iVOD / 165223

Field Value
IVOD_ID 165223
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165223
日期 2025-11-11
會議資料.會議代碼 院會-11-4-8
會議資料.會議代碼:str 第11屆第4會期第8次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 院會
會議資料.標題 第11屆第4會期第8次會議
影片種類 Clip
開始時間 2025-11-11T14:30:32+08:00
結束時間 2025-11-11T14:46:25+08:00
影片長度 00:15:53
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/2170dced164337aaeba579235809834385e1af54c489cd62b0f292095e346b3242d90c1ed0ab56cb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林德福
委員發言時間 14:30:32 - 14:46:25
會議時間 2025-11-11T09:00:00+08:00
會議名稱 第11屆第4會期第8次會議(事由:一、同意權之行使事項:本院交通、教育及文化兩委員會報告審查行政院函送國家通訊傳播委員會委員提名名單,蔣榮先為委員並為主任委員,程明修為委員並為副主任委員,黃葳威及羅慧雯均為委員,請同意案。(11月7日上午報告事項後)二、對行政院院長施政報告繼續質詢。(11月7日下午及11日)三、11月7日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 28.51596875
transcript.pyannote[0].end 36.02534375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 36.10971875
transcript.pyannote[1].end 37.81409375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 38.20221875
transcript.pyannote[2].end 39.51846875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 39.60284375
transcript.pyannote[3].end 40.64909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 41.35784375
transcript.pyannote[4].end 42.62346875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 42.62346875
transcript.pyannote[5].end 43.97346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 43.97346875
transcript.pyannote[6].end 45.12096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 45.34034375
transcript.pyannote[7].end 47.80409375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 55.16159375
transcript.pyannote[8].end 55.75221875
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 56.20784375
transcript.pyannote[9].end 57.30471875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 57.45659375
transcript.pyannote[10].end 58.75596875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 59.26221875
transcript.pyannote[11].end 63.05909375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 63.29534375
transcript.pyannote[12].end 75.47909375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 75.88409375
transcript.pyannote[13].end 80.37284375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 80.71034375
transcript.pyannote[14].end 84.59159375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 84.69284375
transcript.pyannote[15].end 86.54909375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 86.71784375
transcript.pyannote[16].end 89.75534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 90.49784375
transcript.pyannote[17].end 91.91534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 92.47221875
transcript.pyannote[18].end 95.35784375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 95.66159375
transcript.pyannote[19].end 96.31971875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 96.33659375
transcript.pyannote[20].end 97.04534375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 97.28159375
transcript.pyannote[21].end 99.67784375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 100.13346875
transcript.pyannote[22].end 102.24284375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 102.64784375
transcript.pyannote[23].end 111.06846875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 110.27534375
transcript.pyannote[24].end 110.84909375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 111.55784375
transcript.pyannote[25].end 112.08096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 112.18221875
transcript.pyannote[26].end 113.21159375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 113.95409375
transcript.pyannote[27].end 115.38846875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 115.94534375
transcript.pyannote[28].end 116.85659375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 117.12659375
transcript.pyannote[29].end 119.23596875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 119.38784375
transcript.pyannote[30].end 120.85596875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 121.24409375
transcript.pyannote[31].end 121.93596875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 122.84721875
transcript.pyannote[32].end 123.25221875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 123.69096875
