iVOD / 165037

Field Value
IVOD_ID 165037
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165037
日期 2025-11-05
會議資料.會議代碼 委員會-11-4-19-9
會議資料.會議代碼:str 第11屆第4會期經濟委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-05T10:32:08+08:00
結束時間 2025-11-05T10:42:58+08:00
影片長度 00:10:50
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0bb7d6ea348ff1d226a2c7b924a38f366e3cb72f09a57cc5462d9096eb7c9b679958b8a00feea6e15ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 10:32:08 - 10:42:58
會議時間 2025-11-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第9次全體委員會議(事由:一、審查: (一)本院委員楊瓊瓔等21人擬具「公司法第二百三十五條之一條文修正草案」案。 (二)本院委員許宇甄等17人擬具「公司法第三百八十七條條文修正草案」案。 (三)本院委員吳秉叡等21人擬具「公司法第二百二十二條條文修正草案」案。 (四)本院委員鄭正鈐等16人擬具「公司法第一百六十條條文修正草案」案。 (五)本院委員楊瓊瓔等17人擬具「公司法第三百八十七條條文修正草案」案。 (六)本院委員謝衣鳯等16人擬具「公司法第三百八十七條條文修正草案」案。 (七)本院委員黃建賓等17人擬具「公司法第二百三十五條之一條文修正草案」案。 (八)本院委員林岱樺等16人擬具「公司法第三百八十七條條文修正草案」案。 (九)本院委員張嘉郡等18人擬具「公司法第三百八十七條條文修正草案」案。 (十)本院委員何欣純等16人擬具「公司法第三百八十七條條文修正草案」案。 (十一)本院委員郭國文等16人擬具「公司法第一百六十五條條文修正草案」案。 (十二)本院委員牛煦庭等17人擬具「公司法第三百八十七條之一及第四百四十九條條文修正草案」案。 二、審查: (一) 本院委員牛煦庭等16人擬具「商業登記法第九條之一及第三十七條條文修正草案」案。 三、審查: (一)本院委員賴瑞隆等17人擬具「能源管理法部分條文修正草案」案。 (二)本院委員楊瓊瓔等21人擬具「能源管理法第七條條文修正草案」案。 (三)本院委員蔡其昌等19人擬具「能源管理法部分條文修正草案」案。 (四)本院委員鍾佳濱等20人擬具「能源管理法部分條文修正草案」案。 (五)本院委員邱議瑩等17人擬具「能源管理法增訂第十九條之二及第二十七條之一條文草案」案。 以上全案於11月5日(星期三)進行合併詢答,11月6日(星期四)處理。【11月5日及6日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 2.46096875
transcript.pyannote[0].end 4.92471875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 5.88659375
transcript.pyannote[1].end 7.00034375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 13.98659375
transcript.pyannote[2].end 15.16784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.29034375
transcript.pyannote[3].end 15.08346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 15.26909375
transcript.pyannote[4].end 20.11221875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 20.31471875
transcript.pyannote[5].end 23.31846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 24.16221875
transcript.pyannote[6].end 25.12409375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 26.23784375
transcript.pyannote[7].end 27.16596875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 27.46971875
transcript.pyannote[8].end 29.02221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 29.25846875
transcript.pyannote[9].end 30.42284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 31.68846875
transcript.pyannote[10].end 33.57846875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 33.96659375
transcript.pyannote[11].end 35.50221875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 35.90721875
transcript.pyannote[12].end 36.24471875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 36.56534375
transcript.pyannote[13].end 39.56909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 40.12596875
transcript.pyannote[14].end 41.44221875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 41.44221875
transcript.pyannote[15].end 48.00659375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 48.17534375
transcript.pyannote[16].end 49.86284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 50.45346875
transcript.pyannote[17].end 50.87534375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 51.34784375
transcript.pyannote[18].end 52.29284375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 51.55034375
transcript.pyannote[19].end 55.07721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 55.54971875
transcript.pyannote[20].end 56.17409375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 56.59596875
transcript.pyannote[21].end 58.89096875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 59.09346875
transcript.pyannote[22].end 60.84846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 61.00034375
transcript.pyannote[23].end 63.95346875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 64.30784375
transcript.pyannote[24].end 74.04471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 68.72909375
transcript.pyannote[25].end 69.25221875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 72.49221875
transcript.pyannote[26].end 73.31909375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 73.60596875
transcript.pyannote[27].end 75.83346875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 75.09096875
transcript.pyannote[28].end 82.09409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 79.47846875
transcript.pyannote[29].end 79.96784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 81.11534375
