IVOD_ID |
16490 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Full/1M/16490 |
日期 |
2025-03-03 |
影片種類 |
Full |
開始時間 |
2025-03-03T11:29:59+08:00 |
結束時間 |
2025-03-03T14:19:00+08:00 |
影片長度 |
02:49:01 |
支援功能[0] |
ai-transcript |
video_url |
https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b73ade72829c64edf5b818569cbc04ff680f69c62f9e242383b1540ff2c7b41bb7278a1a0aa37b7e5ea18f28b6918d91.mp4/playlist.m3u8 |
會議時間 |
2025-03-03T12:00:00+08:00 |
會議名稱 |
國會助理研習活動(事由:國會助理研習活動(AI時代專業國會助理-AI超能智慧工作術)) |
委員名稱 |
完整會議 |
委員發言時間 |
11:29:59 - 14:19:00 |
transcript.pyannote[0].speaker |
SPEAKER_09 |
transcript.pyannote[0].start |
343.48784375 |
transcript.pyannote[0].end |
343.55534375 |
transcript.pyannote[1].speaker |
SPEAKER_09 |
transcript.pyannote[1].start |
343.57221875 |
transcript.pyannote[1].end |
343.67346875 |
transcript.pyannote[2].speaker |
SPEAKER_09 |
transcript.pyannote[2].start |
343.87596875 |
transcript.pyannote[2].end |
346.03596875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
345.54659375 |
transcript.pyannote[3].end |
345.79971875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
345.86721875 |
transcript.pyannote[4].end |
345.93471875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
345.95159375 |
transcript.pyannote[5].end |
345.96846875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
346.03596875 |
transcript.pyannote[6].end |
347.36909375 |
transcript.pyannote[7].speaker |
SPEAKER_09 |
transcript.pyannote[7].start |
347.36909375 |
transcript.pyannote[7].end |
347.38596875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
347.38596875 |
transcript.pyannote[8].end |
347.43659375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
350.00159375 |
transcript.pyannote[9].end |
350.03534375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
350.03534375 |
transcript.pyannote[10].end |
350.96346875 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
350.96346875 |
transcript.pyannote[11].end |
351.19971875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
351.19971875 |
transcript.pyannote[12].end |
351.25034375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
351.25034375 |
transcript.pyannote[13].end |
352.63409375 |
transcript.pyannote[14].speaker |
SPEAKER_09 |
transcript.pyannote[14].start |
456.24659375 |
transcript.pyannote[14].end |
456.36471875 |
transcript.pyannote[15].speaker |
SPEAKER_09 |
transcript.pyannote[15].start |
461.71409375 |
transcript.pyannote[15].end |
461.98409375 |
transcript.pyannote[16].speaker |
SPEAKER_07 |
transcript.pyannote[16].start |
574.43909375 |
transcript.pyannote[16].end |
581.42534375 |
transcript.pyannote[17].speaker |
SPEAKER_03 |
transcript.pyannote[17].start |
576.04221875 |
transcript.pyannote[17].end |
576.07596875 |
transcript.pyannote[18].speaker |
SPEAKER_05 |
transcript.pyannote[18].start |
576.07596875 |
transcript.pyannote[18].end |
579.82221875 |
transcript.pyannote[19].speaker |
SPEAKER_03 |
transcript.pyannote[19].start |
579.82221875 |
transcript.pyannote[19].end |
580.02471875 |
transcript.pyannote[20].speaker |
SPEAKER_10 |
transcript.pyannote[20].start |
580.02471875 |
transcript.pyannote[20].end |
580.04159375 |
transcript.pyannote[21].speaker |
SPEAKER_05 |
transcript.pyannote[21].start |
580.04159375 |
transcript.pyannote[21].end |
581.30721875 |
transcript.pyannote[22].speaker |
SPEAKER_05 |
transcript.pyannote[22].start |
584.46284375 |
transcript.pyannote[22].end |
587.92221875 |
transcript.pyannote[23].speaker |
SPEAKER_05 |
transcript.pyannote[23].start |
882.05346875 |
transcript.pyannote[23].end |
890.77784375 |
transcript.pyannote[24].speaker |
SPEAKER_05 |
transcript.pyannote[24].start |
891.04784375 |
transcript.pyannote[24].end |
899.92409375 |
transcript.pyannote[25].speaker |
SPEAKER_05 |
transcript.pyannote[25].start |
900.00846875 |
transcript.pyannote[25].end |
905.18909375 |
transcript.pyannote[26].speaker |
SPEAKER_05 |
transcript.pyannote[26].start |
958.44659375 |
transcript.pyannote[26].end |
961.26471875 |
transcript.pyannote[27].speaker |
SPEAKER_05 |
transcript.pyannote[27].start |
961.78784375 |
transcript.pyannote[27].end |
966.05721875 |
transcript.pyannote[28].speaker |
SPEAKER_05 |
transcript.pyannote[28].start |
966.44534375 |
transcript.pyannote[28].end |
971.10284375 |
transcript.pyannote[29].speaker |
SPEAKER_05 |
transcript.pyannote[29].start |
971.49096875 |
transcript.pyannote[29].end |
980.26596875 |
transcript.pyannote[30].speaker |
SPEAKER_05 |
transcript.pyannote[30].start |
980.73846875 |
transcript.pyannote[30].end |
981.95346875 |
transcript.pyannote[31].speaker |
SPEAKER_05 |
transcript.pyannote[31].start |
1049.45346875 |
transcript.pyannote[31].end |
1051.30971875 |
transcript.pyannote[32].speaker |
SPEAKER_05 |
transcript.pyannote[32].start |
1051.86659375 |
transcript.pyannote[32].end |
1056.50721875 |
transcript.pyannote[33].speaker |
SPEAKER_05 |
transcript.pyannote[33].start |
1057.04721875 |
transcript.pyannote[33].end |
1061.55284375 |
transcript.pyannote[34].speaker |
SPEAKER_05 |
transcript.pyannote[34].start |
1062.05909375 |
transcript.pyannote[34].end |
1067.98221875 |
transcript.pyannote[35].speaker |
SPEAKER_05 |
transcript.pyannote[35].start |
1068.50534375 |
transcript.pyannote[35].end |
1075.25534375 |
transcript.pyannote[36].speaker |
SPEAKER_05 |
transcript.pyannote[36].start |
1075.81221875 |
transcript.pyannote[36].end |
1078.41096875 |
transcript.pyannote[37].speaker |
SPEAKER_05 |
transcript.pyannote[37].start |
1121.98221875 |
transcript.pyannote[37].end |
1123.46721875 |
transcript.pyannote[38].speaker |
SPEAKER_05 |
transcript.pyannote[38].start |
1124.02409375 |
transcript.pyannote[38].end |
1126.72409375 |
transcript.pyannote[39].speaker |
SPEAKER_05 |
transcript.pyannote[39].start |
1126.97721875 |
transcript.pyannote[39].end |
1129.32284375 |
transcript.pyannote[40].speaker |
SPEAKER_05 |
transcript.pyannote[40].start |
1129.89659375 |
transcript.pyannote[40].end |
1136.32596875 |
transcript.pyannote[41].speaker |
SPEAKER_05 |
transcript.pyannote[41].start |
1136.89971875 |
transcript.pyannote[41].end |
1141.50659375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
3499.60221875 |
transcript.pyannote[42].end |
3500.80034375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
3502.15034375 |
transcript.pyannote[43].end |
3533.30159375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
3534.22971875 |
transcript.pyannote[44].end |
3539.79846875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
3540.59159375 |
transcript.pyannote[45].end |
3543.46034375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
3544.28721875 |
transcript.pyannote[46].end |
3558.83346875 |
transcript.pyannote[47].speaker |
SPEAKER_08 |
transcript.pyannote[47].start |
3559.60971875 |
transcript.pyannote[47].end |
3559.76159375 |
transcript.pyannote[48].speaker |
SPEAKER_06 |
transcript.pyannote[48].start |
3561.33096875 |
transcript.pyannote[48].end |
3561.34784375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
3561.34784375 |
transcript.pyannote[49].end |
3561.36471875 |
transcript.pyannote[50].speaker |
SPEAKER_06 |
transcript.pyannote[50].start |
3561.36471875 |
transcript.pyannote[50].end |
3572.65409375 |
transcript.pyannote[51].speaker |
SPEAKER_06 |
transcript.pyannote[51].start |
3572.80596875 |
transcript.pyannote[51].end |
3576.04596875 |
transcript.pyannote[52].speaker |
SPEAKER_06 |
transcript.pyannote[52].start |
3576.34971875 |
transcript.pyannote[52].end |
3608.26034375 |
transcript.pyannote[53].speaker |
SPEAKER_06 |
transcript.pyannote[53].start |
3608.47971875 |
transcript.pyannote[53].end |
3615.55034375 |
transcript.pyannote[54].speaker |
SPEAKER_06 |
transcript.pyannote[54].start |
3615.93846875 |
transcript.pyannote[54].end |
3618.65534375 |
transcript.pyannote[55].speaker |
SPEAKER_06 |
transcript.pyannote[55].start |
3619.21221875 |
transcript.pyannote[55].end |
3638.26409375 |
transcript.pyannote[56].speaker |
SPEAKER_06 |
transcript.pyannote[56].start |
3638.29784375 |
transcript.pyannote[56].end |
3648.65909375 |
transcript.pyannote[57].speaker |
SPEAKER_06 |
transcript.pyannote[57].start |
3649.57034375 |
transcript.pyannote[57].end |
3650.90346875 |
transcript.pyannote[58].speaker |
SPEAKER_06 |
transcript.pyannote[58].start |
3651.34221875 |
transcript.pyannote[58].end |
3674.71409375 |
transcript.pyannote[59].speaker |
SPEAKER_06 |
transcript.pyannote[59].start |
3675.10221875 |
transcript.pyannote[59].end |
3683.75909375 |
transcript.pyannote[60].speaker |
SPEAKER_06 |
transcript.pyannote[60].start |
3684.02909375 |
transcript.pyannote[60].end |
3717.81284375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
3717.81284375 |
transcript.pyannote[61].end |
3717.88034375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
3717.96471875 |
transcript.pyannote[62].end |
3718.04909375 |
transcript.pyannote[63].speaker |
SPEAKER_06 |
transcript.pyannote[63].start |
3718.04909375 |
transcript.pyannote[63].end |
3719.02784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
3719.02784375 |
transcript.pyannote[64].end |
3720.78284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
3721.23846875 |
transcript.pyannote[65].end |
3754.56659375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
3754.81971875 |
transcript.pyannote[66].end |
3792.67034375 |
transcript.pyannote[67].speaker |
SPEAKER_05 |
transcript.pyannote[67].start |
3812.19471875 |
transcript.pyannote[67].end |
3821.91471875 |
transcript.pyannote[68].speaker |
SPEAKER_05 |
transcript.pyannote[68].start |
3822.31971875 |
transcript.pyannote[68].end |
3832.36034375 |
transcript.pyannote[69].speaker |
SPEAKER_05 |
transcript.pyannote[69].start |
3832.76534375 |
transcript.pyannote[69].end |
3865.60409375 |
transcript.pyannote[70].speaker |
SPEAKER_05 |
transcript.pyannote[70].start |
3865.89096875 |
transcript.pyannote[70].end |
3920.02596875 |
transcript.pyannote[71].speaker |
SPEAKER_05 |
transcript.pyannote[71].start |
3920.07659375 |
transcript.pyannote[71].end |
3923.83971875 |
transcript.pyannote[72].speaker |
SPEAKER_05 |
transcript.pyannote[72].start |
3925.93221875 |
transcript.pyannote[72].end |
3926.65784375 |
transcript.pyannote[73].speaker |
SPEAKER_09 |
transcript.pyannote[73].start |
3927.82221875 |
transcript.pyannote[73].end |
3927.83909375 |
transcript.pyannote[74].speaker |
SPEAKER_05 |
transcript.pyannote[74].start |
3927.83909375 |
transcript.pyannote[74].end |
3929.25659375 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
3929.25659375 |
transcript.pyannote[75].end |
3929.34096875 |
transcript.pyannote[76].speaker |
SPEAKER_05 |
transcript.pyannote[76].start |
3942.33471875 |
transcript.pyannote[76].end |
3969.13221875 |
transcript.pyannote[77].speaker |
SPEAKER_05 |
transcript.pyannote[77].start |
3969.58784375 |
transcript.pyannote[77].end |
3987.08721875 |
transcript.pyannote[78].speaker |
SPEAKER_05 |
transcript.pyannote[78].start |
3987.64409375 |
transcript.pyannote[78].end |
4035.97409375 |
transcript.pyannote[79].speaker |
SPEAKER_05 |
transcript.pyannote[79].start |
4037.67846875 |
transcript.pyannote[79].end |
4040.88471875 |
transcript.pyannote[80].speaker |
SPEAKER_05 |
transcript.pyannote[80].start |
4041.99846875 |
transcript.pyannote[80].end |
4100.21721875 |
transcript.pyannote[81].speaker |
SPEAKER_05 |
transcript.pyannote[81].start |
4101.06096875 |
transcript.pyannote[81].end |
4102.74846875 |
transcript.pyannote[82].speaker |
SPEAKER_05 |
transcript.pyannote[82].start |
4105.07721875 |
transcript.pyannote[82].end |
4106.52846875 |
transcript.pyannote[83].speaker |
SPEAKER_05 |
transcript.pyannote[83].start |
4106.93346875 |
transcript.pyannote[83].end |
4122.54284375 |
transcript.pyannote[84].speaker |
SPEAKER_05 |
transcript.pyannote[84].start |
4122.79596875 |
transcript.pyannote[84].end |
4124.53409375 |
transcript.pyannote[85].speaker |
SPEAKER_05 |
transcript.pyannote[85].start |
4124.88846875 |
transcript.pyannote[85].end |
4140.64971875 |
transcript.pyannote[86].speaker |
SPEAKER_05 |
transcript.pyannote[86].start |
4140.91971875 |
transcript.pyannote[86].end |
4178.02784375 |
transcript.pyannote[87].speaker |
SPEAKER_05 |
transcript.pyannote[87].start |
4178.87159375 |
transcript.pyannote[87].end |
4182.97221875 |
transcript.pyannote[88].speaker |
SPEAKER_05 |
transcript.pyannote[88].start |
4183.41096875 |
transcript.pyannote[88].end |
4194.59909375 |
transcript.pyannote[89].speaker |
SPEAKER_05 |
transcript.pyannote[89].start |
4195.07159375 |
transcript.pyannote[89].end |
4210.41096875 |
transcript.pyannote[90].speaker |
SPEAKER_05 |
transcript.pyannote[90].start |
4210.96784375 |
transcript.pyannote[90].end |
4215.40596875 |
transcript.pyannote[91].speaker |
SPEAKER_05 |
transcript.pyannote[91].start |
4216.03034375 |
transcript.pyannote[91].end |
4220.70471875 |
transcript.pyannote[92].speaker |
SPEAKER_05 |
transcript.pyannote[92].start |
4220.83971875 |
transcript.pyannote[92].end |
4235.79096875 |
transcript.pyannote[93].speaker |
SPEAKER_05 |
transcript.pyannote[93].start |
4236.06096875 |
transcript.pyannote[93].end |
4250.80971875 |
transcript.pyannote[94].speaker |
SPEAKER_05 |
transcript.pyannote[94].start |
4251.70409375 |
transcript.pyannote[94].end |
4257.39096875 |
transcript.pyannote[95].speaker |
SPEAKER_05 |
transcript.pyannote[95].start |
4258.38659375 |
transcript.pyannote[95].end |
4262.18346875 |
transcript.pyannote[96].speaker |
SPEAKER_05 |
transcript.pyannote[96].start |
4262.52096875 |
transcript.pyannote[96].end |
4264.15784375 |
transcript.pyannote[97].speaker |
SPEAKER_05 |
transcript.pyannote[97].start |
4265.27159375 |
transcript.pyannote[97].end |
4266.90846875 |
transcript.pyannote[98].speaker |
SPEAKER_05 |
transcript.pyannote[98].start |
4268.78159375 |
transcript.pyannote[98].end |
4269.03471875 |
transcript.pyannote[99].speaker |
SPEAKER_05 |
transcript.pyannote[99].start |
4269.76034375 |
transcript.pyannote[99].end |
4294.61721875 |
transcript.pyannote[100].speaker |
SPEAKER_05 |
transcript.pyannote[100].start |
4295.15721875 |
transcript.pyannote[100].end |
4308.38721875 |
transcript.pyannote[101].speaker |
SPEAKER_05 |
transcript.pyannote[101].start |
4309.01159375 |
transcript.pyannote[101].end |
4309.92284375 |
transcript.pyannote[102].speaker |
SPEAKER_05 |
transcript.pyannote[102].start |
4310.47971875 |
transcript.pyannote[102].end |
4319.76096875 |
transcript.pyannote[103].speaker |
SPEAKER_05 |
transcript.pyannote[103].start |
4320.11534375 |
transcript.pyannote[103].end |
4324.65471875 |
transcript.pyannote[104].speaker |
SPEAKER_05 |
transcript.pyannote[104].start |
4325.22846875 |
transcript.pyannote[104].end |
4326.12284375 |
transcript.pyannote[105].speaker |
SPEAKER_05 |
transcript.pyannote[105].start |
4326.67971875 |
transcript.pyannote[105].end |
4330.27409375 |
transcript.pyannote[106].speaker |
SPEAKER_05 |
transcript.pyannote[106].start |
4331.43846875 |
transcript.pyannote[106].end |
4332.90659375 |
transcript.pyannote[107].speaker |
SPEAKER_05 |
transcript.pyannote[107].start |
4333.15971875 |
transcript.pyannote[107].end |
4333.61534375 |
transcript.pyannote[108].speaker |
SPEAKER_05 |
transcript.pyannote[108].start |
4334.37471875 |
transcript.pyannote[108].end |
4346.94659375 |
transcript.pyannote[109].speaker |
SPEAKER_05 |
transcript.pyannote[109].start |
4346.98034375 |
transcript.pyannote[109].end |
4380.57846875 |
transcript.pyannote[110].speaker |
SPEAKER_05 |
transcript.pyannote[110].start |
4380.93284375 |
transcript.pyannote[110].end |
4386.58596875 |
transcript.pyannote[111].speaker |
SPEAKER_05 |
transcript.pyannote[111].start |
4387.98659375 |
transcript.pyannote[111].end |
4391.46284375 |
transcript.pyannote[112].speaker |
SPEAKER_05 |
transcript.pyannote[112].start |
4393.04909375 |
transcript.pyannote[112].end |
4393.69034375 |
transcript.pyannote[113].speaker |
SPEAKER_05 |
transcript.pyannote[113].start |
4394.48346875 |
transcript.pyannote[113].end |
4401.03096875 |
transcript.pyannote[114].speaker |
SPEAKER_05 |
transcript.pyannote[114].start |
4401.75659375 |
transcript.pyannote[114].end |
4407.94971875 |
transcript.pyannote[115].speaker |
SPEAKER_05 |
transcript.pyannote[115].start |
4408.54034375 |
transcript.pyannote[115].end |
4410.90284375 |
transcript.pyannote[116].speaker |
SPEAKER_05 |
transcript.pyannote[116].start |
4411.40909375 |
transcript.pyannote[116].end |
4411.98284375 |
transcript.pyannote[117].speaker |
SPEAKER_05 |
transcript.pyannote[117].start |
4412.33721875 |
transcript.pyannote[117].end |
4416.55596875 |
transcript.pyannote[118].speaker |
SPEAKER_05 |
transcript.pyannote[118].start |
4417.04534375 |
transcript.pyannote[118].end |
4417.88909375 |
transcript.pyannote[119].speaker |
SPEAKER_05 |
transcript.pyannote[119].start |
4418.22659375 |
transcript.pyannote[119].end |
4425.68534375 |
transcript.pyannote[120].speaker |
SPEAKER_05 |
transcript.pyannote[120].start |
4426.07346875 |
transcript.pyannote[120].end |
4428.70596875 |
transcript.pyannote[121].speaker |
SPEAKER_05 |
transcript.pyannote[121].start |
4429.09409375 |
transcript.pyannote[121].end |
4443.52221875 |
transcript.pyannote[122].speaker |
SPEAKER_05 |
transcript.pyannote[122].start |
4444.88909375 |
transcript.pyannote[122].end |
4452.58409375 |
transcript.pyannote[123].speaker |
SPEAKER_05 |
transcript.pyannote[123].start |
4453.66409375 |
transcript.pyannote[123].end |
4454.69346875 |
transcript.pyannote[124].speaker |
SPEAKER_05 |
transcript.pyannote[124].start |
4455.40221875 |
transcript.pyannote[124].end |
4458.50721875 |
transcript.pyannote[125].speaker |
SPEAKER_05 |
transcript.pyannote[125].start |
4458.91221875 |
transcript.pyannote[125].end |
4460.76846875 |
transcript.pyannote[126].speaker |
SPEAKER_05 |
transcript.pyannote[126].start |
4461.40971875 |
transcript.pyannote[126].end |
4462.70909375 |
transcript.pyannote[127].speaker |
SPEAKER_05 |
transcript.pyannote[127].start |
4463.90721875 |
transcript.pyannote[127].end |
4468.81784375 |
transcript.pyannote[128].speaker |
SPEAKER_05 |
transcript.pyannote[128].start |
4469.05409375 |
transcript.pyannote[128].end |
4475.68596875 |
transcript.pyannote[129].speaker |
SPEAKER_05 |
transcript.pyannote[129].start |
4476.09096875 |
transcript.pyannote[129].end |
4497.82596875 |
transcript.pyannote[130].speaker |
SPEAKER_05 |
transcript.pyannote[130].start |
4498.39971875 |
transcript.pyannote[130].end |
4499.29409375 |
transcript.pyannote[131].speaker |
SPEAKER_05 |
transcript.pyannote[131].start |
4499.81721875 |
transcript.pyannote[131].end |
4501.74096875 |
transcript.pyannote[132].speaker |
SPEAKER_05 |
transcript.pyannote[132].start |
4501.79159375 |
transcript.pyannote[132].end |
4511.51159375 |
transcript.pyannote[133].speaker |
SPEAKER_05 |
transcript.pyannote[133].start |
4512.05159375 |
transcript.pyannote[133].end |
4513.73909375 |
transcript.pyannote[134].speaker |
SPEAKER_05 |
transcript.pyannote[134].start |
4513.84034375 |
transcript.pyannote[134].end |
4516.84409375 |
transcript.pyannote[135].speaker |
SPEAKER_05 |
transcript.pyannote[135].start |
4517.24909375 |
transcript.pyannote[135].end |
4519.12221875 |