transcript.pyannote[33].end 125.00721875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 125.39534375
transcript.pyannote[34].end 127.45409375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 127.69034375
transcript.pyannote[35].end 129.64784375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 128.19659375
transcript.pyannote[36].end 130.40721875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 130.50846875
transcript.pyannote[37].end 139.40159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 141.12284375
transcript.pyannote[38].end 142.86096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 143.35034375
transcript.pyannote[39].end 146.01659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 146.48909375
transcript.pyannote[40].end 147.82221875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 148.10909375
transcript.pyannote[41].end 148.44659375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 148.66596875
transcript.pyannote[42].end 151.01159375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 151.18034375
transcript.pyannote[43].end 152.95221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 153.40784375
transcript.pyannote[44].end 155.90534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 156.42846875
transcript.pyannote[45].end 160.54596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 160.76534375
transcript.pyannote[46].end 161.18721875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 161.28846875
transcript.pyannote[47].end 162.09846875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 162.31784375
transcript.pyannote[48].end 176.56034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 176.17221875
transcript.pyannote[49].end 176.61096875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 176.61096875
transcript.pyannote[50].end 176.64471875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 176.64471875
transcript.pyannote[51].end 176.66159375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 176.66159375
transcript.pyannote[52].end 176.77971875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 176.77971875
transcript.pyannote[53].end 176.84721875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 177.84284375
transcript.pyannote[54].end 179.64846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 178.38284375
transcript.pyannote[55].end 186.75284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 179.64846875
transcript.pyannote[56].end 179.73284375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 179.73284375
transcript.pyannote[57].end 179.74971875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 179.96909375
transcript.pyannote[58].end 179.98596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 186.85409375
transcript.pyannote[59].end 187.95096875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 188.17034375
transcript.pyannote[60].end 192.06846875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 192.37221875
transcript.pyannote[61].end 193.24971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 193.45221875
transcript.pyannote[62].end 195.24096875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 195.40971875
transcript.pyannote[63].end 201.63659375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 202.27784375
transcript.pyannote[64].end 213.61784375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 213.98909375
transcript.pyannote[65].end 214.83284375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 215.38971875
transcript.pyannote[66].end 219.76034375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 220.08096875
transcript.pyannote[67].end 227.97846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 228.45096875
transcript.pyannote[68].end 229.58159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 230.54346875
transcript.pyannote[69].end 234.27284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 234.52596875
transcript.pyannote[70].end 239.84159375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 240.29721875
transcript.pyannote[71].end 241.88346875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 242.15346875
transcript.pyannote[72].end 244.27971875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 244.87034375
