iVOD / 165205

Field Value
IVOD_ID 165205
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165205
日期 2025-11-10
會議資料.會議代碼 委員會-11-4-19-10
會議資料.會議代碼:str 第11屆第4會期經濟委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-11-10T11:24:57+08:00
結束時間 2025-11-10T11:32:39+08:00
影片長度 00:07:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6fc2fc2b2fd269db735625ced0a4fe68838b731be938aed5f1b46b97931986280fb57351b41a9d0d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 11:24:57 - 11:32:39
會議時間 2025-11-10T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第10次全體委員會議(事由:審查: 一、行政院函請審議「企業併購法增訂第五章之一章名及第四十四條之二、第五十二條之一、第五十四條條文修正草案」案。 二、本院委員王美惠等20人擬具「企業併購法部分條文修正草案」案。 三、本院委員沈發惠等17人擬具「企業併購法部分條文修正草案」案。 四、本院委員賴惠員等20人擬具「企業併購法部分條文修正草案」案。 五、本院委員賴瑞隆等18人擬具「企業併購法部分條文修正草案」案。(第五案如於本次會議開始前未經各黨團簽署不復議同意書,則不予審查) (詢答及處理) 【11月10日及13日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.53284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 7.81034375
transcript.pyannote[1].end 9.73409375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 10.24034375
transcript.pyannote[2].end 14.37471875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 14.91471875
transcript.pyannote[3].end 16.14659375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 14.98221875
transcript.pyannote[4].end 15.91034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 16.70346875
transcript.pyannote[5].end 17.24346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 21.42846875
transcript.pyannote[6].end 21.96846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 22.18784375
transcript.pyannote[7].end 24.14534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 25.03971875
transcript.pyannote[8].end 27.46971875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 27.55409375
transcript.pyannote[9].end 29.20784375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 30.00096875
transcript.pyannote[10].end 30.77721875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 31.26659375
transcript.pyannote[11].end 36.16034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 36.53159375
transcript.pyannote[12].end 39.51846875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 40.02471875
transcript.pyannote[13].end 45.71159375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 45.40784375
transcript.pyannote[14].end 46.45409375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 46.67346875
transcript.pyannote[15].end 47.44971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 47.97284375
transcript.pyannote[16].end 50.43659375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 51.76971875
transcript.pyannote[17].end 52.79909375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 53.38971875
transcript.pyannote[18].end 54.48659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 55.02659375
transcript.pyannote[19].end 56.08971875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 56.52846875
transcript.pyannote[20].end 56.81534375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 56.81534375
transcript.pyannote[21].end 62.99159375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 62.99159375
transcript.pyannote[22].end 63.16034375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 63.54846875
transcript.pyannote[23].end 66.67034375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 64.18971875
transcript.pyannote[24].end 65.65784375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 66.67034375
transcript.pyannote[25].end 67.00784375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 66.68721875
transcript.pyannote[26].end 68.23971875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 68.23971875
transcript.pyannote[27].end 73.33596875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 68.30721875
transcript.pyannote[28].end 69.16784375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 73.33596875
transcript.pyannote[29].end 75.20909375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 73.60596875
transcript.pyannote[30].end 74.53409375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 75.10784375
transcript.pyannote[31].end 80.13659375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 80.35596875
transcript.pyannote[32].end 81.84096875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 80.50784375
transcript.pyannote[33].end 88.69221875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 86.59971875
transcript.pyannote[34].end 87.22409375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 88.79346875
transcript.pyannote[35].end 90.24471875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 90.24471875
