iVOD / 165112

Field Value
IVOD_ID 165112
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165112
日期 2025-11-05
會議資料.會議代碼 委員會-11-4-26-8
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-11-05T12:57:05+08:00
結束時間 2025-11-05T13:06:52+08:00
影片長度 00:09:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0bb7d6ea348ff1d231707e1682164bae5a7dc8d9023f59e56b4ef68dc504cb3caec69ac5727ffa9d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 12:57:05 - 13:06:52
會議時間 2025-11-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第8次全體委員會議(事由:(上午9時起) 邀請環境部部長、經濟部、內政部、農業部、交通部、行政院公共工程委員會就「非法棄置到城市採礦:檢討環境部環境管理署執法痛點與城市採礦推動策略」進行專題報告,並備質詢。 (下午2時起。若上午議程尚未結束,待結束後接續召開) 一、繼續審查 (一)委員賴瑞隆等16人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (二)委員陳亭妃等16人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (三)委員張智倫等17人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (四)委員王育敏等24人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (五)台灣民眾黨黨團擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (六)委員黃健豪等19人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (七)委員牛煦庭等25人擬具「噪音管制法第二條及第二十六條條文修正草案」案。 (八)委員羅明才等20人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (九)委員羅廷瑋等17人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 二、審查 (一)委員林倩綺等16人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (二)委員洪孟楷等16人擬具「噪音管制法第二十六條及第二十八條條文修正草案」案。 (三)委員廖偉翔等16人擬具「噪音管制法第二條、第二十六條及第二十八條條文修正草案」案。 【二、(二)及(三)案,如未經各黨團簽署不復議同意書不予審查】【逐條討論】)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 2.86596875
transcript.pyannote[0].end 5.51534375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.43471875
transcript.pyannote[1].end 10.66221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.08409375
transcript.pyannote[2].end 11.89409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.59409375
transcript.pyannote[3].end 64.00409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 59.88659375
transcript.pyannote[4].end 60.81471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 61.97909375
transcript.pyannote[5].end 62.51909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 65.96159375
transcript.pyannote[6].end 66.77159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 67.36221875
transcript.pyannote[7].end 71.58096875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 72.20534375
transcript.pyannote[8].end 73.13346875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 74.60159375
transcript.pyannote[9].end 75.27659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 75.68159375
transcript.pyannote[10].end 80.13659375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 79.83284375
transcript.pyannote[11].end 80.59221875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 80.59221875
transcript.pyannote[12].end 83.51159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 85.18221875
transcript.pyannote[13].end 88.00034375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 88.62471875
transcript.pyannote[14].end 89.67096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 90.34596875
transcript.pyannote[15].end 92.10096875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 92.87721875
transcript.pyannote[16].end 93.38346875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 93.77159375
transcript.pyannote[17].end 99.44159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 99.44159375
transcript.pyannote[18].end 101.26409375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 101.26409375
transcript.pyannote[19].end 102.25971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 102.41159375
transcript.pyannote[20].end 102.76596875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 102.96846875
transcript.pyannote[21].end 102.98534375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 102.98534375
transcript.pyannote[22].end 103.15409375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 103.15409375
transcript.pyannote[23].end 103.17096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 104.43659375
transcript.pyannote[24].end 106.02284375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 107.17034375
transcript.pyannote[25].end 108.46971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 110.74784375