transcript.pyannote[73].end 250.33784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 250.62471875
transcript.pyannote[74].end 256.29471875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 256.46346875
transcript.pyannote[75].end 257.98221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 258.67409375
transcript.pyannote[76].end 260.39534375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 260.64846875
transcript.pyannote[77].end 261.35721875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 261.47534375
transcript.pyannote[78].end 264.27659375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 264.58034375
transcript.pyannote[79].end 268.22534375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 268.51221875
transcript.pyannote[80].end 270.65534375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 270.77346875
transcript.pyannote[81].end 282.73784375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 282.80534375
transcript.pyannote[82].end 287.96909375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 288.00284375
transcript.pyannote[83].end 289.06596875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 289.65659375
transcript.pyannote[84].end 300.05159375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 300.28784375
transcript.pyannote[85].end 303.74721875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 304.01721875
transcript.pyannote[86].end 304.96221875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 305.41784375
transcript.pyannote[87].end 311.15534375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 311.45909375
transcript.pyannote[88].end 318.88409375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 320.01471875
transcript.pyannote[89].end 320.80784375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 321.19596875
transcript.pyannote[90].end 322.00596875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 322.51221875
transcript.pyannote[91].end 327.79409375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 327.86159375
transcript.pyannote[92].end 332.18159375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 332.75534375
transcript.pyannote[93].end 333.68346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 333.76784375
transcript.pyannote[94].end 334.59471875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 335.26971875
transcript.pyannote[95].end 335.75909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 336.07971875
transcript.pyannote[96].end 343.04909375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 341.07471875
transcript.pyannote[97].end 341.29409375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 342.45846875
transcript.pyannote[98].end 347.03159375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 347.21721875
transcript.pyannote[99].end 355.58721875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 353.96721875
transcript.pyannote[100].end 354.92909375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 355.58721875
transcript.pyannote[101].end 359.65409375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 360.04221875
transcript.pyannote[102].end 369.81284375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 364.12596875
transcript.pyannote[103].end 364.14284375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 364.14284375
transcript.pyannote[104].end 364.69971875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 369.86346875
transcript.pyannote[105].end 370.67346875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 371.07846875
transcript.pyannote[106].end 374.50409375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 374.94284375
transcript.pyannote[107].end 407.05596875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 407.34284375
transcript.pyannote[108].end 409.75596875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 410.02596875
transcript.pyannote[109].end 410.66721875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 410.17784375
transcript.pyannote[110].end 412.50659375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 412.91159375
transcript.pyannote[111].end 417.85596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 418.29471875
transcript.pyannote[112].end 418.71659375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 419.12159375
