iVOD / 165234

Field Value
IVOD_ID 165234
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165234
日期 2025-11-12
會議資料.會議代碼 委員會-11-4-20-7
會議資料.會議代碼:str 第11屆第4會期財政委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-11-12T09:22:21+08:00
結束時間 2025-11-12T09:33:01+08:00
影片長度 00:10:40
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a35f0de19abcdbe31ae857a8bb692775906ee7c1e9a76e5a4cf7b889f21dc7b77b98ec381cd5a4705ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:22:21 - 09:33:01
會議時間 2025-11-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第7次全體委員會議(事由:邀請金融監督管理委員會彭主任委員金隆就「推動普惠金融與金融科技概況及相關措施」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 11.70846875
transcript.pyannote[0].end 13.63221875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 14.07096875
transcript.pyannote[1].end 14.83034375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 17.54721875
transcript.pyannote[2].end 17.96909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 19.08284375
transcript.pyannote[3].end 19.72409375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 22.13721875
transcript.pyannote[4].end 26.38971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 26.91284375
transcript.pyannote[5].end 29.93346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 30.18659375
transcript.pyannote[6].end 31.67159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 31.95846875
transcript.pyannote[7].end 31.99221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 31.99221875
transcript.pyannote[8].end 32.32971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 32.32971875
transcript.pyannote[9].end 33.54471875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 32.34659375
transcript.pyannote[10].end 33.10596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 34.43909375
transcript.pyannote[11].end 34.97909375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 35.63721875
transcript.pyannote[12].end 36.98721875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 37.22346875
transcript.pyannote[13].end 40.04159375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 40.51409375
transcript.pyannote[14].end 40.71659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 40.71659375
transcript.pyannote[15].end 41.35784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 41.89784375
transcript.pyannote[16].end 43.04534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 43.16346875
transcript.pyannote[17].end 44.04096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 44.59784375
transcript.pyannote[18].end 44.96909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 46.36971875
transcript.pyannote[19].end 47.33159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 47.68596875
transcript.pyannote[20].end 48.20909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 48.93471875
transcript.pyannote[21].end 50.97659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 51.65159375
transcript.pyannote[22].end 53.96346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 54.55409375
transcript.pyannote[23].end 55.48221875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 55.61721875
transcript.pyannote[24].end 55.88721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 56.14034375
transcript.pyannote[25].end 56.62971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 57.08534375
transcript.pyannote[26].end 59.07659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 59.65034375
transcript.pyannote[27].end 61.03409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 61.79346875
transcript.pyannote[28].end 64.57784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 64.96596875
transcript.pyannote[29].end 65.67471875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 66.61971875
transcript.pyannote[30].end 67.21034375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 67.68284375
transcript.pyannote[31].end 68.62784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 69.11721875
transcript.pyannote[32].end 72.54284375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 73.04909375
transcript.pyannote[33].end 74.82096875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 76.32284375
