IVOD_ID |
16504 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Full/1M/16504 |
日期 |
2025-03-10 |
影片種類 |
Full |
開始時間 |
2025-03-10T08:30:17+08:00 |
結束時間 |
2025-03-10T11:49:00+08:00 |
影片長度 |
03:18:43 |
支援功能[0] |
ai-transcript |
video_url |
https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b41997f390c3528e02faa55f82c020081097cfa4245e41497a524d1b3d409a1a67341f0afe034a9d5ea18f28b6918d91.mp4/playlist.m3u8 |
會議時間 |
2025-03-10T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第1次公聽會(事由:召開「稅收超徵還稅於民」公聽會) |
委員名稱 |
完整會議 |
委員發言時間 |
08:30:17 - 11:49:00 |
transcript.pyannote[0].speaker |
SPEAKER_17 |
transcript.pyannote[0].start |
1790.46846875 |
transcript.pyannote[0].end |
1792.17284375 |
transcript.pyannote[1].speaker |
SPEAKER_17 |
transcript.pyannote[1].start |
1792.74659375 |
transcript.pyannote[1].end |
1793.33721875 |
transcript.pyannote[2].speaker |
SPEAKER_17 |
transcript.pyannote[2].start |
1793.62409375 |
transcript.pyannote[2].end |
1794.92346875 |
transcript.pyannote[3].speaker |
SPEAKER_17 |
transcript.pyannote[3].start |
1795.32846875 |
transcript.pyannote[3].end |
1796.94846875 |
transcript.pyannote[4].speaker |
SPEAKER_17 |
transcript.pyannote[4].start |
1796.96534375 |
transcript.pyannote[4].end |
1799.53034375 |
transcript.pyannote[5].speaker |
SPEAKER_17 |
transcript.pyannote[5].start |
1800.17159375 |
transcript.pyannote[5].end |
1803.07409375 |
transcript.pyannote[6].speaker |
SPEAKER_17 |
transcript.pyannote[6].start |
1803.66471875 |
transcript.pyannote[6].end |
1805.28471875 |
transcript.pyannote[7].speaker |
SPEAKER_17 |
transcript.pyannote[7].start |
1805.84159375 |
transcript.pyannote[7].end |
1807.02284375 |
transcript.pyannote[8].speaker |
SPEAKER_17 |
transcript.pyannote[8].start |
1807.36034375 |
transcript.pyannote[8].end |
1808.00159375 |
transcript.pyannote[9].speaker |
SPEAKER_17 |
transcript.pyannote[9].start |
1808.30534375 |
transcript.pyannote[9].end |
1811.42721875 |
transcript.pyannote[10].speaker |
SPEAKER_17 |
transcript.pyannote[10].start |
1811.74784375 |
transcript.pyannote[10].end |
1815.32534375 |
transcript.pyannote[11].speaker |
SPEAKER_17 |
transcript.pyannote[11].start |
1815.83159375 |
transcript.pyannote[11].end |
1817.94096875 |
transcript.pyannote[12].speaker |
SPEAKER_17 |
transcript.pyannote[12].start |
1818.37971875 |
transcript.pyannote[12].end |
1819.51034375 |
transcript.pyannote[13].speaker |
SPEAKER_17 |
transcript.pyannote[13].start |
1819.94909375 |
transcript.pyannote[13].end |
1822.80096875 |
transcript.pyannote[14].speaker |
SPEAKER_17 |
transcript.pyannote[14].start |
1823.15534375 |
transcript.pyannote[14].end |
1824.55596875 |
transcript.pyannote[15].speaker |
SPEAKER_17 |
transcript.pyannote[15].start |
1825.24784375 |
transcript.pyannote[15].end |
1832.01471875 |
transcript.pyannote[16].speaker |
SPEAKER_17 |
transcript.pyannote[16].start |
1832.31846875 |
transcript.pyannote[16].end |
1834.66409375 |
transcript.pyannote[17].speaker |
SPEAKER_17 |
transcript.pyannote[17].start |
1834.96784375 |
transcript.pyannote[17].end |
1840.51971875 |
transcript.pyannote[18].speaker |
SPEAKER_17 |
transcript.pyannote[18].start |
1841.11034375 |
transcript.pyannote[18].end |
1853.88471875 |
transcript.pyannote[19].speaker |
SPEAKER_17 |
transcript.pyannote[19].start |
1854.05346875 |
transcript.pyannote[19].end |
1854.84659375 |
transcript.pyannote[20].speaker |
SPEAKER_17 |
transcript.pyannote[20].start |
1855.03221875 |
transcript.pyannote[20].end |
1856.31471875 |
transcript.pyannote[21].speaker |
SPEAKER_17 |
transcript.pyannote[21].start |
1856.53409375 |
transcript.pyannote[21].end |
1857.73221875 |
transcript.pyannote[22].speaker |
SPEAKER_17 |
transcript.pyannote[22].start |
1858.33971875 |
transcript.pyannote[22].end |
1860.17909375 |
transcript.pyannote[23].speaker |
SPEAKER_17 |
transcript.pyannote[23].start |
1860.26346875 |
transcript.pyannote[23].end |
1861.41096875 |
transcript.pyannote[24].speaker |
SPEAKER_17 |
transcript.pyannote[24].start |
1861.57971875 |
transcript.pyannote[24].end |
1871.94096875 |
transcript.pyannote[25].speaker |
SPEAKER_17 |
transcript.pyannote[25].start |
1872.12659375 |
transcript.pyannote[25].end |
1876.58159375 |
transcript.pyannote[26].speaker |
SPEAKER_17 |
transcript.pyannote[26].start |
1876.78409375 |
transcript.pyannote[26].end |
1878.18471875 |
transcript.pyannote[27].speaker |
SPEAKER_17 |
transcript.pyannote[27].start |
1878.58971875 |
transcript.pyannote[27].end |
1879.14659375 |
transcript.pyannote[28].speaker |
SPEAKER_17 |
transcript.pyannote[28].start |
1880.27721875 |
transcript.pyannote[28].end |
1880.53034375 |
transcript.pyannote[29].speaker |
SPEAKER_17 |
transcript.pyannote[29].start |
1880.86784375 |
transcript.pyannote[29].end |
1881.03659375 |
transcript.pyannote[30].speaker |
SPEAKER_17 |
transcript.pyannote[30].start |
1882.38659375 |
transcript.pyannote[30].end |
1884.44534375 |
transcript.pyannote[31].speaker |
SPEAKER_17 |
transcript.pyannote[31].start |
1885.39034375 |
transcript.pyannote[31].end |
1887.33096875 |
transcript.pyannote[32].speaker |
SPEAKER_17 |
transcript.pyannote[32].start |
1887.60096875 |
transcript.pyannote[32].end |
1891.66784375 |
transcript.pyannote[33].speaker |
SPEAKER_17 |
transcript.pyannote[33].start |
1892.07284375 |
transcript.pyannote[33].end |
1895.00909375 |
transcript.pyannote[34].speaker |
SPEAKER_17 |
transcript.pyannote[34].start |
1895.46471875 |
transcript.pyannote[34].end |
1897.84409375 |
transcript.pyannote[35].speaker |
SPEAKER_17 |
transcript.pyannote[35].start |
1898.19846875 |
transcript.pyannote[35].end |
1898.63721875 |
transcript.pyannote[36].speaker |
SPEAKER_17 |
transcript.pyannote[36].start |
1899.41346875 |
transcript.pyannote[36].end |
1909.96034375 |
transcript.pyannote[37].speaker |
SPEAKER_17 |
transcript.pyannote[37].start |
1910.14596875 |
transcript.pyannote[37].end |
1914.97221875 |
transcript.pyannote[38].speaker |
SPEAKER_17 |
transcript.pyannote[38].start |
1915.41096875 |
transcript.pyannote[38].end |
1918.26284375 |
transcript.pyannote[39].speaker |
SPEAKER_17 |
transcript.pyannote[39].start |
1918.71846875 |
transcript.pyannote[39].end |
1923.73034375 |
transcript.pyannote[40].speaker |
SPEAKER_17 |
transcript.pyannote[40].start |
1923.94971875 |
transcript.pyannote[40].end |
1925.26596875 |
transcript.pyannote[41].speaker |
SPEAKER_17 |
transcript.pyannote[41].start |
1925.65409375 |
transcript.pyannote[41].end |
1929.88971875 |
transcript.pyannote[42].speaker |
SPEAKER_17 |
transcript.pyannote[42].start |
1930.27784375 |
transcript.pyannote[42].end |
1933.66971875 |
transcript.pyannote[43].speaker |
SPEAKER_17 |
transcript.pyannote[43].start |
1934.09159375 |
transcript.pyannote[43].end |
1936.55534375 |
transcript.pyannote[44].speaker |
SPEAKER_17 |
transcript.pyannote[44].start |
1936.97721875 |
transcript.pyannote[44].end |
1937.95596875 |
transcript.pyannote[45].speaker |
SPEAKER_17 |
transcript.pyannote[45].start |
1938.25971875 |
transcript.pyannote[45].end |
1939.30596875 |
transcript.pyannote[46].speaker |
SPEAKER_17 |
transcript.pyannote[46].start |
1939.39034375 |
transcript.pyannote[46].end |
1940.43659375 |
transcript.pyannote[47].speaker |
SPEAKER_17 |
transcript.pyannote[47].start |
1940.60534375 |
transcript.pyannote[47].end |
1941.88784375 |
transcript.pyannote[48].speaker |
SPEAKER_17 |
transcript.pyannote[48].start |
1942.51221875 |
transcript.pyannote[48].end |
1945.85346875 |
transcript.pyannote[49].speaker |
SPEAKER_17 |
transcript.pyannote[49].start |
1945.97159375 |
transcript.pyannote[49].end |
1947.40596875 |
transcript.pyannote[50].speaker |
SPEAKER_17 |
transcript.pyannote[50].start |
1947.57471875 |
transcript.pyannote[50].end |
1949.38034375 |
transcript.pyannote[51].speaker |
SPEAKER_17 |
transcript.pyannote[51].start |
1949.58284375 |
transcript.pyannote[51].end |
1950.67971875 |
transcript.pyannote[52].speaker |
SPEAKER_17 |
transcript.pyannote[52].start |
1950.91596875 |
transcript.pyannote[52].end |
1963.67346875 |
transcript.pyannote[53].speaker |
SPEAKER_17 |
transcript.pyannote[53].start |
1963.99409375 |
transcript.pyannote[53].end |
1964.68596875 |
transcript.pyannote[54].speaker |
SPEAKER_17 |
transcript.pyannote[54].start |
1965.69846875 |
transcript.pyannote[54].end |
1966.71096875 |
transcript.pyannote[55].speaker |
SPEAKER_17 |
transcript.pyannote[55].start |
1967.18346875 |
transcript.pyannote[55].end |
1972.21221875 |
transcript.pyannote[56].speaker |
SPEAKER_17 |
transcript.pyannote[56].start |
1973.02221875 |
transcript.pyannote[56].end |
1976.81909375 |
transcript.pyannote[57].speaker |
SPEAKER_17 |
transcript.pyannote[57].start |
1977.44346875 |
transcript.pyannote[57].end |
1977.91596875 |
transcript.pyannote[58].speaker |
SPEAKER_17 |
transcript.pyannote[58].start |
1978.43909375 |
transcript.pyannote[58].end |
1980.05909375 |
transcript.pyannote[59].speaker |
SPEAKER_17 |
transcript.pyannote[59].start |
1980.19409375 |
transcript.pyannote[59].end |
1983.01221875 |
transcript.pyannote[60].speaker |
SPEAKER_17 |
transcript.pyannote[60].start |
1983.33284375 |
transcript.pyannote[60].end |
1984.04159375 |
transcript.pyannote[61].speaker |
SPEAKER_17 |
transcript.pyannote[61].start |
1984.61534375 |
transcript.pyannote[61].end |
1987.46721875 |
transcript.pyannote[62].speaker |
SPEAKER_17 |
transcript.pyannote[62].start |
1987.66971875 |
transcript.pyannote[62].end |
1989.55971875 |
transcript.pyannote[63].speaker |
SPEAKER_17 |
transcript.pyannote[63].start |
1989.96471875 |
transcript.pyannote[63].end |
1991.36534375 |
transcript.pyannote[64].speaker |
SPEAKER_17 |
transcript.pyannote[64].start |
1991.55096875 |
transcript.pyannote[64].end |
1993.18784375 |
transcript.pyannote[65].speaker |
SPEAKER_17 |
transcript.pyannote[65].start |
1993.39034375 |
transcript.pyannote[65].end |
1993.84596875 |
transcript.pyannote[66].speaker |
SPEAKER_17 |
transcript.pyannote[66].start |
1994.31846875 |
transcript.pyannote[66].end |
1996.02284375 |
transcript.pyannote[67].speaker |
SPEAKER_17 |
transcript.pyannote[67].start |
1996.25909375 |
transcript.pyannote[67].end |
1996.93409375 |
transcript.pyannote[68].speaker |
SPEAKER_17 |
transcript.pyannote[68].start |
1997.33909375 |
transcript.pyannote[68].end |
1997.79471875 |
transcript.pyannote[69].speaker |
SPEAKER_17 |
transcript.pyannote[69].start |
1997.92971875 |
transcript.pyannote[69].end |
2000.02221875 |
transcript.pyannote[70].speaker |
SPEAKER_17 |
transcript.pyannote[70].start |
2000.35971875 |
transcript.pyannote[70].end |
2000.86596875 |
transcript.pyannote[71].speaker |
SPEAKER_17 |
transcript.pyannote[71].start |
2001.37221875 |
transcript.pyannote[71].end |
2005.74284375 |
transcript.pyannote[72].speaker |
SPEAKER_17 |
transcript.pyannote[72].start |
2006.02971875 |
transcript.pyannote[72].end |
2009.01659375 |
transcript.pyannote[73].speaker |
SPEAKER_17 |
transcript.pyannote[73].start |
2009.23596875 |
transcript.pyannote[73].end |
2015.78346875 |
transcript.pyannote[74].speaker |
SPEAKER_17 |
transcript.pyannote[74].start |
2016.10409375 |
transcript.pyannote[74].end |
2019.22596875 |
transcript.pyannote[75].speaker |
SPEAKER_17 |
transcript.pyannote[75].start |
2019.24284375 |
transcript.pyannote[75].end |
2020.77846875 |
transcript.pyannote[76].speaker |
SPEAKER_17 |
transcript.pyannote[76].start |
2020.96409375 |
transcript.pyannote[76].end |
2021.45346875 |
transcript.pyannote[77].speaker |
SPEAKER_17 |
transcript.pyannote[77].start |
2022.36471875 |
transcript.pyannote[77].end |
2025.23346875 |
transcript.pyannote[78].speaker |
SPEAKER_17 |
transcript.pyannote[78].start |
2025.48659375 |
transcript.pyannote[78].end |
2026.58346875 |
transcript.pyannote[79].speaker |
SPEAKER_17 |
transcript.pyannote[79].start |
2026.85346875 |
transcript.pyannote[79].end |
2028.08534375 |
transcript.pyannote[80].speaker |
SPEAKER_17 |
transcript.pyannote[80].start |
2028.64221875 |
transcript.pyannote[80].end |
2030.83596875 |
transcript.pyannote[81].speaker |
SPEAKER_17 |
transcript.pyannote[81].start |
2031.15659375 |
transcript.pyannote[81].end |
2032.01721875 |
transcript.pyannote[82].speaker |
SPEAKER_17 |
transcript.pyannote[82].start |
2032.35471875 |
transcript.pyannote[82].end |
2033.21534375 |
transcript.pyannote[83].speaker |
SPEAKER_17 |
transcript.pyannote[83].start |
2033.77221875 |
transcript.pyannote[83].end |
2036.69159375 |
transcript.pyannote[84].speaker |
SPEAKER_17 |
transcript.pyannote[84].start |
2037.11346875 |
transcript.pyannote[84].end |
2039.08784375 |
transcript.pyannote[85].speaker |
SPEAKER_17 |
transcript.pyannote[85].start |
2039.61096875 |
transcript.pyannote[85].end |
2041.28159375 |
transcript.pyannote[86].speaker |
SPEAKER_17 |
transcript.pyannote[86].start |
2041.65284375 |
transcript.pyannote[86].end |
2043.66096875 |
transcript.pyannote[87].speaker |
SPEAKER_17 |
transcript.pyannote[87].start |
2044.04909375 |
transcript.pyannote[87].end |
2048.95971875 |
transcript.pyannote[88].speaker |
SPEAKER_17 |
transcript.pyannote[88].start |
2049.12846875 |
transcript.pyannote[88].end |
2062.07159375 |
transcript.pyannote[89].speaker |
SPEAKER_17 |
transcript.pyannote[89].start |
2062.17284375 |
transcript.pyannote[89].end |
2063.33721875 |
transcript.pyannote[90].speaker |
SPEAKER_17 |
transcript.pyannote[90].start |
2063.64096875 |
transcript.pyannote[90].end |
2065.07534375 |
transcript.pyannote[91].speaker |
SPEAKER_17 |
transcript.pyannote[91].start |
2065.12596875 |
transcript.pyannote[91].end |
2065.76721875 |
transcript.pyannote[92].speaker |
SPEAKER_17 |
transcript.pyannote[92].start |
2066.44221875 |
transcript.pyannote[92].end |
2066.99909375 |
transcript.pyannote[93].speaker |
SPEAKER_17 |
transcript.pyannote[93].start |
2067.99471875 |
transcript.pyannote[93].end |
2068.38284375 |
transcript.pyannote[94].speaker |
SPEAKER_17 |
transcript.pyannote[94].start |
2068.60221875 |
transcript.pyannote[94].end |
2069.46284375 |
transcript.pyannote[95].speaker |
SPEAKER_17 |
transcript.pyannote[95].start |
2069.71596875 |
transcript.pyannote[95].end |
2070.67784375 |
transcript.pyannote[96].speaker |
SPEAKER_17 |
transcript.pyannote[96].start |
2070.94784375 |
transcript.pyannote[96].end |
2072.19659375 |
transcript.pyannote[97].speaker |
SPEAKER_17 |
transcript.pyannote[97].start |
2072.34846875 |
transcript.pyannote[97].end |
2073.71534375 |
transcript.pyannote[98].speaker |
SPEAKER_17 |
transcript.pyannote[98].start |
2074.08659375 |
transcript.pyannote[98].end |
2074.81221875 |
transcript.pyannote[99].speaker |
SPEAKER_17 |
transcript.pyannote[99].start |
2075.52096875 |
transcript.pyannote[99].end |
2075.87534375 |
transcript.pyannote[100].speaker |
SPEAKER_17 |
transcript.pyannote[100].start |
2076.43221875 |
transcript.pyannote[100].end |
2078.81159375 |
transcript.pyannote[101].speaker |
SPEAKER_17 |
transcript.pyannote[101].start |
2079.23346875 |
transcript.pyannote[101].end |
2081.24159375 |
transcript.pyannote[102].speaker |
SPEAKER_17 |
transcript.pyannote[102].start |
2081.52846875 |
transcript.pyannote[102].end |
2084.02596875 |
transcript.pyannote[103].speaker |
SPEAKER_17 |
transcript.pyannote[103].start |
2084.66721875 |
transcript.pyannote[103].end |
2085.25784375 |
transcript.pyannote[104].speaker |
SPEAKER_17 |
transcript.pyannote[104].start |
2088.02534375 |
transcript.pyannote[104].end |
2091.28221875 |
transcript.pyannote[105].speaker |
SPEAKER_17 |
transcript.pyannote[105].start |
2091.40034375 |
transcript.pyannote[105].end |
2092.78409375 |
transcript.pyannote[106].speaker |
SPEAKER_17 |
transcript.pyannote[106].start |
2094.84284375 |
transcript.pyannote[106].end |
2096.07471875 |
transcript.pyannote[107].speaker |
SPEAKER_17 |
transcript.pyannote[107].start |
2096.36159375 |
transcript.pyannote[107].end |
2097.89721875 |
transcript.pyannote[108].speaker |
SPEAKER_17 |
transcript.pyannote[108].start |
2098.55534375 |
transcript.pyannote[108].end |
2099.31471875 |
transcript.pyannote[109].speaker |
SPEAKER_17 |
transcript.pyannote[109].start |
2099.65221875 |
transcript.pyannote[109].end |
2101.55909375 |
transcript.pyannote[110].speaker |
SPEAKER_17 |
transcript.pyannote[110].start |
2102.57159375 |
transcript.pyannote[110].end |
2103.06096875 |
transcript.pyannote[111].speaker |
SPEAKER_17 |
transcript.pyannote[111].start |
2103.83721875 |
transcript.pyannote[111].end |
2105.52471875 |
transcript.pyannote[112].speaker |
SPEAKER_17 |
transcript.pyannote[112].start |
2105.72721875 |
transcript.pyannote[112].end |
2107.81971875 |
transcript.pyannote[113].speaker |
SPEAKER_17 |
transcript.pyannote[113].start |
2108.14034375 |
transcript.pyannote[113].end |
2108.56221875 |
transcript.pyannote[114].speaker |
SPEAKER_17 |
transcript.pyannote[114].start |
2110.87409375 |
transcript.pyannote[114].end |
2113.45596875 |
transcript.pyannote[115].speaker |
SPEAKER_17 |
transcript.pyannote[115].start |
2113.89471875 |
transcript.pyannote[115].end |
2114.35034375 |
transcript.pyannote[116].speaker |
SPEAKER_17 |
transcript.pyannote[116].start |
2115.16034375 |
transcript.pyannote[116].end |
2115.61596875 |
transcript.pyannote[117].speaker |
SPEAKER_17 |
transcript.pyannote[117].start |
2115.80159375 |
transcript.pyannote[117].end |
2116.69596875 |
transcript.pyannote[118].speaker |
SPEAKER_17 |
transcript.pyannote[118].start |
2119.76721875 |
transcript.pyannote[118].end |
2121.62346875 |
transcript.pyannote[119].speaker |
SPEAKER_17 |
transcript.pyannote[119].start |
2121.99471875 |
transcript.pyannote[119].end |
2123.41221875 |
transcript.pyannote[120].speaker |
SPEAKER_17 |
transcript.pyannote[120].start |
2123.91846875 |
transcript.pyannote[120].end |
2124.84659375 |
transcript.pyannote[121].speaker |
SPEAKER_17 |
transcript.pyannote[121].start |
2128.28909375 |
transcript.pyannote[121].end |
2129.09909375 |
transcript.pyannote[122].speaker |
SPEAKER_17 |
transcript.pyannote[122].start |
2129.52096875 |
transcript.pyannote[122].end |
2130.66846875 |
transcript.pyannote[123].speaker |
SPEAKER_17 |
transcript.pyannote[123].start |
2131.52909375 |
transcript.pyannote[123].end |
2132.50784375 |
transcript.pyannote[124].speaker |
SPEAKER_17 |
transcript.pyannote[124].start |
2133.21659375 |
transcript.pyannote[124].end |
2133.65534375 |
transcript.pyannote[125].speaker |
SPEAKER_17 |
transcript.pyannote[125].start |
2135.30909375 |
transcript.pyannote[125].end |
2137.92471875 |
transcript.pyannote[126].speaker |
SPEAKER_17 |
transcript.pyannote[126].start |
2138.48159375 |
transcript.pyannote[126].end |
2143.66221875 |
transcript.pyannote[127].speaker |
SPEAKER_17 |
transcript.pyannote[127].start |
2144.42159375 |
transcript.pyannote[127].end |
2145.40034375 |
transcript.pyannote[128].speaker |
SPEAKER_17 |
transcript.pyannote[128].start |
2145.80534375 |
transcript.pyannote[128].end |
2147.23971875 |
transcript.pyannote[129].speaker |
SPEAKER_17 |
transcript.pyannote[129].start |
2147.96534375 |
transcript.pyannote[129].end |
2148.70784375 |
transcript.pyannote[130].speaker |
SPEAKER_17 |
transcript.pyannote[130].start |
2148.84284375 |
transcript.pyannote[130].end |
2151.76221875 |
transcript.pyannote[131].speaker |
SPEAKER_17 |
transcript.pyannote[131].start |
2152.21784375 |
transcript.pyannote[131].end |
2153.56784375 |
transcript.pyannote[132].speaker |
SPEAKER_17 |
transcript.pyannote[132].start |
2153.68596875 |
transcript.pyannote[132].end |
2154.19221875 |
transcript.pyannote[133].speaker |
SPEAKER_17 |
transcript.pyannote[133].start |
2154.44534375 |
transcript.pyannote[133].end |
2156.13284375 |
transcript.pyannote[134].speaker |
SPEAKER_17 |
transcript.pyannote[134].start |
2156.57159375 |
transcript.pyannote[134].end |
2157.55034375 |
transcript.pyannote[135].speaker |
SPEAKER_17 |
transcript.pyannote[135].start |
2157.80346875 |
transcript.pyannote[135].end |
2158.54596875 |
transcript.pyannote[136].speaker |
SPEAKER_17 |
transcript.pyannote[136].start |
2158.73159375 |
transcript.pyannote[136].end |
2160.36846875 |
transcript.pyannote[137].speaker |
SPEAKER_17 |
transcript.pyannote[137].start |
2162.71409375 |
transcript.pyannote[137].end |
2163.60846875 |
transcript.pyannote[138].speaker |
SPEAKER_17 |
transcript.pyannote[138].start |
2164.09784375 |
transcript.pyannote[138].end |
2165.00909375 |
transcript.pyannote[139].speaker |
SPEAKER_17 |
transcript.pyannote[139].start |
2165.32971875 |
transcript.pyannote[139].end |
2167.00034375 |
transcript.pyannote[140].speaker |
SPEAKER_17 |
transcript.pyannote[140].start |
2167.43909375 |
transcript.pyannote[140].end |
2169.53159375 |
transcript.pyannote[141].speaker |
SPEAKER_17 |
transcript.pyannote[141].start |
2170.56096875 |
transcript.pyannote[141].end |
2171.26971875 |
transcript.pyannote[142].speaker |
SPEAKER_17 |
transcript.pyannote[142].start |
2172.38346875 |
transcript.pyannote[142].end |
2174.84721875 |
transcript.pyannote[143].speaker |
SPEAKER_17 |
transcript.pyannote[143].start |
2175.77534375 |
transcript.pyannote[143].end |
2177.68221875 |
transcript.pyannote[144].speaker |
SPEAKER_17 |
transcript.pyannote[144].start |
2180.71971875 |
transcript.pyannote[144].end |
2182.67721875 |
transcript.pyannote[145].speaker |
SPEAKER_17 |
transcript.pyannote[145].start |
2183.77409375 |
transcript.pyannote[145].end |
2184.26346875 |
transcript.pyannote[146].speaker |
SPEAKER_17 |
transcript.pyannote[146].start |
2184.92159375 |
transcript.pyannote[146].end |
2185.90034375 |
transcript.pyannote[147].speaker |
SPEAKER_17 |
transcript.pyannote[147].start |
2186.06909375 |
transcript.pyannote[147].end |
2187.72284375 |
transcript.pyannote[148].speaker |
SPEAKER_17 |
transcript.pyannote[148].start |
2189.86596875 |
transcript.pyannote[148].end |
2190.79409375 |
transcript.pyannote[149].speaker |
SPEAKER_17 |
transcript.pyannote[149].start |
2191.60409375 |
transcript.pyannote[149].end |
2192.86971875 |
transcript.pyannote[150].speaker |
SPEAKER_17 |
transcript.pyannote[150].start |
2193.51096875 |
transcript.pyannote[150].end |
2195.83971875 |
transcript.pyannote[151].speaker |
SPEAKER_17 |
transcript.pyannote[151].start |
2196.16034375 |
transcript.pyannote[151].end |
2196.93659375 |
transcript.pyannote[152].speaker |
SPEAKER_17 |
transcript.pyannote[152].start |
2197.32471875 |
transcript.pyannote[152].end |
2198.77596875 |
transcript.pyannote[153].speaker |
SPEAKER_17 |
transcript.pyannote[153].start |
2199.28221875 |
transcript.pyannote[153].end |
2200.22721875 |
transcript.pyannote[154].speaker |
SPEAKER_17 |
transcript.pyannote[154].start |
2200.59846875 |
transcript.pyannote[154].end |
2201.03721875 |
transcript.pyannote[155].speaker |
SPEAKER_17 |
transcript.pyannote[155].start |
2201.94846875 |
transcript.pyannote[155].end |
2202.37034375 |
transcript.pyannote[156].speaker |
SPEAKER_17 |
transcript.pyannote[156].start |
2204.71596875 |
transcript.pyannote[156].end |
2204.90159375 |
transcript.pyannote[157].speaker |
SPEAKER_17 |
transcript.pyannote[157].start |
2205.13784375 |
transcript.pyannote[157].end |
2207.46659375 |
transcript.pyannote[158].speaker |
SPEAKER_17 |
transcript.pyannote[158].start |
2207.68596875 |
transcript.pyannote[158].end |
2209.00221875 |
transcript.pyannote[159].speaker |
SPEAKER_17 |
transcript.pyannote[159].start |
2209.40721875 |
transcript.pyannote[159].end |
2217.13596875 |
transcript.pyannote[160].speaker |
SPEAKER_17 |
transcript.pyannote[160].start |
2217.35534375 |
transcript.pyannote[160].end |
2218.36784375 |
transcript.pyannote[161].speaker |
SPEAKER_17 |
transcript.pyannote[161].start |
2218.78971875 |
transcript.pyannote[161].end |
2219.27909375 |
transcript.pyannote[162].speaker |
SPEAKER_17 |
transcript.pyannote[162].start |
2219.71784375 |
transcript.pyannote[162].end |
2222.01284375 |
transcript.pyannote[163].speaker |
SPEAKER_17 |
transcript.pyannote[163].start |
2223.00846875 |
transcript.pyannote[163].end |
2223.71721875 |
transcript.pyannote[164].speaker |
SPEAKER_17 |
transcript.pyannote[164].start |
2224.66221875 |
transcript.pyannote[164].end |
2225.97846875 |
transcript.pyannote[165].speaker |
SPEAKER_18 |
transcript.pyannote[165].start |
2225.97846875 |
transcript.pyannote[165].end |
2226.11346875 |
transcript.pyannote[166].speaker |
SPEAKER_17 |
transcript.pyannote[166].start |
2226.11346875 |
transcript.pyannote[166].end |
2226.13034375 |
transcript.pyannote[167].speaker |
SPEAKER_05 |
transcript.pyannote[167].start |
2234.92221875 |
transcript.pyannote[167].end |
2314.96034375 |
transcript.pyannote[168].speaker |
SPEAKER_05 |
transcript.pyannote[168].start |
2315.58471875 |
transcript.pyannote[168].end |
2379.72659375 |
transcript.pyannote[169].speaker |
SPEAKER_05 |
transcript.pyannote[169].start |
2380.08096875 |
transcript.pyannote[169].end |
2383.01721875 |
transcript.pyannote[170].speaker |
SPEAKER_05 |
transcript.pyannote[170].start |
2383.77659375 |
transcript.pyannote[170].end |
2406.11909375 |
transcript.pyannote[171].speaker |
SPEAKER_05 |
transcript.pyannote[171].start |
2406.94596875 |
transcript.pyannote[171].end |
2439.41346875 |
transcript.pyannote[172].speaker |
SPEAKER_05 |
transcript.pyannote[172].start |
2440.12221875 |
transcript.pyannote[172].end |
2461.14846875 |
transcript.pyannote[173].speaker |
SPEAKER_05 |
transcript.pyannote[173].start |
2461.80659375 |
transcript.pyannote[173].end |
2467.61159375 |
transcript.pyannote[174].speaker |
SPEAKER_05 |
transcript.pyannote[174].start |
2468.18534375 |
transcript.pyannote[174].end |
2495.91096875 |
transcript.pyannote[175].speaker |
SPEAKER_05 |
transcript.pyannote[175].start |
2496.65346875 |
transcript.pyannote[175].end |
2501.19284375 |
transcript.pyannote[176].speaker |
SPEAKER_05 |
transcript.pyannote[176].start |
2501.66534375 |
transcript.pyannote[176].end |
2504.71971875 |
transcript.pyannote[177].speaker |
SPEAKER_05 |
transcript.pyannote[177].start |
2505.93471875 |
transcript.pyannote[177].end |
2529.98159375 |
transcript.pyannote[178].speaker |
SPEAKER_05 |
transcript.pyannote[178].start |
2530.58909375 |
transcript.pyannote[178].end |
2533.13721875 |
transcript.pyannote[179].speaker |
SPEAKER_05 |
transcript.pyannote[179].start |
2534.25096875 |
transcript.pyannote[179].end |
2536.61346875 |
transcript.pyannote[180].speaker |
SPEAKER_05 |
transcript.pyannote[180].start |
2537.01846875 |
transcript.pyannote[180].end |
2547.95346875 |
transcript.pyannote[181].speaker |
SPEAKER_05 |
transcript.pyannote[181].start |
2548.34159375 |
transcript.pyannote[181].end |
2550.82221875 |
transcript.pyannote[182].speaker |
SPEAKER_05 |
transcript.pyannote[182].start |
2551.31159375 |
transcript.pyannote[182].end |
2567.29221875 |
transcript.pyannote[183].speaker |
SPEAKER_05 |
transcript.pyannote[183].start |
2567.74784375 |
transcript.pyannote[183].end |
2570.09346875 |
transcript.pyannote[184].speaker |
SPEAKER_05 |
transcript.pyannote[184].start |
2570.83596875 |
transcript.pyannote[184].end |
2584.38659375 |
transcript.pyannote[185].speaker |
SPEAKER_05 |
transcript.pyannote[185].start |
2584.52159375 |
transcript.pyannote[185].end |
2602.17284375 |
transcript.pyannote[186].speaker |
SPEAKER_05 |
transcript.pyannote[186].start |
2603.59034375 |
transcript.pyannote[186].end |
2603.87721875 |
transcript.pyannote[187].speaker |
SPEAKER_05 |
transcript.pyannote[187].start |
2604.16409375 |
transcript.pyannote[187].end |
2606.93159375 |
transcript.pyannote[188].speaker |
SPEAKER_05 |
transcript.pyannote[188].start |
2607.33659375 |
transcript.pyannote[188].end |
2607.60659375 |
transcript.pyannote[189].speaker |
SPEAKER_05 |
transcript.pyannote[189].start |
2608.19721875 |
transcript.pyannote[189].end |
2609.69909375 |
transcript.pyannote[190].speaker |
SPEAKER_05 |
transcript.pyannote[190].start |
2610.37409375 |
transcript.pyannote[190].end |
2610.81284375 |
transcript.pyannote[191].speaker |
SPEAKER_05 |
transcript.pyannote[191].start |
2610.88034375 |
transcript.pyannote[191].end |
2611.52159375 |
transcript.pyannote[192].speaker |
SPEAKER_05 |
transcript.pyannote[192].start |
2612.82096875 |
transcript.pyannote[192].end |
2614.57596875 |
transcript.pyannote[193].speaker |
SPEAKER_05 |
transcript.pyannote[193].start |
2614.86284375 |
transcript.pyannote[193].end |
2617.27596875 |
transcript.pyannote[194].speaker |
SPEAKER_05 |
transcript.pyannote[194].start |
2617.42784375 |
transcript.pyannote[194].end |
2621.78159375 |
transcript.pyannote[195].speaker |
SPEAKER_05 |
transcript.pyannote[195].start |
2621.93346875 |
transcript.pyannote[195].end |
2636.96909375 |
transcript.pyannote[196].speaker |
SPEAKER_05 |
transcript.pyannote[196].start |
2637.40784375 |
transcript.pyannote[196].end |
2657.11784375 |
transcript.pyannote[197].speaker |
SPEAKER_05 |
transcript.pyannote[197].start |
2657.79284375 |
transcript.pyannote[197].end |
2671.05659375 |
transcript.pyannote[198].speaker |
SPEAKER_05 |
transcript.pyannote[198].start |
2671.41096875 |
transcript.pyannote[198].end |
2691.50909375 |
transcript.pyannote[199].speaker |
SPEAKER_05 |
transcript.pyannote[199].start |
2692.40346875 |
transcript.pyannote[199].end |
2705.86971875 |
transcript.pyannote[200].speaker |
SPEAKER_05 |
transcript.pyannote[200].start |
2705.95409375 |
transcript.pyannote[200].end |
2705.97096875 |
transcript.pyannote[201].speaker |
SPEAKER_17 |
transcript.pyannote[201].start |
2705.97096875 |
transcript.pyannote[201].end |
2706.29159375 |
transcript.pyannote[202].speaker |
SPEAKER_17 |
transcript.pyannote[202].start |
2707.60784375 |
transcript.pyannote[202].end |
2710.59471875 |
transcript.pyannote[203].speaker |
SPEAKER_17 |
transcript.pyannote[203].start |
2711.06721875 |
transcript.pyannote[203].end |
2712.75471875 |
transcript.pyannote[204].speaker |
SPEAKER_17 |
transcript.pyannote[204].start |
2713.19346875 |
transcript.pyannote[204].end |
2714.96534375 |
transcript.pyannote[205].speaker |
SPEAKER_17 |
transcript.pyannote[205].start |
2715.72471875 |
transcript.pyannote[205].end |
2717.66534375 |
transcript.pyannote[206].speaker |
SPEAKER_07 |
transcript.pyannote[206].start |
2728.53284375 |
transcript.pyannote[206].end |
2732.04284375 |
transcript.pyannote[207].speaker |
SPEAKER_07 |
transcript.pyannote[207].start |
2732.07659375 |
transcript.pyannote[207].end |
2734.03409375 |
transcript.pyannote[208].speaker |
SPEAKER_07 |
transcript.pyannote[208].start |
2734.43909375 |
transcript.pyannote[208].end |
2735.02971875 |
transcript.pyannote[209].speaker |
SPEAKER_07 |
transcript.pyannote[209].start |
2735.31659375 |
transcript.pyannote[209].end |
2738.21909375 |
transcript.pyannote[210].speaker |
SPEAKER_07 |
transcript.pyannote[210].start |
2738.28659375 |
transcript.pyannote[210].end |
2739.83909375 |
transcript.pyannote[211].speaker |
SPEAKER_07 |
transcript.pyannote[211].start |
2739.97409375 |
transcript.pyannote[211].end |
2741.15534375 |
transcript.pyannote[212].speaker |
SPEAKER_07 |
transcript.pyannote[212].start |
2741.83034375 |
transcript.pyannote[212].end |
2743.90596875 |
transcript.pyannote[213].speaker |
SPEAKER_07 |
transcript.pyannote[213].start |
2744.64846875 |
transcript.pyannote[213].end |
2746.74096875 |
transcript.pyannote[214].speaker |
SPEAKER_07 |
transcript.pyannote[214].start |
2747.04471875 |
transcript.pyannote[214].end |
2748.68159375 |
transcript.pyannote[215].speaker |
SPEAKER_07 |
transcript.pyannote[215].start |
2749.00221875 |
transcript.pyannote[215].end |
2752.29284375 |
transcript.pyannote[216].speaker |
SPEAKER_07 |
transcript.pyannote[216].start |
2752.46159375 |
transcript.pyannote[216].end |
2764.25721875 |
transcript.pyannote[217].speaker |
SPEAKER_07 |
transcript.pyannote[217].start |
2764.71284375 |
transcript.pyannote[217].end |
2775.85034375 |
transcript.pyannote[218].speaker |
SPEAKER_07 |
transcript.pyannote[218].start |
2776.05284375 |
transcript.pyannote[218].end |
2777.87534375 |
transcript.pyannote[219].speaker |
SPEAKER_07 |
transcript.pyannote[219].start |
2777.94284375 |
transcript.pyannote[219].end |
2782.39784375 |
transcript.pyannote[220].speaker |
SPEAKER_07 |
transcript.pyannote[220].start |
2782.54971875 |
transcript.pyannote[220].end |
2786.88659375 |
transcript.pyannote[221].speaker |
SPEAKER_07 |
transcript.pyannote[221].start |
2787.46034375 |
transcript.pyannote[221].end |
2796.50534375 |
transcript.pyannote[222].speaker |
SPEAKER_07 |
transcript.pyannote[222].start |
2796.82596875 |
transcript.pyannote[222].end |
2803.27221875 |
transcript.pyannote[223].speaker |
SPEAKER_07 |
transcript.pyannote[223].start |
2803.44096875 |
transcript.pyannote[223].end |
2806.05659375 |
transcript.pyannote[224].speaker |
SPEAKER_07 |
transcript.pyannote[224].start |
2806.30971875 |
transcript.pyannote[224].end |
2807.82846875 |
transcript.pyannote[225].speaker |
SPEAKER_07 |
transcript.pyannote[225].start |
2808.08159375 |
transcript.pyannote[225].end |
2811.67596875 |
transcript.pyannote[226].speaker |
SPEAKER_07 |
transcript.pyannote[226].start |
2812.78971875 |
transcript.pyannote[226].end |
2814.24096875 |
transcript.pyannote[227].speaker |
SPEAKER_07 |
transcript.pyannote[227].start |
2814.73034375 |
transcript.pyannote[227].end |
2815.96221875 |
transcript.pyannote[228].speaker |
SPEAKER_07 |
transcript.pyannote[228].start |
2816.40096875 |
transcript.pyannote[228].end |
2818.93221875 |
transcript.pyannote[229].speaker |
SPEAKER_07 |
transcript.pyannote[229].start |
2819.28659375 |
transcript.pyannote[229].end |
2820.83909375 |
transcript.pyannote[230].speaker |
SPEAKER_07 |
transcript.pyannote[230].start |
2821.05846875 |
transcript.pyannote[230].end |
2823.38721875 |
transcript.pyannote[231].speaker |
SPEAKER_07 |
transcript.pyannote[231].start |
2823.80909375 |
transcript.pyannote[231].end |
2826.37409375 |
transcript.pyannote[232].speaker |
SPEAKER_07 |
transcript.pyannote[232].start |
2826.52596875 |
transcript.pyannote[232].end |
2828.02784375 |
transcript.pyannote[233].speaker |
SPEAKER_07 |
transcript.pyannote[233].start |
2828.38221875 |
transcript.pyannote[233].end |
2837.51159375 |
transcript.pyannote[234].speaker |
SPEAKER_07 |
transcript.pyannote[234].start |
2838.05159375 |
transcript.pyannote[234].end |
2859.07784375 |
transcript.pyannote[235].speaker |
SPEAKER_07 |
transcript.pyannote[235].start |
2859.48284375 |
transcript.pyannote[235].end |
2864.05596875 |
transcript.pyannote[236].speaker |
SPEAKER_07 |
transcript.pyannote[236].start |
2864.39346875 |
transcript.pyannote[236].end |
2872.10534375 |
transcript.pyannote[237].speaker |
SPEAKER_07 |
transcript.pyannote[237].start |
2872.40909375 |
transcript.pyannote[237].end |
2891.93346875 |
transcript.pyannote[238].speaker |
SPEAKER_07 |
transcript.pyannote[238].start |
2892.94596875 |
transcript.pyannote[238].end |
2899.22346875 |
transcript.pyannote[239].speaker |
SPEAKER_07 |
transcript.pyannote[239].start |
2899.84784375 |
transcript.pyannote[239].end |
2915.33909375 |
transcript.pyannote[240].speaker |
SPEAKER_07 |
transcript.pyannote[240].start |
2915.49096875 |
transcript.pyannote[240].end |
2921.98784375 |
transcript.pyannote[241].speaker |
SPEAKER_07 |
transcript.pyannote[241].start |
2922.59534375 |
transcript.pyannote[241].end |
2952.10971875 |
transcript.pyannote[242].speaker |
SPEAKER_07 |
transcript.pyannote[242].start |
2952.73409375 |
transcript.pyannote[242].end |
2955.97409375 |
transcript.pyannote[243].speaker |
SPEAKER_07 |
transcript.pyannote[243].start |
2956.27784375 |
transcript.pyannote[243].end |
2957.07096875 |
transcript.pyannote[244].speaker |
SPEAKER_07 |
transcript.pyannote[244].start |
2957.45909375 |
transcript.pyannote[244].end |
2959.24784375 |
transcript.pyannote[245].speaker |
SPEAKER_07 |
transcript.pyannote[245].start |
2959.90596875 |
transcript.pyannote[245].end |
2963.90534375 |
transcript.pyannote[246].speaker |
SPEAKER_07 |
transcript.pyannote[246].start |
2964.49596875 |
transcript.pyannote[246].end |
2967.07784375 |
transcript.pyannote[247].speaker |
SPEAKER_07 |
transcript.pyannote[247].start |
2967.43221875 |
transcript.pyannote[247].end |
2985.03284375 |
transcript.pyannote[248].speaker |
SPEAKER_07 |
transcript.pyannote[248].start |
2985.45471875 |
transcript.pyannote[248].end |
2996.00159375 |
transcript.pyannote[249].speaker |
SPEAKER_07 |
transcript.pyannote[249].start |
2997.01409375 |
transcript.pyannote[249].end |
3000.55784375 |
transcript.pyannote[250].speaker |
SPEAKER_07 |
transcript.pyannote[250].start |
3000.82784375 |
transcript.pyannote[250].end |
3004.05096875 |
transcript.pyannote[251].speaker |
SPEAKER_07 |
transcript.pyannote[251].start |
3004.32096875 |
transcript.pyannote[251].end |
3006.68346875 |
transcript.pyannote[252].speaker |
SPEAKER_07 |
transcript.pyannote[252].start |
3007.07159375 |
transcript.pyannote[252].end |
3011.50971875 |
transcript.pyannote[253].speaker |
SPEAKER_07 |
transcript.pyannote[253].start |
3011.86409375 |
transcript.pyannote[253].end |
3017.88846875 |
transcript.pyannote[254].speaker |
SPEAKER_11 |
transcript.pyannote[254].start |
3018.39471875 |
transcript.pyannote[254].end |
3018.41159375 |
transcript.pyannote[255].speaker |
SPEAKER_07 |
transcript.pyannote[255].start |
3018.41159375 |
transcript.pyannote[255].end |
3021.26346875 |
transcript.pyannote[256].speaker |
SPEAKER_07 |
transcript.pyannote[256].start |
3021.68534375 |
transcript.pyannote[256].end |
3031.50659375 |
transcript.pyannote[257].speaker |
SPEAKER_07 |
transcript.pyannote[257].start |
3031.89471875 |
transcript.pyannote[257].end |
3033.43034375 |
transcript.pyannote[258].speaker |
SPEAKER_07 |
transcript.pyannote[258].start |
3033.83534375 |
transcript.pyannote[258].end |
3038.29034375 |
transcript.pyannote[259].speaker |
SPEAKER_07 |
transcript.pyannote[259].start |
3038.56034375 |
transcript.pyannote[259].end |
3057.24096875 |
transcript.pyannote[260].speaker |
SPEAKER_07 |
transcript.pyannote[260].start |
3057.47721875 |
transcript.pyannote[260].end |
3060.32909375 |
transcript.pyannote[261].speaker |
SPEAKER_07 |
transcript.pyannote[261].start |
3060.83534375 |
transcript.pyannote[261].end |
3065.00346875 |
transcript.pyannote[262].speaker |
SPEAKER_07 |
transcript.pyannote[262].start |
3065.27346875 |
transcript.pyannote[262].end |
3067.31534375 |
transcript.pyannote[263].speaker |
SPEAKER_07 |
transcript.pyannote[263].start |
3067.70346875 |
transcript.pyannote[263].end |
3068.68221875 |
transcript.pyannote[264].speaker |
SPEAKER_07 |
transcript.pyannote[264].start |
3068.85096875 |
transcript.pyannote[264].end |
3078.19971875 |
transcript.pyannote[265].speaker |