transcript.pyannote[113].end 420.52221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 420.91034375
transcript.pyannote[114].end 423.93096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 424.26846875
transcript.pyannote[115].end 427.55909375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 427.89659375
transcript.pyannote[116].end 429.24659375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 429.48284375
transcript.pyannote[117].end 438.34221875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 438.52784375
transcript.pyannote[118].end 443.33721875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 443.60721875
transcript.pyannote[119].end 448.14659375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 448.24784375
transcript.pyannote[120].end 451.60596875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 452.06159375
transcript.pyannote[121].end 455.21721875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 453.58034375
transcript.pyannote[122].end 454.47471875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 455.47034375
transcript.pyannote[123].end 455.97659375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 456.65159375
transcript.pyannote[124].end 457.24221875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 457.93409375
transcript.pyannote[125].end 458.60909375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 460.26284375
transcript.pyannote[126].end 463.38471875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 463.57034375
transcript.pyannote[127].end 471.06284375
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 471.16409375
transcript.pyannote[128].end 471.21471875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 471.21471875
transcript.pyannote[129].end 473.76284375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 473.86409375
transcript.pyannote[130].end 475.83846875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 475.97346875
transcript.pyannote[131].end 498.40034375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 498.56909375
transcript.pyannote[132].end 499.15971875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 499.58159375
transcript.pyannote[133].end 500.59409375
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 501.37034375
transcript.pyannote[134].end 502.43346875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 502.93971875
transcript.pyannote[135].end 504.59346875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 504.84659375
transcript.pyannote[136].end 507.24284375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 507.59721875
transcript.pyannote[137].end 511.14096875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 511.47846875
transcript.pyannote[138].end 512.99721875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 513.43596875
transcript.pyannote[139].end 514.17846875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 514.73534375
transcript.pyannote[140].end 515.54534375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 515.78159375
transcript.pyannote[141].end 519.73034375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 520.32096875
transcript.pyannote[142].end 535.47471875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 534.34409375
transcript.pyannote[143].end 541.16159375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 541.58346875
transcript.pyannote[144].end 543.05159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 543.47346875
transcript.pyannote[145].end 544.16534375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 544.57034375
transcript.pyannote[146].end 546.91596875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 547.50659375
transcript.pyannote[147].end 550.12221875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 550.56096875
transcript.pyannote[148].end 552.68721875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 552.99096875
transcript.pyannote[149].end 555.65721875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 555.65721875
transcript.pyannote[150].end 555.77534375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 555.77534375
transcript.pyannote[151].end 559.09971875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 555.84284375
transcript.pyannote[152].end 555.87659375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 559.16721875