transcript.pyannote[34].end 77.50409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 78.28034375
transcript.pyannote[35].end 78.93846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 80.28846875
transcript.pyannote[36].end 84.20346875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 84.64221875
transcript.pyannote[37].end 86.17784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 86.63346875
transcript.pyannote[38].end 87.29159375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 87.96659375
transcript.pyannote[39].end 89.89034375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 89.97471875
transcript.pyannote[40].end 99.89721875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 100.15034375
transcript.pyannote[41].end 107.28846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 107.72721875
transcript.pyannote[42].end 109.92096875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 110.24159375
transcript.pyannote[43].end 115.30409375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 115.42221875
transcript.pyannote[44].end 124.21409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 124.63596875
transcript.pyannote[45].end 125.90159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 126.35721875
transcript.pyannote[46].end 134.60909375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 134.81159375
transcript.pyannote[47].end 142.13534375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 142.37159375
transcript.pyannote[48].end 151.77096875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 152.29409375
transcript.pyannote[49].end 165.22034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 164.62971875
transcript.pyannote[50].end 166.18221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 166.53659375
transcript.pyannote[51].end 167.75159375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 168.37596875
transcript.pyannote[52].end 170.63721875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 171.16034375
transcript.pyannote[53].end 171.73409375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 172.30784375
transcript.pyannote[54].end 172.98284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 173.10096875
transcript.pyannote[55].end 183.95159375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 184.42409375
transcript.pyannote[56].end 188.25471875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 188.60909375
transcript.pyannote[57].end 208.50471875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 209.29784375
transcript.pyannote[58].end 220.68846875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 220.94159375
transcript.pyannote[59].end 221.43096875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 222.00471875
transcript.pyannote[60].end 222.67971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 223.57409375
transcript.pyannote[61].end 226.08846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 226.44284375
transcript.pyannote[62].end 227.35409375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 227.52284375
transcript.pyannote[63].end 228.31596875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 228.85596875
transcript.pyannote[64].end 229.61534375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 230.25659375
transcript.pyannote[65].end 230.81346875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 231.20159375
transcript.pyannote[66].end 233.56409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 233.56409375
transcript.pyannote[67].end 233.80034375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 234.35721875
transcript.pyannote[68].end 234.72846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 234.98159375
transcript.pyannote[69].end 237.41159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 238.01909375
transcript.pyannote[70].end 239.67284375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 240.01034375
transcript.pyannote[71].end 243.01409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 243.73971875
transcript.pyannote[72].end 245.08971875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 245.52846875