SPEAKER_07 |
transcript.pyannote[265].start |
3078.36846875 |
transcript.pyannote[265].end |
3084.00471875 |
transcript.pyannote[266].speaker |
SPEAKER_07 |
transcript.pyannote[266].start |
3084.08909375 |
transcript.pyannote[266].end |
3085.96221875 |
transcript.pyannote[267].speaker |
SPEAKER_07 |
transcript.pyannote[267].start |
3086.08034375 |
transcript.pyannote[267].end |
3088.05471875 |
transcript.pyannote[268].speaker |
SPEAKER_07 |
transcript.pyannote[268].start |
3088.66221875 |
transcript.pyannote[268].end |
3093.03284375 |
transcript.pyannote[269].speaker |
SPEAKER_07 |
transcript.pyannote[269].start |
3093.18471875 |
transcript.pyannote[269].end |
3100.33971875 |
transcript.pyannote[270].speaker |
SPEAKER_07 |
transcript.pyannote[270].start |
3100.62659375 |
transcript.pyannote[270].end |
3110.68409375 |
transcript.pyannote[271].speaker |
SPEAKER_07 |
transcript.pyannote[271].start |
3111.40971875 |
transcript.pyannote[271].end |
3112.05096875 |
transcript.pyannote[272].speaker |
SPEAKER_07 |
transcript.pyannote[272].start |
3112.30409375 |
transcript.pyannote[272].end |
3113.95784375 |
transcript.pyannote[273].speaker |
SPEAKER_07 |
transcript.pyannote[273].start |
3114.31221875 |
transcript.pyannote[273].end |
3117.51846875 |
transcript.pyannote[274].speaker |
SPEAKER_07 |
transcript.pyannote[274].start |
3118.02471875 |
transcript.pyannote[274].end |
3120.26909375 |
transcript.pyannote[275].speaker |
SPEAKER_07 |
transcript.pyannote[275].start |
3120.48846875 |
transcript.pyannote[275].end |
3126.07409375 |
transcript.pyannote[276].speaker |
SPEAKER_07 |
transcript.pyannote[276].start |
3126.31034375 |
transcript.pyannote[276].end |
3137.16096875 |
transcript.pyannote[277].speaker |
SPEAKER_07 |
transcript.pyannote[277].start |
3137.76846875 |
transcript.pyannote[277].end |
3144.43409375 |
transcript.pyannote[278].speaker |
SPEAKER_07 |
transcript.pyannote[278].start |
3144.65346875 |
transcript.pyannote[278].end |
3145.69971875 |
transcript.pyannote[279].speaker |
SPEAKER_07 |
transcript.pyannote[279].start |
3146.25659375 |
transcript.pyannote[279].end |
3150.49221875 |
transcript.pyannote[280].speaker |
SPEAKER_07 |
transcript.pyannote[280].start |
3150.61034375 |
transcript.pyannote[280].end |
3155.52096875 |
transcript.pyannote[281].speaker |
SPEAKER_07 |
transcript.pyannote[281].start |
3156.01034375 |
transcript.pyannote[281].end |
3167.31659375 |
transcript.pyannote[282].speaker |
SPEAKER_07 |
transcript.pyannote[282].start |
3167.43471875 |
transcript.pyannote[282].end |
3179.01096875 |
transcript.pyannote[283].speaker |
SPEAKER_07 |
transcript.pyannote[283].start |
3179.46659375 |
transcript.pyannote[283].end |
3179.71971875 |
transcript.pyannote[284].speaker |
SPEAKER_07 |
transcript.pyannote[284].start |
3179.90534375 |
transcript.pyannote[284].end |
3183.63471875 |
transcript.pyannote[285].speaker |
SPEAKER_07 |
transcript.pyannote[285].start |
3184.12409375 |
transcript.pyannote[285].end |
3184.39409375 |
transcript.pyannote[286].speaker |
SPEAKER_07 |
transcript.pyannote[286].start |
3184.90034375 |
transcript.pyannote[286].end |
3188.61284375 |
transcript.pyannote[287].speaker |
SPEAKER_07 |
transcript.pyannote[287].start |
3188.88284375 |
transcript.pyannote[287].end |
3196.15596875 |
transcript.pyannote[288].speaker |
SPEAKER_07 |
transcript.pyannote[288].start |
3196.74659375 |
transcript.pyannote[288].end |
3202.95659375 |
transcript.pyannote[289].speaker |
SPEAKER_07 |
transcript.pyannote[289].start |
3203.69909375 |
transcript.pyannote[289].end |
3204.08721875 |
transcript.pyannote[290].speaker |
SPEAKER_07 |
transcript.pyannote[290].start |
3204.52596875 |
transcript.pyannote[290].end |
3204.98159375 |
transcript.pyannote[291].speaker |
SPEAKER_07 |
transcript.pyannote[291].start |
3205.18409375 |
transcript.pyannote[291].end |
3209.08221875 |
transcript.pyannote[292].speaker |
SPEAKER_07 |
transcript.pyannote[292].start |
3209.31846875 |
transcript.pyannote[292].end |
3220.15221875 |
transcript.pyannote[293].speaker |
SPEAKER_07 |
transcript.pyannote[293].start |
3220.30409375 |
transcript.pyannote[293].end |
3222.39659375 |
transcript.pyannote[294].speaker |
SPEAKER_17 |
transcript.pyannote[294].start |
3222.56534375 |
transcript.pyannote[294].end |
3223.64534375 |
transcript.pyannote[295].speaker |
SPEAKER_17 |
transcript.pyannote[295].start |
3226.88534375 |
transcript.pyannote[295].end |
3229.11284375 |
transcript.pyannote[296].speaker |
SPEAKER_17 |
transcript.pyannote[296].start |
3229.29846875 |
transcript.pyannote[296].end |
3231.76221875 |
transcript.pyannote[297].speaker |
SPEAKER_17 |
transcript.pyannote[297].start |
3232.09971875 |
transcript.pyannote[297].end |
3233.55096875 |
transcript.pyannote[298].speaker |
SPEAKER_17 |
transcript.pyannote[298].start |
3235.22159375 |
transcript.pyannote[298].end |
3236.13284375 |
transcript.pyannote[299].speaker |
SPEAKER_08 |
transcript.pyannote[299].start |
3237.14534375 |
transcript.pyannote[299].end |
3246.49409375 |
transcript.pyannote[300].speaker |
SPEAKER_08 |
transcript.pyannote[300].start |
3246.96659375 |
transcript.pyannote[300].end |
3255.85971875 |
transcript.pyannote[301].speaker |
SPEAKER_08 |
transcript.pyannote[301].start |
3256.34909375 |
transcript.pyannote[301].end |
3259.92659375 |
transcript.pyannote[302].speaker |
SPEAKER_08 |
transcript.pyannote[302].start |
3260.66909375 |
transcript.pyannote[302].end |
3262.03596875 |
transcript.pyannote[303].speaker |
SPEAKER_08 |
transcript.pyannote[303].start |
3262.69409375 |
transcript.pyannote[303].end |
3269.19096875 |
transcript.pyannote[304].speaker |
SPEAKER_08 |
transcript.pyannote[304].start |
3269.86596875 |
transcript.pyannote[304].end |
3271.84034375 |
transcript.pyannote[305].speaker |
SPEAKER_08 |
transcript.pyannote[305].start |
3272.51534375 |
transcript.pyannote[305].end |
3273.79784375 |
transcript.pyannote[306].speaker |
SPEAKER_08 |
transcript.pyannote[306].start |
3274.55721875 |
transcript.pyannote[306].end |
3276.26159375 |
transcript.pyannote[307].speaker |
SPEAKER_08 |
transcript.pyannote[307].start |
3277.02096875 |
transcript.pyannote[307].end |
3279.13034375 |
transcript.pyannote[308].speaker |
SPEAKER_08 |
transcript.pyannote[308].start |
3279.94034375 |
transcript.pyannote[308].end |
3388.83471875 |
transcript.pyannote[309].speaker |
SPEAKER_08 |
transcript.pyannote[309].start |
3389.39159375 |
transcript.pyannote[309].end |
3389.57721875 |
transcript.pyannote[310].speaker |
SPEAKER_08 |
transcript.pyannote[310].start |
3389.89784375 |
transcript.pyannote[310].end |
3408.78096875 |
transcript.pyannote[311].speaker |
SPEAKER_08 |
transcript.pyannote[311].start |
3408.98346875 |
transcript.pyannote[311].end |
3415.66596875 |
transcript.pyannote[312].speaker |
SPEAKER_08 |
transcript.pyannote[312].start |
3416.20596875 |
transcript.pyannote[312].end |
3420.72846875 |
transcript.pyannote[313].speaker |
SPEAKER_08 |
transcript.pyannote[313].start |
3421.57221875 |
transcript.pyannote[313].end |
3427.76534375 |
transcript.pyannote[314].speaker |
SPEAKER_08 |
transcript.pyannote[314].start |
3428.42346875 |
transcript.pyannote[314].end |
3432.79409375 |
transcript.pyannote[315].speaker |
SPEAKER_08 |
transcript.pyannote[315].start |
3433.08096875 |
transcript.pyannote[315].end |
3437.35034375 |
transcript.pyannote[316].speaker |
SPEAKER_08 |
transcript.pyannote[316].start |
3439.22346875 |
transcript.pyannote[316].end |
3440.92784375 |
transcript.pyannote[317].speaker |
SPEAKER_08 |
transcript.pyannote[317].start |
3441.95721875 |
transcript.pyannote[317].end |
3456.50346875 |
transcript.pyannote[318].speaker |
SPEAKER_08 |
transcript.pyannote[318].start |
3457.34721875 |
transcript.pyannote[318].end |
3469.53096875 |
transcript.pyannote[319].speaker |
SPEAKER_08 |
transcript.pyannote[319].start |
3469.81784375 |
transcript.pyannote[319].end |
3500.24346875 |
transcript.pyannote[320].speaker |
SPEAKER_08 |
transcript.pyannote[320].start |
3500.71596875 |
transcript.pyannote[320].end |
3504.51284375 |
transcript.pyannote[321].speaker |
SPEAKER_08 |
transcript.pyannote[321].start |
3505.12034375 |
transcript.pyannote[321].end |
3528.18846875 |
transcript.pyannote[322].speaker |
SPEAKER_08 |
transcript.pyannote[322].start |
3528.82971875 |
transcript.pyannote[322].end |
3570.19034375 |
transcript.pyannote[323].speaker |
SPEAKER_17 |
transcript.pyannote[323].start |
3571.50659375 |
transcript.pyannote[323].end |
3573.43034375 |
transcript.pyannote[324].speaker |
SPEAKER_17 |
transcript.pyannote[324].start |
3573.58221875 |
transcript.pyannote[324].end |
3574.17284375 |
transcript.pyannote[325].speaker |
SPEAKER_17 |
transcript.pyannote[325].start |
3574.61159375 |
transcript.pyannote[325].end |
3577.73346875 |
transcript.pyannote[326].speaker |
SPEAKER_17 |
transcript.pyannote[326].start |
3578.07096875 |
transcript.pyannote[326].end |
3580.09596875 |
transcript.pyannote[327].speaker |
SPEAKER_09 |
transcript.pyannote[327].start |
3602.86034375 |
transcript.pyannote[327].end |
3609.55971875 |
transcript.pyannote[328].speaker |
SPEAKER_09 |
transcript.pyannote[328].start |
3610.16721875 |
transcript.pyannote[328].end |
3630.80534375 |
transcript.pyannote[329].speaker |
SPEAKER_09 |
transcript.pyannote[329].start |
3631.07534375 |
transcript.pyannote[329].end |
3634.12971875 |
transcript.pyannote[330].speaker |
SPEAKER_09 |
transcript.pyannote[330].start |
3634.31534375 |
transcript.pyannote[330].end |
3639.64784375 |
transcript.pyannote[331].speaker |
SPEAKER_09 |
transcript.pyannote[331].start |
3640.33971875 |
transcript.pyannote[331].end |
3717.15471875 |
transcript.pyannote[332].speaker |
SPEAKER_09 |
transcript.pyannote[332].start |
3718.28534375 |
transcript.pyannote[332].end |
3750.02721875 |
transcript.pyannote[333].speaker |
SPEAKER_09 |
transcript.pyannote[333].start |
3750.41534375 |
transcript.pyannote[333].end |
3819.16409375 |
transcript.pyannote[334].speaker |
SPEAKER_09 |
transcript.pyannote[334].start |
3819.43409375 |
transcript.pyannote[334].end |
3907.13346875 |
transcript.pyannote[335].speaker |
SPEAKER_09 |
transcript.pyannote[335].start |
3907.99409375 |
transcript.pyannote[335].end |
4033.03784375 |
transcript.pyannote[336].speaker |
SPEAKER_09 |
transcript.pyannote[336].start |
4033.81409375 |
transcript.pyannote[336].end |
4036.98659375 |
transcript.pyannote[337].speaker |
SPEAKER_17 |
transcript.pyannote[337].start |
4040.20971875 |
transcript.pyannote[337].end |
4041.64409375 |
transcript.pyannote[338].speaker |
SPEAKER_17 |
transcript.pyannote[338].start |
4042.52159375 |
transcript.pyannote[338].end |
4043.31471875 |
transcript.pyannote[339].speaker |
SPEAKER_17 |
transcript.pyannote[339].start |
4043.65221875 |
transcript.pyannote[339].end |
4044.05721875 |
transcript.pyannote[340].speaker |
SPEAKER_17 |
transcript.pyannote[340].start |
4044.90096875 |
transcript.pyannote[340].end |
4048.05659375 |
transcript.pyannote[341].speaker |
SPEAKER_17 |
transcript.pyannote[341].start |
4048.42784375 |
transcript.pyannote[341].end |
4049.60909375 |
transcript.pyannote[342].speaker |
SPEAKER_17 |
transcript.pyannote[342].start |
4049.89596875 |
transcript.pyannote[342].end |
4051.26284375 |
transcript.pyannote[343].speaker |
SPEAKER_17 |
transcript.pyannote[343].start |
4051.54971875 |
transcript.pyannote[343].end |
4054.16534375 |
transcript.pyannote[344].speaker |
SPEAKER_06 |
transcript.pyannote[344].start |
4071.78284375 |
transcript.pyannote[344].end |
4076.10284375 |
transcript.pyannote[345].speaker |
SPEAKER_06 |
transcript.pyannote[345].start |
4076.52471875 |
transcript.pyannote[345].end |
4086.48096875 |
transcript.pyannote[346].speaker |
SPEAKER_06 |
transcript.pyannote[346].start |
4086.98721875 |
transcript.pyannote[346].end |
4087.44284375 |
transcript.pyannote[347].speaker |
SPEAKER_06 |
transcript.pyannote[347].start |
4088.20221875 |
transcript.pyannote[347].end |
4088.72534375 |
transcript.pyannote[348].speaker |
SPEAKER_06 |
transcript.pyannote[348].start |
4089.11346875 |
transcript.pyannote[348].end |
4090.56471875 |
transcript.pyannote[349].speaker |
SPEAKER_06 |
transcript.pyannote[349].start |
4091.89784375 |
transcript.pyannote[349].end |
4092.60659375 |
transcript.pyannote[350].speaker |
SPEAKER_06 |
transcript.pyannote[350].start |
4095.18846875 |
transcript.pyannote[350].end |
4095.98159375 |
transcript.pyannote[351].speaker |
SPEAKER_06 |
transcript.pyannote[351].start |
4097.44971875 |
transcript.pyannote[351].end |
4097.78721875 |
transcript.pyannote[352].speaker |
SPEAKER_06 |
transcript.pyannote[352].start |
4098.27659375 |
transcript.pyannote[352].end |
4098.47909375 |
transcript.pyannote[353].speaker |
SPEAKER_06 |
transcript.pyannote[353].start |
4099.05284375 |
transcript.pyannote[353].end |
4101.61784375 |
transcript.pyannote[354].speaker |
SPEAKER_06 |
transcript.pyannote[354].start |
4101.82034375 |
transcript.pyannote[354].end |
4109.86971875 |
transcript.pyannote[355].speaker |
SPEAKER_17 |
transcript.pyannote[355].start |
4103.10284375 |
transcript.pyannote[355].end |
4104.84096875 |
transcript.pyannote[356].speaker |
SPEAKER_11 |
transcript.pyannote[356].start |
4106.35971875 |
transcript.pyannote[356].end |
4106.37659375 |
transcript.pyannote[357].speaker |
SPEAKER_17 |
transcript.pyannote[357].start |
4106.37659375 |
transcript.pyannote[357].end |
4107.81096875 |
transcript.pyannote[358].speaker |
SPEAKER_06 |
transcript.pyannote[358].start |
4110.37596875 |
transcript.pyannote[358].end |
4128.95534375 |
transcript.pyannote[359].speaker |
SPEAKER_06 |
transcript.pyannote[359].start |
4129.61346875 |
transcript.pyannote[359].end |
4136.05971875 |
transcript.pyannote[360].speaker |
SPEAKER_06 |
transcript.pyannote[360].start |
4137.05534375 |
transcript.pyannote[360].end |
4165.38846875 |
transcript.pyannote[361].speaker |
SPEAKER_06 |
transcript.pyannote[361].start |
4165.74284375 |
transcript.pyannote[361].end |
4166.56971875 |
transcript.pyannote[362].speaker |
SPEAKER_06 |
transcript.pyannote[362].start |
4167.37971875 |
transcript.pyannote[362].end |
4171.26096875 |
transcript.pyannote[363].speaker |
SPEAKER_06 |
transcript.pyannote[363].start |
4171.98659375 |
transcript.pyannote[363].end |
4194.39659375 |
transcript.pyannote[364].speaker |
SPEAKER_06 |
transcript.pyannote[364].start |
4194.81846875 |
transcript.pyannote[364].end |
4202.73284375 |
transcript.pyannote[365].speaker |
SPEAKER_06 |
transcript.pyannote[365].start |
4203.27284375 |
transcript.pyannote[365].end |
4234.98096875 |
transcript.pyannote[366].speaker |
SPEAKER_06 |
transcript.pyannote[366].start |
4235.82471875 |
transcript.pyannote[366].end |
4273.52346875 |
transcript.pyannote[367].speaker |
SPEAKER_06 |
transcript.pyannote[367].start |
4273.75971875 |
transcript.pyannote[367].end |
4285.04909375 |
transcript.pyannote[368].speaker |
SPEAKER_06 |
transcript.pyannote[368].start |
4285.62284375 |
transcript.pyannote[368].end |
4289.28471875 |
transcript.pyannote[369].speaker |
SPEAKER_06 |
transcript.pyannote[369].start |
4289.72346875 |
transcript.pyannote[369].end |
4306.07534375 |
transcript.pyannote[370].speaker |
SPEAKER_06 |
transcript.pyannote[370].start |
4307.13846875 |
transcript.pyannote[370].end |
4317.21284375 |
transcript.pyannote[371].speaker |
SPEAKER_06 |
transcript.pyannote[371].start |
4317.51659375 |
transcript.pyannote[371].end |
4330.61159375 |
transcript.pyannote[372].speaker |
SPEAKER_06 |
transcript.pyannote[372].start |
4331.25284375 |
transcript.pyannote[372].end |
4332.73784375 |
transcript.pyannote[373].speaker |
SPEAKER_06 |
transcript.pyannote[373].start |
4332.87284375 |
transcript.pyannote[373].end |
4344.71909375 |
transcript.pyannote[374].speaker |
SPEAKER_06 |
transcript.pyannote[374].start |
4344.83721875 |
transcript.pyannote[374].end |
4346.45721875 |
transcript.pyannote[375].speaker |
SPEAKER_06 |
transcript.pyannote[375].start |
4346.49096875 |
transcript.pyannote[375].end |
4347.28409375 |
transcript.pyannote[376].speaker |
SPEAKER_06 |
transcript.pyannote[376].start |
4348.41471875 |
transcript.pyannote[376].end |
4360.00784375 |
transcript.pyannote[377].speaker |
SPEAKER_06 |
transcript.pyannote[377].start |
4360.39596875 |
transcript.pyannote[377].end |
4375.90409375 |
transcript.pyannote[378].speaker |
SPEAKER_06 |
transcript.pyannote[378].start |
4376.42721875 |
transcript.pyannote[378].end |
4433.98784375 |
transcript.pyannote[379].speaker |
SPEAKER_06 |
transcript.pyannote[379].start |
4434.51096875 |
transcript.pyannote[379].end |
4452.26346875 |
transcript.pyannote[380].speaker |
SPEAKER_06 |
transcript.pyannote[380].start |
4452.73596875 |
transcript.pyannote[380].end |
4457.15721875 |
transcript.pyannote[381].speaker |
SPEAKER_06 |
transcript.pyannote[381].start |
4457.20784375 |
transcript.pyannote[381].end |
4458.08534375 |
transcript.pyannote[382].speaker |
SPEAKER_06 |
transcript.pyannote[382].start |
4458.37221875 |
transcript.pyannote[382].end |
4484.68034375 |
transcript.pyannote[383].speaker |
SPEAKER_06 |
transcript.pyannote[383].start |
4484.74784375 |
transcript.pyannote[383].end |
4521.53534375 |
transcript.pyannote[384].speaker |
SPEAKER_06 |
transcript.pyannote[384].start |
4522.53096875 |
transcript.pyannote[384].end |
4525.23096875 |
transcript.pyannote[385].speaker |
SPEAKER_06 |
transcript.pyannote[385].start |
4525.66971875 |
transcript.pyannote[385].end |
4570.97909375 |
transcript.pyannote[386].speaker |
SPEAKER_06 |
transcript.pyannote[386].start |
4571.94096875 |
transcript.pyannote[386].end |
4574.28659375 |
transcript.pyannote[387].speaker |
SPEAKER_06 |
transcript.pyannote[387].start |
4575.53534375 |
transcript.pyannote[387].end |
4590.04784375 |
transcript.pyannote[388].speaker |
SPEAKER_06 |
transcript.pyannote[388].start |
4590.25034375 |
transcript.pyannote[388].end |
4607.49659375 |
transcript.pyannote[389].speaker |
SPEAKER_06 |
transcript.pyannote[389].start |
4607.74971875 |
transcript.pyannote[389].end |
4625.70471875 |
transcript.pyannote[390].speaker |
SPEAKER_06 |
transcript.pyannote[390].start |
4626.71721875 |
transcript.pyannote[390].end |
4642.27596875 |
transcript.pyannote[391].speaker |
SPEAKER_06 |
transcript.pyannote[391].start |
4642.47846875 |
transcript.pyannote[391].end |
4643.05221875 |
transcript.pyannote[392].speaker |
SPEAKER_06 |
transcript.pyannote[392].start |
4643.33909375 |
transcript.pyannote[392].end |
4643.55846875 |
transcript.pyannote[393].speaker |
SPEAKER_06 |
transcript.pyannote[393].start |
4644.03096875 |
transcript.pyannote[393].end |
4646.71409375 |
transcript.pyannote[394].speaker |
SPEAKER_06 |
transcript.pyannote[394].start |
4646.81534375 |
transcript.pyannote[394].end |
4650.81471875 |
transcript.pyannote[395].speaker |
SPEAKER_06 |
transcript.pyannote[395].start |
4650.96659375 |
transcript.pyannote[395].end |
4662.05346875 |
transcript.pyannote[396].speaker |
SPEAKER_06 |
transcript.pyannote[396].start |
4662.37409375 |
transcript.pyannote[396].end |
4662.94784375 |
transcript.pyannote[397].speaker |
SPEAKER_06 |
transcript.pyannote[397].start |
4663.79159375 |
transcript.pyannote[397].end |
4664.88846875 |
transcript.pyannote[398].speaker |
SPEAKER_06 |
transcript.pyannote[398].start |
4665.36096875 |
transcript.pyannote[398].end |
4671.68909375 |
transcript.pyannote[399].speaker |
SPEAKER_06 |
transcript.pyannote[399].start |
4672.53284375 |
transcript.pyannote[399].end |
4682.20221875 |
transcript.pyannote[400].speaker |
SPEAKER_06 |
transcript.pyannote[400].start |
4682.32034375 |
transcript.pyannote[400].end |
4693.49159375 |
transcript.pyannote[401].speaker |
SPEAKER_06 |
transcript.pyannote[401].start |
4693.79534375 |
transcript.pyannote[401].end |
4703.22846875 |
transcript.pyannote[402].speaker |
SPEAKER_06 |
transcript.pyannote[402].start |
4703.86971875 |
transcript.pyannote[402].end |
4725.21659375 |
transcript.pyannote[403].speaker |
SPEAKER_06 |
transcript.pyannote[403].start |
4725.92534375 |
transcript.pyannote[403].end |
4741.36596875 |
transcript.pyannote[404].speaker |
SPEAKER_06 |
transcript.pyannote[404].start |
4741.45034375 |
transcript.pyannote[404].end |
4750.96784375 |
transcript.pyannote[405].speaker |
SPEAKER_06 |
transcript.pyannote[405].start |
4752.23346875 |
transcript.pyannote[405].end |
4760.87346875 |
transcript.pyannote[406].speaker |
SPEAKER_06 |
transcript.pyannote[406].start |
4761.31221875 |
transcript.pyannote[406].end |
4789.52721875 |
transcript.pyannote[407].speaker |
SPEAKER_06 |
transcript.pyannote[407].start |
4789.86471875 |
transcript.pyannote[407].end |
4803.38159375 |
transcript.pyannote[408].speaker |
SPEAKER_06 |
transcript.pyannote[408].start |
4803.60096875 |
transcript.pyannote[408].end |
4806.03096875 |
transcript.pyannote[409].speaker |
SPEAKER_06 |
transcript.pyannote[409].start |
4806.67221875 |
transcript.pyannote[409].end |
4807.71846875 |
transcript.pyannote[410].speaker |
SPEAKER_06 |
transcript.pyannote[410].start |
4808.51159375 |
transcript.pyannote[410].end |
4824.59346875 |
transcript.pyannote[411].speaker |
SPEAKER_06 |
transcript.pyannote[411].start |
4825.33596875 |
transcript.pyannote[411].end |
4825.90971875 |
transcript.pyannote[412].speaker |
SPEAKER_06 |
transcript.pyannote[412].start |
4826.16284375 |
transcript.pyannote[412].end |
4830.90471875 |
transcript.pyannote[413].speaker |
SPEAKER_06 |
transcript.pyannote[413].start |
4831.37721875 |
transcript.pyannote[413].end |
4833.23346875 |
transcript.pyannote[414].speaker |
SPEAKER_06 |
transcript.pyannote[414].start |
4833.92534375 |
transcript.pyannote[414].end |
4844.72534375 |
transcript.pyannote[415].speaker |
SPEAKER_06 |
transcript.pyannote[415].start |
4845.46784375 |
transcript.pyannote[415].end |
4857.36471875 |
transcript.pyannote[416].speaker |
SPEAKER_06 |
transcript.pyannote[416].start |
4858.59659375 |
transcript.pyannote[416].end |
4859.32221875 |
transcript.pyannote[417].speaker |
SPEAKER_06 |
transcript.pyannote[417].start |
4859.79471875 |
transcript.pyannote[417].end |
4865.56596875 |
transcript.pyannote[418].speaker |
SPEAKER_06 |
transcript.pyannote[418].start |
4866.61221875 |
transcript.pyannote[418].end |
4868.40096875 |
transcript.pyannote[419].speaker |
SPEAKER_06 |
transcript.pyannote[419].start |
4868.99159375 |
transcript.pyannote[419].end |
4928.17221875 |
transcript.pyannote[420].speaker |
SPEAKER_17 |
transcript.pyannote[420].start |
4928.66159375 |
transcript.pyannote[420].end |
4930.53471875 |
transcript.pyannote[421].speaker |
SPEAKER_17 |
transcript.pyannote[421].start |
4931.15909375 |
transcript.pyannote[421].end |
4934.04471875 |
transcript.pyannote[422].speaker |
SPEAKER_17 |
transcript.pyannote[422].start |
4934.55096875 |
transcript.pyannote[422].end |
4936.32284375 |
transcript.pyannote[423].speaker |
SPEAKER_17 |
transcript.pyannote[423].start |
4936.69409375 |
transcript.pyannote[423].end |
4937.48721875 |
transcript.pyannote[424].speaker |
SPEAKER_17 |
transcript.pyannote[424].start |
4937.77409375 |
transcript.pyannote[424].end |
4939.46159375 |
transcript.pyannote[425].speaker |
SPEAKER_17 |
transcript.pyannote[425].start |
4939.79909375 |
transcript.pyannote[425].end |
4940.89596875 |
transcript.pyannote[426].speaker |
SPEAKER_17 |
transcript.pyannote[426].start |
4941.46971875 |
transcript.pyannote[426].end |
4942.27971875 |
transcript.pyannote[427].speaker |
SPEAKER_17 |
transcript.pyannote[427].start |
4943.17409375 |
transcript.pyannote[427].end |
4943.98409375 |
transcript.pyannote[428].speaker |
SPEAKER_17 |
transcript.pyannote[428].start |
4944.15284375 |
transcript.pyannote[428].end |
4944.67596875 |
transcript.pyannote[429].speaker |
SPEAKER_17 |
transcript.pyannote[429].start |
4944.94596875 |
transcript.pyannote[429].end |
4945.55346875 |
transcript.pyannote[430].speaker |
SPEAKER_17 |
transcript.pyannote[430].start |
4946.17784375 |
transcript.pyannote[430].end |
4949.04659375 |
transcript.pyannote[431].speaker |
SPEAKER_17 |
transcript.pyannote[431].start |
4949.63721875 |
transcript.pyannote[431].end |
4950.27846875 |
transcript.pyannote[432].speaker |
SPEAKER_17 |
transcript.pyannote[432].start |
4950.37971875 |
transcript.pyannote[432].end |
4952.99534375 |
transcript.pyannote[433].speaker |
SPEAKER_18 |
transcript.pyannote[433].start |
4952.99534375 |
transcript.pyannote[433].end |
4953.02909375 |
transcript.pyannote[434].speaker |
SPEAKER_18 |
transcript.pyannote[434].start |
4953.13034375 |
transcript.pyannote[434].end |
4953.16409375 |
transcript.pyannote[435].speaker |
SPEAKER_17 |
transcript.pyannote[435].start |
4953.16409375 |
transcript.pyannote[435].end |
4953.78846875 |
transcript.pyannote[436].speaker |
SPEAKER_02 |
transcript.pyannote[436].start |
4973.76846875 |
transcript.pyannote[436].end |
4984.92284375 |
transcript.pyannote[437].speaker |
SPEAKER_02 |
transcript.pyannote[437].start |
4985.86784375 |
transcript.pyannote[437].end |
4988.06159375 |
transcript.pyannote[438].speaker |
SPEAKER_02 |
transcript.pyannote[438].start |
4988.75346875 |
transcript.pyannote[438].end |
5000.04284375 |
transcript.pyannote[439].speaker |
SPEAKER_02 |
transcript.pyannote[439].start |
5000.65034375 |
transcript.pyannote[439].end |
5008.76721875 |
transcript.pyannote[440].speaker |
SPEAKER_02 |
transcript.pyannote[440].start |
5009.10471875 |
transcript.pyannote[440].end |
5010.72471875 |
transcript.pyannote[441].speaker |
SPEAKER_02 |
transcript.pyannote[441].start |
5011.58534375 |
transcript.pyannote[441].end |
5012.05784375 |
transcript.pyannote[442].speaker |
SPEAKER_02 |
transcript.pyannote[442].start |
5012.56409375 |
transcript.pyannote[442].end |
5015.44971875 |
transcript.pyannote[443].speaker |
SPEAKER_02 |
transcript.pyannote[443].start |
5016.19221875 |
transcript.pyannote[443].end |
5020.10721875 |
transcript.pyannote[444].speaker |
SPEAKER_02 |
transcript.pyannote[444].start |
5020.61346875 |
transcript.pyannote[444].end |
5023.27971875 |
transcript.pyannote[445].speaker |
SPEAKER_02 |
transcript.pyannote[445].start |
5023.93784375 |
transcript.pyannote[445].end |
5026.36784375 |
transcript.pyannote[446].speaker |
SPEAKER_02 |
transcript.pyannote[446].start |
5026.84034375 |
transcript.pyannote[446].end |
5035.83471875 |
transcript.pyannote[447].speaker |
SPEAKER_02 |
transcript.pyannote[447].start |
5036.74596875 |
transcript.pyannote[447].end |
5039.32784375 |
transcript.pyannote[448].speaker |
SPEAKER_02 |
transcript.pyannote[448].start |
5039.98596875 |
transcript.pyannote[448].end |
5041.62284375 |
transcript.pyannote[449].speaker |
SPEAKER_02 |
transcript.pyannote[449].start |
5042.12909375 |
transcript.pyannote[449].end |
5046.78659375 |
transcript.pyannote[450].speaker |
SPEAKER_02 |
transcript.pyannote[450].start |
5046.95534375 |
transcript.pyannote[450].end |
5047.74846875 |
transcript.pyannote[451].speaker |
SPEAKER_02 |
transcript.pyannote[451].start |
5048.11971875 |
transcript.pyannote[451].end |
5049.94221875 |
transcript.pyannote[452].speaker |
SPEAKER_02 |
transcript.pyannote[452].start |
5051.39346875 |
transcript.pyannote[452].end |
5052.82784375 |
transcript.pyannote[453].speaker |
SPEAKER_02 |
transcript.pyannote[453].start |
5052.97971875 |
transcript.pyannote[453].end |
5058.46409375 |
transcript.pyannote[454].speaker |
SPEAKER_02 |
transcript.pyannote[454].start |
5058.78471875 |
transcript.pyannote[454].end |
5059.54409375 |
transcript.pyannote[455].speaker |
SPEAKER_02 |
transcript.pyannote[455].start |
5059.94909375 |
transcript.pyannote[455].end |
5060.11784375 |
transcript.pyannote[456].speaker |
SPEAKER_02 |
transcript.pyannote[456].start |
5060.91096875 |
transcript.pyannote[456].end |
5061.85596875 |
transcript.pyannote[457].speaker |
SPEAKER_02 |
transcript.pyannote[457].start |
5062.34534375 |
transcript.pyannote[457].end |
5063.98221875 |
transcript.pyannote[458].speaker |
SPEAKER_02 |
transcript.pyannote[458].start |
5064.15096875 |
transcript.pyannote[458].end |
5070.66471875 |
transcript.pyannote[459].speaker |
SPEAKER_02 |
transcript.pyannote[459].start |
5072.26784375 |
transcript.pyannote[459].end |
5074.30971875 |
transcript.pyannote[460].speaker |
SPEAKER_02 |
transcript.pyannote[460].start |
5074.93409375 |
transcript.pyannote[460].end |
5076.19971875 |
transcript.pyannote[461].speaker |
SPEAKER_02 |
transcript.pyannote[461].start |
5077.14471875 |
transcript.pyannote[461].end |
5078.98409375 |
transcript.pyannote[462].speaker |
SPEAKER_02 |
transcript.pyannote[462].start |
5079.40596875 |
transcript.pyannote[462].end |
5080.13159375 |
transcript.pyannote[463].speaker |
SPEAKER_02 |
transcript.pyannote[463].start |
5081.12721875 |
transcript.pyannote[463].end |
5083.05096875 |
transcript.pyannote[464].speaker |
SPEAKER_02 |
transcript.pyannote[464].start |
5083.75971875 |
transcript.pyannote[464].end |
5085.05909375 |
transcript.pyannote[465].speaker |
SPEAKER_02 |
transcript.pyannote[465].start |
5085.54846875 |
transcript.pyannote[465].end |
5086.89846875 |
transcript.pyannote[466].speaker |
SPEAKER_02 |
transcript.pyannote[466].start |
5087.47221875 |
transcript.pyannote[466].end |
5087.77596875 |
transcript.pyannote[467].speaker |
SPEAKER_02 |
transcript.pyannote[467].start |
5088.09659375 |
transcript.pyannote[467].end |
5088.94034375 |
transcript.pyannote[468].speaker |
SPEAKER_02 |
transcript.pyannote[468].start |
5089.26096875 |
transcript.pyannote[468].end |
5090.79659375 |
transcript.pyannote[469].speaker |
SPEAKER_02 |
transcript.pyannote[469].start |
5090.93159375 |
transcript.pyannote[469].end |
5091.84284375 |
transcript.pyannote[470].speaker |
SPEAKER_02 |
transcript.pyannote[470].start |
5092.33221875 |
transcript.pyannote[470].end |
5093.12534375 |
transcript.pyannote[471].speaker |
SPEAKER_02 |
transcript.pyannote[471].start |
5094.13784375 |
transcript.pyannote[471].end |
5094.98159375 |
transcript.pyannote[472].speaker |
SPEAKER_02 |
transcript.pyannote[472].start |
5096.06159375 |
transcript.pyannote[472].end |
5099.31846875 |
transcript.pyannote[473].speaker |
SPEAKER_02 |
transcript.pyannote[473].start |
5099.62221875 |
transcript.pyannote[473].end |
5101.34346875 |
transcript.pyannote[474].speaker |
SPEAKER_02 |
transcript.pyannote[474].start |
5101.66409375 |
transcript.pyannote[474].end |
5102.84534375 |
transcript.pyannote[475].speaker |
SPEAKER_02 |
transcript.pyannote[475].start |
5103.40221875 |
transcript.pyannote[475].end |
5104.61721875 |
transcript.pyannote[476].speaker |
SPEAKER_02 |
transcript.pyannote[476].start |
5105.00534375 |
transcript.pyannote[476].end |
5108.26221875 |
transcript.pyannote[477].speaker |
SPEAKER_02 |
transcript.pyannote[477].start |
5109.10596875 |
transcript.pyannote[477].end |
5109.67971875 |
transcript.pyannote[478].speaker |
SPEAKER_02 |
transcript.pyannote[478].start |
5109.83159375 |
transcript.pyannote[478].end |
5111.28284375 |
transcript.pyannote[479].speaker |
SPEAKER_02 |
transcript.pyannote[479].start |
5111.53596875 |
transcript.pyannote[479].end |
5117.52659375 |
transcript.pyannote[480].speaker |
SPEAKER_02 |
transcript.pyannote[480].start |
5118.23534375 |
transcript.pyannote[480].end |
5121.18846875 |
transcript.pyannote[481].speaker |
SPEAKER_02 |
transcript.pyannote[481].start |
5121.40784375 |
transcript.pyannote[481].end |
5124.96846875 |
transcript.pyannote[482].speaker |
SPEAKER_02 |
transcript.pyannote[482].start |
5125.42409375 |
transcript.pyannote[482].end |
5129.35596875 |
transcript.pyannote[483].speaker |
SPEAKER_02 |
transcript.pyannote[483].start |
5129.62596875 |
transcript.pyannote[483].end |
5132.81534375 |
transcript.pyannote[484].speaker |
SPEAKER_02 |
transcript.pyannote[484].start |
5134.03034375 |
transcript.pyannote[484].end |
5136.73034375 |
transcript.pyannote[485].speaker |
SPEAKER_02 |
transcript.pyannote[485].start |
5136.96659375 |
transcript.pyannote[485].end |
5140.74659375 |
transcript.pyannote[486].speaker |
SPEAKER_02 |
transcript.pyannote[486].start |
5141.92784375 |
transcript.pyannote[486].end |
5144.08784375 |
transcript.pyannote[487].speaker |
SPEAKER_02 |
transcript.pyannote[487].start |
5145.11721875 |
transcript.pyannote[487].end |
5146.01159375 |
transcript.pyannote[488].speaker |
SPEAKER_02 |
transcript.pyannote[488].start |
5146.29846875 |
transcript.pyannote[488].end |
5149.38659375 |
transcript.pyannote[489].speaker |
SPEAKER_02 |
transcript.pyannote[489].start |
5149.89284375 |
transcript.pyannote[489].end |
5152.37346875 |
transcript.pyannote[490].speaker |
SPEAKER_02 |
transcript.pyannote[490].start |
5153.04846875 |
transcript.pyannote[490].end |
5156.37284375 |
transcript.pyannote[491].speaker |
SPEAKER_02 |
transcript.pyannote[491].start |
5156.54159375 |
transcript.pyannote[491].end |
5160.99659375 |
transcript.pyannote[492].speaker |
SPEAKER_02 |
transcript.pyannote[492].start |
5161.58721875 |
transcript.pyannote[492].end |
5162.66721875 |
transcript.pyannote[493].speaker |
SPEAKER_02 |
transcript.pyannote[493].start |
5163.17346875 |
transcript.pyannote[493].end |
5169.70409375 |
transcript.pyannote[494].speaker |
SPEAKER_02 |
transcript.pyannote[494].start |
5170.21034375 |
transcript.pyannote[494].end |
5171.72909375 |
transcript.pyannote[495].speaker |
SPEAKER_02 |
transcript.pyannote[495].start |
5172.80909375 |
transcript.pyannote[495].end |
5173.41659375 |
transcript.pyannote[496].speaker |
SPEAKER_02 |
transcript.pyannote[496].start |
5173.80471875 |
transcript.pyannote[496].end |
5176.79159375 |
transcript.pyannote[497].speaker |
SPEAKER_02 |
transcript.pyannote[497].start |
5177.50034375 |
transcript.pyannote[497].end |
5179.67721875 |
transcript.pyannote[498].speaker |
SPEAKER_02 |
transcript.pyannote[498].start |
5180.95971875 |
transcript.pyannote[498].end |
5184.40221875 |
transcript.pyannote[499].speaker |
SPEAKER_02 |
transcript.pyannote[499].start |
5184.90846875 |
transcript.pyannote[499].end |
5185.21221875 |
transcript.pyannote[500].speaker |
SPEAKER_02 |
transcript.pyannote[500].start |
5185.39784375 |
transcript.pyannote[500].end |
5187.10221875 |
transcript.pyannote[501].speaker |
SPEAKER_02 |
transcript.pyannote[501].start |
5187.89534375 |
transcript.pyannote[501].end |
5188.38471875 |
transcript.pyannote[502].speaker |
SPEAKER_02 |
transcript.pyannote[502].start |
5189.31284375 |
transcript.pyannote[502].end |
5190.66284375 |
transcript.pyannote[503].speaker |
SPEAKER_02 |
transcript.pyannote[503].start |
5192.36721875 |
transcript.pyannote[503].end |
5193.07596875 |
transcript.pyannote[504].speaker |
SPEAKER_02 |
transcript.pyannote[504].start |
5193.26159375 |
transcript.pyannote[504].end |
5194.03784375 |
transcript.pyannote[505].speaker |
SPEAKER_02 |
transcript.pyannote[505].start |
5194.83096875 |
transcript.pyannote[505].end |
5197.07534375 |
transcript.pyannote[506].speaker |
SPEAKER_02 |
transcript.pyannote[506].start |
5197.56471875 |
transcript.pyannote[506].end |
5201.22659375 |
transcript.pyannote[507].speaker |
SPEAKER_02 |
transcript.pyannote[507].start |
5201.34471875 |
transcript.pyannote[507].end |
5201.37846875 |
transcript.pyannote[508].speaker |
SPEAKER_02 |
transcript.pyannote[508].start |
5203.16721875 |
transcript.pyannote[508].end |
5204.61846875 |
transcript.pyannote[509].speaker |
SPEAKER_02 |
transcript.pyannote[509].start |
5205.51284375 |
transcript.pyannote[509].end |
5207.87534375 |
transcript.pyannote[510].speaker |
SPEAKER_02 |
transcript.pyannote[510].start |
5208.51659375 |
transcript.pyannote[510].end |
5211.57096875 |
transcript.pyannote[511].speaker |
SPEAKER_02 |
transcript.pyannote[511].start |
5211.97596875 |
transcript.pyannote[511].end |
5213.35971875 |
transcript.pyannote[512].speaker |
SPEAKER_02 |
transcript.pyannote[512].start |
5213.44409375 |
transcript.pyannote[512].end |
5215.26659375 |
transcript.pyannote[513].speaker |
SPEAKER_02 |
transcript.pyannote[513].start |
5216.09346875 |
transcript.pyannote[513].end |
5218.42221875 |
transcript.pyannote[514].speaker |
SPEAKER_02 |
transcript.pyannote[514].start |
5219.70471875 |
transcript.pyannote[514].end |
5221.00409375 |
transcript.pyannote[515].speaker |
SPEAKER_02 |
transcript.pyannote[515].start |
5221.93221875 |
transcript.pyannote[515].end |
5223.23159375 |
transcript.pyannote[516].speaker |
SPEAKER_02 |
transcript.pyannote[516].start |
5223.41721875 |
transcript.pyannote[516].end |
5226.89346875 |
transcript.pyannote[517].speaker |
SPEAKER_02 |
transcript.pyannote[517].start |
5227.75409375 |
transcript.pyannote[517].end |
5228.86784375 |
transcript.pyannote[518].speaker |
SPEAKER_02 |
transcript.pyannote[518].start |
5229.25596875 |
transcript.pyannote[518].end |
5231.07846875 |
transcript.pyannote[519].speaker |
SPEAKER_02 |
transcript.pyannote[519].start |
5231.51721875 |
transcript.pyannote[519].end |
5232.09096875 |
transcript.pyannote[520].speaker |
SPEAKER_02 |
transcript.pyannote[520].start |
5232.34409375 |
transcript.pyannote[520].end |
5234.04846875 |
transcript.pyannote[521].speaker |
SPEAKER_02 |
transcript.pyannote[521].start |
5234.35221875 |
transcript.pyannote[521].end |
5235.71909375 |
transcript.pyannote[522].speaker |
SPEAKER_02 |
transcript.pyannote[522].start |
5235.73596875 |
transcript.pyannote[522].end |
5237.86221875 |
transcript.pyannote[523].speaker |
SPEAKER_02 |
transcript.pyannote[523].start |
5238.62159375 |
transcript.pyannote[523].end |
5241.97971875 |
transcript.pyannote[524].speaker |
SPEAKER_02 |
transcript.pyannote[524].start |
5242.50284375 |
transcript.pyannote[524].end |
5244.84846875 |
transcript.pyannote[525].speaker |
SPEAKER_02 |
transcript.pyannote[525].start |
5245.82721875 |
transcript.pyannote[525].end |
5246.38409375 |
transcript.pyannote[526].speaker |
SPEAKER_02 |
transcript.pyannote[526].start |
5246.72159375 |
transcript.pyannote[526].end |
5247.93659375 |
transcript.pyannote[527].speaker |
SPEAKER_02 |
transcript.pyannote[527].start |
5248.71284375 |
transcript.pyannote[527].end |
5252.84721875 |
transcript.pyannote[528].speaker |
SPEAKER_02 |
transcript.pyannote[528].start |
5253.18471875 |
transcript.pyannote[528].end |
5254.36596875 |
transcript.pyannote[529].speaker |
SPEAKER_02 |
transcript.pyannote[529].start |
5254.73721875 |
transcript.pyannote[529].end |
5259.59721875 |
transcript.pyannote[530].speaker |
SPEAKER_02 |
transcript.pyannote[530].start |
5260.05284375 |
transcript.pyannote[530].end |
5260.93034375 |
transcript.pyannote[531].speaker |
SPEAKER_02 |
transcript.pyannote[531].start |
5261.77409375 |
transcript.pyannote[531].end |
5266.53284375 |
transcript.pyannote[532].speaker |