transcript.pyannote[153].end 560.41596875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 560.97284375
transcript.pyannote[154].end 566.57534375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 566.84534375
transcript.pyannote[155].end 579.21471875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 579.51846875
transcript.pyannote[156].end 580.61534375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 580.95284375
transcript.pyannote[157].end 581.76284375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 583.26471875
transcript.pyannote[158].end 586.33596875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 586.58909375
transcript.pyannote[159].end 588.15846875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 588.27659375
transcript.pyannote[160].end 589.15409375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 589.32284375
transcript.pyannote[161].end 592.49534375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 592.74846875
transcript.pyannote[162].end 596.42721875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 596.73096875
transcript.pyannote[163].end 597.08534375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 596.95034375
transcript.pyannote[164].end 599.36346875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 599.54909375
transcript.pyannote[165].end 600.59534375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 600.66284375
transcript.pyannote[166].end 607.24409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 606.94034375
transcript.pyannote[167].end 609.30284375
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 608.10471875
transcript.pyannote[168].end 608.12159375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 608.13846875
transcript.pyannote[169].end 608.69534375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 609.30284375
transcript.pyannote[170].end 609.97784375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 609.80909375
transcript.pyannote[171].end 622.76909375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 609.97784375
transcript.pyannote[172].end 610.06221875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 622.92096875
transcript.pyannote[173].end 629.06346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 629.26596875
transcript.pyannote[174].end 652.18221875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 652.45221875
transcript.pyannote[175].end 678.20346875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 678.32159375
transcript.pyannote[176].end 681.39284375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 678.67596875
transcript.pyannote[177].end 682.33784375
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 681.93284375
transcript.pyannote[178].end 713.43846875
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 713.64096875
transcript.pyannote[179].end 734.78534375
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 735.51096875
transcript.pyannote[180].end 737.68784375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 738.29534375
transcript.pyannote[181].end 738.73409375
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 739.12221875
transcript.pyannote[182].end 753.24659375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 753.68534375
transcript.pyannote[183].end 754.51221875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 754.71471875
transcript.pyannote[184].end 758.17409375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 759.23721875
transcript.pyannote[185].end 762.61221875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 762.81471875
transcript.pyannote[186].end 765.76784375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 766.20659375
transcript.pyannote[187].end 767.60721875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 767.86034375
transcript.pyannote[188].end 770.13846875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 770.45909375
transcript.pyannote[189].end 775.25159375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 775.50471875
transcript.pyannote[190].end 778.27221875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 778.37346875
transcript.pyannote[191].end 783.62159375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 784.17846875