transcript.pyannote[136].speaker |
SPEAKER_05 |
transcript.pyannote[136].start |
4519.71284375 |
transcript.pyannote[136].end |
4521.99096875 |
transcript.pyannote[137].speaker |
SPEAKER_05 |
transcript.pyannote[137].start |
4522.54784375 |
transcript.pyannote[137].end |
4524.62346875 |
transcript.pyannote[138].speaker |
SPEAKER_05 |
transcript.pyannote[138].start |
4524.82596875 |
transcript.pyannote[138].end |
4547.03346875 |
transcript.pyannote[139].speaker |
SPEAKER_05 |
transcript.pyannote[139].start |
4547.47221875 |
transcript.pyannote[139].end |
4551.80909375 |
transcript.pyannote[140].speaker |
SPEAKER_05 |
transcript.pyannote[140].start |
4552.50096875 |
transcript.pyannote[140].end |
4553.81721875 |
transcript.pyannote[141].speaker |
SPEAKER_05 |
transcript.pyannote[141].start |
4554.27284375 |
transcript.pyannote[141].end |
4564.24596875 |
transcript.pyannote[142].speaker |
SPEAKER_05 |
transcript.pyannote[142].start |
4564.46534375 |
transcript.pyannote[142].end |
4572.88596875 |
transcript.pyannote[143].speaker |
SPEAKER_05 |
transcript.pyannote[143].start |
4573.64534375 |
transcript.pyannote[143].end |
4588.34346875 |
transcript.pyannote[144].speaker |
SPEAKER_05 |
transcript.pyannote[144].start |
4588.49534375 |
transcript.pyannote[144].end |
4589.33909375 |
transcript.pyannote[145].speaker |
SPEAKER_05 |
transcript.pyannote[145].start |
4589.79471875 |
transcript.pyannote[145].end |
4591.17846875 |
transcript.pyannote[146].speaker |
SPEAKER_05 |
transcript.pyannote[146].start |
4591.71846875 |
transcript.pyannote[146].end |
4596.46034375 |
transcript.pyannote[147].speaker |
SPEAKER_05 |
transcript.pyannote[147].start |
4597.06784375 |
transcript.pyannote[147].end |
4612.39034375 |
transcript.pyannote[148].speaker |
SPEAKER_05 |
transcript.pyannote[148].start |
4613.36909375 |
transcript.pyannote[148].end |
4626.32909375 |
transcript.pyannote[149].speaker |
SPEAKER_05 |
transcript.pyannote[149].start |
4626.70034375 |
transcript.pyannote[149].end |
4663.25159375 |
transcript.pyannote[150].speaker |
SPEAKER_05 |
transcript.pyannote[150].start |
4663.85909375 |
transcript.pyannote[150].end |
4665.78284375 |
transcript.pyannote[151].speaker |
SPEAKER_05 |
transcript.pyannote[151].start |
4667.47034375 |
transcript.pyannote[151].end |
4675.72221875 |
transcript.pyannote[152].speaker |
SPEAKER_05 |
transcript.pyannote[152].start |
4676.04284375 |
transcript.pyannote[152].end |
4683.26534375 |
transcript.pyannote[153].speaker |
SPEAKER_05 |
transcript.pyannote[153].start |
4683.72096875 |
transcript.pyannote[153].end |
4733.01284375 |
transcript.pyannote[154].speaker |
SPEAKER_05 |
transcript.pyannote[154].start |
4733.45159375 |
transcript.pyannote[154].end |
4750.00596875 |
transcript.pyannote[155].speaker |
SPEAKER_05 |
transcript.pyannote[155].start |
4750.51221875 |
transcript.pyannote[155].end |
4756.11471875 |
transcript.pyannote[156].speaker |
SPEAKER_05 |
transcript.pyannote[156].start |
4756.31721875 |
transcript.pyannote[156].end |
4774.22159375 |
transcript.pyannote[157].speaker |
SPEAKER_05 |
transcript.pyannote[157].start |
4774.91346875 |
transcript.pyannote[157].end |
4781.79846875 |
transcript.pyannote[158].speaker |
SPEAKER_05 |
transcript.pyannote[158].start |
4782.01784375 |
transcript.pyannote[158].end |
4783.97534375 |
transcript.pyannote[159].speaker |
SPEAKER_05 |
transcript.pyannote[159].start |
4784.44784375 |
transcript.pyannote[159].end |
4787.11409375 |
transcript.pyannote[160].speaker |
SPEAKER_05 |
transcript.pyannote[160].start |
4788.05909375 |
transcript.pyannote[160].end |
4789.08846875 |
transcript.pyannote[161].speaker |
SPEAKER_05 |
transcript.pyannote[161].start |
4789.79721875 |
transcript.pyannote[161].end |
4791.29909375 |
transcript.pyannote[162].speaker |
SPEAKER_05 |
transcript.pyannote[162].start |
4791.31596875 |
transcript.pyannote[162].end |
4795.38284375 |
transcript.pyannote[163].speaker |
SPEAKER_05 |
transcript.pyannote[163].start |
4795.92284375 |
transcript.pyannote[163].end |
4797.81284375 |
transcript.pyannote[164].speaker |
SPEAKER_05 |
transcript.pyannote[164].start |
4798.08284375 |
transcript.pyannote[164].end |
4798.67346875 |
transcript.pyannote[165].speaker |
SPEAKER_05 |
transcript.pyannote[165].start |
4799.31471875 |
transcript.pyannote[165].end |
4800.76596875 |
transcript.pyannote[166].speaker |
SPEAKER_05 |
transcript.pyannote[166].start |
4800.98534375 |
transcript.pyannote[166].end |
4802.57159375 |
transcript.pyannote[167].speaker |
SPEAKER_05 |
transcript.pyannote[167].start |
4802.99346875 |
transcript.pyannote[167].end |
4804.63034375 |
transcript.pyannote[168].speaker |
SPEAKER_05 |
transcript.pyannote[168].start |
4805.08596875 |
transcript.pyannote[168].end |
4810.58721875 |
transcript.pyannote[169].speaker |
SPEAKER_05 |
transcript.pyannote[169].start |
4811.00909375 |
transcript.pyannote[169].end |
4811.51534375 |
transcript.pyannote[170].speaker |
SPEAKER_05 |
transcript.pyannote[170].start |
4812.10596875 |
transcript.pyannote[170].end |
4814.51909375 |
transcript.pyannote[171].speaker |
SPEAKER_05 |
transcript.pyannote[171].start |
4814.99159375 |
transcript.pyannote[171].end |
4818.21471875 |
transcript.pyannote[172].speaker |
SPEAKER_05 |
transcript.pyannote[172].start |
4819.19346875 |
transcript.pyannote[172].end |
4820.84721875 |
transcript.pyannote[173].speaker |
SPEAKER_05 |
transcript.pyannote[173].start |
4821.69096875 |
transcript.pyannote[173].end |
4834.39784375 |
transcript.pyannote[174].speaker |
SPEAKER_05 |
transcript.pyannote[174].start |
4835.12346875 |
transcript.pyannote[174].end |
4838.61659375 |
transcript.pyannote[175].speaker |
SPEAKER_05 |
transcript.pyannote[175].start |
4839.69659375 |
transcript.pyannote[175].end |
4845.56909375 |
transcript.pyannote[176].speaker |
SPEAKER_05 |
transcript.pyannote[176].start |
4846.19346875 |
transcript.pyannote[176].end |
4850.20971875 |
transcript.pyannote[177].speaker |
SPEAKER_05 |
transcript.pyannote[177].start |
4850.88471875 |
transcript.pyannote[177].end |
4860.40221875 |
transcript.pyannote[178].speaker |
SPEAKER_05 |
transcript.pyannote[178].start |
4861.16159375 |
transcript.pyannote[178].end |
4875.79221875 |
transcript.pyannote[179].speaker |
SPEAKER_05 |
transcript.pyannote[179].start |
4877.26034375 |
transcript.pyannote[179].end |
4882.98096875 |
transcript.pyannote[180].speaker |
SPEAKER_05 |
transcript.pyannote[180].start |
4883.55471875 |
transcript.pyannote[180].end |
4891.13159375 |
transcript.pyannote[181].speaker |
SPEAKER_05 |
transcript.pyannote[181].start |
4891.24971875 |
transcript.pyannote[181].end |
4893.86534375 |
transcript.pyannote[182].speaker |
SPEAKER_05 |
transcript.pyannote[182].start |
4894.43909375 |
transcript.pyannote[182].end |
4899.99096875 |
transcript.pyannote[183].speaker |
SPEAKER_05 |
transcript.pyannote[183].start |
4900.48034375 |
transcript.pyannote[183].end |
4902.04971875 |
transcript.pyannote[184].speaker |
SPEAKER_05 |
transcript.pyannote[184].start |
4902.62346875 |
transcript.pyannote[184].end |
4903.16346875 |
transcript.pyannote[185].speaker |
SPEAKER_05 |
transcript.pyannote[185].start |
4903.36596875 |
transcript.pyannote[185].end |
4904.26034375 |
transcript.pyannote[186].speaker |
SPEAKER_05 |
transcript.pyannote[186].start |
4904.51346875 |
transcript.pyannote[186].end |
4910.41971875 |
transcript.pyannote[187].speaker |
SPEAKER_05 |
transcript.pyannote[187].start |
4910.99346875 |
transcript.pyannote[187].end |
4918.28346875 |
transcript.pyannote[188].speaker |
SPEAKER_05 |
transcript.pyannote[188].start |
4919.21159375 |
transcript.pyannote[188].end |
4919.61659375 |
transcript.pyannote[189].speaker |
SPEAKER_05 |
transcript.pyannote[189].start |
4919.85284375 |
transcript.pyannote[189].end |
4929.92721875 |
transcript.pyannote[190].speaker |
SPEAKER_05 |
transcript.pyannote[190].start |
4930.43346875 |
transcript.pyannote[190].end |
4948.99596875 |
transcript.pyannote[191].speaker |
SPEAKER_05 |
transcript.pyannote[191].start |
4949.53596875 |
transcript.pyannote[191].end |
4954.53096875 |
transcript.pyannote[192].speaker |
SPEAKER_05 |
transcript.pyannote[192].start |
4954.83471875 |
transcript.pyannote[192].end |
4956.04971875 |
transcript.pyannote[193].speaker |
SPEAKER_05 |
transcript.pyannote[193].start |
4956.10034375 |
transcript.pyannote[193].end |
4974.24096875 |
transcript.pyannote[194].speaker |
SPEAKER_05 |
transcript.pyannote[194].start |
4974.46034375 |
transcript.pyannote[194].end |
4980.68721875 |
transcript.pyannote[195].speaker |
SPEAKER_05 |
transcript.pyannote[195].start |
4981.15971875 |
transcript.pyannote[195].end |
4991.33534375 |
transcript.pyannote[196].speaker |
SPEAKER_05 |
transcript.pyannote[196].start |
4991.74034375 |
transcript.pyannote[196].end |
4997.79846875 |
transcript.pyannote[197].speaker |
SPEAKER_05 |
transcript.pyannote[197].start |
4998.42284375 |
transcript.pyannote[197].end |
4999.43534375 |
transcript.pyannote[198].speaker |
SPEAKER_05 |
transcript.pyannote[198].start |
5000.48159375 |
transcript.pyannote[198].end |
5001.25784375 |
transcript.pyannote[199].speaker |
SPEAKER_05 |
transcript.pyannote[199].start |
5002.10159375 |
transcript.pyannote[199].end |
5004.22784375 |
transcript.pyannote[200].speaker |
SPEAKER_05 |
transcript.pyannote[200].start |
5005.52721875 |
transcript.pyannote[200].end |
5016.93471875 |
transcript.pyannote[201].speaker |
SPEAKER_05 |
transcript.pyannote[201].start |
5017.39034375 |
transcript.pyannote[201].end |
5022.73971875 |
transcript.pyannote[202].speaker |
SPEAKER_05 |
transcript.pyannote[202].start |
5023.39784375 |
transcript.pyannote[202].end |
5029.50659375 |
transcript.pyannote[203].speaker |
SPEAKER_02 |
transcript.pyannote[203].start |
5029.08471875 |
transcript.pyannote[203].end |
5031.22784375 |
transcript.pyannote[204].speaker |
SPEAKER_02 |
transcript.pyannote[204].start |
5031.53159375 |
transcript.pyannote[204].end |
5036.22284375 |
transcript.pyannote[205].speaker |
SPEAKER_05 |
transcript.pyannote[205].start |
5037.67409375 |
transcript.pyannote[205].end |
5037.70784375 |
transcript.pyannote[206].speaker |
SPEAKER_02 |
transcript.pyannote[206].start |
5037.70784375 |
transcript.pyannote[206].end |
5038.02846875 |
transcript.pyannote[207].speaker |
SPEAKER_05 |
transcript.pyannote[207].start |
5038.02846875 |
transcript.pyannote[207].end |
5038.16346875 |
transcript.pyannote[208].speaker |
SPEAKER_02 |
transcript.pyannote[208].start |
5038.16346875 |
transcript.pyannote[208].end |
5038.19721875 |
transcript.pyannote[209].speaker |
SPEAKER_05 |
transcript.pyannote[209].start |
5038.19721875 |
transcript.pyannote[209].end |
5041.75784375 |
transcript.pyannote[210].speaker |
SPEAKER_05 |
transcript.pyannote[210].start |
5043.32721875 |
transcript.pyannote[210].end |
5079.00096875 |
transcript.pyannote[211].speaker |
SPEAKER_05 |
transcript.pyannote[211].start |
5081.16096875 |
transcript.pyannote[211].end |
5085.29534375 |
transcript.pyannote[212].speaker |
SPEAKER_05 |
transcript.pyannote[212].start |
5085.76784375 |
transcript.pyannote[212].end |
5088.72096875 |
transcript.pyannote[213].speaker |
SPEAKER_05 |
transcript.pyannote[213].start |
5089.32846875 |
transcript.pyannote[213].end |
5099.77409375 |
transcript.pyannote[214].speaker |
SPEAKER_05 |
transcript.pyannote[214].start |
5100.65159375 |
transcript.pyannote[214].end |
5105.93346875 |
transcript.pyannote[215].speaker |
SPEAKER_05 |
transcript.pyannote[215].start |
5106.91221875 |
transcript.pyannote[215].end |
5110.60784375 |
transcript.pyannote[216].speaker |
SPEAKER_05 |
transcript.pyannote[216].start |
5111.72159375 |
transcript.pyannote[216].end |
5125.84596875 |
transcript.pyannote[217].speaker |
SPEAKER_05 |
transcript.pyannote[217].start |
5125.87971875 |
transcript.pyannote[217].end |
5130.36846875 |
transcript.pyannote[218].speaker |
SPEAKER_05 |
transcript.pyannote[218].start |
5130.45284375 |
transcript.pyannote[218].end |
5147.39534375 |
transcript.pyannote[219].speaker |
SPEAKER_05 |
transcript.pyannote[219].start |
5147.95221875 |
transcript.pyannote[219].end |
5154.07784375 |
transcript.pyannote[220].speaker |
SPEAKER_05 |
transcript.pyannote[220].start |
5155.39409375 |
transcript.pyannote[220].end |
5168.72534375 |
transcript.pyannote[221].speaker |
SPEAKER_05 |
transcript.pyannote[221].start |
5169.01221875 |
transcript.pyannote[221].end |
5173.12971875 |
transcript.pyannote[222].speaker |
SPEAKER_05 |
transcript.pyannote[222].start |
5173.68659375 |
transcript.pyannote[222].end |
5178.47909375 |
transcript.pyannote[223].speaker |
SPEAKER_05 |
transcript.pyannote[223].start |
5178.85034375 |
transcript.pyannote[223].end |
5179.96409375 |
transcript.pyannote[224].speaker |
SPEAKER_05 |
transcript.pyannote[224].start |
5180.82471875 |
transcript.pyannote[224].end |
5206.20471875 |
transcript.pyannote[225].speaker |
SPEAKER_09 |
transcript.pyannote[225].start |
5201.26034375 |
transcript.pyannote[225].end |
5201.58096875 |
transcript.pyannote[226].speaker |
SPEAKER_05 |
transcript.pyannote[226].start |
5206.72784375 |
transcript.pyannote[226].end |
5208.02721875 |
transcript.pyannote[227].speaker |
SPEAKER_05 |
transcript.pyannote[227].start |
5208.26346875 |
transcript.pyannote[227].end |
5212.33034375 |
transcript.pyannote[228].speaker |
SPEAKER_05 |
transcript.pyannote[228].start |
5212.70159375 |
transcript.pyannote[228].end |
5214.47346875 |
transcript.pyannote[229].speaker |
SPEAKER_05 |
transcript.pyannote[229].start |
5215.70534375 |
transcript.pyannote[229].end |
5216.54909375 |
transcript.pyannote[230].speaker |
SPEAKER_05 |
transcript.pyannote[230].start |
5216.71784375 |
transcript.pyannote[230].end |
5217.64596875 |
transcript.pyannote[231].speaker |
SPEAKER_05 |
transcript.pyannote[231].start |
5218.38846875 |
transcript.pyannote[231].end |
5240.12346875 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
5232.42846875 |
transcript.pyannote[232].end |
5232.44534375 |
transcript.pyannote[233].speaker |
SPEAKER_03 |
transcript.pyannote[233].start |
5232.44534375 |
transcript.pyannote[233].end |
5232.46221875 |
transcript.pyannote[234].speaker |
SPEAKER_08 |
transcript.pyannote[234].start |
5232.46221875 |
transcript.pyannote[234].end |
5233.22159375 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
5233.22159375 |
transcript.pyannote[235].end |
5233.27221875 |
transcript.pyannote[236].speaker |
SPEAKER_03 |
transcript.pyannote[236].start |
5233.27221875 |
transcript.pyannote[236].end |
5233.33971875 |
transcript.pyannote[237].speaker |
SPEAKER_08 |
transcript.pyannote[237].start |
5233.98096875 |
transcript.pyannote[237].end |
5234.68971875 |
transcript.pyannote[238].speaker |
SPEAKER_01 |
transcript.pyannote[238].start |
5240.12346875 |
transcript.pyannote[238].end |
5240.56221875 |
transcript.pyannote[239].speaker |
SPEAKER_05 |
transcript.pyannote[239].start |
5240.56221875 |
transcript.pyannote[239].end |
5281.58534375 |
transcript.pyannote[240].speaker |
SPEAKER_00 |
transcript.pyannote[240].start |
5245.48971875 |
transcript.pyannote[240].end |
5245.77659375 |
transcript.pyannote[241].speaker |
SPEAKER_00 |
transcript.pyannote[241].start |
5246.02971875 |
transcript.pyannote[241].end |
5246.04659375 |
transcript.pyannote[242].speaker |
SPEAKER_00 |
transcript.pyannote[242].start |
5247.19409375 |
transcript.pyannote[242].end |
5247.21096875 |
transcript.pyannote[243].speaker |
SPEAKER_04 |
transcript.pyannote[243].start |
5247.21096875 |
transcript.pyannote[243].end |
5247.97034375 |
transcript.pyannote[244].speaker |
SPEAKER_00 |
transcript.pyannote[244].start |
5247.97034375 |
transcript.pyannote[244].end |
5249.45534375 |
transcript.pyannote[245].speaker |
SPEAKER_00 |
transcript.pyannote[245].start |
5249.99534375 |
transcript.pyannote[245].end |
5259.02346875 |
transcript.pyannote[246].speaker |
SPEAKER_08 |
transcript.pyannote[246].start |
5259.02346875 |
transcript.pyannote[246].end |
5267.03909375 |
transcript.pyannote[247].speaker |
SPEAKER_03 |
transcript.pyannote[247].start |
5267.03909375 |
transcript.pyannote[247].end |
5268.52409375 |
transcript.pyannote[248].speaker |
SPEAKER_03 |
transcript.pyannote[248].start |
5270.92034375 |
transcript.pyannote[248].end |
5270.98784375 |
transcript.pyannote[249].speaker |
SPEAKER_03 |
transcript.pyannote[249].start |
5271.39284375 |
transcript.pyannote[249].end |
5272.55721875 |
transcript.pyannote[250].speaker |
SPEAKER_05 |
transcript.pyannote[250].start |
5282.26034375 |
transcript.pyannote[250].end |
5283.28971875 |
transcript.pyannote[251].speaker |
SPEAKER_05 |
transcript.pyannote[251].start |
5283.55971875 |
transcript.pyannote[251].end |
5285.36534375 |
transcript.pyannote[252].speaker |
SPEAKER_05 |
transcript.pyannote[252].start |
5285.73659375 |
transcript.pyannote[252].end |
5287.22159375 |
transcript.pyannote[253].speaker |
SPEAKER_05 |
transcript.pyannote[253].start |
5287.93034375 |
transcript.pyannote[253].end |
5289.55034375 |
transcript.pyannote[254].speaker |
SPEAKER_05 |
transcript.pyannote[254].start |
5289.73596875 |
transcript.pyannote[254].end |
5290.12409375 |
transcript.pyannote[255].speaker |
SPEAKER_05 |
transcript.pyannote[255].start |
5290.88346875 |
transcript.pyannote[255].end |
5308.09596875 |
transcript.pyannote[256].speaker |
SPEAKER_05 |
transcript.pyannote[256].start |
5309.10846875 |
transcript.pyannote[256].end |
5310.17159375 |
transcript.pyannote[257].speaker |
SPEAKER_05 |
transcript.pyannote[257].start |
5310.62721875 |
transcript.pyannote[257].end |
5329.02096875 |
transcript.pyannote[258].speaker |
SPEAKER_05 |
transcript.pyannote[258].start |
5329.54409375 |
transcript.pyannote[258].end |
5331.19784375 |
transcript.pyannote[259].speaker |
SPEAKER_05 |
transcript.pyannote[259].start |
5331.92346875 |
transcript.pyannote[259].end |
5333.45909375 |
transcript.pyannote[260].speaker |
SPEAKER_05 |
transcript.pyannote[260].start |
5334.13409375 |
transcript.pyannote[260].end |
5335.56846875 |
transcript.pyannote[261].speaker |
SPEAKER_05 |
transcript.pyannote[261].start |
5335.65284375 |
transcript.pyannote[261].end |
5356.24034375 |
transcript.pyannote[262].speaker |
SPEAKER_05 |
transcript.pyannote[262].start |
5356.79721875 |
transcript.pyannote[262].end |
5363.69909375 |
transcript.pyannote[263].speaker |
SPEAKER_05 |
transcript.pyannote[263].start |
5364.54284375 |
transcript.pyannote[263].end |
5366.41596875 |
transcript.pyannote[264].speaker |
SPEAKER_05 |
transcript.pyannote[264].start |
5366.75346875 |
transcript.pyannote[264].end |
5386.56471875 |
transcript.pyannote[265].speaker |
SPEAKER_05 |
transcript.pyannote[265].start |
5386.96971875 |
transcript.pyannote[265].end |
5391.28971875 |
transcript.pyannote[266].speaker |
SPEAKER_05 |
transcript.pyannote[266].start |
5391.64409375 |
transcript.pyannote[266].end |
5392.85909375 |
transcript.pyannote[267].speaker |
SPEAKER_05 |
transcript.pyannote[267].start |
5393.43284375 |
transcript.pyannote[267].end |
5394.71534375 |
transcript.pyannote[268].speaker |
SPEAKER_05 |
transcript.pyannote[268].start |
5395.05284375 |
transcript.pyannote[268].end |
5395.91346875 |
transcript.pyannote[269].speaker |
SPEAKER_05 |
transcript.pyannote[269].start |