transcript.pyannote[73].end 247.78971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 247.87409375
transcript.pyannote[74].end 250.38846875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 250.38846875
transcript.pyannote[75].end 250.64159375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 250.64159375
transcript.pyannote[76].end 251.29971875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 251.78909375
transcript.pyannote[77].end 252.56534375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 253.03784375
transcript.pyannote[78].end 253.89846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 254.26971875
transcript.pyannote[79].end 257.44221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 257.74596875
transcript.pyannote[80].end 259.77096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 260.10846875
transcript.pyannote[81].end 260.71596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 261.08721875
transcript.pyannote[82].end 261.59346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 262.09971875
transcript.pyannote[83].end 263.97284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 264.46221875
transcript.pyannote[84].end 264.98534375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 265.62659375
transcript.pyannote[85].end 267.34784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 267.71909375
transcript.pyannote[86].end 268.96784375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 268.96784375
transcript.pyannote[87].end 273.87846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 274.09784375
transcript.pyannote[88].end 274.57034375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 274.13159375
transcript.pyannote[89].end 275.24534375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 275.24534375
transcript.pyannote[90].end 275.29596875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 275.44784375
transcript.pyannote[91].end 282.92346875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 283.68284375
transcript.pyannote[92].end 291.66471875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 292.15409375
transcript.pyannote[93].end 295.07346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 295.42784375
transcript.pyannote[94].end 298.33034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 298.80284375
transcript.pyannote[95].end 300.69284375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 301.08096875
transcript.pyannote[96].end 301.80659375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 301.95846875
transcript.pyannote[97].end 314.90159375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 314.34471875
transcript.pyannote[98].end 318.27659375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 318.79971875
transcript.pyannote[99].end 320.58846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 321.09471875
transcript.pyannote[100].end 324.30096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 324.84096875
transcript.pyannote[101].end 327.55784375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 327.76034375
transcript.pyannote[102].end 328.63784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 328.82346875
transcript.pyannote[103].end 329.48159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 330.08909375
transcript.pyannote[104].end 331.59096875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 332.18159375
transcript.pyannote[105].end 333.34596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 333.58221875
transcript.pyannote[106].end 336.09659375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 336.50159375
transcript.pyannote[107].end 339.72471875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 339.72471875
transcript.pyannote[108].end 339.94409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 339.94409375
transcript.pyannote[109].end 340.65284375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 341.12534375
transcript.pyannote[110].end 346.03596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 346.32284375
transcript.pyannote[111].end 349.05659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 349.24221875