transcript.pyannote[26].end 111.42284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 112.87409375
transcript.pyannote[27].end 113.88659375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 114.13971875
transcript.pyannote[28].end 116.83971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 116.83971875
transcript.pyannote[29].end 117.85221875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 117.85221875
transcript.pyannote[30].end 120.23159375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 119.60721875
transcript.pyannote[31].end 123.82596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 123.82596875
transcript.pyannote[32].end 123.85971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 123.85971875
transcript.pyannote[33].end 123.87659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 123.87659375
transcript.pyannote[34].end 123.92721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 123.92721875
transcript.pyannote[35].end 131.67284375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 131.67284375
transcript.pyannote[36].end 149.39159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 146.50596875
transcript.pyannote[37].end 146.74221875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 149.94846875
transcript.pyannote[38].end 150.18471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 151.70346875
transcript.pyannote[39].end 156.15846875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 156.76596875
transcript.pyannote[40].end 159.06096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 159.31409375
transcript.pyannote[41].end 160.20846875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 159.39846875
transcript.pyannote[42].end 163.65096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 162.03096875
transcript.pyannote[43].end 169.70909375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 170.09721875
transcript.pyannote[44].end 175.98659375
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 176.23971875
transcript.pyannote[45].end 191.22471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 178.99034375
transcript.pyannote[46].end 180.55971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 192.15284375
transcript.pyannote[47].end 200.89409375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 193.41846875
transcript.pyannote[48].end 193.48596875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 193.50284375
transcript.pyannote[49].end 193.57034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 201.28221875
transcript.pyannote[50].end 205.21409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 205.99034375
transcript.pyannote[51].end 207.27284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 208.18409375
transcript.pyannote[52].end 210.46221875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 210.71534375
transcript.pyannote[53].end 210.73221875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 210.96846875
transcript.pyannote[54].end 223.70909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 224.85659375
transcript.pyannote[55].end 230.50971875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 227.25284375
transcript.pyannote[56].end 227.26971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 230.74596875
transcript.pyannote[57].end 232.16346875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 233.22659375
transcript.pyannote[58].end 234.37409375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 235.21784375
transcript.pyannote[59].end 235.50471875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 235.92659375
transcript.pyannote[60].end 237.12471875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 238.59284375
transcript.pyannote[61].end 246.05159375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 246.84471875
transcript.pyannote[62].end 251.85659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 251.94096875
transcript.pyannote[63].end 253.78034375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 251.97471875
transcript.pyannote[64].end 252.34596875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 253.86471875