transcript.pyannote[36].end 90.29534375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 90.29534375
transcript.pyannote[37].end 93.97409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 90.32909375
transcript.pyannote[38].end 91.89846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 93.01221875
transcript.pyannote[39].end 95.69534375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 96.15096875
transcript.pyannote[40].end 97.50096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 97.87221875
transcript.pyannote[41].end 98.39534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 98.51346875
transcript.pyannote[42].end 101.58471875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 102.00659375
transcript.pyannote[43].end 103.17096875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 103.60971875
transcript.pyannote[44].end 105.17909375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 106.03971875
transcript.pyannote[45].end 115.16909375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 114.00471875
transcript.pyannote[46].end 115.08471875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 115.16909375
transcript.pyannote[47].end 117.59909375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 117.78471875
transcript.pyannote[48].end 119.38784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 119.70846875
transcript.pyannote[49].end 120.75471875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 121.39596875
transcript.pyannote[50].end 122.18909375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 122.83034375
transcript.pyannote[51].end 123.58971875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 123.92721875
transcript.pyannote[52].end 125.32784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 125.47971875
transcript.pyannote[53].end 126.54284375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 127.01534375
transcript.pyannote[54].end 128.07846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 128.07846875
transcript.pyannote[55].end 128.11221875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 128.34846875
transcript.pyannote[56].end 133.68096875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 133.09034375
transcript.pyannote[57].end 139.63784375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 139.72221875
transcript.pyannote[58].end 141.49409375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 142.74284375
transcript.pyannote[59].end 143.41784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 143.41784375
transcript.pyannote[60].end 143.43471875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 144.10971875
transcript.pyannote[61].end 147.19784375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 147.63659375
transcript.pyannote[62].end 149.84721875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 147.68721875
transcript.pyannote[63].end 148.36221875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 148.68284375
transcript.pyannote[64].end 151.34909375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 152.10846875
transcript.pyannote[65].end 153.08721875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 153.94784375
transcript.pyannote[66].end 156.02346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 156.46221875
transcript.pyannote[67].end 159.49971875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 159.88784375
transcript.pyannote[68].end 163.14471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 163.44846875
transcript.pyannote[69].end 167.16096875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 167.48159375
transcript.pyannote[70].end 168.42659375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 169.54034375
transcript.pyannote[71].end 171.80159375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 172.78034375
transcript.pyannote[72].end 174.02909375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 174.78846875
transcript.pyannote[73].end 177.18471875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 178.12971875
transcript.pyannote[74].end 188.00159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 187.95096875
transcript.pyannote[75].end 197.11409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 188.01846875
transcript.pyannote[76].end 188.06909375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 197.26596875
transcript.pyannote[77].end 201.41721875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 200.72534375
transcript.pyannote[78].end 208.03221875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 202.41284375
transcript.pyannote[79].end 204.50534375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 208.67346875