transcript.pyannote[112].end 351.75659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 351.79034375
transcript.pyannote[113].end 353.61284375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 353.79846875
transcript.pyannote[114].end 360.90284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 361.22346875
transcript.pyannote[115].end 366.82596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 367.16346875
transcript.pyannote[116].end 374.45346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 373.96409375
transcript.pyannote[117].end 374.30159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 374.65596875
transcript.pyannote[118].end 380.24159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 380.37659375
transcript.pyannote[119].end 382.67159375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 383.22846875
transcript.pyannote[120].end 388.35846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 388.51034375
transcript.pyannote[121].end 388.83096875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 388.91534375
transcript.pyannote[122].end 390.09659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 390.31596875
transcript.pyannote[123].end 392.12159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 392.76284375
transcript.pyannote[124].end 394.38284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 395.02409375
transcript.pyannote[125].end 397.20096875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 397.79159375
transcript.pyannote[126].end 398.87159375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 400.05284375
transcript.pyannote[127].end 400.79534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 401.53784375
transcript.pyannote[128].end 403.14096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 403.76534375
transcript.pyannote[129].end 404.13659375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 404.71034375
transcript.pyannote[130].end 408.40596875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 408.62534375
transcript.pyannote[131].end 410.92034375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 409.89096875
transcript.pyannote[132].end 410.05971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 411.15659375
transcript.pyannote[133].end 417.40034375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 417.83909375
transcript.pyannote[134].end 422.68221875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 423.17159375
transcript.pyannote[135].end 427.69409375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 428.01471875
transcript.pyannote[136].end 455.74034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 456.01034375
transcript.pyannote[137].end 458.81159375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 459.08159375
transcript.pyannote[138].end 465.27471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 465.64596875
transcript.pyannote[139].end 468.83534375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 469.07159375
transcript.pyannote[140].end 470.55659375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 470.87721875
transcript.pyannote[141].end 470.89409375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 470.89409375
transcript.pyannote[142].end 471.16409375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 471.16409375
transcript.pyannote[143].end 473.81346875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 474.28596875
transcript.pyannote[144].end 478.72409375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 479.26409375
transcript.pyannote[145].end 480.90096875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 481.45784375
transcript.pyannote[146].end 484.86659375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 484.86659375
transcript.pyannote[147].end 493.38846875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 493.59096875
transcript.pyannote[148].end 496.64534375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 496.94909375
transcript.pyannote[149].end 502.24784375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 502.58534375
transcript.pyannote[150].end 510.43221875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 511.02284375