transcript.pyannote[30].end 83.19096875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 83.19096875
transcript.pyannote[31].end 84.23721875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 84.22034375
transcript.pyannote[32].end 87.56159375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 85.41846875
transcript.pyannote[33].end 87.96659375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 87.76409375
transcript.pyannote[34].end 89.53596875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 89.68784375
transcript.pyannote[35].end 89.83971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 90.05909375
transcript.pyannote[36].end 92.16846875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 92.43846875
transcript.pyannote[37].end 92.97846875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 93.45096875
transcript.pyannote[38].end 94.46346875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 94.95284375
transcript.pyannote[39].end 101.23034375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 101.77034375
transcript.pyannote[40].end 103.32284375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 103.72784375
transcript.pyannote[41].end 115.52346875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 115.87784375
transcript.pyannote[42].end 121.19346875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 121.51409375
transcript.pyannote[43].end 123.10034375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 123.75846875
transcript.pyannote[44].end 139.19909375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 139.36784375
transcript.pyannote[45].end 139.45221875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 139.46909375
transcript.pyannote[46].end 139.51971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 139.75596875
transcript.pyannote[47].end 150.23534375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 150.60659375
transcript.pyannote[48].end 152.10846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 152.22659375
transcript.pyannote[49].end 159.39846875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 159.60096875
transcript.pyannote[50].end 166.26659375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 166.38471875
transcript.pyannote[51].end 167.26221875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 167.53221875
transcript.pyannote[52].end 168.62909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 168.79784375
transcript.pyannote[53].end 169.33784375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 170.02971875
transcript.pyannote[54].end 178.66971875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 178.66971875
transcript.pyannote[55].end 178.72034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 179.00721875
transcript.pyannote[56].end 181.36971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 181.69034375
transcript.pyannote[57].end 182.17971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 182.61846875
transcript.pyannote[58].end 195.02159375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 184.74471875
transcript.pyannote[59].end 185.09909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 186.16221875
transcript.pyannote[60].end 186.41534375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 190.83659375
transcript.pyannote[61].end 191.34284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 195.12284375
transcript.pyannote[62].end 215.71034375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 211.10346875
transcript.pyannote[63].end 211.35659375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 214.10721875
transcript.pyannote[64].end 221.12721875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 221.12721875
transcript.pyannote[65].end 227.50596875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 224.13096875
transcript.pyannote[66].end 224.48534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 227.65784375
transcript.pyannote[67].end 235.57221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 231.47159375
transcript.pyannote[68].end 231.82596875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 231.92721875
transcript.pyannote[69].end 231.96096875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 235.62284375
transcript.pyannote[70].end 235.99409375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 236.29784375
transcript.pyannote[71].end 238.50846875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 239.45346875