SPEAKER_02 |
transcript.pyannote[532].start |
5266.58346875 |
transcript.pyannote[532].end |
5271.86534375 |
transcript.pyannote[533].speaker |
SPEAKER_02 |
transcript.pyannote[533].start |
5272.43909375 |
transcript.pyannote[533].end |
5282.51346875 |
transcript.pyannote[534].speaker |
SPEAKER_02 |
transcript.pyannote[534].start |
5283.00284375 |
transcript.pyannote[534].end |
5293.02659375 |
transcript.pyannote[535].speaker |
SPEAKER_02 |
transcript.pyannote[535].start |
5294.15721875 |
transcript.pyannote[535].end |
5295.62534375 |
transcript.pyannote[536].speaker |
SPEAKER_02 |
transcript.pyannote[536].start |
5296.63784375 |
transcript.pyannote[536].end |
5297.39721875 |
transcript.pyannote[537].speaker |
SPEAKER_02 |
transcript.pyannote[537].start |
5297.83596875 |
transcript.pyannote[537].end |
5299.96221875 |
transcript.pyannote[538].speaker |
SPEAKER_02 |
transcript.pyannote[538].start |
5300.43471875 |
transcript.pyannote[538].end |
5302.86471875 |
transcript.pyannote[539].speaker |
SPEAKER_02 |
transcript.pyannote[539].start |
5303.67471875 |
transcript.pyannote[539].end |
5304.48471875 |
transcript.pyannote[540].speaker |
SPEAKER_02 |
transcript.pyannote[540].start |
5304.95721875 |
transcript.pyannote[540].end |
5305.36221875 |
transcript.pyannote[541].speaker |
SPEAKER_02 |
transcript.pyannote[541].start |
5306.12159375 |
transcript.pyannote[541].end |
5307.55596875 |
transcript.pyannote[542].speaker |
SPEAKER_02 |
transcript.pyannote[542].start |
5308.12971875 |
transcript.pyannote[542].end |
5311.43721875 |
transcript.pyannote[543].speaker |
SPEAKER_02 |
transcript.pyannote[543].start |
5312.41596875 |
transcript.pyannote[543].end |
5313.25971875 |
transcript.pyannote[544].speaker |
SPEAKER_02 |
transcript.pyannote[544].start |
5313.76596875 |
transcript.pyannote[544].end |
5318.38971875 |
transcript.pyannote[545].speaker |
SPEAKER_02 |
transcript.pyannote[545].start |
5318.76096875 |
transcript.pyannote[545].end |
5320.14471875 |
transcript.pyannote[546].speaker |
SPEAKER_02 |
transcript.pyannote[546].start |
5320.95471875 |
transcript.pyannote[546].end |
5321.78159375 |
transcript.pyannote[547].speaker |
SPEAKER_02 |
transcript.pyannote[547].start |
5321.96721875 |
transcript.pyannote[547].end |
5323.67159375 |
transcript.pyannote[548].speaker |
SPEAKER_02 |
transcript.pyannote[548].start |
5324.26221875 |
transcript.pyannote[548].end |
5326.15221875 |
transcript.pyannote[549].speaker |
SPEAKER_02 |
transcript.pyannote[549].start |
5326.60784375 |
transcript.pyannote[549].end |
5328.86909375 |
transcript.pyannote[550].speaker |
SPEAKER_02 |
transcript.pyannote[550].start |
5329.74659375 |
transcript.pyannote[550].end |
5331.07971875 |
transcript.pyannote[551].speaker |
SPEAKER_02 |
transcript.pyannote[551].start |
5331.23159375 |
transcript.pyannote[551].end |
5332.96971875 |
transcript.pyannote[552].speaker |
SPEAKER_02 |
transcript.pyannote[552].start |
5333.23971875 |
transcript.pyannote[552].end |
5336.54721875 |
transcript.pyannote[553].speaker |
SPEAKER_02 |
transcript.pyannote[553].start |
5337.28971875 |
transcript.pyannote[553].end |
5340.63096875 |
transcript.pyannote[554].speaker |
SPEAKER_02 |
transcript.pyannote[554].start |
5341.66034375 |
transcript.pyannote[554].end |
5343.36471875 |
transcript.pyannote[555].speaker |
SPEAKER_02 |
transcript.pyannote[555].start |
5343.46596875 |
transcript.pyannote[555].end |
5344.83284375 |
transcript.pyannote[556].speaker |
SPEAKER_02 |
transcript.pyannote[556].start |
5346.06471875 |
transcript.pyannote[556].end |
5346.84096875 |
transcript.pyannote[557].speaker |
SPEAKER_02 |
transcript.pyannote[557].start |
5347.17846875 |
transcript.pyannote[557].end |
5350.28346875 |
transcript.pyannote[558].speaker |
SPEAKER_02 |
transcript.pyannote[558].start |
5350.99221875 |
transcript.pyannote[558].end |
5353.01721875 |
transcript.pyannote[559].speaker |
SPEAKER_02 |
transcript.pyannote[559].start |
5353.75971875 |
transcript.pyannote[559].end |
5365.35284375 |
transcript.pyannote[560].speaker |
SPEAKER_02 |
transcript.pyannote[560].start |
5366.19659375 |
transcript.pyannote[560].end |
5374.34721875 |
transcript.pyannote[561].speaker |
SPEAKER_02 |
transcript.pyannote[561].start |
5375.15721875 |
transcript.pyannote[561].end |
5375.54534375 |
transcript.pyannote[562].speaker |
SPEAKER_02 |
transcript.pyannote[562].start |
5375.96721875 |
transcript.pyannote[562].end |
5378.32971875 |
transcript.pyannote[563].speaker |
SPEAKER_02 |
transcript.pyannote[563].start |
5378.63346875 |
transcript.pyannote[563].end |
5379.12284375 |
transcript.pyannote[564].speaker |
SPEAKER_02 |
transcript.pyannote[564].start |
5379.30846875 |
transcript.pyannote[564].end |
5379.91596875 |
transcript.pyannote[565].speaker |
SPEAKER_02 |
transcript.pyannote[565].start |
5380.28721875 |
transcript.pyannote[565].end |
5382.26159375 |
transcript.pyannote[566].speaker |
SPEAKER_02 |
transcript.pyannote[566].start |
5383.45971875 |
transcript.pyannote[566].end |
5388.57284375 |
transcript.pyannote[567].speaker |
SPEAKER_02 |
transcript.pyannote[567].start |
5388.94409375 |
transcript.pyannote[567].end |
5391.52596875 |
transcript.pyannote[568].speaker |
SPEAKER_02 |
transcript.pyannote[568].start |
5392.50471875 |
transcript.pyannote[568].end |
5396.47034375 |
transcript.pyannote[569].speaker |
SPEAKER_02 |
transcript.pyannote[569].start |
5397.73596875 |
transcript.pyannote[569].end |
5402.25846875 |
transcript.pyannote[570].speaker |
SPEAKER_02 |
transcript.pyannote[570].start |
5402.95034375 |
transcript.pyannote[570].end |
5406.83159375 |
transcript.pyannote[571].speaker |
SPEAKER_02 |
transcript.pyannote[571].start |
5407.20284375 |
transcript.pyannote[571].end |
5408.06346875 |
transcript.pyannote[572].speaker |
SPEAKER_02 |
transcript.pyannote[572].start |
5408.58659375 |
transcript.pyannote[572].end |
5410.52721875 |
transcript.pyannote[573].speaker |
SPEAKER_02 |
transcript.pyannote[573].start |
5410.91534375 |
transcript.pyannote[573].end |
5411.69159375 |
transcript.pyannote[574].speaker |
SPEAKER_02 |
transcript.pyannote[574].start |
5412.07971875 |
transcript.pyannote[574].end |
5414.34096875 |
transcript.pyannote[575].speaker |
SPEAKER_02 |
transcript.pyannote[575].start |
5414.71221875 |
transcript.pyannote[575].end |
5426.98034375 |
transcript.pyannote[576].speaker |
SPEAKER_02 |
transcript.pyannote[576].start |
5427.46971875 |
transcript.pyannote[576].end |
5429.73096875 |
transcript.pyannote[577].speaker |
SPEAKER_02 |
transcript.pyannote[577].start |
5430.77721875 |
transcript.pyannote[577].end |
5431.26659375 |
transcript.pyannote[578].speaker |
SPEAKER_02 |
transcript.pyannote[578].start |
5431.53659375 |
transcript.pyannote[578].end |
5438.80971875 |
transcript.pyannote[579].speaker |
SPEAKER_02 |
transcript.pyannote[579].start |
5439.31596875 |
transcript.pyannote[579].end |
5439.72096875 |
transcript.pyannote[580].speaker |
SPEAKER_02 |
transcript.pyannote[580].start |
5440.32846875 |
transcript.pyannote[580].end |
5445.32346875 |
transcript.pyannote[581].speaker |
SPEAKER_02 |
transcript.pyannote[581].start |
5446.23471875 |
transcript.pyannote[581].end |
5446.65659375 |
transcript.pyannote[582].speaker |
SPEAKER_02 |
transcript.pyannote[582].start |
5446.82534375 |
transcript.pyannote[582].end |
5466.26534375 |
transcript.pyannote[583].speaker |
SPEAKER_02 |
transcript.pyannote[583].start |
5466.50159375 |
transcript.pyannote[583].end |
5468.59409375 |
transcript.pyannote[584].speaker |
SPEAKER_02 |
transcript.pyannote[584].start |
5469.52221875 |
transcript.pyannote[584].end |
5469.92721875 |
transcript.pyannote[585].speaker |
SPEAKER_02 |
transcript.pyannote[585].start |
5470.28159375 |
transcript.pyannote[585].end |
5471.66534375 |
transcript.pyannote[586].speaker |
SPEAKER_02 |
transcript.pyannote[586].start |
5472.03659375 |
transcript.pyannote[586].end |
5473.57221875 |
transcript.pyannote[587].speaker |
SPEAKER_02 |
transcript.pyannote[587].start |
5473.89284375 |
transcript.pyannote[587].end |
5476.18784375 |
transcript.pyannote[588].speaker |
SPEAKER_02 |
transcript.pyannote[588].start |
5476.84596875 |
transcript.pyannote[588].end |
5478.82034375 |
transcript.pyannote[589].speaker |
SPEAKER_02 |
transcript.pyannote[589].start |
5479.09034375 |
transcript.pyannote[589].end |
5480.47409375 |
transcript.pyannote[590].speaker |
SPEAKER_02 |
transcript.pyannote[590].start |
5481.38534375 |
transcript.pyannote[590].end |
5482.19534375 |
transcript.pyannote[591].speaker |
SPEAKER_02 |
transcript.pyannote[591].start |
5482.33034375 |
transcript.pyannote[591].end |
5483.19096875 |
transcript.pyannote[592].speaker |
SPEAKER_02 |
transcript.pyannote[592].start |
5483.56221875 |
transcript.pyannote[592].end |
5484.30471875 |
transcript.pyannote[593].speaker |
SPEAKER_02 |
transcript.pyannote[593].start |
5485.06409375 |
transcript.pyannote[593].end |
5486.12721875 |
transcript.pyannote[594].speaker |
SPEAKER_02 |
transcript.pyannote[594].start |
5486.49846875 |
transcript.pyannote[594].end |
5491.54409375 |
transcript.pyannote[595].speaker |
SPEAKER_02 |
transcript.pyannote[595].start |
5491.93221875 |
transcript.pyannote[595].end |
5496.26909375 |
transcript.pyannote[596].speaker |
SPEAKER_02 |
transcript.pyannote[596].start |
5497.09596875 |
transcript.pyannote[596].end |
5498.44596875 |
transcript.pyannote[597].speaker |
SPEAKER_02 |
transcript.pyannote[597].start |
5498.96909375 |
transcript.pyannote[597].end |
5501.02784375 |
transcript.pyannote[598].speaker |
SPEAKER_02 |
transcript.pyannote[598].start |
5501.71971875 |
transcript.pyannote[598].end |
5504.38596875 |
transcript.pyannote[599].speaker |
SPEAKER_02 |
transcript.pyannote[599].start |
5504.94284375 |
transcript.pyannote[599].end |
5506.52909375 |
transcript.pyannote[600].speaker |
SPEAKER_02 |
transcript.pyannote[600].start |
5506.90034375 |
transcript.pyannote[600].end |
5508.46971875 |
transcript.pyannote[601].speaker |
SPEAKER_02 |
transcript.pyannote[601].start |
5508.84096875 |
transcript.pyannote[601].end |
5510.37659375 |
transcript.pyannote[602].speaker |
SPEAKER_02 |
transcript.pyannote[602].start |
5510.64659375 |
transcript.pyannote[602].end |
5511.42284375 |
transcript.pyannote[603].speaker |
SPEAKER_02 |
transcript.pyannote[603].start |
5511.77721875 |
transcript.pyannote[603].end |
5512.78971875 |
transcript.pyannote[604].speaker |
SPEAKER_17 |
transcript.pyannote[604].start |
5520.41721875 |
transcript.pyannote[604].end |
5520.67034375 |
transcript.pyannote[605].speaker |
SPEAKER_17 |
transcript.pyannote[605].start |
5520.73784375 |
transcript.pyannote[605].end |
5523.25221875 |
transcript.pyannote[606].speaker |
SPEAKER_17 |
transcript.pyannote[606].start |
5523.77534375 |
transcript.pyannote[606].end |
5526.99846875 |
transcript.pyannote[607].speaker |
SPEAKER_17 |
transcript.pyannote[607].start |
5527.09971875 |
transcript.pyannote[607].end |
5527.74096875 |
transcript.pyannote[608].speaker |
SPEAKER_12 |
transcript.pyannote[608].start |
5538.11909375 |
transcript.pyannote[608].end |
5543.68784375 |
transcript.pyannote[609].speaker |
SPEAKER_12 |
transcript.pyannote[609].start |
5543.97471875 |
transcript.pyannote[609].end |
5547.07971875 |
transcript.pyannote[610].speaker |
SPEAKER_12 |
transcript.pyannote[610].start |
5547.26534375 |
transcript.pyannote[610].end |
5550.50534375 |
transcript.pyannote[611].speaker |
SPEAKER_12 |
transcript.pyannote[611].start |
5550.77534375 |
transcript.pyannote[611].end |
5553.08721875 |
transcript.pyannote[612].speaker |
SPEAKER_12 |
transcript.pyannote[612].start |
5553.44159375 |
transcript.pyannote[612].end |
5553.82971875 |
transcript.pyannote[613].speaker |
SPEAKER_12 |
transcript.pyannote[613].start |
5554.23471875 |
transcript.pyannote[613].end |
5558.06534375 |
transcript.pyannote[614].speaker |
SPEAKER_12 |
transcript.pyannote[614].start |
5558.60534375 |
transcript.pyannote[614].end |
5562.53721875 |
transcript.pyannote[615].speaker |
SPEAKER_12 |
transcript.pyannote[615].start |
5562.85784375 |
transcript.pyannote[615].end |
5566.31721875 |
transcript.pyannote[616].speaker |
SPEAKER_12 |
transcript.pyannote[616].start |
5567.09346875 |
transcript.pyannote[616].end |
5588.47409375 |
transcript.pyannote[617].speaker |
SPEAKER_12 |
transcript.pyannote[617].start |
5588.60909375 |
transcript.pyannote[617].end |
5589.63846875 |
transcript.pyannote[618].speaker |
SPEAKER_12 |
transcript.pyannote[618].start |
5590.21221875 |
transcript.pyannote[618].end |
5590.88721875 |
transcript.pyannote[619].speaker |
SPEAKER_12 |
transcript.pyannote[619].start |
5591.42721875 |
transcript.pyannote[619].end |
5593.68846875 |
transcript.pyannote[620].speaker |
SPEAKER_12 |
transcript.pyannote[620].start |
5594.61659375 |
transcript.pyannote[620].end |
5596.21971875 |
transcript.pyannote[621].speaker |
SPEAKER_12 |
transcript.pyannote[621].start |
5596.65846875 |
transcript.pyannote[621].end |
5598.04221875 |
transcript.pyannote[622].speaker |
SPEAKER_12 |
transcript.pyannote[622].start |
5598.78471875 |
transcript.pyannote[622].end |
5600.48909375 |
transcript.pyannote[623].speaker |
SPEAKER_12 |
transcript.pyannote[623].start |
5601.06284375 |
transcript.pyannote[623].end |
5603.27346875 |
transcript.pyannote[624].speaker |
SPEAKER_12 |
transcript.pyannote[624].start |
5603.79659375 |
transcript.pyannote[624].end |
5605.58534375 |
transcript.pyannote[625].speaker |
SPEAKER_12 |
transcript.pyannote[625].start |
5606.09159375 |
transcript.pyannote[625].end |
5607.07034375 |
transcript.pyannote[626].speaker |
SPEAKER_12 |
transcript.pyannote[626].start |
5607.50909375 |
transcript.pyannote[626].end |
5608.25159375 |
transcript.pyannote[627].speaker |
SPEAKER_12 |
transcript.pyannote[627].start |
5609.07846875 |
transcript.pyannote[627].end |
5613.73596875 |
transcript.pyannote[628].speaker |
SPEAKER_12 |
transcript.pyannote[628].start |
5614.64721875 |
transcript.pyannote[628].end |
5618.69721875 |
transcript.pyannote[629].speaker |
SPEAKER_12 |
transcript.pyannote[629].start |
5619.27096875 |
transcript.pyannote[629].end |
5620.04721875 |
transcript.pyannote[630].speaker |
SPEAKER_12 |
transcript.pyannote[630].start |
5620.40159375 |
transcript.pyannote[630].end |
5622.00471875 |
transcript.pyannote[631].speaker |
SPEAKER_12 |
transcript.pyannote[631].start |
5622.46034375 |
transcript.pyannote[631].end |
5628.53534375 |
transcript.pyannote[632].speaker |
SPEAKER_12 |
transcript.pyannote[632].start |
5629.36221875 |
transcript.pyannote[632].end |
5632.53471875 |
transcript.pyannote[633].speaker |
SPEAKER_12 |
transcript.pyannote[633].start |
5632.82159375 |
transcript.pyannote[633].end |
5634.10409375 |
transcript.pyannote[634].speaker |
SPEAKER_12 |
transcript.pyannote[634].start |
5634.64409375 |
transcript.pyannote[634].end |
5635.48784375 |
transcript.pyannote[635].speaker |
SPEAKER_12 |
transcript.pyannote[635].start |
5635.84221875 |
transcript.pyannote[635].end |
5638.17096875 |
transcript.pyannote[636].speaker |
SPEAKER_12 |
transcript.pyannote[636].start |
5638.76159375 |
transcript.pyannote[636].end |
5639.85846875 |
transcript.pyannote[637].speaker |
SPEAKER_12 |
transcript.pyannote[637].start |
5640.92159375 |
transcript.pyannote[637].end |
5642.17034375 |
transcript.pyannote[638].speaker |
SPEAKER_12 |
transcript.pyannote[638].start |
5642.82846875 |
transcript.pyannote[638].end |
5644.12784375 |
transcript.pyannote[639].speaker |
SPEAKER_12 |
transcript.pyannote[639].start |
5644.44846875 |
transcript.pyannote[639].end |
5645.56221875 |
transcript.pyannote[640].speaker |
SPEAKER_12 |
transcript.pyannote[640].start |
5645.96721875 |
transcript.pyannote[640].end |
5647.68846875 |
transcript.pyannote[641].speaker |
SPEAKER_12 |
transcript.pyannote[641].start |
5648.43096875 |
transcript.pyannote[641].end |
5651.38409375 |
transcript.pyannote[642].speaker |
SPEAKER_12 |
transcript.pyannote[642].start |
5651.85659375 |
transcript.pyannote[642].end |
5653.79721875 |
transcript.pyannote[643].speaker |
SPEAKER_12 |
transcript.pyannote[643].start |
5654.40471875 |
transcript.pyannote[643].end |
5655.38346875 |
transcript.pyannote[644].speaker |
SPEAKER_12 |
transcript.pyannote[644].start |
5655.85596875 |
transcript.pyannote[644].end |
5658.74159375 |
transcript.pyannote[645].speaker |
SPEAKER_12 |
transcript.pyannote[645].start |
5660.41221875 |
transcript.pyannote[645].end |
5661.10409375 |
transcript.pyannote[646].speaker |
SPEAKER_12 |
transcript.pyannote[646].start |
5661.37409375 |
transcript.pyannote[646].end |
5662.25159375 |
transcript.pyannote[647].speaker |
SPEAKER_12 |
transcript.pyannote[647].start |
5663.28096875 |
transcript.pyannote[647].end |
5665.15409375 |
transcript.pyannote[648].speaker |
SPEAKER_12 |
transcript.pyannote[648].start |
5665.47471875 |
transcript.pyannote[648].end |
5670.55409375 |
transcript.pyannote[649].speaker |
SPEAKER_12 |
transcript.pyannote[649].start |
5671.12784375 |
transcript.pyannote[649].end |
5676.00471875 |
transcript.pyannote[650].speaker |
SPEAKER_12 |
transcript.pyannote[650].start |
5677.15221875 |
transcript.pyannote[650].end |
5679.43034375 |
transcript.pyannote[651].speaker |
SPEAKER_12 |
transcript.pyannote[651].start |
5679.63284375 |
transcript.pyannote[651].end |
5684.29034375 |
transcript.pyannote[652].speaker |
SPEAKER_12 |
transcript.pyannote[652].start |
5684.74596875 |
transcript.pyannote[652].end |
5686.24784375 |
transcript.pyannote[653].speaker |
SPEAKER_12 |
transcript.pyannote[653].start |
5687.00721875 |
transcript.pyannote[653].end |
5689.03221875 |
transcript.pyannote[654].speaker |
SPEAKER_12 |
transcript.pyannote[654].start |
5690.41596875 |
transcript.pyannote[654].end |
5691.61409375 |
transcript.pyannote[655].speaker |
SPEAKER_12 |
transcript.pyannote[655].start |
5692.28909375 |
transcript.pyannote[655].end |
5696.28846875 |
transcript.pyannote[656].speaker |
SPEAKER_12 |
transcript.pyannote[656].start |
5697.14909375 |
transcript.pyannote[656].end |
5698.78596875 |
transcript.pyannote[657].speaker |
SPEAKER_12 |
transcript.pyannote[657].start |
5699.49471875 |
transcript.pyannote[657].end |
5703.35909375 |
transcript.pyannote[658].speaker |
SPEAKER_12 |
transcript.pyannote[658].start |
5703.40971875 |
transcript.pyannote[658].end |
5705.19846875 |
transcript.pyannote[659].speaker |
SPEAKER_12 |
transcript.pyannote[659].start |
5706.16034375 |
transcript.pyannote[659].end |
5720.36909375 |
transcript.pyannote[660].speaker |
SPEAKER_12 |
transcript.pyannote[660].start |
5720.70659375 |
transcript.pyannote[660].end |
5728.03034375 |
transcript.pyannote[661].speaker |
SPEAKER_12 |
transcript.pyannote[661].start |
5728.70534375 |
transcript.pyannote[661].end |
5758.20284375 |
transcript.pyannote[662].speaker |
SPEAKER_12 |
transcript.pyannote[662].start |
5758.64159375 |
transcript.pyannote[662].end |
5761.35846875 |
transcript.pyannote[663].speaker |
SPEAKER_12 |
transcript.pyannote[663].start |
5763.72096875 |
transcript.pyannote[663].end |
5763.97409375 |
transcript.pyannote[664].speaker |
SPEAKER_17 |
transcript.pyannote[664].start |
5763.97409375 |
transcript.pyannote[664].end |
5765.98221875 |
transcript.pyannote[665].speaker |
SPEAKER_17 |
transcript.pyannote[665].start |
5766.21846875 |
transcript.pyannote[665].end |
5768.85096875 |
transcript.pyannote[666].speaker |
SPEAKER_17 |
transcript.pyannote[666].start |
5769.49221875 |
transcript.pyannote[666].end |
5770.97721875 |
transcript.pyannote[667].speaker |
SPEAKER_17 |
transcript.pyannote[667].start |
5771.61846875 |
transcript.pyannote[667].end |
5772.73221875 |
transcript.pyannote[668].speaker |
SPEAKER_17 |
transcript.pyannote[668].start |
5772.91784375 |
transcript.pyannote[668].end |
5773.64346875 |
transcript.pyannote[669].speaker |
SPEAKER_17 |
transcript.pyannote[669].start |
5774.41971875 |
transcript.pyannote[669].end |
5776.25909375 |
transcript.pyannote[670].speaker |
SPEAKER_15 |
transcript.pyannote[670].start |
5787.80159375 |
transcript.pyannote[670].end |
5804.40659375 |
transcript.pyannote[671].speaker |
SPEAKER_15 |
transcript.pyannote[671].start |
5804.54159375 |
transcript.pyannote[671].end |
5806.14471875 |
transcript.pyannote[672].speaker |
SPEAKER_15 |
transcript.pyannote[672].start |
5806.68471875 |
transcript.pyannote[672].end |
5836.53659375 |
transcript.pyannote[673].speaker |
SPEAKER_15 |
transcript.pyannote[673].start |
5837.97096875 |
transcript.pyannote[673].end |
5881.55909375 |
transcript.pyannote[674].speaker |
SPEAKER_15 |
transcript.pyannote[674].start |
5881.72784375 |
transcript.pyannote[674].end |
5890.40159375 |
transcript.pyannote[675].speaker |
SPEAKER_15 |
transcript.pyannote[675].start |
5890.60409375 |
transcript.pyannote[675].end |
5927.81346875 |
transcript.pyannote[676].speaker |
SPEAKER_15 |
transcript.pyannote[676].start |
5927.93159375 |
transcript.pyannote[676].end |
5986.96034375 |
transcript.pyannote[677].speaker |
SPEAKER_15 |
transcript.pyannote[677].start |
5987.28096875 |
transcript.pyannote[677].end |
5996.81534375 |
transcript.pyannote[678].speaker |
SPEAKER_15 |
transcript.pyannote[678].start |
5997.06846875 |
transcript.pyannote[678].end |
6005.91096875 |
transcript.pyannote[679].speaker |
SPEAKER_15 |
transcript.pyannote[679].start |
6006.07971875 |
transcript.pyannote[679].end |
6032.10096875 |
transcript.pyannote[680].speaker |
SPEAKER_15 |
transcript.pyannote[680].start |
6032.28659375 |
transcript.pyannote[680].end |
6048.60471875 |
transcript.pyannote[681].speaker |
SPEAKER_15 |
transcript.pyannote[681].start |
6049.06034375 |
transcript.pyannote[681].end |
6106.57034375 |
transcript.pyannote[682].speaker |
SPEAKER_15 |
transcript.pyannote[682].start |
6106.67159375 |
transcript.pyannote[682].end |
6122.46659375 |
transcript.pyannote[683].speaker |
SPEAKER_15 |
transcript.pyannote[683].start |
6122.90534375 |
transcript.pyannote[683].end |
6197.07096875 |
transcript.pyannote[684].speaker |
SPEAKER_15 |
transcript.pyannote[684].start |
6197.12159375 |
transcript.pyannote[684].end |
6216.88221875 |
transcript.pyannote[685].speaker |
SPEAKER_15 |
transcript.pyannote[685].start |
6217.08471875 |
transcript.pyannote[685].end |
6222.18096875 |
transcript.pyannote[686].speaker |
SPEAKER_15 |
transcript.pyannote[686].start |
6222.56909375 |
transcript.pyannote[686].end |
6322.89096875 |
transcript.pyannote[687].speaker |
SPEAKER_15 |
transcript.pyannote[687].start |
6323.34659375 |
transcript.pyannote[687].end |
6350.71784375 |
transcript.pyannote[688].speaker |
SPEAKER_15 |
transcript.pyannote[688].start |
6351.02159375 |
transcript.pyannote[688].end |
6355.34159375 |
transcript.pyannote[689].speaker |
SPEAKER_00 |
transcript.pyannote[689].start |
6351.22409375 |
transcript.pyannote[689].end |
6351.47721875 |
transcript.pyannote[690].speaker |
SPEAKER_15 |
transcript.pyannote[690].start |
6355.74659375 |
transcript.pyannote[690].end |
6361.99034375 |
transcript.pyannote[691].speaker |
SPEAKER_15 |
transcript.pyannote[691].start |
6362.83409375 |
transcript.pyannote[691].end |
6363.07034375 |
transcript.pyannote[692].speaker |
SPEAKER_17 |
transcript.pyannote[692].start |
6363.07034375 |
transcript.pyannote[692].end |
6363.44159375 |
transcript.pyannote[693].speaker |
SPEAKER_18 |
transcript.pyannote[693].start |
6363.44159375 |
transcript.pyannote[693].end |
6363.61034375 |
transcript.pyannote[694].speaker |
SPEAKER_17 |
transcript.pyannote[694].start |
6363.61034375 |
transcript.pyannote[694].end |
6365.04471875 |
transcript.pyannote[695].speaker |
SPEAKER_17 |
transcript.pyannote[695].start |
6365.93909375 |
transcript.pyannote[695].end |
6367.77846875 |
transcript.pyannote[696].speaker |
SPEAKER_17 |
transcript.pyannote[696].start |
6367.94721875 |
transcript.pyannote[696].end |
6368.84159375 |
transcript.pyannote[697].speaker |
SPEAKER_18 |
transcript.pyannote[697].start |
6368.84159375 |
transcript.pyannote[697].end |
6368.85846875 |
transcript.pyannote[698].speaker |
SPEAKER_17 |
transcript.pyannote[698].start |
6369.29721875 |
transcript.pyannote[698].end |
6370.02284375 |
transcript.pyannote[699].speaker |
SPEAKER_19 |
transcript.pyannote[699].start |
6378.81471875 |
transcript.pyannote[699].end |
6468.48846875 |
transcript.pyannote[700].speaker |
SPEAKER_19 |
transcript.pyannote[700].start |
6468.87659375 |
transcript.pyannote[700].end |
6470.22659375 |
transcript.pyannote[701].speaker |
SPEAKER_19 |
transcript.pyannote[701].start |
6470.44596875 |
transcript.pyannote[701].end |
6474.59721875 |
transcript.pyannote[702].speaker |
SPEAKER_19 |
transcript.pyannote[702].start |
6474.96846875 |
transcript.pyannote[702].end |
6487.75971875 |
transcript.pyannote[703].speaker |
SPEAKER_19 |
transcript.pyannote[703].start |
6487.84409375 |
transcript.pyannote[703].end |
6495.37034375 |
transcript.pyannote[704].speaker |
SPEAKER_19 |
transcript.pyannote[704].start |
6496.01159375 |
transcript.pyannote[704].end |
6506.96346875 |
transcript.pyannote[705].speaker |
SPEAKER_19 |
transcript.pyannote[705].start |
6507.30096875 |
transcript.pyannote[705].end |
6511.63784375 |
transcript.pyannote[706].speaker |
SPEAKER_19 |
transcript.pyannote[706].start |
6511.92471875 |
transcript.pyannote[706].end |
6513.24096875 |
transcript.pyannote[707].speaker |
SPEAKER_19 |
transcript.pyannote[707].start |
6513.69659375 |
transcript.pyannote[707].end |
6556.45784375 |
transcript.pyannote[708].speaker |
SPEAKER_19 |
transcript.pyannote[708].start |
6556.99784375 |
transcript.pyannote[708].end |
6565.03034375 |
transcript.pyannote[709].speaker |
SPEAKER_19 |
transcript.pyannote[709].start |
6565.30034375 |
transcript.pyannote[709].end |
6574.83471875 |
transcript.pyannote[710].speaker |
SPEAKER_19 |
transcript.pyannote[710].start |
6575.02034375 |
transcript.pyannote[710].end |
6577.60221875 |
transcript.pyannote[711].speaker |
SPEAKER_19 |
transcript.pyannote[711].start |
6577.83846875 |
transcript.pyannote[711].end |
6579.74534375 |
transcript.pyannote[712].speaker |
SPEAKER_19 |
transcript.pyannote[712].start |
6580.20096875 |
transcript.pyannote[712].end |
6584.31846875 |
transcript.pyannote[713].speaker |
SPEAKER_19 |
transcript.pyannote[713].start |
6584.63909375 |
transcript.pyannote[713].end |
6585.71909375 |
transcript.pyannote[714].speaker |
SPEAKER_19 |
transcript.pyannote[714].start |
6585.83721875 |
transcript.pyannote[714].end |
6588.19971875 |
transcript.pyannote[715].speaker |
SPEAKER_19 |
transcript.pyannote[715].start |
6588.58784375 |
transcript.pyannote[715].end |
6589.34721875 |
transcript.pyannote[716].speaker |
SPEAKER_19 |
transcript.pyannote[716].start |
6589.65096875 |
transcript.pyannote[716].end |
6590.49471875 |
transcript.pyannote[717].speaker |
SPEAKER_19 |
transcript.pyannote[717].start |
6590.81534375 |
transcript.pyannote[717].end |
6592.36784375 |
transcript.pyannote[718].speaker |
SPEAKER_19 |
transcript.pyannote[718].start |
6592.62096875 |
transcript.pyannote[718].end |
6593.38034375 |
transcript.pyannote[719].speaker |
SPEAKER_19 |
transcript.pyannote[719].start |
6593.68409375 |
transcript.pyannote[719].end |
6595.64159375 |
transcript.pyannote[720].speaker |
SPEAKER_19 |
transcript.pyannote[720].start |
6595.94534375 |
transcript.pyannote[720].end |
6597.71721875 |
transcript.pyannote[721].speaker |
SPEAKER_19 |
transcript.pyannote[721].start |
6597.85221875 |
transcript.pyannote[721].end |
6598.17284375 |
transcript.pyannote[722].speaker |
SPEAKER_19 |
transcript.pyannote[722].start |
6598.34159375 |
transcript.pyannote[722].end |
6609.02346875 |
transcript.pyannote[723].speaker |
SPEAKER_19 |
transcript.pyannote[723].start |
6609.15846875 |
transcript.pyannote[723].end |
6615.46971875 |
transcript.pyannote[724].speaker |
SPEAKER_19 |
transcript.pyannote[724].start |
6615.62159375 |
transcript.pyannote[724].end |
6621.44346875 |
transcript.pyannote[725].speaker |
SPEAKER_19 |
transcript.pyannote[725].start |
6621.96659375 |
transcript.pyannote[725].end |
6626.25284375 |
transcript.pyannote[726].speaker |
SPEAKER_19 |
transcript.pyannote[726].start |
6626.59034375 |
transcript.pyannote[726].end |
6630.87659375 |
transcript.pyannote[727].speaker |
SPEAKER_19 |
transcript.pyannote[727].start |
6631.11284375 |
transcript.pyannote[727].end |
6644.96721875 |
transcript.pyannote[728].speaker |
SPEAKER_19 |
transcript.pyannote[728].start |
6645.23721875 |
transcript.pyannote[728].end |
6648.03846875 |
transcript.pyannote[729].speaker |
SPEAKER_19 |
transcript.pyannote[729].start |
6648.51096875 |
transcript.pyannote[729].end |
6650.55284375 |
transcript.pyannote[730].speaker |
SPEAKER_19 |
transcript.pyannote[730].start |
6650.77221875 |
transcript.pyannote[730].end |
6651.00846875 |
transcript.pyannote[731].speaker |
SPEAKER_19 |
transcript.pyannote[731].start |
6651.36284375 |
transcript.pyannote[731].end |
6653.69159375 |
transcript.pyannote[732].speaker |
SPEAKER_19 |
transcript.pyannote[732].start |
6653.97846875 |
transcript.pyannote[732].end |
6654.36659375 |
transcript.pyannote[733].speaker |
SPEAKER_19 |
transcript.pyannote[733].start |
6655.12596875 |
transcript.pyannote[733].end |
6655.73346875 |
transcript.pyannote[734].speaker |
SPEAKER_19 |
transcript.pyannote[734].start |
6656.83034375 |
transcript.pyannote[734].end |
6657.52221875 |
transcript.pyannote[735].speaker |
SPEAKER_19 |
transcript.pyannote[735].start |
6657.62346875 |
transcript.pyannote[735].end |
6661.20096875 |
transcript.pyannote[736].speaker |
SPEAKER_19 |
transcript.pyannote[736].start |
6661.31909375 |
transcript.pyannote[736].end |
6669.16596875 |
transcript.pyannote[737].speaker |
SPEAKER_19 |
transcript.pyannote[737].start |
6669.31784375 |
transcript.pyannote[737].end |
6673.03034375 |
transcript.pyannote[738].speaker |
SPEAKER_19 |
transcript.pyannote[738].start |
6673.11471875 |
transcript.pyannote[738].end |
6676.89471875 |
transcript.pyannote[739].speaker |
SPEAKER_19 |
transcript.pyannote[739].start |
6676.94534375 |
transcript.pyannote[739].end |
6703.10159375 |
transcript.pyannote[740].speaker |
SPEAKER_19 |
transcript.pyannote[740].start |
6703.40534375 |
transcript.pyannote[740].end |
6704.28284375 |
transcript.pyannote[741].speaker |
SPEAKER_19 |
transcript.pyannote[741].start |
6704.48534375 |
transcript.pyannote[741].end |
6715.03221875 |
transcript.pyannote[742].speaker |
SPEAKER_19 |
transcript.pyannote[742].start |
6715.18409375 |
transcript.pyannote[742].end |
6728.16096875 |
transcript.pyannote[743].speaker |
SPEAKER_19 |
transcript.pyannote[743].start |
6728.46471875 |
transcript.pyannote[743].end |
6730.16909375 |
transcript.pyannote[744].speaker |
SPEAKER_19 |
transcript.pyannote[744].start |
6730.27034375 |
transcript.pyannote[744].end |
6735.11346875 |
transcript.pyannote[745].speaker |
SPEAKER_19 |
transcript.pyannote[745].start |
6735.31596875 |
transcript.pyannote[745].end |
6745.94721875 |
transcript.pyannote[746].speaker |
SPEAKER_19 |
transcript.pyannote[746].start |
6746.18346875 |
transcript.pyannote[746].end |
6754.36784375 |
transcript.pyannote[747].speaker |
SPEAKER_19 |
transcript.pyannote[747].start |
6754.62096875 |
transcript.pyannote[747].end |
6756.96659375 |
transcript.pyannote[748].speaker |
SPEAKER_19 |
transcript.pyannote[748].start |
6757.20284375 |
transcript.pyannote[748].end |
6758.18159375 |
transcript.pyannote[749].speaker |
SPEAKER_19 |
transcript.pyannote[749].start |
6758.40096875 |
transcript.pyannote[749].end |
6759.36284375 |
transcript.pyannote[750].speaker |
SPEAKER_19 |
transcript.pyannote[750].start |
6759.53159375 |
transcript.pyannote[750].end |
6761.23596875 |
transcript.pyannote[751].speaker |
SPEAKER_19 |
transcript.pyannote[751].start |
6761.47221875 |
transcript.pyannote[751].end |
6764.81346875 |
transcript.pyannote[752].speaker |
SPEAKER_19 |
transcript.pyannote[752].start |
6765.18471875 |
transcript.pyannote[752].end |
6769.94346875 |
transcript.pyannote[753].speaker |
SPEAKER_17 |
transcript.pyannote[753].start |
6770.44971875 |
transcript.pyannote[753].end |
6772.55909375 |
transcript.pyannote[754].speaker |
SPEAKER_17 |
transcript.pyannote[754].start |
6772.93034375 |
transcript.pyannote[754].end |
6773.84159375 |
transcript.pyannote[755].speaker |
SPEAKER_17 |
transcript.pyannote[755].start |
6774.24659375 |
transcript.pyannote[755].end |
6777.45284375 |
transcript.pyannote[756].speaker |
SPEAKER_17 |
transcript.pyannote[756].start |
6777.80721875 |
transcript.pyannote[756].end |
6783.34221875 |
transcript.pyannote[757].speaker |
SPEAKER_17 |
transcript.pyannote[757].start |
6783.56159375 |
transcript.pyannote[757].end |
6786.43034375 |
transcript.pyannote[758].speaker |
SPEAKER_17 |
transcript.pyannote[758].start |
6786.66659375 |
transcript.pyannote[758].end |
6787.66221875 |
transcript.pyannote[759].speaker |
SPEAKER_17 |
transcript.pyannote[759].start |
6787.94909375 |
transcript.pyannote[759].end |
6789.97409375 |
transcript.pyannote[760].speaker |
SPEAKER_13 |
transcript.pyannote[760].start |
6799.06971875 |
transcript.pyannote[760].end |
6807.15284375 |
transcript.pyannote[761].speaker |
SPEAKER_13 |
transcript.pyannote[761].start |
6807.99659375 |
transcript.pyannote[761].end |
6838.84409375 |
transcript.pyannote[762].speaker |
SPEAKER_13 |
transcript.pyannote[762].start |
6839.53596875 |
transcript.pyannote[762].end |
6895.78034375 |
transcript.pyannote[763].speaker |
SPEAKER_13 |
transcript.pyannote[763].start |
6896.55659375 |
transcript.pyannote[763].end |
6931.57221875 |
transcript.pyannote[764].speaker |
SPEAKER_13 |
transcript.pyannote[764].start |
6932.28096875 |
transcript.pyannote[764].end |
6939.72284375 |
transcript.pyannote[765].speaker |
SPEAKER_13 |
transcript.pyannote[765].start |
6940.48221875 |
transcript.pyannote[765].end |
6973.59096875 |
transcript.pyannote[766].speaker |
SPEAKER_13 |
transcript.pyannote[766].start |
6973.92846875 |
transcript.pyannote[766].end |
6979.46346875 |
transcript.pyannote[767].speaker |
SPEAKER_13 |
transcript.pyannote[767].start |
6980.23971875 |
transcript.pyannote[767].end |
7022.89971875 |
transcript.pyannote[768].speaker |
SPEAKER_13 |
transcript.pyannote[768].start |
7023.76034375 |
transcript.pyannote[768].end |
7033.37909375 |
transcript.pyannote[769].speaker |
SPEAKER_13 |
transcript.pyannote[769].start |
7033.63221875 |
transcript.pyannote[769].end |
7051.23284375 |
transcript.pyannote[770].speaker |
SPEAKER_13 |
transcript.pyannote[770].start |
7052.05971875 |
transcript.pyannote[770].end |
7087.04159375 |
transcript.pyannote[771].speaker |
SPEAKER_13 |
transcript.pyannote[771].start |
7087.54784375 |
transcript.pyannote[771].end |
7097.89221875 |
transcript.pyannote[772].speaker |
SPEAKER_17 |
transcript.pyannote[772].start |
7100.40659375 |
transcript.pyannote[772].end |
7100.81159375 |
transcript.pyannote[773].speaker |
SPEAKER_17 |
transcript.pyannote[773].start |
7100.92971875 |
transcript.pyannote[773].end |
7102.71846875 |
transcript.pyannote[774].speaker |
SPEAKER_17 |
transcript.pyannote[774].start |
7103.24159375 |
transcript.pyannote[774].end |
7105.19909375 |
transcript.pyannote[775].speaker |
SPEAKER_17 |
transcript.pyannote[775].start |
7717.60971875 |
transcript.pyannote[775].end |
7720.22534375 |
transcript.pyannote[776].speaker |
SPEAKER_17 |
transcript.pyannote[776].start |
7720.79909375 |
transcript.pyannote[776].end |
7722.94221875 |
transcript.pyannote[777].speaker |
SPEAKER_17 |
transcript.pyannote[777].start |
7723.63409375 |
transcript.pyannote[777].end |
7724.07284375 |
transcript.pyannote[778].speaker |
SPEAKER_17 |
transcript.pyannote[778].start |
7726.03034375 |
transcript.pyannote[778].end |
7726.63784375 |
transcript.pyannote[779].speaker |
SPEAKER_17 |
transcript.pyannote[779].start |
7727.12721875 |
transcript.pyannote[779].end |
7728.00471875 |
transcript.pyannote[780].speaker |
SPEAKER_17 |
transcript.pyannote[780].start |
7729.28721875 |
transcript.pyannote[780].end |
7729.54034375 |
transcript.pyannote[781].speaker |
SPEAKER_03 |
transcript.pyannote[781].start |
7749.18284375 |
transcript.pyannote[781].end |
7783.21971875 |
transcript.pyannote[782].speaker |
SPEAKER_03 |
transcript.pyannote[782].start |
7783.28721875 |
transcript.pyannote[782].end |
7819.58534375 |
transcript.pyannote[783].speaker |
SPEAKER_03 |
transcript.pyannote[783].start |
7819.66971875 |
transcript.pyannote[783].end |
7867.20659375 |
transcript.pyannote[784].speaker |
SPEAKER_03 |
transcript.pyannote[784].start |
7868.08409375 |
transcript.pyannote[784].end |
7872.13409375 |
transcript.pyannote[785].speaker |
SPEAKER_03 |
transcript.pyannote[785].start |
7872.18471875 |
transcript.pyannote[785].end |
8067.15846875 |
transcript.pyannote[786].speaker |
SPEAKER_03 |
transcript.pyannote[786].start |
8067.47909375 |
transcript.pyannote[786].end |
8079.32534375 |
transcript.pyannote[787].speaker |
SPEAKER_03 |
transcript.pyannote[787].start |
8079.83159375 |
transcript.pyannote[787].end |
8211.28784375 |
transcript.pyannote[788].speaker |
SPEAKER_03 |
transcript.pyannote[788].start |
8211.84471875 |
transcript.pyannote[788].end |
8254.23471875 |
transcript.pyannote[789].speaker |
SPEAKER_03 |
transcript.pyannote[789].start |
8254.52159375 |
transcript.pyannote[789].end |
8267.48159375 |
transcript.pyannote[790].speaker |
SPEAKER_03 |
transcript.pyannote[790].start |
8268.07221875 |
transcript.pyannote[790].end |
8274.28221875 |
transcript.pyannote[791].speaker |
SPEAKER_03 |
transcript.pyannote[791].start |
8274.73784375 |
transcript.pyannote[791].end |
8355.04596875 |
transcript.pyannote[792].speaker |
SPEAKER_03 |
transcript.pyannote[792].start |
8355.82221875 |
transcript.pyannote[792].end |
8358.03284375 |
transcript.pyannote[793].speaker |
SPEAKER_17 |
transcript.pyannote[793].start |
8358.03284375 |
transcript.pyannote[793].end |
8358.28596875 |
transcript.pyannote[794].speaker |
SPEAKER_17 |
transcript.pyannote[794].start |
8358.65721875 |
transcript.pyannote[794].end |
8359.82159375 |
transcript.pyannote[795].speaker |
SPEAKER_17 |
transcript.pyannote[795].start |
8360.53034375 |
transcript.pyannote[795].end |
8361.37409375 |
transcript.pyannote[796].speaker |
SPEAKER_17 |
transcript.pyannote[796].start |
8361.76221875 |
transcript.pyannote[796].end |
8365.39034375 |
transcript.pyannote[797].speaker |
SPEAKER_17 |
transcript.pyannote[797].start |
8365.77846875 |
transcript.pyannote[797].end |
8368.91721875 |
transcript.pyannote[798].speaker |
SPEAKER_17 |
transcript.pyannote[798].start |
8369.62596875 |
transcript.pyannote[798].end |
8371.93784375 |