5397.17909375 |
transcript.pyannote[269].end |
5404.48596875 |
transcript.pyannote[270].speaker |
SPEAKER_05 |
transcript.pyannote[270].start |
5404.70534375 |
transcript.pyannote[270].end |
5406.56159375 |
transcript.pyannote[271].speaker |
SPEAKER_05 |
transcript.pyannote[271].start |
5407.23659375 |
transcript.pyannote[271].end |
5412.85596875 |
transcript.pyannote[272].speaker |
SPEAKER_05 |
transcript.pyannote[272].start |
5413.02471875 |
transcript.pyannote[272].end |
5422.89659375 |
transcript.pyannote[273].speaker |
SPEAKER_05 |
transcript.pyannote[273].start |
5422.99784375 |
transcript.pyannote[273].end |
5433.15659375 |
transcript.pyannote[274].speaker |
SPEAKER_05 |
transcript.pyannote[274].start |
5433.74721875 |
transcript.pyannote[274].end |
5435.09721875 |
transcript.pyannote[275].speaker |
SPEAKER_05 |
transcript.pyannote[275].start |
5436.54846875 |
transcript.pyannote[275].end |
5444.02409375 |
transcript.pyannote[276].speaker |
SPEAKER_10 |
transcript.pyannote[276].start |
5438.53971875 |
transcript.pyannote[276].end |
5438.57346875 |
transcript.pyannote[277].speaker |
SPEAKER_06 |
transcript.pyannote[277].start |
5438.57346875 |
transcript.pyannote[277].end |
5440.02471875 |
transcript.pyannote[278].speaker |
SPEAKER_04 |
transcript.pyannote[278].start |
5440.02471875 |
transcript.pyannote[278].end |
5443.38284375 |
transcript.pyannote[279].speaker |
SPEAKER_03 |
transcript.pyannote[279].start |
5444.02409375 |
transcript.pyannote[279].end |
5444.17596875 |
transcript.pyannote[280].speaker |
SPEAKER_04 |
transcript.pyannote[280].start |
5444.17596875 |
transcript.pyannote[280].end |
5444.73284375 |
transcript.pyannote[281].speaker |
SPEAKER_05 |
transcript.pyannote[281].start |
5444.19284375 |
transcript.pyannote[281].end |
5444.74971875 |
transcript.pyannote[282].speaker |
SPEAKER_03 |
transcript.pyannote[282].start |
5444.74971875 |
transcript.pyannote[282].end |
5444.95221875 |
transcript.pyannote[283].speaker |
SPEAKER_05 |
transcript.pyannote[283].start |
5444.95221875 |
transcript.pyannote[283].end |
5444.96909375 |
transcript.pyannote[284].speaker |
SPEAKER_03 |
transcript.pyannote[284].start |
5444.96909375 |
transcript.pyannote[284].end |
5455.80284375 |
transcript.pyannote[285].speaker |
SPEAKER_04 |
transcript.pyannote[285].start |
5447.97284375 |
transcript.pyannote[285].end |
5448.64784375 |
transcript.pyannote[286].speaker |
SPEAKER_05 |
transcript.pyannote[286].start |
5455.00971875 |
transcript.pyannote[286].end |
5458.53659375 |
transcript.pyannote[287].speaker |
SPEAKER_05 |
transcript.pyannote[287].start |
5459.07659375 |
transcript.pyannote[287].end |
5459.83596875 |
transcript.pyannote[288].speaker |
SPEAKER_05 |
transcript.pyannote[288].start |
5460.40971875 |
transcript.pyannote[288].end |
5466.34971875 |
transcript.pyannote[289].speaker |
SPEAKER_05 |
transcript.pyannote[289].start |
5466.78846875 |
transcript.pyannote[289].end |
5484.45659375 |
transcript.pyannote[290].speaker |
SPEAKER_05 |
transcript.pyannote[290].start |
5484.89534375 |
transcript.pyannote[290].end |
5487.17346875 |
transcript.pyannote[291].speaker |
SPEAKER_01 |
transcript.pyannote[291].start |
5488.92846875 |
transcript.pyannote[291].end |
5491.61159375 |
transcript.pyannote[292].speaker |
SPEAKER_01 |
transcript.pyannote[292].start |
5492.08409375 |
transcript.pyannote[292].end |
5500.03221875 |
transcript.pyannote[293].speaker |
SPEAKER_05 |
transcript.pyannote[293].start |
5493.24846875 |
transcript.pyannote[293].end |
5495.96534375 |
transcript.pyannote[294].speaker |
SPEAKER_08 |
transcript.pyannote[294].start |
5495.96534375 |
transcript.pyannote[294].end |
5496.45471875 |
transcript.pyannote[295].speaker |
SPEAKER_03 |
transcript.pyannote[295].start |
5496.45471875 |
transcript.pyannote[295].end |
5498.31096875 |
transcript.pyannote[296].speaker |
SPEAKER_05 |
transcript.pyannote[296].start |
5498.31096875 |
transcript.pyannote[296].end |
5499.12096875 |
transcript.pyannote[297].speaker |
SPEAKER_08 |
transcript.pyannote[297].start |
5499.12096875 |
transcript.pyannote[297].end |
5499.27284375 |
transcript.pyannote[298].speaker |
SPEAKER_08 |
transcript.pyannote[298].start |
5499.32346875 |
transcript.pyannote[298].end |
5499.34034375 |
transcript.pyannote[299].speaker |
SPEAKER_03 |
transcript.pyannote[299].start |
5501.70284375 |
transcript.pyannote[299].end |
5504.52096875 |
transcript.pyannote[300].speaker |
SPEAKER_03 |
transcript.pyannote[300].start |
5504.89221875 |
transcript.pyannote[300].end |
5506.76534375 |
transcript.pyannote[301].speaker |
SPEAKER_01 |
transcript.pyannote[301].start |
5508.73971875 |
transcript.pyannote[301].end |
5514.71346875 |
transcript.pyannote[302].speaker |
SPEAKER_05 |
transcript.pyannote[302].start |
5512.72221875 |
transcript.pyannote[302].end |
5515.38846875 |
transcript.pyannote[303].speaker |
SPEAKER_05 |
transcript.pyannote[303].start |
5515.60784375 |
transcript.pyannote[303].end |
5519.38784375 |
transcript.pyannote[304].speaker |
SPEAKER_05 |
transcript.pyannote[304].start |
5520.26534375 |
transcript.pyannote[304].end |
5532.49971875 |
transcript.pyannote[305].speaker |
SPEAKER_05 |
transcript.pyannote[305].start |
5533.05659375 |
transcript.pyannote[305].end |
5546.40471875 |
transcript.pyannote[306].speaker |
SPEAKER_05 |
transcript.pyannote[306].start |
5547.45096875 |
transcript.pyannote[306].end |
5561.96346875 |
transcript.pyannote[307].speaker |
SPEAKER_09 |
transcript.pyannote[307].start |
5561.96346875 |
transcript.pyannote[307].end |
5562.40221875 |
transcript.pyannote[308].speaker |
SPEAKER_05 |
transcript.pyannote[308].start |
5562.40221875 |
transcript.pyannote[308].end |
5566.51971875 |
transcript.pyannote[309].speaker |
SPEAKER_05 |
transcript.pyannote[309].start |
5566.87409375 |
transcript.pyannote[309].end |
5574.24846875 |
transcript.pyannote[310].speaker |
SPEAKER_05 |
transcript.pyannote[310].start |
5574.29909375 |
transcript.pyannote[310].end |
5574.34971875 |
transcript.pyannote[311].speaker |
SPEAKER_05 |
transcript.pyannote[311].start |
5574.36659375 |
transcript.pyannote[311].end |
5575.12596875 |
transcript.pyannote[312].speaker |
SPEAKER_05 |
transcript.pyannote[312].start |
5575.61534375 |
transcript.pyannote[312].end |
5577.82596875 |
transcript.pyannote[313].speaker |
SPEAKER_05 |
transcript.pyannote[313].start |
5577.97784375 |
transcript.pyannote[313].end |
5582.55096875 |
transcript.pyannote[314].speaker |
SPEAKER_04 |
transcript.pyannote[314].start |
5578.06221875 |
transcript.pyannote[314].end |
5578.77096875 |
transcript.pyannote[315].speaker |
SPEAKER_09 |
transcript.pyannote[315].start |
5579.74971875 |
transcript.pyannote[315].end |
5579.96909375 |
transcript.pyannote[316].speaker |
SPEAKER_05 |
transcript.pyannote[316].start |
5582.88846875 |
transcript.pyannote[316].end |
5585.01471875 |
transcript.pyannote[317].speaker |
SPEAKER_09 |
transcript.pyannote[317].start |
5585.01471875 |
transcript.pyannote[317].end |
5585.03159375 |
transcript.pyannote[318].speaker |
SPEAKER_05 |
transcript.pyannote[318].start |
5585.28471875 |
transcript.pyannote[318].end |
5600.69159375 |
transcript.pyannote[319].speaker |
SPEAKER_09 |
transcript.pyannote[319].start |
5589.70596875 |
transcript.pyannote[319].end |
5589.92534375 |
transcript.pyannote[320].speaker |
SPEAKER_09 |
transcript.pyannote[320].start |
5590.06034375 |
transcript.pyannote[320].end |
5590.95471875 |
transcript.pyannote[321].speaker |
SPEAKER_00 |
transcript.pyannote[321].start |
5596.03409375 |
transcript.pyannote[321].end |
5596.11846875 |
transcript.pyannote[322].speaker |
SPEAKER_04 |
transcript.pyannote[322].start |
5596.11846875 |
transcript.pyannote[322].end |
5596.72596875 |
transcript.pyannote[323].speaker |
SPEAKER_00 |
transcript.pyannote[323].start |
5596.72596875 |
transcript.pyannote[323].end |
5596.75971875 |
transcript.pyannote[324].speaker |
SPEAKER_00 |
transcript.pyannote[324].start |
5597.82284375 |
transcript.pyannote[324].end |
5597.87346875 |
transcript.pyannote[325].speaker |
SPEAKER_04 |
transcript.pyannote[325].start |
5597.87346875 |
transcript.pyannote[325].end |
5598.81846875 |
transcript.pyannote[326].speaker |
SPEAKER_00 |
transcript.pyannote[326].start |
5598.81846875 |
transcript.pyannote[326].end |
5598.90284375 |
transcript.pyannote[327].speaker |
SPEAKER_04 |
transcript.pyannote[327].start |
5598.90284375 |
transcript.pyannote[327].end |
5599.18971875 |
transcript.pyannote[328].speaker |
SPEAKER_00 |
transcript.pyannote[328].start |
5599.18971875 |
transcript.pyannote[328].end |
5599.40909375 |
transcript.pyannote[329].speaker |
SPEAKER_04 |
transcript.pyannote[329].start |
5599.40909375 |
transcript.pyannote[329].end |
5600.10096875 |
transcript.pyannote[330].speaker |
SPEAKER_04 |
transcript.pyannote[330].start |
5600.69159375 |
transcript.pyannote[330].end |
5600.82659375 |
transcript.pyannote[331].speaker |
SPEAKER_05 |
transcript.pyannote[331].start |
5600.82659375 |
transcript.pyannote[331].end |
5607.76221875 |
transcript.pyannote[332].speaker |
SPEAKER_05 |
transcript.pyannote[332].start |
5608.25159375 |
transcript.pyannote[332].end |
5609.55096875 |
transcript.pyannote[333].speaker |
SPEAKER_05 |
transcript.pyannote[333].start |
5610.56346875 |
transcript.pyannote[333].end |
5632.48409375 |
transcript.pyannote[334].speaker |
SPEAKER_05 |
transcript.pyannote[334].start |
5633.59784375 |
transcript.pyannote[334].end |
5637.74909375 |
transcript.pyannote[335].speaker |
SPEAKER_05 |
transcript.pyannote[335].start |
5638.22159375 |
transcript.pyannote[335].end |
5638.94721875 |
transcript.pyannote[336].speaker |
SPEAKER_05 |
transcript.pyannote[336].start |
5639.16659375 |
transcript.pyannote[336].end |
5640.38159375 |
transcript.pyannote[337].speaker |
SPEAKER_05 |
transcript.pyannote[337].start |
5640.55034375 |
transcript.pyannote[337].end |
5652.36284375 |
transcript.pyannote[338].speaker |
SPEAKER_05 |
transcript.pyannote[338].start |
5652.85221875 |
transcript.pyannote[338].end |
5663.82096875 |
transcript.pyannote[339].speaker |
SPEAKER_05 |
transcript.pyannote[339].start |
5664.36096875 |
transcript.pyannote[339].end |
5677.13534375 |
transcript.pyannote[340].speaker |
SPEAKER_05 |
transcript.pyannote[340].start |
5677.65846875 |
transcript.pyannote[340].end |
5679.24471875 |
transcript.pyannote[341].speaker |
SPEAKER_05 |
transcript.pyannote[341].start |
5679.27846875 |
transcript.pyannote[341].end |
5687.83409375 |
transcript.pyannote[342].speaker |
SPEAKER_05 |
transcript.pyannote[342].start |
5687.96909375 |
transcript.pyannote[342].end |
5694.65159375 |
transcript.pyannote[343].speaker |
SPEAKER_05 |
transcript.pyannote[343].start |
5695.15784375 |
transcript.pyannote[343].end |
5699.51159375 |
transcript.pyannote[344].speaker |
SPEAKER_05 |
transcript.pyannote[344].start |
5699.79846875 |
transcript.pyannote[344].end |
5701.24971875 |
transcript.pyannote[345].speaker |
SPEAKER_05 |
transcript.pyannote[345].start |
5701.80659375 |
transcript.pyannote[345].end |
5702.53221875 |
transcript.pyannote[346].speaker |
SPEAKER_05 |
transcript.pyannote[346].start |
5702.93721875 |
transcript.pyannote[346].end |
5706.02534375 |
transcript.pyannote[347].speaker |
SPEAKER_05 |
transcript.pyannote[347].start |
5706.31221875 |
transcript.pyannote[347].end |
5709.01221875 |
transcript.pyannote[348].speaker |
SPEAKER_05 |
transcript.pyannote[348].start |
5709.95721875 |
transcript.pyannote[348].end |
5710.54784375 |
transcript.pyannote[349].speaker |
SPEAKER_05 |
transcript.pyannote[349].start |
5710.83471875 |
transcript.pyannote[349].end |
5712.94409375 |
transcript.pyannote[350].speaker |
SPEAKER_05 |
transcript.pyannote[350].start |
5713.11284375 |
transcript.pyannote[350].end |
5716.31909375 |
transcript.pyannote[351].speaker |
SPEAKER_05 |
transcript.pyannote[351].start |
5716.45409375 |
transcript.pyannote[351].end |
5729.00909375 |
transcript.pyannote[352].speaker |
SPEAKER_05 |
transcript.pyannote[352].start |
5729.66721875 |
transcript.pyannote[352].end |
5730.81471875 |
transcript.pyannote[353].speaker |
SPEAKER_05 |
transcript.pyannote[353].start |
5731.20284375 |
transcript.pyannote[353].end |
5732.29971875 |
transcript.pyannote[354].speaker |
SPEAKER_05 |
transcript.pyannote[354].start |
5733.02534375 |
transcript.pyannote[354].end |
5735.21909375 |
transcript.pyannote[355].speaker |
SPEAKER_05 |
transcript.pyannote[355].start |
5735.67471875 |
transcript.pyannote[355].end |
5745.56346875 |
transcript.pyannote[356].speaker |
SPEAKER_05 |
transcript.pyannote[356].start |
5745.93471875 |
transcript.pyannote[356].end |
5748.09471875 |
transcript.pyannote[357].speaker |
SPEAKER_05 |
transcript.pyannote[357].start |
5748.75284375 |
transcript.pyannote[357].end |
5749.76534375 |
transcript.pyannote[358].speaker |
SPEAKER_05 |
transcript.pyannote[358].start |
5750.27159375 |
transcript.pyannote[358].end |
5752.11096875 |
transcript.pyannote[359].speaker |
SPEAKER_05 |
transcript.pyannote[359].start |
5752.24596875 |
transcript.pyannote[359].end |
5754.03471875 |
transcript.pyannote[360].speaker |
SPEAKER_08 |
transcript.pyannote[360].start |
5752.83659375 |
transcript.pyannote[360].end |
5753.00534375 |
transcript.pyannote[361].speaker |
SPEAKER_05 |
transcript.pyannote[361].start |
5754.16971875 |
transcript.pyannote[361].end |
5755.19909375 |
transcript.pyannote[362].speaker |
SPEAKER_05 |
transcript.pyannote[362].start |
5757.40971875 |
transcript.pyannote[362].end |
5761.37534375 |
transcript.pyannote[363].speaker |
SPEAKER_05 |
transcript.pyannote[363].start |
5761.56096875 |
transcript.pyannote[363].end |
5765.40846875 |
transcript.pyannote[364].speaker |
SPEAKER_05 |
transcript.pyannote[364].start |
5765.79659375 |
transcript.pyannote[364].end |
5785.65846875 |
transcript.pyannote[365].speaker |
SPEAKER_05 |
transcript.pyannote[365].start |
5786.58659375 |
transcript.pyannote[365].end |
5787.71721875 |
transcript.pyannote[366].speaker |
SPEAKER_05 |
transcript.pyannote[366].start |
5788.54409375 |
transcript.pyannote[366].end |
5789.25284375 |
transcript.pyannote[367].speaker |
SPEAKER_05 |
transcript.pyannote[367].start |
5790.02909375 |
transcript.pyannote[367].end |
5790.83909375 |
transcript.pyannote[368].speaker |
SPEAKER_05 |
transcript.pyannote[368].start |
5791.98659375 |
transcript.pyannote[368].end |
5792.64471875 |
transcript.pyannote[369].speaker |
SPEAKER_05 |
transcript.pyannote[369].start |
5793.11721875 |
transcript.pyannote[369].end |
5794.16346875 |
transcript.pyannote[370].speaker |
SPEAKER_05 |
transcript.pyannote[370].start |
5794.55159375 |
transcript.pyannote[370].end |
5795.86784375 |
transcript.pyannote[371].speaker |
SPEAKER_05 |
transcript.pyannote[371].start |
5797.20096875 |
transcript.pyannote[371].end |
5801.01471875 |
transcript.pyannote[372].speaker |
SPEAKER_05 |
transcript.pyannote[372].start |
5801.90909375 |
transcript.pyannote[372].end |
5802.26346875 |
transcript.pyannote[373].speaker |
SPEAKER_05 |
transcript.pyannote[373].start |
5802.44909375 |
transcript.pyannote[373].end |
5808.84471875 |
transcript.pyannote[374].speaker |
SPEAKER_05 |
transcript.pyannote[374].start |
5809.09784375 |
transcript.pyannote[374].end |
5844.13034375 |
transcript.pyannote[375].speaker |
SPEAKER_05 |
transcript.pyannote[375].start |
5844.41721875 |
transcript.pyannote[375].end |
5845.22721875 |
transcript.pyannote[376].speaker |
SPEAKER_05 |
transcript.pyannote[376].start |
5845.36221875 |
transcript.pyannote[376].end |
5861.71409375 |
transcript.pyannote[377].speaker |
SPEAKER_05 |
transcript.pyannote[377].start |
5861.76471875 |
transcript.pyannote[377].end |
5876.17596875 |
transcript.pyannote[378].speaker |
SPEAKER_05 |
transcript.pyannote[378].start |
5876.59784375 |
transcript.pyannote[378].end |
5878.70721875 |
transcript.pyannote[379].speaker |
SPEAKER_05 |
transcript.pyannote[379].start |
5879.07846875 |
transcript.pyannote[379].end |
5882.03159375 |
transcript.pyannote[380].speaker |
SPEAKER_05 |
transcript.pyannote[380].start |
5882.23409375 |
transcript.pyannote[380].end |
5883.71909375 |
transcript.pyannote[381].speaker |
SPEAKER_05 |
transcript.pyannote[381].start |
5884.25909375 |
transcript.pyannote[381].end |
5889.81096875 |
transcript.pyannote[382].speaker |
SPEAKER_05 |
transcript.pyannote[382].start |
5890.18221875 |
transcript.pyannote[382].end |
5902.43346875 |
transcript.pyannote[383].speaker |
SPEAKER_05 |
transcript.pyannote[383].start |
5902.70346875 |
transcript.pyannote[383].end |
5922.54846875 |
transcript.pyannote[384].speaker |
SPEAKER_05 |
transcript.pyannote[384].start |
5922.78471875 |
transcript.pyannote[384].end |
5943.45659375 |
transcript.pyannote[385].speaker |
SPEAKER_05 |
transcript.pyannote[385].start |
5943.87846875 |
transcript.pyannote[385].end |
5973.71346875 |
transcript.pyannote[386].speaker |
SPEAKER_05 |
transcript.pyannote[386].start |
5973.98346875 |
transcript.pyannote[386].end |
6001.94534375 |
transcript.pyannote[387].speaker |
SPEAKER_05 |
transcript.pyannote[387].start |
6002.75534375 |
transcript.pyannote[387].end |
6005.43846875 |
transcript.pyannote[388].speaker |
SPEAKER_03 |
transcript.pyannote[388].start |
6005.06721875 |
transcript.pyannote[388].end |
6005.42159375 |
transcript.pyannote[389].speaker |
SPEAKER_03 |
transcript.pyannote[389].start |
6005.43846875 |
transcript.pyannote[389].end |
6005.74221875 |
transcript.pyannote[390].speaker |
SPEAKER_05 |
transcript.pyannote[390].start |
6005.74221875 |
transcript.pyannote[390].end |
6005.75909375 |
transcript.pyannote[391].speaker |
SPEAKER_05 |
transcript.pyannote[391].start |
6005.92784375 |
transcript.pyannote[391].end |
6064.68659375 |
transcript.pyannote[392].speaker |
SPEAKER_05 |
transcript.pyannote[392].start |
6065.76659375 |
transcript.pyannote[392].end |
6067.75784375 |
transcript.pyannote[393].speaker |
SPEAKER_05 |
transcript.pyannote[393].start |
6068.14596875 |
transcript.pyannote[393].end |
6075.23346875 |
transcript.pyannote[394].speaker |
SPEAKER_05 |
transcript.pyannote[394].start |
6075.53721875 |
transcript.pyannote[394].end |
6076.56659375 |
transcript.pyannote[395].speaker |
SPEAKER_05 |
transcript.pyannote[395].start |
6076.80284375 |
transcript.pyannote[395].end |
6082.16909375 |
transcript.pyannote[396].speaker |
SPEAKER_05 |
transcript.pyannote[396].start |
6082.86096875 |
transcript.pyannote[396].end |
6084.51471875 |
transcript.pyannote[397].speaker |
SPEAKER_05 |
transcript.pyannote[397].start |
6085.57784375 |
transcript.pyannote[397].end |
6086.91096875 |
transcript.pyannote[398].speaker |
SPEAKER_05 |
transcript.pyannote[398].start |
6087.50159375 |
transcript.pyannote[398].end |
6087.82221875 |
transcript.pyannote[399].speaker |
SPEAKER_05 |
transcript.pyannote[399].start |
6088.32846875 |
transcript.pyannote[399].end |
6090.15096875 |
transcript.pyannote[400].speaker |
SPEAKER_05 |
transcript.pyannote[400].start |
6090.47159375 |
transcript.pyannote[400].end |
6091.29846875 |
transcript.pyannote[401].speaker |
SPEAKER_05 |
transcript.pyannote[401].start |
6091.65284375 |
transcript.pyannote[401].end |
6092.19284375 |
transcript.pyannote[402].speaker |
SPEAKER_05 |