transcript.pyannote[192].end 784.90409375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 785.19096875
transcript.pyannote[193].end 802.92659375
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 803.21346875
transcript.pyannote[194].end 809.37284375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 810.23346875
transcript.pyannote[195].end 814.70534375
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 810.28409375
transcript.pyannote[196].end 810.79034375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 814.94159375
transcript.pyannote[197].end 826.39971875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 826.72034375
transcript.pyannote[198].end 828.01971875
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 828.22221875
transcript.pyannote[199].end 828.71159375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 828.71159375
transcript.pyannote[200].end 828.96471875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 828.96471875
transcript.pyannote[201].end 852.48846875
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 852.67409375
transcript.pyannote[202].end 861.71909375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 862.03971875
transcript.pyannote[203].end 866.27534375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 866.84909375
transcript.pyannote[204].end 872.08034375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 872.65409375
transcript.pyannote[205].end 875.64096875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 875.87721875
transcript.pyannote[206].end 877.66596875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 877.91909375
transcript.pyannote[207].end 879.15096875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 879.55596875
transcript.pyannote[208].end 883.03221875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 883.20096875
transcript.pyannote[209].end 895.55346875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 891.45284375
transcript.pyannote[210].end 891.92534375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 894.37221875
transcript.pyannote[211].end 894.92909375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 895.58721875
transcript.pyannote[212].end 898.69221875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 899.18159375
transcript.pyannote[213].end 906.06659375
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 905.54346875
transcript.pyannote[214].end 906.53909375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 906.74159375
transcript.pyannote[215].end 921.25409375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 911.16284375
transcript.pyannote[216].end 911.17971875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 911.19659375
transcript.pyannote[217].end 911.21346875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 911.21346875
transcript.pyannote[218].end 911.28096875
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 921.72659375
transcript.pyannote[219].end 922.11471875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 922.70534375
transcript.pyannote[220].end 925.99596875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 924.76409375
transcript.pyannote[221].end 931.64909375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 928.10534375
transcript.pyannote[222].end 928.18971875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 931.34534375
transcript.pyannote[223].end 940.23846875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 933.10034375
transcript.pyannote[224].end 934.82159375
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 940.28909375
transcript.pyannote[225].end 940.33971875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 940.37346875
transcript.pyannote[226].end 945.72284375
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 943.66409375
transcript.pyannote[227].end 944.06909375
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 945.57096875
transcript.pyannote[228].end 949.21596875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 948.54096875
transcript.pyannote[229].end 952.15221875
transcript.pyannote[230].speaker SPEAKER_03
transcript.pyannote[230].start 951.08909375
transcript.pyannote[230].end 951.96659375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 951.96659375
transcript.pyannote[231].end 952.38846875