transcript.pyannote[799].speaker |
SPEAKER_17 |
transcript.pyannote[799].start |
8373.05159375 |
transcript.pyannote[799].end |
8374.67159375 |
transcript.pyannote[800].speaker |
SPEAKER_18 |
transcript.pyannote[800].start |
8374.67159375 |
transcript.pyannote[800].end |
8374.70534375 |
transcript.pyannote[801].speaker |
SPEAKER_14 |
transcript.pyannote[801].start |
8377.00034375 |
transcript.pyannote[801].end |
8391.42846875 |
transcript.pyannote[802].speaker |
SPEAKER_14 |
transcript.pyannote[802].start |
8392.12034375 |
transcript.pyannote[802].end |
8409.72096875 |
transcript.pyannote[803].speaker |
SPEAKER_14 |
transcript.pyannote[803].start |
8410.44659375 |
transcript.pyannote[803].end |
8430.94971875 |
transcript.pyannote[804].speaker |
SPEAKER_14 |
transcript.pyannote[804].start |
8431.77659375 |
transcript.pyannote[804].end |
8458.37159375 |
transcript.pyannote[805].speaker |
SPEAKER_14 |
transcript.pyannote[805].start |
8458.57409375 |
transcript.pyannote[805].end |
8462.38784375 |
transcript.pyannote[806].speaker |
SPEAKER_14 |
transcript.pyannote[806].start |
8462.45534375 |
transcript.pyannote[806].end |
8480.88284375 |
transcript.pyannote[807].speaker |
SPEAKER_14 |
transcript.pyannote[807].start |
8482.09784375 |
transcript.pyannote[807].end |
8532.01409375 |
transcript.pyannote[808].speaker |
SPEAKER_14 |
transcript.pyannote[808].start |
8533.24596875 |
transcript.pyannote[808].end |
8541.19409375 |
transcript.pyannote[809].speaker |
SPEAKER_14 |
transcript.pyannote[809].start |
8541.36284375 |
transcript.pyannote[809].end |
8554.32284375 |
transcript.pyannote[810].speaker |
SPEAKER_14 |
transcript.pyannote[810].start |
8555.18346875 |
transcript.pyannote[810].end |
8580.79971875 |
transcript.pyannote[811].speaker |
SPEAKER_14 |
transcript.pyannote[811].start |
8581.93034375 |
transcript.pyannote[811].end |
8597.06721875 |
transcript.pyannote[812].speaker |
SPEAKER_14 |
transcript.pyannote[812].start |
8597.65784375 |
transcript.pyannote[812].end |
8602.68659375 |
transcript.pyannote[813].speaker |
SPEAKER_14 |
transcript.pyannote[813].start |
8602.70346875 |
transcript.pyannote[813].end |
8611.51221875 |
transcript.pyannote[814].speaker |
SPEAKER_14 |
transcript.pyannote[814].start |
8611.96784375 |
transcript.pyannote[814].end |
8629.56846875 |
transcript.pyannote[815].speaker |
SPEAKER_14 |
transcript.pyannote[815].start |
8630.04096875 |
transcript.pyannote[815].end |
8660.93909375 |
transcript.pyannote[816].speaker |
SPEAKER_14 |
transcript.pyannote[816].start |
8662.28909375 |
transcript.pyannote[816].end |
8679.50159375 |
transcript.pyannote[817].speaker |
SPEAKER_14 |
transcript.pyannote[817].start |
8680.32846875 |
transcript.pyannote[817].end |
8681.32409375 |
transcript.pyannote[818].speaker |
SPEAKER_14 |
transcript.pyannote[818].start |
8681.54346875 |
transcript.pyannote[818].end |
8684.98596875 |
transcript.pyannote[819].speaker |
SPEAKER_14 |
transcript.pyannote[819].start |
8685.25596875 |
transcript.pyannote[819].end |
8716.84596875 |
transcript.pyannote[820].speaker |
SPEAKER_14 |
transcript.pyannote[820].start |
8717.09909375 |
transcript.pyannote[820].end |
8736.52221875 |
transcript.pyannote[821].speaker |
SPEAKER_14 |
transcript.pyannote[821].start |
8737.78784375 |
transcript.pyannote[821].end |
8755.60784375 |
transcript.pyannote[822].speaker |
SPEAKER_14 |
transcript.pyannote[822].start |
8756.67096875 |
transcript.pyannote[822].end |
8764.83846875 |
transcript.pyannote[823].speaker |
SPEAKER_14 |
transcript.pyannote[823].start |
8765.19284375 |
transcript.pyannote[823].end |
8779.45221875 |
transcript.pyannote[824].speaker |
SPEAKER_14 |
transcript.pyannote[824].start |
8780.51534375 |
transcript.pyannote[824].end |
8783.56971875 |
transcript.pyannote[825].speaker |
SPEAKER_14 |
transcript.pyannote[825].start |
8784.37971875 |
transcript.pyannote[825].end |
8790.38721875 |
transcript.pyannote[826].speaker |
SPEAKER_14 |
transcript.pyannote[826].start |
8791.06221875 |
transcript.pyannote[826].end |
8815.76721875 |
transcript.pyannote[827].speaker |
SPEAKER_14 |
transcript.pyannote[827].start |
8816.20596875 |
transcript.pyannote[827].end |
8834.41409375 |
transcript.pyannote[828].speaker |
SPEAKER_14 |
transcript.pyannote[828].start |
8834.53221875 |
transcript.pyannote[828].end |
8894.99534375 |
transcript.pyannote[829].speaker |
SPEAKER_14 |
transcript.pyannote[829].start |
8895.31596875 |
transcript.pyannote[829].end |
8900.09159375 |
transcript.pyannote[830].speaker |
SPEAKER_14 |
transcript.pyannote[830].start |
8900.24346875 |
transcript.pyannote[830].end |
8917.20284375 |
transcript.pyannote[831].speaker |
SPEAKER_17 |
transcript.pyannote[831].start |
8917.15221875 |
transcript.pyannote[831].end |
8920.67909375 |
transcript.pyannote[832].speaker |
SPEAKER_17 |
transcript.pyannote[832].start |
8920.91534375 |
transcript.pyannote[832].end |
8922.31596875 |
transcript.pyannote[833].speaker |
SPEAKER_17 |
transcript.pyannote[833].start |
8922.63659375 |
transcript.pyannote[833].end |
8924.02034375 |
transcript.pyannote[834].speaker |
SPEAKER_17 |
transcript.pyannote[834].start |
8924.35784375 |
transcript.pyannote[834].end |
8925.55596875 |
transcript.pyannote[835].speaker |
SPEAKER_16 |
transcript.pyannote[835].start |
8930.34846875 |
transcript.pyannote[835].end |
8933.43659375 |
transcript.pyannote[836].speaker |
SPEAKER_16 |
transcript.pyannote[836].start |
8937.11534375 |
transcript.pyannote[836].end |
8938.38096875 |
transcript.pyannote[837].speaker |
SPEAKER_16 |
transcript.pyannote[837].start |
8939.29221875 |
transcript.pyannote[837].end |
8940.76034375 |
transcript.pyannote[838].speaker |
SPEAKER_16 |
transcript.pyannote[838].start |
8943.47721875 |
transcript.pyannote[838].end |
8945.45159375 |
transcript.pyannote[839].speaker |
SPEAKER_16 |
transcript.pyannote[839].start |
8945.92409375 |
transcript.pyannote[839].end |
8947.20659375 |
transcript.pyannote[840].speaker |
SPEAKER_16 |
transcript.pyannote[840].start |
8949.02909375 |
transcript.pyannote[840].end |
8952.64034375 |
transcript.pyannote[841].speaker |
SPEAKER_16 |
transcript.pyannote[841].start |
8953.50096875 |
transcript.pyannote[841].end |
8956.25159375 |
transcript.pyannote[842].speaker |
SPEAKER_16 |
transcript.pyannote[842].start |
8956.60596875 |
transcript.pyannote[842].end |
8956.97721875 |
transcript.pyannote[843].speaker |
SPEAKER_17 |
transcript.pyannote[843].start |
8956.97721875 |
transcript.pyannote[843].end |
8959.59284375 |
transcript.pyannote[844].speaker |
SPEAKER_17 |
transcript.pyannote[844].start |
8960.01471875 |
transcript.pyannote[844].end |
8961.78659375 |
transcript.pyannote[845].speaker |
SPEAKER_17 |
transcript.pyannote[845].start |
8962.78221875 |
transcript.pyannote[845].end |
8964.94221875 |
transcript.pyannote[846].speaker |
SPEAKER_17 |
transcript.pyannote[846].start |
8965.17846875 |
transcript.pyannote[846].end |
8967.47346875 |
transcript.pyannote[847].speaker |
SPEAKER_17 |
transcript.pyannote[847].start |
8968.06409375 |
transcript.pyannote[847].end |
8969.31284375 |
transcript.pyannote[848].speaker |
SPEAKER_17 |
transcript.pyannote[848].start |
8969.97096875 |
transcript.pyannote[848].end |
8970.44346875 |
transcript.pyannote[849].speaker |
SPEAKER_01 |
transcript.pyannote[849].start |
8989.54596875 |
transcript.pyannote[849].end |
8991.18284375 |
transcript.pyannote[850].speaker |
SPEAKER_01 |
transcript.pyannote[850].start |
8992.11096875 |
transcript.pyannote[850].end |
8999.92409375 |
transcript.pyannote[851].speaker |
SPEAKER_01 |
transcript.pyannote[851].start |
9000.64971875 |
transcript.pyannote[851].end |
9001.51034375 |
transcript.pyannote[852].speaker |
SPEAKER_01 |
transcript.pyannote[852].start |
9002.67471875 |
transcript.pyannote[852].end |
9005.18909375 |
transcript.pyannote[853].speaker |
SPEAKER_01 |
transcript.pyannote[853].start |
9005.81346875 |
transcript.pyannote[853].end |
9007.77096875 |
transcript.pyannote[854].speaker |
SPEAKER_01 |
transcript.pyannote[854].start |
9008.64846875 |
transcript.pyannote[854].end |
9010.42034375 |
transcript.pyannote[855].speaker |
SPEAKER_01 |
transcript.pyannote[855].start |
9011.36534375 |
transcript.pyannote[855].end |
9015.61784375 |
transcript.pyannote[856].speaker |
SPEAKER_01 |
transcript.pyannote[856].start |
9016.63034375 |
transcript.pyannote[856].end |
9018.48659375 |
transcript.pyannote[857].speaker |
SPEAKER_01 |
transcript.pyannote[857].start |
9018.95909375 |
transcript.pyannote[857].end |
9020.51159375 |
transcript.pyannote[858].speaker |
SPEAKER_01 |
transcript.pyannote[858].start |
9020.84909375 |
transcript.pyannote[858].end |
9021.94596875 |
transcript.pyannote[859].speaker |
SPEAKER_01 |
transcript.pyannote[859].start |
9022.70534375 |
transcript.pyannote[859].end |
9026.89034375 |
transcript.pyannote[860].speaker |
SPEAKER_01 |
transcript.pyannote[860].start |
9027.37971875 |
transcript.pyannote[860].end |
9034.72034375 |
transcript.pyannote[861].speaker |
SPEAKER_01 |
transcript.pyannote[861].start |
9035.73284375 |
transcript.pyannote[861].end |
9041.06534375 |
transcript.pyannote[862].speaker |
SPEAKER_01 |
transcript.pyannote[862].start |
9041.36909375 |
transcript.pyannote[862].end |
9050.44784375 |
transcript.pyannote[863].speaker |
SPEAKER_01 |
transcript.pyannote[863].start |
9051.32534375 |
transcript.pyannote[863].end |
9056.28659375 |
transcript.pyannote[864].speaker |
SPEAKER_01 |
transcript.pyannote[864].start |
9056.89409375 |
transcript.pyannote[864].end |
9060.13409375 |
transcript.pyannote[865].speaker |
SPEAKER_01 |
transcript.pyannote[865].start |
9060.57284375 |
transcript.pyannote[865].end |
9061.55159375 |
transcript.pyannote[866].speaker |
SPEAKER_01 |
transcript.pyannote[866].start |
9061.97346875 |
transcript.pyannote[866].end |
9064.67346875 |
transcript.pyannote[867].speaker |
SPEAKER_01 |
transcript.pyannote[867].start |
9065.21346875 |
transcript.pyannote[867].end |
9068.70659375 |
transcript.pyannote[868].speaker |
SPEAKER_01 |
transcript.pyannote[868].start |
9068.84159375 |
transcript.pyannote[868].end |
9068.87534375 |
transcript.pyannote[869].speaker |
SPEAKER_01 |
transcript.pyannote[869].start |
9069.02721875 |
transcript.pyannote[869].end |
9069.04409375 |
transcript.pyannote[870].speaker |
SPEAKER_01 |
transcript.pyannote[870].start |
9069.06096875 |
transcript.pyannote[870].end |
9074.86596875 |
transcript.pyannote[871].speaker |
SPEAKER_01 |
transcript.pyannote[871].start |
9075.55784375 |
transcript.pyannote[871].end |
9075.99659375 |
transcript.pyannote[872].speaker |
SPEAKER_01 |
transcript.pyannote[872].start |
9076.26659375 |
transcript.pyannote[872].end |
9088.72034375 |
transcript.pyannote[873].speaker |
SPEAKER_01 |
transcript.pyannote[873].start |
9089.47971875 |
transcript.pyannote[873].end |
9091.13346875 |
transcript.pyannote[874].speaker |
SPEAKER_01 |
transcript.pyannote[874].start |
9092.29784375 |
transcript.pyannote[874].end |
9098.96346875 |
transcript.pyannote[875].speaker |
SPEAKER_01 |
transcript.pyannote[875].start |
9100.11096875 |
transcript.pyannote[875].end |
9101.19096875 |
transcript.pyannote[876].speaker |
SPEAKER_01 |
transcript.pyannote[876].start |
9101.74784375 |
transcript.pyannote[876].end |
9102.94596875 |
transcript.pyannote[877].speaker |
SPEAKER_01 |
transcript.pyannote[877].start |
9103.33409375 |
transcript.pyannote[877].end |
9106.16909375 |
transcript.pyannote[878].speaker |
SPEAKER_01 |
transcript.pyannote[878].start |
9106.23659375 |
transcript.pyannote[878].end |
9108.46409375 |
transcript.pyannote[879].speaker |
SPEAKER_01 |
transcript.pyannote[879].start |
9109.08846875 |
transcript.pyannote[879].end |
9110.43846875 |
transcript.pyannote[880].speaker |
SPEAKER_01 |
transcript.pyannote[880].start |
9110.97846875 |
transcript.pyannote[880].end |
9116.47971875 |
transcript.pyannote[881].speaker |
SPEAKER_01 |
transcript.pyannote[881].start |
9117.25596875 |
transcript.pyannote[881].end |
9117.96471875 |
transcript.pyannote[882].speaker |
SPEAKER_01 |
transcript.pyannote[882].start |
9118.36971875 |
transcript.pyannote[882].end |
9121.45784375 |
transcript.pyannote[883].speaker |
SPEAKER_01 |
transcript.pyannote[883].start |
9121.99784375 |
transcript.pyannote[883].end |
9126.94221875 |
transcript.pyannote[884].speaker |
SPEAKER_01 |
transcript.pyannote[884].start |
9127.11096875 |
transcript.pyannote[884].end |
9128.35971875 |
transcript.pyannote[885].speaker |
SPEAKER_01 |
transcript.pyannote[885].start |
9129.01784375 |
transcript.pyannote[885].end |
9129.37221875 |
transcript.pyannote[886].speaker |
SPEAKER_01 |
transcript.pyannote[886].start |
9130.23284375 |
transcript.pyannote[886].end |
9131.85284375 |
transcript.pyannote[887].speaker |
SPEAKER_01 |
transcript.pyannote[887].start |
9132.27471875 |
transcript.pyannote[887].end |
9132.81471875 |
transcript.pyannote[888].speaker |
SPEAKER_01 |
transcript.pyannote[888].start |
9133.11846875 |
transcript.pyannote[888].end |
9137.72534375 |
transcript.pyannote[889].speaker |
SPEAKER_01 |
transcript.pyannote[889].start |
9138.41721875 |
transcript.pyannote[889].end |
9139.15971875 |
transcript.pyannote[890].speaker |
SPEAKER_01 |
transcript.pyannote[890].start |
9139.68284375 |
transcript.pyannote[890].end |
9141.84284375 |
transcript.pyannote[891].speaker |
SPEAKER_01 |
transcript.pyannote[891].start |
9142.38284375 |
transcript.pyannote[891].end |
9145.33596875 |
transcript.pyannote[892].speaker |
SPEAKER_01 |
transcript.pyannote[892].start |
9145.72409375 |
transcript.pyannote[892].end |
9151.14096875 |
transcript.pyannote[893].speaker |
SPEAKER_01 |
transcript.pyannote[893].start |
9151.64721875 |
transcript.pyannote[893].end |
9156.33846875 |
transcript.pyannote[894].speaker |
SPEAKER_01 |
transcript.pyannote[894].start |
9156.96284375 |
transcript.pyannote[894].end |
9159.62909375 |
transcript.pyannote[895].speaker |
SPEAKER_01 |
transcript.pyannote[895].start |
9160.20284375 |
transcript.pyannote[895].end |
9189.48096875 |
transcript.pyannote[896].speaker |
SPEAKER_01 |
transcript.pyannote[896].start |
9190.78034375 |
transcript.pyannote[896].end |
9193.31159375 |
transcript.pyannote[897].speaker |
SPEAKER_01 |
transcript.pyannote[897].start |
9193.90221875 |
transcript.pyannote[897].end |
9198.69471875 |
transcript.pyannote[898].speaker |
SPEAKER_01 |
transcript.pyannote[898].start |
9199.18409375 |
transcript.pyannote[898].end |
9204.88784375 |
transcript.pyannote[899].speaker |
SPEAKER_01 |
transcript.pyannote[899].start |
9205.22534375 |
transcript.pyannote[899].end |
9208.02659375 |
transcript.pyannote[900].speaker |
SPEAKER_01 |
transcript.pyannote[900].start |
9208.39784375 |
transcript.pyannote[900].end |
9209.15721875 |
transcript.pyannote[901].speaker |
SPEAKER_01 |
transcript.pyannote[901].start |
9209.42721875 |
transcript.pyannote[901].end |
9218.52284375 |
transcript.pyannote[902].speaker |
SPEAKER_01 |
transcript.pyannote[902].start |
9218.86034375 |
transcript.pyannote[902].end |
9228.10784375 |
transcript.pyannote[903].speaker |
SPEAKER_01 |
transcript.pyannote[903].start |
9229.23846875 |
transcript.pyannote[903].end |
9231.12846875 |
transcript.pyannote[904].speaker |
SPEAKER_01 |
transcript.pyannote[904].start |
9231.24659375 |
transcript.pyannote[904].end |
9238.75596875 |
transcript.pyannote[905].speaker |
SPEAKER_01 |
transcript.pyannote[905].start |
9238.90784375 |
transcript.pyannote[905].end |
9241.97909375 |
transcript.pyannote[906].speaker |
SPEAKER_01 |
transcript.pyannote[906].start |
9242.24909375 |
transcript.pyannote[906].end |
9257.89221875 |
transcript.pyannote[907].speaker |
SPEAKER_01 |
transcript.pyannote[907].start |
9259.12409375 |
transcript.pyannote[907].end |
9260.67659375 |
transcript.pyannote[908].speaker |
SPEAKER_01 |
transcript.pyannote[908].start |
9262.02659375 |
transcript.pyannote[908].end |
9264.97971875 |
transcript.pyannote[909].speaker |
SPEAKER_01 |
transcript.pyannote[909].start |
9265.72221875 |
transcript.pyannote[909].end |
9266.90346875 |
transcript.pyannote[910].speaker |
SPEAKER_01 |
transcript.pyannote[910].start |
9267.40971875 |
transcript.pyannote[910].end |
9273.58596875 |
transcript.pyannote[911].speaker |
SPEAKER_01 |
transcript.pyannote[911].start |
9274.02471875 |
transcript.pyannote[911].end |
9274.66596875 |
transcript.pyannote[912].speaker |
SPEAKER_01 |
transcript.pyannote[912].start |
9275.10471875 |
transcript.pyannote[912].end |
9280.77471875 |
transcript.pyannote[913].speaker |
SPEAKER_01 |
transcript.pyannote[913].start |
9281.33159375 |
transcript.pyannote[913].end |
9281.87159375 |
transcript.pyannote[914].speaker |
SPEAKER_01 |
transcript.pyannote[914].start |
9282.22596875 |
transcript.pyannote[914].end |
9282.61409375 |
transcript.pyannote[915].speaker |
SPEAKER_01 |
transcript.pyannote[915].start |
9283.08659375 |
transcript.pyannote[915].end |
9284.84159375 |
transcript.pyannote[916].speaker |
SPEAKER_01 |
transcript.pyannote[916].start |
9285.33096875 |
transcript.pyannote[916].end |
9287.47409375 |
transcript.pyannote[917].speaker |
SPEAKER_01 |
transcript.pyannote[917].start |
9287.72721875 |
transcript.pyannote[917].end |
9288.16596875 |
transcript.pyannote[918].speaker |
SPEAKER_01 |
transcript.pyannote[918].start |
9288.68909375 |
transcript.pyannote[918].end |
9292.55346875 |
transcript.pyannote[919].speaker |
SPEAKER_01 |
transcript.pyannote[919].start |
9293.73471875 |
transcript.pyannote[919].end |
9300.28221875 |
transcript.pyannote[920].speaker |
SPEAKER_01 |
transcript.pyannote[920].start |
9301.04159375 |
transcript.pyannote[920].end |
9302.13846875 |
transcript.pyannote[921].speaker |
SPEAKER_01 |
transcript.pyannote[921].start |
9303.48846875 |
transcript.pyannote[921].end |
9305.27721875 |
transcript.pyannote[922].speaker |
SPEAKER_01 |
transcript.pyannote[922].start |
9306.20534375 |
transcript.pyannote[922].end |
9308.93909375 |
transcript.pyannote[923].speaker |
SPEAKER_01 |
transcript.pyannote[923].start |
9308.97284375 |
transcript.pyannote[923].end |
9308.98971875 |
transcript.pyannote[924].speaker |
SPEAKER_01 |
transcript.pyannote[924].start |
9309.29346875 |
transcript.pyannote[924].end |
9313.34346875 |
transcript.pyannote[925].speaker |
SPEAKER_01 |
transcript.pyannote[925].start |
9313.63034375 |
transcript.pyannote[925].end |
9316.51596875 |
transcript.pyannote[926].speaker |
SPEAKER_01 |
transcript.pyannote[926].start |
9316.54971875 |
transcript.pyannote[926].end |
9316.58346875 |
transcript.pyannote[927].speaker |
SPEAKER_01 |
transcript.pyannote[927].start |
9316.85346875 |
transcript.pyannote[927].end |
9318.33846875 |
transcript.pyannote[928].speaker |
SPEAKER_01 |
transcript.pyannote[928].start |
9318.89534375 |
transcript.pyannote[928].end |
9320.43096875 |
transcript.pyannote[929].speaker |
SPEAKER_01 |
transcript.pyannote[929].start |
9320.81909375 |
transcript.pyannote[929].end |
9324.21096875 |
transcript.pyannote[930].speaker |
SPEAKER_01 |
transcript.pyannote[930].start |
9324.31221875 |
transcript.pyannote[930].end |
9325.03784375 |
transcript.pyannote[931].speaker |
SPEAKER_01 |
transcript.pyannote[931].start |
9325.49346875 |
transcript.pyannote[931].end |
9326.08409375 |
transcript.pyannote[932].speaker |
SPEAKER_01 |
transcript.pyannote[932].start |
9326.53971875 |
transcript.pyannote[932].end |
9327.60284375 |
transcript.pyannote[933].speaker |
SPEAKER_01 |
transcript.pyannote[933].start |
9327.67034375 |
transcript.pyannote[933].end |
9332.15909375 |
transcript.pyannote[934].speaker |
SPEAKER_01 |
transcript.pyannote[934].start |
9332.34471875 |
transcript.pyannote[934].end |
9336.64784375 |
transcript.pyannote[935].speaker |
SPEAKER_01 |
transcript.pyannote[935].start |
9336.74909375 |
transcript.pyannote[935].end |
9342.30096875 |
transcript.pyannote[936].speaker |
SPEAKER_01 |
transcript.pyannote[936].start |
9342.60471875 |
transcript.pyannote[936].end |
9344.10659375 |
transcript.pyannote[937].speaker |
SPEAKER_01 |
transcript.pyannote[937].start |
9344.95034375 |
transcript.pyannote[937].end |
9345.33846875 |
transcript.pyannote[938].speaker |
SPEAKER_01 |
transcript.pyannote[938].start |
9345.76034375 |
transcript.pyannote[938].end |
9346.67159375 |
transcript.pyannote[939].speaker |
SPEAKER_01 |
transcript.pyannote[939].start |
9347.19471875 |
transcript.pyannote[939].end |
9349.59096875 |
transcript.pyannote[940].speaker |
SPEAKER_01 |
transcript.pyannote[940].start |
9350.18159375 |
transcript.pyannote[940].end |
9350.85659375 |
transcript.pyannote[941].speaker |
SPEAKER_01 |
transcript.pyannote[941].start |
9351.49784375 |
transcript.pyannote[941].end |
9352.17284375 |
transcript.pyannote[942].speaker |
SPEAKER_01 |
transcript.pyannote[942].start |
9352.52721875 |
transcript.pyannote[942].end |
9354.90659375 |
transcript.pyannote[943].speaker |
SPEAKER_01 |
transcript.pyannote[943].start |
9355.49721875 |
transcript.pyannote[943].end |
9361.74096875 |
transcript.pyannote[944].speaker |
SPEAKER_01 |
transcript.pyannote[944].start |
9361.90971875 |
transcript.pyannote[944].end |
9373.95846875 |
transcript.pyannote[945].speaker |
SPEAKER_01 |
transcript.pyannote[945].start |
9374.93721875 |
transcript.pyannote[945].end |
9377.94096875 |
transcript.pyannote[946].speaker |
SPEAKER_01 |
transcript.pyannote[946].start |
9378.34596875 |
transcript.pyannote[946].end |
9379.44284375 |
transcript.pyannote[947].speaker |
SPEAKER_01 |
transcript.pyannote[947].start |
9379.98284375 |
transcript.pyannote[947].end |
9381.07971875 |
transcript.pyannote[948].speaker |
SPEAKER_01 |
transcript.pyannote[948].start |
9381.43409375 |
transcript.pyannote[948].end |
9388.62284375 |
transcript.pyannote[949].speaker |
SPEAKER_01 |
transcript.pyannote[949].start |
9388.75784375 |
transcript.pyannote[949].end |
9396.14909375 |
transcript.pyannote[950].speaker |
SPEAKER_01 |
transcript.pyannote[950].start |
9396.45284375 |
transcript.pyannote[950].end |
9402.88221875 |
transcript.pyannote[951].speaker |
SPEAKER_01 |
transcript.pyannote[951].start |
9403.27034375 |
transcript.pyannote[951].end |
9404.40096875 |
transcript.pyannote[952].speaker |
SPEAKER_01 |
transcript.pyannote[952].start |
9404.62034375 |
transcript.pyannote[952].end |
9408.04596875 |
transcript.pyannote[953].speaker |
SPEAKER_01 |
transcript.pyannote[953].start |
9408.31596875 |
transcript.pyannote[953].end |
9413.93534375 |
transcript.pyannote[954].speaker |
SPEAKER_01 |
transcript.pyannote[954].start |
9414.20534375 |
transcript.pyannote[954].end |
9423.97596875 |
transcript.pyannote[955].speaker |
SPEAKER_01 |
transcript.pyannote[955].start |
9424.38096875 |
transcript.pyannote[955].end |
9425.37659375 |
transcript.pyannote[956].speaker |
SPEAKER_01 |
transcript.pyannote[956].start |
9425.96721875 |
transcript.pyannote[956].end |
9427.78971875 |
transcript.pyannote[957].speaker |
SPEAKER_01 |
transcript.pyannote[957].start |
9427.97534375 |
transcript.pyannote[957].end |
9428.02596875 |
transcript.pyannote[958].speaker |
SPEAKER_01 |
transcript.pyannote[958].start |
9428.32971875 |
transcript.pyannote[958].end |
9428.68409375 |
transcript.pyannote[959].speaker |
SPEAKER_01 |
transcript.pyannote[959].start |
9428.95409375 |
transcript.pyannote[959].end |
9429.69659375 |
transcript.pyannote[960].speaker |
SPEAKER_01 |
transcript.pyannote[960].start |
9430.05096875 |
transcript.pyannote[960].end |
9431.40096875 |
transcript.pyannote[961].speaker |
SPEAKER_01 |
transcript.pyannote[961].start |
9432.04221875 |
transcript.pyannote[961].end |
9433.30784375 |
transcript.pyannote[962].speaker |
SPEAKER_01 |
transcript.pyannote[962].start |
9433.79721875 |
transcript.pyannote[962].end |
9435.97409375 |
transcript.pyannote[963].speaker |
SPEAKER_01 |
transcript.pyannote[963].start |
9436.10909375 |
transcript.pyannote[963].end |
9438.52221875 |
transcript.pyannote[964].speaker |
SPEAKER_01 |
transcript.pyannote[964].start |
9438.96096875 |
transcript.pyannote[964].end |
9440.76659375 |
transcript.pyannote[965].speaker |
SPEAKER_01 |
transcript.pyannote[965].start |
9441.23909375 |
transcript.pyannote[965].end |
9443.93909375 |
transcript.pyannote[966].speaker |
SPEAKER_01 |
transcript.pyannote[966].start |
9444.56346875 |
transcript.pyannote[966].end |
9445.62659375 |
transcript.pyannote[967].speaker |
SPEAKER_01 |
transcript.pyannote[967].start |
9446.65596875 |
transcript.pyannote[967].end |
9448.84971875 |
transcript.pyannote[968].speaker |
SPEAKER_01 |
transcript.pyannote[968].start |
9448.95096875 |
transcript.pyannote[968].end |
9450.52034375 |
transcript.pyannote[969].speaker |
SPEAKER_01 |
transcript.pyannote[969].start |
9451.33034375 |
transcript.pyannote[969].end |
9453.67596875 |
transcript.pyannote[970].speaker |
SPEAKER_01 |
transcript.pyannote[970].start |
9454.04721875 |
transcript.pyannote[970].end |
9455.16096875 |
transcript.pyannote[971].speaker |
SPEAKER_01 |
transcript.pyannote[971].start |
9455.58284375 |
transcript.pyannote[971].end |
9458.45159375 |
transcript.pyannote[972].speaker |
SPEAKER_01 |
transcript.pyannote[972].start |
9459.36284375 |
transcript.pyannote[972].end |
9460.15596875 |
transcript.pyannote[973].speaker |
SPEAKER_01 |
transcript.pyannote[973].start |
9460.34159375 |
transcript.pyannote[973].end |
9461.03346875 |
transcript.pyannote[974].speaker |
SPEAKER_01 |
transcript.pyannote[974].start |
9461.57346875 |
transcript.pyannote[974].end |
9461.86034375 |
transcript.pyannote[975].speaker |
SPEAKER_01 |
transcript.pyannote[975].start |
9461.99534375 |
transcript.pyannote[975].end |
9464.17221875 |
transcript.pyannote[976].speaker |
SPEAKER_01 |
transcript.pyannote[976].start |
9464.50971875 |
transcript.pyannote[976].end |
9465.72471875 |
transcript.pyannote[977].speaker |
SPEAKER_01 |
transcript.pyannote[977].start |
9466.45034375 |
transcript.pyannote[977].end |
9468.52596875 |
transcript.pyannote[978].speaker |
SPEAKER_01 |
transcript.pyannote[978].start |
9470.02784375 |
transcript.pyannote[978].end |
9471.83346875 |
transcript.pyannote[979].speaker |
SPEAKER_01 |
transcript.pyannote[979].start |
9472.64346875 |
transcript.pyannote[979].end |
9473.50409375 |
transcript.pyannote[980].speaker |
SPEAKER_01 |
transcript.pyannote[980].start |
9474.09471875 |
transcript.pyannote[980].end |
9478.80284375 |
transcript.pyannote[981].speaker |
SPEAKER_01 |
transcript.pyannote[981].start |
9479.25846875 |
transcript.pyannote[981].end |
9479.76471875 |
transcript.pyannote[982].speaker |
SPEAKER_01 |
transcript.pyannote[982].start |
9480.89534375 |
transcript.pyannote[982].end |
9482.86971875 |
transcript.pyannote[983].speaker |
SPEAKER_01 |
transcript.pyannote[983].start |
9483.37596875 |
transcript.pyannote[983].end |
9486.17721875 |
transcript.pyannote[984].speaker |
SPEAKER_01 |
transcript.pyannote[984].start |
9486.34596875 |
transcript.pyannote[984].end |
9487.61159375 |
transcript.pyannote[985].speaker |
SPEAKER_01 |
transcript.pyannote[985].start |
9488.08409375 |
transcript.pyannote[985].end |
9488.59034375 |
transcript.pyannote[986].speaker |
SPEAKER_01 |
transcript.pyannote[986].start |
9488.99534375 |
transcript.pyannote[986].end |
9490.07534375 |
transcript.pyannote[987].speaker |
SPEAKER_01 |
transcript.pyannote[987].start |
9491.56034375 |
transcript.pyannote[987].end |
9493.18034375 |
transcript.pyannote[988].speaker |
SPEAKER_01 |
transcript.pyannote[988].start |
9493.82159375 |
transcript.pyannote[988].end |
9494.98596875 |
transcript.pyannote[989].speaker |
SPEAKER_17 |
transcript.pyannote[989].start |
9496.01534375 |
transcript.pyannote[989].end |
9500.62221875 |
transcript.pyannote[990].speaker |
SPEAKER_17 |
transcript.pyannote[990].start |
9500.84159375 |
transcript.pyannote[990].end |
9503.15346875 |
transcript.pyannote[991].speaker |
SPEAKER_17 |
transcript.pyannote[991].start |
9504.01409375 |
transcript.pyannote[991].end |
9504.75659375 |
transcript.pyannote[992].speaker |
SPEAKER_16 |
transcript.pyannote[992].start |
9512.11409375 |
transcript.pyannote[992].end |
9512.94096875 |
transcript.pyannote[993].speaker |
SPEAKER_16 |
transcript.pyannote[993].start |
9513.36284375 |
transcript.pyannote[993].end |
9516.04596875 |
transcript.pyannote[994].speaker |
SPEAKER_16 |
transcript.pyannote[994].start |
9516.51846875 |
transcript.pyannote[994].end |
9517.26096875 |
transcript.pyannote[995].speaker |
SPEAKER_16 |
transcript.pyannote[995].start |
9517.46346875 |
transcript.pyannote[995].end |
9518.56034375 |
transcript.pyannote[996].speaker |
SPEAKER_16 |
transcript.pyannote[996].start |
9519.57284375 |
transcript.pyannote[996].end |
9521.12534375 |
transcript.pyannote[997].speaker |
SPEAKER_16 |
transcript.pyannote[997].start |
9521.17596875 |
transcript.pyannote[997].end |
9523.16721875 |
transcript.pyannote[998].speaker |
SPEAKER_16 |
transcript.pyannote[998].start |
9523.38659375 |
transcript.pyannote[998].end |
9525.02346875 |
transcript.pyannote[999].speaker |
SPEAKER_16 |
transcript.pyannote[999].start |
9525.17534375 |
transcript.pyannote[999].end |
9527.48721875 |
transcript.pyannote[1000].speaker |
SPEAKER_16 |
transcript.pyannote[1000].start |
9527.94284375 |
transcript.pyannote[1000].end |
9532.54971875 |
transcript.pyannote[1001].speaker |
SPEAKER_16 |
transcript.pyannote[1001].start |
9533.19096875 |
transcript.pyannote[1001].end |
9536.31284375 |
transcript.pyannote[1002].speaker |
SPEAKER_16 |
transcript.pyannote[1002].start |
9537.00471875 |
transcript.pyannote[1002].end |
9539.06346875 |
transcript.pyannote[1003].speaker |
SPEAKER_16 |
transcript.pyannote[1003].start |
9539.53596875 |
transcript.pyannote[1003].end |
9541.96596875 |
transcript.pyannote[1004].speaker |
SPEAKER_16 |
transcript.pyannote[1004].start |
9542.16846875 |
transcript.pyannote[1004].end |
9543.68721875 |
transcript.pyannote[1005].speaker |
SPEAKER_16 |
transcript.pyannote[1005].start |
9544.31159375 |
transcript.pyannote[1005].end |
9545.86409375 |
transcript.pyannote[1006].speaker |
SPEAKER_16 |
transcript.pyannote[1006].start |
9546.50534375 |
transcript.pyannote[1006].end |
9547.43346875 |
transcript.pyannote[1007].speaker |
SPEAKER_16 |
transcript.pyannote[1007].start |
9547.77096875 |
transcript.pyannote[1007].end |
9548.71596875 |
transcript.pyannote[1008].speaker |
SPEAKER_16 |
transcript.pyannote[1008].start |
9549.13784375 |
transcript.pyannote[1008].end |
9550.50471875 |
transcript.pyannote[1009].speaker |
SPEAKER_16 |
transcript.pyannote[1009].start |
9551.24721875 |
transcript.pyannote[1009].end |
9555.58409375 |
transcript.pyannote[1010].speaker |
SPEAKER_16 |
transcript.pyannote[1010].start |
9555.61784375 |
transcript.pyannote[1010].end |
9562.36784375 |
transcript.pyannote[1011].speaker |
SPEAKER_16 |
transcript.pyannote[1011].start |
9563.05971875 |
transcript.pyannote[1011].end |
9565.28721875 |
transcript.pyannote[1012].speaker |
SPEAKER_16 |
transcript.pyannote[1012].start |
9565.65846875 |
transcript.pyannote[1012].end |
9567.86909375 |
transcript.pyannote[1013].speaker |
SPEAKER_16 |
transcript.pyannote[1013].start |
9568.83096875 |
transcript.pyannote[1013].end |
9571.91909375 |
transcript.pyannote[1014].speaker |
SPEAKER_16 |
transcript.pyannote[1014].start |
9572.25659375 |
transcript.pyannote[1014].end |
9575.15909375 |
transcript.pyannote[1015].speaker |
SPEAKER_16 |
transcript.pyannote[1015].start |
9575.49659375 |
transcript.pyannote[1015].end |
9577.87596875 |
transcript.pyannote[1016].speaker |
SPEAKER_16 |
transcript.pyannote[1016].start |
9578.36534375 |
transcript.pyannote[1016].end |
9580.13721875 |
transcript.pyannote[1017].speaker |
SPEAKER_16 |
transcript.pyannote[1017].start |
9580.71096875 |
transcript.pyannote[1017].end |
9581.20034375 |
transcript.pyannote[1018].speaker |
SPEAKER_16 |
transcript.pyannote[1018].start |
9581.68971875 |
transcript.pyannote[1018].end |
9583.39409375 |
transcript.pyannote[1019].speaker |
SPEAKER_16 |
transcript.pyannote[1019].start |
9583.73159375 |
transcript.pyannote[1019].end |
9584.69346875 |
transcript.pyannote[1020].speaker |
SPEAKER_16 |
transcript.pyannote[1020].start |
9585.43596875 |
transcript.pyannote[1020].end |
9586.85346875 |
transcript.pyannote[1021].speaker |
SPEAKER_16 |
transcript.pyannote[1021].start |
9587.12346875 |
transcript.pyannote[1021].end |
9590.70096875 |
transcript.pyannote[1022].speaker |
SPEAKER_16 |
transcript.pyannote[1022].start |
9591.40971875 |
transcript.pyannote[1022].end |
9594.41346875 |
transcript.pyannote[1023].speaker |
SPEAKER_16 |
transcript.pyannote[1023].start |
9594.83534375 |
transcript.pyannote[1023].end |
9599.40846875 |
transcript.pyannote[1024].speaker |
SPEAKER_16 |
transcript.pyannote[1024].start |
9599.86409375 |
transcript.pyannote[1024].end |
9600.72471875 |
transcript.pyannote[1025].speaker |
SPEAKER_16 |
transcript.pyannote[1025].start |
9601.65284375 |
transcript.pyannote[1025].end |
9602.07471875 |
transcript.pyannote[1026].speaker |
SPEAKER_16 |
transcript.pyannote[1026].start |
9602.42909375 |
transcript.pyannote[1026].end |
9604.45409375 |
transcript.pyannote[1027].speaker |
SPEAKER_16 |
transcript.pyannote[1027].start |
9604.82534375 |
transcript.pyannote[1027].end |
9607.47471875 |
transcript.pyannote[1028].speaker |
SPEAKER_16 |
transcript.pyannote[1028].start |
9607.91346875 |
transcript.pyannote[1028].end |
9609.75284375 |
transcript.pyannote[1029].speaker |
SPEAKER_16 |
transcript.pyannote[1029].start |
9610.02284375 |
transcript.pyannote[1029].end |
9611.40659375 |
transcript.pyannote[1030].speaker |
SPEAKER_16 |
transcript.pyannote[1030].start |
9611.55846875 |
transcript.pyannote[1030].end |
9614.79846875 |
transcript.pyannote[1031].speaker |
SPEAKER_16 |
transcript.pyannote[1031].start |
9615.25409375 |
transcript.pyannote[1031].end |
9616.46909375 |
transcript.pyannote[1032].speaker |
SPEAKER_16 |
transcript.pyannote[1032].start |
9616.82346875 |
transcript.pyannote[1032].end |
9618.79784375 |
transcript.pyannote[1033].speaker |
SPEAKER_16 |
transcript.pyannote[1033].start |
9619.52346875 |
transcript.pyannote[1033].end |
9620.56971875 |
transcript.pyannote[1034].speaker |
SPEAKER_16 |
transcript.pyannote[1034].start |
9621.05909375 |
transcript.pyannote[1034].end |
9622.37534375 |
transcript.pyannote[1035].speaker |
SPEAKER_16 |
transcript.pyannote[1035].start |
9622.94909375 |
transcript.pyannote[1035].end |
9623.45534375 |
transcript.pyannote[1036].speaker |
SPEAKER_16 |
transcript.pyannote[1036].start |
9624.58596875 |
transcript.pyannote[1036].end |
9628.61909375 |
transcript.pyannote[1037].speaker |
SPEAKER_16 |
transcript.pyannote[1037].start |
9629.09159375 |
transcript.pyannote[1037].end |
9631.21784375 |
transcript.pyannote[1038].speaker |
SPEAKER_16 |
transcript.pyannote[1038].start |
9631.62284375 |
transcript.pyannote[1038].end |
9641.25846875 |
transcript.pyannote[1039].speaker |
SPEAKER_16 |
transcript.pyannote[1039].start |
9641.76471875 |
transcript.pyannote[1039].end |
9643.30034375 |
transcript.pyannote[1040].speaker |
SPEAKER_16 |
transcript.pyannote[1040].start |
9643.82346875 |
transcript.pyannote[1040].end |
9647.14784375 |
transcript.pyannote[1041].speaker |
SPEAKER_16 |
transcript.pyannote[1041].start |
9647.85659375 |
transcript.pyannote[1041].end |
9650.08409375 |
transcript.pyannote[1042].speaker |
SPEAKER_16 |
transcript.pyannote[1042].start |
9650.48909375 |
transcript.pyannote[1042].end |
9658.69034375 |
transcript.pyannote[1043].speaker |
SPEAKER_16 |
transcript.pyannote[1043].start |
9659.14596875 |
transcript.pyannote[1043].end |
9662.52096875 |
transcript.pyannote[1044].speaker |
SPEAKER_16 |
transcript.pyannote[1044].start |
9662.92596875 |
transcript.pyannote[1044].end |
9663.85409375 |
transcript.pyannote[1045].speaker |
SPEAKER_16 |
transcript.pyannote[1045].start |
9664.24221875 |
transcript.pyannote[1045].end |
9666.03096875 |
transcript.pyannote[1046].speaker |
SPEAKER_16 |
transcript.pyannote[1046].start |
9666.55409375 |
transcript.pyannote[1046].end |
9668.74784375 |
transcript.pyannote[1047].speaker |
SPEAKER_16 |
transcript.pyannote[1047].start |
9668.91659375 |
transcript.pyannote[1047].end |
9670.18221875 |
transcript.pyannote[1048].speaker |
SPEAKER_16 |
transcript.pyannote[1048].start |
9670.62096875 |
transcript.pyannote[1048].end |
9672.54471875 |
transcript.pyannote[1049].speaker |
SPEAKER_16 |
transcript.pyannote[1049].start |
9673.05096875 |
transcript.pyannote[1049].end |
9675.36284375 |
transcript.pyannote[1050].speaker |
SPEAKER_16 |
transcript.pyannote[1050].start |
9676.12221875 |
transcript.pyannote[1050].end |
9677.64096875 |
transcript.pyannote[1051].speaker |
SPEAKER_16 |
transcript.pyannote[1051].start |
9678.40034375 |
transcript.pyannote[1051].end |
9679.54784375 |
transcript.pyannote[1052].speaker |
SPEAKER_16 |
transcript.pyannote[1052].start |
9680.10471875 |
transcript.pyannote[1052].end |
9681.18471875 |
transcript.pyannote[1053].speaker |
SPEAKER_16 |
transcript.pyannote[1053].start |
9681.31971875 |
transcript.pyannote[1053].end |
9684.03659375 |
transcript.pyannote[1054].speaker |
SPEAKER_16 |
transcript.pyannote[1054].start |
9684.32346875 |
transcript.pyannote[1054].end |
9689.14971875 |
transcript.pyannote[1055].speaker |
SPEAKER_16 |
transcript.pyannote[1055].start |
9689.65596875 |
transcript.pyannote[1055].end |
9691.66409375 |
transcript.pyannote[1056].speaker |
SPEAKER_16 |
transcript.pyannote[1056].start |
9692.47409375 |
transcript.pyannote[1056].end |
9695.17409375 |
transcript.pyannote[1057].speaker |
SPEAKER_16 |
transcript.pyannote[1057].start |
9695.44409375 |
transcript.pyannote[1057].end |
9696.38909375 |
transcript.pyannote[1058].speaker |
SPEAKER_16 |
transcript.pyannote[1058].start |
9696.57471875 |
transcript.pyannote[1058].end |
9706.63221875 |
transcript.pyannote[1059].speaker |
SPEAKER_16 |
transcript.pyannote[1059].start |
9706.90221875 |
transcript.pyannote[1059].end |
9711.81284375 |
transcript.pyannote[1060].speaker |
SPEAKER_16 |
transcript.pyannote[1060].start |
9711.94784375 |
transcript.pyannote[1060].end |
9725.83596875 |
transcript.pyannote[1061].speaker |
SPEAKER_16 |
transcript.pyannote[1061].start |
9726.39284375 |
transcript.pyannote[1061].end |
9728.06346875 |
transcript.pyannote[1062].speaker |
SPEAKER_16 |
transcript.pyannote[1062].start |
9728.19846875 |
transcript.pyannote[1062].end |
9730.49346875 |
transcript.pyannote[1063].speaker |
SPEAKER_16 |
transcript.pyannote[1063].start |
9731.05034375 |
transcript.pyannote[1063].end |
9733.12596875 |
transcript.pyannote[1064].speaker |
SPEAKER_16 |
transcript.pyannote[1064].start |
9733.48034375 |