transcript.pyannote[72].end 240.21284375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 240.55034375
transcript.pyannote[73].end 243.63846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 243.84096875
transcript.pyannote[74].end 244.36409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 244.98846875
transcript.pyannote[75].end 248.97096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 247.72221875
transcript.pyannote[76].end 247.97534375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 248.51534375
transcript.pyannote[77].end 265.87971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 266.41971875
transcript.pyannote[78].end 274.11471875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 271.83659375
transcript.pyannote[79].end 272.41034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 274.57034375
transcript.pyannote[80].end 284.22284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 278.36721875
transcript.pyannote[81].end 278.72159375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 284.49284375
transcript.pyannote[82].end 284.77971875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 285.31971875
transcript.pyannote[83].end 287.49659375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 288.30659375
transcript.pyannote[84].end 288.32346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 288.32346875
transcript.pyannote[85].end 288.91409375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 288.91409375
transcript.pyannote[86].end 288.94784375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 288.94784375
transcript.pyannote[87].end 288.96471875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 288.96471875
transcript.pyannote[88].end 289.03221875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 289.03221875
transcript.pyannote[89].end 289.84221875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 289.84221875
transcript.pyannote[90].end 290.02784375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 290.02784375
transcript.pyannote[91].end 290.23034375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 290.23034375
transcript.pyannote[92].end 292.45784375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 292.45784375
transcript.pyannote[93].end 292.49159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 292.96409375
transcript.pyannote[94].end 292.99784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 292.99784375
transcript.pyannote[95].end 293.01471875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 293.01471875
transcript.pyannote[96].end 293.03159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 293.03159375
transcript.pyannote[97].end 293.25096875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 293.72346875
transcript.pyannote[98].end 298.85346875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 294.65159375
transcript.pyannote[99].end 296.15346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 296.98034375
transcript.pyannote[100].end 297.79034375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 298.85346875
transcript.pyannote[101].end 300.03471875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 300.03471875
transcript.pyannote[102].end 306.58221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 307.44284375
transcript.pyannote[103].end 310.63221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 310.63221875
transcript.pyannote[104].end 311.03721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 311.32409375
transcript.pyannote[105].end 312.57284375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 314.14221875
transcript.pyannote[106].end 316.36971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 316.69034375
transcript.pyannote[107].end 317.63534375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 318.04034375
transcript.pyannote[108].end 321.92159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 322.10721875
transcript.pyannote[109].end 322.51221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 323.15346875
transcript.pyannote[110].end 324.33471875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 325.49909375
transcript.pyannote[111].end 328.01346875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 328.16534375
transcript.pyannote[112].end 333.59909375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 335.67471875
transcript.pyannote[113].end 338.27346875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 338.96534375
transcript.pyannote[114].end 342.62721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 342.96471875
