灣勞工不窮這是會越來越嚴重沒有可能會越來越好
transcript.whisperx[19].start 490.058
transcript.whisperx[19].end 502.223
transcript.whisperx[19].text 不管是製造業 不管是營建業 不管是什麼都欠人家大太爐的大壁都扣多了在做所以這個問題是越來越嚴重所以要讓這個婦女再來參與 這是好事不然說什麼五千塊要調去八千塊的 安救安定會署長你是在調什麼意思 你是
transcript.whisperx[20].start 513.387
transcript.whisperx[20].end 535.687
transcript.whisperx[20].text 用克魯莎還是根據哪一個條例我跟委員說明一個政策一個政策的推出都會有它可能會有的正面或負面的影響那我們也透過各種政策工具去思考怎麼樣減少可能會負面的影響所以各種政策工具也必須去評估
transcript.whisperx[21].start 536.448
transcript.whisperx[21].end 562.679
transcript.whisperx[21].text 所以您是 您就當沒想過要把他凍起來不要做 還是我們現在就是在評估中你這個配套就是要把他凍起來啊跟委員說明我們其實現在就是在評估中對這個安定會五千到八千你這個女性出來上班不就要賺五六萬六七萬她才知道要請因為你請一個外資班
transcript.whisperx[22].start 576.643
transcript.whisperx[22].end 588.807
transcript.whisperx[22].text 確實在這個議題上面各界有不太一樣的看法會有不同的出發點的看法那我們作為一個政策的規劃者跟評估者我們其實需要把各界的各種的看法跟需求都考慮進來
transcript.whisperx[23].start 590.532
transcript.whisperx[23].end 610.544
transcript.whisperx[23].text 所以可能會有不同的出發點但是這是從 因為從不同的角度看待的原因你這個喔 你這個如果要 人家說調到這樣你要穿喔 這些女性要投入職場的差不多都要白領階級以上的啦差不多要一個個都穿六萬以上 八萬以上 到我才穿
transcript.whisperx[24].start 611.485
transcript.whisperx[24].end 639.927
transcript.whisperx[24].text 你如果說 像藍綠的 你說要叫他請那不可能的事他請不上去 到處自己顧孩子就好啊所以這個 美意就沒了各個因素我們都要綜合考慮啦示範啦 各個因素我們都必須綜合考慮因為 有很的確我們聽到有很需要的聲音但也會有一些比較一直在提醒我們跟擔心的聲音這個正反意見都存在好
transcript.whisperx[25].start 644.619
transcript.whisperx[25].end 648.766
transcript.whisperx[25].text 好 謝謝 接下來請大會委員 委員