transcript.pyannote[402].start |
6093.12096875 |
transcript.pyannote[402].end |
6094.28534375 |
transcript.pyannote[403].speaker |
SPEAKER_05 |
transcript.pyannote[403].start |
6094.43721875 |
transcript.pyannote[403].end |
6094.94346875 |
transcript.pyannote[404].speaker |
SPEAKER_03 |
transcript.pyannote[404].start |
6101.37284375 |
transcript.pyannote[404].end |
6104.22471875 |
transcript.pyannote[405].speaker |
SPEAKER_05 |
transcript.pyannote[405].start |
6115.24409375 |
transcript.pyannote[405].end |
6118.28159375 |
transcript.pyannote[406].speaker |
SPEAKER_05 |
transcript.pyannote[406].start |
6119.47971875 |
transcript.pyannote[406].end |
6152.48721875 |
transcript.pyannote[407].speaker |
SPEAKER_05 |
transcript.pyannote[407].start |
6153.38159375 |
transcript.pyannote[407].end |
6153.88784375 |
transcript.pyannote[408].speaker |
SPEAKER_05 |
transcript.pyannote[408].start |
6155.57534375 |
transcript.pyannote[408].end |
6161.68409375 |
transcript.pyannote[409].speaker |
SPEAKER_05 |
transcript.pyannote[409].start |
6164.23221875 |
transcript.pyannote[409].end |
6173.85096875 |
transcript.pyannote[410].speaker |
SPEAKER_05 |
transcript.pyannote[410].start |
6175.23471875 |
transcript.pyannote[410].end |
6175.84221875 |
transcript.pyannote[411].speaker |
SPEAKER_05 |
transcript.pyannote[411].start |
6176.77034375 |
transcript.pyannote[411].end |
6179.03159375 |
transcript.pyannote[412].speaker |
SPEAKER_07 |
transcript.pyannote[412].start |
6179.03159375 |
transcript.pyannote[412].end |
6190.75971875 |
transcript.pyannote[413].speaker |
SPEAKER_05 |
transcript.pyannote[413].start |
6181.56284375 |
transcript.pyannote[413].end |
6182.79471875 |
transcript.pyannote[414].speaker |
SPEAKER_06 |
transcript.pyannote[414].start |
6182.79471875 |
transcript.pyannote[414].end |
6182.82846875 |
transcript.pyannote[415].speaker |
SPEAKER_05 |
transcript.pyannote[415].start |
6182.82846875 |
transcript.pyannote[415].end |
6182.86221875 |
transcript.pyannote[416].speaker |
SPEAKER_06 |
transcript.pyannote[416].start |
6187.13159375 |
transcript.pyannote[416].end |
6193.02096875 |
transcript.pyannote[417].speaker |
SPEAKER_05 |
transcript.pyannote[417].start |
6190.75971875 |
transcript.pyannote[417].end |
6190.77659375 |
transcript.pyannote[418].speaker |
SPEAKER_05 |
transcript.pyannote[418].start |
6193.00409375 |
transcript.pyannote[418].end |
6196.86846875 |
transcript.pyannote[419].speaker |
SPEAKER_07 |
transcript.pyannote[419].start |
6193.02096875 |
transcript.pyannote[419].end |
6196.88534375 |
transcript.pyannote[420].speaker |
SPEAKER_05 |
transcript.pyannote[420].start |
6196.88534375 |
transcript.pyannote[420].end |
6196.90221875 |
transcript.pyannote[421].speaker |
SPEAKER_07 |
transcript.pyannote[421].start |
6196.90221875 |
transcript.pyannote[421].end |
6196.93596875 |
transcript.pyannote[422].speaker |
SPEAKER_05 |
transcript.pyannote[422].start |
6197.54346875 |
transcript.pyannote[422].end |
6197.59409375 |
transcript.pyannote[423].speaker |
SPEAKER_07 |
transcript.pyannote[423].start |
6197.59409375 |
transcript.pyannote[423].end |
6198.57284375 |
transcript.pyannote[424].speaker |
SPEAKER_05 |
transcript.pyannote[424].start |
6198.57284375 |
transcript.pyannote[424].end |
6198.85971875 |
transcript.pyannote[425].speaker |
SPEAKER_07 |
transcript.pyannote[425].start |
6198.85971875 |
transcript.pyannote[425].end |
6199.82159375 |
transcript.pyannote[426].speaker |
SPEAKER_05 |
transcript.pyannote[426].start |
6199.82159375 |
transcript.pyannote[426].end |
6199.83846875 |
transcript.pyannote[427].speaker |
SPEAKER_07 |
transcript.pyannote[427].start |
6200.86784375 |
transcript.pyannote[427].end |
6218.01284375 |
transcript.pyannote[428].speaker |
SPEAKER_03 |
transcript.pyannote[428].start |
6207.01034375 |
transcript.pyannote[428].end |
6207.04409375 |
transcript.pyannote[429].speaker |
SPEAKER_05 |
transcript.pyannote[429].start |
6207.04409375 |
transcript.pyannote[429].end |
6208.02284375 |
transcript.pyannote[430].speaker |
SPEAKER_04 |
transcript.pyannote[430].start |
6208.02284375 |
transcript.pyannote[430].end |
6210.65534375 |
transcript.pyannote[431].speaker |
SPEAKER_04 |
transcript.pyannote[431].start |
6213.15284375 |
transcript.pyannote[431].end |
6215.73471875 |
transcript.pyannote[432].speaker |
SPEAKER_07 |
transcript.pyannote[432].start |
6218.23221875 |
transcript.pyannote[432].end |
6221.94471875 |
transcript.pyannote[433].speaker |
SPEAKER_05 |
transcript.pyannote[433].start |
6219.27846875 |
transcript.pyannote[433].end |
6219.29534375 |
transcript.pyannote[434].speaker |
SPEAKER_04 |
transcript.pyannote[434].start |
6219.29534375 |
transcript.pyannote[434].end |
6220.59471875 |
transcript.pyannote[435].speaker |
SPEAKER_05 |
transcript.pyannote[435].start |
6220.59471875 |
transcript.pyannote[435].end |
6220.66221875 |
transcript.pyannote[436].speaker |
SPEAKER_07 |
transcript.pyannote[436].start |
6223.29471875 |
transcript.pyannote[436].end |
6232.47471875 |
transcript.pyannote[437].speaker |
SPEAKER_00 |
transcript.pyannote[437].start |
6227.00721875 |
transcript.pyannote[437].end |
6227.02409375 |
transcript.pyannote[438].speaker |
SPEAKER_05 |
transcript.pyannote[438].start |
6227.02409375 |
transcript.pyannote[438].end |
6227.96909375 |
transcript.pyannote[439].speaker |
SPEAKER_00 |
transcript.pyannote[439].start |
6227.96909375 |
transcript.pyannote[439].end |
6228.03659375 |
transcript.pyannote[440].speaker |
SPEAKER_05 |
transcript.pyannote[440].start |
6228.03659375 |
transcript.pyannote[440].end |
6229.31909375 |
transcript.pyannote[441].speaker |
SPEAKER_05 |
transcript.pyannote[441].start |
6230.55096875 |
transcript.pyannote[441].end |
6230.60159375 |
transcript.pyannote[442].speaker |
SPEAKER_05 |
transcript.pyannote[442].start |
6230.80409375 |
transcript.pyannote[442].end |
6232.05284375 |
transcript.pyannote[443].speaker |
SPEAKER_05 |
transcript.pyannote[443].start |
6232.47471875 |
transcript.pyannote[443].end |
6232.74471875 |
transcript.pyannote[444].speaker |
SPEAKER_07 |
transcript.pyannote[444].start |
6232.74471875 |
transcript.pyannote[444].end |
6232.96409375 |
transcript.pyannote[445].speaker |
SPEAKER_05 |
transcript.pyannote[445].start |
6232.96409375 |
transcript.pyannote[445].end |
6233.47034375 |
transcript.pyannote[446].speaker |
SPEAKER_07 |
transcript.pyannote[446].start |
6233.47034375 |
transcript.pyannote[446].end |
6233.72346875 |
transcript.pyannote[447].speaker |
SPEAKER_05 |
transcript.pyannote[447].start |
6233.72346875 |
transcript.pyannote[447].end |
6239.03909375 |
transcript.pyannote[448].speaker |
SPEAKER_07 |
transcript.pyannote[448].start |
6239.03909375 |
transcript.pyannote[448].end |
6249.18096875 |
transcript.pyannote[449].speaker |
SPEAKER_05 |
transcript.pyannote[449].start |
6240.20346875 |
transcript.pyannote[449].end |
6240.30471875 |
transcript.pyannote[450].speaker |
SPEAKER_04 |
transcript.pyannote[450].start |
6243.17346875 |
transcript.pyannote[450].end |
6243.19034375 |
transcript.pyannote[451].speaker |
SPEAKER_05 |
transcript.pyannote[451].start |
6243.19034375 |
transcript.pyannote[451].end |
6243.32534375 |
transcript.pyannote[452].speaker |
SPEAKER_04 |
transcript.pyannote[452].start |
6243.32534375 |
transcript.pyannote[452].end |
6243.59534375 |
transcript.pyannote[453].speaker |
SPEAKER_05 |
transcript.pyannote[453].start |
6244.28721875 |
transcript.pyannote[453].end |
6245.97471875 |
transcript.pyannote[454].speaker |
SPEAKER_04 |
transcript.pyannote[454].start |
6245.97471875 |
transcript.pyannote[454].end |
6247.94909375 |
transcript.pyannote[455].speaker |
SPEAKER_04 |
transcript.pyannote[455].start |
6248.40471875 |
transcript.pyannote[455].end |
6262.96784375 |
transcript.pyannote[456].speaker |
SPEAKER_05 |
transcript.pyannote[456].start |
6249.18096875 |
transcript.pyannote[456].end |
6249.24846875 |
transcript.pyannote[457].speaker |
SPEAKER_05 |
transcript.pyannote[457].start |
6250.61534375 |
transcript.pyannote[457].end |
6250.93596875 |
transcript.pyannote[458].speaker |
SPEAKER_07 |
transcript.pyannote[458].start |
6252.50534375 |
transcript.pyannote[458].end |
6252.60659375 |
transcript.pyannote[459].speaker |
SPEAKER_07 |
transcript.pyannote[459].start |
6252.92721875 |
transcript.pyannote[459].end |
6253.55159375 |
transcript.pyannote[460].speaker |
SPEAKER_10 |
transcript.pyannote[460].start |
6253.55159375 |
transcript.pyannote[460].end |
6253.65284375 |
transcript.pyannote[461].speaker |
SPEAKER_05 |
transcript.pyannote[461].start |
6262.96784375 |
transcript.pyannote[461].end |
6271.27034375 |
transcript.pyannote[462].speaker |
SPEAKER_05 |
transcript.pyannote[462].start |
6271.40534375 |
transcript.pyannote[462].end |
6274.54409375 |
transcript.pyannote[463].speaker |
SPEAKER_05 |
transcript.pyannote[463].start |
6276.19784375 |
transcript.pyannote[463].end |
6277.61534375 |
transcript.pyannote[464].speaker |
SPEAKER_05 |
transcript.pyannote[464].start |
6278.08784375 |
transcript.pyannote[464].end |
6278.72909375 |
transcript.pyannote[465].speaker |
SPEAKER_05 |
transcript.pyannote[465].start |
6279.72471875 |
transcript.pyannote[465].end |
6280.18034375 |
transcript.pyannote[466].speaker |
SPEAKER_05 |
transcript.pyannote[466].start |
6283.09971875 |
transcript.pyannote[466].end |
6283.52159375 |
transcript.pyannote[467].speaker |
SPEAKER_05 |
transcript.pyannote[467].start |
6283.92659375 |
transcript.pyannote[467].end |
6285.14159375 |
transcript.pyannote[468].speaker |
SPEAKER_00 |
transcript.pyannote[468].start |
6283.99409375 |
transcript.pyannote[468].end |
6284.39909375 |
transcript.pyannote[469].speaker |
SPEAKER_05 |
transcript.pyannote[469].start |
6285.54659375 |
transcript.pyannote[469].end |
6286.20471875 |
transcript.pyannote[470].speaker |
SPEAKER_05 |
transcript.pyannote[470].start |
6286.82909375 |
transcript.pyannote[470].end |
6289.66409375 |
transcript.pyannote[471].speaker |
SPEAKER_05 |
transcript.pyannote[471].start |
6292.41471875 |
transcript.pyannote[471].end |
6294.87846875 |
transcript.pyannote[472].speaker |
SPEAKER_05 |
transcript.pyannote[472].start |
6296.71784375 |
transcript.pyannote[472].end |
6298.23659375 |
transcript.pyannote[473].speaker |
SPEAKER_05 |
transcript.pyannote[473].start |
6324.64596875 |
transcript.pyannote[473].end |
6330.77159375 |
transcript.pyannote[474].speaker |
SPEAKER_05 |
transcript.pyannote[474].start |
6331.37909375 |
transcript.pyannote[474].end |
6335.90159375 |
transcript.pyannote[475].speaker |
SPEAKER_05 |
transcript.pyannote[475].start |
6335.96909375 |
transcript.pyannote[475].end |
6338.16284375 |
transcript.pyannote[476].speaker |
SPEAKER_05 |
transcript.pyannote[476].start |
6338.36534375 |
transcript.pyannote[476].end |
6341.90909375 |
transcript.pyannote[477].speaker |
SPEAKER_04 |
transcript.pyannote[477].start |
6341.90909375 |
transcript.pyannote[477].end |
6342.28034375 |
transcript.pyannote[478].speaker |
SPEAKER_05 |
transcript.pyannote[478].start |
6342.28034375 |
transcript.pyannote[478].end |
6343.46159375 |
transcript.pyannote[479].speaker |
SPEAKER_05 |
transcript.pyannote[479].start |
6343.59659375 |
transcript.pyannote[479].end |
6349.89096875 |
transcript.pyannote[480].speaker |
SPEAKER_05 |
transcript.pyannote[480].start |
6350.81909375 |
transcript.pyannote[480].end |
6352.72596875 |
transcript.pyannote[481].speaker |
SPEAKER_05 |
transcript.pyannote[481].start |
6353.04659375 |
transcript.pyannote[481].end |
6369.39846875 |
transcript.pyannote[482].speaker |
SPEAKER_05 |
transcript.pyannote[482].start |
6369.51659375 |
transcript.pyannote[482].end |
6375.97971875 |
transcript.pyannote[483].speaker |
SPEAKER_05 |
transcript.pyannote[483].start |
6377.92034375 |
transcript.pyannote[483].end |
6378.25784375 |
transcript.pyannote[484].speaker |
SPEAKER_05 |
transcript.pyannote[484].start |
6379.20284375 |
transcript.pyannote[484].end |
6379.67534375 |
transcript.pyannote[485].speaker |
SPEAKER_05 |
transcript.pyannote[485].start |
6379.87784375 |
transcript.pyannote[485].end |
6385.12596875 |
transcript.pyannote[486].speaker |
SPEAKER_05 |
transcript.pyannote[486].start |
6385.31159375 |
transcript.pyannote[486].end |
6390.64409375 |
transcript.pyannote[487].speaker |
SPEAKER_09 |
transcript.pyannote[487].start |
6390.64409375 |
transcript.pyannote[487].end |
6390.98159375 |
transcript.pyannote[488].speaker |
SPEAKER_05 |
transcript.pyannote[488].start |
6391.13346875 |
transcript.pyannote[488].end |
6395.63909375 |
transcript.pyannote[489].speaker |
SPEAKER_05 |
transcript.pyannote[489].start |
6396.14534375 |
transcript.pyannote[489].end |
6406.13534375 |
transcript.pyannote[490].speaker |
SPEAKER_05 |
transcript.pyannote[490].start |
6406.48971875 |
transcript.pyannote[490].end |
6412.63221875 |
transcript.pyannote[491].speaker |
SPEAKER_05 |
transcript.pyannote[491].start |
6413.00346875 |
transcript.pyannote[491].end |
6426.62159375 |
transcript.pyannote[492].speaker |
SPEAKER_05 |
transcript.pyannote[492].start |
6426.97596875 |
transcript.pyannote[492].end |
6427.63409375 |
transcript.pyannote[493].speaker |
SPEAKER_05 |
transcript.pyannote[493].start |
6428.07284375 |
transcript.pyannote[493].end |
6428.89971875 |
transcript.pyannote[494].speaker |
SPEAKER_05 |
transcript.pyannote[494].start |
6428.91659375 |
transcript.pyannote[494].end |
6429.42284375 |
transcript.pyannote[495].speaker |
SPEAKER_05 |
transcript.pyannote[495].start |
6429.76034375 |
transcript.pyannote[495].end |
6441.96096875 |
transcript.pyannote[496].speaker |
SPEAKER_05 |
transcript.pyannote[496].start |
6442.07909375 |
transcript.pyannote[496].end |
6455.00534375 |
transcript.pyannote[497].speaker |
SPEAKER_05 |
transcript.pyannote[497].start |
6455.32596875 |
transcript.pyannote[497].end |
6456.13596875 |
transcript.pyannote[498].speaker |
SPEAKER_05 |
transcript.pyannote[498].start |
6456.54096875 |
transcript.pyannote[498].end |
6460.52346875 |
transcript.pyannote[499].speaker |
SPEAKER_05 |
transcript.pyannote[499].start |
6460.79346875 |
transcript.pyannote[499].end |
6461.60346875 |
transcript.pyannote[500].speaker |
SPEAKER_05 |
transcript.pyannote[500].start |
6461.89034375 |
transcript.pyannote[500].end |
6462.19409375 |
transcript.pyannote[501].speaker |
SPEAKER_05 |
transcript.pyannote[501].start |
6462.71721875 |
transcript.pyannote[501].end |
6467.54346875 |
transcript.pyannote[502].speaker |
SPEAKER_05 |
transcript.pyannote[502].start |
6467.72909375 |
transcript.pyannote[502].end |
6469.56846875 |
transcript.pyannote[503].speaker |
SPEAKER_05 |
transcript.pyannote[503].start |
6470.02409375 |
transcript.pyannote[503].end |
6473.04471875 |
transcript.pyannote[504].speaker |
SPEAKER_05 |
transcript.pyannote[504].start |
6473.56784375 |
transcript.pyannote[504].end |
6481.09409375 |
transcript.pyannote[505].speaker |
SPEAKER_05 |
transcript.pyannote[505].start |
6481.43159375 |
transcript.pyannote[505].end |
6486.52784375 |
transcript.pyannote[506].speaker |
SPEAKER_05 |
transcript.pyannote[506].start |
6487.08471875 |
transcript.pyannote[506].end |
6519.87284375 |
transcript.pyannote[507].speaker |
SPEAKER_05 |
transcript.pyannote[507].start |
6520.27784375 |
transcript.pyannote[507].end |
6527.16284375 |
transcript.pyannote[508].speaker |
SPEAKER_05 |
transcript.pyannote[508].start |
6527.61846875 |
transcript.pyannote[508].end |
6530.53784375 |
transcript.pyannote[509].speaker |
SPEAKER_05 |
transcript.pyannote[509].start |
6531.04409375 |
transcript.pyannote[509].end |
6532.00596875 |
transcript.pyannote[510].speaker |
SPEAKER_05 |
transcript.pyannote[510].start |
6532.25909375 |
transcript.pyannote[510].end |
6533.01846875 |
transcript.pyannote[511].speaker |
SPEAKER_05 |
transcript.pyannote[511].start |
6533.38971875 |
transcript.pyannote[511].end |
6542.99159375 |
transcript.pyannote[512].speaker |
SPEAKER_05 |
transcript.pyannote[512].start |
6543.44721875 |
transcript.pyannote[512].end |
6544.86471875 |
transcript.pyannote[513].speaker |
SPEAKER_05 |
transcript.pyannote[513].start |
6545.23596875 |
transcript.pyannote[513].end |
6549.15096875 |
transcript.pyannote[514].speaker |
SPEAKER_05 |
transcript.pyannote[514].start |
6549.60659375 |
transcript.pyannote[514].end |
6550.07909375 |
transcript.pyannote[515].speaker |
SPEAKER_05 |
transcript.pyannote[515].start |
6551.07471875 |
transcript.pyannote[515].end |
6552.42471875 |
transcript.pyannote[516].speaker |
SPEAKER_05 |
transcript.pyannote[516].start |
6553.11659375 |
transcript.pyannote[516].end |
6553.92659375 |
transcript.pyannote[517].speaker |
SPEAKER_05 |
transcript.pyannote[517].start |
6555.78284375 |
transcript.pyannote[517].end |
6558.66846875 |
transcript.pyannote[518].speaker |
SPEAKER_05 |
transcript.pyannote[518].start |
6559.17471875 |
transcript.pyannote[518].end |
6561.67221875 |
transcript.pyannote[519].speaker |
SPEAKER_05 |
transcript.pyannote[519].start |
6562.97159375 |
transcript.pyannote[519].end |
6568.23659375 |
transcript.pyannote[520].speaker |
SPEAKER_05 |
transcript.pyannote[520].start |
6568.32096875 |
transcript.pyannote[520].end |
6583.15409375 |
transcript.pyannote[521].speaker |
SPEAKER_05 |
transcript.pyannote[521].start |
6583.76159375 |
transcript.pyannote[521].end |
6585.70221875 |
transcript.pyannote[522].speaker |
SPEAKER_05 |
transcript.pyannote[522].start |
6585.95534375 |
transcript.pyannote[522].end |
6590.12346875 |
transcript.pyannote[523].speaker |
SPEAKER_05 |
transcript.pyannote[523].start |
6590.79846875 |
transcript.pyannote[523].end |
6595.45596875 |
transcript.pyannote[524].speaker |
SPEAKER_05 |
transcript.pyannote[524].start |
6595.91159375 |
transcript.pyannote[524].end |
6601.93596875 |
transcript.pyannote[525].speaker |
SPEAKER_05 |
transcript.pyannote[525].start |
6602.40846875 |
transcript.pyannote[525].end |
6604.39971875 |
transcript.pyannote[526].speaker |
SPEAKER_05 |
transcript.pyannote[526].start |
6604.77096875 |
transcript.pyannote[526].end |
6605.73284375 |
transcript.pyannote[527].speaker |
SPEAKER_05 |
transcript.pyannote[527].start |
6606.40784375 |
transcript.pyannote[527].end |
6607.28534375 |
transcript.pyannote[528].speaker |
SPEAKER_05 |
transcript.pyannote[528].start |
6607.72409375 |
transcript.pyannote[528].end |
6610.37346875 |
transcript.pyannote[529].speaker |
SPEAKER_05 |
transcript.pyannote[529].start |
6610.98096875 |
transcript.pyannote[529].end |
6611.26784375 |
transcript.pyannote[530].speaker |
SPEAKER_05 |
transcript.pyannote[530].start |
6612.49971875 |
transcript.pyannote[530].end |
6613.84971875 |
transcript.pyannote[531].speaker |
SPEAKER_05 |
transcript.pyannote[531].start |
6613.95096875 |
transcript.pyannote[531].end |
6614.60909375 |
transcript.pyannote[532].speaker |
SPEAKER_05 |
transcript.pyannote[532].start |
6617.15721875 |
transcript.pyannote[532].end |
6617.91659375 |
transcript.pyannote[533].speaker |
SPEAKER_05 |
transcript.pyannote[533].start |
6622.06784375 |
transcript.pyannote[533].end |
6631.09596875 |
transcript.pyannote[534].speaker |
SPEAKER_05 |
transcript.pyannote[534].start |
6631.21409375 |
transcript.pyannote[534].end |
6647.38034375 |
transcript.pyannote[535].speaker |
SPEAKER_05 |