transcript.pyannote[151].end 515.51159375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 513.33471875
transcript.pyannote[152].end 514.33034375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 515.03909375
transcript.pyannote[153].end 523.74659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 523.20659375
transcript.pyannote[154].end 537.33096875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 532.04909375
transcript.pyannote[155].end 532.69034375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 537.22971875
transcript.pyannote[156].end 537.61784375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 537.61784375
transcript.pyannote[157].end 551.97846875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 552.04596875
transcript.pyannote[158].end 568.70159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 559.11659375
transcript.pyannote[159].end 559.28534375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 568.70159375
transcript.pyannote[160].end 574.15221875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 574.45596875
transcript.pyannote[161].end 580.32846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 579.95721875
transcript.pyannote[162].end 584.63159375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 585.23909375
transcript.pyannote[163].end 586.72409375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 586.89284375
transcript.pyannote[164].end 619.71471875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 595.17846875
transcript.pyannote[165].end 596.27534375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 620.28846875
transcript.pyannote[166].end 625.08096875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 625.35096875
transcript.pyannote[167].end 633.90659375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 633.97409375
transcript.pyannote[168].end 636.10034375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 636.10034375
transcript.pyannote[169].end 636.23534375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 636.23534375
transcript.pyannote[170].end 637.50096875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 637.01159375
transcript.pyannote[171].end 640.97721875
transcript.whisperx[0].start 11.707
transcript.whisperx[0].end 31.246
transcript.whisperx[0].text 主席麻煩請金管會彭主委請彭主委委員長主委早今年議題跟那個普惠金融有關那普惠金融一個過去歷史上有名的案例就是是不是孟加拉這個國民銀行
transcript.whisperx[1].start 34.488
transcript.whisperx[1].end 43.078
transcript.whisperx[1].text 把他用小兒的貸款給一些要就業的婦女還有一些小商販所以他還獲得諾貝爾獎可見這個在經濟很弱勢的人的身上
transcript.whisperx[2].start 51.707
transcript.whisperx[2].end 74.64
transcript.whisperx[2].text 其實是如果從這個案例來看是很有效果的因為在那樣子的經濟環境裡面可能是要去取得相當於台幣幣值一兩萬塊錢的貸款都有困擾所以變成有一些想要做一些小生意的他連最起碼的資本都沒有這個事情是從那邊來的那以這個案例來講其實
transcript.whisperx[3].start 80.373
transcript.whisperx[3].end 109.823
transcript.whisperx[3].text 如果類比這樣台灣需要這麼小的這個微型貸款的這個民眾人數應該相對比例是少很多少很多這個我在過去在當老師的時候有對這個做過蠻全面的研究確實像剛剛那個模式會普遍存在在南亞還有非洲還有以前的早期的東歐那其他國家的所謂的微型金融比較不會是這個型態那台灣的微型金融是什麼樣子的型態
transcript.whisperx[4].start 110.425
transcript.whisperx[4].end 134.225
transcript.whisperx[4].text 維新金融主要是我們現在還是有一些比較經濟弱勢還有就是一些比如說它整個在特別還有就是我們不同的像我們現在看到的就是因為我們現在的金融服務大概會集中在假設人口分佈的中段比如說可能15歲到65歲之間的人其實還有兩端中間還有一些不同比較弱勢經濟弱勢的人他通常很難在很多的商品
transcript.whisperx[5].start 135.247
transcript.whisperx[5].end 141.849
transcript.whisperx[5].text 得到一個完整的比如說像我們現在的保險商品都有一個最低的承保金額的限制
transcript.whisperx[6].start 142.438
transcript.whisperx[6].end 167.508
transcript.whisperx[6].text 那就像剛剛委員也有研究像印度他們在賣洗髮精的時候他們就覺得奇怪這麼大罐賣不出去他就做成小瓶裝因為很多人他根本買不起整瓶在儲存他只能買小瓶所以後來我們推了微型保險現在把它微小化 小額化但是這個概念我們希望能夠透過商品的設計跟費率的這樣一個能夠滲入到這些不同的群體這個是很好的一個想法
transcript.whisperx[7].start 168.408
transcript.whisperx[7].end 183.487
transcript.whisperx[7].text 但是問題是在台灣的實用性到底你認為很高嗎其實台灣確實是我們在微型保險的部分我們也看到還有微型金融部分市場不如其他比如說剛才講的大家提到以前有個那個
transcript.whisperx[8].start 184.528
transcript.whisperx[8].end 207.63
transcript.whisperx[8].text 那個諾貝亞經濟學家他提出一個金字塔底層的商機就是說當一個國家的貧富在特別是那個最貧窮那個底層那個底部非常大的時候像這種國家地區就非常適合來推動這個但是我們基本上我們以我們現在台灣的財富平均的結果雖然說我們不是大部分都是很有錢但是我們下面底層的那個
transcript.whisperx[9].start 209.332
transcript.whisperx[9].end 237.213
transcript.whisperx[9].text 那個母數是比較小的所以整個規模上比較困難做到但是我覺得這還是不能放棄我剛才也提過像這一塊絕對不會是我們金融機構的主力課程一定要透過政策的導引才有辦法這個之前蘇貞昌院長在當院長的時候他對於我們台灣的國有銀行他的放款借貸都傾向於集中化大型化那鼓勵中小企業的貸款