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 952.15221875
transcript.pyannote[232].end 952.96221875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 952.96221875
transcript.pyannote[233].end 953.43471875
transcript.whisperx[0].start 28.924
transcript.whisperx[0].end 46.515
transcript.whisperx[0].text 大會主席韓院長還有行政院卓院長以及所有我們包括財政部所有的單位是不是請卓院長麻煩請卓院長備詢還有我們這個莊部長麻煩請財政部長備詢林委員好
transcript.whisperx[1].start 58.264
transcript.whisperx[1].end 74.648
transcript.whisperx[1].text 因為媒體報導財化法修法的版本正由行政院副院長鄭麗君來召集所有部會來討論當中全面盤點一般性補助款
transcript.whisperx[2].start 75.968
transcript.whisperx[2].end 89.64
transcript.whisperx[2].text 那這個整個計畫刑補住款等等那我請問院長因為行政院針對財化法修法的版本是我有預定啊送進立法院的最後實現有沒有
transcript.whisperx[3].start 90.86
transcript.whisperx[3].end 112.976
transcript.whisperx[3].text 跟委員報告現在行政院所在討論的不只是一般性補助款我們是很著原來的財發法跟現行財發法對各縣市地方政府造成的影響在哪裡尤其現行財發法地方均衡不夠所以我們是整個更宏觀的來考量那目前呢包括
transcript.whisperx[4].start 114.151
transcript.whisperx[4].end 142.601
transcript.whisperx[4].text 財政部包括主計總署會折時間在跟地方政府的財主人員在做進一步的溝通之後我們會在或許或許下禮拜我們就會在行政院來正式的討論之後就送請大院來進行審議院長事不宜拖啦你認為最晚的時候將財化法送到哪時候送到立法院來因為你們討論以後我本來的要求是在
transcript.whisperx[5].start 143.833
transcript.whisperx[5].end 159.664
transcript.whisperx[5].text 這個會期之前那我們會盡快的在準備妥當的時候會適時的來提出我們現在朝越快的準備越好因為我知道這個大會裡面也有相關的修法那如果能夠同時或者是能夠相併來討論的話會更為周延
transcript.whisperx[6].start 162.366
transcript.whisperx[6].end 174.052
transcript.whisperx[6].text 因為要是如果沒有什麼期限那我請問你認為現階段整個市群劃分不明確的情況下會不會類似像美國政府整個停擺的狀況會出現你認為會不會
transcript.whisperx[7].start 178.381
transcript.whisperx[7].end 195.147
transcript.whisperx[7].text 不希望出現這個問題不過即使現在財法法的修法經過大院審議之後對明年的中央政府總預算也起不了新的作用他應該著眼在後年的未來的中央政府總預算跟地方的補助才能夠應用更新的一個財法法的修法
transcript.whisperx[8].start 196.008
transcript.whisperx[8].end 214.426
transcript.whisperx[8].text 因為在野黨去年有推動財化法修法的時候有催促行政院版但是行政院卻辭職沒有提出來那本席當時質疑財政部是不是提不出來還是我們左院長要求不提結果
transcript.whisperx[9].start 215.447
transcript.whisperx[9].end 229.209
transcript.whisperx[9].text 院長卻回答說現行的版本就是最好的版本那我請問院長為什麼在野黨去年在推動修法前你堅持原來的版本是最好的版本我修正一下我說
transcript.whisperx[10].start 230.592
transcript.whisperx[10].end 257.248
transcript.whisperx[10].text 原來的財化法是實行起來最有把握的版本那去年12月20號大院在表決的時候那一個禮拜陷入到一個這個協調的困難期因為發生了種種的事情所以行政的立場沒有辦法透過執政黨黨團在協商當中來提出這個是當初的一個遺憾我們是有準備好版本的所以內容我們在經過修正之後會落實在現在
transcript.whisperx[11].start 258.729
transcript.whisperx[11].end 264.134
transcript.whisperx[11].text 包括財政部 包括主義總署來在研擬新的財化法的精神裡面
transcript.whisperx[12].start 264.656
transcript.whisperx[12].end 288.792
transcript.whisperx[12].text 因為那個卓院長如果原來的版本是最好的版本那現在像政府院長他就不必再找這些部會首長來討論提出行政院的版本其實那時候我們是要求希望行政院能夠提版本一併進去討論但是當下這個行政院跟財政部真的沒有提出來院長也許你是
transcript.whisperx[13].start 290.213
transcript.whisperx[13].end 318.158
transcript.whisperx[13].text 或是執政黨的支持者會把現行財化法出現有一些瑕疵難行的地方刻意把它凸顯放大來檢視但是本席要強調的是如果沒有本黨在立法院積極來反映全國多數的民意推動各界正式的財化法修法的急迫性和必要性那我請問院長民進黨
transcript.whisperx[14].start 320.32
transcript.whisperx[14].end 333.258
transcript.whisperx[14].text 執政的行政院會願意主動來回應多數民意提出財化法的修正版本嗎這個委員恐有誤會在去年12月20號大院表決之前等一下可以請莊部長
transcript.whisperx[15].start 335.322
transcript.whisperx[15].end 352.975
transcript.whisperx[15].text 回答在那個表決之前行政院跟各地方以及我們內部經過了多少次的討論當時的狀況我們請鍾部長來回答我認為那個也不必因為我們在財委會裡面有討論過你們要是有提出來到時候可以併進去大家來研商看怎麼做最理想
transcript.whisperx[16].start 353.996
transcript.whisperx[16].end 369.59
transcript.whisperx[16].text 中央跟地方是要合作當初表決之前那一個禮拜因為院裡面發生了一些一些意識上的爭執所以沒有辦法進入到協商行政的立場是通過執政黨黨團要在協商提出但是沒有機會提出
transcript.whisperx[17].start 371.171
transcript.whisperx[17].end 392.257
transcript.whisperx[17].text 就好比普發現金一萬元好了 民進黨立院黨團這個行政院起初也是反對到底到最後風向球又改變這個變成同意甚至於現在連主計總署官員也說隨著普發現金一萬元上路啊 應可以發揮刺激整個內需的一個效果
transcript.whisperx[18].start 393.378
transcript.whisperx[18].end 411.914
transcript.whisperx[18].text 有助於拉抬第四季的民間消費的表現那我請問院長執政黨當初不分青紅皂白扣在野黨的帽子現在反過來趁政策紅利的熱度這是對全民負責的態度嗎我們當初的想法是我們不舉債
transcript.whisperx[19].start 412.975
transcript.whisperx[19].end 431.792
transcript.whisperx[19].text 用稅計剩餘就可以因應這一次的中央政府總預算跟特別預算但是在大院表決的時候卻一再希望行政院能夠補發現金對於行政院不舉債的這個用心完全不被重視所以與其如此行政院就衡量
transcript.whisperx[20].start 432.893
transcript.whisperx[20].end 458.354
transcript.whisperx[20].text 大院所通過的那個特別條例2350億是不足以來補發現金所以我們調整的內容變成2360億所以這個是依照行政院調整之後也用了舉債的方式增加政府舉債的方式才有辦法來因應所以這個部分是我們在公共政策財政這個紀錄上面的一個考量所以是行政院的版本那個卓院長當初
transcript.whisperx[21].start 460.322
transcript.whisperx[21].end 472.393
transcript.whisperx[21].text 在野黨要求普發現金一萬元主要就是因為連續好幾年我們都知道稅收超徵連續四年超徵了一兆八千多億不是超徵是時徵數超過預算數
transcript.whisperx[22].start 474.079
transcript.whisperx[22].end 499.891