transcript.pyannote[65].end 257.59409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 258.40409375
transcript.pyannote[66].end 268.76534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 268.34346875
transcript.pyannote[67].end 269.81159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 269.23784375
transcript.pyannote[68].end 279.61596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 280.10534375
transcript.pyannote[69].end 289.87596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 289.97721875
transcript.pyannote[70].end 289.99409375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 289.99409375
transcript.pyannote[71].end 290.33159375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 290.33159375
transcript.pyannote[72].end 291.31034375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 291.20909375
transcript.pyannote[73].end 292.00221875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 292.96409375
transcript.pyannote[74].end 297.55409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 299.44409375
transcript.pyannote[75].end 304.47284375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 305.82284375
transcript.pyannote[76].end 307.07159375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 308.05034375
transcript.pyannote[77].end 309.63659375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 309.97409375
transcript.pyannote[78].end 314.20971875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 311.37471875
transcript.pyannote[79].end 311.74596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 314.95221875
transcript.pyannote[80].end 316.58909375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 316.70721875
transcript.pyannote[81].end 326.54534375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 327.42284375
transcript.pyannote[82].end 334.08846875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 327.64221875
transcript.pyannote[83].end 328.28346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 334.49346875
transcript.pyannote[84].end 338.99909375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 339.20159375
transcript.pyannote[85].end 339.69096875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 339.97784375
transcript.pyannote[86].end 344.97284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 344.55096875
transcript.pyannote[87].end 354.84471875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 348.78659375
transcript.pyannote[88].end 349.32659375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 354.77721875
transcript.pyannote[89].end 358.03409375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 357.27471875
transcript.pyannote[90].end 357.52784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 358.87784375
transcript.pyannote[91].end 362.65784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 362.20221875
transcript.pyannote[92].end 366.15096875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 363.78846875
transcript.pyannote[93].end 366.80909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 367.56846875
transcript.pyannote[94].end 381.42284375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 372.37784375
transcript.pyannote[95].end 372.42846875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 372.42846875
transcript.pyannote[96].end 372.96846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 372.96846875
transcript.pyannote[97].end 374.65596875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 380.78159375
transcript.pyannote[98].end 384.35909375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 382.75596875
transcript.pyannote[99].end 385.47284375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 385.27034375
transcript.pyannote[100].end 386.06346875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 386.06346875
transcript.pyannote[101].end 390.77159375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 391.04159375
transcript.pyannote[102].end 399.25971875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 392.05409375
transcript.pyannote[103].end 392.50971875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 399.74909375
transcript.pyannote[104].end 406.58346875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 406.90409375