transcript.pyannote[1064].end |
9737.68221875 |
transcript.pyannote[1065].speaker |
SPEAKER_16 |
transcript.pyannote[1065].start |
9737.76659375 |
transcript.pyannote[1065].end |
9739.62284375 |
transcript.pyannote[1066].speaker |
SPEAKER_16 |
transcript.pyannote[1066].start |
9739.87596875 |
transcript.pyannote[1066].end |
9741.24284375 |
transcript.pyannote[1067].speaker |
SPEAKER_16 |
transcript.pyannote[1067].start |
9741.44534375 |
transcript.pyannote[1067].end |
9742.42409375 |
transcript.pyannote[1068].speaker |
SPEAKER_16 |
transcript.pyannote[1068].start |
9742.86284375 |
transcript.pyannote[1068].end |
9744.28034375 |
transcript.pyannote[1069].speaker |
SPEAKER_16 |
transcript.pyannote[1069].start |
9744.93846875 |
transcript.pyannote[1069].end |
9747.87471875 |
transcript.pyannote[1070].speaker |
SPEAKER_16 |
transcript.pyannote[1070].start |
9748.39784375 |
transcript.pyannote[1070].end |
9755.55284375 |
transcript.pyannote[1071].speaker |
SPEAKER_16 |
transcript.pyannote[1071].start |
9755.99159375 |
transcript.pyannote[1071].end |
9757.02096875 |
transcript.pyannote[1072].speaker |
SPEAKER_16 |
transcript.pyannote[1072].start |
9757.32471875 |
transcript.pyannote[1072].end |
9759.33284375 |
transcript.pyannote[1073].speaker |
SPEAKER_16 |
transcript.pyannote[1073].start |
9759.82221875 |
transcript.pyannote[1073].end |
9766.69034375 |
transcript.pyannote[1074].speaker |
SPEAKER_16 |
transcript.pyannote[1074].start |
9766.96034375 |
transcript.pyannote[1074].end |
9778.73909375 |
transcript.pyannote[1075].speaker |
SPEAKER_16 |
transcript.pyannote[1075].start |
9779.22846875 |
transcript.pyannote[1075].end |
9782.83971875 |
transcript.pyannote[1076].speaker |
SPEAKER_16 |
transcript.pyannote[1076].start |
9782.94096875 |
transcript.pyannote[1076].end |
9784.72971875 |
transcript.pyannote[1077].speaker |
SPEAKER_16 |
transcript.pyannote[1077].start |
9785.03346875 |
transcript.pyannote[1077].end |
9786.13034375 |
transcript.pyannote[1078].speaker |
SPEAKER_16 |
transcript.pyannote[1078].start |
9787.14284375 |
transcript.pyannote[1078].end |
9792.40784375 |
transcript.pyannote[1079].speaker |
SPEAKER_16 |
transcript.pyannote[1079].start |
9792.69471875 |
transcript.pyannote[1079].end |
9800.08596875 |
transcript.pyannote[1080].speaker |
SPEAKER_16 |
transcript.pyannote[1080].start |
9800.11971875 |
transcript.pyannote[1080].end |
9800.92971875 |
transcript.pyannote[1081].speaker |
SPEAKER_16 |
transcript.pyannote[1081].start |
9801.26721875 |
transcript.pyannote[1081].end |
9803.91659375 |
transcript.pyannote[1082].speaker |
SPEAKER_16 |
transcript.pyannote[1082].start |
9804.15284375 |
transcript.pyannote[1082].end |
9805.62096875 |
transcript.pyannote[1083].speaker |
SPEAKER_16 |
transcript.pyannote[1083].start |
9805.97534375 |
transcript.pyannote[1083].end |
9807.86534375 |
transcript.pyannote[1084].speaker |
SPEAKER_16 |
transcript.pyannote[1084].start |
9808.32096875 |
transcript.pyannote[1084].end |
9810.14346875 |
transcript.pyannote[1085].speaker |
SPEAKER_16 |
transcript.pyannote[1085].start |
9810.68346875 |
transcript.pyannote[1085].end |
9812.50596875 |
transcript.pyannote[1086].speaker |
SPEAKER_16 |
transcript.pyannote[1086].start |
9812.75909375 |
transcript.pyannote[1086].end |
9815.03721875 |
transcript.pyannote[1087].speaker |
SPEAKER_16 |
transcript.pyannote[1087].start |
9815.13846875 |
transcript.pyannote[1087].end |
9816.60659375 |
transcript.pyannote[1088].speaker |
SPEAKER_16 |
transcript.pyannote[1088].start |
9816.79221875 |
transcript.pyannote[1088].end |
9819.15471875 |
transcript.pyannote[1089].speaker |
SPEAKER_18 |
transcript.pyannote[1089].start |
9826.12409375 |
transcript.pyannote[1089].end |
9827.03534375 |
transcript.pyannote[1090].speaker |
SPEAKER_17 |
transcript.pyannote[1090].start |
9827.03534375 |
transcript.pyannote[1090].end |
9829.27971875 |
transcript.pyannote[1091].speaker |
SPEAKER_17 |
transcript.pyannote[1091].start |
9829.80284375 |
transcript.pyannote[1091].end |
9833.22846875 |
transcript.pyannote[1092].speaker |
SPEAKER_17 |
transcript.pyannote[1092].start |
9833.65034375 |
transcript.pyannote[1092].end |
9834.44346875 |
transcript.pyannote[1093].speaker |
SPEAKER_17 |
transcript.pyannote[1093].start |
9835.65846875 |
transcript.pyannote[1093].end |
9839.16846875 |
transcript.pyannote[1094].speaker |
SPEAKER_17 |
transcript.pyannote[1094].start |
9839.40471875 |
transcript.pyannote[1094].end |
9841.05846875 |
transcript.pyannote[1095].speaker |
SPEAKER_18 |
transcript.pyannote[1095].start |
9841.05846875 |
transcript.pyannote[1095].end |
9841.07534375 |
transcript.pyannote[1096].speaker |
SPEAKER_17 |
transcript.pyannote[1096].start |
9841.34534375 |
transcript.pyannote[1096].end |
9842.07096875 |
transcript.pyannote[1097].speaker |
SPEAKER_18 |
transcript.pyannote[1097].start |
9842.07096875 |
transcript.pyannote[1097].end |
9842.08784375 |
transcript.pyannote[1098].speaker |
SPEAKER_17 |
transcript.pyannote[1098].start |
9842.39159375 |
transcript.pyannote[1098].end |
9842.64471875 |
transcript.pyannote[1099].speaker |
SPEAKER_18 |
transcript.pyannote[1099].start |
9842.64471875 |
transcript.pyannote[1099].end |
9842.66159375 |
transcript.pyannote[1100].speaker |
SPEAKER_04 |
transcript.pyannote[1100].start |
9852.06096875 |
transcript.pyannote[1100].end |
9891.02534375 |
transcript.pyannote[1101].speaker |
SPEAKER_04 |
transcript.pyannote[1101].start |
9891.41346875 |
transcript.pyannote[1101].end |
9893.13471875 |
transcript.pyannote[1102].speaker |
SPEAKER_04 |
transcript.pyannote[1102].start |
9893.42159375 |
transcript.pyannote[1102].end |
9895.53096875 |
transcript.pyannote[1103].speaker |
SPEAKER_04 |
transcript.pyannote[1103].start |
9895.86846875 |
transcript.pyannote[1103].end |
9913.43534375 |
transcript.pyannote[1104].speaker |
SPEAKER_04 |
transcript.pyannote[1104].start |
9913.63784375 |
transcript.pyannote[1104].end |
9926.91846875 |
transcript.pyannote[1105].speaker |
SPEAKER_04 |
transcript.pyannote[1105].start |
9927.52596875 |
transcript.pyannote[1105].end |
9938.44409375 |
transcript.pyannote[1106].speaker |
SPEAKER_04 |
transcript.pyannote[1106].start |
9939.01784375 |
transcript.pyannote[1106].end |
9941.68409375 |
transcript.pyannote[1107].speaker |
SPEAKER_04 |
transcript.pyannote[1107].start |
9941.97096875 |
transcript.pyannote[1107].end |
9948.09659375 |
transcript.pyannote[1108].speaker |
SPEAKER_04 |
transcript.pyannote[1108].start |
9948.60284375 |
transcript.pyannote[1108].end |
9954.61034375 |
transcript.pyannote[1109].speaker |
SPEAKER_04 |
transcript.pyannote[1109].start |
9955.48784375 |
transcript.pyannote[1109].end |
9987.80346875 |
transcript.pyannote[1110].speaker |
SPEAKER_04 |
transcript.pyannote[1110].start |
9988.59659375 |
transcript.pyannote[1110].end |
9998.40096875 |
transcript.pyannote[1111].speaker |
SPEAKER_04 |
transcript.pyannote[1111].start |
9999.34596875 |
transcript.pyannote[1111].end |
10023.02159375 |
transcript.pyannote[1112].speaker |
SPEAKER_04 |
transcript.pyannote[1112].start |
10023.24096875 |
transcript.pyannote[1112].end |
10032.13409375 |
transcript.pyannote[1113].speaker |
SPEAKER_04 |
transcript.pyannote[1113].start |
10032.65721875 |
transcript.pyannote[1113].end |
10047.87846875 |
transcript.pyannote[1114].speaker |
SPEAKER_17 |
transcript.pyannote[1114].start |
10050.59534375 |
transcript.pyannote[1114].end |
10052.11409375 |
transcript.pyannote[1115].speaker |
SPEAKER_17 |
transcript.pyannote[1115].start |
10052.50221875 |
transcript.pyannote[1115].end |
10053.17721875 |
transcript.pyannote[1116].speaker |
SPEAKER_17 |
transcript.pyannote[1116].start |
10053.90284375 |
transcript.pyannote[1116].end |
10056.51846875 |
transcript.pyannote[1117].speaker |
SPEAKER_17 |
transcript.pyannote[1117].start |
10057.69971875 |
transcript.pyannote[1117].end |
10058.84721875 |
transcript.pyannote[1118].speaker |
SPEAKER_17 |
transcript.pyannote[1118].start |
10059.40409375 |
transcript.pyannote[1118].end |
10062.28971875 |
transcript.pyannote[1119].speaker |
SPEAKER_17 |
transcript.pyannote[1119].start |
10062.86346875 |
transcript.pyannote[1119].end |
10064.70284375 |
transcript.pyannote[1120].speaker |
SPEAKER_17 |
transcript.pyannote[1120].start |
10065.12471875 |
transcript.pyannote[1120].end |
10065.74909375 |
transcript.pyannote[1121].speaker |
SPEAKER_17 |
transcript.pyannote[1121].start |
10066.82909375 |
transcript.pyannote[1121].end |
10067.84159375 |
transcript.pyannote[1122].speaker |
SPEAKER_17 |
transcript.pyannote[1122].start |
10068.28034375 |
transcript.pyannote[1122].end |
10069.44471875 |
transcript.pyannote[1123].speaker |
SPEAKER_17 |
transcript.pyannote[1123].start |
10069.98471875 |
transcript.pyannote[1123].end |
10071.09846875 |
transcript.pyannote[1124].speaker |
SPEAKER_17 |
transcript.pyannote[1124].start |
10071.41909375 |
transcript.pyannote[1124].end |
10073.61284375 |
transcript.pyannote[1125].speaker |
SPEAKER_17 |
transcript.pyannote[1125].start |
10074.25409375 |
transcript.pyannote[1125].end |
10075.06409375 |
transcript.pyannote[1126].speaker |
SPEAKER_17 |
transcript.pyannote[1126].start |
10075.33409375 |
transcript.pyannote[1126].end |
10076.38034375 |
transcript.pyannote[1127].speaker |
SPEAKER_17 |
transcript.pyannote[1127].start |
10076.92034375 |
transcript.pyannote[1127].end |
10077.39284375 |
transcript.pyannote[1128].speaker |
SPEAKER_17 |
transcript.pyannote[1128].start |
10077.94971875 |
transcript.pyannote[1128].end |
10080.24471875 |
transcript.pyannote[1129].speaker |
SPEAKER_17 |
transcript.pyannote[1129].start |
10080.63284375 |
transcript.pyannote[1129].end |
10082.26971875 |
transcript.pyannote[1130].speaker |
SPEAKER_17 |
transcript.pyannote[1130].start |
10082.53971875 |
transcript.pyannote[1130].end |
10083.67034375 |
transcript.pyannote[1131].speaker |
SPEAKER_04 |
transcript.pyannote[1131].start |
10084.31159375 |
transcript.pyannote[1131].end |
10088.53034375 |
transcript.pyannote[1132].speaker |
SPEAKER_04 |
transcript.pyannote[1132].start |
10088.95221875 |
transcript.pyannote[1132].end |
10091.02784375 |
transcript.pyannote[1133].speaker |
SPEAKER_17 |
transcript.pyannote[1133].start |
10091.02784375 |
transcript.pyannote[1133].end |
10091.75346875 |
transcript.pyannote[1134].speaker |
SPEAKER_04 |
transcript.pyannote[1134].start |
10092.46221875 |
transcript.pyannote[1134].end |
10092.47909375 |
transcript.pyannote[1135].speaker |
SPEAKER_17 |
transcript.pyannote[1135].start |
10092.47909375 |
transcript.pyannote[1135].end |
10098.65534375 |
transcript.pyannote[1136].speaker |
SPEAKER_17 |
transcript.pyannote[1136].start |
10098.89159375 |
transcript.pyannote[1136].end |
10100.49471875 |
transcript.pyannote[1137].speaker |
SPEAKER_17 |
transcript.pyannote[1137].start |
10100.95034375 |
transcript.pyannote[1137].end |
10102.97534375 |
transcript.pyannote[1138].speaker |
SPEAKER_04 |
transcript.pyannote[1138].start |
10102.97534375 |
transcript.pyannote[1138].end |
10103.80221875 |
transcript.pyannote[1139].speaker |
SPEAKER_04 |
transcript.pyannote[1139].start |
10104.64596875 |
transcript.pyannote[1139].end |
10105.08471875 |
transcript.pyannote[1140].speaker |
SPEAKER_04 |
transcript.pyannote[1140].start |
10105.72596875 |
transcript.pyannote[1140].end |
10121.38596875 |
transcript.pyannote[1141].speaker |
SPEAKER_00 |
transcript.pyannote[1141].start |
10109.82659375 |
transcript.pyannote[1141].end |
10109.84346875 |
transcript.pyannote[1142].speaker |
SPEAKER_17 |
transcript.pyannote[1142].start |
10109.84346875 |
transcript.pyannote[1142].end |
10110.21471875 |
transcript.pyannote[1143].speaker |
SPEAKER_17 |
transcript.pyannote[1143].start |
10121.38596875 |
transcript.pyannote[1143].end |
10136.20221875 |
transcript.pyannote[1144].speaker |
SPEAKER_17 |
transcript.pyannote[1144].start |
10136.45534375 |
transcript.pyannote[1144].end |
10136.97846875 |
transcript.pyannote[1145].speaker |
SPEAKER_04 |
transcript.pyannote[1145].start |
10136.97846875 |
transcript.pyannote[1145].end |
10141.60221875 |
transcript.pyannote[1146].speaker |
SPEAKER_04 |
transcript.pyannote[1146].start |
10142.02409375 |
transcript.pyannote[1146].end |
10145.61846875 |
transcript.pyannote[1147].speaker |
SPEAKER_04 |
transcript.pyannote[1147].start |
10145.92221875 |
transcript.pyannote[1147].end |
10146.31034375 |
transcript.pyannote[1148].speaker |
SPEAKER_17 |
transcript.pyannote[1148].start |
10146.17534375 |
transcript.pyannote[1148].end |
10146.90096875 |
transcript.pyannote[1149].speaker |
SPEAKER_17 |
transcript.pyannote[1149].start |
10147.12034375 |
transcript.pyannote[1149].end |
10149.16221875 |
transcript.pyannote[1150].speaker |
SPEAKER_17 |
transcript.pyannote[1150].start |
10149.71909375 |
transcript.pyannote[1150].end |
10151.37284375 |
transcript.pyannote[1151].speaker |
SPEAKER_04 |
transcript.pyannote[1151].start |
10151.37284375 |
transcript.pyannote[1151].end |
10151.38971875 |
transcript.pyannote[1152].speaker |
SPEAKER_17 |
transcript.pyannote[1152].start |
10151.38971875 |
transcript.pyannote[1152].end |
10151.50784375 |
transcript.pyannote[1153].speaker |
SPEAKER_04 |
transcript.pyannote[1153].start |
10151.98034375 |
transcript.pyannote[1153].end |
10156.62096875 |
transcript.pyannote[1154].speaker |
SPEAKER_04 |
transcript.pyannote[1154].start |
10156.84034375 |
transcript.pyannote[1154].end |
10157.27909375 |
transcript.pyannote[1155].speaker |
SPEAKER_17 |
transcript.pyannote[1155].start |
10157.27909375 |
transcript.pyannote[1155].end |
10157.36346875 |
transcript.pyannote[1156].speaker |
SPEAKER_04 |
transcript.pyannote[1156].start |
10157.36346875 |
transcript.pyannote[1156].end |
10157.44784375 |
transcript.pyannote[1157].speaker |
SPEAKER_17 |
transcript.pyannote[1157].start |
10157.44784375 |
transcript.pyannote[1157].end |
10157.78534375 |
transcript.pyannote[1158].speaker |
SPEAKER_04 |
transcript.pyannote[1158].start |
10157.78534375 |
transcript.pyannote[1158].end |
10158.03846875 |
transcript.pyannote[1159].speaker |
SPEAKER_17 |
transcript.pyannote[1159].start |
10158.03846875 |
transcript.pyannote[1159].end |
10158.37596875 |
transcript.pyannote[1160].speaker |
SPEAKER_17 |
transcript.pyannote[1160].start |
10158.66284375 |
transcript.pyannote[1160].end |
10158.69659375 |
transcript.pyannote[1161].speaker |
SPEAKER_04 |
transcript.pyannote[1161].start |
10158.69659375 |
transcript.pyannote[1161].end |
10158.73034375 |
transcript.pyannote[1162].speaker |
SPEAKER_17 |
transcript.pyannote[1162].start |
10158.73034375 |
transcript.pyannote[1162].end |
10163.69159375 |
transcript.pyannote[1163].speaker |
SPEAKER_17 |
transcript.pyannote[1163].start |
10163.80971875 |
transcript.pyannote[1163].end |
10166.76284375 |
transcript.pyannote[1164].speaker |
SPEAKER_17 |
transcript.pyannote[1164].start |
10166.98221875 |
transcript.pyannote[1164].end |
10168.53471875 |
transcript.pyannote[1165].speaker |
SPEAKER_17 |
transcript.pyannote[1165].start |
10169.12534375 |
transcript.pyannote[1165].end |
10169.47971875 |
transcript.pyannote[1166].speaker |
SPEAKER_04 |
transcript.pyannote[1166].start |
10169.47971875 |
transcript.pyannote[1166].end |
10169.49659375 |
transcript.pyannote[1167].speaker |
SPEAKER_04 |
transcript.pyannote[1167].start |
10169.78346875 |
transcript.pyannote[1167].end |
10170.10409375 |
transcript.pyannote[1168].speaker |
SPEAKER_04 |
transcript.pyannote[1168].start |
10170.25596875 |
transcript.pyannote[1168].end |
10171.99409375 |
transcript.pyannote[1169].speaker |
SPEAKER_17 |
transcript.pyannote[1169].start |
10170.32346875 |
transcript.pyannote[1169].end |
10171.21784375 |
transcript.pyannote[1170].speaker |
SPEAKER_04 |
transcript.pyannote[1170].start |
10172.34846875 |
transcript.pyannote[1170].end |
10173.91784375 |
transcript.pyannote[1171].speaker |
SPEAKER_17 |
transcript.pyannote[1171].start |
10172.92221875 |
transcript.pyannote[1171].end |
10173.22596875 |
transcript.pyannote[1172].speaker |
SPEAKER_04 |
transcript.pyannote[1172].start |
10173.95159375 |
transcript.pyannote[1172].end |
10178.91284375 |
transcript.pyannote[1173].speaker |
SPEAKER_17 |
transcript.pyannote[1173].start |
10175.89221875 |
transcript.pyannote[1173].end |
10175.94284375 |
transcript.pyannote[1174].speaker |
SPEAKER_17 |
transcript.pyannote[1174].start |
10175.99346875 |
transcript.pyannote[1174].end |
10176.43221875 |
transcript.pyannote[1175].speaker |
SPEAKER_17 |
transcript.pyannote[1175].start |
10176.66846875 |
transcript.pyannote[1175].end |
10176.82034375 |
transcript.pyannote[1176].speaker |
SPEAKER_17 |
transcript.pyannote[1176].start |
10177.17471875 |
transcript.pyannote[1176].end |
10179.55409375 |
transcript.pyannote[1177].speaker |
SPEAKER_17 |
transcript.pyannote[1177].start |
10179.94221875 |
transcript.pyannote[1177].end |
10181.29221875 |
transcript.pyannote[1178].speaker |
SPEAKER_17 |
transcript.pyannote[1178].start |
10181.61284375 |
transcript.pyannote[1178].end |
10183.67159375 |
transcript.pyannote[1179].speaker |
SPEAKER_17 |
transcript.pyannote[1179].start |
10184.75159375 |
transcript.pyannote[1179].end |
10185.91596875 |
transcript.pyannote[1180].speaker |
SPEAKER_04 |
transcript.pyannote[1180].start |
10186.06784375 |
transcript.pyannote[1180].end |
10186.55721875 |
transcript.pyannote[1181].speaker |
SPEAKER_04 |
transcript.pyannote[1181].start |
10187.16471875 |
transcript.pyannote[1181].end |
10187.87346875 |
transcript.pyannote[1182].speaker |
SPEAKER_17 |
transcript.pyannote[1182].start |
10187.29971875 |
transcript.pyannote[1182].end |
10187.77221875 |
transcript.pyannote[1183].speaker |
SPEAKER_04 |
transcript.pyannote[1183].start |
10188.12659375 |
transcript.pyannote[1183].end |
10189.98284375 |
transcript.pyannote[1184].speaker |
SPEAKER_17 |
transcript.pyannote[1184].start |
10190.47221875 |
transcript.pyannote[1184].end |
10196.71596875 |
transcript.pyannote[1185].speaker |
SPEAKER_17 |
transcript.pyannote[1185].start |
10197.22221875 |
transcript.pyannote[1185].end |
10202.09909375 |
transcript.pyannote[1186].speaker |
SPEAKER_17 |
transcript.pyannote[1186].start |
10202.77409375 |
transcript.pyannote[1186].end |
10204.78221875 |
transcript.pyannote[1187].speaker |
SPEAKER_04 |
transcript.pyannote[1187].start |
10205.69346875 |
transcript.pyannote[1187].end |
10208.08971875 |
transcript.pyannote[1188].speaker |
SPEAKER_17 |
transcript.pyannote[1188].start |
10208.08971875 |
transcript.pyannote[1188].end |
10208.54534375 |
transcript.pyannote[1189].speaker |
SPEAKER_04 |
transcript.pyannote[1189].start |
10208.54534375 |
transcript.pyannote[1189].end |
10208.74784375 |
transcript.pyannote[1190].speaker |
SPEAKER_17 |
transcript.pyannote[1190].start |
10209.33846875 |
transcript.pyannote[1190].end |
10225.92659375 |
transcript.pyannote[1191].speaker |
SPEAKER_17 |
transcript.pyannote[1191].start |
10226.12909375 |
transcript.pyannote[1191].end |
10230.06096875 |
transcript.pyannote[1192].speaker |
SPEAKER_17 |
transcript.pyannote[1192].start |
10230.49971875 |
transcript.pyannote[1192].end |
10234.97159375 |
transcript.pyannote[1193].speaker |
SPEAKER_17 |
transcript.pyannote[1193].start |
10235.66346875 |
transcript.pyannote[1193].end |
10236.25409375 |
transcript.pyannote[1194].speaker |
SPEAKER_17 |
transcript.pyannote[1194].start |
10236.77721875 |
transcript.pyannote[1194].end |
10238.70096875 |
transcript.pyannote[1195].speaker |
SPEAKER_17 |
transcript.pyannote[1195].start |
10239.29159375 |
transcript.pyannote[1195].end |
10241.75534375 |
transcript.pyannote[1196].speaker |
SPEAKER_17 |
transcript.pyannote[1196].start |
10241.95784375 |
transcript.pyannote[1196].end |
10243.10534375 |
transcript.pyannote[1197].speaker |
SPEAKER_17 |
transcript.pyannote[1197].start |
10243.42596875 |
transcript.pyannote[1197].end |
10245.95721875 |
transcript.pyannote[1198].speaker |
SPEAKER_17 |
transcript.pyannote[1198].start |
10246.54784375 |
transcript.pyannote[1198].end |
10246.96971875 |
transcript.pyannote[1199].speaker |
SPEAKER_17 |
transcript.pyannote[1199].start |
10248.35346875 |
transcript.pyannote[1199].end |
10249.26471875 |
transcript.pyannote[1200].speaker |
SPEAKER_04 |
transcript.pyannote[1200].start |
10249.26471875 |
transcript.pyannote[1200].end |
10249.31534375 |
transcript.pyannote[1201].speaker |
SPEAKER_04 |
transcript.pyannote[1201].start |
10249.60221875 |
transcript.pyannote[1201].end |
10250.15909375 |
transcript.pyannote[1202].speaker |
SPEAKER_04 |
transcript.pyannote[1202].start |
10250.64846875 |
transcript.pyannote[1202].end |
10252.72409375 |
transcript.pyannote[1203].speaker |
SPEAKER_17 |
transcript.pyannote[1203].start |
10252.96034375 |
transcript.pyannote[1203].end |
10256.38596875 |
transcript.pyannote[1204].speaker |
SPEAKER_17 |
transcript.pyannote[1204].start |
10256.89221875 |
transcript.pyannote[1204].end |
10260.08159375 |
transcript.pyannote[1205].speaker |
SPEAKER_17 |
transcript.pyannote[1205].start |
10260.53721875 |
transcript.pyannote[1205].end |
10262.93346875 |
transcript.pyannote[1206].speaker |
SPEAKER_17 |
transcript.pyannote[1206].start |
10263.16971875 |
transcript.pyannote[1206].end |
10266.22409375 |
transcript.pyannote[1207].speaker |
SPEAKER_17 |
transcript.pyannote[1207].start |
10266.64596875 |
transcript.pyannote[1207].end |
10268.90721875 |
transcript.pyannote[1208].speaker |
SPEAKER_17 |
transcript.pyannote[1208].start |
10269.44721875 |
transcript.pyannote[1208].end |
10269.78471875 |
transcript.pyannote[1209].speaker |
SPEAKER_17 |
transcript.pyannote[1209].start |
10270.17284375 |
transcript.pyannote[1209].end |
10270.52721875 |
transcript.pyannote[1210].speaker |
SPEAKER_17 |
transcript.pyannote[1210].start |
10270.66221875 |
transcript.pyannote[1210].end |
10271.23596875 |
transcript.pyannote[1211].speaker |
SPEAKER_17 |
transcript.pyannote[1211].start |
10271.38784375 |
transcript.pyannote[1211].end |
10272.80534375 |
transcript.pyannote[1212].speaker |
SPEAKER_17 |
transcript.pyannote[1212].start |
10273.34534375 |
transcript.pyannote[1212].end |
10275.21846875 |
transcript.pyannote[1213].speaker |
SPEAKER_17 |
transcript.pyannote[1213].start |
10275.79221875 |
transcript.pyannote[1213].end |
10276.26471875 |
transcript.pyannote[1214].speaker |
SPEAKER_17 |
transcript.pyannote[1214].start |
10276.55159375 |
transcript.pyannote[1214].end |
10277.27721875 |
transcript.pyannote[1215].speaker |
SPEAKER_17 |
transcript.pyannote[1215].start |
10277.86784375 |
transcript.pyannote[1215].end |
10279.55534375 |
transcript.pyannote[1216].speaker |
SPEAKER_17 |
transcript.pyannote[1216].start |
10279.97721875 |
transcript.pyannote[1216].end |
10283.20034375 |
transcript.pyannote[1217].speaker |
SPEAKER_17 |
transcript.pyannote[1217].start |
10283.41971875 |
transcript.pyannote[1217].end |
10284.51659375 |
transcript.pyannote[1218].speaker |
SPEAKER_17 |
transcript.pyannote[1218].start |
10284.75284375 |
transcript.pyannote[1218].end |
10287.48659375 |
transcript.pyannote[1219].speaker |
SPEAKER_17 |
transcript.pyannote[1219].start |
10287.58784375 |
transcript.pyannote[1219].end |
10290.18659375 |
transcript.pyannote[1220].speaker |
SPEAKER_17 |
transcript.pyannote[1220].start |
10290.89534375 |
transcript.pyannote[1220].end |
10291.73909375 |
transcript.pyannote[1221].speaker |
SPEAKER_17 |
transcript.pyannote[1221].start |
10291.94159375 |
transcript.pyannote[1221].end |
10292.43096875 |
transcript.pyannote[1222].speaker |
SPEAKER_17 |
transcript.pyannote[1222].start |
10292.75159375 |
transcript.pyannote[1222].end |
10293.86534375 |
transcript.pyannote[1223].speaker |
SPEAKER_17 |
transcript.pyannote[1223].start |
10294.50659375 |
transcript.pyannote[1223].end |
10295.60346875 |
transcript.pyannote[1224].speaker |
SPEAKER_17 |
transcript.pyannote[1224].start |
10296.14346875 |
transcript.pyannote[1224].end |
10297.27409375 |
transcript.pyannote[1225].speaker |
SPEAKER_17 |
transcript.pyannote[1225].start |
10297.47659375 |
transcript.pyannote[1225].end |
10299.53534375 |
transcript.pyannote[1226].speaker |
SPEAKER_17 |
transcript.pyannote[1226].start |
10299.94034375 |
transcript.pyannote[1226].end |
10302.60659375 |
transcript.pyannote[1227].speaker |
SPEAKER_17 |
transcript.pyannote[1227].start |
10303.18034375 |
transcript.pyannote[1227].end |
10304.41221875 |
transcript.pyannote[1228].speaker |
SPEAKER_17 |
transcript.pyannote[1228].start |
10304.98596875 |
transcript.pyannote[1228].end |
10316.44409375 |
transcript.pyannote[1229].speaker |
SPEAKER_00 |
transcript.pyannote[1229].start |
10316.61284375 |
transcript.pyannote[1229].end |
10316.66346875 |
transcript.pyannote[1230].speaker |
SPEAKER_17 |
transcript.pyannote[1230].start |
10316.66346875 |
transcript.pyannote[1230].end |
10317.03471875 |
transcript.pyannote[1231].speaker |
SPEAKER_00 |
transcript.pyannote[1231].start |
10317.03471875 |
transcript.pyannote[1231].end |
10317.49034375 |
transcript.pyannote[1232].speaker |
SPEAKER_00 |
transcript.pyannote[1232].start |
10317.81096875 |
transcript.pyannote[1232].end |
10459.56096875 |
transcript.pyannote[1233].speaker |
SPEAKER_00 |
transcript.pyannote[1233].start |
10459.96596875 |
transcript.pyannote[1233].end |
10472.53784375 |
transcript.pyannote[1234].speaker |
SPEAKER_00 |
transcript.pyannote[1234].start |
10473.22971875 |
transcript.pyannote[1234].end |
10585.39784375 |
transcript.pyannote[1235].speaker |
SPEAKER_17 |
transcript.pyannote[1235].start |
10585.61721875 |
transcript.pyannote[1235].end |
10589.86971875 |
transcript.pyannote[1236].speaker |
SPEAKER_17 |
transcript.pyannote[1236].start |
10590.29159375 |
transcript.pyannote[1236].end |
10597.48034375 |
transcript.pyannote[1237].speaker |
SPEAKER_00 |
transcript.pyannote[1237].start |
10592.09721875 |
transcript.pyannote[1237].end |
10592.72159375 |
transcript.pyannote[1238].speaker |
SPEAKER_17 |
transcript.pyannote[1238].start |
10597.69971875 |
transcript.pyannote[1238].end |
10602.30659375 |
transcript.pyannote[1239].speaker |
SPEAKER_17 |
transcript.pyannote[1239].start |
10602.62721875 |
transcript.pyannote[1239].end |
10603.67346875 |
transcript.pyannote[1240].speaker |
SPEAKER_17 |
transcript.pyannote[1240].start |
10604.66909375 |
transcript.pyannote[1240].end |
10606.15409375 |
transcript.pyannote[1241].speaker |
SPEAKER_17 |
transcript.pyannote[1241].start |
10606.37346875 |
transcript.pyannote[1241].end |
10607.20034375 |
transcript.pyannote[1242].speaker |
SPEAKER_17 |
transcript.pyannote[1242].start |
10608.34784375 |
transcript.pyannote[1242].end |
10610.81159375 |
transcript.pyannote[1243].speaker |
SPEAKER_17 |
transcript.pyannote[1243].start |
10611.38534375 |
transcript.pyannote[1243].end |
10613.32596875 |
transcript.pyannote[1244].speaker |
SPEAKER_00 |
transcript.pyannote[1244].start |
10614.47346875 |
transcript.pyannote[1244].end |
10621.44284375 |
transcript.pyannote[1245].speaker |
SPEAKER_00 |
transcript.pyannote[1245].start |
10621.54409375 |
transcript.pyannote[1245].end |
10621.56096875 |
transcript.pyannote[1246].speaker |
SPEAKER_17 |
transcript.pyannote[1246].start |
10621.56096875 |
transcript.pyannote[1246].end |
10633.66034375 |
transcript.pyannote[1247].speaker |
SPEAKER_00 |
transcript.pyannote[1247].start |
10621.76346875 |
transcript.pyannote[1247].end |
10622.25284375 |
transcript.pyannote[1248].speaker |
SPEAKER_00 |
transcript.pyannote[1248].start |
10633.13721875 |
transcript.pyannote[1248].end |
10638.97596875 |
transcript.pyannote[1249].speaker |
SPEAKER_17 |
transcript.pyannote[1249].start |
10635.58409375 |
transcript.pyannote[1249].end |
10639.22909375 |
transcript.pyannote[1250].speaker |
SPEAKER_17 |
transcript.pyannote[1250].start |
10639.93784375 |
transcript.pyannote[1250].end |
10643.78534375 |
transcript.pyannote[1251].speaker |
SPEAKER_17 |
transcript.pyannote[1251].start |
10644.13971875 |
transcript.pyannote[1251].end |
10650.24846875 |
transcript.pyannote[1252].speaker |
SPEAKER_17 |
transcript.pyannote[1252].start |
10650.48471875 |
transcript.pyannote[1252].end |
10651.10909375 |
transcript.pyannote[1253].speaker |
SPEAKER_17 |
transcript.pyannote[1253].start |
10651.61534375 |
transcript.pyannote[1253].end |
10654.16346875 |
transcript.pyannote[1254].speaker |
SPEAKER_17 |
transcript.pyannote[1254].start |
10654.99034375 |
transcript.pyannote[1254].end |
10655.44596875 |
transcript.pyannote[1255].speaker |
SPEAKER_00 |
transcript.pyannote[1255].start |
10656.00284375 |
transcript.pyannote[1255].end |
10667.29221875 |
transcript.pyannote[1256].speaker |
SPEAKER_17 |
transcript.pyannote[1256].start |
10665.60471875 |
transcript.pyannote[1256].end |
10665.97596875 |
transcript.pyannote[1257].speaker |
SPEAKER_01 |
transcript.pyannote[1257].start |
10665.97596875 |
transcript.pyannote[1257].end |
10665.99284375 |
transcript.pyannote[1258].speaker |
SPEAKER_17 |
transcript.pyannote[1258].start |
10666.97159375 |
transcript.pyannote[1258].end |
10671.76409375 |
transcript.pyannote[1259].speaker |
SPEAKER_17 |
transcript.pyannote[1259].start |
10672.00034375 |
transcript.pyannote[1259].end |
10672.79346875 |
transcript.pyannote[1260].speaker |
SPEAKER_17 |
transcript.pyannote[1260].start |
10673.43471875 |
transcript.pyannote[1260].end |
10674.58221875 |
transcript.pyannote[1261].speaker |
SPEAKER_17 |
transcript.pyannote[1261].start |
10674.95346875 |
transcript.pyannote[1261].end |
10675.42596875 |
transcript.pyannote[1262].speaker |
SPEAKER_17 |
transcript.pyannote[1262].start |
10676.20221875 |
transcript.pyannote[1262].end |
10676.99534375 |
transcript.pyannote[1263].speaker |
SPEAKER_17 |
transcript.pyannote[1263].start |
10677.45096875 |
transcript.pyannote[1263].end |
10677.80534375 |
transcript.pyannote[1264].speaker |
SPEAKER_17 |
transcript.pyannote[1264].start |
10678.46346875 |
transcript.pyannote[1264].end |
10680.77534375 |
transcript.pyannote[1265].speaker |
SPEAKER_17 |
transcript.pyannote[1265].start |
10681.29846875 |
transcript.pyannote[1265].end |
10682.20971875 |
transcript.pyannote[1266].speaker |
SPEAKER_17 |
transcript.pyannote[1266].start |
10682.29409375 |
transcript.pyannote[1266].end |
10683.37409375 |
transcript.pyannote[1267].speaker |
SPEAKER_17 |
transcript.pyannote[1267].start |
10684.36971875 |
transcript.pyannote[1267].end |
10686.17534375 |
transcript.pyannote[1268].speaker |
SPEAKER_17 |
transcript.pyannote[1268].start |
10686.83346875 |
transcript.pyannote[1268].end |
10694.62971875 |
transcript.pyannote[1269].speaker |
SPEAKER_17 |
transcript.pyannote[1269].start |
10695.72659375 |
transcript.pyannote[1269].end |
10697.16096875 |
transcript.pyannote[1270].speaker |
SPEAKER_17 |
transcript.pyannote[1270].start |
10697.76846875 |
transcript.pyannote[1270].end |
10701.27846875 |
transcript.pyannote[1271].speaker |
SPEAKER_17 |
transcript.pyannote[1271].start |
10702.08846875 |
transcript.pyannote[1271].end |
10703.57346875 |
transcript.pyannote[1272].speaker |
SPEAKER_17 |
transcript.pyannote[1272].start |
10703.60721875 |
transcript.pyannote[1272].end |
10705.39596875 |
transcript.pyannote[1273].speaker |
SPEAKER_00 |
transcript.pyannote[1273].start |
10707.47159375 |
transcript.pyannote[1273].end |
10710.05346875 |
transcript.pyannote[1274].speaker |
SPEAKER_17 |
transcript.pyannote[1274].start |
10709.29409375 |
transcript.pyannote[1274].end |
10712.16284375 |
transcript.pyannote[1275].speaker |
SPEAKER_00 |
transcript.pyannote[1275].start |
10712.16284375 |
transcript.pyannote[1275].end |
10712.17971875 |
transcript.pyannote[1276].speaker |
SPEAKER_17 |
transcript.pyannote[1276].start |
10712.17971875 |
transcript.pyannote[1276].end |
10712.56784375 |
transcript.pyannote[1277].speaker |
SPEAKER_00 |
transcript.pyannote[1277].start |
10712.56784375 |
transcript.pyannote[1277].end |
10714.72784375 |
transcript.pyannote[1278].speaker |
SPEAKER_17 |
transcript.pyannote[1278].start |
10714.72784375 |
transcript.pyannote[1278].end |
10724.76846875 |
transcript.pyannote[1279].speaker |
SPEAKER_17 |
transcript.pyannote[1279].start |
10725.00471875 |
transcript.pyannote[1279].end |
10725.03846875 |
transcript.pyannote[1280].speaker |
SPEAKER_17 |
transcript.pyannote[1280].start |
10725.05534375 |
transcript.pyannote[1280].end |
10726.86096875 |
transcript.pyannote[1281].speaker |
SPEAKER_17 |
transcript.pyannote[1281].start |
10727.21534375 |
transcript.pyannote[1281].end |
10727.85659375 |
transcript.pyannote[1282].speaker |
SPEAKER_17 |
transcript.pyannote[1282].start |
10728.09284375 |
transcript.pyannote[1282].end |
10728.95346875 |
transcript.pyannote[1283].speaker |
SPEAKER_18 |
transcript.pyannote[1283].start |
10728.95346875 |
transcript.pyannote[1283].end |
10728.98721875 |
transcript.pyannote[1284].speaker |
SPEAKER_18 |
transcript.pyannote[1284].start |
10729.25721875 |
transcript.pyannote[1284].end |
10731.07971875 |
transcript.pyannote[1285].speaker |
SPEAKER_00 |
transcript.pyannote[1285].start |
10731.38346875 |
transcript.pyannote[1285].end |
10731.67034375 |
transcript.pyannote[1286].speaker |
SPEAKER_10 |
transcript.pyannote[1286].start |
10742.25096875 |
transcript.pyannote[1286].end |
10912.73909375 |
transcript.pyannote[1287].speaker |
SPEAKER_10 |
transcript.pyannote[1287].start |
10913.16096875 |
transcript.pyannote[1287].end |
11065.45784375 |
transcript.pyannote[1288].speaker |
SPEAKER_10 |
transcript.pyannote[1288].start |
11065.52534375 |
transcript.pyannote[1288].end |
11105.63721875 |
transcript.pyannote[1289].speaker |
SPEAKER_10 |
transcript.pyannote[1289].start |
11106.05909375 |
transcript.pyannote[1289].end |
11212.08471875 |
transcript.pyannote[1290].speaker |
SPEAKER_17 |
transcript.pyannote[1290].start |
11214.44721875 |
transcript.pyannote[1290].end |
11215.61159375 |
transcript.pyannote[1291].speaker |
SPEAKER_17 |
transcript.pyannote[1291].start |
11217.13034375 |
transcript.pyannote[1291].end |
11219.40846875 |
transcript.pyannote[1292].speaker |
SPEAKER_17 |
transcript.pyannote[1292].start |
11219.96534375 |
transcript.pyannote[1292].end |
11220.37034375 |
transcript.pyannote[1293].speaker |
SPEAKER_17 |
transcript.pyannote[1293].start |
11221.14659375 |
transcript.pyannote[1293].end |
11221.65284375 |
transcript.pyannote[1294].speaker |
SPEAKER_17 |
transcript.pyannote[1294].start |
11222.09159375 |
transcript.pyannote[1294].end |
11222.20971875 |
transcript.pyannote[1295].speaker |
SPEAKER_17 |
transcript.pyannote[1295].start |
11222.39534375 |
transcript.pyannote[1295].end |
11222.64846875 |
transcript.pyannote[1296].speaker |
SPEAKER_17 |
transcript.pyannote[1296].start |
11222.83409375 |
transcript.pyannote[1296].end |
11223.72846875 |
transcript.pyannote[1297].speaker |
SPEAKER_17 |
transcript.pyannote[1297].start |
11226.25971875 |
transcript.pyannote[1297].end |
11226.96846875 |
transcript.pyannote[1298].speaker |
SPEAKER_10 |
transcript.pyannote[1298].start |
11226.96846875 |
transcript.pyannote[1298].end |
11227.25534375 |
transcript.pyannote[1299].speaker |
SPEAKER_10 |
transcript.pyannote[1299].start |
11229.88784375 |
transcript.pyannote[1299].end |
11235.45659375 |
transcript.pyannote[1300].speaker |
SPEAKER_17 |
transcript.pyannote[1300].start |
11234.34284375 |
transcript.pyannote[1300].end |
11238.37596875 |
transcript.pyannote[1301].speaker |
SPEAKER_10 |
transcript.pyannote[1301].start |
11237.92034375 |
transcript.pyannote[1301].end |
11251.47096875 |
transcript.pyannote[1302].speaker |
SPEAKER_17 |
transcript.pyannote[1302].start |
11245.39596875 |
transcript.pyannote[1302].end |
11248.53471875 |
transcript.pyannote[1303].speaker |
SPEAKER_17 |
transcript.pyannote[1303].start |
11248.99034375 |
transcript.pyannote[1303].end |
11251.55534375 |
transcript.pyannote[1304].speaker |
SPEAKER_17 |
transcript.pyannote[1304].start |
11252.07846875 |
transcript.pyannote[1304].end |
11255.55471875 |
transcript.pyannote[1305].speaker |
SPEAKER_17 |
transcript.pyannote[1305].start |
11256.16221875 |
transcript.pyannote[1305].end |
11260.68471875 |
transcript.pyannote[1306].speaker |
SPEAKER_17 |
transcript.pyannote[1306].start |
11260.87034375 |
transcript.pyannote[1306].end |
11262.50721875 |
transcript.pyannote[1307].speaker |
SPEAKER_17 |
transcript.pyannote[1307].start |
11263.78971875 |
transcript.pyannote[1307].end |
11264.21159375 |
transcript.pyannote[1308].speaker |
SPEAKER_17 |
transcript.pyannote[1308].start |
11265.12284375 |
transcript.pyannote[1308].end |
11267.02971875 |
transcript.pyannote[1309].speaker |
SPEAKER_17 |
transcript.pyannote[1309].start |
11267.92409375 |
transcript.pyannote[1309].end |
11269.49346875 |
transcript.pyannote[1310].speaker |
SPEAKER_17 |
transcript.pyannote[1310].start |
11270.13471875 |
transcript.pyannote[1310].end |
11270.50596875 |
transcript.pyannote[1311].speaker |
SPEAKER_17 |
transcript.pyannote[1311].start |
11270.62409375 |
transcript.pyannote[1311].end |
11272.86846875 |
transcript.pyannote[1312].speaker |
SPEAKER_17 |
transcript.pyannote[1312].start |
11273.49284375 |
transcript.pyannote[1312].end |
11275.51784375 |
transcript.pyannote[1313].speaker |
SPEAKER_17 |
transcript.pyannote[1313].start |
11275.61909375 |
transcript.pyannote[1313].end |
11278.43721875 |
transcript.pyannote[1314].speaker |
SPEAKER_17 |
transcript.pyannote[1314].start |
11279.65221875 |
transcript.pyannote[1314].end |
11280.09096875 |
transcript.pyannote[1315].speaker |
SPEAKER_17 |
transcript.pyannote[1315].start |
11280.49596875 |
transcript.pyannote[1315].end |
11282.23409375 |
transcript.pyannote[1316].speaker |
SPEAKER_17 |
transcript.pyannote[1316].start |
11283.53346875 |
transcript.pyannote[1316].end |
11284.34346875 |
transcript.pyannote[1317].speaker |
SPEAKER_17 |
transcript.pyannote[1317].start |
11284.91721875 |
transcript.pyannote[1317].end |
11285.35596875 |
transcript.pyannote[1318].speaker |
SPEAKER_17 |
transcript.pyannote[1318].start |
11285.74409375 |
transcript.pyannote[1318].end |
11286.46971875 |
transcript.pyannote[1319].speaker |
SPEAKER_17 |
transcript.pyannote[1319].start |
11286.75659375 |
transcript.pyannote[1319].end |
11287.75221875 |
transcript.pyannote[1320].speaker |
SPEAKER_17 |
transcript.pyannote[1320].start |
11288.81534375 |
transcript.pyannote[1320].end |
11290.97534375 |
transcript.pyannote[1321].speaker |
SPEAKER_17 |
transcript.pyannote[1321].start |
11291.59971875 |
transcript.pyannote[1321].end |
11293.57409375 |
transcript.pyannote[1322].speaker |
SPEAKER_17 |
transcript.pyannote[1322].start |
11294.24909375 |
transcript.pyannote[1322].end |
11295.81846875 |
transcript.pyannote[1323].speaker |