transcript.pyannote[535].start |
6647.92034375 |
transcript.pyannote[535].end |
6648.40971875 |
transcript.pyannote[536].speaker |
SPEAKER_05 |
transcript.pyannote[536].start |
6648.96659375 |
transcript.pyannote[536].end |
6684.84284375 |
transcript.pyannote[537].speaker |
SPEAKER_05 |
transcript.pyannote[537].start |
6685.75409375 |
transcript.pyannote[537].end |
6691.57596875 |
transcript.pyannote[538].speaker |
SPEAKER_05 |
transcript.pyannote[538].start |
6691.86284375 |
transcript.pyannote[538].end |
6705.17721875 |
transcript.pyannote[539].speaker |
SPEAKER_05 |
transcript.pyannote[539].start |
6705.97034375 |
transcript.pyannote[539].end |
6707.72534375 |
transcript.pyannote[540].speaker |
SPEAKER_05 |
transcript.pyannote[540].start |
6708.13034375 |
transcript.pyannote[540].end |
6720.01034375 |
transcript.pyannote[541].speaker |
SPEAKER_05 |
transcript.pyannote[541].start |
6720.38159375 |
transcript.pyannote[541].end |
6747.24659375 |
transcript.pyannote[542].speaker |
SPEAKER_05 |
transcript.pyannote[542].start |
6747.48284375 |
transcript.pyannote[542].end |
6748.79909375 |
transcript.pyannote[543].speaker |
SPEAKER_05 |
transcript.pyannote[543].start |
6749.23784375 |
transcript.pyannote[543].end |
6750.41909375 |
transcript.pyannote[544].speaker |
SPEAKER_05 |
transcript.pyannote[544].start |
6751.27971875 |
transcript.pyannote[544].end |
6753.28784375 |
transcript.pyannote[545].speaker |
SPEAKER_05 |
transcript.pyannote[545].start |
6754.09784375 |
transcript.pyannote[545].end |
6754.72221875 |
transcript.pyannote[546].speaker |
SPEAKER_05 |
transcript.pyannote[546].start |
6755.78534375 |
transcript.pyannote[546].end |
6756.32534375 |
transcript.pyannote[547].speaker |
SPEAKER_05 |
transcript.pyannote[547].start |
6757.64159375 |
transcript.pyannote[547].end |
6759.27846875 |
transcript.pyannote[548].speaker |
SPEAKER_05 |
transcript.pyannote[548].start |
6760.22346875 |
transcript.pyannote[548].end |
6760.44284375 |
transcript.pyannote[549].speaker |
SPEAKER_05 |
transcript.pyannote[549].start |
6760.96596875 |
transcript.pyannote[549].end |
6774.41534375 |
transcript.pyannote[550].speaker |
SPEAKER_05 |
transcript.pyannote[550].start |
6775.19159375 |
transcript.pyannote[550].end |
6778.71846875 |
transcript.pyannote[551].speaker |
SPEAKER_05 |
transcript.pyannote[551].start |
6780.27096875 |
transcript.pyannote[551].end |
6780.79409375 |
transcript.pyannote[552].speaker |
SPEAKER_05 |
transcript.pyannote[552].start |
6781.97534375 |
transcript.pyannote[552].end |
6788.28659375 |
transcript.pyannote[553].speaker |
SPEAKER_05 |
transcript.pyannote[553].start |
6788.86034375 |
transcript.pyannote[553].end |
6793.07909375 |
transcript.pyannote[554].speaker |
SPEAKER_05 |
transcript.pyannote[554].start |
6793.97346875 |
transcript.pyannote[554].end |
6795.18846875 |
transcript.pyannote[555].speaker |
SPEAKER_05 |
transcript.pyannote[555].start |
6795.57659375 |
transcript.pyannote[555].end |
6797.97284375 |
transcript.pyannote[556].speaker |
SPEAKER_05 |
transcript.pyannote[556].start |
6798.39471875 |
transcript.pyannote[556].end |
6800.90909375 |
transcript.pyannote[557].speaker |
SPEAKER_05 |
transcript.pyannote[557].start |
6801.95534375 |
transcript.pyannote[557].end |
6802.69784375 |
transcript.pyannote[558].speaker |
SPEAKER_05 |
transcript.pyannote[558].start |
6803.92971875 |
transcript.pyannote[558].end |
6810.61221875 |
transcript.pyannote[559].speaker |
SPEAKER_05 |
transcript.pyannote[559].start |
6812.19846875 |
transcript.pyannote[559].end |
6816.06284375 |
transcript.pyannote[560].speaker |
SPEAKER_05 |
transcript.pyannote[560].start |
6816.53534375 |
transcript.pyannote[560].end |
6819.03284375 |
transcript.pyannote[561].speaker |
SPEAKER_05 |
transcript.pyannote[561].start |
6819.43784375 |
transcript.pyannote[561].end |
6828.93846875 |
transcript.pyannote[562].speaker |
SPEAKER_05 |
transcript.pyannote[562].start |
6829.46159375 |
transcript.pyannote[562].end |
6830.32221875 |
transcript.pyannote[563].speaker |
SPEAKER_05 |
transcript.pyannote[563].start |
6830.49096875 |
transcript.pyannote[563].end |
6834.10221875 |
transcript.pyannote[564].speaker |
SPEAKER_05 |
transcript.pyannote[564].start |
6834.67596875 |
transcript.pyannote[564].end |
6837.46034375 |
transcript.pyannote[565].speaker |
SPEAKER_05 |
transcript.pyannote[565].start |
6837.88221875 |
transcript.pyannote[565].end |
6839.23221875 |
transcript.pyannote[566].speaker |
SPEAKER_05 |
transcript.pyannote[566].start |
6839.82284375 |
transcript.pyannote[566].end |
6841.74659375 |
transcript.pyannote[567].speaker |
SPEAKER_05 |
transcript.pyannote[567].start |
6842.55659375 |
transcript.pyannote[567].end |
6845.10471875 |
transcript.pyannote[568].speaker |
SPEAKER_05 |
transcript.pyannote[568].start |
6846.30284375 |
transcript.pyannote[568].end |
6846.82596875 |
transcript.pyannote[569].speaker |
SPEAKER_05 |
transcript.pyannote[569].start |
6846.92721875 |
transcript.pyannote[569].end |
6847.56846875 |
transcript.pyannote[570].speaker |
SPEAKER_05 |
transcript.pyannote[570].start |
6848.68221875 |
transcript.pyannote[570].end |
6852.58034375 |
transcript.pyannote[571].speaker |
SPEAKER_05 |
transcript.pyannote[571].start |
6853.57596875 |
transcript.pyannote[571].end |
6856.42784375 |
transcript.pyannote[572].speaker |
SPEAKER_05 |
transcript.pyannote[572].start |
6859.21221875 |
transcript.pyannote[572].end |
6859.92096875 |
transcript.pyannote[573].speaker |
SPEAKER_05 |
transcript.pyannote[573].start |
6860.52846875 |
transcript.pyannote[573].end |
6861.20346875 |
transcript.pyannote[574].speaker |
SPEAKER_05 |
transcript.pyannote[574].start |
6862.38471875 |
transcript.pyannote[574].end |
6863.46471875 |
transcript.pyannote[575].speaker |
SPEAKER_05 |
transcript.pyannote[575].start |
6864.05534375 |
transcript.pyannote[575].end |
6865.01721875 |
transcript.pyannote[576].speaker |
SPEAKER_05 |
transcript.pyannote[576].start |
6866.73846875 |
transcript.pyannote[576].end |
6867.76784375 |
transcript.pyannote[577].speaker |
SPEAKER_05 |
transcript.pyannote[577].start |
6870.45096875 |
transcript.pyannote[577].end |
6872.45909375 |
transcript.pyannote[578].speaker |
SPEAKER_05 |
transcript.pyannote[578].start |
6874.68659375 |
transcript.pyannote[578].end |
6875.81721875 |
transcript.pyannote[579].speaker |
SPEAKER_05 |
transcript.pyannote[579].start |
6877.50471875 |
transcript.pyannote[579].end |
6879.41159375 |
transcript.pyannote[580].speaker |
SPEAKER_05 |
transcript.pyannote[580].start |
6884.84534375 |
transcript.pyannote[580].end |
6886.44846875 |
transcript.pyannote[581].speaker |
SPEAKER_05 |
transcript.pyannote[581].start |
6888.37221875 |
transcript.pyannote[581].end |
6890.78534375 |
transcript.pyannote[582].speaker |
SPEAKER_05 |
transcript.pyannote[582].start |
6890.97096875 |
transcript.pyannote[582].end |
6891.03846875 |
transcript.pyannote[583].speaker |
SPEAKER_05 |
transcript.pyannote[583].start |
6891.13971875 |
transcript.pyannote[583].end |
6892.06784375 |
transcript.pyannote[584].speaker |
SPEAKER_04 |
transcript.pyannote[584].start |
6892.06784375 |
transcript.pyannote[584].end |
6892.10159375 |
transcript.pyannote[585].speaker |
SPEAKER_04 |
transcript.pyannote[585].start |
6893.68784375 |
transcript.pyannote[585].end |
6893.70471875 |
transcript.pyannote[586].speaker |
SPEAKER_05 |
transcript.pyannote[586].start |
6893.70471875 |
transcript.pyannote[586].end |
6894.41346875 |
transcript.pyannote[587].speaker |
SPEAKER_05 |
transcript.pyannote[587].start |
6895.32471875 |
transcript.pyannote[587].end |
6896.15159375 |
transcript.pyannote[588].speaker |
SPEAKER_05 |
transcript.pyannote[588].start |
6897.72096875 |
transcript.pyannote[588].end |
6900.70784375 |
transcript.pyannote[589].speaker |
SPEAKER_05 |
transcript.pyannote[589].start |
6902.00721875 |
transcript.pyannote[589].end |
6907.98096875 |
transcript.pyannote[590].speaker |
SPEAKER_05 |
transcript.pyannote[590].start |
6908.52096875 |
transcript.pyannote[590].end |
6915.10221875 |
transcript.pyannote[591].speaker |
SPEAKER_05 |
transcript.pyannote[591].start |
6915.40596875 |
transcript.pyannote[591].end |
6917.17784375 |
transcript.pyannote[592].speaker |
SPEAKER_05 |
transcript.pyannote[592].start |
6917.90346875 |
transcript.pyannote[592].end |
6919.50659375 |
transcript.pyannote[593].speaker |
SPEAKER_05 |
transcript.pyannote[593].start |
6919.77659375 |
transcript.pyannote[593].end |
6920.33346875 |
transcript.pyannote[594].speaker |
SPEAKER_05 |
transcript.pyannote[594].start |
6920.83971875 |
transcript.pyannote[594].end |
6923.42159375 |
transcript.pyannote[595].speaker |
SPEAKER_05 |
transcript.pyannote[595].start |
6923.82659375 |
transcript.pyannote[595].end |
6938.64284375 |
transcript.pyannote[596].speaker |
SPEAKER_05 |
transcript.pyannote[596].start |
6941.71409375 |
transcript.pyannote[596].end |
6946.81034375 |
transcript.pyannote[597].speaker |
SPEAKER_05 |
transcript.pyannote[597].start |
6949.02096875 |
transcript.pyannote[597].end |
6951.58596875 |
transcript.pyannote[598].speaker |
SPEAKER_05 |
transcript.pyannote[598].start |
6953.25659375 |
transcript.pyannote[598].end |
6954.20159375 |
transcript.pyannote[599].speaker |
SPEAKER_05 |
transcript.pyannote[599].start |
6960.71534375 |
transcript.pyannote[599].end |
6961.86284375 |
transcript.pyannote[600].speaker |
SPEAKER_05 |
transcript.pyannote[600].start |
6961.87971875 |
transcript.pyannote[600].end |
6964.07346875 |
transcript.pyannote[601].speaker |
SPEAKER_05 |
transcript.pyannote[601].start |
6965.27159375 |
transcript.pyannote[601].end |
6966.67221875 |
transcript.pyannote[602].speaker |
SPEAKER_05 |
transcript.pyannote[602].start |
6968.71409375 |
transcript.pyannote[602].end |
6969.23721875 |
transcript.pyannote[603].speaker |
SPEAKER_05 |
transcript.pyannote[603].start |
6972.22409375 |
transcript.pyannote[603].end |
6972.86534375 |
transcript.pyannote[604].speaker |
SPEAKER_05 |
transcript.pyannote[604].start |
6973.25346875 |
transcript.pyannote[604].end |
6974.83971875 |
transcript.pyannote[605].speaker |
SPEAKER_05 |
transcript.pyannote[605].start |
6975.22784375 |
transcript.pyannote[605].end |
6976.56096875 |
transcript.pyannote[606].speaker |
SPEAKER_05 |
transcript.pyannote[606].start |
6976.93221875 |
transcript.pyannote[606].end |
6979.86846875 |
transcript.pyannote[607].speaker |
SPEAKER_05 |
transcript.pyannote[607].start |
6980.88096875 |
transcript.pyannote[607].end |
6982.19721875 |
transcript.pyannote[608].speaker |
SPEAKER_03 |
transcript.pyannote[608].start |
6994.22909375 |
transcript.pyannote[608].end |
6994.39784375 |
transcript.pyannote[609].speaker |
SPEAKER_05 |
transcript.pyannote[609].start |
6994.39784375 |
transcript.pyannote[609].end |
6994.68471875 |
transcript.pyannote[610].speaker |
SPEAKER_03 |
transcript.pyannote[610].start |
6994.68471875 |
transcript.pyannote[610].end |
6994.71846875 |
transcript.pyannote[611].speaker |
SPEAKER_05 |
transcript.pyannote[611].start |
6998.11034375 |
transcript.pyannote[611].end |
6999.62909375 |
transcript.pyannote[612].speaker |
SPEAKER_05 |
transcript.pyannote[612].start |
6999.88221875 |
transcript.pyannote[612].end |
7003.99971875 |
transcript.pyannote[613].speaker |
SPEAKER_05 |
transcript.pyannote[613].start |
7006.02471875 |
transcript.pyannote[613].end |
7007.03721875 |
transcript.pyannote[614].speaker |
SPEAKER_05 |
transcript.pyannote[614].start |
7009.07909375 |
transcript.pyannote[614].end |
7011.32346875 |
transcript.pyannote[615].speaker |
SPEAKER_05 |
transcript.pyannote[615].start |
7011.96471875 |
transcript.pyannote[615].end |
7014.56346875 |
transcript.pyannote[616].speaker |
SPEAKER_05 |
transcript.pyannote[616].start |
7015.12034375 |
transcript.pyannote[616].end |
7015.81221875 |
transcript.pyannote[617].speaker |
SPEAKER_05 |
transcript.pyannote[617].start |
7017.61784375 |
transcript.pyannote[617].end |
7018.52909375 |
transcript.pyannote[618].speaker |
SPEAKER_05 |
transcript.pyannote[618].start |
7018.98471875 |
transcript.pyannote[618].end |
7030.24034375 |
transcript.pyannote[619].speaker |
SPEAKER_05 |
transcript.pyannote[619].start |
7031.18534375 |
transcript.pyannote[619].end |
7032.07971875 |
transcript.pyannote[620].speaker |
SPEAKER_05 |
transcript.pyannote[620].start |
7039.53846875 |
transcript.pyannote[620].end |
7041.15846875 |
transcript.pyannote[621].speaker |
SPEAKER_04 |
transcript.pyannote[621].start |
7040.09534375 |
transcript.pyannote[621].end |
7040.24721875 |
transcript.pyannote[622].speaker |
SPEAKER_03 |
transcript.pyannote[622].start |
7040.24721875 |
transcript.pyannote[622].end |
7040.26409375 |
transcript.pyannote[623].speaker |
SPEAKER_05 |
transcript.pyannote[623].start |
7042.25534375 |
transcript.pyannote[623].end |
7042.69409375 |
transcript.pyannote[624].speaker |
SPEAKER_05 |
transcript.pyannote[624].start |
7044.04409375 |
transcript.pyannote[624].end |
7047.41909375 |
transcript.pyannote[625].speaker |
SPEAKER_05 |
transcript.pyannote[625].start |
7047.77346875 |
transcript.pyannote[625].end |
7049.89971875 |
transcript.pyannote[626].speaker |
SPEAKER_05 |
transcript.pyannote[626].start |
7051.38471875 |
transcript.pyannote[626].end |
7054.06784375 |
transcript.pyannote[627].speaker |
SPEAKER_05 |
transcript.pyannote[627].start |
7054.40534375 |
transcript.pyannote[627].end |
7057.24034375 |
transcript.pyannote[628].speaker |
SPEAKER_05 |
transcript.pyannote[628].start |
7061.12159375 |
transcript.pyannote[628].end |
7061.96534375 |
transcript.pyannote[629].speaker |
SPEAKER_09 |
transcript.pyannote[629].start |
7061.96534375 |
transcript.pyannote[629].end |
7062.03284375 |
transcript.pyannote[630].speaker |
SPEAKER_05 |
transcript.pyannote[630].start |
7063.14659375 |
transcript.pyannote[630].end |
7066.57221875 |
transcript.pyannote[631].speaker |
SPEAKER_05 |
transcript.pyannote[631].start |
7067.98971875 |
transcript.pyannote[631].end |
7086.19784375 |
transcript.pyannote[632].speaker |
SPEAKER_05 |
transcript.pyannote[632].start |
7086.50159375 |
transcript.pyannote[632].end |
7113.48471875 |
transcript.pyannote[633].speaker |
SPEAKER_05 |
transcript.pyannote[633].start |
7113.85596875 |
transcript.pyannote[633].end |
7116.43784375 |
transcript.pyannote[634].speaker |
SPEAKER_05 |
transcript.pyannote[634].start |
7117.01159375 |
transcript.pyannote[634].end |
7118.27721875 |
transcript.pyannote[635].speaker |
SPEAKER_05 |
transcript.pyannote[635].start |
7118.81721875 |
transcript.pyannote[635].end |
7119.72846875 |
transcript.pyannote[636].speaker |
SPEAKER_05 |
transcript.pyannote[636].start |
7120.47096875 |
transcript.pyannote[636].end |
7121.66909375 |
transcript.pyannote[637].speaker |
SPEAKER_05 |
transcript.pyannote[637].start |
7122.05721875 |
transcript.pyannote[637].end |
7122.59721875 |
transcript.pyannote[638].speaker |
SPEAKER_05 |
transcript.pyannote[638].start |
7124.31846875 |
transcript.pyannote[638].end |
7124.74034375 |
transcript.pyannote[639].speaker |
SPEAKER_05 |
transcript.pyannote[639].start |
7126.15784375 |
transcript.pyannote[639].end |
7134.03846875 |
transcript.pyannote[640].speaker |
SPEAKER_05 |
transcript.pyannote[640].start |
7134.91596875 |
transcript.pyannote[640].end |
7151.62221875 |
transcript.pyannote[641].speaker |
SPEAKER_05 |
transcript.pyannote[641].start |
7152.28034375 |
transcript.pyannote[641].end |
7154.08596875 |
transcript.pyannote[642].speaker |
SPEAKER_05 |
transcript.pyannote[642].start |
7154.42346875 |
transcript.pyannote[642].end |
7155.50346875 |
transcript.pyannote[643].speaker |
SPEAKER_05 |
transcript.pyannote[643].start |
7155.79034375 |
transcript.pyannote[643].end |
7157.27534375 |
transcript.pyannote[644].speaker |
SPEAKER_05 |
transcript.pyannote[644].start |
7157.57909375 |
transcript.pyannote[644].end |
7162.47284375 |
transcript.pyannote[645].speaker |
SPEAKER_05 |
transcript.pyannote[645].start |
7163.41784375 |
transcript.pyannote[645].end |
7174.01534375 |
transcript.pyannote[646].speaker |
SPEAKER_05 |
transcript.pyannote[646].start |
7174.79159375 |
transcript.pyannote[646].end |
7175.23034375 |
transcript.pyannote[647].speaker |
SPEAKER_05 |
transcript.pyannote[647].start |
7175.88846875 |
transcript.pyannote[647].end |
7176.44534375 |
transcript.pyannote[648].speaker |
SPEAKER_05 |
transcript.pyannote[648].start |
7177.27221875 |
transcript.pyannote[648].end |
7178.03159375 |
transcript.pyannote[649].speaker |
SPEAKER_05 |
transcript.pyannote[649].start |
7179.56721875 |
transcript.pyannote[649].end |
7180.15784375 |
transcript.pyannote[650].speaker |
SPEAKER_05 |
transcript.pyannote[650].start |
7181.99721875 |
transcript.pyannote[650].end |
7183.09409375 |
transcript.pyannote[651].speaker |
SPEAKER_05 |
transcript.pyannote[651].start |
7184.02221875 |
transcript.pyannote[651].end |
7191.32909375 |
transcript.pyannote[652].speaker |
SPEAKER_05 |
transcript.pyannote[652].start |
7191.95346875 |
transcript.pyannote[652].end |
7193.11784375 |
transcript.pyannote[653].speaker |
SPEAKER_05 |
transcript.pyannote[653].start |
7193.50596875 |
transcript.pyannote[653].end |
7198.72034375 |
transcript.pyannote[654].speaker |
SPEAKER_05 |
transcript.pyannote[654].start |
7199.07471875 |
transcript.pyannote[654].end |
7211.07284375 |
transcript.pyannote[655].speaker |
SPEAKER_05 |
transcript.pyannote[655].start |
7211.59596875 |
transcript.pyannote[655].end |
7211.98409375 |
transcript.pyannote[656].speaker |
SPEAKER_05 |
transcript.pyannote[656].start |
7212.69284375 |
transcript.pyannote[656].end |
7215.44346875 |
transcript.pyannote[657].speaker |
SPEAKER_05 |
transcript.pyannote[657].start |
7218.44721875 |
transcript.pyannote[657].end |
7220.13471875 |
transcript.pyannote[658].speaker |
SPEAKER_05 |
transcript.pyannote[658].start |
7222.85159375 |
transcript.pyannote[658].end |
7224.64034375 |
transcript.pyannote[659].speaker |
SPEAKER_05 |
transcript.pyannote[659].start |
7226.96909375 |
transcript.pyannote[659].end |
7229.90534375 |
transcript.pyannote[660].speaker |
SPEAKER_05 |
transcript.pyannote[660].start |
7229.97284375 |
transcript.pyannote[660].end |
7230.00659375 |
transcript.pyannote[661].speaker |
SPEAKER_05 |
transcript.pyannote[661].start |
7230.05721875 |
transcript.pyannote[661].end |
7235.03534375 |
transcript.pyannote[662].speaker |
SPEAKER_05 |
transcript.pyannote[662].start |
7235.45721875 |
transcript.pyannote[662].end |
7241.59971875 |
transcript.pyannote[663].speaker |
SPEAKER_05 |
transcript.pyannote[663].start |
7241.78534375 |
transcript.pyannote[663].end |
7244.45159375 |
transcript.pyannote[664].speaker |
SPEAKER_05 |
transcript.pyannote[664].start |
7244.95784375 |
transcript.pyannote[664].end |
7245.86909375 |
transcript.pyannote[665].speaker |
SPEAKER_05 |
transcript.pyannote[665].start |
7246.49346875 |
transcript.pyannote[665].end |
7246.76346875 |
transcript.pyannote[666].speaker |
SPEAKER_05 |
transcript.pyannote[666].start |
7246.99971875 |
transcript.pyannote[666].end |
7256.90534375 |
transcript.pyannote[667].speaker |
SPEAKER_05 |
transcript.pyannote[667].start |
7257.05721875 |
transcript.pyannote[667].end |
7264.83659375 |
transcript.pyannote[668].speaker |
SPEAKER_05 |