transcript.pyannote[80].end 210.36096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 210.52971875
transcript.pyannote[81].end 212.92596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 213.60096875
transcript.pyannote[82].end 213.93846875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 213.93846875
transcript.pyannote[83].end 219.05159375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 219.54096875
transcript.pyannote[84].end 221.93721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 222.34221875
transcript.pyannote[85].end 224.62034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 222.56159375
transcript.pyannote[86].end 222.91596875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 223.99596875
transcript.pyannote[87].end 224.40096875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 224.80596875
transcript.pyannote[88].end 229.04159375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 229.21034375
transcript.pyannote[89].end 233.68221875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 234.25596875
transcript.pyannote[90].end 235.40346875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 236.07846875
transcript.pyannote[91].end 238.60971875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 239.65596875
transcript.pyannote[92].end 241.46159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 241.86659375
transcript.pyannote[93].end 245.78159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 244.65096875
transcript.pyannote[94].end 247.77284375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 246.96284375
transcript.pyannote[95].end 253.64534375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 253.94909375
transcript.pyannote[96].end 263.26409375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 263.97284375
transcript.pyannote[97].end 266.38596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 265.20471875
transcript.pyannote[98].end 272.86596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 272.93346875
transcript.pyannote[99].end 284.54346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 284.71221875
transcript.pyannote[100].end 288.93096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 288.76221875
transcript.pyannote[101].end 291.37784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 290.14596875
transcript.pyannote[102].end 291.24284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 291.81659375
transcript.pyannote[103].end 295.14096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 295.44471875
transcript.pyannote[104].end 297.85784375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 297.43596875
transcript.pyannote[105].end 302.78534375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 303.32534375
transcript.pyannote[106].end 304.35471875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 304.62471875
transcript.pyannote[107].end 306.43034375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 306.49784375
transcript.pyannote[108].end 308.87721875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 309.46784375
transcript.pyannote[109].end 317.17971875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 317.44971875
transcript.pyannote[110].end 320.67284375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 320.87534375
transcript.pyannote[111].end 322.36034375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 322.36034375
transcript.pyannote[112].end 322.66409375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 322.66409375
transcript.pyannote[113].end 322.96784375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 322.96784375
transcript.pyannote[114].end 324.31784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 324.63846875
transcript.pyannote[115].end 326.95034375
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 327.57471875
transcript.pyannote[116].end 328.58721875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 327.94596875
transcript.pyannote[117].end 331.77659375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 332.01284375
transcript.pyannote[118].end 335.99534375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 336.46784375
transcript.pyannote[119].end 337.37909375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 337.53096875
transcript.pyannote[120].end 352.41471875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 350.30534375
transcript.pyannote[121].end 353.44409375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 353.44409375
transcript.pyannote[122].end 353.61284375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 353.73096875
transcript.pyannote[123].end 357.74721875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 358.92846875