SPEAKER_17 |
transcript.pyannote[1323].start |
11297.10096875 |
transcript.pyannote[1323].end |
11298.16409375 |
transcript.pyannote[1324].speaker |
SPEAKER_17 |
transcript.pyannote[1324].start |
11298.75471875 |
transcript.pyannote[1324].end |
11300.50971875 |
transcript.pyannote[1325].speaker |
SPEAKER_17 |
transcript.pyannote[1325].start |
11301.08346875 |
transcript.pyannote[1325].end |
11301.53909375 |
transcript.pyannote[1326].speaker |
SPEAKER_17 |
transcript.pyannote[1326].start |
11301.85971875 |
transcript.pyannote[1326].end |
11302.63596875 |
transcript.pyannote[1327].speaker |
SPEAKER_17 |
transcript.pyannote[1327].start |
11304.17159375 |
transcript.pyannote[1327].end |
11304.81284375 |
transcript.pyannote[1328].speaker |
SPEAKER_17 |
transcript.pyannote[1328].start |
11305.87596875 |
transcript.pyannote[1328].end |
11307.04034375 |
transcript.pyannote[1329].speaker |
SPEAKER_17 |
transcript.pyannote[1329].start |
11307.12471875 |
transcript.pyannote[1329].end |
11307.79971875 |
transcript.pyannote[1330].speaker |
SPEAKER_17 |
transcript.pyannote[1330].start |
11307.96846875 |
transcript.pyannote[1330].end |
11308.67721875 |
transcript.pyannote[1331].speaker |
SPEAKER_17 |
transcript.pyannote[1331].start |
11309.11596875 |
transcript.pyannote[1331].end |
11310.06096875 |
transcript.pyannote[1332].speaker |
SPEAKER_17 |
transcript.pyannote[1332].start |
11310.65159375 |
transcript.pyannote[1332].end |
11315.76471875 |
transcript.pyannote[1333].speaker |
SPEAKER_17 |
transcript.pyannote[1333].start |
11316.16971875 |
transcript.pyannote[1333].end |
11317.40159375 |
transcript.pyannote[1334].speaker |
SPEAKER_17 |
transcript.pyannote[1334].start |
11317.89096875 |
transcript.pyannote[1334].end |
11318.27909375 |
transcript.pyannote[1335].speaker |
SPEAKER_17 |
transcript.pyannote[1335].start |
11319.84846875 |
transcript.pyannote[1335].end |
11321.50221875 |
transcript.pyannote[1336].speaker |
SPEAKER_17 |
transcript.pyannote[1336].start |
11322.05909375 |
transcript.pyannote[1336].end |
11322.81846875 |
transcript.pyannote[1337].speaker |
SPEAKER_17 |
transcript.pyannote[1337].start |
11323.37534375 |
transcript.pyannote[1337].end |
11324.55659375 |
transcript.pyannote[1338].speaker |
SPEAKER_17 |
transcript.pyannote[1338].start |
11324.89409375 |
transcript.pyannote[1338].end |
11325.18096875 |
transcript.pyannote[1339].speaker |
SPEAKER_17 |
transcript.pyannote[1339].start |
11325.75471875 |
transcript.pyannote[1339].end |
11327.62784375 |
transcript.pyannote[1340].speaker |
SPEAKER_17 |
transcript.pyannote[1340].start |
11328.37034375 |
transcript.pyannote[1340].end |
11328.85971875 |
transcript.pyannote[1341].speaker |
SPEAKER_17 |
transcript.pyannote[1341].start |
11329.29846875 |
transcript.pyannote[1341].end |
11329.77096875 |
transcript.pyannote[1342].speaker |
SPEAKER_17 |
transcript.pyannote[1342].start |
11330.29409375 |
transcript.pyannote[1342].end |
11331.37409375 |
transcript.pyannote[1343].speaker |
SPEAKER_17 |
transcript.pyannote[1343].start |
11332.20096875 |
transcript.pyannote[1343].end |
11332.50471875 |
transcript.pyannote[1344].speaker |
SPEAKER_17 |
transcript.pyannote[1344].start |
11332.90971875 |
transcript.pyannote[1344].end |
11334.37784375 |
transcript.pyannote[1345].speaker |
SPEAKER_17 |
transcript.pyannote[1345].start |
11335.37346875 |
transcript.pyannote[1345].end |
11335.81221875 |
transcript.pyannote[1346].speaker |
SPEAKER_17 |
transcript.pyannote[1346].start |
11336.13284375 |
transcript.pyannote[1346].end |
11337.71909375 |
transcript.pyannote[1347].speaker |
SPEAKER_17 |
transcript.pyannote[1347].start |
11338.27596875 |
transcript.pyannote[1347].end |
11340.53721875 |
transcript.pyannote[1348].speaker |
SPEAKER_17 |
transcript.pyannote[1348].start |
11341.12784375 |
transcript.pyannote[1348].end |
11343.05159375 |
transcript.pyannote[1349].speaker |
SPEAKER_17 |
transcript.pyannote[1349].start |
11343.27096875 |
transcript.pyannote[1349].end |
11346.35909375 |
transcript.pyannote[1350].speaker |
SPEAKER_17 |
transcript.pyannote[1350].start |
11346.59534375 |
transcript.pyannote[1350].end |
11347.37159375 |
transcript.pyannote[1351].speaker |
SPEAKER_17 |
transcript.pyannote[1351].start |
11348.77221875 |
transcript.pyannote[1351].end |
11349.51471875 |
transcript.pyannote[1352].speaker |
SPEAKER_17 |
transcript.pyannote[1352].start |
11350.12221875 |
transcript.pyannote[1352].end |
11350.71284375 |
transcript.pyannote[1353].speaker |
SPEAKER_17 |
transcript.pyannote[1353].start |
11351.28659375 |
transcript.pyannote[1353].end |
11352.13034375 |
transcript.pyannote[1354].speaker |
SPEAKER_17 |
transcript.pyannote[1354].start |
11352.92346875 |
transcript.pyannote[1354].end |
11354.25659375 |
transcript.pyannote[1355].speaker |
SPEAKER_17 |
transcript.pyannote[1355].start |
11356.48409375 |
transcript.pyannote[1355].end |
11356.93971875 |
transcript.pyannote[1356].speaker |
SPEAKER_17 |
transcript.pyannote[1356].start |
11357.22659375 |
transcript.pyannote[1356].end |
11360.17971875 |
transcript.pyannote[1357].speaker |
SPEAKER_17 |
transcript.pyannote[1357].start |
11361.19221875 |
transcript.pyannote[1357].end |
11361.88409375 |
transcript.pyannote[1358].speaker |
SPEAKER_17 |
transcript.pyannote[1358].start |
11362.42409375 |
transcript.pyannote[1358].end |
11363.92596875 |
transcript.pyannote[1359].speaker |
SPEAKER_17 |
transcript.pyannote[1359].start |
11364.65159375 |
transcript.pyannote[1359].end |
11369.73096875 |
transcript.pyannote[1360].speaker |
SPEAKER_17 |
transcript.pyannote[1360].start |
11370.60846875 |
transcript.pyannote[1360].end |
11371.70534375 |
transcript.pyannote[1361].speaker |
SPEAKER_17 |
transcript.pyannote[1361].start |
11371.78971875 |
transcript.pyannote[1361].end |
11378.06721875 |
transcript.pyannote[1362].speaker |
SPEAKER_17 |
transcript.pyannote[1362].start |
11379.16409375 |
transcript.pyannote[1362].end |
11381.57721875 |
transcript.pyannote[1363].speaker |
SPEAKER_17 |
transcript.pyannote[1363].start |
11382.25221875 |
transcript.pyannote[1363].end |
11384.49659375 |
transcript.pyannote[1364].speaker |
SPEAKER_17 |
transcript.pyannote[1364].start |
11384.95221875 |
transcript.pyannote[1364].end |
11386.16721875 |
transcript.pyannote[1365].speaker |
SPEAKER_17 |
transcript.pyannote[1365].start |
11386.60596875 |
transcript.pyannote[1365].end |
11387.65221875 |
transcript.pyannote[1366].speaker |
SPEAKER_17 |
transcript.pyannote[1366].start |
11387.73659375 |
transcript.pyannote[1366].end |
11388.86721875 |
transcript.pyannote[1367].speaker |
SPEAKER_17 |
transcript.pyannote[1367].start |
11390.21721875 |
transcript.pyannote[1367].end |
11391.22971875 |
transcript.pyannote[1368].speaker |
SPEAKER_17 |
transcript.pyannote[1368].start |
11391.75284375 |
transcript.pyannote[1368].end |
11394.11534375 |
transcript.pyannote[1369].speaker |
SPEAKER_17 |
transcript.pyannote[1369].start |
11394.41909375 |
transcript.pyannote[1369].end |
11396.47784375 |
transcript.pyannote[1370].speaker |
SPEAKER_17 |
transcript.pyannote[1370].start |
11396.96721875 |
transcript.pyannote[1370].end |
11399.44784375 |
transcript.pyannote[1371].speaker |
SPEAKER_17 |
transcript.pyannote[1371].start |
11399.78534375 |
transcript.pyannote[1371].end |
11400.10596875 |
transcript.pyannote[1372].speaker |
SPEAKER_17 |
transcript.pyannote[1372].start |
11400.32534375 |
transcript.pyannote[1372].end |
11401.72596875 |
transcript.pyannote[1373].speaker |
SPEAKER_17 |
transcript.pyannote[1373].start |
11403.16034375 |
transcript.pyannote[1373].end |
11404.94909375 |
transcript.pyannote[1374].speaker |
SPEAKER_17 |
transcript.pyannote[1374].start |
11405.28659375 |
transcript.pyannote[1374].end |
11406.75471875 |
transcript.pyannote[1375].speaker |
SPEAKER_17 |
transcript.pyannote[1375].start |
11407.54784375 |
transcript.pyannote[1375].end |
11409.18471875 |
transcript.pyannote[1376].speaker |
SPEAKER_17 |
transcript.pyannote[1376].start |
11410.06221875 |
transcript.pyannote[1376].end |
11411.27721875 |
transcript.pyannote[1377].speaker |
SPEAKER_17 |
transcript.pyannote[1377].start |
11411.32784375 |
transcript.pyannote[1377].end |
11413.35284375 |
transcript.pyannote[1378].speaker |
SPEAKER_17 |
transcript.pyannote[1378].start |
11414.28096875 |
transcript.pyannote[1378].end |
11415.31034375 |
transcript.pyannote[1379].speaker |
SPEAKER_17 |
transcript.pyannote[1379].start |
11415.44534375 |
transcript.pyannote[1379].end |
11416.72784375 |
transcript.pyannote[1380].speaker |
SPEAKER_17 |
transcript.pyannote[1380].start |
11418.07784375 |
transcript.pyannote[1380].end |
11418.87096875 |
transcript.pyannote[1381].speaker |
SPEAKER_17 |
transcript.pyannote[1381].start |
11421.31784375 |
transcript.pyannote[1381].end |
11424.77721875 |
transcript.pyannote[1382].speaker |
SPEAKER_17 |
transcript.pyannote[1382].start |
11424.96284375 |
transcript.pyannote[1382].end |
11426.59971875 |
transcript.pyannote[1383].speaker |
SPEAKER_17 |
transcript.pyannote[1383].start |
11427.59534375 |
transcript.pyannote[1383].end |
11428.79346875 |
transcript.pyannote[1384].speaker |
SPEAKER_17 |
transcript.pyannote[1384].start |
11430.93659375 |
transcript.pyannote[1384].end |
11433.21471875 |
transcript.pyannote[1385].speaker |
SPEAKER_17 |
transcript.pyannote[1385].start |
11433.29909375 |
transcript.pyannote[1385].end |
11434.27784375 |
transcript.pyannote[1386].speaker |
SPEAKER_17 |
transcript.pyannote[1386].start |
11434.53096875 |
transcript.pyannote[1386].end |
11437.06221875 |
transcript.pyannote[1387].speaker |
SPEAKER_17 |
transcript.pyannote[1387].start |
11437.93971875 |
transcript.pyannote[1387].end |
11439.57659375 |
transcript.pyannote[1388].speaker |
SPEAKER_17 |
transcript.pyannote[1388].start |
11440.60596875 |
transcript.pyannote[1388].end |
11441.17971875 |
transcript.pyannote[1389].speaker |
SPEAKER_17 |
transcript.pyannote[1389].start |
11441.92221875 |
transcript.pyannote[1389].end |
11442.81659375 |
transcript.pyannote[1390].speaker |
SPEAKER_17 |
transcript.pyannote[1390].start |
11443.28909375 |
transcript.pyannote[1390].end |
11444.38596875 |
transcript.pyannote[1391].speaker |
SPEAKER_17 |
transcript.pyannote[1391].start |
11444.60534375 |
transcript.pyannote[1391].end |
11447.50784375 |
transcript.pyannote[1392].speaker |
SPEAKER_17 |
transcript.pyannote[1392].start |
11449.49909375 |
transcript.pyannote[1392].end |
11451.32159375 |
transcript.pyannote[1393].speaker |
SPEAKER_17 |
transcript.pyannote[1393].start |
11451.60846875 |
transcript.pyannote[1393].end |
11453.46471875 |
transcript.pyannote[1394].speaker |
SPEAKER_17 |
transcript.pyannote[1394].start |
11454.03846875 |
transcript.pyannote[1394].end |
11455.99596875 |
transcript.pyannote[1395].speaker |
SPEAKER_17 |
transcript.pyannote[1395].start |
11456.72159375 |
transcript.pyannote[1395].end |
11457.41346875 |
transcript.pyannote[1396].speaker |
SPEAKER_17 |
transcript.pyannote[1396].start |
11458.03784375 |
transcript.pyannote[1396].end |
11458.34159375 |
transcript.pyannote[1397].speaker |
SPEAKER_17 |
transcript.pyannote[1397].start |
11458.84784375 |
transcript.pyannote[1397].end |
11459.96159375 |
transcript.pyannote[1398].speaker |
SPEAKER_17 |
transcript.pyannote[1398].start |
11460.33284375 |
transcript.pyannote[1398].end |
11462.39159375 |
transcript.pyannote[1399].speaker |
SPEAKER_17 |
transcript.pyannote[1399].start |
11464.02846875 |
transcript.pyannote[1399].end |
11467.13346875 |
transcript.pyannote[1400].speaker |
SPEAKER_17 |
transcript.pyannote[1400].start |
11468.63534375 |
transcript.pyannote[1400].end |
11473.07346875 |
transcript.pyannote[1401].speaker |
SPEAKER_17 |
transcript.pyannote[1401].start |
11473.46159375 |
transcript.pyannote[1401].end |
11474.60909375 |
transcript.pyannote[1402].speaker |
SPEAKER_17 |
transcript.pyannote[1402].start |
11475.30096875 |
transcript.pyannote[1402].end |
11479.06409375 |
transcript.pyannote[1403].speaker |
SPEAKER_17 |
transcript.pyannote[1403].start |
11480.39721875 |
transcript.pyannote[1403].end |
11481.47721875 |
transcript.pyannote[1404].speaker |
SPEAKER_17 |
transcript.pyannote[1404].start |
11483.06346875 |
transcript.pyannote[1404].end |
11484.75096875 |
transcript.pyannote[1405].speaker |
SPEAKER_17 |
transcript.pyannote[1405].start |
11485.44284375 |
transcript.pyannote[1405].end |
11486.15159375 |
transcript.pyannote[1406].speaker |
SPEAKER_17 |
transcript.pyannote[1406].start |
11486.28659375 |
transcript.pyannote[1406].end |
11492.10846875 |
transcript.pyannote[1407].speaker |
SPEAKER_17 |
transcript.pyannote[1407].start |
11492.66534375 |
transcript.pyannote[1407].end |
11494.43721875 |
transcript.pyannote[1408].speaker |
SPEAKER_17 |
transcript.pyannote[1408].start |
11494.69034375 |
transcript.pyannote[1408].end |
11495.75346875 |
transcript.pyannote[1409].speaker |
SPEAKER_17 |
transcript.pyannote[1409].start |
11497.66034375 |
transcript.pyannote[1409].end |
11500.83284375 |
transcript.pyannote[1410].speaker |
SPEAKER_17 |
transcript.pyannote[1410].start |
11501.23784375 |
transcript.pyannote[1410].end |
11501.67659375 |
transcript.pyannote[1411].speaker |
SPEAKER_17 |
transcript.pyannote[1411].start |
11502.03096875 |
transcript.pyannote[1411].end |
11503.63409375 |
transcript.pyannote[1412].speaker |
SPEAKER_17 |
transcript.pyannote[1412].start |
11505.28784375 |
transcript.pyannote[1412].end |
11505.97971875 |
transcript.pyannote[1413].speaker |
SPEAKER_17 |
transcript.pyannote[1413].start |
11507.31284375 |
transcript.pyannote[1413].end |
11509.20284375 |
transcript.pyannote[1414].speaker |
SPEAKER_17 |
transcript.pyannote[1414].start |
11509.70909375 |
transcript.pyannote[1414].end |
11510.28284375 |
transcript.pyannote[1415].speaker |
SPEAKER_17 |
transcript.pyannote[1415].start |
11510.55284375 |
transcript.pyannote[1415].end |
11517.70784375 |
transcript.pyannote[1416].speaker |
SPEAKER_17 |
transcript.pyannote[1416].start |
11517.85971875 |
transcript.pyannote[1416].end |
11521.01534375 |
transcript.pyannote[1417].speaker |
SPEAKER_17 |
transcript.pyannote[1417].start |
11521.47096875 |
transcript.pyannote[1417].end |
11527.09034375 |
transcript.pyannote[1418].speaker |
SPEAKER_17 |
transcript.pyannote[1418].start |
11528.47409375 |
transcript.pyannote[1418].end |
11530.43159375 |
transcript.pyannote[1419].speaker |
SPEAKER_17 |
transcript.pyannote[1419].start |
11531.07284375 |
transcript.pyannote[1419].end |
11532.42284375 |
transcript.pyannote[1420].speaker |
SPEAKER_17 |
transcript.pyannote[1420].start |
11532.86159375 |
transcript.pyannote[1420].end |
11533.43534375 |
transcript.pyannote[1421].speaker |
SPEAKER_17 |
transcript.pyannote[1421].start |
11534.78534375 |
transcript.pyannote[1421].end |
11536.97909375 |
transcript.pyannote[1422].speaker |
SPEAKER_17 |
transcript.pyannote[1422].start |
11537.11409375 |
transcript.pyannote[1422].end |
11539.24034375 |
transcript.pyannote[1423].speaker |
SPEAKER_17 |
transcript.pyannote[1423].start |
11540.20221875 |
transcript.pyannote[1423].end |
11541.45096875 |
transcript.pyannote[1424].speaker |
SPEAKER_17 |
transcript.pyannote[1424].start |
11541.92346875 |
transcript.pyannote[1424].end |
11543.52659375 |
transcript.pyannote[1425].speaker |
SPEAKER_17 |
transcript.pyannote[1425].start |
11543.69534375 |
transcript.pyannote[1425].end |
11546.41221875 |
transcript.pyannote[1426].speaker |
SPEAKER_17 |
transcript.pyannote[1426].start |
11546.76659375 |
transcript.pyannote[1426].end |
11547.40784375 |
transcript.pyannote[1427].speaker |
SPEAKER_17 |
transcript.pyannote[1427].start |
11548.55534375 |
transcript.pyannote[1427].end |
11550.46221875 |
transcript.pyannote[1428].speaker |
SPEAKER_17 |
transcript.pyannote[1428].start |
11550.64784375 |
transcript.pyannote[1428].end |
11551.52534375 |
transcript.pyannote[1429].speaker |
SPEAKER_17 |
transcript.pyannote[1429].start |
11552.43659375 |
transcript.pyannote[1429].end |
11552.92596875 |
transcript.pyannote[1430].speaker |
SPEAKER_17 |
transcript.pyannote[1430].start |
11553.39846875 |
transcript.pyannote[1430].end |
11554.47846875 |
transcript.pyannote[1431].speaker |
SPEAKER_17 |
transcript.pyannote[1431].start |
11554.95096875 |
transcript.pyannote[1431].end |
11556.14909375 |
transcript.pyannote[1432].speaker |
SPEAKER_17 |
transcript.pyannote[1432].start |
11556.58784375 |
transcript.pyannote[1432].end |
11557.12784375 |
transcript.pyannote[1433].speaker |
SPEAKER_17 |
transcript.pyannote[1433].start |
11557.68471875 |
transcript.pyannote[1433].end |
11558.39346875 |
transcript.pyannote[1434].speaker |
SPEAKER_17 |
transcript.pyannote[1434].start |
11559.60846875 |
transcript.pyannote[1434].end |
11561.05971875 |
transcript.pyannote[1435].speaker |
SPEAKER_17 |
transcript.pyannote[1435].start |
11562.02159375 |
transcript.pyannote[1435].end |
11562.78096875 |
transcript.pyannote[1436].speaker |
SPEAKER_17 |
transcript.pyannote[1436].start |
11563.35471875 |
transcript.pyannote[1436].end |
11564.09721875 |
transcript.pyannote[1437].speaker |
SPEAKER_17 |
transcript.pyannote[1437].start |
11564.67096875 |
transcript.pyannote[1437].end |
11565.73409375 |
transcript.pyannote[1438].speaker |
SPEAKER_17 |
transcript.pyannote[1438].start |
11566.32471875 |
transcript.pyannote[1438].end |
11566.79721875 |
transcript.pyannote[1439].speaker |
SPEAKER_17 |
transcript.pyannote[1439].start |
11567.42159375 |
transcript.pyannote[1439].end |
11568.45096875 |
transcript.pyannote[1440].speaker |
SPEAKER_17 |
transcript.pyannote[1440].start |
11568.85596875 |
transcript.pyannote[1440].end |
11569.54784375 |
transcript.pyannote[1441].speaker |
SPEAKER_17 |
transcript.pyannote[1441].start |
11569.90221875 |
transcript.pyannote[1441].end |
11570.62784375 |
transcript.pyannote[1442].speaker |
SPEAKER_17 |
transcript.pyannote[1442].start |
11571.35346875 |
transcript.pyannote[1442].end |
11571.67409375 |
transcript.pyannote[1443].speaker |
SPEAKER_17 |
transcript.pyannote[1443].start |
11572.07909375 |
transcript.pyannote[1443].end |
11573.02409375 |
transcript.pyannote[1444].speaker |
SPEAKER_17 |
transcript.pyannote[1444].start |
11573.47971875 |
transcript.pyannote[1444].end |
11574.82971875 |
transcript.pyannote[1445].speaker |
SPEAKER_17 |
transcript.pyannote[1445].start |
11575.09971875 |
transcript.pyannote[1445].end |
11575.52159375 |
transcript.pyannote[1446].speaker |
SPEAKER_17 |
transcript.pyannote[1446].start |
11575.65659375 |
transcript.pyannote[1446].end |
11576.29784375 |
transcript.pyannote[1447].speaker |
SPEAKER_17 |
transcript.pyannote[1447].start |
11577.10784375 |
transcript.pyannote[1447].end |
11577.51284375 |
transcript.pyannote[1448].speaker |
SPEAKER_17 |
transcript.pyannote[1448].start |
11578.13721875 |
transcript.pyannote[1448].end |
11578.50846875 |
transcript.pyannote[1449].speaker |
SPEAKER_17 |
transcript.pyannote[1449].start |
11578.86284375 |
transcript.pyannote[1449].end |
11580.66846875 |
transcript.pyannote[1450].speaker |
SPEAKER_17 |
transcript.pyannote[1450].start |
11580.93846875 |
transcript.pyannote[1450].end |
11581.79909375 |
transcript.pyannote[1451].speaker |
SPEAKER_17 |
transcript.pyannote[1451].start |
11582.57534375 |
transcript.pyannote[1451].end |
11582.96346875 |
transcript.pyannote[1452].speaker |
SPEAKER_17 |
transcript.pyannote[1452].start |
11583.11534375 |
transcript.pyannote[1452].end |
11586.16971875 |
transcript.pyannote[1453].speaker |
SPEAKER_17 |
transcript.pyannote[1453].start |
11586.65909375 |
transcript.pyannote[1453].end |
11588.19471875 |
transcript.pyannote[1454].speaker |
SPEAKER_17 |
transcript.pyannote[1454].start |
11589.40971875 |
transcript.pyannote[1454].end |
11590.20284375 |
transcript.pyannote[1455].speaker |
SPEAKER_17 |
transcript.pyannote[1455].start |
11590.67534375 |
transcript.pyannote[1455].end |
11593.74659375 |
transcript.pyannote[1456].speaker |
SPEAKER_17 |
transcript.pyannote[1456].start |
11594.21909375 |
transcript.pyannote[1456].end |
11596.96971875 |
transcript.pyannote[1457].speaker |
SPEAKER_17 |
transcript.pyannote[1457].start |
11597.35784375 |
transcript.pyannote[1457].end |
11598.58971875 |
transcript.pyannote[1458].speaker |
SPEAKER_17 |
transcript.pyannote[1458].start |
11598.82596875 |
transcript.pyannote[1458].end |
11600.00721875 |
transcript.pyannote[1459].speaker |
SPEAKER_17 |
transcript.pyannote[1459].start |
11600.42909375 |
transcript.pyannote[1459].end |
11603.14596875 |
transcript.pyannote[1460].speaker |
SPEAKER_17 |
transcript.pyannote[1460].start |
11603.34846875 |
transcript.pyannote[1460].end |
11605.74471875 |
transcript.pyannote[1461].speaker |
SPEAKER_17 |
transcript.pyannote[1461].start |
11605.93034375 |
transcript.pyannote[1461].end |
11607.17909375 |
transcript.pyannote[1462].speaker |
SPEAKER_17 |
transcript.pyannote[1462].start |
11607.49971875 |
transcript.pyannote[1462].end |
11610.46971875 |
transcript.pyannote[1463].speaker |
SPEAKER_17 |
transcript.pyannote[1463].start |
11610.87471875 |
transcript.pyannote[1463].end |
11612.57909375 |
transcript.pyannote[1464].speaker |
SPEAKER_17 |
transcript.pyannote[1464].start |
11613.11909375 |
transcript.pyannote[1464].end |
11614.46909375 |
transcript.pyannote[1465].speaker |
SPEAKER_17 |
transcript.pyannote[1465].start |
11614.84034375 |
transcript.pyannote[1465].end |
11616.20721875 |
transcript.pyannote[1466].speaker |
SPEAKER_17 |
transcript.pyannote[1466].start |
11616.42659375 |
transcript.pyannote[1466].end |
11617.42221875 |
transcript.pyannote[1467].speaker |
SPEAKER_17 |
transcript.pyannote[1467].start |
11617.62471875 |
transcript.pyannote[1467].end |
11618.55284375 |
transcript.pyannote[1468].speaker |
SPEAKER_17 |
transcript.pyannote[1468].start |
11619.61596875 |
transcript.pyannote[1468].end |
11621.50596875 |
transcript.pyannote[1469].speaker |
SPEAKER_17 |
transcript.pyannote[1469].start |
11622.36659375 |
transcript.pyannote[1469].end |
11623.02471875 |
transcript.pyannote[1470].speaker |
SPEAKER_17 |
transcript.pyannote[1470].start |
11623.69971875 |
transcript.pyannote[1470].end |
11625.50534375 |
transcript.pyannote[1471].speaker |
SPEAKER_17 |
transcript.pyannote[1471].start |
11626.16346875 |
transcript.pyannote[1471].end |
11627.39534375 |
transcript.pyannote[1472].speaker |
SPEAKER_17 |
transcript.pyannote[1472].start |
11627.68221875 |
transcript.pyannote[1472].end |
11628.69471875 |
transcript.pyannote[1473].speaker |
SPEAKER_17 |
transcript.pyannote[1473].start |
11629.30221875 |
transcript.pyannote[1473].end |
11630.51721875 |
transcript.pyannote[1474].speaker |
SPEAKER_17 |
transcript.pyannote[1474].start |
11631.05721875 |
transcript.pyannote[1474].end |
11632.54221875 |
transcript.pyannote[1475].speaker |
SPEAKER_17 |
transcript.pyannote[1475].start |
11632.99784375 |
transcript.pyannote[1475].end |
11634.24659375 |
transcript.pyannote[1476].speaker |
SPEAKER_17 |
transcript.pyannote[1476].start |
11635.37721875 |
transcript.pyannote[1476].end |
11635.71471875 |
transcript.pyannote[1477].speaker |
SPEAKER_17 |
transcript.pyannote[1477].start |
11636.45721875 |
transcript.pyannote[1477].end |
11638.19534375 |
transcript.pyannote[1478].speaker |
SPEAKER_17 |
transcript.pyannote[1478].start |
11638.58346875 |
transcript.pyannote[1478].end |
11639.71409375 |
transcript.pyannote[1479].speaker |
SPEAKER_17 |
transcript.pyannote[1479].start |
11640.28784375 |
transcript.pyannote[1479].end |
11642.00909375 |
transcript.pyannote[1480].speaker |
SPEAKER_17 |
transcript.pyannote[1480].start |
11643.03846875 |
transcript.pyannote[1480].end |
11643.47721875 |
transcript.pyannote[1481].speaker |
SPEAKER_17 |
transcript.pyannote[1481].start |
11643.81471875 |
transcript.pyannote[1481].end |
11645.40096875 |
transcript.pyannote[1482].speaker |
SPEAKER_17 |
transcript.pyannote[1482].start |
11645.82284375 |
transcript.pyannote[1482].end |
11646.81846875 |
transcript.pyannote[1483].speaker |
SPEAKER_17 |
transcript.pyannote[1483].start |
11647.15596875 |
transcript.pyannote[1483].end |
11647.88159375 |
transcript.pyannote[1484].speaker |
SPEAKER_17 |
transcript.pyannote[1484].start |
11648.26971875 |
transcript.pyannote[1484].end |
11650.05846875 |
transcript.pyannote[1485].speaker |
SPEAKER_17 |
transcript.pyannote[1485].start |
11650.36221875 |
transcript.pyannote[1485].end |
11651.94846875 |
transcript.pyannote[1486].speaker |
SPEAKER_17 |
transcript.pyannote[1486].start |
11652.13409375 |
transcript.pyannote[1486].end |
11654.59784375 |
transcript.pyannote[1487].speaker |
SPEAKER_17 |
transcript.pyannote[1487].start |
11654.73284375 |
transcript.pyannote[1487].end |
11656.09971875 |
transcript.pyannote[1488].speaker |
SPEAKER_17 |
transcript.pyannote[1488].start |
11656.99409375 |
transcript.pyannote[1488].end |
11658.49596875 |
transcript.pyannote[1489].speaker |
SPEAKER_17 |
transcript.pyannote[1489].start |
11658.83346875 |
transcript.pyannote[1489].end |
11660.28471875 |
transcript.pyannote[1490].speaker |
SPEAKER_17 |
transcript.pyannote[1490].start |
11660.62221875 |
transcript.pyannote[1490].end |
11662.46159375 |
transcript.pyannote[1491].speaker |
SPEAKER_17 |
transcript.pyannote[1491].start |
11663.03534375 |
transcript.pyannote[1491].end |
11663.92971875 |
transcript.pyannote[1492].speaker |
SPEAKER_17 |
transcript.pyannote[1492].start |
11664.18284375 |
transcript.pyannote[1492].end |
11665.48221875 |
transcript.pyannote[1493].speaker |
SPEAKER_17 |
transcript.pyannote[1493].start |
11665.87034375 |
transcript.pyannote[1493].end |
11667.67596875 |
transcript.pyannote[1494].speaker |
SPEAKER_17 |
transcript.pyannote[1494].start |
11668.06409375 |
transcript.pyannote[1494].end |
11670.03846875 |
transcript.pyannote[1495].speaker |
SPEAKER_17 |
transcript.pyannote[1495].start |
11671.47284375 |
transcript.pyannote[1495].end |
11674.17284375 |
transcript.pyannote[1496].speaker |
SPEAKER_17 |
transcript.pyannote[1496].start |
11674.67909375 |
transcript.pyannote[1496].end |
11676.21471875 |
transcript.pyannote[1497].speaker |
SPEAKER_17 |
transcript.pyannote[1497].start |
11677.27784375 |
transcript.pyannote[1497].end |
11680.02846875 |
transcript.pyannote[1498].speaker |
SPEAKER_17 |
transcript.pyannote[1498].start |
11680.63596875 |
transcript.pyannote[1498].end |
11681.64846875 |
transcript.pyannote[1499].speaker |
SPEAKER_17 |
transcript.pyannote[1499].start |
11682.57659375 |
transcript.pyannote[1499].end |
11683.03221875 |
transcript.pyannote[1500].speaker |
SPEAKER_17 |
transcript.pyannote[1500].start |
11683.36971875 |
transcript.pyannote[1500].end |
11684.75346875 |
transcript.pyannote[1501].speaker |
SPEAKER_17 |
transcript.pyannote[1501].start |
11685.09096875 |
transcript.pyannote[1501].end |
11685.90096875 |
transcript.pyannote[1502].speaker |
SPEAKER_17 |
transcript.pyannote[1502].start |
11686.54221875 |
transcript.pyannote[1502].end |
11686.96409375 |
transcript.pyannote[1503].speaker |
SPEAKER_18 |
transcript.pyannote[1503].start |
11686.96409375 |
transcript.pyannote[1503].end |
11687.28471875 |
transcript.pyannote[1504].speaker |
SPEAKER_17 |
transcript.pyannote[1504].start |
11687.38596875 |
transcript.pyannote[1504].end |
11687.40284375 |
transcript.pyannote[1505].speaker |
SPEAKER_18 |
transcript.pyannote[1505].start |
11687.40284375 |
transcript.pyannote[1505].end |
11687.95971875 |
transcript.pyannote[1506].speaker |
SPEAKER_17 |
transcript.pyannote[1506].start |
11688.16221875 |
transcript.pyannote[1506].end |
11688.17909375 |
transcript.pyannote[1507].speaker |
SPEAKER_18 |
transcript.pyannote[1507].start |
11688.17909375 |
transcript.pyannote[1507].end |
11688.63471875 |
transcript.whisperx[0].start |
1790.732 |
transcript.whisperx[0].end |
1805.898 |
transcript.whisperx[0].text |
向委員會報告今天是公聽會也跟各位報告今天全立法院八個委員會其他七個委員會都考察只有我們這個地方公聽會財政委員會最認真公聽會 |
transcript.whisperx[1].start |
1808.42 |
transcript.whisperx[1].end |
1824.138 |
transcript.whisperx[1].text |
首先歡迎今天蒞臨的專家學者在場的委員政府機關的代表參加環稅漁民的公聽會這一次提綱其實是兩大部分一大部分就是 |
transcript.whisperx[2].start |
1825.339 |
transcript.whisperx[2].end |
1833.406 |
transcript.whisperx[2].text |
我個人以及其他委員提案的說當政府超收的稅超過120%那就超過20%以上啦這個時候應該要換稅於民 |
transcript.whisperx[3].start |
1841.172 |
transcript.whisperx[3].end |
1856.947 |
transcript.whisperx[3].text |
我沒有訂比例比例就是由政府行政部門自己來訂但是要發他可以發說每個人100塊每個人1000塊每個人1萬塊都可以按照我們的法條這樣這是一個法條第二個法條是有國民黨團 |
transcript.whisperx[4].start |
1858.448 |
transcript.whisperx[4].end |
1883.477 |
transcript.whisperx[4].text |
所提的現在已經一讀了就是經過院會一讀那就是這個全民普發一萬塊的還稅移民所以今天是兩大題目第一個是預算法的相關的法來做一個規範第二個是特別條例就公定會那我們這個我稍微提一下因為這個是 |
transcript.whisperx[5].start |
1885.441 |
transcript.whisperx[5].end |
1914.6 |
transcript.whisperx[5].text |
我的提案 稍微做一點提案說明因為這幾年超增的今年度不算113年度不算的話我們總共超增了一兆三千億如果把今年當然還沒辦決算 到七月才辦決算這個時候已經有一兆八千億政府老實說我就拿去還債可是我們看了一下額外還債的只不過一千多億而已所以基本上是 |
transcript.whisperx[6].start |
1915.481 |
transcript.whisperx[6].end |
1941.669 |
transcript.whisperx[6].text |
有這個條件第二個理由是因為我們政府都說還債還債這個還債然後看Elon Musk美國的情況啊他並沒有說我的債通常沒有我才還稅移民啊Elon Musk現在大幅的砍行政支出那他的目標就是每個人要退稅五千塊美金這是第二點我想補充說明的然後美國的 |
transcript.whisperx[7].start |
1942.569 |
transcript.whisperx[7].end |
1964.12 |
transcript.whisperx[7].text |
他的債務佔他的GDP175%我們只有25%就像很像一個公司你不能夠說我都沒有債務我才發零薪獎金雖然當然這個超徵的稅不等於零薪獎金可是性質有一點類似這是第二個我要強調第三點我要強調的是因為 |
transcript.whisperx[8].start |
1966.105 |
transcript.whisperx[8].end |
1991.671 |
transcript.whisperx[8].text |
這個我們看到超徵的稅收最大的一筆佔40%的都是綜合所的稅綜合所的稅我們所有的納稅戶大概670萬戶那麼結果我們交的錢每一年都被超徵了40%左右還一點讓我們這些小老百姓的綜合所稅我想預期合理這是我提案做這樣的簡單的說明 |
transcript.whisperx[9].start |
1994.512 |
transcript.whisperx[9].end |
2021.099 |
transcript.whisperx[9].text |
公民黨團所提的那就是這個在五千多億裡面我們希望能夠每一個人這個還稅一名還錢一名一萬塊然後中央大院長在備詢的時候被問到這個問題他其實沒有那麼堅持的反對他是說可以考慮類似這樣子的話把話問來講但是他要照顧弱勢群體 |
transcript.whisperx[10].start |
2022.399 |
transcript.whisperx[10].end |
2038.861 |
transcript.whisperx[10].text |
照顧弱勢跟還稅英民這兩個不衝突因為我們現在超徵的夠多最後我還是強調每一年超徵這麼多每一年平均都超徵了四五千億這代表 |
transcript.whisperx[11].start |
2040.222 |
transcript.whisperx[11].end |
2065.269 |
transcript.whisperx[11].text |
這個財政部原來的這個估算都不準喔我記得省財預算每一次我要給他加說稅率增加死都不肯啦所以都只能加一百億、兩百億、五百億這個東西結果還是超成了幾千億所以從財政紀律角度來講也應該要還水一米這是我先起個頭那跟各位報告啊我就先介紹在場的委員 |
transcript.whisperx[12].start |
2068.052 |
transcript.whisperx[12].end |
2092.45 |
transcript.whisperx[12].text |
委員沒有進來剛才有幾位我們再介紹學者專家我們按照道的先後順序跟各位報告第一位是高雄科技大學科技法律研究所的羅成忠教授歡迎第二位是政大財稅系的教授兼主任陳國朗陳主任 |
transcript.whisperx[13].start |
2095.055 |
transcript.whisperx[13].end |
2116.58 |
transcript.whisperx[13].text |
第三位是中華財政學會的副秘書長陳妙香陳副秘書長 歡迎第四位是台北商業大學財稅系的黃耀輝教授 歡迎第五位是政治大學經濟學系的這個教授 民主教教授 |
transcript.whisperx[14].start |
2119.824 |
transcript.whisperx[14].end |
2133.447 |
transcript.whisperx[14].text |
第六位是台大法律學院的科格中教授第七位是逢甲大學的武大開教授 歡迎 |
transcript.whisperx[15].start |
2135.35 |
transcript.whisperx[15].end |
2159.908 |
transcript.whisperx[15].text |
好 那我跟各位報告 我們進行的一個 今天是公聽會嘛所以主要是以專家學者為主全部的是 專家學者全部講完了 那政府官員再來回應那政府官員 我剛才沒有介紹 我們來介紹一下行政院的副秘書長 李國新 林副秘書長 |
transcript.whisperx[16].start |
2162.779 |
transcript.whisperx[16].end |
2187.389 |
transcript.whisperx[16].text |
主計長他9點到11點就跟我請假副主計長先代理陳慧娟副主計長我們主計長11點會到11點會到財政部的李清華次長以及國庫署的陳柏成署長負稅署的宋秀玲 宋署長 |
transcript.whisperx[17].start |
2189.906 |
transcript.whisperx[17].end |
2200.821 |
transcript.whisperx[17].text |
好,我們按照慣例每一位發言8分鐘專家學者結束前一分鐘要按您提醒 |
transcript.whisperx[18].start |
2205.219 |
transcript.whisperx[18].end |
2225.711 |
transcript.whisperx[18].text |
要參加的委員如果有需要要發言可以到前面來登記委員發言五分鐘這個大概今天我們的遊戲規則這樣好不好我們就按照我們的先後順序首先請高雄科技大學的這個科法研究所教授羅教授來請就八分鐘七分鐘的時候按一次鈴 |
transcript.whisperx[19].start |
2235.166 |
transcript.whisperx[19].end |
2251.539 |
transcript.whisperx[19].text |
主席各位長官跟各位與會的學者大家早安大家好很高興來到這麼神聖的地方談這樣的事情真的也謝謝大會的組織我們看得到一般來講其實大家在找學者的時候不會兼顧北中南 |
transcript.whisperx[20].start |
2252.159 |
transcript.whisperx[20].end |
2277.63 |
transcript.whisperx[20].text |
但是其實我們這一次的學者北中南都有不是只有首都圈的學者的聲音那真的很感謝那因為剛才主席有講到說今天是雙主題一個是我們預算法八十一條之一的修正與否另外一個是條例的部分那我就先就條例的部分因為其實它裡面的內涵是一樣的是有關於超增漁民的部分所以我大概以下八分鐘的重點會針對那個條例的部分去做發言 |
transcript.whisperx[21].start |
2278.75 |
transcript.whisperx[21].end |
2292.826 |
transcript.whisperx[21].text |
那首先其實我就幫大家做一個整理的資料為什麼我們會開這個公民會呢其實誠如剛才主席所說的就是說會有因為最近有這個提案那這個提案其實在禮報裡面 |
transcript.whisperx[22].start |
2294.287 |
transcript.whisperx[22].end |
2314.575 |
transcript.whisperx[22].text |
有打到說如果我在立法院的提案系統裡面打超增兩個字下去的話其實跑出來的東西會有四筆資料這四筆資料的話又有分兩個群組一個群組是已經結束了就是上一個會期的時候我們知道說行政院有提了一個雖然它的超增是沒有寫在名字跟條文的可是在立法總說明裡面 |
transcript.whisperx[23].start |
2315.675 |
transcript.whisperx[23].end |
2339.855 |
transcript.whisperx[23].text |
行政院版的在立法總說明裡面因為議後他也認為說我們多收了錢所以要叭叭叭叭所以就做這個東西然後呢當時的話呢在資料的最下這一頁最下面那個112年的1月的那一個國民黨團也提了稅收超徵全民共享的這樣的一個辦法那這兩個就並按審查以後呢這個就通過了所以這件事情我們上次做過 |
transcript.whisperx[24].start |
2340.575 |
transcript.whisperx[24].end |
2362.332 |
transcript.whisperx[24].text |
那這一次的話呢在新的資料裡面的話呢今年的三月其實又有兩個相關的版本裡面都有超增的規定那這個超增的規定的話呢就直接把超增的概念放到法條的名字了我再講一次至少以前在院版是沒有放在法條的名字條文也沒有立法說明也沒有是放在立法總說明裡面但是我們就做過一次了那要講的是呢 |
transcript.whisperx[25].start |
2363.092 |
transcript.whisperx[25].end |
2382.434 |
transcript.whisperx[25].text |
這是有1所以這個是我們很熟悉的名字很長我就不唸就是易後強化的特別條例在這個裡面的話普發現金四個字就變成了法律條文了那普發現金的法律條文在立法說明也沒有寫到但是再講一次總說明有寫到因為說說超真那有1就有2嗎 |
transcript.whisperx[26].start |
2383.955 |
transcript.whisperx[26].end |
2405.471 |
transcript.whisperx[26].text |
現在這是J4的問題是說真的我們上一次做了這個事情那我們就可以繼續做下去了嗎我這邊剛好台大科老師在我先來講一個預算法的基本概念是什麼因為這個真的很簡單但是因為預算法是我們法律學門很冷門的東西我覺得還是八分鐘還是要講一下預算就是一個預先計算 |
transcript.whisperx[27].start |
2407.012 |
transcript.whisperx[27].end |
2426.228 |
transcript.whisperx[27].text |
在稅入面上一定會失準沒有人是神所以說明年到底實際上收多少這個沒有人知道所以預算的稅入面的稅收不是超增就是短增沒有其他可能性了所以在這個地方因為預算它是一種計劃性的東西所以在預算的本質上就一定會有落差 |
transcript.whisperx[28].start |
2426.989 |
transcript.whisperx[28].end |
2439.22 |
transcript.whisperx[28].text |
那在這個落差上面的話我要講的第一個是說在我們法律人來看它的法律效力在於稅出的部分它是最高限額的預定但是在稅入的部分它沒有法律居住率 |
transcript.whisperx[29].start |
2440.188 |
transcript.whisperx[29].end |
2467.366 |
transcript.whisperx[29].text |
翻成白話文呢基本上你把稅收的預測調高如果超證的話我們不會有任何人被溢除一樣短證的話呢我們也不會有法律責任嘛所以這個可能很多長官都知道但是從我們法界來看的話我們的法律效力是只有在稅出才有最高限的在稅入的部分因為是參考用的我的預測你幫我調高了那難道變成你的預測嗎所以這個地方調高跟調低在稅入面上是沒有意義的 |
transcript.whisperx[30].start |
2468.24 |
transcript.whisperx[30].end |
2495.308 |
transcript.whisperx[30].text |
好 那也因為沒有意義的話呢我們就做一個小結就是說它是一種正常的現象而這個現象不用大真小怪它一定會發生要嘛就是多要嘛就是少嘛不可能精準的啦那也因為這樣呢所以甚至在技術面上這個我就扣回到81條之一了如果法條要這麼設計說以後我們稅收超徵就要怎麼怎麼的話那財政部比我更聰明他會找十個經濟學家裡面呢預算學家裡面找一個最樂觀的 |
transcript.whisperx[31].start |
2496.707 |
transcript.whisperx[31].end |
2504.548 |
transcript.whisperx[31].text |
就出他的意見所以呢以後絕對不會有預算超增的每年就會短增這個是做得出來的啊因為現在在編概算嘛怎麼做我會啊 |
transcript.whisperx[32].start |
2506.307 |
transcript.whisperx[32].end |
2532.946 |
transcript.whisperx[32].text |
所以這個對貴大員來講的話我們很良善的認為說超徵要還稅於民可是我就可以在行政面上致死讓超徵不會發生所以這是沒有意義的東西而且它可以被操作那再來呢我就要講一個這個是時空旅人的故事這個是台大法律系的連續兩屆的入學考試分別是111學年度跟112學年度入學考試考什麼呢我們可以看一下 |
transcript.whisperx[33].start |
2534.318 |
transcript.whisperx[33].end |
2550.09 |
transcript.whisperx[33].text |
入學考試基本上都在考這一題喔但是呢第一次11年學年度的入學考試說有人說超專愚民這個主張請這些研究生們去討論說從預算法上的角度來怎麼看超專愚民當然那個時候的時空背景是有一個團體 |
transcript.whisperx[34].start |
2551.351 |
transcript.whisperx[34].end |
2568.577 |
transcript.whisperx[34].text |
跟財政部感情很不好的團體一直在喊超稅漁民還稅漁民但是喊的人有時候不是很專業所以說台大法律系的財稅法組才拿這題出來考其實是帶到有點嘲諷的意味可是隔一年處理老師的臉變了本來是嘲諷劇的變質真實劇 |
transcript.whisperx[35].start |
2570.905 |
transcript.whisperx[35].end |
2589.153 |
transcript.whisperx[35].text |
居然這真的要做了所以你看一下隔年的那個題目的口氣就變了2022年因為稅收超增了政府想要提撥一份的錢要去發現金了請問在預算法上如何評價這個超增啊那個其實是很沉痛的本來是在開玩笑的開玩笑就變真的就變噩夢了好 |
transcript.whisperx[36].start |
2591.294 |
transcript.whisperx[36].end |
2611.332 |
transcript.whisperx[36].text |
這個是台大入學考題這不是我掰的各位學員要去查所以至少在我們財稅法不是我不是稅我是財政法預算法的在我們預算法事件裡面的話的話這四個字我們真的看不懂好那本案呢其實我的意見很簡單第一個是你不用還我錢好不好就是基本上 |
transcript.whisperx[37].start |
2613.021 |
transcript.whisperx[37].end |
2636.082 |
transcript.whisperx[37].text |
稅增基增把我的錢拿到政府那邊去他有一個基增成本你今天又要花一個基增成本再把錢退給我的話那真的是有點奇怪如果說呢今天我作為一個納稅人我給我交的預算就是要讓國家機器運作嘛讓你去推送施政嘛你不用還錢給我的如果說你真的想還錢給我的話呢五月納稅要到了你可以少收一點稅給我嗎 |
transcript.whisperx[38].start |
2637.463 |
transcript.whisperx[38].end |
2656.33 |
transcript.whisperx[38].text |
就好啦 大家打八折 打七折就好啦不用這樣來來回回的因為很累 基金成本很累我們無論不管中央政府融資算怎麼怎麼我們都不管但是你真的要還錢的話技術面上五月時候處理就好了不用再這樣子弄第二點的話呢剛才主席說有提到這個問題可是 |
transcript.whisperx[39].start |
2657.831 |
transcript.whisperx[39].end |
2686.288 |
transcript.whisperx[39].text |
家計上還是有個問題就是說我們的一年以上的公債大概大概八大概七兆八兆吧那要不要還一下呢那個當然公債來說很多國家都有但是從家計的觀點來看真的家裡面多了一筆預測以外的錢我是把小孩子都叫來把錢換給他還是說我們先把以前的貸款付一付會比較合理呢那基本上呢最後一個就是說這一步已經錯了我所謂的錯是上一次我們發放那個一號全民那個新發現金我認為是錯的 |
transcript.whisperx[40].start |
2687.449 |
transcript.whisperx[40].end |
2714.748 |
transcript.whisperx[40].text |
那我們還要繼續錯下去嗎那為什麼我認為是錯的呢我不是今天才講這個是我在2020年的時候自由時報的專欄我就非常批評這件事情所以我一直以來就在講說這件事情是錯的所以2020年我講財政部是錯的我到現在還是講說這個東西不管是以後行政院體還是立法院體這件事情都是錯的 以上謝謝好 謝謝我們高雄科大的羅教授下一位請陳國亮陳教授 |
transcript.whisperx[41].start |
2715.748 |
transcript.whisperx[41].end |
2717.629 |
transcript.whisperx[41].text |
那個李燕秀委員請準備大家好謝謝那個主席謝謝財委會有這一個公聽會那謝謝民進黨團的推薦讓我來這個地方針對稅收操縱議題提出一些我的想法 |
transcript.whisperx[42].start |
2741.854 |
transcript.whisperx[42].end |
2763.766 |
transcript.whisperx[42].text |
那在稅收超征議題上面其實我寫過非常非常多的文章那也做過非常深入的研究那今天時間非常的短我大概就是收到了三個提綱這三個提綱呢我分別有三點想法所以第一個提綱提到的是政府應該還稅於民那在這一點上面呢我要強調的就會是稅收超征並不代表政府財政有餘裕 |
transcript.whisperx[43].start |
2764.787 |
transcript.whisperx[43].end |
2786.772 |
transcript.whisperx[43].text |
那我們今天真的要做到還稅餘名的話要先確定說財政是有餘裕的但是如果把稅收超徵跟財政餘裕直接去做連結那這個連結其實是有問題的這是第一點那第二點就會提到就是我們要去編特別條例那是不是能夠來分享經濟成長的成果那這件事情上面我們要強調就會是特別條例其實是財政紀律的破口 |
transcript.whisperx[44].start |
2788.184 |
transcript.whisperx[44].end |
2811.443 |
transcript.whisperx[44].text |
我們不能夠一邊喊著說我們要財政紀律那一邊我們不斷地要去編特別條例這是第二點我要強調的那第三點就會是那還稅漁民應該要包括哪些部分那在這一點上面呢我要指出的就是還稅漁民的謬誤所以以上分成三點然後分別就是跟大家做報告那首先第一點就是說說超生不等於財政有餘裕這一點 |
transcript.whisperx[45].start |
2812.827 |
transcript.whisperx[45].end |
2836.968 |
transcript.whisperx[45].text |
我覺得其實不需要學財政真的很簡單就是我們只有基本的生活經驗就應該知道我們如果說就是日常生活上面我們賺錢有多賺一些並不代表說我們有錢可以揮霍為什麼就是到底夠不夠用如果說今天我多賺了一些比預期我可能預期說要賺八十塊結果現在賺了九十塊錢那我是不是有超賺有超賺可是問題是我要花一百塊錢 |
transcript.whisperx[46].start |
2838.129 |
transcript.whisperx[46].end |
2858.204 |
transcript.whisperx[46].text |
所以其實即便有超賺還是會有不夠的情形所以就這一點來說的話我們剛剛講到個人所得會有超賺的現象那政府的稅收會有超徵的現象政府稅收超徵不等於財政有餘裕所以是一開始我要講的那在這個部分呢如果我們看一下接下來兩個圖我整理的那第一個圖事實上是一年以上未償債務餘額 |
transcript.whisperx[47].start |
2859.665 |
transcript.whisperx[47].end |
2884.296 |
transcript.whisperx[47].text |
第二個圖是包含短期的債務以及自償性的債務從這兩個圖形裡面都非常清楚可以看得到其實我們的負債是在增加的我們的債務是在增加的我們在一邊超增然後債務又一邊增加的情況底下我們財政的現實情形其實是稅收雖然有超增但是就財政的資用來看的話其實還是有什麼 |
transcript.whisperx[48].start |
2884.836 |
transcript.whisperx[48].end |
2899.012 |
transcript.whisperx[48].text |
還是有夠不夠用這樣的一個疑慮所以這個部分是我要指出來的就是稅收債務餘額不斷上升這樣的一個情形那第二點我在稅收超生不等於財政餘裕這裡我要強調的就會是稅收超生的本質它其實是一個估計的誤差 |
transcript.whisperx[49].start |
2900.035 |
transcript.whisperx[49].end |
2921.155 |
transcript.whisperx[49].text |
所以剛剛就是我老師已經提到了所以今天我有實際的稅收我有預算的稅收這兩個相減之後的餘數是估計的誤差如果這個餘數大於零的話那我們是超增這個餘數有小餘的話其實就是短增那我們知道說從這條數學式子非常清楚呈現一件事情就是超增跟低估是一體的兩面 |