transcript.pyannote[115].end 343.89284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 344.38221875
transcript.pyannote[116].end 347.04846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 347.84159375
transcript.pyannote[117].end 348.19596875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 348.51659375
transcript.pyannote[118].end 353.68034375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 354.08534375
transcript.pyannote[119].end 356.70096875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 356.78534375
transcript.pyannote[120].end 358.28721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 358.18596875
transcript.pyannote[121].end 359.36721875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 361.07159375
transcript.pyannote[122].end 375.88784375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 362.50596875
transcript.pyannote[123].end 363.78846875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 364.04159375
transcript.pyannote[124].end 365.59409375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 375.11159375
transcript.pyannote[125].end 395.74971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 395.93534375
transcript.pyannote[126].end 398.26409375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 398.29784375
transcript.pyannote[127].end 405.43596875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 404.23784375
transcript.pyannote[128].end 408.16971875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 408.72659375
transcript.pyannote[129].end 412.33784375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 412.33784375
transcript.pyannote[130].end 412.87784375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 412.57409375
transcript.pyannote[131].end 429.31409375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 427.33971875
transcript.pyannote[132].end 428.08221875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 429.39846875
transcript.pyannote[133].end 431.25471875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 431.38971875
transcript.pyannote[134].end 432.70596875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 433.06034375
transcript.pyannote[135].end 449.81721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 434.27534375
transcript.pyannote[136].end 434.76471875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 449.83409375
transcript.pyannote[137].end 454.15409375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 451.30221875
transcript.pyannote[138].end 451.97721875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 453.64784375
transcript.pyannote[139].end 472.39596875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 457.14096875
transcript.pyannote[140].end 457.30971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 466.40534375
transcript.pyannote[141].end 466.42221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 470.10096875
transcript.pyannote[142].end 473.69534375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 473.07096875
transcript.pyannote[143].end 479.95596875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 479.98971875
transcript.pyannote[144].end 482.31846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 480.07409375
transcript.pyannote[145].end 480.09096875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 480.24284375
transcript.pyannote[146].end 480.46221875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 482.72346875
transcript.pyannote[147].end 487.29659375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 487.93784375
transcript.pyannote[148].end 488.61284375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 488.95034375
transcript.pyannote[149].end 491.16096875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 491.05971875
transcript.pyannote[150].end 491.12721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 491.16096875
transcript.pyannote[151].end 491.41409375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 491.41409375
transcript.pyannote[152].end 491.43096875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 491.54909375
transcript.pyannote[153].end 493.79346875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 493.79346875
transcript.pyannote[154].end 510.36471875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 503.10846875
transcript.pyannote[155].end 504.49221875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 505.67346875
transcript.pyannote[156].end 506.75346875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 509.31846875