transcript.pyannote[124].end 360.24471875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 360.24471875
transcript.pyannote[125].end 360.61596875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 361.44284375
transcript.pyannote[126].end 368.54721875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 366.67409375
transcript.pyannote[127].end 373.23846875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 373.25534375
transcript.pyannote[128].end 378.43596875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 379.14471875
transcript.pyannote[129].end 385.70909375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 383.12721875
transcript.pyannote[130].end 383.24534375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 383.26221875
transcript.pyannote[131].end 383.31284375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 386.53596875
transcript.pyannote[132].end 386.97471875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 386.97471875
transcript.pyannote[133].end 388.45971875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 388.93221875
transcript.pyannote[134].end 395.41221875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 394.51784375
transcript.pyannote[135].end 396.82971875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 395.46284375
transcript.pyannote[136].end 399.20909375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 399.79971875
transcript.pyannote[137].end 406.11096875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 406.63409375
transcript.pyannote[138].end 408.13596875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 406.92096875
transcript.pyannote[139].end 409.21596875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 408.92909375
transcript.pyannote[140].end 409.09784375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 409.48596875
transcript.pyannote[141].end 410.90346875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 410.90346875
transcript.pyannote[142].end 410.92034375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 410.92034375
transcript.pyannote[143].end 410.97096875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 410.97096875
transcript.pyannote[144].end 411.02159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 411.08909375
transcript.pyannote[145].end 413.40096875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 413.95784375
transcript.pyannote[146].end 414.43034375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 414.63284375
transcript.pyannote[147].end 417.29909375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 418.07534375
transcript.pyannote[148].end 419.00346875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 419.30721875
transcript.pyannote[149].end 419.83034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 420.11721875
transcript.pyannote[150].end 422.85096875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 422.85096875
transcript.pyannote[151].end 422.86784375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 423.05346875
transcript.pyannote[152].end 425.56784375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 425.56784375
transcript.pyannote[153].end 425.58471875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 426.07409375
transcript.pyannote[154].end 427.87971875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 427.20471875
transcript.pyannote[155].end 430.17471875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 429.49971875
transcript.pyannote[156].end 435.69284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 436.01346875
transcript.pyannote[157].end 446.45909375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 446.52659375
transcript.pyannote[158].end 447.04971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 447.21846875
transcript.pyannote[159].end 447.58971875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 447.72471875
transcript.pyannote[160].end 448.72034375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 449.68221875
transcript.pyannote[161].end 450.71159375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 450.71159375
transcript.pyannote[162].end 451.47096875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 451.90971875
transcript.pyannote[163].end 452.82096875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 452.95596875
transcript.pyannote[164].end 453.39471875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 453.71534375
transcript.pyannote[165].end 455.57159375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 455.57159375
transcript.pyannote[166].end 455.60534375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 455.75721875