transcript.whisperx[50].start |
2922.639 |
transcript.whisperx[50].end |
2951.778 |
transcript.whisperx[50].text |
OK所以今天大家把焦點放在超增上可是另外一個角度呢那如果說我們其實之所以會有超增是當初在估稅的時候就估得比較保守就有低估這樣的一個疑慮那我們今天在討論稅收超增那其實就會讓人家覺得說其實我們當初只是沒有把這一塊稅把它算進來而已那並不是說就是我們政府在資用上面是沒有問題的所以這個是第二點我要強調的那第三點我要講的是什麼第三點我要講的就會是超增稅收去了哪邊 |
transcript.whisperx[51].start |
2952.879 |
transcript.whisperx[51].end |
2966.736 |
transcript.whisperx[51].text |
OK 大家一直在問說稅收去了哪邊其實只有三個用途一小部分稅收超徵的錢用來還債了絕大部分稅收超徵的錢用來怎樣用來減少舉債然後最後就是有一部分變成稅基剩餘 |
transcript.whisperx[52].start |
2967.757 |
transcript.whisperx[52].end |
2991.565 |
transcript.whisperx[52].text |
分別看一下從還債這件事情來看的話大概有1000多億我們看到確實債務還本的金額是超過在預算邊列的債務還本數這是第一個第二個就會是我從這個地方去整理了105年到114年總預算跟特別預算債務舉借的數字每一年都是2000億以上甚至有超過4500億的如果我們把105年到113年債務舉借的額度加在一起的話大概是2.6兆 |
transcript.whisperx[53].start |
2998.06 |
transcript.whisperx[53].end |
3017.035 |
transcript.whisperx[53].text |
這個數字其實跟整個超徵的規模是相近的請大家留意一下就會是從107年到113年我們都沒有執行債務就是我們在總預算裡面債務的舉借的決算數其實都是零所以為什麼我剛剛講到說太半稅收超徵錢大概都是用來減少舉債 |
transcript.whisperx[54].start |
3019.377 |
transcript.whisperx[54].end |
3037.797 |
transcript.whisperx[54].text |
從這個圖表可以非常清楚的呈現那第三個我要講的就會是留作稅基剩餘所以有一部分是留作稅基剩餘但是我要在這裡強調就會是稅基剩餘它不是一個基金它只是一個會計科目當我在做決算的時候一個會計科目它並不是說國庫真的有多的錢 |
transcript.whisperx[55].start |
3038.618 |
transcript.whisperx[55].end |
3060.073 |
transcript.whisperx[55].text |
所以我們看一下稅計剩餘的定義我們一般講的稅計剩餘是總決算的收入支出的剩餘那這個總決算收入支出的剩餘它是稅入稅出的餘出減掉債務償還 加上債務舉借然後再加上遺用以前年度稅計剩餘所以從那個數學式非常清楚呈現一件事情就是 |
transcript.whisperx[56].start |
3060.914 |
transcript.whisperx[56].end |
3087.935 |
transcript.whisperx[56].text |
借來的錢還有以前年度稅季剩餘都會放在我們這個年度的稅季剩餘底下所以回到我們剛剛講的這稅季剩餘它只是一個會計科目它並不代表說國庫有錢在那個地方可以等著花用所以這個事實上是在第一點我要講的就是稅季剩餘其實稅收超生不等於我們財政有餘裕第二點我要提到的就會是特別條例它其實財政紀律的破口 |
transcript.whisperx[57].start |
3088.735 |
transcript.whisperx[57].end |
3110.481 |
transcript.whisperx[57].text |
那財政永續有賴財政紀律的實現的落實那我們一般來講特別條例都可以或多或少會超脫一般財政紀律的束縛它是一個財政紀律的破口那近年來其實我們特別預算有常態化的情形那尤其是蔡政府在執政的末期那因為說說超徵普發現金真的是打開了潘朵拉盒子難以收拾 |
transcript.whisperx[58].start |
3111.468 |
transcript.whisperx[58].end |
3125.8 |
transcript.whisperx[58].text |
因為我覺得我們常聽到說要怎麼樣解決特別預算常態化的問題有一個說法就是要刪掉預算法第83條的空白授權也就是說不要再以數年一次的重大政事拿來編列特別預算 |
transcript.whisperx[59].start |
3126.411 |
transcript.whisperx[59].end |
3155.293 |
transcript.whisperx[59].text |
那可是我覺得同樣的一群人一邊喊說要刪掉空白授權但一邊又主張一邊特別預算那這個東西其實是相互矛盾的所以這個是第二點我要強調的那第三點我要講的是什麼呢就是還稅於民的謬誤我們剛剛提到稅收超徵不等於財政有餘裕那你拿什麼來還那近11年來我剛剛在圖形上面也呈現出來就是中年我們中央政府的稅收是連年超徵可是中央政府的未償債務也持續的增加 |
transcript.whisperx[60].start |
3156.073 |
transcript.whisperx[60].end |
3183.259 |
transcript.whisperx[60].text |
那所以如果超徵的稅收全數都用來舉債用來就是減少舉債或是還債那債務也還是繼續增加的話那代表稅收雖然有超徵還是不足以因應政府支出所需在這個情況底下如果執意要還稅於民不管是普發現金、消費券或是補充特種基金或是投資公共建設那每發一塊錢就要舉借新債一塊錢那我覺得這個東西是債流子孫這個東西是跨代機的掠奪 |
transcript.whisperx[61].start |
3185.623 |
transcript.whisperx[61].end |
3202.624 |
transcript.whisperx[61].text |
補發現金在本質上它是一個擴張性的財政政策非常重要的一個觀念就是它不是把稅收拿回去拿回去給老百姓它是編更多的預算花更多的錢那我們今天想要講的就是如果稅收超增退稅那稅收短增的時候是不是人民要繳第二次稅 |
transcript.whisperx[62].start |
3204.57 |
transcript.whisperx[62].end |
3221.842 |
transcript.whisperx[62].text |
那政府的稅收就是跟景氣的循環事實上是有正向的關係稅收超增會在景氣繁榮的時候稅收短增會在景氣衰退的時候那如果說超增退稅短增補稅這個是有違基本功能財政的根本邏輯那以上跟大家報告謝謝大家 謝謝 |
transcript.whisperx[63].start |
3227.629 |
transcript.whisperx[63].end |
3233.132 |
transcript.whisperx[63].text |
謝謝鄭大的陳教授現在會請我們本院的同仁李燕秀委員發言進時間五分鐘了 |
transcript.whisperx[64].start |
3239.503 |
transcript.whisperx[64].end |
3252.951 |
transcript.whisperx[64].text |
最近國民黨提出稅收超徵還權於民的這個版本我們到地方上都聽到很多民眾鼓掌叫好過去這幾年民進黨的執政都說經濟非常好我們人民應該共享經濟的紅利 |
transcript.whisperx[65].start |
3260.855 |
transcript.whisperx[65].end |
3275.525 |
transcript.whisperx[65].text |
無論是股市好我們的晶片賣得好進出口好經濟暢旺但是大多數的民眾並不一定有台積電的股票大多數的民眾對於經濟的成長那個溫度是沒有感覺的 |
transcript.whisperx[66].start |
3280.017 |
transcript.whisperx[66].end |
3288.183 |
transcript.whisperx[66].text |
所以我們這次國民黨提出這個版本其實是有特別的意義我特別再次要舉出幾個數據跟數字從110年超徵稅收是4300億111年是5200億112年是3800億 |
transcript.whisperx[67].start |
3301.213 |
transcript.whisperx[67].end |
3326.616 |
transcript.whisperx[67].text |
113年是5283億去年的稅收超徵是最高的數字創下歷史的新高過去這四年總共稅收超徵達到1.8兆當然我們的經濟成長跟超徵稅收的程度是正相關但是並不一定成正比例但是我必須要提出一件事情 |
transcript.whisperx[68].start |
3327.216 |
transcript.whisperx[68].end |
3341.272 |
transcript.whisperx[68].text |
就是說每一年財政部長說我們明年度我們的稅收我們的預估一定會是一個合理的比例但是我們看到去年跟前年的數字我們就知道說其實我們的這個稅收超增我們應該是先探測先討論說它到底是偶發性的預測失準 |
transcript.whisperx[69].start |
3348.621 |
transcript.whisperx[69].end |
3362.518 |
transcript.whisperx[69].text |
還是整個結構性的稅收超徵的狀況當然這兩個因素都有可能一個是我們的政府沒有辦法算出經濟活動跟稅收程度的這個連動的結果到底是什麼 |
transcript.whisperx[70].start |
3363.579 |
transcript.whisperx[70].end |
3388.493 |
transcript.whisperx[70].text |
另外一個我們更擔心的是我們政府藉由低估稅收逃避我們立法院的監督創造出預算使用的彈性過去我們幾年我們稅收超徵用在波普、勞保、健保或者是台電或者是加強韌性的結構的方案 |
transcript.whisperx[71].start |
3390.028 |
transcript.whisperx[71].end |
3394.931 |
transcript.whisperx[71].text |
台電的數字過去幾年無論是每一年無論是增資或撥補從去年的2000億2024年也是2000億那健保是撥補112年是240億然後113年是200億這些數字其實我們都講到說過去包括勞動部都說撥補就是改革 |
transcript.whisperx[72].start |
3416.277 |
transcript.whisperx[72].end |
3426.699 |
transcript.whisperx[72].text |
我們的勞動基金的問題潛藏負債13兆本來政府就有責任好好去討論絕對不是用每年撥補的狀況台電的虧損不論是增資或者是撥補台電為什麼會年年虧損問題點到底出在哪裡 |
transcript.whisperx[73].start |
3439.261 |
transcript.whisperx[73].end |
3455.686 |
transcript.whisperx[73].text |
我想大家都很清楚該改革的不改革該討論的不討論該解決的不解決永遠是用稅計剩餘去撥補這些政策短期的撥補還可以但是如果是長期的撥補 |
transcript.whisperx[74].start |
3457.626 |
transcript.whisperx[74].end |
3483.644 |
transcript.whisperx[74].text |
這個就是我們政府在規劃上有嚴重的問題另外剛才幾位教授在提到就是說我們的財政其實並不一定是很好但是我要提到過去無論是馬英九發3000塊的消費券也好蔡英文發6000塊的普發現金也好都有帶動一定的經濟成長包括經濟成長可以達到0.3個百分點 |
transcript.whisperx[75].start |
3487.607 |
transcript.whisperx[75].end |
3503.038 |
transcript.whisperx[75].text |
0.3個百分點很多老百姓我在地方上說明的時候很多人說0.3不多但是我相信在現場的學者專家都非常清楚我們台灣每一年經濟成長2點多3點多已經算是不錯了更何況我們如果今年有機會普發現金 |
transcript.whisperx[76].start |
3505.24 |
transcript.whisperx[76].end |
3527.646 |
transcript.whisperx[76].text |
可以達到0.5的經濟成長我們去年度現在衛福部公佈最低的每一年的生活金額是15515元這對於普發現金一萬塊對於中低收入戶其實有相當大的補貼的效果更何況 |
transcript.whisperx[77].start |
3528.906 |
transcript.whisperx[77].end |
3544.926 |
transcript.whisperx[77].text |
我們接下來普發現金有更多的民眾是直接去餐廳消費直接去看電影直接去百貨公司買東西這個帶動的是所有各行各業有一定的感受所以我再一次提醒 |
transcript.whisperx[78].start |
3545.427 |
transcript.whisperx[78].end |
3569.953 |
transcript.whisperx[78].text |
大家要苦民所苦而且這個是普發現金不是濫發錢而是它有一定的經濟成長的效應所以我們希望行政部門眼裡不要只有半導體AI等高科技的產業民生經濟才是民眾感受最深的一部分普發現金是全民收回更是還稅於民更達到所謂的公平正義以上 |
transcript.whisperx[79].start |
3571.193 |
transcript.whisperx[79].end |
3576.637 |
transcript.whisperx[79].text |
好 謝謝林議員的發言我們下一位請中華財政協會的副秘書長陳副秘書長請 |
transcript.whisperx[80].start |
3603.141 |
transcript.whisperx[80].end |
3613.246 |
transcript.whisperx[80].text |
主席還有各位在座的學者專家跟財政部的相關官員大家好本人其實不是代表中華財政學會來發言我只是一個一般的民眾針對發一萬塊的想法我私底下找了幾個相關各行業的人問了一下 |
transcript.whisperx[81].start |
3627.273 |
transcript.whisperx[81].end |
3648.852 |
transcript.whisperx[81].text |
因為上次有發過六千塊的那個現金然後我一問他們說我們有發六千塊你們知道嗎他說不知道耶在哪裡啊什麼樣也就是說一般民眾其實對六千塊這件事應該有些人有感可是有一些人其實大部分的人可能沒有什麼感覺那是我大概抽問了一些人的那個結果 |
transcript.whisperx[82].start |
3649.933 |
transcript.whisperx[82].end |
3654.694 |
transcript.whisperx[82].text |
所以我就問了一個一萬塊大家有沒有感覺其實對一萬塊這件事情好像也不是那麼可以引起有一些人的共鳴那我今天要討論的事情就是針對譬如說這個稅收是不是超徵了這件事其實我們可以稍微討論一下也就是說我們現在整個社會其實進步非常的快 |
transcript.whisperx[83].start |
3677.52 |
transcript.whisperx[83].end |
3681.402 |
transcript.whisperx[83].text |
當然要編預算也不是那麼簡單我看了一些資料財政部針對編制預算其實有非常多項目的考量去編出來的預算這個預算其實大概也都經過立法院的通過執行上可能會需要有一些努力的去執行 |
transcript.whisperx[84].start |
3703.853 |
transcript.whisperx[84].end |
3713.845 |
transcript.whisperx[84].text |
去編的預算那這雨為什麼會好像有盈餘的產生那這些事情應該是要從各個方面去考量譬如說這個 |
transcript.whisperx[85].start |
3718.49 |
transcript.whisperx[85].end |
3732.841 |
transcript.whisperx[85].text |
政府的那個稅制的改革啊因為我長期其實我已經從開始念書到現在大概五十年的在這方面的這個大概教學的經驗或者是一般的那個經驗那事實上這個 |
transcript.whisperx[86].start |
3736.765 |
transcript.whisperx[86].end |
3747.915 |
transcript.whisperx[86].text |
造成稅收會增加其實會有很多個原因那這些原因裡面譬如說我們稅制的改善像其實我自己感受比較深的就是那個鼓勵的課稅問題 |
transcript.whisperx[87].start |
3752.799 |
transcript.whisperx[87].end |
3774.346 |
transcript.whisperx[87].text |
那鼓勵的課稅 即使從以前 譬如說從兩稅合一到現在鼓勵可以有8.5%的那個可以扣抵的資金是事實上這個真的是會造成我們稅收有無形當中的增加因為事實上我們沒有把盈利事業所得稅的部分拿去抵掉拿去抵個人的綜合所得稅 |
transcript.whisperx[88].start |
3775.106 |
transcript.whisperx[88].end |
3802.941 |
transcript.whisperx[88].text |
所以這一塊其實是讓稅收增加的一個很重要的原因另外一個就是兩稅合一的實施不是那個房地合一的實施房地合一的實施以後把土地納進來課稅了以後其實稅收也無形當中會增加了一些那我想這些都是這個稅收增加有可能的原因那可能財政部其實很努力的在徵收也是可以感覺到了大家常常會在 |
transcript.whisperx[89].start |
3804.122 |
transcript.whisperx[89].end |
3806.425 |
transcript.whisperx[89].text |
在1月2月會收到一些補稅通知也就是說在報稅的時候你發現你把那個扣除額免稅額多增加了一些那經由政府的那個基增機關的那個 |
transcript.whisperx[90].start |
3819.62 |
transcript.whisperx[90].end |
3836.105 |
transcript.whisperx[90].text |
基增完合併完以後其實幾乎有一些人都是要補稅的然後因為這個基增的技術越來越高所以欠稅的人也越少然後逃漏稅的人也越少我想這些都有可能是造成稅收增加的原因所以我們應該要感謝我們的財政部門非常努力的在徵稅所以到底徵稅是不是因為執行的問題 |
transcript.whisperx[91].start |
3848.129 |
transcript.whisperx[91].end |
3858.519 |
transcript.whisperx[91].text |
其實是應該可以討論的啦那至於說這個預算法要不要修訂我到底稍微看了一下啦這個81條是有講說當有短收的時候應該可以做一些調整那如果有盈餘的時候因為正常它應該不是常態才對啦 |
transcript.whisperx[92].start |
3868.268 |
transcript.whisperx[92].end |
3873.031 |
transcript.whisperx[92].text |
那其實可以相對的有一個萬一有盈餘的時候應該要怎麼處理的話我的建議是可以授權行政機關去做更通盤的一個考量不一定要把它整個真的還稅於民 |
transcript.whisperx[93].start |
3886.959 |
transcript.whisperx[93].end |
3903.905 |
transcript.whisperx[93].text |
這個剛剛有學者專家提出來這個概念那另外的話其實我自己因為長期研究稅制比較多所以其實我對財政部有一點小小的建議就是那個基本生活費的那一塊因為我去看了一些資料以後發現我們從民國 |
transcript.whisperx[94].start |
3908.687 |
transcript.whisperx[94].end |
3921.862 |
transcript.whisperx[94].text |
100就是開始有納稅者權利保護法民國106年開始實施以來其實是用基本生活費的那個差額的人大部分集中在這個中低收入就是說收入大概在 |
transcript.whisperx[95].start |
3923.224 |
transcript.whisperx[95].end |
3927.687 |
transcript.whisperx[95].text |
第一級 第二級 第三級的這些人那也就是說基本生活費的這個規定我個人的覺得因為它既然是維持人民基本生活那這個就應該有適當的調高讓人民可以真的感受到我要維持基本生活是不容易的然後政府是對這方面是有一些考量的 |
transcript.whisperx[96].start |
3950.046 |
transcript.whisperx[96].end |
3956.191 |
transcript.whisperx[96].text |
事實上可以照顧到這個少子化情況之下雖然提高了幼兒學潛特別扣除額可是因為這個幼兒學潛特別扣除額是放在基本生活費在計算的時候的一個減項所以在這個情況之下的話其實真正可以享受到的人還有整個的計算其實是會有 |
transcript.whisperx[97].start |
3974.485 |
transcript.whisperx[97].end |
3976.207 |
transcript.whisperx[97].text |
所以我建議的是把基本生活費的標準其實可以再提高一點還有長照的這一塊其實也是我相信如果隨著我們的高齡化 |
transcript.whisperx[98].start |
3990.204 |
transcript.whisperx[98].end |
3994.788 |
transcript.whisperx[98].text |
今年開始應該有四分之一的人是高齡的就是65歲以上的那長期照顧這一塊其實對一般家庭來講壓力是真的很大那我們現在是定額在那邊而且沒有隨物價指數去調整所以呢我這邊小小建議就是把 |
transcript.whisperx[99].start |
4007.819 |
transcript.whisperx[99].end |
4031.524 |
transcript.whisperx[99].text |
又有學檢特別扣除兒跟長期照顧的這一塊其實這一塊就是現在的兩個最重要的事情就是少子化跟高齡化的這兩件事情那我也希望我們立法單位跟行政單位可以多多的去考量這一塊真的讓人民有感其實花六千塊花一萬塊感覺沒有那麼強烈那以上是我的說明 謝謝 |
transcript.whisperx[100].start |
4040.216 |
transcript.whisperx[100].end |
4053.759 |
transcript.whisperx[100].text |
好 這個謝謝這個中華財政學會的陳妙香副署長的發言下面請台北商業大學財水系的黃耀輝教授請 |
transcript.whisperx[101].start |
4072.306 |
transcript.whisperx[101].end |
4092.764 |
transcript.whisperx[101].text |
主席還有各位與會先進大家早安很高興受邀參加這個很有意義的公聽會我用簡單的圖表跟數字來提供我個人的意見好 這個大家都知道奇怪怎麼不會動 |
transcript.whisperx[102].start |
4097.489 |
transcript.whisperx[102].end |
4104.691 |
transcript.whisperx[102].text |
我們大家都知道 去年這個稅收創新高 三項新高大家都放在 |
transcript.whisperx[103].start |
4121.129 |
transcript.whisperx[103].end |
4135.604 |
transcript.whisperx[103].text |
超增五千兩百多億是歷史上最高的紀錄但是有很多人也認為說不要把超增誇大到說政府財政狀況很好沒錯但是我的角度是從 |
transcript.whisperx[104].start |
4137.553 |
transcript.whisperx[104].end |
4163.626 |
transcript.whisperx[104].text |
這個超徵的稅收裡面反映到說我們這個稅收超過成長率超過經濟成長率造成了我們的租稅負擔率節節升高這幾年已經升高到26年來的最高紀錄所以這個顯然從這個稅收超徵我們看到很大的問題不是什麼財政好不好的問題而是說稅制有很不合理的問題這個 |
transcript.whisperx[105].start |
4167.472 |
transcript.whisperx[105].end |
4186.985 |
transcript.whisperx[105].text |
我們看看稅收年增率成長率8.8%是去年經濟成長率4.2%的大概兩倍還要多那顯然就是政府超拿了經濟成長的果實簡單的說就是說我的國民署大概成長1%的時候稅收竟然就成長2% 3% 4%成績還有到五倍之多的那這個 |
transcript.whisperx[106].start |
4195.03 |
transcript.whisperx[106].end |
4211.338 |
transcript.whisperx[106].text |
分子是稅收分母是GDP所以稅收成長率超過經濟成長率就造成我們租稅負擔增加所以代表稅制不合理而這個超徵的稅收其實我講良心的話財政部自己 |
transcript.whisperx[107].start |
4212.879 |
transcript.whisperx[107].end |
4234.57 |
transcript.whisperx[107].text |
每個月看到說我什麼稅收又超增了怎麼比預算多那麼多他也覺得不可思議因為照他們合理估算就是稅制合理的話我稅收不應該超過預算那麼多而且我們再觀察這過去三年物價上漲非常的嚴重結果政府的稅收比經濟成長率加上物價上漲率還要高所以 |
transcript.whisperx[108].start |
4236.285 |
transcript.whisperx[108].end |
4260.642 |
transcript.whisperx[108].text |
這邊我用這個圖表根據財政部編制的圖表我們去把它做一個整理加上113年我們可以看到從這個垂直的條狀圖可以看到就是政府超增稅收的金額各位可以看到在蔡政府8年內稅收超增的金額8年內就有7年超增那個數額越來越高是一回事誤差率 |
transcript.whisperx[109].start |
4261.943 |
transcript.whisperx[109].end |
4283.331 |
transcript.whisperx[109].text |
越來越高 從99年 100年的時候呢誤差率大概只有2.2%到後來這一段時間呢這6年呢 平均誤差率5.6%再到這邊呢 更高到16.3%這告訴我們說 稅制一定不合理連財政部都沒辦法掌控說我的稅收竟然會成長這麼快所以接下來的問題應該是說我們的稅制 |
transcript.whisperx[110].start |
4285.712 |
transcript.whisperx[110].end |
4298.335 |
transcript.whisperx[110].text |
有沒有什麼不合理的問題接下來我們就來看這個稅收很明顯的就跟經濟成長脫鉤是經濟成長率的兩倍以上我們可以看到這個圖框起來這是過去103年到113年稅收成長率跟經濟成長率的關係以最近的四年來看的話 |
transcript.whisperx[111].start |
4307.822 |
transcript.whisperx[111].end |
4330.289 |
transcript.whisperx[111].text |
在110年的時候 稅收成長率將近20%是經濟成長率6.6%的三倍然後到111年 稅收是經濟成長率的五倍然後到去年兩倍多 各位可以看到這個稅制裡面一定有很不合理的問題為什麼經濟成長沒有那麼高 你的稅收成長這麼高呢所以這裡面我看到了 |
transcript.whisperx[112].start |
4331.329 |
transcript.whisperx[112].end |
4340.814 |
transcript.whisperx[112].text |
尤其過去這三年呢這個物價上漲很兇的時候呢代表我們物價上漲很兇呢我們的政府的我們人民的稅負呢也跟著比物價上漲還要高這個從下面這個圖這個道理可以看到出說這個 |
transcript.whisperx[113].start |
4348.462 |
transcript.whisperx[113].end |
4374.953 |
transcript.whisperx[113].text |
物價上漲的時候 政府坐享價帳 稅高的利益尤其綜合索取稅因為物價調整都是落後於現實的物價上漲而且沒有調整的時候 人民的稅幅就急劇增加因為我們綜合索取稅是累進稅雖然我們1991年起就有物價指數連動版但它都是落後調整所以還沒調整前 人民的稅幅是增加的我們看銷售稅也是一樣 像營業稅 |
transcript.whisperx[114].start |
4378.097 |
transcript.whisperx[114].end |
4397.712 |
transcript.whisperx[114].text |
物價上漲企業的進貨成本增加售價就要調高調高就造成它這個稅基 營業稅的稅基就銷售額 營業額就跟著通膨的就增加所以你看 比如我們民國112年我們上市櫃公司的營收減了8.8%結果那一年的營業稅就成長5.1%所以代表我們的所得稅跟營業稅是最大的稅收佔了我們國稅的71% |
transcript.whisperx[115].start |
4405.618 |
transcript.whisperx[115].end |
4410.582 |
transcript.whisperx[115].text |
不是國稅全國稅收的71%的所得稅跟營業稅隨著物價上漲而增加人民的負擔所以從這個圖表我把經濟成長率下面這個圖加上下面這個物價上漲率把它加在一起我們的稅收成長率都比物價上漲率跟經濟成長率很高所以代表我們這個稅有通膨稅的問題政府就在我們物價上漲的期間 |
transcript.whisperx[116].start |
4434.8 |
transcript.whisperx[116].end |
4455.558 |
transcript.whisperx[116].text |
不是說他故意要趁火打劫稅制就是造成他稅收不斷的增加所以從這個上面的圖表我們看到政府超拿了經濟成長的果實增加人民的租稅負擔按照租稅負擔率再定義就稅收除以GDP我們這個稅收成長率大於分母GDP的成長率所以當然我們就租稅負擔率就增加了從109年12%增加到 |
transcript.whisperx[117].start |
4459.962 |
transcript.whisperx[117].end |
4476.785 |
transcript.whisperx[117].text |
113年14.8%每一年都在增加所以從租稅負擔增加的角度來看政府是應該要檢討稅制如果不檢討稅制不做出合理的對納稅人做個合理的交代的話我是基本上是認為應該還稅於民好 所以這政策意涵呢 |
transcript.whisperx[118].start |
4477.265 |
transcript.whisperx[118].end |
4497.677 |
transcript.whisperx[118].text |
就是請財政部檢討你的稅子如果還是繼續超徵這個代表連你財政部都不能接受那是不是應該還稅漁民要做稅制改革消除通通稅等等接下來我們來看看稅收超徵政府有沒有善用超徵的稅收拿去還債 |
transcript.whisperx[119].start |
4500.759 |
transcript.whisperx[119].end |
4518.712 |
transcript.whisperx[119].text |
官方的說法都說我都要拿去還債 拿去還債我們就來觀察最近幾年它有沒有超徵的稅收帶動這個稅季的剩餘最後有沒有轉化為財政剩餘呢答案是沒有我們的政府官員每次都說我會把超徵稅拿去還債我們來看看到底有沒有拿去還債根據我的統計 |
transcript.whisperx[120].start |
4522.571 |
transcript.whisperx[120].end |
4548.914 |
transcript.whisperx[120].text |
按照公共債務法第十二條中央政府必須把每年稅收的5到6%拿去還債如果實際執行就是決算的數字如果優於理想的話你最好還是增加你還債的數字結果我從過去我做了很多功課106年到107年實際上的稅收決算數一兆多他拿去還債佔的比例不到5% |
transcript.whisperx[121].start |
4550.735 |
transcript.whisperx[121].end |
4556.256 |
transcript.whisperx[121].text |
但是只有111億一年度有超還6.5%超過6%這個是低標但是把這7年的還債總數這7年的所有的稅收不是超徵只有5.4%所以它只做到低標而已沒有拿到積極還債所以最後的結果就造成我們的 |
transcript.whisperx[122].start |
4575.595 |
transcript.whisperx[122].end |
4586.963 |
transcript.whisperx[122].text |
政府就以為我錢很多所以就超編了特別預算超編特別預算就超花就過去蔡政府任內8年就編了2.55兆的特別預算所以造成了我們這個債務就不但沒有減少還增加我們如果看這個數字這邊數字可以看到在蔡總統上任的時候從馬政府手上接下來了5.4兆的左右的債務如果把那個稅計剩餘 |
transcript.whisperx[123].start |
4605.755 |
transcript.whisperx[123].end |
4613.243 |
transcript.whisperx[123].text |
好好拿去還債的話債務應該是減少到4兆多甚至可以再減到3.8兆左右結果我們觀察到上個禮拜228C75的國債中顯示我們的債務實際上比221還多了大概是6兆0880億 |
transcript.whisperx[124].start |
4626.792 |
transcript.whisperx[124].end |
4641.528 |
transcript.whisperx[124].text |
就可以看到說在蔡政府任內呢這個政府的債務啊他沒有把這個財運很好超徵的稅收拿去積極還債而是呢把它去編了很多特別預算結果造成我們的債務呢不減反增從5到4接到 |
transcript.whisperx[125].start |
4644.151 |
transcript.whisperx[125].end |
4671.202 |
transcript.whisperx[125].text |
上禮拜還高達了六兆將近一千億所以這六年間財政狀況很好但是他就超編特別預算就讓我們的舉債增加了六千多億所以從這個角度來講我覺得特別預算真的要好好檢討就是政府會把我們觀察政府的做法表面上他說會去還債但實際上他就把這個錢就拿去編 |
transcript.whisperx[126].start |
4672.631 |
transcript.whisperx[126].end |
4692.862 |
transcript.whisperx[126].text |
超邊的特別預算尤其像這個空白支票不定期數年一次的重大支票只要金額很大就叫特別預算一點都不是緊急或特殊用途所以這部分我是認為從財政距離角度為了避免政府濫用超徵的稅收我們應該 |
transcript.whisperx[127].start |
4694.143 |
transcript.whisperx[127].end |
4721.941 |
transcript.whisperx[127].text |
嚴格限制這個特別預算然後我們再觀察上次的六千塊普發現金給還稅漁民他就利用還稅漁民六千塊的機會就夾帶了另外一批莫名其妙的支出包括撥補台電 撥補勞保等等等等他編了一千四百億還稅漁民又夾帶了兩千四百億去撥補台電的勞保稅從任何的角度 |
transcript.whisperx[128].start |
4723.502 |
transcript.whisperx[128].end |
4750.766 |
transcript.whisperx[128].text |
公營事業的預算社會保險的預算不關你總預算的事為什麼要我們納稅人去撥補撥補來填補這個漏洞何況這個很多的問題是你政府自己不改革啊現在勞保呢2013年就快能破產了現在不改革勞保的結果呢我們的錢償債務已經高達13.23兆如果每一年啊照中央政府以為天天過年的那個想法 |
transcript.whisperx[129].start |
4752.685 |
transcript.whisperx[129].end |
4760.116 |
transcript.whisperx[129].text |
因為撥補一千億你都要一百三十二年都補夠那台電的虧損又是誰造成的是你政府造成的譬如說離岸風電 |
transcript.whisperx[130].start |
4761.62 |
transcript.whisperx[130].end |
4788.894 |
transcript.whisperx[130].text |
就多花了九千一百億每一年就多花了四百六十億為什麼 扶植國產那扶植國產業那應該是受惠者回饋給國家為什麼要我們納稅人去買單呢去幫這個國產業者去多付九千多億呢造成台電的虧損然後你非核家園核電的成本最低結果你不用它就用了很貴的 |
transcript.whisperx[131].start |
4790.075 |
transcript.whisperx[131].end |
4804.692 |
transcript.whisperx[131].text |
結果造成台電虧損如果你的核二三廠繼續演繹的話根本台電的話就不會虧每年這個收入就增加六百多億啊所以這個你能願政策錯誤為什麼要我們政府來納稅人來買單所以我最後的結論就是還稅於民 |
transcript.whisperx[132].start |
4809.004 |
transcript.whisperx[132].end |
4832.834 |
transcript.whisperx[132].text |
從過去的政府的表現我們來看它不會把這個超徵的稅收 稅計 稅餘好好地用來積極還債那稅制又不合理為了對納稅人做交代以及對我們後代子孫負責我乾脆就認為把這個還稅於民當然最後 這邊我們也提到就是我們這個財委會有提那個 |
transcript.whisperx[133].start |
4834.154 |
transcript.whisperx[133].end |
4856.775 |
transcript.whisperx[133].text |
預算法要修正要不要把它常態化我個人是持保留態度基本上我是認為還稅移民還了之後要不要常態化可以檢討如果真的要常態化請不要用超徵稅收這個會引起爭議的方式來表達什麼好的方式表達呢 |
transcript.whisperx[134].start |
4858.666 |
transcript.whisperx[134].end |
4867.665 |
transcript.whisperx[134].text |
如果當年度的租稅負擔率比前一年度增加10那麼你可以把這個 |
transcript.whisperx[135].start |
4869.743 |
transcript.whisperx[135].end |
4895 |
transcript.whisperx[135].text |
稅收成長超過經濟成長率的部分這個超額的部分這個才叫超拿經濟成長的果實那個就很明確了定義上很明確沒有法律上的爭議那麼也許你就可以說我把這個超額的部分譬如說一半或三分之一還稅於移民等等我講的是這種比較合理的概念但是我還是有點保留我是認為就是說從過去這個政府 |
transcript.whisperx[136].start |
4898.762 |
transcript.whisperx[136].end |
4926.441 |
transcript.whisperx[136].text |
這個超徵就超花然後很喜歡編特別預算我不太相信政府說會拿去積極還債過去八年的數字我們看到沒拿到積極還債啦那稅制真的很不合理啦所以我認為應該還稅於明明要不要常態化請慎思那如果要做的話請照我剛才的建議用超過經濟成長率的部分那個叫超拿經濟成長的果實不要被那個超徵的稅額誤導謝謝 |
transcript.whisperx[137].start |
4928.682 |
transcript.whisperx[137].end |
4951.96 |
transcript.whisperx[137].text |
好 謝謝黃教授的指教讓我們說在預算法修正的時候把它改成超過經濟成長率的部分這一部分我們聽到了下一位請政大的教授林祖嘉教授然後請林德福委員預備 |
transcript.whisperx[138].start |
4973.823 |
transcript.whisperx[138].end |
4986.448 |
transcript.whisperx[138].text |
主席各位前輩先進還有各位媒體朋友大家早安今天非常榮幸能夠被邀請來參加稅收超證還稅人民的公聽會我們知道 |
transcript.whisperx[139].start |
4988.857 |
transcript.whisperx[139].end |
5010.41 |
transcript.whisperx[139].text |
政府財政的收入不論是用量入為出或者量出為入的原則那政府部門對於收支都應該要有一個精準的估計尤其是現在有這個AI有大數據這個精準的估計其實不難的當然我們知道經濟外在環境其實變動得很厲害所以估計上會有一些 |
transcript.whisperx[140].start |
5011.781 |
transcript.whisperx[140].end |
5036.94 |
transcript.whisperx[140].text |
誤差不管你是超徵也好或者是欠收也好這些小數字的誤差這個當然是可以被接受但是如果連續多年的超收或者欠收的話那這個可能就是結構上的問題或者是政策上的問題那這個時候我們覺得政府部門的主責單位財政部或者主計處就應該負起責任 |
transcript.whisperx[141].start |
5040.049 |
transcript.whisperx[141].end |
5059.344 |
transcript.whisperx[141].text |
那一般來說 政府們都會有這種意願 或者說有這種情況他會故意的低估 有這種誘因因為到時候錢可以多出來 多出來比較不容易被罵或者說多出來的錢比較好花 |
transcript.whisperx[142].start |
5060.95 |
transcript.whisperx[142].end |
5079.975 |
transcript.whisperx[142].text |
但是如果超徵的金額太多然後錢又不花的話大家知道就會形成我們所謂的財政拖累physical drag那麼另外一個就是多出來的錢比較不容易監督那麼就比較容易形成所謂的肉桶法案 |
transcript.whisperx[143].start |
5081.175 |
transcript.whisperx[143].end |
5107.853 |
transcript.whisperx[143].text |
比方說我們過去這些年連續出現幾次的大金額的特別預算前瞻計畫 防疫支出 國防支出動不動就是七趴千億那這些錢用起來當然很容易啦那最後怎麼辦其實很多部分就是拿我們這個超徵的錢去用所以我們覺得政府的每一塊錢的稅收都是人民的血汗錢 |
transcript.whisperx[144].start |
5109.127 |
transcript.whisperx[144].end |
5132.678 |
transcript.whisperx[144].text |
一定要透明公開的使用充分達到他使用的效益所以我是建議主計部門或者財政部門過去連續這個超徵這麼多如果你們真的估計上有問題的話我建議你可以找我們政大財政系的很多老師剛才的陳教授在這裡找他去推估我相信他絕對可以估的準確很多 |
transcript.whisperx[145].start |
5134.233 |
transcript.whisperx[145].end |
5143.679 |
transcript.whisperx[145].text |
所以其實我相信不是做不到而是願不願意努力的去推估我想這個是很關鍵那我們知道過去十年來 |
transcript.whisperx[146].start |
5145.451 |
transcript.whisperx[146].end |
5171.49 |
transcript.whisperx[146].text |
連續的超增只有2020年疫情嚴重那一年以外那2020年之前的前面幾年有超增但是那個比例大概都是只有4% 5%我想這個超增的比例大概是幾百億最多就是上千億那這個超增的數字這個大家可以接受我剛剛講這個有一些經濟上的一些活動的意外但是在過去四年 |
transcript.whisperx[147].start |
5172.867 |
transcript.whisperx[147].end |
5201.024 |
transcript.whisperx[147].text |
最少三千多億最多的五千多億四年累積超增到1.8億這個超增率比例十幾個百分比到十五個百分比以上這個很難被人家接受所以我們覺得這個政府部門要嘛就是估計的技術上太差要嘛就是刻意的低估收入我想不管是哪一個都不能夠被接受 |
transcript.whisperx[148].start |
5203.22 |
transcript.whisperx[148].end |
5223.748 |
transcript.whisperx[148].text |
那麼現在在我們看到這麼大的超增的金額上面沒有辦法很公開透明去解釋怎麼樣使用這些超中這麼大的金額然後也避免財政拖累的情況下那麼我們建議以去年超增5283億來講的話這個超增比例 |
transcript.whisperx[149].start |
5227.833 |
transcript.whisperx[149].end |
5244.839 |
transcript.whisperx[149].text |
非常高的時候我們覺得現階段的方式除了把一部分錢拿去還債以外那麼直接的還稅於民讓這個我們所謂的經濟成長的果實讓全民來共享這個其實是可以做的 |
transcript.whisperx[150].start |
5245.885 |
transcript.whisperx[150].end |
5254.036 |
transcript.whisperx[150].text |
其實還稅移民這個事情不是很特別啦因為我們過去這麼多年來已經有非常多的經驗2009年馬政府時候罰了3600元每一個人3600的消費券2020年 |
transcript.whisperx[151].start |
5261.843 |
transcript.whisperx[151].end |
5282.06 |
transcript.whisperx[151].text |
到了蔡英文總統執政時代三倍券3000元2021年的五倍券5000元2023年的現金6000元其實我們看到已經有非常多的發放的經驗那麼這一次因為超徵這麼多所以我認為發放一萬元其實不是很過分 |
transcript.whisperx[152].start |
5283.101 |
transcript.whisperx[152].end |
5298.065 |
transcript.whisperx[152].text |
那麼如果每一個人發放1萬元的話那麼大概會花掉2300億那去年超徵5283億裡面中央分配到的是3758億那扣掉債務還本1000多億的話大概還有2400億左右是可以花的那麼中間拿2300億來還錢我覺得還是會有剩所以這個是 |
transcript.whisperx[153].start |
5312.455 |
transcript.whisperx[153].end |
5339.502 |
transcript.whisperx[153].text |
可以考慮的那麼剛才有人講那其實我們政府還是欠了很多錢這個當然但是現在多徵的錢原則上就應該現在要還我們用川普來講川普最近馬斯克成立這個DOGE然後他們可以省下預計啦現在那個已經砍掉已經省了很多錢他們預計可以省下兩兆然後這個川普說在兩兆裡面他20%要來 |
transcript.whisperx[154].start |
5341.921 |
transcript.whisperx[154].end |
5364.624 |
transcript.whisperx[154].text |
還給民眾大概每一戶可以發到五千美元不要忘記美國現在的國債還有三十四兆美元佔他們GDP超過百分之一百五十但是他現在因為運作有效率省下來的錢他可以拿來發放發販那我們也是一樣我們如果有多餘權我們當然可以發放那在新加坡2021年 |
transcript.whisperx[155].start |
5366.263 |
transcript.whisperx[155].end |
5391.134 |
transcript.whisperx[155].text |
就開始持續的有購物券等等去年他們發放了600元新幣每一個人大概是1.4萬台幣今年他們預計要第六次的發放發放800新加坡幣大概是1.9萬台幣也就是說只要你的財政收入其實足夠健全的話發放並不是太離譜的事情 |
transcript.whisperx[156].start |
5392.594 |
transcript.whisperx[156].end |
5395.528 |
transcript.whisperx[156].text |
那前不久2020年 前不久 |
transcript.whisperx[157].start |
5397.922 |
transcript.whisperx[157].end |
5423.693 |
transcript.whisperx[157].text |
2月下旬的時候國民黨曾經做過一次民意調查他的問題是說2024年超徵5283億你是否同意還稅於民普發現金1萬元結果這裡面非常支持的占46.2%還算支持的占20%也就是20.1%也就是支持的是66.3%那不太支持的14.8%非常不支持的14.2%加起來是29%不支持 |
transcript.whisperx[158].start |
5427.535 |
transcript.whisperx[158].end |
5445.066 |
transcript.whisperx[158].text |
也就是說三分之二的民眾對於這個普發現金是支持的我想這個是大多數國人的心聲我們覺得應該這個政策應該是可以執行那對於這些未來剛剛大家講過很多是因為稅制上的問題所以在這些 |
transcript.whisperx[159].start |
5446.975 |
transcript.whisperx[159].end |
5461.907 |
transcript.whisperx[159].text |
要不要發現金或什麼時候該發其實應該做一些制度上的改變在預算法81-1條或者預算法73條裡面做一些修正我的建議是說超過10%以上可以優先還債超過15%以上就應該考慮優先來普發現金最後我很快的再做一個結論 |
transcript.whisperx[160].start |
5470.795 |
transcript.whisperx[160].end |
5496.03 |
transcript.whisperx[160].text |
經濟成長的果實應該要讓全民共享我想這是每一個政黨都應該要做的那現在我們用制度化的方式來解決這個超增的問題所以只要有過多的財政盈餘的時候那麼就應該採用普發現金的方式這每一個政黨上來說都應該做同樣的事情然後我再強調一遍財政收入的每一塊錢都是 |
transcript.whisperx[161].start |
5497.328 |
transcript.whisperx[161].end |
5512.068 |
transcript.whisperx[161].text |
來自民眾的血汗錢所以每一塊錢的支出我們除了要有一個完善的稅賦制度以外政府的收入跟支出都應該要公開透明這才對得起廣大的民眾以上是我的觀點謝謝大家 |
transcript.whisperx[162].start |
5520.387 |
transcript.whisperx[162].end |
5526.7 |
transcript.whisperx[162].text |
好 這個謝謝林主教教授的發言我們下一位請本院的林德福委員發言請 |
transcript.whisperx[163].start |
5539.351 |
transcript.whisperx[163].end |
5565.921 |
transcript.whisperx[163].text |
謝謝主席與會的我們各行政院的各部會的官員還有我們在座所有的專家學者我想今天裁委會開這個公聽會本席有一些看法就是針對本黨提出稅收超徵還稅於民全民櫻樸花現金一萬元的方案 |
transcript.whisperx[164].start |
5567.168 |
transcript.whisperx[164].end |
5593.233 |
transcript.whisperx[164].text |
其實我上次就是前不久在這個我們立法院院會裡面卓院長曾表示這個財政運用需兼顧長遠的發展那主計總署則說普發現金不宜常態化首先本席想問的是九年多來 |
transcript.whisperx[165].start |
5594.653 |
transcript.whisperx[165].end |
5612.854 |
transcript.whisperx[165].text |
民進黨的執政之下尤其是特別預算已經接近常態化那全民有目共睹為何民進黨視而不見緩關代表民意多數的在野黨現在提出普發現金 |
transcript.whisperx[166].start |
5614.707 |
transcript.whisperx[166].end |
5639.517 |
transcript.whisperx[166].text |
那就被執政黨冠上破壞財政紀律影響政府的攝護國防政策甚至於排擠弱勢族群補貼的經費我想這是莫須有的罪名其實我想在新冠疫情期間明明稅收 |
transcript.whisperx[167].start |
5641.224 |
transcript.whisperx[167].end |
5653.475 |
transcript.whisperx[167].text |
財政收支應該是穩定穩定性低那風險相對高但是民進黨政府啊卻能夠提出振興三倍券那試問難道當時就沒有財政紀律的問題嗎還是三倍券 |
transcript.whisperx[168].start |
5663.322 |
transcript.whisperx[168].end |
5688.678 |
transcript.whisperx[168].text |
一定不會影響社福、國防政策等等更不用說自我檢討並且貼上可能排擠弱勢族群補貼的經費我相信大家都看在眼裡那試問民進黨執政之下這樣雙標的政策這樣的用意到底是為了什麼 |
transcript.whisperx[169].start |
5690.495 |
transcript.whisperx[169].end |
5704.921 |
transcript.whisperx[169].text |
著是驚悔指責代表多數民意的立法院的在野黨到底又是為了什麼最後我想本席建議行政院如果有不同的方案 |
transcript.whisperx[170].start |
5706.209 |
transcript.whisperx[170].end |
5726.251 |
transcript.whisperx[170].text |
可提交立法院來討論卓院長在總質詢的時候也回應本席也表示政府將朝這個方向來走事實上朝野回歸正常的意識相信是全民所樂見的對於 |
transcript.whisperx[171].start |
5729.389 |
transcript.whisperx[171].end |
5749.12 |
transcript.whisperx[171].text |
這個稅收的超徵 還稅餘名 普發現金一萬元本息我是表示支持 誠如剛剛有很多學者都提到差不多有66% 幾乎三分之二的人都認同並且期待行政院能夠贊同立法院多數的共識 |
transcript.whisperx[172].start |
5750.16 |
transcript.whisperx[172].end |
5775.97 |
transcript.whisperx[172].text |
而不是讓全民看到一如往常採用以偏概全的這種理由來抹煞多數的民意以上 謝謝好 謝謝林委員的發言下一位請這個台大的法律系教授柯教授請然後請李崑禎委員準備 |
transcript.whisperx[173].start |
5788.23 |
transcript.whisperx[173].end |
5805.738 |
transcript.whisperx[173].text |
主席還有財政部的各位長官還有我們的那個學術同僚大家好非常高興也很榮幸說邀關於這個參與這個稅收超徵還稅愚民的公聽會那我想在前面幾位的 |
transcript.whisperx[174].start |
5806.838 |
transcript.whisperx[174].end |
5835.437 |
transcript.whisperx[174].text |
學者當然都已經大致上表示過一些意見那我其實剛剛對李燕秀委員的那個發言覺得高度的非常有興趣這裡面提到說這個關於這個關於民意是否支持其實如果你來問我的話我當然還是會很支持因為發錢給我我沒有道理拒絕不過我只是要去講就是說 |
transcript.whisperx[175].start |
5838.119 |
transcript.whisperx[175].end |
5855.747 |
transcript.whisperx[175].text |
所謂還稅於民這個事情你也可以把它換一個角度去想你使用在全體國民身上就是說原則上它也是一種還稅於民的概念那我想這個本件就關於這個還稅於民的這個議案的話我想大概從幾個層面去談 |
transcript.whisperx[176].start |
5858.388 |
transcript.whisperx[176].end |
5881.254 |
transcript.whisperx[176].text |
因為剛剛李燕秀委員有特別提到說其實剛剛主席就是剛剛賴主席也有提到關於這個40%的繳稅的人然後發還給他一萬塊錢那我們在對稅的定義是這樣就是說是國家作為公法人團體依照財政目的的法律規範對所有人民所苛徵的無對價性金錢給付 |
transcript.whisperx[177].start |
5884.916 |
transcript.whisperx[177].end |
5901.171 |
transcript.whisperx[177].text |
簡單來講就是說稅其實它是沒有對價性關係它不會直接反映在我個人繳多少稅給國家因此當你要還稅還給具體個人的時候這一種對價性關係似乎其實在稅制裡面是看不到這樣一個對價性關係 |
transcript.whisperx[178].start |
5902.853 |
transcript.whisperx[178].end |
5919.724 |
transcript.whisperx[178].text |
我舉例而言就是說像剛剛李委員有特別提到一些比如說是社會弱勢者因為其實在我們的稅制設計上假如他是沒有能力繳稅的人也就是會受到社會救助或輔助的人基本上他可能是不用繳稅的 |
transcript.whisperx[179].start |
5921.085 |
transcript.whisperx[179].end |
5937.526 |
transcript.whisperx[179].text |
相反的繳稅多的人就如同剛剛李委員提到的大部分都是一般來講就是還有能力賺錢養活自己還有能力賺錢養活自己的家庭行有餘力他才會有這個我們在稅制設計上面他才會再來去繳稅給國家 |
transcript.whisperx[180].start |
5939.508 |
transcript.whisperx[180].end |
5956.642 |
transcript.whisperx[180].text |
也因此我大概就是說其實還稅於民還給具體個人這件事情其實在學理上應該是沒有特別的依據當然你要怎麼用錢用在國民身上這又是一個另外一個可能可以去討論的一個問題這個我接下來當然也會對針對這個問題來稍微做一下個人意見的說明 |
transcript.whisperx[181].start |
5961.306 |
transcript.whisperx[181].end |
5977.581 |
transcript.whisperx[181].text |
那第二件事情是剛剛其實包括主席還有包括在座的與外學者同僚都大概有提到關於稅收超增的問題關於跟GDP的問題那我簡單說一下說我自己也是研究稅制的研究稅的人 |
transcript.whisperx[182].start |
5978.382 |
transcript.whisperx[182].end |
5996.261 |
transcript.whisperx[182].text |
那稅收會超徵當然財政部自己本身在推估模型上面來講他當然要有一個推估的基礎GDP的成長會是一個非常重要的一個估算的基礎當然你可以講因為GDP的成長所以我們國家國民的收入增加 |
transcript.whisperx[183].start |
5997.582 |
transcript.whisperx[183].end |
6017.874 |
transcript.whisperx[183].text |
盈利事業的收入增加盈利事業的銷售增加從而我們的中所稅我們的營所稅我們的營業稅都會一樣都會增加那這裡面我必須要去談一下為什麼會有產生稅收增加的原因其實大概幾個跟我們稅制上幾個有原因的就GDP增加一定會當然會帶來我們的稅收超增這樣 |
transcript.whisperx[184].start |
6020.995 |
transcript.whisperx[184].end |
6038.153 |
transcript.whisperx[184].text |
稅收增加然後財政部在預估的時候假設他用GDP作為一個計算基準的時候可能會失真的一些原因所在第一個我要先講的是證交稅因為證交稅它反映在一個資本市場裡面人民交易的頻率就是說 |
transcript.whisperx[185].start |
6038.693 |
transcript.whisperx[185].end |
6055.1 |
transcript.whisperx[185].text |
換言之就是說當你交易頻率越高的時候他會對我們當年度的稅收來源產生比較大的正面程度的供應相反的如果沒有人去股票市場裡面去做交易的話那相對的我們的證交稅確實就會少收因此 |
transcript.whisperx[186].start |
6055.98 |
transcript.whisperx[186].end |
6080.169 |
transcript.whisperx[186].text |
當年如果假設就是說因為股票市場資本市場裡面蓬勃發展他產生了這樣子的一個交易商的需求人們就會透過進場去交易而大量的帶來證交稅對國家財政收入的貢獻這是第一個我們可能在預測上面會產生稅收超徵的一些可能原因第二個我們要指一件事情就是房地合一稅的加入其實對 |
transcript.whisperx[187].start |
6081.329 |
transcript.whisperx[187].end |
6102.846 |
transcript.whisperx[187].text |
對我們的財政預算的貢獻財政的收入其實也是有很大的注意簡單來講我們的房地合一稅從105年1.0開始到110年110年特別是把一些房度條款加進去房地合一稅改變了我們過去土地增值稅只是就公告限值差的這種剋稅的現況對我們國家的稅收當然帶來很大的注意 |
transcript.whisperx[188].start |
6106.889 |
transcript.whisperx[188].end |
6121.757 |
transcript.whisperx[188].text |
合不合理是一個可以檢討的問題但這個稅收的增加會產生的對我們國家的稅收的貢獻這一點也應該要在我們的稅收預估模型裡面當然要去做一些調整跟做一些說明做一些預測了 |
transcript.whisperx[189].start |
6122.958 |
transcript.whisperx[189].end |
6148.745 |
transcript.whisperx[189].text |
第四個我要講的就是關於兩稅合一的制度其實兩稅合一制度也不是今年才改的它在107年的時候就已經做了兩稅合一的就是全家的那種限額扣抵制或是分離科稅28%的這個科稅的制度但我們無論如何兩稅合一廢止之後它確實也帶來我們國家的稅收財政上的貢獻因此我的意思是說 |
transcript.whisperx[190].start |
6149.705 |
transcript.whisperx[190].end |
6169.197 |
transcript.whisperx[190].text |
今天其實不光只是GDP成長的問題它也包括了我們幾個稅收稅制上的調整產生對國家稅收的貢獻這個部分也許未來我們在稅收超徵這個原因上面能夠做一個更精準或是更正確的一個估計當然更多的地方我們在這個地方時間上 |
transcript.whisperx[191].start |
6170.477 |
transcript.whisperx[191].end |
6198.322 |
transcript.whisperx[191].text |
我們大概來不及來談這個問題因此稅收優於預期這件事情我個人認為是不太能夠完全用GDP作為一個估算就好像你今天其實無法估算明年台股的點位在哪裡是一樣的道理簡單來講現在台股假設是23500點今年年底我們到底台股點位會在哪裡這個事情你其實很難在這個地方說一個準預估可以但 |
transcript.whisperx[192].start |
6198.962 |
transcript.whisperx[192].end |
6221.188 |
transcript.whisperx[192].text |
某種程度上預估就一定預估就不是實際因為你要等到整個年底以後你才有可能去做一個比較好一點的一個精準的計算那當然我必須要去講這一件事情預估總是跟實際會有多少少的差異差多少的差別而已那我最後面講一件事情稅收超徵到底是不是一定要還給個人 |
transcript.whisperx[193].start |
6222.628 |
transcript.whisperx[193].end |
6247.146 |
transcript.whisperx[193].text |
我剛剛講過就是稅制定義是沒有這樣子一個定義那使用在全體國民的話大概可能會是至少在現行制度上增加還債這個我想很多財政學者包括我自己個人在內我個人比較傾向因為債務是未來子孫的錢簡單來講就是我們現代這一代人挪用了下一代子孫可以用的錢拿來我們這一代人用 |
transcript.whisperx[194].start |
6247.666 |
transcript.whisperx[194].end |
6274.193 |
transcript.whisperx[194].text |
那我們現在今年有多賺錢有多稅收超生的話那原則上應該是要盡量的去還債這個是替下一代子孫去著想我相信不光只是國家我們自己個人也會同樣的做同樣的財務上的操作這個應該是一個比較能夠至少在我們現在的目前的公共債務法或者是這個它的本身的規制裡面已經有這個基礎只是還債的比例多少的問題 |
transcript.whisperx[195].start |
6274.833 |
transcript.whisperx[195].end |
6296.269 |
transcript.whisperx[195].text |
第二個我很快來講一下有幾種可能用的方式是包括提供給弱勢的團體其實全民健保對台灣的整體的社會安全因為它是一種醫療的安全社會網這個對國家的整個支撐是非常幫助尤其是剛剛李委員特別提到這些弱勢的人給他一萬塊你當然覺得很不錯不過轉眼一花就 |
transcript.whisperx[196].start |
6296.829 |
transcript.whisperx[196].end |
6321.278 |
transcript.whisperx[196].text |
花掉了但其實全民健保對整個台灣弱勢群體的人的支撐是非常重要的第三個因應重大的財政特別支出需要像前幾年的疫情或者是像那個別的國家發生了一些地震啊或是海嘯這些事情第四個你當然可以做一些投資未來那因為投資未來這個事情當然就比較難講了國防是一種集體安全治安像台灣現在詐騙這種 |
transcript.whisperx[197].start |
6324.48 |
transcript.whisperx[197].end |
6352.692 |
transcript.whisperx[197].text |
對國民的身家的財產的侵害這個我相信都是一個非常嚴重的問題最後我們才談到說要發給現金給現代這一代的國民繳稅的人當然你會講一件事情如果你還你還一點錢給我我也很開心樂意還給我個人我很開心樂意不過還是如果我們想像一個這是一個家庭的財務的話我其實我只是順帶談啦2023年拿到那6000塊我會立刻去買一張股票 |
transcript.whisperx[198].start |
6353.072 |
transcript.whisperx[198].end |
6369.553 |
transcript.whisperx[198].text |
我不會立刻拿來還我現在的就是把它花掉啦這個是我提供我個人一些想法關於這個部分的意見謝謝好 謝謝台大的柯教授下一位請我們本院的李坤臣 李委員請 |
transcript.whisperx[199].start |
6379.397 |
transcript.whisperx[199].end |
6395.166 |
transcript.whisperx[199].text |
謝謝主席與會的學者專家還有行政部門的官員大家早安那今天這個公聽會的題目呢叫做這一個稅收超徵還稅與民那這個稅收超徵還稅與民這個我基本上認為這個幾個字有誤導的嫌疑因為其實稅收並沒有超徵 |
transcript.whisperx[200].start |
6405.672 |
transcript.whisperx[200].end |
6428.41 |
transcript.whisperx[200].text |
就是說我們是去年的經濟表現的情況還不錯所以稅收是超過了預估那稅收超過預估呢那當然財政部也要檢討的地方但是絕對不是說這個有超徵超徵好像是說我們有多向人民多徵收了哪些稅 叫做超徵所以經濟表現超出預期 稅收超過的預估 |
transcript.whisperx[201].start |
6429.671 |
transcript.whisperx[201].end |
6451.3 |
transcript.whisperx[201].text |
政府的稅收都是依法徵收絕對不會去違法超徵所以我們用超徵這個詞很容易就引起了誤會我看很多在野黨的朋友們一直在講超徵這兩個字我認為是有在誤導的嫌疑稅收超出了預期要怎麼用 |
transcript.whisperx[202].start |
6452.46 |
transcript.whisperx[202].end |
6473.637 |
transcript.whisperx[202].text |
其實按照法律規定不論是預算法或是公共債務法的規定有剩餘都應該要去減債還本也就是說多出來的稅應該優先拿來去還債我先做以上的說明去年民進黨政府拚經濟 |
transcript.whisperx[203].start |
6475.078 |
transcript.whisperx[203].end |
6494.71 |
transcript.whisperx[203].text |
成果還不錯所以景氣家稅收優於一期所以包含盈利事業所得稅、綜合所得稅、證券交易稅、營業稅等等這四項跟景氣相關的稅收其實都有增加主要的稅收增加是來自於這邊 |
transcript.whisperx[204].start |
6496.075 |
transcript.whisperx[204].end |
6510.52 |
transcript.whisperx[204].text |
然後呢 那稅收有增加那稅收有增加是何時才能夠確定何時才能夠去用這些多收出來的這些稅收那按照這個財政部這個初估的這個決算 |
transcript.whisperx[205].start |
6512.901 |
transcript.whisperx[205].end |
6525.972 |
transcript.whisperx[205].text |
113年全國稅客收入3,7619億然後叫這個運算數增加了5,283億就大家在講那其實呢多增加了這些5,283億呢 |
transcript.whisperx[206].start |
6528.133 |
transcript.whisperx[206].end |
6555.188 |
transcript.whisperx[206].text |
中央政府是增加了三千七百五十七億那地方政府呢增加了八百零而已所以這增加的部分也不是完全都是中央政府的也有地方政府的然後還有呢有七百二十四億是要撥入中央的特種基金那所以呢在中央的課稅收入所增加的這些三千七百五十七億呢連同其他的稅入稅出還有扣除這個債務還本之後 |
transcript.whisperx[207].start |
6557.469 |
transcript.whisperx[207].end |
6583.939 |
transcript.whisperx[207].text |
產生的這個收支的剩餘要等到今年的7月底要等這個審計部審定完之後透過的預算程序那邊預算才可以運用所以就是說現在看起來好像有這個稅收有增加了在中央的部分增加3700多億但是要等到今年7月等到今年7月呢這個審計部審定之後呢才可以運用 |
transcript.whisperx[208].start |
6584.879 |
transcript.whisperx[208].end |
6603.1 |
transcript.whisperx[208].text |
所以我看很多在野黨的同仁想要用大撒幣普發現金一萬塊要來救大罷免我想在時程上面也會來不及因為等到七月之後 |
transcript.whisperx[209].start |
6604.002 |
transcript.whisperx[209].end |
6621.122 |
transcript.whisperx[209].text |
才能夠有辦法把這個稅金剩餘審計部審定之後才確定說有多少錢可以用所以你在這個時候一直要講這個大傻逼這個政策我對於要緩解大罷免我認為是沒有什麼樣的效果的 |
transcript.whisperx[210].start |
6622.023 |
transcript.whisperx[210].end |
6650.024 |
transcript.whisperx[210].text |
然後民眾黨也有召開公聽會我看這一個參與的學者也認為不支持發現金他認為說目前的租稅制度不公財務模型的確有檢討的必要但是普遍也不認同超徵後直接以普發現金來做處理超徵普發現金會有其他形式來退還每發一元都有可能要舉借新債造成債留子孫 |
transcript.whisperx[211].start |
6651.585 |
transcript.whisperx[211].end |
6675.286 |
transcript.whisperx[211].text |
所以我最後做一個結論第一個財政部我認為也應該要做檢討因為從去年講到今年你們有這個稅收估測專業小組你們有委外去做這個稅收估測的模型但是從去年到今年我們財委會也講了很久這個模型做出來還是測不準 |
transcript.whisperx[212].start |
6677.228 |
transcript.whisperx[212].end |
6702.884 |
transcript.whisperx[212].text |
那我希望說這一部分財政部要檢討那才不會說你每次很保守的去估但是最後所估出來的景氣好多估出來的稅收又增加再野黨又拿這個來挑財政部的毛病但是我自己也認為這個模型的確要估準一點如果不估準一點每次稅收覺得說怎麼會增加這麼多所以大家外界也會有質疑這是第一個 |
transcript.whisperx[213].start |
6703.504 |
transcript.whisperx[213].end |
6722.243 |
transcript.whisperx[213].text |
那第二個呢我是認為說這個當在野黨有提出這個運算法的修正案我們自己行政院也要有自己的一個版本或是說想要做什麼你不管是這一個要幫助社會上需要幫助的人或是說我們要壯大台灣不管要做什麼 |
transcript.whisperx[214].start |
6723.304 |
transcript.whisperx[214].end |
6744.862 |
transcript.whisperx[214].text |
這個多出來的這些稅收我認為要對外界講清楚我們要做什麼那最後我也建議啦這個與其普發現金呢那不如在所得稅法這方面在這個特別扣除的部分呢是不是能夠做調整尤其我們現在面臨到這個少子化還有高齡化的社會所以是不是針對 |
transcript.whisperx[215].start |
6746.623 |
transcript.whisperx[215].end |
6769.566 |
transcript.whisperx[215].text |
這個幼兒學前的這個特別扣除或是說這個長期照顧的特別扣除把它免稅的部分把它調升我認為在減稅這部分做一個調整讓全民有感會比這個普發現金這個煙火式的這個一萬塊我覺得對於這個所有的這個人民來講可能會更有幫助啦那以上的說明 謝謝 |
transcript.whisperx[216].start |
6770.467 |
transcript.whisperx[216].end |
6789.715 |
transcript.whisperx[216].text |
好 謝謝林委員的發言下一位請鳳甲大學的伍大開教授發言那麼向委員會報告我們伍教授發言之後要休息10分鐘因為這個主計長11點才會到我們等一下有官員統一回答主計長很重要好 謝謝 |
transcript.whisperx[217].start |
6799.514 |
transcript.whisperx[217].end |
6806.945 |
transcript.whisperx[217].text |
大家好,我是馮亞大學會計系的吳大開很高興有機會接到黨團的邀請在這邊發表一些關於稅收超徵的一個看法 |
transcript.whisperx[218].start |
6808.035 |
transcript.whisperx[218].end |
6830.74 |
transcript.whisperx[218].text |
那這個是我們大概收集了這四年的這個稅收超增的一個情況那我們可以看到就是去年2024年的超增數是到了5283億所以相較於去年前幾年來講相對來說是比較多的那這個超增其實我們可以定義為就是稅收的實際數高於預算數這樣子的一個現象那因為今天的這個超增的 |
transcript.whisperx[219].start |
6831.961 |
transcript.whisperx[219].end |
6854.122 |
transcript.whisperx[219].text |
這個議題的來源就是因為我們有稅收超增這樣子的一個現象所以我們先來看一下就是這個稅收超增它的這個來由是什麼所以超增既然是這個實際數高於預算數的現象所以它今天會超增可能就是有兩個原因那第一個原因就是我們的這個實際數比較高那實際數比較高代表就是說今天的經濟表現它或是經濟的行為確實高於我們的預期例如說 |
transcript.whisperx[220].start |
6854.782 |
transcript.whisperx[220].end |
6878.069 |
transcript.whisperx[220].text |
今天這個交易量或是這個相關的這個銷售額比預期還高那這個代表就是我們的實際數比較高那另外一個層面可能就是我們的預測數相對來講是比較低的那這個東西反映的就是我們今天預測並沒有這麼的一個準確那預測沒有這麼準確主要會來自於兩個面向那第一個面向就是我們今天預測所使用的這些參數它可能跟我們實際情況並不符 |
transcript.whisperx[221].start |
6879.79 |
transcript.whisperx[221].end |
6895.218 |
transcript.whisperx[221].text |
那因為我們預算編列它其實是有個時間落差我們是在前一個年度去對下一個年度做預測所以會導致我們所使用的一些參數可能會跟實際上不太一樣那另外一個就是我們在預測的方法上可能確實存在一些我們需要調整的一個空間 |
transcript.whisperx[222].start |
6896.816 |
transcript.whisperx[222].end |
6919.454 |
transcript.whisperx[222].text |
那我們進一步來看一下這兩個所以如果今天參數跟這個實際情況是不一樣的話那這個東西確實是制度因素的使然因為我們在前一個年度就要編列下一個年度的預算所以這個不得不說在稅收的預測實際上來講它確實存在一些難易度因為我們在前一個年度就要對未來去做一個預測但是在預測的方法上來講那目前確實可能存在一些調整的空間 |
transcript.whisperx[223].start |
6920.214 |
transcript.whisperx[223].end |
6939.214 |
transcript.whisperx[223].text |
因為目前的主管機關是比較偏向用經驗法則去預測稅收但是其實預測稅收的方法有很多種不一定一定是只有經驗法則有其他的方式其實也可以做到類似的目的那講到這個所謂的全民經濟的共享那前面為什麼會特別講這個超增的原因的原因就是因為說 |
transcript.whisperx[224].start |
6940.555 |
transcript.whisperx[224].end |
6958.152 |
transcript.whisperx[224].text |
如果今天我們時增數高於預算數它的有一部分的原因其實是來自於我們的預測的不準確那這個預測不準確它可能跟這個經濟共享之間可能就沒有這麼明確的一個關聯那可能我們反而應該要檢討的是為什麼我們的預測有沒有一些可以再更加精進的一個做法 |
transcript.whisperx[225].start |
6958.692 |
transcript.whisperx[225].end |
6979.266 |
transcript.whisperx[225].text |
那再來就是我看了一下就是最近的一些總體經濟的指標像是經濟成長率等等那其實這些總體的表現它並沒有相對的很明顯優於就是過往的年度所以在這兩個點之下我會認為說這個全民經濟共享這個用這個這個稅收超徵作為全民經濟共享的一個基礎可能是有需要再商榷的 |
transcript.whisperx[226].start |
6980.27 |
transcript.whisperx[226].end |
7003.397 |
transcript.whisperx[226].text |
那這邊我給兩個政策建議那第一個政策建議就是目前除了財政部自己做的一個預測之外那我也會建議就是可以就是委託這個民間單位就是其他單位來進行相關的預測那有這個多個版本的預測結果之下那財政部可以藉由比較跟評估各個結果然後去建立一個更可靠的一個稅收的估測數那目前就是財政部已經有這個所謂的稅收估測專案小組還有這個 |
transcript.whisperx[227].start |
7005.538 |
transcript.whisperx[227].end |
7022.192 |
transcript.whisperx[227].text |
委外的這個估測模型的一個研究的計畫但是這兩個東西確實它是有繼續值得做的一個必要但是我覺得應該可以再有更多版本產生部應該可以再委託更多的相關單位去做更多版本的一個估測結果那這樣可以讓這個估計的結果是更就是更為準確 |
transcript.whisperx[228].start |
7023.786 |
transcript.whisperx[228].end |
7049.944 |
transcript.whisperx[228].text |
那這邊我是舉一個例子就是我看了一下這個中央政府內地稅估測模型的研究計畫他在113年度他們稅收誤差的這個比例就是預測數跟這個實際數這個落差的比例那這樣算出來大概是3%那這個雖然只是一個年度的一個估測結果但是這樣子的結果應該可以告訴我們就是說其實今天有其他外面其他單位的一個估測應該是有辦法或多或少可以提升我們這個預測的一個準確的效能 |
transcript.whisperx[229].start |
7052.093 |
transcript.whisperx[229].end |
7073.289 |
transcript.whisperx[229].text |
那另外一個就是關於超徵稅收用途的這個使用那確實就是因為超徵這個稅收其實在很多年度都有就是有蠻多的一些相關的討論那其實它的用途其實很容易會有一些社會上的歧見跟紛爭所以我也認同說超徵稅收這件事情如果能在趁這個機會讓它有一個更明確法制化的規定化那當然是比較好的 |