transcript.pyannote[105].end 412.01721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 412.74284375
transcript.pyannote[106].end 415.91534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 416.86034375
transcript.pyannote[107].end 420.55596875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 421.16346875
transcript.pyannote[108].end 430.96784375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 430.96784375
transcript.pyannote[109].end 445.10909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 444.04596875
transcript.pyannote[110].end 452.39909375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 449.12534375
transcript.pyannote[111].end 449.88471875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 450.13784375
transcript.pyannote[112].end 450.62721875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 452.63534375
transcript.pyannote[113].end 457.09034375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 457.09034375
transcript.pyannote[114].end 458.92971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 457.98471875
transcript.pyannote[115].end 462.28784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 462.22034375
transcript.pyannote[116].end 462.65909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 462.76034375
transcript.pyannote[117].end 462.77721875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 462.77721875
transcript.pyannote[118].end 463.57034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 462.84471875
transcript.pyannote[119].end 463.68846875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 464.07659375
transcript.pyannote[120].end 472.22721875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 471.24846875
transcript.pyannote[121].end 471.58596875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 472.64909375
transcript.pyannote[122].end 482.50409375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 482.82471875
transcript.pyannote[123].end 484.52909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 485.32221875
transcript.pyannote[124].end 488.49471875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 489.03471875
transcript.pyannote[125].end 490.90784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 491.24534375
transcript.pyannote[126].end 494.18159375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 494.51909375
transcript.pyannote[127].end 495.31221875
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 495.07596875
transcript.pyannote[128].end 496.34159375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 495.68346875
transcript.pyannote[129].end 496.03784375
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 497.08409375
transcript.pyannote[130].end 501.58971875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 498.85596875
transcript.pyannote[131].end 499.36221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 501.57284375
transcript.pyannote[132].end 507.39471875
transcript.pyannote[133].speaker SPEAKER_04
transcript.pyannote[133].start 502.53471875
transcript.pyannote[133].end 503.64846875
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 507.29346875
transcript.pyannote[134].end 514.38096875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 514.61721875
transcript.pyannote[135].end 525.06284375
transcript.pyannote[136].speaker SPEAKER_04
transcript.pyannote[136].start 514.98846875
transcript.pyannote[136].end 516.05159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 525.33284375
transcript.pyannote[137].end 546.69659375
transcript.pyannote[138].speaker SPEAKER_04
transcript.pyannote[138].start 526.21034375
transcript.pyannote[138].end 526.81784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 547.32096875
transcript.pyannote[139].end 587.31471875
transcript.whisperx[0].start 8.897
transcript.whisperx[0].end 24.245
transcript.whisperx[0].text 謝謝主席 主席請一下彭部長邀請彭部長姚委員好部長我們今天還是要探討一下廢棄物清運業者跑空單的問題不過先講齁 就是我剛剛聽
transcript.whisperx[1].start 25.649
transcript.whisperx[1].end 42.543
transcript.whisperx[1].text 您在答覆楊瓊瑩委員的時候講了一句台中市做得很好我覺得態度就是應該這樣子中央跟地方其實是一個合作的關係有不足的我們就把資源給
transcript.whisperx[2].start 43.564
transcript.whisperx[2].end 72.86