transcript.pyannote[157].end 512.76096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 513.23346875
transcript.pyannote[158].end 518.68409375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 515.98409375
transcript.pyannote[159].end 516.27096875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 517.84034375
transcript.pyannote[160].end 534.76596875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 524.55659375
transcript.pyannote[161].end 524.75909375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 534.69846875
transcript.pyannote[162].end 539.18721875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 534.88409375
transcript.pyannote[163].end 535.37346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 539.57534375
transcript.pyannote[164].end 542.54534375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 542.68034375
transcript.pyannote[165].end 543.05159375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 543.11909375
transcript.pyannote[166].end 544.45221875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 544.45221875
transcript.pyannote[167].end 544.75596875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 544.99221875
transcript.pyannote[168].end 546.61221875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 546.83159375
transcript.pyannote[169].end 546.84846875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 546.84846875
transcript.pyannote[170].end 547.18596875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 547.59096875
transcript.pyannote[171].end 574.03409375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 574.55721875
transcript.pyannote[172].end 577.66221875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 578.18534375
transcript.pyannote[173].end 582.21846875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 582.23534375
transcript.pyannote[174].end 582.58971875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 582.85971875
transcript.pyannote[175].end 583.23096875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 583.75409375
transcript.pyannote[176].end 590.03159375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 588.90096875
transcript.pyannote[177].end 589.17096875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 590.53784375
transcript.pyannote[178].end 602.78909375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 602.83971875
transcript.pyannote[179].end 625.65471875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 626.43096875
transcript.pyannote[180].end 636.33659375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 626.51534375
transcript.pyannote[181].end 626.78534375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 636.37034375
transcript.pyannote[182].end 636.38721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 636.40409375
transcript.pyannote[183].end 636.77534375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 636.62346875
transcript.pyannote[184].end 638.42909375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 638.68221875
transcript.pyannote[185].end 639.10409375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 639.42471875
transcript.pyannote[186].end 640.52159375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 642.49596875
transcript.pyannote[187].end 644.03159375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 644.57159375
transcript.pyannote[188].end 647.25471875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 647.72721875
transcript.pyannote[189].end 650.17409375
transcript.whisperx[0].start 2.506
transcript.whisperx[0].end 30.212
transcript.whisperx[0].text 好 谢谢主席 我想要请龚部长我们再请龚部长龚部长早安我想要请问你你知道美国最高法院现在在审理川普政府他对等关税的合法性什么时候会出来你们有没有评估好像大家评估说一月吧 是不是
transcript.whisperx[1].start 31.978
transcript.whisperx[1].end 54.806
transcript.whisperx[1].text 這個就要看美國最高法院的審理的進度你們都沒有評估嗎行政院或者你們經濟部相關的都沒評估嗎我們現在做好就是對等談判還是做好最好的準備因為我們不曉得談判可能的結果但是我們也理解就是說談判會在這個判決前還是判決後出來
transcript.whisperx[2].start 55.626
transcript.whisperx[2].end 82.977
transcript.whisperx[2].text 你认为这个你们现在已经在谈了吗是不是对还是持续谈那我们也有发现就是美国会把对等关税很多的项目基本上慢慢移到232去所以他当然也有一些他们的因应做法我说美国行政部会把他移到232有些现在在讨论当中但是232因为还要做产业调查时程上会有一点232是不会受影响的吗
transcript.whisperx[3].start 83.737
transcript.whisperx[3].end 106.244
transcript.whisperx[3].text 不会受最高法院审理的影响那贝森特也有说他说他可能会有即便不合法的情况下他有可能会引用其他的有可能是122嘛贸易法的122条嘛
transcript.whisperx[4].start 106.664
transcript.whisperx[4].end 122.879
transcript.whisperx[4].text 那122條他目前就是比較相對上就是對部分的商品徵收15%然後是150天這比目前我們台灣的對等關稅還要有利