transcript.pyannote[167].end 456.80346875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 456.97221875
transcript.pyannote[168].end 457.71471875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 459.52034375
transcript.pyannote[169].end 459.53721875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 459.53721875
transcript.pyannote[170].end 462.27096875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 461.64659375
transcript.pyannote[171].end 462.11909375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 462.43971875
transcript.pyannote[172].end 463.18221875
transcript.whisperx[0].start 8.355
transcript.whisperx[0].end 15.6
transcript.whisperx[0].text 謝謝主席以及各位先進那麼有請我們的經濟部的部長 國會主委兩位長官謝謝請教兩位長官
transcript.whisperx[1].start 25.103
transcript.whisperx[1].end 45.672
transcript.whisperx[1].text 今天的修廠創條例 產政部長可以起來就是一個要課稅的問題 這一定很小的事情當然也不是很小 但是基本上它是很細的東西就是我那個什麼時候要繳稅的問題那個部長 你覺得這樣修就會產生產業
transcript.whisperx[2].start 51.943
transcript.whisperx[2].end 73.49
transcript.whisperx[2].text 控股公司嗎 就很容易有嗎現在請問你喔 除了金控以外有沒有其他的集團 電視集團它也有控股公司的樣子 有沒有有啊 還有很多啦這個規模比較大一點鴻海本身也是一個控股公司很大的集團啊 怎麼不是呢大連大 這個
transcript.whisperx[3].start 75.251
transcript.whisperx[3].end 95.061
transcript.whisperx[3].text 很多都有啊那為什麼還要修這個現在都有了你們還要修這幹什麼我不知道產生的效益是怎樣因為對於很多的中小企業來講的話他們資金可能沒有那麼所以你是要控股公司要成立中小企業來帶中小企業有一些中小企業他們有這樣的意願這個時候政府的角色就很重要了請問
transcript.whisperx[4].start 96.221
transcript.whisperx[4].end 116.395
transcript.whisperx[4].text 你說要5年內成立15家的產業控股公司這15家我們國化會有沒有角色我們會受 就是我們是單一窗口那我們一旦受到建制後的話我們會看出它的性質是哪一個產業沒有 我就問你我簡單來講 用土話來講比較要單純一點啦你要不要投資啦你要不要出錢
transcript.whisperx[5].start 122.899
transcript.whisperx[5].end 137.056
transcript.whisperx[5].text 有可能啊要出多少錢 準備預算多少來發展這個我們會利用國發基金的資源然後看說哪一個產業其實是適合那你總應該 或者經濟部長可以回答心目中總應該有幾個產業吧有沒有幾個產業AI相關的 是嗎
transcript.whisperx[6].start 142.873
transcript.whisperx[6].end 168.291
transcript.whisperx[6].text 還是什麼我們那個產業並沒有限定說是哪一個產業現在我覺得這個法一修我覺得一定要藉這個機會消除台灣的荷蘭病的問題你看那股市都一直創新高可是你注意看到啊基本上就掌了AI的概念股而已其他都不掌了
transcript.whisperx[7].start 169.608
transcript.whisperx[7].end 196.465
transcript.whisperx[7].text 大部分的很多的股票基本上都跌的就是虛耳虛胖台灣目前面臨到很嚴重的荷蘭病所以這時候政府的力量要進來應該是怎麼樣讓其他非AI概念的產業能夠起來來兩位長官你們說所以這也是我們這次氣病法修法最主要原因就是說我們把一些傳產看有沒有辦法把它集合起來然後變大變強
transcript.whisperx[8].start 197.318
transcript.whisperx[8].end 218.895
transcript.whisperx[8].text 那你心目中只有幾個啊比如說幾個產業現在比如說像工具機啦或者是醫材啊還有一些像旅宿啦觀光這一些都有可能啊五年內15家產控公司大概規模多多大規模一般來講就是以上市上市櫃公司的這樣一個規模為主
transcript.whisperx[9].start 219.605
transcript.whisperx[9].end 237.951
transcript.whisperx[9].text 那他們是一個控股公司上市喔對 是不是對 控股公司上市另外一個問題這個財政部的可以解釋一下你們不覺得你們今天就是他股票真奇怪喔照理講我是被併購的比如說我被部長併購
transcript.whisperx[10].start 239.711
transcript.whisperx[10].end 262.628
transcript.whisperx[10].text 我就交接要換股啊交易已經完成了是不是 副署長是不是你是不是已經完成了是 換股的時候交易完成了那完成了我就該繳稅 該繳稅就繳稅啊為什麼可以拖到我賣掉才可能因為他換到的股票不是現金嘛然後他就會覺得說這個他比較沒有辦法繳稅所以給他一個誘因 然後降低這個
transcript.whisperx[11].start 265.37
transcript.whisperx[11].end 289.697
transcript.whisperx[11].text 我覺得修這條是很奇怪的不都是為誰開這個門只是我們查不到而已這裡面有貓膩今天修這個法有貓膩為了給誰開這個門你可以明顯的就是照理講今天我們病了照理講交易完成交易完成就應該課稅啊那個護書長是不是交易完成是不是要課稅 你告訴我一般都要啦
transcript.whisperx[12].start 291.978
transcript.whisperx[12].end 308.568
transcript.whisperx[12].text 對啊 我就提供了 等於產創條例提供的大漏洞讓他可以借這個來避稅來討稅喔 不能這樣子喔很多法是有緩客的機制啊要鼓勵啊 很多的法是有啊產創條例也有 就是對新創的部分它也有緩客的設計啊 因為
transcript.whisperx[13].start 309.908
transcript.whisperx[13].end 326.602
transcript.whisperx[13].text 員工分紅也是嘛因為他當時拿到股票但是他沒有現金啊他一定要實現真的拿到現金才有辦法去繳稅啊這我想也是合理的啦我是覺得啦另外 我要回到我基本要強調的就我們現在產業方才是M型化
transcript.whisperx[14].start 328.151
transcript.whisperx[14].end 352.781
transcript.whisperx[14].text 就只有一個一支獨秀其他都踢踢踏踏的不怎麼樣你現在來講的話我不認為這個能夠幫助這件事情沒辦法幫助吧至少他有一個剛剛去除掉就是說想要規模壯大不管是水平或是垂直整合起來的這樣機制不要說他們只是換股而已馬上就要繳一大筆的稅你有沒有鼓勵 沒有啦我不是問這個問題啊那有沒有鼓勵這一些
transcript.whisperx[15].start 355.922
transcript.whisperx[15].end 370.295
transcript.whisperx[15].text 的產控公司又要去投資美國有沒有沒有啦沒有啦如果如果是的話也是希望去那邊併購他們的通路好 最後一個小問題我問你我問好幾次你來這裡講得很樂觀關稅談得怎麼樣啊到現在已經20加N啊到現在為止都是20加N啊很慘欸部長啊
transcript.whisperx[16].start 380.083
transcript.whisperx[16].end 405.861
transcript.whisperx[16].text 樂觀的程度又加了 又增加樂觀什麼叫樂觀程度又加了所以這個也可以搞定這個也可以搞定嗎 這個也可以嗎這個時間我沒有辦法不然要怎麼用一拖二拖三拖四拖本來說最壞的習近平跟川普見了面大概就可以搞定 見面了也沒有搞定我們盡快他們下次見面是明年的春
transcript.whisperx[17].start 406.721
transcript.whisperx[17].end 425.42
transcript.whisperx[17].text 不會到那時候 不會到那時候不會到那時候會盡快什麼盡快 你來這裡說幾個改對不對 都沒有final我們的傳產人產傳產人產不會啦 怎麼不會呢我們現在就是要幫助這些啦不是 這沒福氣啦 這要炸的啦
transcript.whisperx[18].start 426.441
transcript.whisperx[18].end 448.524
transcript.whisperx[18].text 這沒問題啦 是啦 多元幫助啦剛才國務委主委提到的工具機最具體的就是談關稅因為工具機的關稅已經4.5%左右快要5% 還要加一個20% 所以25%左右這個關稅搞定比什麼都重要對對對 我們努力 對不對11月底可以嗎
transcript.whisperx[19].start 449.966
transcript.whisperx[19].end 457.418
transcript.whisperx[19].text 這個我們不知道 掃月底 我給你掃月底謝謝 不 今年可以吧 今年可以搞定吧謝謝 我們努力啊 謝謝謝謝 謝謝戴斯堡委員資訊 謝謝 謝謝部長