transcript.pyannote[668].start |
7265.52846875 |
transcript.pyannote[668].end |
7273.42596875 |
transcript.pyannote[669].speaker |
SPEAKER_05 |
transcript.pyannote[669].start |
7273.76346875 |
transcript.pyannote[669].end |
7277.74596875 |
transcript.pyannote[670].speaker |
SPEAKER_05 |
transcript.pyannote[670].start |
7278.30284375 |
transcript.pyannote[670].end |
7281.39096875 |
transcript.pyannote[671].speaker |
SPEAKER_05 |
transcript.pyannote[671].start |
7281.86346875 |
transcript.pyannote[671].end |
7285.96409375 |
transcript.pyannote[672].speaker |
SPEAKER_05 |
transcript.pyannote[672].start |
7286.70659375 |
transcript.pyannote[672].end |
7290.28409375 |
transcript.pyannote[673].speaker |
SPEAKER_05 |
transcript.pyannote[673].start |
7290.72284375 |
transcript.pyannote[673].end |
7293.97971875 |
transcript.pyannote[674].speaker |
SPEAKER_05 |
transcript.pyannote[674].start |
7294.09784375 |
transcript.pyannote[674].end |
7297.10159375 |
transcript.pyannote[675].speaker |
SPEAKER_05 |
transcript.pyannote[675].start |
7297.48971875 |
transcript.pyannote[675].end |
7297.81034375 |
transcript.pyannote[676].speaker |
SPEAKER_05 |
transcript.pyannote[676].start |
7298.35034375 |
transcript.pyannote[676].end |
7300.29096875 |
transcript.pyannote[677].speaker |
SPEAKER_05 |
transcript.pyannote[677].start |
7301.06721875 |
transcript.pyannote[677].end |
7301.77596875 |
transcript.pyannote[678].speaker |
SPEAKER_05 |
transcript.pyannote[678].start |
7302.16409375 |
transcript.pyannote[678].end |
7304.02034375 |
transcript.pyannote[679].speaker |
SPEAKER_05 |
transcript.pyannote[679].start |
7305.23534375 |
transcript.pyannote[679].end |
7305.94409375 |
transcript.pyannote[680].speaker |
SPEAKER_05 |
transcript.pyannote[680].start |
7306.21409375 |
transcript.pyannote[680].end |
7307.17596875 |
transcript.pyannote[681].speaker |
SPEAKER_05 |
transcript.pyannote[681].start |
7307.49659375 |
transcript.pyannote[681].end |
7308.32346875 |
transcript.pyannote[682].speaker |
SPEAKER_05 |
transcript.pyannote[682].start |
7308.54284375 |
transcript.pyannote[682].end |
7308.79596875 |
transcript.pyannote[683].speaker |
SPEAKER_05 |
transcript.pyannote[683].start |
7309.20096875 |
transcript.pyannote[683].end |
7309.69034375 |
transcript.pyannote[684].speaker |
SPEAKER_05 |
transcript.pyannote[684].start |
7311.07409375 |
transcript.pyannote[684].end |
7320.03471875 |
transcript.pyannote[685].speaker |
SPEAKER_05 |
transcript.pyannote[685].start |
7320.10221875 |
transcript.pyannote[685].end |
7321.28346875 |
transcript.pyannote[686].speaker |
SPEAKER_05 |
transcript.pyannote[686].start |
7321.67159375 |
transcript.pyannote[686].end |
7324.94534375 |
transcript.pyannote[687].speaker |
SPEAKER_05 |
transcript.pyannote[687].start |
7327.96596875 |
transcript.pyannote[687].end |
7333.02846875 |
transcript.pyannote[688].speaker |
SPEAKER_05 |
transcript.pyannote[688].start |
7333.28159375 |
transcript.pyannote[688].end |
7337.44971875 |
transcript.pyannote[689].speaker |
SPEAKER_05 |
transcript.pyannote[689].start |
7339.93034375 |
transcript.pyannote[689].end |
7358.83034375 |
transcript.pyannote[690].speaker |
SPEAKER_05 |
transcript.pyannote[690].start |
7360.12971875 |
transcript.pyannote[690].end |
7363.30221875 |
transcript.pyannote[691].speaker |
SPEAKER_05 |
transcript.pyannote[691].start |
7363.85909375 |
transcript.pyannote[691].end |
7366.01909375 |
transcript.pyannote[692].speaker |
SPEAKER_05 |
transcript.pyannote[692].start |
7366.71096875 |
transcript.pyannote[692].end |
7367.03159375 |
transcript.pyannote[693].speaker |
SPEAKER_05 |
transcript.pyannote[693].start |
7367.38596875 |
transcript.pyannote[693].end |
7368.09471875 |
transcript.pyannote[694].speaker |
SPEAKER_05 |
transcript.pyannote[694].start |
7370.45721875 |
transcript.pyannote[694].end |
7372.17846875 |
transcript.pyannote[695].speaker |
SPEAKER_05 |
transcript.pyannote[695].start |
7372.58346875 |
transcript.pyannote[695].end |
7372.81971875 |
transcript.pyannote[696].speaker |
SPEAKER_05 |
transcript.pyannote[696].start |
7373.41034375 |
transcript.pyannote[696].end |
7378.01721875 |
transcript.pyannote[697].speaker |
SPEAKER_05 |
transcript.pyannote[697].start |
7378.16909375 |
transcript.pyannote[697].end |
7379.99159375 |
transcript.pyannote[698].speaker |
SPEAKER_05 |
transcript.pyannote[698].start |
7380.32909375 |
transcript.pyannote[698].end |
7381.81409375 |
transcript.pyannote[699].speaker |
SPEAKER_05 |
transcript.pyannote[699].start |
7382.08409375 |
transcript.pyannote[699].end |
7383.87284375 |
transcript.pyannote[700].speaker |
SPEAKER_05 |
transcript.pyannote[700].start |
7384.39596875 |
transcript.pyannote[700].end |
7387.80471875 |
transcript.pyannote[701].speaker |
SPEAKER_05 |
transcript.pyannote[701].start |
7387.83846875 |
transcript.pyannote[701].end |
7388.54721875 |
transcript.pyannote[702].speaker |
SPEAKER_05 |
transcript.pyannote[702].start |
7388.86784375 |
transcript.pyannote[702].end |
7389.74534375 |
transcript.pyannote[703].speaker |
SPEAKER_05 |
transcript.pyannote[703].start |
7391.14596875 |
transcript.pyannote[703].end |
7394.31846875 |
transcript.pyannote[704].speaker |
SPEAKER_05 |
transcript.pyannote[704].start |
7394.52096875 |
transcript.pyannote[704].end |
7394.60534375 |
transcript.pyannote[705].speaker |
SPEAKER_07 |
transcript.pyannote[705].start |
7394.60534375 |
transcript.pyannote[705].end |
7398.28409375 |
transcript.pyannote[706].speaker |
SPEAKER_05 |
transcript.pyannote[706].start |
7398.28409375 |
transcript.pyannote[706].end |
7400.30909375 |
transcript.pyannote[707].speaker |
SPEAKER_07 |
transcript.pyannote[707].start |
7398.45284375 |
transcript.pyannote[707].end |
7398.58784375 |
transcript.pyannote[708].speaker |
SPEAKER_05 |
transcript.pyannote[708].start |
7400.68034375 |
transcript.pyannote[708].end |
7404.98346875 |
transcript.pyannote[709].speaker |
SPEAKER_05 |
transcript.pyannote[709].start |
7406.55284375 |
transcript.pyannote[709].end |
7411.15971875 |
transcript.pyannote[710].speaker |
SPEAKER_04 |
transcript.pyannote[710].start |
7408.98284375 |
transcript.pyannote[710].end |
7410.29909375 |
transcript.pyannote[711].speaker |
SPEAKER_04 |
transcript.pyannote[711].start |
7410.36659375 |
transcript.pyannote[711].end |
7410.92346875 |
transcript.pyannote[712].speaker |
SPEAKER_05 |
transcript.pyannote[712].start |
7411.39596875 |
transcript.pyannote[712].end |
7418.85471875 |
transcript.pyannote[713].speaker |
SPEAKER_05 |
transcript.pyannote[713].start |
7419.29346875 |
transcript.pyannote[713].end |
7430.27909375 |
transcript.pyannote[714].speaker |
SPEAKER_05 |
transcript.pyannote[714].start |
7431.30846875 |
transcript.pyannote[714].end |
7433.90721875 |
transcript.pyannote[715].speaker |
SPEAKER_05 |
transcript.pyannote[715].start |
7434.10971875 |
transcript.pyannote[715].end |
7437.87284375 |
transcript.pyannote[716].speaker |
SPEAKER_05 |
transcript.pyannote[716].start |
7437.97409375 |
transcript.pyannote[716].end |
7439.39159375 |
transcript.pyannote[717].speaker |
SPEAKER_05 |
transcript.pyannote[717].start |
7439.62784375 |
transcript.pyannote[717].end |
7441.82159375 |
transcript.pyannote[718].speaker |
SPEAKER_05 |
transcript.pyannote[718].start |
7442.34471875 |
transcript.pyannote[718].end |
7444.16721875 |
transcript.pyannote[719].speaker |
SPEAKER_05 |
transcript.pyannote[719].start |
7444.26846875 |
transcript.pyannote[719].end |
7447.10346875 |
transcript.pyannote[720].speaker |
SPEAKER_05 |
transcript.pyannote[720].start |
7447.52534375 |
transcript.pyannote[720].end |
7465.46346875 |
transcript.pyannote[721].speaker |
SPEAKER_05 |
transcript.pyannote[721].start |
7468.14659375 |
transcript.pyannote[721].end |
7468.78784375 |
transcript.pyannote[722].speaker |
SPEAKER_05 |
transcript.pyannote[722].start |
7470.88034375 |
transcript.pyannote[722].end |
7473.20909375 |
transcript.pyannote[723].speaker |
SPEAKER_05 |
transcript.pyannote[723].start |
7474.74471875 |
transcript.pyannote[723].end |
7476.53346875 |
transcript.pyannote[724].speaker |
SPEAKER_05 |
transcript.pyannote[724].start |
7478.15346875 |
transcript.pyannote[724].end |
7478.60909375 |
transcript.pyannote[725].speaker |
SPEAKER_05 |
transcript.pyannote[725].start |
7479.87471875 |
transcript.pyannote[725].end |
7487.80596875 |
transcript.pyannote[726].speaker |
SPEAKER_05 |
transcript.pyannote[726].start |
7488.10971875 |
transcript.pyannote[726].end |
7490.03346875 |
transcript.pyannote[727].speaker |
SPEAKER_05 |
transcript.pyannote[727].start |
7490.10096875 |
transcript.pyannote[727].end |
7492.48034375 |
transcript.pyannote[728].speaker |
SPEAKER_05 |
transcript.pyannote[728].start |
7492.96971875 |
transcript.pyannote[728].end |
7493.69534375 |
transcript.pyannote[729].speaker |
SPEAKER_05 |
transcript.pyannote[729].start |
7494.37034375 |
transcript.pyannote[729].end |
7495.26471875 |
transcript.pyannote[730].speaker |
SPEAKER_05 |
transcript.pyannote[730].start |
7496.26034375 |
transcript.pyannote[730].end |
7496.73284375 |
transcript.pyannote[731].speaker |
SPEAKER_05 |
transcript.pyannote[731].start |
7500.44534375 |
transcript.pyannote[731].end |
7501.33971875 |
transcript.pyannote[732].speaker |
SPEAKER_05 |
transcript.pyannote[732].start |
7501.98096875 |
transcript.pyannote[732].end |
7503.14534375 |
transcript.pyannote[733].speaker |
SPEAKER_05 |
transcript.pyannote[733].start |
7503.66846875 |
transcript.pyannote[733].end |
7504.54596875 |
transcript.pyannote[734].speaker |
SPEAKER_05 |
transcript.pyannote[734].start |
7505.23784375 |
transcript.pyannote[734].end |
7506.30096875 |
transcript.pyannote[735].speaker |
SPEAKER_05 |
transcript.pyannote[735].start |
7507.02659375 |
transcript.pyannote[735].end |
7511.41409375 |
transcript.pyannote[736].speaker |
SPEAKER_05 |
transcript.pyannote[736].start |
7512.00471875 |
transcript.pyannote[736].end |
7514.29971875 |
transcript.pyannote[737].speaker |
SPEAKER_05 |
transcript.pyannote[737].start |
7515.02534375 |
transcript.pyannote[737].end |
7517.43846875 |
transcript.pyannote[738].speaker |
SPEAKER_05 |
transcript.pyannote[738].start |
7517.97846875 |
transcript.pyannote[738].end |
7518.02909375 |
transcript.pyannote[739].speaker |
SPEAKER_05 |
transcript.pyannote[739].start |
7518.07971875 |
transcript.pyannote[739].end |
7518.67034375 |
transcript.pyannote[740].speaker |
SPEAKER_05 |
transcript.pyannote[740].start |
7518.90659375 |
transcript.pyannote[740].end |
7520.37471875 |
transcript.pyannote[741].speaker |
SPEAKER_05 |
transcript.pyannote[741].start |
7529.58846875 |
transcript.pyannote[741].end |
7531.47846875 |
transcript.pyannote[742].speaker |
SPEAKER_05 |
transcript.pyannote[742].start |
7531.96784375 |
transcript.pyannote[742].end |
7532.33909375 |
transcript.pyannote[743].speaker |
SPEAKER_05 |
transcript.pyannote[743].start |
7543.71284375 |
transcript.pyannote[743].end |
7555.18784375 |
transcript.pyannote[744].speaker |
SPEAKER_05 |
transcript.pyannote[744].start |
7555.42409375 |
transcript.pyannote[744].end |
7557.36471875 |
transcript.pyannote[745].speaker |
SPEAKER_05 |
transcript.pyannote[745].start |
7557.55034375 |
transcript.pyannote[745].end |
7558.81596875 |
transcript.pyannote[746].speaker |
SPEAKER_05 |
transcript.pyannote[746].start |
7559.22096875 |
transcript.pyannote[746].end |
7561.36409375 |
transcript.pyannote[747].speaker |
SPEAKER_05 |
transcript.pyannote[747].start |
7570.78034375 |
transcript.pyannote[747].end |
7573.88534375 |
transcript.pyannote[748].speaker |
SPEAKER_05 |
transcript.pyannote[748].start |
7576.46721875 |
transcript.pyannote[748].end |
7577.73284375 |
transcript.pyannote[749].speaker |
SPEAKER_03 |
transcript.pyannote[749].start |
7577.73284375 |
transcript.pyannote[749].end |
7577.74971875 |
transcript.pyannote[750].speaker |
SPEAKER_03 |
transcript.pyannote[750].start |
7579.13346875 |
transcript.pyannote[750].end |
7580.02784375 |
transcript.pyannote[751].speaker |
SPEAKER_05 |
transcript.pyannote[751].start |
7595.45159375 |
transcript.pyannote[751].end |
7608.66471875 |
transcript.pyannote[752].speaker |
SPEAKER_05 |
transcript.pyannote[752].start |
7608.93471875 |
transcript.pyannote[752].end |
7609.30596875 |
transcript.pyannote[753].speaker |
SPEAKER_05 |
transcript.pyannote[753].start |
7610.03159375 |
transcript.pyannote[753].end |
7610.99346875 |
transcript.pyannote[754].speaker |
SPEAKER_05 |
transcript.pyannote[754].start |
7611.22971875 |
transcript.pyannote[754].end |
7614.95909375 |
transcript.pyannote[755].speaker |
SPEAKER_05 |
transcript.pyannote[755].start |
7615.38096875 |
transcript.pyannote[755].end |
7616.41034375 |
transcript.pyannote[756].speaker |
SPEAKER_05 |
transcript.pyannote[756].start |
7616.81534375 |
transcript.pyannote[756].end |
7617.45659375 |
transcript.pyannote[757].speaker |
SPEAKER_04 |
transcript.pyannote[757].start |
7618.03034375 |
transcript.pyannote[757].end |
7619.48159375 |
transcript.pyannote[758].speaker |
SPEAKER_04 |
transcript.pyannote[758].start |
7623.24471875 |
transcript.pyannote[758].end |
7624.15596875 |
transcript.pyannote[759].speaker |
SPEAKER_05 |
transcript.pyannote[759].start |
7644.33846875 |
transcript.pyannote[759].end |
7644.79409375 |
transcript.pyannote[760].speaker |
SPEAKER_05 |
transcript.pyannote[760].start |
7646.66721875 |
transcript.pyannote[760].end |
7652.50596875 |
transcript.pyannote[761].speaker |
SPEAKER_05 |
transcript.pyannote[761].start |
7652.91096875 |
transcript.pyannote[761].end |
7653.99096875 |
transcript.pyannote[762].speaker |
SPEAKER_05 |
transcript.pyannote[762].start |
7654.61534375 |
transcript.pyannote[762].end |
7655.91471875 |
transcript.pyannote[763].speaker |
SPEAKER_05 |
transcript.pyannote[763].start |
7656.52221875 |
transcript.pyannote[763].end |
7660.36971875 |
transcript.pyannote[764].speaker |
SPEAKER_05 |
transcript.pyannote[764].start |
7660.97721875 |
transcript.pyannote[764].end |
7668.04784375 |
transcript.pyannote[765].speaker |
SPEAKER_09 |
transcript.pyannote[765].start |
7668.04784375 |
transcript.pyannote[765].end |
7668.36846875 |
transcript.pyannote[766].speaker |
SPEAKER_05 |
transcript.pyannote[766].start |
7668.28409375 |
transcript.pyannote[766].end |
7684.60221875 |
transcript.pyannote[767].speaker |
SPEAKER_05 |
transcript.pyannote[767].start |
7684.83846875 |
transcript.pyannote[767].end |
7686.76221875 |
transcript.pyannote[768].speaker |
SPEAKER_05 |
transcript.pyannote[768].start |
7686.96471875 |
transcript.pyannote[768].end |
7687.63971875 |
transcript.pyannote[769].speaker |
SPEAKER_05 |
transcript.pyannote[769].start |
7688.01096875 |
transcript.pyannote[769].end |
7703.35034375 |
transcript.pyannote[770].speaker |
SPEAKER_05 |
transcript.pyannote[770].start |
7704.24471875 |
transcript.pyannote[770].end |
7706.48909375 |
transcript.pyannote[771].speaker |
SPEAKER_05 |
transcript.pyannote[771].start |
7708.29471875 |
transcript.pyannote[771].end |
7724.76471875 |
transcript.pyannote[772].speaker |
SPEAKER_05 |
transcript.pyannote[772].start |
7725.67596875 |
transcript.pyannote[772].end |
7726.82346875 |
transcript.pyannote[773].speaker |
SPEAKER_05 |
transcript.pyannote[773].start |
7727.02596875 |
transcript.pyannote[773].end |
7733.28659375 |
transcript.pyannote[774].speaker |
SPEAKER_05 |
transcript.pyannote[774].start |
7734.18096875 |
transcript.pyannote[774].end |
7735.15971875 |
transcript.pyannote[775].speaker |
SPEAKER_05 |
transcript.pyannote[775].start |
7737.10034375 |
transcript.pyannote[775].end |
7739.81721875 |
transcript.pyannote[776].speaker |
SPEAKER_05 |
transcript.pyannote[776].start |
7740.12096875 |
transcript.pyannote[776].end |
7741.30221875 |
transcript.pyannote[777].speaker |
SPEAKER_04 |
transcript.pyannote[777].start |
7743.09096875 |
transcript.pyannote[777].end |
7743.61409375 |
transcript.pyannote[778].speaker |
SPEAKER_05 |
transcript.pyannote[778].start |
7750.93784375 |
transcript.pyannote[778].end |
7756.42221875 |
transcript.pyannote[779].speaker |
SPEAKER_05 |
transcript.pyannote[779].start |
7757.89034375 |
transcript.pyannote[779].end |
7762.44659375 |
transcript.pyannote[780].speaker |
SPEAKER_05 |
transcript.pyannote[780].start |
7763.81346875 |
transcript.pyannote[780].end |
7764.75846875 |
transcript.pyannote[781].speaker |
SPEAKER_05 |
transcript.pyannote[781].start |
7765.58534375 |
transcript.pyannote[781].end |
7773.56721875 |
transcript.pyannote[782].speaker |
SPEAKER_05 |
transcript.pyannote[782].start |
7774.37721875 |
transcript.pyannote[782].end |
7775.44034375 |
transcript.pyannote[783].speaker |
SPEAKER_05 |
transcript.pyannote[783].start |
7775.82846875 |
transcript.pyannote[783].end |
7777.85346875 |
transcript.pyannote[784].speaker |
SPEAKER_05 |
transcript.pyannote[784].start |
7778.42721875 |
transcript.pyannote[784].end |
7782.05534375 |
transcript.pyannote[785].speaker |
SPEAKER_08 |
transcript.pyannote[785].start |
7780.09784375 |
transcript.pyannote[785].end |
7780.11471875 |
transcript.pyannote[786].speaker |
SPEAKER_05 |
transcript.pyannote[786].start |
7783.13534375 |
transcript.pyannote[786].end |
7783.45596875 |
transcript.pyannote[787].speaker |
SPEAKER_05 |
transcript.pyannote[787].start |
7784.43471875 |
transcript.pyannote[787].end |
7784.85659375 |
transcript.pyannote[788].speaker |
SPEAKER_05 |
transcript.pyannote[788].start |
7788.33284375 |
transcript.pyannote[788].end |
7790.30721875 |
transcript.pyannote[789].speaker |
SPEAKER_05 |
transcript.pyannote[789].start |
7790.99909375 |
transcript.pyannote[789].end |
7799.74034375 |
transcript.pyannote[790].speaker |
SPEAKER_05 |
transcript.pyannote[790].start |
7802.08596875 |
transcript.pyannote[790].end |
7803.23346875 |
transcript.pyannote[791].speaker |
SPEAKER_05 |
transcript.pyannote[791].start |
7807.23284375 |
transcript.pyannote[791].end |
7808.22846875 |
transcript.pyannote[792].speaker |
SPEAKER_05 |
transcript.pyannote[792].start |
7808.93721875 |
transcript.pyannote[792].end |
7809.35909375 |
transcript.pyannote[793].speaker |
SPEAKER_05 |
transcript.pyannote[793].start |
7810.15221875 |
transcript.pyannote[793].end |
7810.59096875 |
transcript.pyannote[794].speaker |
SPEAKER_05 |
transcript.pyannote[794].start |
7811.68784375 |
transcript.pyannote[794].end |
7812.29534375 |
transcript.pyannote[795].speaker |
SPEAKER_05 |
transcript.pyannote[795].start |
7813.45971875 |
transcript.pyannote[795].end |
7813.91534375 |
transcript.pyannote[796].speaker |
SPEAKER_05 |
transcript.pyannote[796].start |
7815.34971875 |
transcript.pyannote[796].end |
7818.40409375 |
transcript.pyannote[797].speaker |
SPEAKER_05 |
transcript.pyannote[797].start |
7818.99471875 |
transcript.pyannote[797].end |
7819.99034375 |
transcript.pyannote[798].speaker |
SPEAKER_05 |
transcript.pyannote[798].start |
7822.62284375 |
transcript.pyannote[798].end |
7827.92159375 |
transcript.pyannote[799].speaker |
SPEAKER_05 |
transcript.pyannote[799].start |
7828.71471875 |
transcript.pyannote[799].end |
7829.82846875 |
transcript.pyannote[800].speaker |
SPEAKER_05 |
transcript.pyannote[800].start |
7830.13221875 |
transcript.pyannote[800].end |
7831.33034375 |
transcript.pyannote[801].speaker |
SPEAKER_05 |