transcript.whisperx[5].start 123.82
transcript.whisperx[5].end 142.57
transcript.whisperx[5].text 就是15我們現在是20疊加嘛那他如果這個貿易法的122條的這個150天內徵收最高15%的關稅的話那是比目前的20%加N還要再好那另外他也有可能採取的是關稅法338條
transcript.whisperx[6].start 144.611
transcript.whisperx[6].end 169.166
transcript.whisperx[6].text 那338條他就會最高稅率就會到50%那請問喔我們如果未來面對這個情況但第一個情況是對等關稅會不會在審理之前出來那如果在審理之前出來我們是不是能夠爭取到就是說最有利的所以
transcript.whisperx[7].start 170.106
transcript.whisperx[7].end 175.176
transcript.whisperx[7].text 像你們當初所認為目標的關稅15%是不是就是像貿易法122條這樣子的一個15%的關稅是不是
transcript.whisperx[8].start 179.259
transcript.whisperx[8].end 207.621
transcript.whisperx[8].text 報告委員就是說我們還是至少要比20%要低往下談希望這樣子如果可以到15%的話當然也是我們的期待但是這就是還是中間要談而且不疊加那也希望就是說232的部分我們也可以有比較好的優惠待遇剛剛跟委員報告過因為他們行政部門事實上除了可能會引用其他的法案之外
transcript.whisperx[9].start 208.041
transcript.whisperx[9].end 235.256
transcript.whisperx[9].text 也有可能把很多的项目移到232去所以232我们还是要谈所以为什么我们要求你们担心的应该是所有他们把可能加征关税的部分移到232去对 如果被判违宪的话如果那如果合宪就没有问题所以再怎么样我们还是要跟他们行政部门还是要持续的谈才可以保障我们的可能的权益对
transcript.whisperx[10].start 236.397
transcript.whisperx[10].end 265.597
transcript.whisperx[10].text 所以你也没有说到底会在生理前我们的对等关税就会出来因为美中也谈了嘛对不对对因为这个还是很难去预估啦还是要看美中谈完了那是不是就是说他们也稀土也都暂缓一年了那是不是现在就就是我们台美的部分是不是应该要有一个比较比较明朗然后跟民众也说啊是不是
transcript.whisperx[11].start 266.986
transcript.whisperx[11].end 287.245
transcript.whisperx[11].text 当然我们态度上还是期待如果可以快的话我们是希望尽快因为我们毕竟现在的临时性的对等关税还是20%我们希望如果可以尽早决定的话如果可以往下调的话对我们帮助是比较好的所以你觉得会尽快谈
transcript.whisperx[12].start 288.542
transcript.whisperx[12].end 312.055
transcript.whisperx[12].text 我們期待是希望然後談到15%是不是盡力啦盡力有可能嗎盡力盡力就是按照貿易法的122條對盡力談到15%我們來盡力希望委員給我們支持加油我給你加油川普要不要給你加油我們盡力
transcript.whisperx[13].start 314.63
transcript.whisperx[13].end 337.801
transcript.whisperx[13].text 還有我還要再提到就是美中他們談到揮打的晶片這個問題那看來就是如果我們台灣要以就是AI為發展的這樣子一個半導體的未來的規劃那我們就會勢必要面臨的第一點
transcript.whisperx[14].start 339.059
transcript.whisperx[14].end 359.185
transcript.whisperx[14].text 美國他會不會還是持續的要求我們把我們整個半導體的供應鏈移往美國照美國的看法是這樣他是他國內的需求有一部分希望在美國生產因為他有經濟安全上的一些問題會不會希望加大
transcript.whisperx[15].start 361.315
transcript.whisperx[15].end 387.335
transcript.whisperx[15].text 還沒有看到會不會加大因為它主要還是在滿足它美國需求為主它並沒有額外說要出口到其他地區的部分是希望在美國生產到達沒有這樣的情況因為它已經改變了過去我們是以效率為導向的現在它已經以安全韌性為導向它一直要求我們加大
transcript.whisperx[16].start 388.255
transcript.whisperx[16].end 412.121
transcript.whisperx[16].text 過去在台灣生產對他們來講最有效率可是他們現在因為安全跟韌性的問題一直要求我們加大對美的投資對我們來講的話如果那邊有訂單可以獲益的話當然廠商的佈局我跟你講這是陷阱你一直去但是未來如果沒有一直去啦
transcript.whisperx[17].start 413.542
transcript.whisperx[17].end 431.131
transcript.whisperx[17].text 我就說他要求我們一直去嘛 是不是那未來如果他們又調高美就是調高台灣相關的產品對美的這個關稅因為這個東西掌握在他們手上啊 是不是這個主控權不在我們所以這個也是談判的過程嘛
transcript.whisperx[18].start 431.851
transcript.whisperx[18].end 452.617
transcript.whisperx[18].text 對 我是說如果啦我們一直去的情況下當然不是這一次的談判如果下次或者是未來他們反而就是說提高了台灣蘇美半導體的相關的關稅的時候那我們就完了那時候你可能不是經濟部長啦
transcript.whisperx[19].start 453.737
transcript.whisperx[19].end 469.785
transcript.whisperx[19].text 那台辦總要有一個合理性跟一個依據嘛那你說你為了滿足美國國內的需求有一部分的產能在美國我覺得這個是還算是合理的但是你如果要過多的話而且是沒有假設是沒有效率的生產但是這是不合理啊
transcript.whisperx[20].start 470.465
transcript.whisperx[20].end 487.02
transcript.whisperx[20].text 也會影響到我們的就業人口啊會影響到台灣的就業人口啊台灣的部分倒沒有問題台灣的部分現在時序的半導體一直在增加我們只是現在擔心的就是說土地不足以去支撐那麼多的這些半導體廠或者是
transcript.whisperx[21].start 489.988
transcript.whisperx[21].end 517.239
transcript.whisperx[21].text 相關的資源包括您剛才提到人力的部分是啊因為不管是因為很多我們如果要去美國設廠我們的人力就要就是有一部分勢必要去建廠等等相關的規劃一定是往美國去那相關的我們在台灣如果要發展相關的半導體的時候所以您可以看到台積電的話他是建廠的人過去蓋完廠以後他就回來所以他不會一直留在美國
transcript.whisperx[22].start 517.919
transcript.whisperx[22].end 544.318
transcript.whisperx[22].text 那如果他要求我們加大呢你有辦法嗎有沒有辦法不要讓他要求我們加大啊因為加大到時候美國生產太多台灣要輸美的這些半島有關稅他又未來他如果突然把我們加高關稅咧沒有 他這個就是談判的過程他要我們去投資的話一定這個關稅會有最惠國的待遇我們才會同意啊
transcript.whisperx[23].start 545.26
transcript.whisperx[23].end 573.754
transcript.whisperx[23].text 这是一个谈判过程好还有我觉得我们也必须要考量到大陆市场的AI发展我就说在全球的视角里面美国跟大陆是AI两个一个是高阶一个是低阶的相关的发展那大陆的市场对我们也是相当的有诱因那这样子的情况下我们未来我们的科技业要怎么样分散这些风险
transcript.whisperx[24].start 574.634
transcript.whisperx[24].end 589.014
transcript.whisperx[24].text 但是也是我們台灣政府必須要考量的是 只要不是在這個管制的項目範圍啊那或者是不在實體金單那我們還是跟中國還是有正常的交易啊這沒有問題啊
transcript.whisperx[25].start 590.812
transcript.whisperx[25].end 613.987
transcript.whisperx[25].text 對 我是說我們的 我們還是必須要就是說因為如果未來AI的產業在全球要蓬勃發展 不要泡沫化我相信就是說美國的高階跟就是在大陸的這樣低階的這個AI的相關的發展性都必須要並重那台灣才會在這個位置上面有最大的立即點嗎
transcript.whisperx[26].start 614.807
transcript.whisperx[26].end 638.805
transcript.whisperx[26].text 我們的產業AI的產業發展才會有最大的利基點我認為經濟部必須要就是審慎的去考量這樣子的就是兩者的相關性好不好是 所以我剛才特別提到了如果它不在實體清單也不在管制項目範圍裡面那我們當然是樂觀其成這個本來就正常的貿易在進行當中好 謝謝
transcript.whisperx[27].start 642.557
transcript.whisperx[27].end 648.894
transcript.whisperx[27].text 好 謝謝薛一鋒委員謝謝郭文部長我們現在休息三分鐘 不好意思剛剛也宣布了 不好意思