transcript.whisperx[2].text 那做不好當然為了責任的理清我們必須要講出來責任歸屬是地方而地方做得好的部分其實我倒是剛剛在座位聽到部長這樣子回答我覺得很好政治就應該這樣子就是我剛剛有講我們要探討跑空單的問題就是說合法的
transcript.whisperx[3].start 75.776
transcript.whisperx[3].end 102.083
transcript.whisperx[3].text 車輛在載運廢棄物的時候有裝有GPS然後呢他這件事情大概就是有GPS的車輛照跑然後沒有載運是不是就是把GPS放在摩托車上面摩托車跑進去車子跑到別的地方去是這樣子啊有這樣的案例
transcript.whisperx[4].start 104.502
transcript.whisperx[4].end 129.54
transcript.whisperx[4].text 那我問一下 摩托車跑進去對置場 這個查不出來嗎我們有發現 有發現這樣多久才發現因為假如是都是一般的卡車可能會有的時候會比較不注意那假如是像機車這種應該很容易發現
transcript.whisperx[5].start 131.981
transcript.whisperx[5].end 155.958
transcript.whisperx[5].text 對 就是說有跟委員報告其實我們未來要結合CCTV整個全台灣的CCTV跟GPS還有e-tag整個要合在一起變成為了這個事情因為這個警政單位是抓犯人那我們是抓非法棄置所以我們現在明年開始就要來做這個事情不是 我剛才是問說他假如是用機車多久可以
transcript.whisperx[6].start 156.866
transcript.whisperx[6].end 163.328
transcript.whisperx[6].text 你們多久會發現這種違規這個我們很會抓的組長因為這個事情還滿離譜的我以為都是卡車就是進出可能比較沒有那麼容易發現那假如也有機車的情況應該是很快會發現才對
transcript.whisperx[7].start 176.292
transcript.whisperx[7].end 204.268
transcript.whisperx[7].text 是 包含其實他有很多種樣態有汽車也有汽車然後甚至也有是那種叫做我們我們把它叫做小蜜蜂所以其實很多樣態但是我們大概都有抓過都有抓過對我現在的意思是說假如他是卡車對卡車卡車進出對置場是比較合理嘛對不對那
transcript.whisperx[8].start 206.635
transcript.whisperx[8].end 234.12
transcript.whisperx[8].text 摩托車這樣子不會很容易發現嗎包委員我們在抓這個犯罪行為的時候大部分都是從他們場內自行的監控系統或從內外帳這邊查到的如果要實質我們自己去查可能不是很容易我現在不是說你們查譬如說這個部分是堆置場的人查嗎還是地方政府查
transcript.whisperx[9].start 235.97
transcript.whisperx[9].end 257.001
transcript.whisperx[9].text 不是你們查那誰查主要是因為我們現在大概都是透過檢檢環聯合查緝的平台才能夠查到這種違規行為所以就是不是常態性的監控可以看出來的必須要聯合稽查的時候將來如果智慧圍籬建廠的時候就比較有機會
transcript.whisperx[10].start 259.561
transcript.whisperx[10].end 279.41
transcript.whisperx[10].text 我有聽同仁跟我報告過就是說他們是有同仁會用AI的方式去算 撈出來但是那個都要人 都需要時間都是要人工啦 現在他們是希望現在有在加快 導入AI之後有加快我們希望把它加快而且未來如果明年開始有這個計畫的話更無縫接軌 抓的速度會更快
transcript.whisperx[11].start 280.491
transcript.whisperx[11].end 308.978
transcript.whisperx[11].text 剛剛有回答說 AI智慧維尼系統建置以後就比較容易抓到對不對那現在我們已經有建置在2023年就建置11處那這一次發生事件的新北跟桃園有已經建置了嗎11處有沒有在這兩個
transcript.whisperx[12].start 310.672
transcript.whisperx[12].end 325.684
transcript.whisperx[12].text 這一次 新北那個應該是三年前的事就是還沒有建置之前 對但是實際上因為它我們有很多判斷的依據就是那個地方為什麼進出比較
transcript.whisperx[13].start 327.455
transcript.whisperx[13].end 348.59
transcript.whisperx[13].text 平凡或者是奇怪我們就會去看那剛才組長特別提到我們進去看的時候整個進去會整個把它扣押函他的所有攝影機我們再把它回溯去調查這件事情才發現有的是車子有的是機車等所以有一些案例其實是三年前的
transcript.whisperx[14].start 349.511
transcript.whisperx[14].end 356.663
transcript.whisperx[14].text 那回算三年前就是我們AI智慧維理還沒有設置完成是 目前的智慧維理
transcript.whisperx[15].start 359.396
transcript.whisperx[15].end 383.466
transcript.whisperx[15].text 這個講也沒有關係大概是在比較中南部不方便講的就不要講現在大概以中南部的建制比較早一點不過我看資料我們在明年大概會花23.5億來明年大概5億是總TOTAL
transcript.whisperx[16].start 386.207
transcript.whisperx[16].end 415.438
transcript.whisperx[16].text 那所以 並不是明年就可以建置完全台灣並不是 但是明年開始我們廢墟清理法裡面第十條之一有把這個我們可以將警政系統及其他交通部的e-tag整合進來其實那個量也瞬間會是很大的可以整合進來是不是那我這裡剛好有一個疑問就是就是署長剛剛講的是整合嘛
transcript.whisperx[17].start 416.889
transcript.whisperx[17].end 444.632
transcript.whisperx[17].text 我問一下為什麼沒有辦法利用它現有的你懂我的意思嗎因為整個公路體系應該都有ETEC跟車牌辨識的系統為什麼我們沒有辦法直接現在是因為個資法的關係所以個資法如果我們要運用的話就要有法令的依據所以我們在修廢清法的時候就把這個我們可以去用這一些資料把它修到裡面來
transcript.whisperx[18].start 446.033
transcript.whisperx[18].end 451.437
transcript.whisperx[18].text 我們以後還是可以用公路體系的資料可是他
transcript.whisperx[19].start 452.83
transcript.whisperx[19].end 481.035
transcript.whisperx[19].text 他監控的範圍跟角度跟我們不一樣是不是這樣子所以我們才要另外花錢嘛要不然我們就利用他現有的嘛是這樣子嗎大家功能不同的教他比對我們會發展一個AI的智慧判試的一個邏輯出來好 時間的關係我最後問一個因為手機齁我直接問署長
transcript.whisperx[20].start 485.516
transcript.whisperx[20].end 507.083
transcript.whisperx[20].text 問部長 環境部在什麼時候提出手機回收的獎勵金跟擴大回收管道就是要公告的話應該是明年開始有要求他們循環率要15%所以獎金的制度是明年才開始
transcript.whisperx[21].start 507.403
transcript.whisperx[21].end 524.71
transcript.whisperx[21].text 不過這個部分不一定有獎金我們是規定回收那如果是要回收或許業者他會提供一些回饋為什麼這麼重視這個問題呢就是因為我們的回收率真的太低了12%而已嘛
transcript.whisperx[22].start 525.635
transcript.whisperx[22].end 546.284
transcript.whisperx[22].text 是不是 對百分之十二就是表示每一年我們假如說銷售五百萬部手機就有大概有三百八十萬支手機是沒有回收再利用因為是這樣子 有回收
transcript.whisperx[23].start 547.406
transcript.whisperx[23].end 567.884
transcript.whisperx[23].text 才有再利用的可能而且手機再利用的價值跟各面向都是很重要的事情所以我想這個也是為什麼今天特別必須要提出要討論城市採礦的問題我們
transcript.whisperx[24].start 575.651
transcript.whisperx[24].end 586.897
transcript.whisperx[24].text 我們不要把可以採的礦 讓它丟掉這個我想是部裡面的責任 好不好好 謝謝部長 謝謝主席謝謝楊耀文委員發言