transcript.pyannote[801].start |
7831.70159375 |
transcript.pyannote[801].end |
7833.64221875 |
transcript.pyannote[802].speaker |
SPEAKER_05 |
transcript.pyannote[802].start |
7835.27909375 |
transcript.pyannote[802].end |
7837.13534375 |
transcript.pyannote[803].speaker |
SPEAKER_05 |
transcript.pyannote[803].start |
7838.72159375 |
transcript.pyannote[803].end |
7839.16034375 |
transcript.pyannote[804].speaker |
SPEAKER_05 |
transcript.pyannote[804].start |
7839.90284375 |
transcript.pyannote[804].end |
7840.29096875 |
transcript.pyannote[805].speaker |
SPEAKER_05 |
transcript.pyannote[805].start |
7841.18534375 |
transcript.pyannote[805].end |
7842.34971875 |
transcript.pyannote[806].speaker |
SPEAKER_05 |
transcript.pyannote[806].start |
7843.90221875 |
transcript.pyannote[806].end |
7850.93909375 |
transcript.pyannote[807].speaker |
SPEAKER_05 |
transcript.pyannote[807].start |
7851.68159375 |
transcript.pyannote[807].end |
7853.57159375 |
transcript.pyannote[808].speaker |
SPEAKER_05 |
transcript.pyannote[808].start |
7853.77409375 |
transcript.pyannote[808].end |
7856.37284375 |
transcript.pyannote[809].speaker |
SPEAKER_05 |
transcript.pyannote[809].start |
7856.92971875 |
transcript.pyannote[809].end |
7858.09409375 |
transcript.pyannote[810].speaker |
SPEAKER_05 |
transcript.pyannote[810].start |
7858.44846875 |
transcript.pyannote[810].end |
7860.23721875 |
transcript.pyannote[811].speaker |
SPEAKER_05 |
transcript.pyannote[811].start |
7860.62534375 |
transcript.pyannote[811].end |
7861.55346875 |
transcript.pyannote[812].speaker |
SPEAKER_05 |
transcript.pyannote[812].start |
7861.82346875 |
transcript.pyannote[812].end |
7862.39721875 |
transcript.pyannote[813].speaker |
SPEAKER_03 |
transcript.pyannote[813].start |
7862.39721875 |
transcript.pyannote[813].end |
7862.65034375 |
transcript.pyannote[814].speaker |
SPEAKER_05 |
transcript.pyannote[814].start |
7863.08909375 |
transcript.pyannote[814].end |
7863.98346875 |
transcript.pyannote[815].speaker |
SPEAKER_03 |
transcript.pyannote[815].start |
7864.45596875 |
transcript.pyannote[815].end |
7864.62471875 |
transcript.pyannote[816].speaker |
SPEAKER_05 |
transcript.pyannote[816].start |
7864.62471875 |
transcript.pyannote[816].end |
7872.23534375 |
transcript.pyannote[817].speaker |
SPEAKER_03 |
transcript.pyannote[817].start |
7864.67534375 |
transcript.pyannote[817].end |
7864.69221875 |
transcript.pyannote[818].speaker |
SPEAKER_03 |
transcript.pyannote[818].start |
7865.02971875 |
transcript.pyannote[818].end |
7865.62034375 |
transcript.pyannote[819].speaker |
SPEAKER_05 |
transcript.pyannote[819].start |
7872.67409375 |
transcript.pyannote[819].end |
7872.94409375 |
transcript.pyannote[820].speaker |
SPEAKER_05 |
transcript.pyannote[820].start |
7874.04096875 |
transcript.pyannote[820].end |
7876.03221875 |
transcript.pyannote[821].speaker |
SPEAKER_05 |
transcript.pyannote[821].start |
7876.48784375 |
transcript.pyannote[821].end |
7877.21346875 |
transcript.pyannote[822].speaker |
SPEAKER_05 |
transcript.pyannote[822].start |
7877.50034375 |
transcript.pyannote[822].end |
7878.27659375 |
transcript.pyannote[823].speaker |
SPEAKER_05 |
transcript.pyannote[823].start |
7881.36471875 |
transcript.pyannote[823].end |
7882.64721875 |
transcript.pyannote[824].speaker |
SPEAKER_05 |
transcript.pyannote[824].start |
7883.74409375 |
transcript.pyannote[824].end |
7884.36846875 |
transcript.pyannote[825].speaker |
SPEAKER_05 |
transcript.pyannote[825].start |
7884.84096875 |
transcript.pyannote[825].end |
7886.79846875 |
transcript.pyannote[826].speaker |
SPEAKER_05 |
transcript.pyannote[826].start |
7891.70909375 |
transcript.pyannote[826].end |
7892.77221875 |
transcript.pyannote[827].speaker |
SPEAKER_05 |
transcript.pyannote[827].start |
7893.27846875 |
transcript.pyannote[827].end |
7893.68346875 |
transcript.pyannote[828].speaker |
SPEAKER_05 |
transcript.pyannote[828].start |
7894.59471875 |
transcript.pyannote[828].end |
7895.40471875 |
transcript.pyannote[829].speaker |
SPEAKER_05 |
transcript.pyannote[829].start |
7895.77596875 |
transcript.pyannote[829].end |
7897.07534375 |
transcript.pyannote[830].speaker |
SPEAKER_05 |
transcript.pyannote[830].start |
7897.46346875 |
transcript.pyannote[830].end |
7898.17221875 |
transcript.pyannote[831].speaker |
SPEAKER_05 |
transcript.pyannote[831].start |
7900.77096875 |
transcript.pyannote[831].end |
7901.32784375 |
transcript.pyannote[832].speaker |
SPEAKER_05 |
transcript.pyannote[832].start |
7918.79346875 |
transcript.pyannote[832].end |
7923.85596875 |
transcript.pyannote[833].speaker |
SPEAKER_05 |
transcript.pyannote[833].start |
7927.01159375 |
transcript.pyannote[833].end |
7927.77096875 |
transcript.pyannote[834].speaker |
SPEAKER_05 |
transcript.pyannote[834].start |
7927.97346875 |
transcript.pyannote[834].end |
7928.04096875 |
transcript.pyannote[835].speaker |
SPEAKER_05 |
transcript.pyannote[835].start |
7928.44596875 |
transcript.pyannote[835].end |
7930.47096875 |
transcript.pyannote[836].speaker |
SPEAKER_05 |
transcript.pyannote[836].start |
7932.59721875 |
transcript.pyannote[836].end |
7936.83284375 |
transcript.pyannote[837].speaker |
SPEAKER_05 |
transcript.pyannote[837].start |
7937.65971875 |
transcript.pyannote[837].end |
7940.64659375 |
transcript.pyannote[838].speaker |
SPEAKER_05 |
transcript.pyannote[838].start |
7941.11909375 |
transcript.pyannote[838].end |
7943.02596875 |
transcript.pyannote[839].speaker |
SPEAKER_05 |
transcript.pyannote[839].start |
7943.39721875 |
transcript.pyannote[839].end |
7944.49409375 |
transcript.pyannote[840].speaker |
SPEAKER_08 |
transcript.pyannote[840].start |
7945.96221875 |
transcript.pyannote[840].end |
7946.29971875 |
transcript.pyannote[841].speaker |
SPEAKER_05 |
transcript.pyannote[841].start |
7978.22721875 |
transcript.pyannote[841].end |
7993.22909375 |
transcript.pyannote[842].speaker |
SPEAKER_05 |
transcript.pyannote[842].start |
7994.15721875 |
transcript.pyannote[842].end |
7994.46096875 |
transcript.pyannote[843].speaker |
SPEAKER_05 |
transcript.pyannote[843].start |
7996.58721875 |
transcript.pyannote[843].end |
8003.40471875 |
transcript.pyannote[844].speaker |
SPEAKER_05 |
transcript.pyannote[844].start |
8003.62409375 |
transcript.pyannote[844].end |
8003.87721875 |
transcript.pyannote[845].speaker |
SPEAKER_03 |
transcript.pyannote[845].start |
8004.36659375 |
transcript.pyannote[845].end |
8004.94034375 |
transcript.pyannote[846].speaker |
SPEAKER_05 |
transcript.pyannote[846].start |
8009.12534375 |
transcript.pyannote[846].end |
8011.87596875 |
transcript.pyannote[847].speaker |
SPEAKER_09 |
transcript.pyannote[847].start |
8015.01471875 |
transcript.pyannote[847].end |
8017.57971875 |
transcript.pyannote[848].speaker |
SPEAKER_05 |
transcript.pyannote[848].start |
8019.72284375 |
transcript.pyannote[848].end |
8024.29596875 |
transcript.pyannote[849].speaker |
SPEAKER_05 |
transcript.pyannote[849].start |
8026.96221875 |
transcript.pyannote[849].end |
8037.34034375 |
transcript.pyannote[850].speaker |
SPEAKER_05 |
transcript.pyannote[850].start |
8038.52159375 |
transcript.pyannote[850].end |
8040.09096875 |
transcript.pyannote[851].speaker |
SPEAKER_05 |
transcript.pyannote[851].start |
8041.30596875 |
transcript.pyannote[851].end |
8043.21284375 |
transcript.pyannote[852].speaker |
SPEAKER_05 |
transcript.pyannote[852].start |
8043.56721875 |
transcript.pyannote[852].end |
8047.51596875 |
transcript.pyannote[853].speaker |
SPEAKER_05 |
transcript.pyannote[853].start |
8047.65096875 |
transcript.pyannote[853].end |
8049.77721875 |
transcript.pyannote[854].speaker |
SPEAKER_05 |
transcript.pyannote[854].start |
8050.28346875 |
transcript.pyannote[854].end |
8052.22409375 |
transcript.pyannote[855].speaker |
SPEAKER_05 |
transcript.pyannote[855].start |
8052.79784375 |
transcript.pyannote[855].end |
8058.80534375 |
transcript.pyannote[856].speaker |
SPEAKER_05 |
transcript.pyannote[856].start |
8058.82221875 |
transcript.pyannote[856].end |
8092.42034375 |
transcript.pyannote[857].speaker |
SPEAKER_05 |
transcript.pyannote[857].start |
8093.14596875 |
transcript.pyannote[857].end |
8108.95784375 |
transcript.pyannote[858].speaker |
SPEAKER_05 |
transcript.pyannote[858].start |
8111.01659375 |
transcript.pyannote[858].end |
8115.57284375 |
transcript.pyannote[859].speaker |
SPEAKER_05 |
transcript.pyannote[859].start |
8116.63596875 |
transcript.pyannote[859].end |
8122.30596875 |
transcript.pyannote[860].speaker |
SPEAKER_00 |
transcript.pyannote[860].start |
8128.27971875 |
transcript.pyannote[860].end |
8128.95471875 |
transcript.pyannote[861].speaker |
SPEAKER_05 |
transcript.pyannote[861].start |
8129.51159375 |
transcript.pyannote[861].end |
8131.94159375 |
transcript.pyannote[862].speaker |
SPEAKER_05 |
transcript.pyannote[862].start |
8132.46471875 |
transcript.pyannote[862].end |
8134.79346875 |
transcript.pyannote[863].speaker |
SPEAKER_05 |
transcript.pyannote[863].start |
8137.62846875 |
transcript.pyannote[863].end |
8138.69159375 |
transcript.pyannote[864].speaker |
SPEAKER_05 |
transcript.pyannote[864].start |
8140.75034375 |
transcript.pyannote[864].end |
8144.91846875 |
transcript.pyannote[865].speaker |
SPEAKER_09 |
transcript.pyannote[865].start |
8142.42096875 |
transcript.pyannote[865].end |
8144.20971875 |
transcript.pyannote[866].speaker |
SPEAKER_05 |
transcript.pyannote[866].start |
8145.81284375 |
transcript.pyannote[866].end |
8148.52971875 |
transcript.pyannote[867].speaker |
SPEAKER_05 |
transcript.pyannote[867].start |
8148.74909375 |
transcript.pyannote[867].end |
8150.04846875 |
transcript.pyannote[868].speaker |
SPEAKER_05 |
transcript.pyannote[868].start |
8150.77409375 |
transcript.pyannote[868].end |
8152.05659375 |
transcript.pyannote[869].speaker |
SPEAKER_05 |
transcript.pyannote[869].start |
8154.57096875 |
transcript.pyannote[869].end |
8155.24596875 |
transcript.pyannote[870].speaker |
SPEAKER_05 |
transcript.pyannote[870].start |
8156.25846875 |
transcript.pyannote[870].end |
8167.31159375 |
transcript.pyannote[871].speaker |
SPEAKER_05 |
transcript.pyannote[871].start |
8168.08784375 |
transcript.pyannote[871].end |
8180.57534375 |
transcript.pyannote[872].speaker |
SPEAKER_05 |
transcript.pyannote[872].start |
8181.60471875 |
transcript.pyannote[872].end |
8185.70534375 |
transcript.pyannote[873].speaker |
SPEAKER_05 |
transcript.pyannote[873].start |
8189.63721875 |
transcript.pyannote[873].end |
8190.22784375 |
transcript.pyannote[874].speaker |
SPEAKER_05 |
transcript.pyannote[874].start |
8191.05471875 |
transcript.pyannote[874].end |
8191.47659375 |
transcript.pyannote[875].speaker |
SPEAKER_05 |
transcript.pyannote[875].start |
8192.13471875 |
transcript.pyannote[875].end |
8192.70846875 |
transcript.pyannote[876].speaker |
SPEAKER_05 |
transcript.pyannote[876].start |
8193.50159375 |
transcript.pyannote[876].end |
8219.59034375 |
transcript.pyannote[877].speaker |
SPEAKER_05 |
transcript.pyannote[877].start |
8219.75909375 |
transcript.pyannote[877].end |
8242.43909375 |
transcript.pyannote[878].speaker |
SPEAKER_05 |
transcript.pyannote[878].start |
8242.84409375 |
transcript.pyannote[878].end |
8256.07409375 |
transcript.pyannote[879].speaker |
SPEAKER_05 |
transcript.pyannote[879].start |
8256.34409375 |
transcript.pyannote[879].end |
8260.46159375 |
transcript.pyannote[880].speaker |
SPEAKER_05 |
transcript.pyannote[880].start |
8260.96784375 |
transcript.pyannote[880].end |
8263.98846875 |
transcript.pyannote[881].speaker |
SPEAKER_05 |
transcript.pyannote[881].start |
8264.17409375 |
transcript.pyannote[881].end |
8265.54096875 |
transcript.pyannote[882].speaker |
SPEAKER_05 |
transcript.pyannote[882].start |
8266.09784375 |
transcript.pyannote[882].end |
8271.98721875 |
transcript.pyannote[883].speaker |
SPEAKER_05 |
transcript.pyannote[883].start |
8272.86471875 |
transcript.pyannote[883].end |
8279.95221875 |
transcript.pyannote[884].speaker |
SPEAKER_05 |
transcript.pyannote[884].start |
8280.50909375 |
transcript.pyannote[884].end |
8282.19659375 |
transcript.pyannote[885].speaker |
SPEAKER_05 |
transcript.pyannote[885].start |
8282.83784375 |
transcript.pyannote[885].end |
8284.79534375 |
transcript.pyannote[886].speaker |
SPEAKER_05 |
transcript.pyannote[886].start |
8285.45346875 |
transcript.pyannote[886].end |
8286.41534375 |
transcript.pyannote[887].speaker |
SPEAKER_05 |
transcript.pyannote[887].start |
8287.54596875 |
transcript.pyannote[887].end |
8287.83284375 |
transcript.pyannote[888].speaker |
SPEAKER_04 |
transcript.pyannote[888].start |
8287.83284375 |
transcript.pyannote[888].end |
8288.25471875 |
transcript.pyannote[889].speaker |
SPEAKER_04 |
transcript.pyannote[889].start |
8288.50784375 |
transcript.pyannote[889].end |
8290.63409375 |
transcript.pyannote[890].speaker |
SPEAKER_10 |
transcript.pyannote[890].start |
8297.97471875 |
transcript.pyannote[890].end |
8298.81846875 |
transcript.pyannote[891].speaker |
SPEAKER_10 |
transcript.pyannote[891].start |
8299.71284375 |
transcript.pyannote[891].end |
8301.55221875 |
transcript.pyannote[892].speaker |
SPEAKER_10 |
transcript.pyannote[892].start |
8302.22721875 |
transcript.pyannote[892].end |
8303.34096875 |
transcript.pyannote[893].speaker |
SPEAKER_10 |
transcript.pyannote[893].start |
8303.71221875 |
transcript.pyannote[893].end |
8304.03284375 |
transcript.pyannote[894].speaker |
SPEAKER_05 |
transcript.pyannote[894].start |
8304.03284375 |
transcript.pyannote[894].end |
8304.26909375 |
transcript.pyannote[895].speaker |
SPEAKER_10 |
transcript.pyannote[895].start |
8304.26909375 |
transcript.pyannote[895].end |
8304.40409375 |
transcript.pyannote[896].speaker |
SPEAKER_05 |
transcript.pyannote[896].start |
8304.40409375 |
transcript.pyannote[896].end |
8304.84284375 |
transcript.pyannote[897].speaker |
SPEAKER_10 |
transcript.pyannote[897].start |
8304.84284375 |
transcript.pyannote[897].end |
8304.85971875 |
transcript.pyannote[898].speaker |
SPEAKER_05 |
transcript.pyannote[898].start |
8304.85971875 |
transcript.pyannote[898].end |
8305.28159375 |
transcript.pyannote[899].speaker |
SPEAKER_05 |
transcript.pyannote[899].start |
8305.63596875 |
transcript.pyannote[899].end |
8305.99034375 |
transcript.pyannote[900].speaker |
SPEAKER_05 |
transcript.pyannote[900].start |
8306.49659375 |
transcript.pyannote[900].end |
8309.29784375 |
transcript.pyannote[901].speaker |
SPEAKER_05 |
transcript.pyannote[901].start |
8310.05721875 |
transcript.pyannote[901].end |
8311.27221875 |
transcript.pyannote[902].speaker |
SPEAKER_05 |
transcript.pyannote[902].start |
8312.60534375 |
transcript.pyannote[902].end |
8316.67221875 |
transcript.pyannote[903].speaker |
SPEAKER_05 |
transcript.pyannote[903].start |
8316.99284375 |
transcript.pyannote[903].end |
8320.80659375 |
transcript.pyannote[904].speaker |
SPEAKER_05 |
transcript.pyannote[904].start |
8320.87409375 |
transcript.pyannote[904].end |
8325.22784375 |
transcript.pyannote[905].speaker |
SPEAKER_05 |
transcript.pyannote[905].start |
8325.83534375 |
transcript.pyannote[905].end |
8327.03346875 |
transcript.pyannote[906].speaker |
SPEAKER_05 |
transcript.pyannote[906].start |
8327.32034375 |
transcript.pyannote[906].end |
8330.62784375 |
transcript.pyannote[907].speaker |
SPEAKER_05 |
transcript.pyannote[907].start |
8331.03284375 |
transcript.pyannote[907].end |
8333.00721875 |
transcript.pyannote[908].speaker |
SPEAKER_05 |
transcript.pyannote[908].start |
8333.98596875 |
transcript.pyannote[908].end |
8334.40784375 |
transcript.pyannote[909].speaker |
SPEAKER_05 |
transcript.pyannote[909].start |
8334.81284375 |
transcript.pyannote[909].end |
8339.04846875 |
transcript.pyannote[910].speaker |
SPEAKER_05 |
transcript.pyannote[910].start |
8341.57971875 |
transcript.pyannote[910].end |
8344.09409375 |
transcript.pyannote[911].speaker |
SPEAKER_05 |
transcript.pyannote[911].start |
8344.83659375 |
transcript.pyannote[911].end |
8345.19096875 |
transcript.pyannote[912].speaker |
SPEAKER_05 |
transcript.pyannote[912].start |
8346.70971875 |
transcript.pyannote[912].end |
8348.11034375 |
transcript.pyannote[913].speaker |
SPEAKER_05 |
transcript.pyannote[913].start |
8348.68409375 |
transcript.pyannote[913].end |
8350.62471875 |
transcript.pyannote[914].speaker |
SPEAKER_05 |
transcript.pyannote[914].start |
8353.49346875 |
transcript.pyannote[914].end |
8358.35346875 |
transcript.pyannote[915].speaker |
SPEAKER_05 |
transcript.pyannote[915].start |
8358.85971875 |
transcript.pyannote[915].end |
8361.10409375 |
transcript.pyannote[916].speaker |
SPEAKER_05 |
transcript.pyannote[916].start |
8364.41159375 |
transcript.pyannote[916].end |
8365.99784375 |
transcript.pyannote[917].speaker |
SPEAKER_03 |
transcript.pyannote[917].start |
8364.68159375 |
transcript.pyannote[917].end |
8364.69846875 |
transcript.pyannote[918].speaker |
SPEAKER_03 |
transcript.pyannote[918].start |
8369.84534375 |
transcript.pyannote[918].end |
8371.68471875 |
transcript.pyannote[919].speaker |
SPEAKER_05 |
transcript.pyannote[919].start |
8371.68471875 |
transcript.pyannote[919].end |
8371.70159375 |
transcript.pyannote[920].speaker |
SPEAKER_05 |
transcript.pyannote[920].start |
8371.93784375 |
transcript.pyannote[920].end |
8371.97159375 |
transcript.pyannote[921].speaker |
SPEAKER_03 |
transcript.pyannote[921].start |
8371.97159375 |
transcript.pyannote[921].end |
8372.00534375 |
transcript.pyannote[922].speaker |
SPEAKER_05 |
transcript.pyannote[922].start |
8372.00534375 |
transcript.pyannote[922].end |
8373.00096875 |
transcript.pyannote[923].speaker |
SPEAKER_05 |
transcript.pyannote[923].start |
8374.58721875 |
transcript.pyannote[923].end |
8375.90346875 |
transcript.pyannote[924].speaker |
SPEAKER_05 |
transcript.pyannote[924].start |
8376.96659375 |
transcript.pyannote[924].end |
8396.22096875 |
transcript.pyannote[925].speaker |
SPEAKER_05 |
transcript.pyannote[925].start |
8396.65971875 |
transcript.pyannote[925].end |
8400.64221875 |
transcript.pyannote[926].speaker |
SPEAKER_05 |
transcript.pyannote[926].start |
8401.50284375 |
transcript.pyannote[926].end |
8402.24534375 |
transcript.pyannote[927].speaker |
SPEAKER_05 |
transcript.pyannote[927].start |
8403.29159375 |
transcript.pyannote[927].end |
8404.91159375 |
transcript.pyannote[928].speaker |
SPEAKER_05 |
transcript.pyannote[928].start |
8405.41784375 |
transcript.pyannote[928].end |
8406.91971875 |
transcript.pyannote[929].speaker |
SPEAKER_05 |
transcript.pyannote[929].start |
8407.57784375 |
transcript.pyannote[929].end |
8408.35409375 |
transcript.pyannote[930].speaker |
SPEAKER_05 |
transcript.pyannote[930].start |
8408.96159375 |
transcript.pyannote[930].end |
8409.67034375 |
transcript.pyannote[931].speaker |
SPEAKER_03 |
transcript.pyannote[931].start |
8409.72096875 |
transcript.pyannote[931].end |
8409.75471875 |
transcript.pyannote[932].speaker |
SPEAKER_03 |
transcript.pyannote[932].start |
8409.97409375 |
transcript.pyannote[932].end |
8410.61534375 |
transcript.pyannote[933].speaker |
SPEAKER_05 |
transcript.pyannote[933].start |
8432.33346875 |
transcript.pyannote[933].end |
8437.04159375 |
transcript.pyannote[934].speaker |
SPEAKER_08 |