transcript.whisperx[10].start 238.206
transcript.whisperx[10].end 264.712
transcript.whisperx[10].text 變得很困難所以他把貸款的金額的成績的計算不是用金額計算用件數加以評比進去也是有這樣子的精神在就是說有的時候站在銀行的角色來看他希望借錢給有錢人那希望一次借很大條的錢這樣既保障然後好像一下業績又很高但是
transcript.whisperx[11].start 266.113
transcript.whisperx[11].end 282.774
transcript.whisperx[11].text 從服務的角度來看這樣的觀念是不對的當然 其實剛剛委員提到就是說今年剛好是我們推動中小企業放款第20年有繼續在增長嗎有跟委員報告一個數字是這樣因為我前幾天才跟銀行局在討論這件事情因為這20週年翻轉了我們整個銀行放款的配比
transcript.whisperx[12].start 283.735
transcript.whisperx[12].end 310.262
transcript.whisperx[12].text 在那個之前我們大概我們整個銀行總放款在那個中小企業大概只佔大概3成5左右那其他就是可能6成5是大企業經過這20年呢剛好這個比例就翻轉過來了就等於說我們整個銀行的放款對整個企業的放款裡面已經跟以前很大不同因為我們在我剛才也跟陳柱委員提到這個東西假設由放任由銀行去做的話他大概還是會朝向那個容易做好做的地方做但是呢
transcript.whisperx[13].start 310.802
transcript.whisperx[13].end 328.141
transcript.whisperx[13].text 我們透過政策來導引確實我們看這20年來確實有很明顯的感覺我覺得這個要繼續加強為什麼因為台灣的產業環境跟很多國家不太一樣像我們跟韓國對比韓國是集中在大企業上他們的國家的經濟主導主要都是幾家大的這個財團
transcript.whisperx[14].start 330.143
transcript.whisperx[14].end 356.369
transcript.whisperx[14].text 但台灣其實是一個中小企業遍佈我們台灣的觀念是打群架的觀念所以我們這個對我們台灣的產業的環境是很重要的很多企業他的真正需要貸款的反而是這些比較中小的企業已經很有錢的企業他要貸款沒有困難啦不用特別再去加強我舉個例子你如果說台塑要來跟你貸款台積電要來跟你貸款我看銀行應該都很高興就趕快放款給他嘛
transcript.whisperx[15].start 357.069
transcript.whisperx[15].end 366.367
transcript.whisperx[15].text 因為這個很有擔保然後一次業務又可以做得很大但是真正需要讓我們台灣各地的產業能發展的是這個中小企業的這個貸款
transcript.whisperx[16].start 368.839
transcript.whisperx[16].end 391.666
transcript.whisperx[16].text 像這也是為什麼我們會有一些中小企業的支持機構像信保基金這些都是來做這些事因為他要補足銀行所擔心那個風險的那個部位那其實這樣就可以做到這個的補強你提到的就是我想要講的一個重點這其實因為無論是金融的活動或是貸款這裡面都有一個信用這個性質在這裡面作為他主要支撐的骨幹
transcript.whisperx[17].start 392.833
transcript.whisperx[17].end 400.449
transcript.whisperx[17].text 那你那個微型的普惠的他一個很大的困難就是你這個信用的真性
transcript.whisperx[18].start 401.564
transcript.whisperx[18].end 422.239
transcript.whisperx[18].text 沒有那麼容易因為你面對那麼多人突然之間那麼多人都來那你都要徵信那你要花的成本是非常的巨大的那花了這麼巨大的成本又沒有辦法從你的這個交易中間去獲利回來的話那會出現困難度會產生在這個地方你是不是這樣認同
transcript.whisperx[19].start 423.54
transcript.whisperx[19].end 447.609
transcript.whisperx[19].text 這當然是 這很實務也是非常精準的實務的問題因為銀行它本身大部分都是個盈利事業它當然以最小的成本獲得最大的利益但是銀行也是個特許事業它必須擔負著一定程度的社會責任所以剛才講到說如果你沒有做任何的措施它大概還是會走向一個比較容易做好做好賺的地方就會忽略這些很大的客群這也是為什麼
transcript.whisperx[20].start 448.669
transcript.whisperx[20].end 458.542
transcript.whisperx[20].text 在一個高度階段行業政策要持續的去對這一塊做一些不管是獎勵或是一些的一些措施去希望他做到這一點
transcript.whisperx[21].start 459.144
transcript.whisperx[21].end 478.525
transcript.whisperx[21].text 以中國的過去從發生案例P2P的借貸平台後來倒帳都金額非常的巨大那P2P這個後來證實說他很困難的原因在哪裡就是你徵信沒有辦法你在網路上面的這個徵信他對於他來申請的人你無法徵信因為你要講究的是快速
transcript.whisperx[22].start 479.326
transcript.whisperx[22].end 501.497
transcript.whisperx[22].text 然後要便捷但是真信不是一件快速跟便捷就可以達到的事情而且其實很關鍵是當時這個P2P平台它不像是我們的那個所謂的間接金融銀行是負擔中間風險承擔所以它中間會有一個保護機制它沒有 它只是一個平台就讓你之間再撮合那彼此你沒辦法做好真信就讓這個客戶暴露在風險下面
transcript.whisperx[23].start 502.657
transcript.whisperx[23].end 510.204
transcript.whisperx[23].text 是啦 從這樣的觀念你來看到網路上的虛擬貨幣交易也是一樣的情況如果中間的這一個人他只是仲介說你們去交易
transcript.whisperx[24].start 511.089
transcript.whisperx[24].end 537.105
transcript.whisperx[24].text 那事實上沒有真性在這裡面就很容易衍生非常多的弊端這也是我們要納管當然過去在野蠻成長的時候大概是這個方式只要雙方可以接受就好但我覺得納管以後問題是雙方接受他是在什麼樣基礎上接受如果沒有真性的話接受可能就是一個感冒非常大的風險譬如說你這網路的貸款假設是人跟人之間的貸款所以它那個利率就要拉得很高
transcript.whisperx[25].start 537.745
transcript.whisperx[25].end 563.511
transcript.whisperx[25].text 因為我可能我做實踐的這個交易我可能裡面要倒賬三四件那我只好把利率拉高所以這個機制是如果沒有信在裡面我認為這個機制是有很大的問題對 這是核心這個是確實像委員講的沒有錯就是比如說政府的監管就是一個信用增強非常重要的機制這個就是讓民眾說我不需要這麼多的專業知識我只要看到
transcript.whisperx[26].start 564.131
transcript.whisperx[26].end 573.918
transcript.whisperx[26].text 政府在監管我就可以把這個東西相信這是一個很重要的效率化的過程所以我現在再回過頭來我們台灣的個案之前監管會核准的三家網路銀行現在有獲利了嗎
transcript.whisperx[27].start 574.7
transcript.whisperx[27].end 594.699
transcript.whisperx[27].text 現在應該應該還沒有因為他們現在才還在一個建制還在這個過程當中他推廣業務的過程中這個徵訊是一個他很大的問題很大的困難這一部分要如何解決他們有他們特殊性就像我們最近開放幾家銀行的事辦因為過去銀行強調5P5P一定要過去你有一些
transcript.whisperx[28].start 595.319
transcript.whisperx[28].end 619.527
transcript.whisperx[28].text 對啊你們也要求要認識客戶啊那我是小白我根本就沒有這個怎麼辦他就要想到其他的指標來代表他的風險如果可以做到這一點的話其實這樣可以大幅的減少這個的落差所以我們一直希望其實他們在數位金融就有這個優勢我們一直希望他帶動一個就是說不要用一個傳統的概念來經營因為未來世界變化很大如果可以用一個新的觀念說不定更精準
transcript.whisperx[29].start 620.527
transcript.whisperx[29].end 639.339
transcript.whisperx[29].text 對 那但是今天這個主題啊無論是推動普惠金融或是金融科技啊都不要忘了這中間還是要有信用在裡面做骨幹是那如何既便捷又不會去失去它的準則不然的話有可能會造成災難喔是加油謝謝 謝謝委員的那個指導 謝謝