transcript.whisperx[22].text 對啊 你確實啊很明顯的是行政院不是不能提財化法修法的版本而是去年卓院長的最好版本的說法本席解讀看起來就像是不願意把二十多年來二十幾年來未修訂的財化法重新客觀來檢討中央地方政府應該要進行財政的改革院長 副秘書長
transcript.whisperx[23].start 501.414
transcript.whisperx[23].end 519.329
transcript.whisperx[23].text 阮昭雄說這個財化法修法版本以和執政黨立院黨團取得一定的共識但草案到立法院後是我獲得立委的認同多數立委的認同是一個很大的一個挑戰那我請問院長
transcript.whisperx[24].start 520.41
transcript.whisperx[24].end 546.608
transcript.whisperx[24].text 行政院這次的財化法修法的版本有沒有獲得多數地方政府的共識這個很重要你剛剛有講那你認為要怎麼樣才能獲得多數立委認同的修法我覺得最重要的是當全國所有的縣市都放在公平的立場上沒有誰最優越也沒有六都直轄市那麼優越最優越
transcript.whisperx[25].start 547.549
transcript.whisperx[25].end 565.742
transcript.whisperx[25].text 而這個縣市全部放在公平的角度上來計算地方的均衡這樣才能得到所有縣市的支持目前我們新的財發法就是往這個方向在做因為今天到這個會期 研會結束只剩兩個半月
transcript.whisperx[26].start 566.943
transcript.whisperx[26].end 584.66
transcript.whisperx[26].text 那院長 財政部莊部長曾說估計啊年底前會送出行政院修法的版本希望立法院能夠在這個會期啊能夠三讀通過那我請問院長您怎麼看我剛剛說過我希望在
transcript.whisperx[27].start 585.697
transcript.whisperx[27].end 600.033
transcript.whisperx[27].text 這個會期就能夠結束之前就能夠通過現在我要看財政部主計總署跟各縣市的財主單位談的結果如果達到一致的話我們會把時程提前或許下禮拜我們就會進行正式的討論我希望齁
transcript.whisperx[28].start 601.134
transcript.whisperx[28].end 616.069
transcript.whisperx[28].text 這個就是要積極啦然後多溝通然後有問題提出來怎麼解決能不能請部長談一下他如何積極溝通是 跟委員說明有關財化法的部分在水平分配的部分財政部已經召開了四次會議
transcript.whisperx[29].start 617.15
transcript.whisperx[29].end 642.804
transcript.whisperx[29].text 那在最近一次也在10月的時候邀請地方政府來開會相關的指標還有權重已經獲得大部分的縣市能有共同的共識而且我們在人口也好土地面積也好在計算上更為細緻更為細緻也就是說人口上我們因為老年人口或幼年人口需要更多的服務以及土地面積裡面要分別土地的種類譬如說農牧用地建築用地林業用地都要有不同的一個權數
transcript.whisperx[30].start 643.744
transcript.whisperx[30].end 671.413
transcript.whisperx[30].text 所以這個部分可以均衡城鄉的一個差距而且這一次修法的目標很明確第一個就是我們的國民的生活品質要能夠更均衡不管他在城市還是鄉村然後垂直的分配要更合理中央跟地方財政都要能夠有合理性還有我們的水平分配要更公平能夠讓各縣市都得到相同的一個支持還有地方自治要更能夠強化我們擴大他們的財政自主但地方自治也要能夠強化
transcript.whisperx[31].start 672.393
transcript.whisperx[31].end 687.734
transcript.whisperx[31].text 還有中央跟地方夥伴關係要更能夠提升我想中央跟地方都是一個夥伴的關係這是我們的一個修法我希望在最短的時間裡面能夠取得就是大家能夠認同接受院長
transcript.whisperx[32].start 689.055
transcript.whisperx[32].end 710.399
transcript.whisperx[32].text 因為明年編列AI新十大建設預算有311億元那你曾說這是未來國家發展的重中之重那8月下旬經濟部長龔部長也接受聯合報的專訪也說明年開始要推動AI新十大建設希望把AI相關的技術導入百工百業讓產業升級轉型
transcript.whisperx[33].start 713.94
transcript.whisperx[33].end 733.734
transcript.whisperx[33].text 就本席了解產業轉型是指國家地區或產業透過整個系統性的調整其產業的結構將傳統或低附加價值的產業轉變為新興或高附加價值的產業的過程那我請問院長
transcript.whisperx[34].start 736.476
transcript.whisperx[34].end 757.738
transcript.whisperx[34].text 產業轉型或升級是用嘴巴說說的簡單的事嗎既然要導入百工百業你認為行政院編列明年的預算311億能夠一步到位或促成百工百業轉型或升級成功嗎你的看法呢謝謝委員的支持我們的AI新十大建設
transcript.whisperx[35].start 759.278
transcript.whisperx[35].end 783.424
transcript.whisperx[35].text 大致上分做三個區塊第一個是智慧運用第二個是關鍵技術第三個是數位機盤那明年是一開始第一年的預算我們統合一開始初期當然預算沒有辦法變到那麼多因為很多在計劃過程當中那未來逐年會是適時的需要而增加那我希望明年的310億我們真的是用在讓他能夠順利起步無論是
transcript.whisperx[36].start 784.264
transcript.whisperx[36].end 809.058
transcript.whisperx[36].text 智慧運用或是關鍵技術或是數位機盤這三大部分都能在AI新十大建設的十大項裡面都能夠開始發展我認為這未來20年30年影響台灣在國際關鍵技術上面的尤其是高科技領先地位上面能不能繼續保持這樣的優勢要接軌AI相關的技術百工百業的建制成本你認為我們都準備好了嗎
transcript.whisperx[37].start 810.256
transcript.whisperx[37].end 827.263
transcript.whisperx[37].text 我們現在開始從AI新時代建設來做統合其實我們的科技預算經費當然是更大但有的是原來的計畫在進行當中我們先把它挪一部分在AI新時代建設就啟動一個新時代的科技建設計畫
transcript.whisperx[38].start 829.044
transcript.whisperx[38].end 851.923
transcript.whisperx[38].text 面對美國新聞新關稅的這些政策市場的競爭行政院要推動AI新十大建設人工智慧對於提升產業競爭力有非常大的幫助那我請問院長百工百業導入AI相關技術會不會發生人力排擠的效應
transcript.whisperx[39].start 853.004
transcript.whisperx[39].end 871.758
transcript.whisperx[39].text 會不會反而導致某些產業甚至於人力被淘汰那萬一人力排擠淘汰甚至於產業走向黃昏請問院長政府有沒有想過要到底要怎麼辦我們AI信息他建設的終極目標是希望成立進入到一個全民智慧的生活網
transcript.whisperx[40].start 872.659
transcript.whisperx[40].end 895.134
transcript.whisperx[40].text 那過程當中我們有十大項其中有一項也是AI人才的培育跟資金的投入所以這個都是在整個配套過程當中的我們對於我們如何在現在硬體製造方面的領先我們繼續往軟體讓他能夠有一個登峰的一個企劃這個是AI新時代建設那將來當然會造成一些產業上的轉型跟升級
transcript.whisperx[41].start 895.774
transcript.whisperx[41].end 921.016
transcript.whisperx[41].text 那這個都在我們規劃當中我們會有一些像我們在數月羈盤當中就有一個產業科技均衡的一個項目我希望這個院長這邊你們要做就是要好好的要細密一點的規劃你不要到時候這裡好那結果很多這個百工百業甚至很多人力就沒有辦法去
transcript.whisperx[42].start 922.817
transcript.whisperx[42].end 938.709
transcript.whisperx[42].text 去做他們原來應該要做的我們會協助中小微企業進行它的轉型這個是必要的人力跟科技的轉型數位的轉型都必要我是認為這一點是很重要不要說只顧這裡沒有顧到其他面向結果造成很多問題變成衍生社會的問題產生
transcript.whisperx[43].start 940.57
transcript.whisperx[43].end 951.2
transcript.whisperx[43].text AI實在有AI的問題那我們會事先做一些防範轉型是必然的過程當中事前一定要好好細密的規劃好不好也請委員能夠支持這樣的一些建設計畫 謝謝