transcript.whisperx[230].start |
7073.689 |
transcript.whisperx[230].end |
7097.294 |
transcript.whisperx[230].text |
那只是如何在使用上我自己是站在一個財政永續面向來說我覺得還債相對來講可能是一個比較適合的一個用途就像剛剛有專家學者其實也提到其實還債就是在未來的這個未來的後代或是未來的政府在執政的時候它其實有更多的這個財政的餘裕財政的空間去做一些政府相關的一個政策那以上是我的一些想法 謝謝 |
transcript.whisperx[231].start |
7100.404 |
transcript.whisperx[231].end |
7104.931 |
transcript.whisperx[231].text |
好 謝謝我們柯教授的發言我們休息十分鐘 |
transcript.whisperx[232].start |
7689.531 |
transcript.whisperx[232].end |
7705.93 |
transcript.whisperx[232].text |
響鐘 |
transcript.whisperx[233].start |
7717.642 |
transcript.whisperx[233].end |
7724.271 |
transcript.whisperx[233].text |
好 向委員會報告 我們繼續開會下一位請聶建忠教授來 請放眼時間8分鐘 請 |
transcript.whisperx[234].start |
7749.215 |
transcript.whisperx[234].end |
7771.521 |
transcript.whisperx[234].text |
那個 我就快一點 我們的時間非常有限好 那麼一開始呢 我先講一下我的論點啊 剛剛記者剛好問我 我這樣講說今天我們談的呢 是不是應不應該還稅移民以及啊 就算是要還稅移民 他的機制要怎麼定這個 怎麼樣機制化這個問題啊第一個 我先講一下 我這邊有一個powerpoint我們就很快的跳到第二頁啊那第一個 當然我們知道啊 我們現在是彎彎稅的時代嘛 |
transcript.whisperx[235].start |
7773.381 |
transcript.whisperx[235].end |
7792.587 |
transcript.whisperx[235].text |
這個什麼稅其實很多國家那為了這個國家發展都會課各種的稅我們稅有國稅有地方稅也有現行廣義的不動產稅制等等的一堆這裡面包括這兩年經濟成長甚至AI的這個科技的併發當我們的證交稅增加當包括土生稅還有房地合一稅和2017年7月到2022年 |
transcript.whisperx[236].start |
7793.627 |
transcript.whisperx[236].end |
7807.743 |
transcript.whisperx[236].text |
這整個的房地合一稅讓我們這個稅收的確是增加當然我們稅收增加的來源非常的多好那我現在要講的就是說我現在要從企業的角度經營的角度來講企業之對於股東就像國家之之於人民一樣 |
transcript.whisperx[237].start |
7808.464 |
transcript.whisperx[237].end |
7824.97 |
transcript.whisperx[237].text |
那麼我們都知道在經營企業的時候都希望財富股東財富最大化那麼一個企業有三種人第一個是擁有者就是股東他是最重要的Body第二個就基因管理者那麼當然就是總市場總經理之類的第三個就監督者可是我們在國家來講我們的 |
transcript.whisperx[238].start |
7827.051 |
transcript.whisperx[238].end |
7851.513 |
transcript.whisperx[238].text |
最大的這個擁有者是誰就全民 我覺得全民大股東第二個呢 經營管理者當然就是我們現在的執事單位的所有跟這相關之人第三個監督監督的單位 但是監督在公司可能有董事會有什麼獨立董事等等的可是在國家可能就缺乏這一塊因此我們今天在這樣的一個公定會或者有在野黨 有些用心的立委來把關再找一些我們專家學者來 我覺得非常之棒 |
transcript.whisperx[239].start |
7852.153 |
transcript.whisperx[239].end |
7867.021 |
transcript.whisperx[239].text |
好那我們現在往下走那今天呢我先講一下就是我剛聽到前面幾位講尤其有一位啊當然現在是執政的這個黨的這個委員講到那個說用了兩個字我聽了就很難過他說超增是一個誤導第二個呢 |
transcript.whisperx[240].start |
7868.121 |
transcript.whisperx[240].end |
7886.769 |
transcript.whisperx[240].text |
他說這是一個大傻逼 如果還稅就一個大傻逼他後面又講了 他說他是為了要反這個所謂的大罷免這個image我覺得這樣子很奇怪 雖然這是一個政治議堂但是我不覺得應該把政治議題拉得太深我現在還是用我的學者角度來講什麼叫超真 有沒有誤導 答案是我認為不是 |
transcript.whisperx[241].start |
7887.409 |
transcript.whisperx[241].end |
7903.121 |
transcript.whisperx[241].text |
根本沒誤導是定義問題好我先講一下很多人不管參議黨執政黨對這個超增啊當然你要弄清楚他什麼叫超增因為總預算是什麼當然是在事前所釐定不管你用經驗法則或剛剛有學者講什麼樣的方式這就是啊經驗也好這個學者 |
transcript.whisperx[242].start |
7904.102 |
transcript.whisperx[242].end |
7917.177 |
transcript.whisperx[242].text |
法治也好最後定的就是未來可能要花的錢今天要怎麼去編列這就是諒除賄賂這時候呢如果你要花錢都已經預算好結果卻多這麼多講不好聽我認為這就超真因此我用這個這個所謂經濟學裡面 |
transcript.whisperx[243].start |
7918.919 |
transcript.whisperx[243].end |
7935.834 |
transcript.whisperx[243].text |
簡單的學習叫common balance來講就是政府支出減政府稅收如果是正的就是短徵很多的國家都是赤字尤其美國是非常明顯的common deficit如果是負的也就是政府的稅收超過政府的支出當然就是超徵這叫surplus怎麼不叫超徵定義的問題怎麼說誤導 |
transcript.whisperx[244].start |
7938.416 |
transcript.whisperx[244].end |
7958.591 |
transcript.whisperx[244].text |
如果你不用誤導兩個字我可能還不會那麼的有點氣上來第二個呢什麼叫合理稅制那剛剛有幾個學者也講到我非常之支持與贊成稅收成長應貼近經濟成長率我覺得這是第一要件當然我等一下還要加一下當經濟成長還要加通膨我等一下再講一下我認為怎麼樣的機制化我認為的比較合理好 再來我們看一下 |
transcript.whisperx[245].start |
7959.031 |
transcript.whisperx[245].end |
7981.668 |
transcript.whisperx[245].text |
那麼2020到2020年經濟成長其實是下修的但是我們的稅收卻超增那因為很多學生都用這四年來講連四年超增預算數剛剛也講到是1.8兆多1.87兆它的超增數平均高到多少大家應該已經了解是16.5%很可怕吧那這再往下看那你就會看到這個超增當然我們剛剛講有國這個往下一頁 |
transcript.whisperx[246].start |
7984.19 |
transcript.whisperx[246].end |
8011.709 |
transcript.whisperx[246].text |
就是我們的這個有國稅嘛 還有地方稅當然我們的稅收呢 國稅是之前一個problem跳過去的就是說我們今天超真的有五千多億嘛五千兩百八十三億在去年當然中央政府就三千多億那不管怎麼說那我們現在稅收呢超過了這麼多也就是在五千多億減掉我們這個基礎的這個在除以它的整個基礎那就是16.5%我覺得這非常之高我們再看下一頁 |
transcript.whisperx[247].start |
8012.569 |
transcript.whisperx[247].end |
8026.663 |
transcript.whisperx[247].text |
那剛剛這個所謂的16.5%我就把它叫超增率嘛對不對超增率我用了兩個紅色大於叫什麼大於經濟成長率各位經濟成長去年多少是3.9欸幾倍啊四倍欸當然我再好仁慈一點把通融加進去2.18%加起來是什麼6%左右欸 |
transcript.whisperx[248].start |
8030.186 |
transcript.whisperx[248].end |
8051.818 |
transcript.whisperx[248].text |
16.5%除以8%而6.多%是兩倍多我寫了五個字叫顯著不合理顯著我應該用significant level用紅色來標所以我這裡特別強調這的確超真再來租稅的負擔率我們再用這一次我們收到全國的稅收除以整個國家GDP的三點多兆請問一下負擔率多少14%我覺得從這個角度也是太多 |
transcript.whisperx[249].start |
8052.278 |
transcript.whisperx[249].end |
8066.683 |
transcript.whisperx[249].text |
不是這樣嗎好 重點還說那麼多幹嘛真的是執政黨要拿這個把國家建設到非常的厲害成世界的當然我們有台積電要把所有東西都要衝到世界第一我們的電動車也要超過中國嗎我先講一下2020年全年超證率超過預算規模是史上最高 |
transcript.whisperx[250].start |
8067.583 |
transcript.whisperx[250].end |
8082.106 |
transcript.whisperx[250].text |
五千兩百八十三億你不考慮一下不想一下嗎這問題在哪裡所以中央政府的超增數就有四千多億我覺得答案很簡單四個大字還稅於民再來下一頁當然我還是用企業經營的角度來講 |
transcript.whisperx[251].start |
8082.967 |
transcript.whisperx[251].end |
8108.392 |
transcript.whisperx[251].text |
我們的財務經理呢第一個要做的股東財富最大化我們在追求那他做什麼動作呢就how to get money and how to spend money好 你get money就從民眾來你怎麼去get呢當然就是稅收當然你可以發債發債 那我們這另外我們今天談的是稅收稅收你就增多了嘛好 那再來就是你就是融資政策融資 你稅收那怎麼投資呢你把它說清楚講明白你要多少的國防建設你要多少的這個所謂的這個社會補助或者 |
transcript.whisperx[252].start |
8108.772 |
transcript.whisperx[252].end |
8130.932 |
transcript.whisperx[252].text |
等等的東西 現在有沒有疫情呢 疫情也已經過去了請問你的投資決策 也就是政府將來為國家做的事有多少的地方講清楚說明白你弄得很清楚 能把國家弄到世界第一或許我絕對不要還稅於民但是我覺得目前那對這個國家執政的沒有達到我認為的投資的這種know-how我覺得還稅於民好往下一面看 |
transcript.whisperx[253].start |
8131.753 |
transcript.whisperx[253].end |
8154.18 |
transcript.whisperx[253].text |
下面這一頁這一頁現在全部打快一點因為時間關係全部留完那這個呢是我很簡單這個大家都知道一個叫企業的一個現金流過程公司在經營我講好比國家今天說他有兩種債權和股東重點他做投資決戰投資決戰和融資決策這是我講的是另外小字當然他三大政策還有一個叫鼓勵政策各位看一下下面三樣東西我要講說公司賺錢了怎麼做 |
transcript.whisperx[254].start |
8155.6 |
transcript.whisperx[254].end |
8173.273 |
transcript.whisperx[254].text |
有三個第一個所得稅給政府但是我們現在不是所得稅我把它當作就是政府你要去做為人民做的事再來就是你多的錢怎麼辦到底要發放鼓勵還是還債這個值得商榷跟各位報告我們財務學講Claim Rights常在人力絕對要在股權之前 |
transcript.whisperx[255].start |
8173.993 |
transcript.whisperx[255].end |
8189.692 |
transcript.whisperx[255].text |
可是重點不是這樣是公司快倒閉的時候很多人說先還債什麼未來什麼未來子孫的債務你真的了解未來子孫債務有多少嗎你真的是拿來還債就解決了未來子孫債務嗎不是這樣的我跟你講你賺更多的錢更可以還 |
transcript.whisperx[256].start |
8190.493 |
transcript.whisperx[256].end |
8210.56 |
transcript.whisperx[256].text |
所以一直談什麼還債的這種想法我看不懂也聽不懂我告訴你公司在賺錢就是先發放鼓勵尤其在2016年洪俊宇和誰在競選的時候談那個所謂的四個法的公司法最重要一個就是在稅前發放鼓勵為什麼要談這個就是告訴你賺錢就是發放鼓勵當公司還在經營的時候教授而且我們公司還強調 |
transcript.whisperx[257].start |
8212.3 |
transcript.whisperx[257].end |
8233.306 |
transcript.whisperx[257].text |
債是要盡量去借的Leverage 槓桿錢放在銀行傻子行為企業就是要Leverage 賺錢誰說一定要先還債的但是不要太多債這都是口號什麼未期後代子孫啊什麼的我覺得這種還債只用這種想法你沒有想到一個公司真正經營的未來先還罪名好最後一頁來快一點不好意思啊個體經驗告訴我們要公平效率 |
transcript.whisperx[258].start |
8234.366 |
transcript.whisperx[258].end |
8253.959 |
transcript.whisperx[258].text |
要fairness企業的經營就是要鼓勵發放好我覺得時間的關係再給我一分鐘告訴你納稅人就是全民大股東超徵就是嚴重不合理那對納稅人就是不公那效率我等一下再講方向我就沒有時間講了方向呢就是要做稅制改革還有當下做還稅於民怎麼還怎麼稅制改革好就有人談了要 |
transcript.whisperx[259].start |
8256.04 |
transcript.whisperx[259].end |
8283.203 |
transcript.whisperx[259].text |
優先投入社會福利國防重大建設都可以但你國防預算講清楚下一頁最後一頁我講完了齁我覺得所有還稅移民要合情合理合法我先講一下取之於民用之於民合情啊優先以超真的稅收放現金剩餘資金再來償還國債合理啊還稅移民等同等於鼓勵發放合法就是要還稅機制怎麼定定公司的鼓勵政策所以合法非常重要 |
transcript.whisperx[260].start |
8284.164 |
transcript.whisperx[260].end |
8310.021 |
transcript.whisperx[260].text |
全部兼顧最後一個就是到底要固定法治化機制還是談性我跟各位講一下固定是比例分配的法治化它有它的好處它可以避免每年發生爭議罪孽防患指示者的私心操作這個很重要喔會損及人民的利益福祉當然他談談性可以啊我快結束了因應了當下社會的需求照顧弱勢等等的文財我跟你講我這是以上代商榷但我跟各位講我覺得 |
transcript.whisperx[261].start |
8310.481 |
transcript.whisperx[261].end |
8331.063 |
transcript.whisperx[261].text |
我們應該要用中國最早的想法叫允職絕中第一個當然你真的超收了將來在所得稅把它decrease降低第二個不要排富因為這是所有的人的錢用排富這都是口號都是為了拿選票因為這個東西不一樣第三個最後一個我要講就是機制我認為啊剛剛我呼應前面的 |
transcript.whisperx[262].start |
8331.403 |
transcript.whisperx[262].end |
8354.835 |
transcript.whisperx[262].text |
今天我們超收稅的超增率減掉經濟成長率加通膨率這樣仁慈了吧減掉之後呢我覺得成七成還稅於民剩下三成我們講要機制化的話今年我覺得就換換一萬了一萬了讓大家happy明年以後就七成還稅於民三成用來不管你怎麼國債啊國防建設都可以那就看當時的執政者要怎麼做了謝謝大家 |
transcript.whisperx[263].start |
8356.508 |
transcript.whisperx[263].end |
8374.217 |
transcript.whisperx[263].text |
好 謝謝聶教授的一個報告我們歡迎主席長 我們趁主席長剛到好 下一位請張祺祿 張教授也是以前我們的同事 這非常用心表現非常好的張教授來請 |
transcript.whisperx[264].start |
8377.325 |
transcript.whisperx[264].end |
8391.045 |
transcript.whisperx[264].text |
非常謝謝我們召委我們賴委員我的前輩今天以專家的身分過來非常的高興當然今天這個主題是蠻重要就是這個稅收的年年超徵那我們這個經濟成果怎麼樣共享 |
transcript.whisperx[265].start |
8392.182 |
transcript.whisperx[265].end |
8409.227 |
transcript.whisperx[265].text |
當然我想背景我已經不用多說了那這一次當然我們也知道立法院的各黨團有不同的這個想法比如我們立院國民黨黨團這邊建議普發現金一萬那執政黨這邊也希望說要擴大公共投資啦去育兒政策啦長照3.0啦癌症新藥等等這些 |
transcript.whisperx[266].start |
8410.787 |
transcript.whisperx[266].end |
8429.739 |
transcript.whisperx[266].text |
現在我們就要問這問題要怎麼解決其實這個tax revenue surplus其實剛剛很多專家都在談這個事其實我必須這樣跟各位還是報告一下其實這個 surplus真的我覺得英文比較精準超徵這件事感覺上好像是說好像你本來應該繳比如一千塊錢的稅結果後來 |
transcript.whisperx[267].start |
8431.823 |
transcript.whisperx[267].end |
8452.995 |
transcript.whisperx[267].text |
多角龍其實這個可能也不能用多的概念他應該是說他有點是因為可能是景氣循環或者你現在剛好這個經濟上的這個榮景你其實比你預期要多收到其實但是這幾年也確實真的出了問題其實不瞞說我自己在第十屆的時候我們那時候就已經看到這個問題 |
transcript.whisperx[268].start |
8453.795 |
transcript.whisperx[268].end |
8480.667 |
transcript.whisperx[268].text |
其實你每一年都是四千億五千億三千億到今年又五千八百億這個也有點太估不準了吧有點估得太多了就是估不準的問題但是我們必須這樣講這個累計是1.87兆我們這也看得到但是我必須提醒這個不見得每一次都有它有點win for profit這個用英文解釋都不是都比較貼切一點就好像有點忽然天上掉下來那直接往下 |
transcript.whisperx[269].start |
8482.145 |
transcript.whisperx[269].end |
8496.084 |
transcript.whisperx[269].text |
因為其實從結構上來看不管從這幾年其實這個主要的來源是哪裡主要就是營所稅、眾所稅、政交稅這些其實我想這個結構上大家都知道那為什麼呢我直接就往下好了再往下 |
transcript.whisperx[270].start |
8497.545 |
transcript.whisperx[270].end |
8523.226 |
transcript.whisperx[270].text |
這個稅收之所以比預期好它主要就來源我們不要講太多的學理讓民眾更能理解其實主要比如在疫情的時候像我們的航運業那時候航海王大家都知道後來我們的半導體我們的護國神山等等AI這些再來房地產還有股市這些其實這些就是我們過去這幾年這個稅收超增的最主要的核心所以也可以這樣講 |
transcript.whisperx[271].start |
8523.826 |
transcript.whisperx[271].end |
8531.809 |
transcript.whisperx[271].text |
就是說這個的榮景到底是不是一直都持續下去我們不是完全能清楚但是必須告訴各位他就是來自這些好那我們往下 |
transcript.whisperx[272].start |
8533.288 |
transcript.whisperx[272].end |
8554.127 |
transcript.whisperx[272].text |
但是我們也必須實說這個超增的這個原因是什麼就是說一來就剛剛講的是那個整個經濟的發展第二個我們確實也預算編列失準因為好像估的也太不準了每一年都三千億五千億的這樣子的不準那這個東西是不是變成說我們講的在公共財政上說是不是量出為入 |
transcript.whisperx[273].start |
8555.233 |
transcript.whisperx[273].end |
8580.47 |
transcript.whisperx[273].text |
就是你應該政府是支出多少你大概才去想辦法找裁員那好像你也差太多嘛那當然另外一個就是說好這個就是第二點就是說可能總體經濟環境沒有考慮那麼清楚再來就是政府的很多的支出由他的支出向反而是緩慢的因為你可能很難預期比如說你這個長照等等這些調整你沒有跟得上那另外一個還有一個就是我們忽視整個公共債務跟潛藏負債直接往下 |
transcript.whisperx[274].start |
8581.994 |
transcript.whisperx[274].end |
8609.635 |
transcript.whisperx[274].text |
其實我必須直說我們還是看個數據其實蔡政府在七年這個八年裡面十三項特別預算我不足以列了必須跟各位報告這些特別預算的總共舉債就是兩兆兩千多億各位想一下如果我們把那些特別預算的舉債的狀況也全部算進去我們現在財政每一年多個三千億到五千億加在一起跟那個過去兩兆五千多億的舉債這樣平衡了嗎 |
transcript.whisperx[275].start |
8612.017 |
transcript.whisperx[275].end |
8628.873 |
transcript.whisperx[275].text |
沒有耶 我們好像就沒有超了那當然更不要說那個核心點的數字比如公共債務現在國債中就擺在那了嘛我們財政部也很清楚現在已經五兆九千億了那如果說那些隨收隨付的那些潛藏的那些 |
transcript.whisperx[276].start |
8630.114 |
transcript.whisperx[276].end |
8653.332 |
transcript.whisperx[276].text |
負債就是那些基金等等這些的話這些加在一起這個可能還有18兆的潛藏負債那另外更不要說最近這種坊間一直在談的就是說我們這個油啊 電啊 水啊 這個虧損這些大家也都看得到所以真的當然往下我們就直接往下但是這個稅收超徵的應用其實無外三大方向還債還稅於民或是賴總統他們建議的公共投資等等 |
transcript.whisperx[277].start |
8655.794 |
transcript.whisperx[277].end |
8679.037 |
transcript.whisperx[277].text |
坦白說大概也就不出這些方案了那我們直接往下看我細的不太解釋了但是這個稅收超徵這件事跟民眾的關聯性這個算了我節省我的時間這個先下去那大概就是說至少有兩方面會禁足就是說有人支持就覺得說這個還稅於民是取之於民用之於民因為我當然還是必須報告 |
transcript.whisperx[278].start |
8680.393 |
transcript.whisperx[278].end |
8696.694 |
transcript.whisperx[278].text |
今天我們剛才講那些產業的之好就依然包括台積電其實還是有全民很大很大的貢獻這怎麼說今天台積電他要用水用電甚至我們剛才講的水電不是都虧損嗎就是因為我們長期能源的這個價格是過低的啊 |
transcript.whisperx[279].start |
8697.354 |
transcript.whisperx[279].end |
8713.278 |
transcript.whisperx[279].text |
那我們也用低匯率低利率我們的貨幣政策財政政策來幫忙這些產業所以這些產業才會這麼好所以他們的經濟果實坦白說確實是應該也要回饋給一般民眾的今天我們坦白說如果我們補貼台電這個其實也是拿納稅人的錢在貼補台電 |
transcript.whisperx[280].start |
8717.159 |
transcript.whisperx[280].end |
8735.052 |
transcript.whisperx[280].text |
那台電之所以虧損也跟我們的經濟發展這些重大的半導體產業等等這些其實不是說沒有關係所以其實它是有關聯性的所以當然讓這個所謂的還財於民這件事其實也不是說完全沒道理我必須這樣講那第二個當然 |
transcript.whisperx[281].start |
8737.867 |
transcript.whisperx[281].end |
8755.084 |
transcript.whisperx[281].text |
再來就是當然也有人說那其實說實話基於學界我剛剛也其實聽很多其實我們這個議題吵很久了其實學界的專家當然都一定會說還債其實我也必須跟各位報告其實當然這是合理的想法之一啦因為我剛剛也報告了往下一點 |
transcript.whisperx[282].start |
8757.498 |
transcript.whisperx[282].end |
8783.123 |
transcript.whisperx[282].text |
這個還債的這個部分是因為這樣講因為我們剛剛講過如果我們看總體的政府的財政其實也不是很平衡其實也不平衡特別預算如果算下去的話他欠的那些錢還有我們現在公共債務這麼高所以還是有問題的所以其實是各有各的觀點那因為時間關係我就直接要跟各位報告往下一頁還是給各位一個比較持重折衷的建議 |
transcript.whisperx[283].start |
8784.414 |
transcript.whisperx[283].end |
8801.492 |
transcript.whisperx[283].text |
一來是這樣其實我這邊的順序是也有點傳達它的悠閒順序當然我們覺得普發現金不是不對就是普發現金是一個把經濟果實還給民眾就我們剛剛一直講今天就算房地產股市這個半導體它好 |
transcript.whisperx[284].start |
8804.315 |
transcript.whisperx[284].end |
8832.606 |
transcript.whisperx[284].text |
他是有全民幫他在做支撐的我們也是拿了很多我們這個全民的這個努力來讓他得到這個的所以當然普罷兼金這件事是可以去做的當然如果說你真的認為說要兼顧公平這件事的話那也許排富的某種程度也是可以做就是說因為可能有的人真的覺得一萬塊也必須直說國董事長可能多得到一萬塊沒有那麼大意義的話那好 |
transcript.whisperx[285].start |
8833.126 |
transcript.whisperx[285].end |
8861.125 |
transcript.whisperx[285].text |
那他可以不用那另外一個當然債務的這個部分我們必須直說債務的部分當然我必須這樣講我們按公共債務法12條那個部分其實就是我們始終沒有達標我們一直說我們的稅科的5%到6%其實這個我以前自己在當的時候我們一直在建議財政部說每一次這個地方我們為什麼都沒有到6%6%只不過是在公共債務法寫的一個建議的一個下限而已可是我們都達不到 |
transcript.whisperx[286].start |
8861.725 |
transcript.whisperx[286].end |
8878.203 |
transcript.whisperx[286].text |
所以這才是所以債務的部分那當然也是可以做部分那但是它的順序可能是第二那當然這個地方也包括了撥補一些我們剛剛講的隨收隨付的這些制度我們一直在講說這些會倒啊會怎麼樣啊那你今天多了這些錢當然你可以做這個 |
transcript.whisperx[287].start |
8879.204 |
transcript.whisperx[287].end |
8894.853 |
transcript.whisperx[287].text |
然後當然我這邊也特別指出除非你有餘裕才讓你再去投入一些公共建設這些因為坦白說過去的經驗我們不是很有把握因為看起來好像政府花了很多比如什麼前瞻等等我們不清楚 |
transcript.whisperx[288].start |
8895.373 |
transcript.whisperx[288].end |
8915.561 |
transcript.whisperx[288].text |
那當然最後一件事總體的當然提高預算編列的準確性這個反而是但是我必須直說在目前這種狀況下其實要準也不會很準也很難所以其實這是有一點講整個結構性的所以我們覺得還是一個比較折衷的這樣一個建議那以上請大家來參考謝謝大家 |
transcript.whisperx[289].start |
8917.142 |
transcript.whisperx[289].end |
8925.41 |
transcript.whisperx[289].text |
好 謝謝張其祿委員 張其祿教授的發言下一位請本院的宗教評委員發言請我的PowerPoint呢奇怪我的PowerPoint那個剛剛不是我的助理在這裡嗎 |
transcript.whisperx[290].start |
8943.593 |
transcript.whisperx[290].end |
8970.169 |
transcript.whisperx[290].text |
抱歉主席我有準備PowerPoint剛剛不是已經set down了還是我先換一下好不好就讓別人先因為我的PowerPoint怎麼還沒好我們就順序調一下那個周委員要準備他的PowerPoint可能基礎上有一定問題我們的同仁把他fix it下一位請朱英鵬教授朱教授先發言八分鐘 |
transcript.whisperx[291].start |
8989.514 |
transcript.whisperx[291].end |
8993.097 |
transcript.whisperx[291].text |
主席各位委員各位貴賓今天我們來參加公聽會來看這個問題看我們是要從比較純粹的單純的財政學的角度來看 |
transcript.whisperx[292].start |
9016.83 |
transcript.whisperx[292].end |
9033.92 |
transcript.whisperx[292].text |
還是要從整個全民公平正義整個政府的預算這麼多年的實際發生的情況來看我想這兩個觀點的看法之下可能會有不一樣的建議 |
transcript.whisperx[293].start |
9035.782 |
transcript.whisperx[293].end |
9055.811 |
transcript.whisperx[293].text |
那麼如果是純粹從租稅就是從這個稅務學理的觀點來看的話剛才很多先進已經講了如果有超徵看起來應該先還債對不對但是我覺得我們看事情不能只看 |
transcript.whisperx[294].start |
9057.787 |
transcript.whisperx[294].end |
9074.264 |
transcript.whisperx[294].text |
這個單純的單一學科的學理應該要看整個的預算的執行狀況包括過去這幾年的執行狀況以及應該怎麼樣做來呼應全民對於公平正義的要求 |
transcript.whisperx[295].start |
9076.367 |
transcript.whisperx[295].end |
9098.084 |
transcript.whisperx[295].text |
那我就講幾點就是就全民的觀點來看我們看到的一些現象我很贊同可能剛才他已經發言過了我很贊同黃耀輝教授的發言 |
transcript.whisperx[296].start |
9100.751 |
transcript.whisperx[296].end |
9127.29 |
transcript.whisperx[296].text |
第一根據政府過去的行動如果有超收的話也就是實際收到的稅超過預算的話那麼政府根據公共債務法第十二條中央政府應以當年稅收百分之五到六至少至少編列還債 |
transcript.whisperx[297].start |
9132.349 |
transcript.whisperx[297].end |
9143.418 |
transcript.whisperx[297].text |
得省市稅務執行狀況增加還本數額可是我們看過去的經驗106到107年度還債的比率是低於5%的所以不符合規定 |
transcript.whisperx[298].start |
9152.482 |
transcript.whisperx[298].end |
9168.034 |
transcript.whisperx[298].text |
108到112年雖然還債有超過5%但是它是下限因為法令本來就規定至少要5到6所以看起來還債 |
transcript.whisperx[299].start |
9173.539 |
transcript.whisperx[299].end |
9192.902 |
transcript.whisperx[299].text |
以政府過去的行為來講他不是很積極的而且因為中間還有一個德制所以他有很多他可以做一個自己的想法第二個我們看到的就是 |
transcript.whisperx[300].start |
9194.393 |
transcript.whisperx[300].end |
9218.282 |
transcript.whisperx[300].text |
政府過去這麼多年以來如同剛才張教授講的編列支出預算真的是過於腐爛預算法第83條說除非有下列情勢才能夠編特別預算就是國防緊急設施或戰爭第二 |
transcript.whisperx[301].start |
9219.154 |
transcript.whisperx[301].end |
9227.275 |
transcript.whisperx[301].text |
國家經濟重大變故然後重大災變或者是不定期或數年一次的重大震勢 |
transcript.whisperx[302].start |
9229.295 |
transcript.whisperx[302].end |
9256.585 |
transcript.whisperx[302].text |
可是過去幾年幾乎每一年都編特別預算而且越編越大因為它不是總預算所以它不受預算法總預算編列的時候對於債務上限的限制所以我們感覺好像特別預算已經被用來作為一種濫用政府編列預算的權利 |
transcript.whisperx[303].start |
9259.158 |
transcript.whisperx[303].end |
9281.604 |
transcript.whisperx[303].text |
第三個我要講的是政府的很多政策它的名稱跟它的實際的用途不一樣誠如黃教授所講的以疫後強化經濟與社會韌性及全民共享經濟成果為例 |
transcript.whisperx[304].start |
9285.95 |
transcript.whisperx[304].end |
9299.662 |
transcript.whisperx[304].text |
這個計畫編了三千八百億其中還稅余民的只有一千四百億中間其實夾帶了其他支出兩千四百億用來彌補台電的虧損 勞保的虧損為什麼要彌補台電的虧損 |
transcript.whisperx[305].start |
9306.263 |
transcript.whisperx[305].end |
9323.476 |
transcript.whisperx[305].text |
因為政府能源政策是錯誤的我們大家都知道我記得公投已經通過要以核養綠但是通過以後好像政府除了修了一條法令以外其他全部沒有執行 |
transcript.whisperx[306].start |
9324.517 |
transcript.whisperx[306].end |
9343.805 |
transcript.whisperx[306].text |
所以我們要花很多很多錢一度要五塊六塊甚至更高來買綠電花了這麼多錢最後呢第一個實際上沒有達到原先的時間的要求第二個 |
transcript.whisperx[307].start |
9346.156 |
transcript.whisperx[307].end |
9373.453 |
transcript.whisperx[307].text |
這個中間我們也看到產生很多的弊端第三個我們本來要求的要本土化要能夠扶植國內廠商的努力看起來也是失敗這樣的一個失敗政策最後只有一個苦主要承擔所有的財務責任那個苦主就叫做台電 |
transcript.whisperx[308].start |
9374.98 |
transcript.whisperx[308].end |
9394.106 |
transcript.whisperx[308].text |
那台電背後的苦主是誰呢就是全國人民所以我才看到黃耀輝教授的資料的時候我是真的很感慨 |
transcript.whisperx[309].start |
9396.596 |
transcript.whisperx[309].end |
9423.486 |
transcript.whisperx[309].text |
好 現在我們面臨的今天公聽會面臨的這個問題呢是我們必須要對於這個超收的也就是稅收實際收入超過預算的部分要做一個決定好 那這裡面就有不同的看法一個是要擴大公共支出當我聽到這六個字的時候 |
transcript.whisperx[310].start |
9426.127 |
transcript.whisperx[310].end |
9450.138 |
transcript.whisperx[310].text |
我會怕到因為這個支出說不定又是用來補貼台電不是嗎又是用來做這些違反公平正義的事情我是覺得非常的有心那當然也有這個意見是說要還債 |
transcript.whisperx[311].start |
9454.093 |
transcript.whisperx[311].end |
9482.121 |
transcript.whisperx[311].text |
那所以大概就是先要決定他是要花掉還是要還債務剛才也有學者建議也許一小部分還掉但是如果說要花掉的話根據以前過去的經驗花的錢其實是在彌補政府錯誤的政策如果是這樣子的話那麼黃耀輝教授的結論 |
transcript.whisperx[312].start |
9483.482 |
transcript.whisperx[312].end |
9502.237 |
transcript.whisperx[312].text |
我是覺得是正確的就是他說還水於民是不得已的選擇但是是應該做的選擇以上報告 謝謝好 謝謝朱教授的發言下一位就最後一位我們請宗嘉斌委員 本委員發言請五分鐘 |
transcript.whisperx[313].start |
9512.408 |
transcript.whisperx[313].end |
9536.13 |
transcript.whisperx[313].text |
謝謝主席剛剛恭迎我們學者專家的高見我相信都有他們的道理但是一個政策必須要能夠跟人民溝通從人民的經驗出發他才能理解政策為什麼這樣制定很簡單的兩句話我們的國家財政是量出為入當然收支預估應力求精準 |
transcript.whisperx[314].start |
9537.062 |
transcript.whisperx[314].end |
9562.042 |
transcript.whisperx[314].text |
接下來若有剩餘那我個人認為是來年減增或強化施政接下來我舉一個很簡單的例子我們從小到大我們常常去揪團去旅遊揪團去旅遊的時候主揪人會說哎呀我們多退少補啊這次要去金輪洗溫泉一個人收一千塊估計我們大概一團出個二三十個人 |
transcript.whisperx[315].start |
9563.1 |
transcript.whisperx[315].end |
9589.712 |
transcript.whisperx[315].text |
但是大家想想看如果你是主揪你是希望多退還是喜歡少補我要是主揪我不希望因為少了還要去補第二次跟人家收錢很麻煩我要先帶電通常會預估稍微寬一點點如果有剩下來的我在多退是不是這樣子那團員怎麼想團員才不會想要多退他最好少不補少了都你自己主揪帶電 |
transcript.whisperx[316].start |
9591.462 |
transcript.whisperx[316].end |
9618.685 |
transcript.whisperx[316].text |
可以這樣子嗎?我們不知道,但我們往下看那麼什麼樣的人遇到這種情況會傾向當次就多退是什麼情況呢?馬上就退給我為什麼?他下次不想參加了,兩個原因第一個,他覺得這次品質不好,我花了一千塊雖然還剩一兩百塊,我下次不玩了或者我對揪團的團主、主揪不信任下次不跟你的團了,這樣的人就會要求馬上退給我 |
transcript.whisperx[317].start |
9619.571 |
transcript.whisperx[317].end |
9646.96 |
transcript.whisperx[317].text |
但是什麼情況下會多不退呢完了還有剩餘但是大家覺得很滿意我們下次再辦一次吧那再辦一次的時候會怎麼用呢主揪上次一千塊有剩你下次就收八百塊就好了對不對或者說上次我們是吃便當下次一樣收一千塊我們這次吃桌餐這樣子是不是更好這就是我們遇到多退少補的日常生活經驗往下看 |
transcript.whisperx[318].start |
9647.918 |
transcript.whisperx[318].end |
9675.156 |
transcript.whisperx[318].text |
所以會造成多退會是什麼情況呢是主揪高估支出還是低估收入一個有經驗的主揪他對於要支出哪些項目通常不會估算得太離譜通常不會是高估支出他會何時去評估但是通常會有可能低估收入怎麼樣辦得太成功了本來預定30個人結果來了100個人我收一收收1000塊收入支出不用那麼多會有剩 |
transcript.whisperx[319].start |
9676.198 |
transcript.whisperx[319].end |
9691.432 |
transcript.whisperx[319].text |
所以如果主揪辦得好支出算得準但是大家超乎預期的熱烈有時候收入就會多乎你應該支出的部分這就是我們日常生活經驗這樣的生活經驗告訴我們往下看 |
transcript.whisperx[320].start |
9692.703 |
transcript.whisperx[320].end |
9701.655 |
transcript.whisperx[320].text |
國家的稅收治大國如噴小仙啊所以呢我們看一下在2022年估計稅收450億拿出3800億做什麼事情呢1000億撥補健保 |
transcript.whisperx[321].start |
9708.362 |
transcript.whisperx[321].end |
9732.227 |
transcript.whisperx[321].text |
補貼電價平物價 拿出一千億幫忙付一年的學貸雜費還有利息TPAS的票價補貼輔導農民導入等等等還有照顧弱勢產業升級觀光客來台等等等最後呢有1417億共享經濟成果六千塊為什麼是共享經濟成果呢因為台灣要防疫做得好大家經濟成果才會成長嘛 |
transcript.whisperx[322].start |
9733.547 |
transcript.whisperx[322].end |
9760.919 |
transcript.whisperx[322].text |
那防疫難道是有繳稅的人才做嗎沒有 大家都有做防疫所以不管有繳稅沒繳稅經濟成果共享大家都有這個不是退稅退稅是指什麼有繳稅的人繳多了退給你全民經濟成果分享是什麼大家都有貢獻所以大家來分好啦 請問下一頁那我們這一次是有什麼經濟成果要大家共享嗎我們看到剛剛的報告說我們的標題說什麼 |
transcript.whisperx[323].start |
9763.52 |
transcript.whisperx[323].end |
9785.791 |
transcript.whisperx[323].text |
這次都是因為營所稅收的超乎預期啊是因為很多人營業出口旺盛多收了營業所得稅收增加才有這些嘛那之前我們的稅收增加我們是做疫後振興那今年呢今年台灣社會的零售業流通業餐飲業都已經恢復到疫前的水準我們要振興什麼 |
transcript.whisperx[324].start |
9787.202 |
transcript.whisperx[324].end |
9809.942 |
transcript.whisperx[324].text |
是不是導致醫護人員的預算要多崩裂呢我倒覺得這個課題可以往下看所以如果說今天我們稅收超乎預期因為辦的經濟太好了繳稅人更多了繳了更多錢了那我們如果不是去執行那些之前需要再加強的政策那就明年少收點嘛少收有很多方式啊 |
transcript.whisperx[325].start |
9810.723 |
transcript.whisperx[325].end |
9819.068 |
transcript.whisperx[325].text |
免稅額寬解而提高啊稅率降低啊這些都可以討論啊但千萬不要告訴我這些錢要拿來發一萬元的紅包好 謝謝鍾委員的發言報告委員會目前登記發言的專家學者均已發言完畢 |
transcript.whisperx[326].start |
9836.219 |
transcript.whisperx[326].end |
9841.636 |
transcript.whisperx[326].text |
現在開始請行政部門回應相關的意見首先請行政院的副委書長請 |
transcript.whisperx[327].start |
9852.396 |
transcript.whisperx[327].end |
9880.312 |
transcript.whisperx[327].text |
主席 各位委員 各位女士 先生 大家好今天貴委員會召開稅收超增還稅漁民的公聽會本院呈要列席 謹一討論提綱 說明如下首先要報告 稅客收入來預算它編列是具有不確定性的因為中央政府總預算的籌編它需要依照預算法 財政紀律法 公共債務法等規定並且兼顧國家發展跟財政紀律的原則下來辦理 |
transcript.whisperx[328].start |
9881.272 |
transcript.whisperx[328].end |
9903.338 |
transcript.whisperx[328].text |
那因為預算編列跟實際執行的時間有時間的落差那導致執行結果與編列也會產生有些差距那有關稅客收入時增數超過預算數這樣的事情財政部已經成立了稅收估測專案小組而且也委外研究要建立 |
transcript.whisperx[329].start |
9903.838 |
transcript.whisperx[329].end |
9919.665 |
transcript.whisperx[329].text |
精進中央政府內地稅收估測的模型那我們期待在後續的努力下可以提升稅客收入估測的精準度那其次要報告現行已經有法治可循預算法公債法已經有明文規定 |
transcript.whisperx[330].start |
9920.645 |
transcript.whisperx[330].end |
9940.561 |
transcript.whisperx[330].text |
稅科收入優於預期優先減少舉債還債以及累積到稅基剩餘那預算法59條有解雇不得進行坐底或挪移電用的規範公共債務法第12條也有增加還本數額的規定稅科收入優於預期的應用 |
transcript.whisperx[331].start |
9942.082 |
transcript.whisperx[331].end |
9953.635 |
transcript.whisperx[331].text |
可以依照現行的規定辦理所以不建議修正預算法第81條之一那我國的預算制度的話是總預算搭配特別預算的來進行 |
transcript.whisperx[332].start |
9955.546 |
transcript.whisperx[332].end |
9983.651 |
transcript.whisperx[332].text |
年度總預算稅科收入執行優於預期可是總預算並繼特別預算後整體的預算執行不一定會有剩餘如果僅僅用稅科收入全年10增進額達到當年度預算編列數120%或者大於3000億元時就普發現金而沒有考慮總預算稅務執行跟整體預算收支的情形我們比較 |
transcript.whisperx[333].start |
9984.491 |
transcript.whisperx[333].end |
9996.675 |
transcript.whisperx[333].text |
害怕是有舉債發放現金的事情那第三個要報告說我們不建議法制化或常態化的普發現金因為涉及剩餘僅僅是單一年度預算執行結果 |
transcript.whisperx[334].start |
9999.42 |
transcript.whisperx[334].end |
10022.641 |
transcript.whisperx[334].text |
不太適宜把它變成普發現金而且法制化因為我們中看中央政府近13個會計年度的決算審定結果其中有7個年度有稅率剩餘有6個年度沒有稅率剩餘其實政府相關的施政是要以政策優先順序來考量不宜將現金發放那予以法制化 |
transcript.whisperx[335].start |
10023.402 |
transcript.whisperx[335].end |
10047.234 |
transcript.whisperx[335].text |
另外稅客收入優於預期現行已經有法制可以依循政府會依法優先的來減少舉借增加還債或者累積到稅計剩餘至於稅計剩餘的運用的話我們會兼顧國家長遠的發展跟人民的需求那持續的來做規劃那以上說明敬請指教謝謝 |
transcript.whisperx[336].start |
10050.643 |
transcript.whisperx[336].end |
10065.506 |
transcript.whisperx[336].text |
那個那個我請教所以行政院是反對普法獻金是不是還是說因為這個剛才林德武委員有提到啊他質詢的時候而且我看很多媒體下標都好像 |
transcript.whisperx[337].start |
10066.892 |
transcript.whisperx[337].end |
10082.94 |
transcript.whisperx[337].text |
讓人感覺 卓榮他好像並沒有那麼排斥 比較排斥的是財政部跟組織總署所以你要講清楚 你是 我們是行政院立場是反對普發一萬塊 是不是這個意思 把外文講 |
transcript.whisperx[338].start |
10084.361 |
transcript.whisperx[338].end |
10103.622 |
transcript.whisperx[338].text |
我們的立場是反對法制化的普發現金所以反對就各位聽好喔反對法制化就反對我的法案啦齁那沒關係啦我們在立法案再來說但是不反對這一次的普發一萬塊或者少一點這樣是不是 |
transcript.whisperx[339].start |
10104.69 |
transcript.whisperx[339].end |
10126.713 |
transcript.whisperx[339].text |
因為發現金我們以前在消費券三倍券五倍券六千塊其實配合經濟環境的需求我們都有發過了現在可以發為什麼以前可以發現在不發呢這個要看看現在的經濟環境適不適合所以你們行政院的立場就是反對賴世寶提出來的法治化 |
transcript.whisperx[340].start |
10127.273 |
transcript.whisperx[340].end |
10156.194 |
transcript.whisperx[340].text |
但是不排斥或者不讓排斥有國民黨團提出來的這個普發現金一萬塊的特別條例就這個意思是不是你回答我一下裁員因為不確定所以我們不希望他法制化僵化掉那特別條例呢這一次特別條例特別條例只有就是for this time onlyfor this time only這一次而已特別條例的部分的話我們也要看看今年的實際需求是什麼 |
transcript.whisperx[341].start |
10156.894 |
transcript.whisperx[341].end |
10171.997 |
transcript.whisperx[341].text |
所以特別條例沒那麼排斥最少這樣是不是可以討論吧可以討論啊可以討論啊賴司法的案子不能討論啊國民黨的案子可以討論啊就這個意思是不是就這個意思可能不是委員長講的啦因為我們以前有發過發過的時機的時候你看賴司法很沒喔這個差別大一點喔比較怕互攻擊不怕賴司法喔 |
transcript.whisperx[342].start |
10188.503 |
transcript.whisperx[342].end |
10203.816 |
transcript.whisperx[342].text |
應該沒有委員講這個意思組織長等一下來講組織長跟我討論是說我的條文後面加一個但書就可以了所以加一個說遇上重大的天然災害除外如果我的條文這樣這樣算嗎 |
transcript.whisperx[343].start |
10206.372 |
transcript.whisperx[343].end |
10234.294 |
transcript.whisperx[343].text |
這個待會讓主席長來回應因為我要大家聽得懂的啦我聽因為我在這裡是主席間translator我用白話文講的大家聽懂的所以結論就是行政院反對賴思寶等人的提案包括王宏偉的提案說把普發現金法制化你們反對但是對於黨團提出來的 |
transcript.whisperx[344].start |
10235.735 |
transcript.whisperx[344].end |
10246.828 |
transcript.whisperx[344].text |
今年 今年的特別 等於是特別要發一萬塊這個事情有討論空間賴思寶的提案沒有討論空間 就是這樣 是不是 |
transcript.whisperx[345].start |
10248.376 |
transcript.whisperx[345].end |
10274.788 |
transcript.whisperx[345].text |
我這樣講你同意嗎我們沒有這樣的意思你剛剛講的就是這個意思啊我聽過這個意思啊不然你贊成我的就加一個倒數就可以了說償過多少可以補發現金但是經貨都你們訂了全力都給你們了但是遇上什麼情況就不可以比如說今天突然有一個大的天然災害就要殺你了 |
transcript.whisperx[346].start |
10276.608 |
transcript.whisperx[346].end |
10290.054 |
transcript.whisperx[346].text |
這個我可以接受啊這個我可以接受你把我的你把我的提案把它做適度修正這個我可以接受但是呢你把我整個案子的精神都完全的不接受這個我不能接受 |
transcript.whisperx[347].start |
10290.934 |
transcript.whisperx[347].end |
10317.05 |
transcript.whisperx[347].text |
好不好請問我們請主席長好不好針對剛才那個是不是我的條文加個但書 這樣你們可以接受加個但書就全力來戰你們了第一個我的條文是超過多少就普發現金普發多少也是行政部門決定然後噴到重大的災害噴到天然災害也可以不要發也你們決定我可以接受這樣子來 主席長請問一下 |
transcript.whisperx[348].start |
10318.71 |
transcript.whisperx[348].end |
10344.48 |
transcript.whisperx[348].text |
主席 各位委員 女士先生今天要貴席貴委員會來參加第十一屆第三會及第一次公聽會針對稅收超增還稅於民公聽會提出書面報告請檢要說明如下第一個 稅收實增數超過預算數額並不代表當年度它的一個財政有益有剩餘 |
transcript.whisperx[349].start |
10345.1 |
transcript.whisperx[349].end |
10358.986 |
transcript.whisperx[349].text |
所以他必須要先彌平差短還有扣除法定的一個債務的一個還本才是政府可用的財源那以112年度為例那總決算裡面所以說時增數超過預算數2934億元連同其他稅率稅出並同考量稅出剩餘是2790 |
transcript.whisperx[350].start |
10367.749 |
transcript.whisperx[350].end |
10387.267 |
transcript.whisperx[350].text |
但是經過扣除債務反本有1260億元產生收支剩餘1530億元所以112年度總預算稅率稅出雖有剩餘但是它特別預算還是有收支的一個差距所以仍然還是必須要舉借債務來支應 |
transcript.whisperx[351].start |
10389.649 |
transcript.whisperx[351].end |
10396.519 |
transcript.whisperx[351].text |
所以第二個依照財政部初步的估算113年度全國稅收是3,7619億比預算數增加5,283億元包括中央補助增加3,757億元 |
transcript.whisperx[352].start |
10406.111 |
transcript.whisperx[352].end |
10429.021 |
transcript.whisperx[352].text |
地方政府增加802億元博住中央特種基金724億元所以中央稅客收入是增加3757億元如果連同其他稅入稅出扣除還本以後產生的收支剩餘內必須要等到7月份審計部審定以後這個預算程序那邊預算才可以運用 |
transcript.whisperx[353].start |
10429.901 |
transcript.whisperx[353].end |
10459.081 |
transcript.whisperx[353].text |
所以第三個我們也查了中央政府計13個一個會計年度的決算結果100年到112年度其中約半數年度有收支剩餘平均約1000億主要是經濟動能持續成長所以收支剩餘超過預期那其餘6個年度就沒有收支的剩餘可能所以說實證數受到經濟景氣循環的影響它具有不穩定性並不是每一年都有剩餘 |
transcript.whisperx[354].start |
10460.021 |
transcript.whisperx[354].end |
10478.588 |
transcript.whisperx[354].text |
都有剩餘所以收支剩餘應該要優先於用以償債或留供因應未來重大正式支出不一樣將現金納入預算法作為常態性辦理的項目第四個唐家稅客收入時增數超過預算數的額度納入預算法常態化來規範 |
transcript.whisperx[355].start |
10480.989 |
transcript.whisperx[355].end |
10505.979 |
transcript.whisperx[355].text |
限定用途將無法保持彈性以外在的一個環境來和國家的一個重點施政項目一部分立委有提案說法定稅務收入時增大預算時要優先減少特別預算和總政府總預算債務的舉借擴大照顧經濟或社會弱勢依住勞工保險工人員退休補蓄等等那 |
transcript.whisperx[356].start |
10506.959 |
transcript.whisperx[356].end |
10521.725 |
transcript.whisperx[356].text |
這個部分現行由各部會納入公債法或重點施政內辦理在這個行政院規劃年度預算仍需經過社經情勢變化和國家當前施政重點各部會所提的相關計畫然後 |
transcript.whisperx[357].start |
10523.246 |
transcript.whisperx[357].end |
10539.058 |
transcript.whisperx[357].text |
按計劃的優先順序託為納變所以預算法限定減少債務和挹注各項社會保險基金少數用途恐無法保持彈性那第二個呢又因為浮華現金它有它一定的政策目的 |
transcript.whisperx[358].start |
10540.039 |
transcript.whisperx[358].end |
10558.4 |
transcript.whisperx[358].text |
適用特定的事項還有時間所以以特別條例來規範它以過往為例辦理全民共享經濟成果普華現金所需要的經費是由行政院特別擬具議後強化經濟和社會韌性全民共享經濟成果特別條例 |
transcript.whisperx[359].start |
10559.06 |
transcript.whisperx[359].end |
10585.708 |
transcript.whisperx[359].text |
送請立法院審議通過後 具以編制特別預算三 基於稅收實證數超過預算數的額度 談預算法明定限制用於普華現金或其他項目談發生重大災變或疫情相關額度將無法優先因應災害或疫情以上報告 敬請各位委員 女士先生指教敬請 祝大家健康快樂 萬事如意 謝謝這個主席老師 |
transcript.whisperx[360].start |
10587.088 |
transcript.whisperx[360].end |
10606.732 |
transcript.whisperx[360].text |
稍等一下,祝大家快樂啦我請教一下兩百萬人,因為剛剛講很多很多弱等我們不見得聽很清楚啦我是替我們後面的那這麼多媒體這麼辛苦做一天替他們問啦特別條例是不是,你不會反對特別條例發一萬塊的特別條例是不是不會反對,不是這樣 |
transcript.whisperx[361].start |
10614.502 |
transcript.whisperx[361].end |
10638.311 |
transcript.whisperx[361].text |
不是 這不是我反對 這是要看你針對 行政院針對這個政策來做一個決定你以前那個發六千塊就加一個疫後經濟你這裡可以加一個溫暖台灣啊什麼要加一個帽子也是一樣可以發啊但是當初是有特定的一個條件現在也可以有特定的條件啊現在就在那邊弄 |
transcript.whisperx[362].start |
10640.177 |
transcript.whisperx[362].end |
10653.555 |
transcript.whisperx[362].text |
好 這個是第一個 所以特別提醒第二個就是 你在我的辦公室講的那個不算的是不是就是 我要把它法制化 然後加一個但書後面說 這個如果有重大障礙除外 這個 |
transcript.whisperx[363].start |
10656.038 |
transcript.whisperx[363].end |
10683.033 |
transcript.whisperx[363].text |
不是不算啦 而是說我們需要整個通盤的一個考量然後我們也必須要跟行政院來整個做報備這不是我自己單獨能夠決定第三個問題 不過因為你們今天 等一下財政部大概也一樣你們今天這個主計總署跟財政部跟卓榮泰院長在院會備詢的時候 調子是不一樣的 |
transcript.whisperx[364].start |
10684.4 |
transcript.whisperx[364].end |
10704.933 |
transcript.whisperx[364].text |
我們感覺是你們唱黑白臉的這個轉動臺在這邊唱了一副大家很有希望很有盼望結果你們都一副把我們偷好像沒有希望來最後一個問題喔如果台北條例 鎮長情況會通過啦因為我們人多嘛 一定會通過我們如果通過以後在你們真的發 要多久時間 |
transcript.whisperx[365].start |
10708.184 |
transcript.whisperx[365].end |
10729.604 |
transcript.whisperx[365].text |
這個部分以往 以往這樣子條例通過到發錢多久時間差不多至少要三個月以上三個月喔 各位就可以想一下我們原來估七月 現在可能七月沒戶期啦大概五月 如果五月通過 plus 三個月八月 八月 九月啦 差不多這個樣子啦是不是 好 謝謝我們就請財政部來 律師長是 |
transcript.whisperx[366].start |
10742.264 |
transcript.whisperx[366].end |
10760.14 |
transcript.whisperx[366].text |
好主席還有各位委員各位女士先生大家午安那今天呢貴賓會是召開稅收超徵還稅與民的公聽會那本部呢誠要列席我們就那個討論提綱的部分來說明如下第一個就是有關這個稅客收入預算編列的部分 |
transcript.whisperx[367].start |
10760.94 |
transcript.whisperx[367].end |
10788.494 |
transcript.whisperx[367].text |
其實財政部其實已經核實編列113年度的稅客收入的預算因為我們在籌編113年度稅收預算書的時候我們已經參考了我們本部的稅收估測專案小組專家以及學者的意見綜合考量國內外經濟的情勢以及經濟的成長率依照各個稅務的特性來責定推估的基礎以及關鍵的因子還有就是這些關鍵因子的預測值 |
transcript.whisperx[368].start |
10789.634 |
transcript.whisperx[368].end |
10813.652 |
transcript.whisperx[368].text |
并且我们也参考了近年时针的情形还有税制调整后续影响等等的因素来核实推估编列但是大家都知道预算编列到实际执行实际上存有一年多的时间落差那又因为我国是一个海岛型的经济贸易的依存度高而且我们以高科技产业为主经济发展高度仰赖国际的市场 |
transcript.whisperx[369].start |
10814.292 |
transcript.whisperx[369].end |
10834.477 |
transcript.whisperx[369].text |
所以期間如果預有國內外重大的政治、經濟或者是其他的變數因為預算編列當時所使用的這些推估的基礎或者是關鍵因子跟這個預測值並沒有涵蓋前開我們所說的這些重大的變數所以時增數跟預算數難免會發生一些差異 |
transcript.whisperx[370].start |
10838.859 |
transcript.whisperx[370].end |
10861.216 |
transcript.whisperx[370].text |
113年度時增數高於預算數當然主要是來自於所得稅所得稅的稅收佔了整體稅收大概五成左右而且因為所得稅更是落後申報所以跟我們編列在概算的時候預算的時候時間的差距更大也因為這樣的關係更容易受到整個關鍵因子精準度的影響 |
transcript.whisperx[371].start |
10862.077 |
transcript.whisperx[371].end |
10883.147 |
transcript.whisperx[371].text |
那近年來我們全球供應鏈調整技術創新還有綠色經濟以及國際政治環境發展變動快速所以大幅影響了企業的營收以及獲利的情形當然也因為這樣所以進而影響了個人的所得消費還有財富跟我國整體稅收是增速增起的狀況那我們也發現這個問題所以我們為了經濟我們稅收的估測呢我們在114年度 |
transcript.whisperx[372].start |
10888.89 |
transcript.whisperx[372].end |
10912.385 |
transcript.whisperx[372].text |
中央政府的稅客收入預算數除了參考我們這個稅收估測專案小組的專家以及學者的意見之外我們更為以外研究建立了稅收估測的模型同時我們也建立了內部營業稅的智慧估測模型希望能夠持續滾動檢討估計的方式經過綜合考量各項因素在114年度的時候 |
transcript.whisperx[373].start |
10913.246 |
transcript.whisperx[373].end |
10933.513 |
transcript.whisperx[373].text |
我們就核實推估編列了兩兆七千八百四十五億元的稅收比一百一十三年度的預算數增加了四千七百零五億元而且較一百一十三年度的實徵數也增加了九百四十七億元當然有關稅收的估測為了能夠更為精準我們也將持續的來諮詢這些專家小組的意見並且我們已經決定 |
transcript.whisperx[374].start |
10938.115 |
transcript.whisperx[374].end |
10957.171 |
transcript.whisperx[374].text |
我們建立的這個委外研究的稅收估測模型以後我們每一年都會委託這些專家學者透過這樣一個稅收估測模型來將我們的稅收進行估測那希望能夠更為精準我們也透過多元估測的方式提升我們未來年度稅收估測的精準度 |
transcript.whisperx[375].start |
10957.811 |
transcript.whisperx[375].end |
10974.223 |
transcript.whisperx[375].text |
那關於這個委員研擬修正這個預算法第81條之一的部分我想這邊我們說明一下第一個就是付稅的時薪數大於預算數並不是全部劃歸中央政府委員提案的部分是就稅客收入全年時薪金額達到當年度的預算編列數120% |
transcript.whisperx[376].start |
10978.106 |
transcript.whisperx[376].end |
11003.101 |
transcript.whisperx[376].text |
或者是法定的付稅收入實徵數大於預算3000億元的時候就要辦理普發現金但是我們知道我們付稅實徵數大於預算數的部分是全國的付稅收入的合計數那全國的數字要扣除依法撥入中央特種基金以及依照財政收支劃分法撥付地方政府以後才是我們中央政府可以運用的部分 |
transcript.whisperx[377].start |
11003.681 |
transcript.whisperx[377].end |
11013.686 |
transcript.whisperx[377].text |
而且說客收入優於預期其實不是等同於財政剩餘因為大家都知道預算從編制、審議到執行完成存在了時間的落差剛才也說過加以國內外經濟情勢變化大所以會造成估測值跟實際值有一些落差的情形發生 |
transcript.whisperx[378].start |
11025.931 |
transcript.whisperx[378].end |
11049.31 |
transcript.whisperx[378].text |
但是我們要在這邊澄清的是稅客收入又與預期都是依法徵收並不是像外界所說的超收之名認為說這個是超過我們國民所應該納稅的金額所以這個部分也需要在這邊做一些說明基本上所有的稅收都是依法徵收 |
transcript.whisperx[379].start |
11049.97 |
transcript.whisperx[379].end |
11064.755 |
transcript.whisperx[379].text |
另外我國的預算制度是以總預算搭配特別預算的方式所以當年度的稅科收入執行優於預期但是總預算並計特別預算後如果整體預算的執行也不一定會有剩餘 |
transcript.whisperx[380].start |
11065.715 |
transcript.whisperx[380].end |
11071.379 |
transcript.whisperx[380].text |
如果只是以受稅客收入的全年時增金額達到當年度預算編列數120%或者大於3000億元的時候作為普發現金的發放條件但是可能會發生一個情況就是沒有考量到總預算的稅務執行因為我們的稅務不是只有稅客收入還包含了其他的 |
transcript.whisperx[381].start |
11089.813 |
transcript.whisperx[381].end |
11102.971 |
transcript.whisperx[381].text |
幾項的包含營業營餘還有規費這些相關的收入還有就是我們整體預算收支的情形如果說我們的稅務並沒有大於預算數的話可能會有取債需要取債來核發現金的疑慮 |
transcript.whisperx[382].start |
11106.455 |
transcript.whisperx[382].end |
11118.001 |
transcript.whisperx[382].text |
另外我們還是強調一下稅客收入優於預期其實依預算法第59條已經有解雇還有不得進行坐底或者是挪移訂用的規範而且公共債務法第12條第二項也訂有當我們會試稅務執行的狀況在當年度預算 |
transcript.whisperx[383].start |
11127.245 |
transcript.whisperx[383].end |
11137.634 |
transcript.whisperx[383].text |
原來編列的債務的償還數之外呢增加這個還本數額的規定以113年度為例中央政府總預算稅客收入時增數大於預算數是3,757億元本部已經優先用於減少舉債 |
transcript.whisperx[384].start |
11143.379 |
transcript.whisperx[384].end |
11145.341 |
transcript.whisperx[384].text |
減少舉債金額是1571億元完全沒有舉債第二個我們並依照公共債務法的規定來執行債務還本預算數以及增加還本那這個部分的金額達到1358億元 |
transcript.whisperx[385].start |
11158.416 |
transcript.whisperx[385].end |
11166.683 |
transcript.whisperx[385].text |
所以其實稅務稅住剩餘扣除債務還本後的收支剩餘部分也將累計到這個稅計剩餘這個稅計剩餘將來會供後續年度施政融資裁員以相對減少債務的舉借減緩政府的債務累積而且同時我們提升財政的韌性能夠因應未來的氣候變遷或者是地緣政治的風險等等不確定的因素這些相關的挑戰 |
transcript.whisperx[386].start |
11186.259 |
transcript.whisperx[386].end |
11211.54 |
transcript.whisperx[386].text |
為了兼顧財政穩健以及國家發展所以政府相關施政的步驟仍然應該考量政策的優先順序能夠妥善運用我們財政的資源讓我們的施政效益為人民所共享至於稅計剩餘的運用我們也建議應該要依照預算程序來納編預算然後受到立法院的監督以上說明敬請執照 |
transcript.whisperx[387].start |
11214.514 |
transcript.whisperx[387].end |
11218.177 |
transcript.whisperx[387].text |
謝謝所以簡單來講你們是反對啦齁那個理事長你們是反對啦反對黃帥英明 |
transcript.whisperx[388].start |
11229.909 |
transcript.whisperx[388].end |
11248.225 |
transcript.whisperx[388].text |
反正贏這件事情不是財政部可以做的決定我覺得這是看行政院的事情才好那你跟主席講得差不多了我要這邊講 剛才委員港的預算法的計算方式可能要考慮一下因為您是用稅客收入做為預算方式那可以再討論 那個細節真的是細節這個部分我們有點 到最後繼續討論 |
transcript.whisperx[389].start |
11253.308 |
transcript.whisperx[389].end |
11278.177 |
transcript.whisperx[389].text |
這個結束主席做結論之前我今天也是委員我是主席也是委員我要發表一下我的看法第一個這個歷史總是不斷重演各位想一想今天這個光景跟蔡英文總統執政的時候那時候普發六千塊 義貿經濟你不覺得你把它倒帶一下幾乎完全一樣 |
transcript.whisperx[390].start |
11279.69 |
transcript.whisperx[390].end |
11294.862 |
transcript.whisperx[390].text |
前面的時候都反對反對反對後來就要了為什麼民意嘛民意要啊民意要啊而且那時候國民黨那時候我們在海黨最早提出來的我們那時候還是絕對少數 |
transcript.whisperx[391].start |
11297.128 |
transcript.whisperx[391].end |
11318.168 |
transcript.whisperx[391].text |
你們可以完全不理可是最後你們還是妥協啦為什麼民意要這是第一點我感覺歷史不斷重演所以各位雖然今天這個包括行政院的副理事長包括主計長包括財政部的次長好像都踩得很硬各位 |
transcript.whisperx[392].start |
11320.038 |
transcript.whisperx[392].end |
11347.13 |
transcript.whisperx[392].text |
對立法院有點盼望因為現在民進黨也不再是在立法院也不再是多數了我覺得還是有相當的機會因為機會很大這是來撲發陷阱第二點我們從剛才幾位長官所提到的他是排斥把它法治化就排斥我的案子但是沒那麼沒不排斥 |
transcript.whisperx[393].start |
11348.806 |
transcript.whisperx[393].end |
11377.893 |
transcript.whisperx[393].text |
意識性的特別調理不排斥我如果做結論如果你們發現跟你想的不一樣等一下你們可以講第三個幾位長官都不斷強調還債優先還債優先可是人家已經統計了剛才幾個教授都統計了過去十年來還債還是跟你法定一樣啊五點平均五點多而已啊沒有多還多少啊還是五點多啊 |
transcript.whisperx[394].start |
11379.735 |
transcript.whisperx[394].end |
11401.241 |
transcript.whisperx[394].text |
5.4左右啊 平均是5.4啊所以你說要還債優先還債優先那就糊弄大家啊沒有比較多啊我剛才已經講了我們在今年的時候沒有決算好了在去年113年度之前的決算110年到112年決算我們超收了一兆3 |
transcript.whisperx[395].start |
11403.348 |
transcript.whisperx[395].end |
11418.779 |
transcript.whisperx[395].text |
結果還債多還多少 多還一千兩百多億啊多還一千兩百多億啊沒有啊 你們沒有拿去還債啊 沒有啊沒有這個事情呢 數字會說話啊更何況全世界還債移民 比如說新加坡 比如說香港比如說美國現在做的哪一個國家沒有舉債 |
transcript.whisperx[396].start |
11430.97 |
transcript.whisperx[396].end |
11445.929 |
transcript.whisperx[396].text |
不是說一定要舉債變成零才還稅一名啊新加坡也是有舉債 它也還稅一名啊就你當年都課了多我就還一點嘛更何況今年 今年跟去年113跟112 |
transcript.whisperx[397].start |
11449.557 |
transcript.whisperx[397].end |
11465.713 |
transcript.whisperx[397].text |
今年是114啦 但是因為要決算113的113跟114我們的裡面其實有一部分中額所得稅平均一年都是超徵1700億啦 |
transcript.whisperx[398].start |
11468.84 |
transcript.whisperx[398].end |
11478.983 |
transcript.whisperx[398].text |
這我所認識就是在座各位每一個都是tax payer 納稅人多腳的啦平均兩年來連續兩年都是1700億之多在這樣基礎上按照你們幾位長官講的就扣掉地方政府的800多億扣掉法定支出700多億你還有3700多億啊那個2300億給我們這個給老百姓 |
transcript.whisperx[399].start |
11497.971 |
transcript.whisperx[399].end |
11526.949 |
transcript.whisperx[399].text |
還一點給老百姓中所所以還一點給大家嘛這個老實講也不為過啦最後一點提這個案子也有助於以後強等於間接的制約財政部每一次別人稅入的時候都保守得要命我們給你加一千億但是少一個零最後少一個零過去八年來我們都在野黨每一次我都說要加一千億最後都是因為我們人少啊 |
transcript.whisperx[400].start |
11528.51 |
transcript.whisperx[400].end |
11547.266 |
transcript.whisperx[400].text |
或者要表決一毛錢不能加只好 隨他們的意思 加一百我提案加一千 最後只加一百結果算出來的 增加了幾千億啊這代表這個財政部每一次的估算不準啊每一次估算不準 又挑竿把他低估就這樣了 |
transcript.whisperx[401].start |
11548.741 |
transcript.whisperx[401].end |
11560.975 |
transcript.whisperx[401].text |
這才是令人生氣的地方好不好這是我個人對今天的工地會個人的意見表達各位長官有沒有要補充的 |
transcript.whisperx[402].start |
11562.065 |
transcript.whisperx[402].end |
11587.315 |
transcript.whisperx[402].text |
沒有了沒有了就是 站著我講的就是比較排斥法治化不排斥最少可以討論嘛一次性的特別條例但是我跟各位報告我們這個位置一定積極來推好不好好 主席結論根據立法院職權行使法58條規定 |
transcript.whisperx[403].start |
11589.854 |
transcript.whisperx[403].end |
11618.293 |
transcript.whisperx[403].text |
我們為英語公聽會結束後10天內依主席所提供的正反意見提出公聽會報告送交本院全體委員及主席者所以我們會把今天與會者所有寶貴的發言意見作為未來修法之參考並會編成冊送交本院全體委員及今日除列席 |
transcript.whisperx[404].start |
11619.654 |
transcript.whisperx[404].end |
11641.565 |
transcript.whisperx[404].text |
提供建議的貴賓餐月另外一點我在這裡也公開宣布啊拜託我們的組密 財委的組密啊跟我們財委會委員 書會委員都造一個對口把以後所有財政委員會裡面的書面資料的電子檔 |
transcript.whisperx[405].start |
11643.269 |
transcript.whisperx[405].end |
11669.395 |
transcript.whisperx[405].text |
給到 就是透過那一位對口讓每個委員拿到電子檔好不好 這個委員需要電子檔比較容易成立 這個書面的資料後後的一定看完以後忘記了 現在回頭看 就比較麻煩這是 作為一個結論第二個 如果各位貴賓還有其他的有其他的意見或新聞資料也請盡速提供給我們江濱里本次的公聽會報告 |
transcript.whisperx[406].start |
11671.533 |
transcript.whisperx[406].end |
11687.55 |
transcript.whisperx[406].text |
委員黃珊珊所提的說明資料列入公平會報告最後再次感謝各位學術專家及政府機關代表各位長官的出席謝謝大家暫時宣布散會謝謝 |