transcript.pyannote[934].start |
8433.91971875 |
transcript.pyannote[934].end |
8434.07159375 |
transcript.pyannote[935].speaker |
SPEAKER_09 |
transcript.pyannote[935].start |
8434.07159375 |
transcript.pyannote[935].end |
8434.12221875 |
transcript.pyannote[936].speaker |
SPEAKER_08 |
transcript.pyannote[936].start |
8434.12221875 |
transcript.pyannote[936].end |
8434.18971875 |
transcript.pyannote[937].speaker |
SPEAKER_09 |
transcript.pyannote[937].start |
8434.18971875 |
transcript.pyannote[937].end |
8434.29096875 |
transcript.pyannote[938].speaker |
SPEAKER_05 |
transcript.pyannote[938].start |
8437.54784375 |
transcript.pyannote[938].end |
8441.12534375 |
transcript.pyannote[939].speaker |
SPEAKER_05 |
transcript.pyannote[939].start |
8441.71596875 |
transcript.pyannote[939].end |
8443.30221875 |
transcript.pyannote[940].speaker |
SPEAKER_05 |
transcript.pyannote[940].start |
8443.97721875 |
transcript.pyannote[940].end |
8445.14159375 |
transcript.pyannote[941].speaker |
SPEAKER_05 |
transcript.pyannote[941].start |
8446.89659375 |
transcript.pyannote[941].end |
8449.78221875 |
transcript.pyannote[942].speaker |
SPEAKER_05 |
transcript.pyannote[942].start |
8453.39346875 |
transcript.pyannote[942].end |
8456.07659375 |
transcript.pyannote[943].speaker |
SPEAKER_05 |
transcript.pyannote[943].start |
8456.22846875 |
transcript.pyannote[943].end |
8456.80221875 |
transcript.pyannote[944].speaker |
SPEAKER_05 |
transcript.pyannote[944].start |
8457.49409375 |
transcript.pyannote[944].end |
8459.19846875 |
transcript.pyannote[945].speaker |
SPEAKER_05 |
transcript.pyannote[945].start |
8459.99159375 |
transcript.pyannote[945].end |
8460.83534375 |
transcript.pyannote[946].speaker |
SPEAKER_05 |
transcript.pyannote[946].start |
8461.34159375 |
transcript.pyannote[946].end |
8476.91721875 |
transcript.pyannote[947].speaker |
SPEAKER_05 |
transcript.pyannote[947].start |
8477.13659375 |
transcript.pyannote[947].end |
8480.05596875 |
transcript.pyannote[948].speaker |
SPEAKER_05 |
transcript.pyannote[948].start |
8480.59596875 |
transcript.pyannote[948].end |
8481.62534375 |
transcript.pyannote[949].speaker |
SPEAKER_05 |
transcript.pyannote[949].start |
8482.30034375 |
transcript.pyannote[949].end |
8483.00909375 |
transcript.pyannote[950].speaker |
SPEAKER_05 |
transcript.pyannote[950].start |
8483.34659375 |
transcript.pyannote[950].end |
8485.03409375 |
transcript.pyannote[951].speaker |
SPEAKER_05 |
transcript.pyannote[951].start |
8485.57409375 |
transcript.pyannote[951].end |
8492.98221875 |
transcript.pyannote[952].speaker |
SPEAKER_05 |
transcript.pyannote[952].start |
8493.47159375 |
transcript.pyannote[952].end |
8495.59784375 |
transcript.pyannote[953].speaker |
SPEAKER_05 |
transcript.pyannote[953].start |
8497.48784375 |
transcript.pyannote[953].end |
8499.73221875 |
transcript.pyannote[954].speaker |
SPEAKER_05 |
transcript.pyannote[954].start |
8500.17096875 |
transcript.pyannote[954].end |
8506.29659375 |
transcript.pyannote[955].speaker |
SPEAKER_05 |
transcript.pyannote[955].start |
8506.73534375 |
transcript.pyannote[955].end |
8507.10659375 |
transcript.pyannote[956].speaker |
SPEAKER_05 |
transcript.pyannote[956].start |
8507.96721875 |
transcript.pyannote[956].end |
8508.62534375 |
transcript.pyannote[957].speaker |
SPEAKER_05 |
transcript.pyannote[957].start |
8509.72221875 |
transcript.pyannote[957].end |
8515.51034375 |
transcript.pyannote[958].speaker |
SPEAKER_05 |
transcript.pyannote[958].start |
8516.13471875 |
transcript.pyannote[958].end |
8519.03721875 |
transcript.pyannote[959].speaker |
SPEAKER_05 |
transcript.pyannote[959].start |
8519.12159375 |
transcript.pyannote[959].end |
8519.67846875 |
transcript.pyannote[960].speaker |
SPEAKER_05 |
transcript.pyannote[960].start |
8521.70346875 |
transcript.pyannote[960].end |
8524.13346875 |
transcript.pyannote[961].speaker |
SPEAKER_05 |
transcript.pyannote[961].start |
8524.65659375 |
transcript.pyannote[961].end |
8526.46221875 |
transcript.pyannote[962].speaker |
SPEAKER_03 |
transcript.pyannote[962].start |
8528.77409375 |
transcript.pyannote[962].end |
8528.85846875 |
transcript.pyannote[963].speaker |
SPEAKER_05 |
transcript.pyannote[963].start |
8540.53596875 |
transcript.pyannote[963].end |
8548.16346875 |
transcript.pyannote[964].speaker |
SPEAKER_08 |
transcript.pyannote[964].start |
8541.46409375 |
transcript.pyannote[964].end |
8541.64971875 |
transcript.pyannote[965].speaker |
SPEAKER_05 |
transcript.pyannote[965].start |
8548.56846875 |
transcript.pyannote[965].end |
8549.42909375 |
transcript.pyannote[966].speaker |
SPEAKER_05 |
transcript.pyannote[966].start |
8550.77909375 |
transcript.pyannote[966].end |
8551.82534375 |
transcript.pyannote[967].speaker |
SPEAKER_05 |
transcript.pyannote[967].start |
8553.46221875 |
transcript.pyannote[967].end |
8553.88409375 |
transcript.pyannote[968].speaker |
SPEAKER_05 |
transcript.pyannote[968].start |
8554.30596875 |
transcript.pyannote[968].end |
8555.94284375 |
transcript.pyannote[969].speaker |
SPEAKER_05 |
transcript.pyannote[969].start |
8556.21284375 |
transcript.pyannote[969].end |
8557.68096875 |
transcript.pyannote[970].speaker |
SPEAKER_05 |
transcript.pyannote[970].start |
8559.06471875 |
transcript.pyannote[970].end |
8560.46534375 |
transcript.pyannote[971].speaker |
SPEAKER_05 |
transcript.pyannote[971].start |
8560.73534375 |
transcript.pyannote[971].end |
8561.37659375 |
transcript.pyannote[972].speaker |
SPEAKER_05 |
transcript.pyannote[972].start |
8563.30034375 |
transcript.pyannote[972].end |
8564.46471875 |
transcript.pyannote[973].speaker |
SPEAKER_05 |
transcript.pyannote[973].start |
8565.07221875 |
transcript.pyannote[973].end |
8567.83971875 |
transcript.pyannote[974].speaker |
SPEAKER_05 |
transcript.pyannote[974].start |
8569.02096875 |
transcript.pyannote[974].end |
8570.11784375 |
transcript.pyannote[975].speaker |
SPEAKER_05 |
transcript.pyannote[975].start |
8573.20596875 |
transcript.pyannote[975].end |
8574.72471875 |
transcript.pyannote[976].speaker |
SPEAKER_05 |
transcript.pyannote[976].start |
8576.49659375 |
transcript.pyannote[976].end |
8578.04909375 |
transcript.pyannote[977].speaker |
SPEAKER_05 |
transcript.pyannote[977].start |
8579.23034375 |
transcript.pyannote[977].end |
8580.12471875 |
transcript.pyannote[978].speaker |
SPEAKER_09 |
transcript.pyannote[978].start |
8580.12471875 |
transcript.pyannote[978].end |
8580.20909375 |
transcript.pyannote[979].speaker |
SPEAKER_05 |
transcript.pyannote[979].start |
8580.20909375 |
transcript.pyannote[979].end |
8580.22596875 |
transcript.pyannote[980].speaker |
SPEAKER_05 |
transcript.pyannote[980].start |
8580.73221875 |
transcript.pyannote[980].end |
8581.55909375 |
transcript.pyannote[981].speaker |
SPEAKER_05 |
transcript.pyannote[981].start |
8593.13534375 |
transcript.pyannote[981].end |
8594.89034375 |
transcript.pyannote[982].speaker |
SPEAKER_05 |
transcript.pyannote[982].start |
8595.68346875 |
transcript.pyannote[982].end |
8595.95346875 |
transcript.pyannote[983].speaker |
SPEAKER_05 |
transcript.pyannote[983].start |
8596.61159375 |
transcript.pyannote[983].end |
8603.27721875 |
transcript.pyannote[984].speaker |
SPEAKER_10 |
transcript.pyannote[984].start |
8598.72096875 |
transcript.pyannote[984].end |
8600.74596875 |
transcript.pyannote[985].speaker |
SPEAKER_05 |
transcript.pyannote[985].start |
8603.49659375 |
transcript.pyannote[985].end |
8606.53409375 |
transcript.pyannote[986].speaker |
SPEAKER_05 |
transcript.pyannote[986].start |
8606.97284375 |
transcript.pyannote[986].end |
8609.26784375 |
transcript.pyannote[987].speaker |
SPEAKER_05 |
transcript.pyannote[987].start |
8609.90909375 |
transcript.pyannote[987].end |
8611.20846875 |
transcript.pyannote[988].speaker |
SPEAKER_05 |
transcript.pyannote[988].start |
8611.47846875 |
transcript.pyannote[988].end |
8613.21659375 |
transcript.pyannote[989].speaker |
SPEAKER_05 |
transcript.pyannote[989].start |
8613.30096875 |
transcript.pyannote[989].end |
8613.75659375 |
transcript.pyannote[990].speaker |
SPEAKER_05 |
transcript.pyannote[990].start |
8614.78596875 |
transcript.pyannote[990].end |
8615.96721875 |
transcript.pyannote[991].speaker |
SPEAKER_05 |
transcript.pyannote[991].start |
8617.48596875 |
transcript.pyannote[991].end |
8626.10909375 |
transcript.pyannote[992].speaker |
SPEAKER_05 |
transcript.pyannote[992].start |
8626.36221875 |
transcript.pyannote[992].end |
8628.74159375 |
transcript.pyannote[993].speaker |
SPEAKER_05 |
transcript.pyannote[993].start |
8628.79221875 |
transcript.pyannote[993].end |
8631.45846875 |
transcript.pyannote[994].speaker |
SPEAKER_05 |
transcript.pyannote[994].start |
8632.45409375 |
transcript.pyannote[994].end |
8633.41596875 |
transcript.pyannote[995].speaker |
SPEAKER_05 |
transcript.pyannote[995].start |
8634.69846875 |
transcript.pyannote[995].end |
8635.50846875 |
transcript.pyannote[996].speaker |
SPEAKER_05 |
transcript.pyannote[996].start |
8635.72784375 |
transcript.pyannote[996].end |
8636.55471875 |
transcript.pyannote[997].speaker |
SPEAKER_05 |
transcript.pyannote[997].start |
8639.62596875 |
transcript.pyannote[997].end |
8640.38534375 |
transcript.pyannote[998].speaker |
SPEAKER_05 |
transcript.pyannote[998].start |
8641.63409375 |
transcript.pyannote[998].end |
8642.29221875 |
transcript.pyannote[999].speaker |
SPEAKER_05 |
transcript.pyannote[999].start |
8642.42721875 |
transcript.pyannote[999].end |
8643.16971875 |
transcript.pyannote[1000].speaker |
SPEAKER_05 |
transcript.pyannote[1000].start |
8644.19909375 |
transcript.pyannote[1000].end |
8645.53221875 |
transcript.pyannote[1001].speaker |
SPEAKER_05 |
transcript.pyannote[1001].start |
8647.18596875 |
transcript.pyannote[1001].end |
8647.64159375 |
transcript.pyannote[1002].speaker |
SPEAKER_05 |
transcript.pyannote[1002].start |
8651.62409375 |
transcript.pyannote[1002].end |
8655.38721875 |
transcript.pyannote[1003].speaker |
SPEAKER_05 |
transcript.pyannote[1003].start |
8656.36596875 |
transcript.pyannote[1003].end |
8659.35284375 |
transcript.pyannote[1004].speaker |
SPEAKER_05 |
transcript.pyannote[1004].start |
8659.74096875 |
transcript.pyannote[1004].end |
8660.06159375 |
transcript.pyannote[1005].speaker |
SPEAKER_05 |
transcript.pyannote[1005].start |
8660.43284375 |
transcript.pyannote[1005].end |
8661.09096875 |
transcript.pyannote[1006].speaker |
SPEAKER_08 |
transcript.pyannote[1006].start |
8661.09096875 |
transcript.pyannote[1006].end |
8661.25971875 |
transcript.pyannote[1007].speaker |
SPEAKER_05 |
transcript.pyannote[1007].start |
8661.25971875 |
transcript.pyannote[1007].end |
8666.65971875 |
transcript.pyannote[1008].speaker |
SPEAKER_05 |
transcript.pyannote[1008].start |
8667.23346875 |
transcript.pyannote[1008].end |
8672.17784375 |
transcript.pyannote[1009].speaker |
SPEAKER_05 |
transcript.pyannote[1009].start |
8672.68409375 |
transcript.pyannote[1009].end |
8674.40534375 |
transcript.pyannote[1010].speaker |
SPEAKER_05 |
transcript.pyannote[1010].start |
8676.46409375 |
transcript.pyannote[1010].end |
8677.56096875 |
transcript.pyannote[1011].speaker |
SPEAKER_05 |
transcript.pyannote[1011].start |
8677.91534375 |
transcript.pyannote[1011].end |
8678.70846875 |
transcript.pyannote[1012].speaker |
SPEAKER_05 |
transcript.pyannote[1012].start |
8678.89409375 |
transcript.pyannote[1012].end |
8681.20596875 |
transcript.pyannote[1013].speaker |
SPEAKER_05 |
transcript.pyannote[1013].start |
8689.94721875 |
transcript.pyannote[1013].end |
8690.60534375 |
transcript.pyannote[1014].speaker |
SPEAKER_03 |
transcript.pyannote[1014].start |
8690.89221875 |
transcript.pyannote[1014].end |
8691.17909375 |
transcript.pyannote[1015].speaker |
SPEAKER_05 |
transcript.pyannote[1015].start |
8691.82034375 |
transcript.pyannote[1015].end |
8697.55784375 |
transcript.pyannote[1016].speaker |
SPEAKER_05 |
transcript.pyannote[1016].start |
8698.09784375 |
transcript.pyannote[1016].end |
8707.71659375 |
transcript.pyannote[1017].speaker |
SPEAKER_05 |
transcript.pyannote[1017].start |
8708.22284375 |
transcript.pyannote[1017].end |
8710.58534375 |
transcript.pyannote[1018].speaker |
SPEAKER_05 |
transcript.pyannote[1018].start |
8711.93534375 |
transcript.pyannote[1018].end |
8712.25596875 |
transcript.pyannote[1019].speaker |
SPEAKER_05 |
transcript.pyannote[1019].start |
8712.42471875 |
transcript.pyannote[1019].end |
8713.16721875 |
transcript.pyannote[1020].speaker |
SPEAKER_05 |
transcript.pyannote[1020].start |
8714.23034375 |
transcript.pyannote[1020].end |
8715.36096875 |
transcript.pyannote[1021].speaker |
SPEAKER_05 |
transcript.pyannote[1021].start |
8715.79971875 |
transcript.pyannote[1021].end |
8720.55846875 |
transcript.pyannote[1022].speaker |
SPEAKER_05 |
transcript.pyannote[1022].start |
8721.04784375 |
transcript.pyannote[1022].end |
8721.95909375 |
transcript.pyannote[1023].speaker |
SPEAKER_05 |
transcript.pyannote[1023].start |
8722.16159375 |
transcript.pyannote[1023].end |
8725.41846875 |
transcript.pyannote[1024].speaker |
SPEAKER_05 |
transcript.pyannote[1024].start |
8726.17784375 |
transcript.pyannote[1024].end |
8737.36596875 |
transcript.pyannote[1025].speaker |
SPEAKER_05 |
transcript.pyannote[1025].start |
8738.05784375 |
transcript.pyannote[1025].end |
8739.59346875 |
transcript.pyannote[1026].speaker |
SPEAKER_05 |
transcript.pyannote[1026].start |
8739.77909375 |
transcript.pyannote[1026].end |
8740.84221875 |
transcript.pyannote[1027].speaker |
SPEAKER_05 |
transcript.pyannote[1027].start |
8741.17971875 |
transcript.pyannote[1027].end |
8743.59284375 |
transcript.pyannote[1028].speaker |
SPEAKER_05 |
transcript.pyannote[1028].start |
8745.93846875 |
transcript.pyannote[1028].end |
8746.56284375 |
transcript.pyannote[1029].speaker |
SPEAKER_05 |
transcript.pyannote[1029].start |
8747.11971875 |
transcript.pyannote[1029].end |
8747.79471875 |
transcript.pyannote[1030].speaker |
SPEAKER_05 |
transcript.pyannote[1030].start |
8751.28784375 |
transcript.pyannote[1030].end |
8752.99221875 |
transcript.pyannote[1031].speaker |
SPEAKER_05 |
transcript.pyannote[1031].start |
8755.03409375 |
transcript.pyannote[1031].end |
8755.81034375 |
transcript.pyannote[1032].speaker |
SPEAKER_05 |
transcript.pyannote[1032].start |
8757.29534375 |
transcript.pyannote[1032].end |
8758.34159375 |
transcript.pyannote[1033].speaker |
SPEAKER_05 |
transcript.pyannote[1033].start |
8762.54346875 |
transcript.pyannote[1033].end |
8765.29409375 |
transcript.pyannote[1034].speaker |
SPEAKER_05 |
transcript.pyannote[1034].start |
8766.55971875 |
transcript.pyannote[1034].end |
8770.10346875 |
transcript.pyannote[1035].speaker |
SPEAKER_05 |
transcript.pyannote[1035].start |
8770.77846875 |
transcript.pyannote[1035].end |
8773.54596875 |
transcript.pyannote[1036].speaker |
SPEAKER_05 |
transcript.pyannote[1036].start |
8774.57534375 |
transcript.pyannote[1036].end |
8775.57096875 |
transcript.pyannote[1037].speaker |
SPEAKER_05 |
transcript.pyannote[1037].start |
8776.04346875 |
transcript.pyannote[1037].end |
8776.68471875 |
transcript.pyannote[1038].speaker |
SPEAKER_05 |
transcript.pyannote[1038].start |
8777.76471875 |
transcript.pyannote[1038].end |
8782.25346875 |
transcript.pyannote[1039].speaker |
SPEAKER_05 |
transcript.pyannote[1039].start |
8782.72596875 |
transcript.pyannote[1039].end |
8783.77221875 |
transcript.pyannote[1040].speaker |
SPEAKER_05 |
transcript.pyannote[1040].start |
8785.07159375 |
transcript.pyannote[1040].end |
8804.62971875 |
transcript.pyannote[1041].speaker |
SPEAKER_05 |
transcript.pyannote[1041].start |
8805.18659375 |
transcript.pyannote[1041].end |
8807.02596875 |
transcript.pyannote[1042].speaker |
SPEAKER_05 |
transcript.pyannote[1042].start |
8807.19471875 |
transcript.pyannote[1042].end |
8808.59534375 |
transcript.pyannote[1043].speaker |
SPEAKER_05 |
transcript.pyannote[1043].start |
8808.71346875 |
transcript.pyannote[1043].end |
8810.95784375 |
transcript.pyannote[1044].speaker |
SPEAKER_05 |
transcript.pyannote[1044].start |
8811.56534375 |
transcript.pyannote[1044].end |
8812.47659375 |
transcript.pyannote[1045].speaker |
SPEAKER_05 |
transcript.pyannote[1045].start |
8813.92784375 |
transcript.pyannote[1045].end |
8814.61971875 |
transcript.pyannote[1046].speaker |
SPEAKER_05 |
transcript.pyannote[1046].start |
8815.41284375 |
transcript.pyannote[1046].end |
8823.24284375 |
transcript.pyannote[1047].speaker |
SPEAKER_05 |
transcript.pyannote[1047].start |
8824.05284375 |
transcript.pyannote[1047].end |
8828.01846875 |
transcript.pyannote[1048].speaker |
SPEAKER_05 |
transcript.pyannote[1048].start |
8828.47409375 |
transcript.pyannote[1048].end |
8829.45284375 |
transcript.pyannote[1049].speaker |
SPEAKER_05 |
transcript.pyannote[1049].start |
8829.84096875 |
transcript.pyannote[1049].end |
8832.76034375 |
transcript.pyannote[1050].speaker |
SPEAKER_05 |
transcript.pyannote[1050].start |
8833.06409375 |
transcript.pyannote[1050].end |
8837.36721875 |
transcript.pyannote[1051].speaker |
SPEAKER_05 |
transcript.pyannote[1051].start |
8837.67096875 |
transcript.pyannote[1051].end |
8846.09159375 |
transcript.pyannote[1052].speaker |
SPEAKER_05 |
transcript.pyannote[1052].start |
8846.51346875 |
transcript.pyannote[1052].end |
8848.36971875 |
transcript.pyannote[1053].speaker |
SPEAKER_05 |
transcript.pyannote[1053].start |
8848.67346875 |
transcript.pyannote[1053].end |
8850.93471875 |
transcript.pyannote[1054].speaker |
SPEAKER_05 |
transcript.pyannote[1054].start |
8851.87971875 |
transcript.pyannote[1054].end |
8855.74409375 |
transcript.pyannote[1055].speaker |
SPEAKER_05 |
transcript.pyannote[1055].start |
8856.43596875 |
transcript.pyannote[1055].end |
8858.10659375 |
transcript.pyannote[1056].speaker |
SPEAKER_05 |
transcript.pyannote[1056].start |
8858.56221875 |
transcript.pyannote[1056].end |
8859.57471875 |
transcript.pyannote[1057].speaker |
SPEAKER_05 |
transcript.pyannote[1057].start |
8859.76034375 |
transcript.pyannote[1057].end |
8861.53221875 |
transcript.pyannote[1058].speaker |
SPEAKER_05 |
transcript.pyannote[1058].start |
8861.76846875 |
transcript.pyannote[1058].end |
8865.53159375 |
transcript.pyannote[1059].speaker |
SPEAKER_05 |
transcript.pyannote[1059].start |
8865.98721875 |
transcript.pyannote[1059].end |
8873.58096875 |
transcript.pyannote[1060].speaker |
SPEAKER_05 |
transcript.pyannote[1060].start |
8874.32346875 |
transcript.pyannote[1060].end |
8875.90971875 |
transcript.pyannote[1061].speaker |
SPEAKER_05 |
transcript.pyannote[1061].start |
8876.24721875 |
transcript.pyannote[1061].end |
8886.84471875 |
transcript.pyannote[1062].speaker |
SPEAKER_05 |
transcript.pyannote[1062].start |
8887.21596875 |
transcript.pyannote[1062].end |
8891.95784375 |
transcript.pyannote[1063].speaker |
SPEAKER_05 |
transcript.pyannote[1063].start |
8893.00409375 |
transcript.pyannote[1063].end |
8893.57784375 |
transcript.pyannote[1064].speaker |
SPEAKER_05 |
transcript.pyannote[1064].start |
8894.18534375 |
transcript.pyannote[1064].end |
8896.66596875 |
transcript.pyannote[1065].speaker |
SPEAKER_05 |
transcript.pyannote[1065].start |
8897.25659375 |
transcript.pyannote[1065].end |
8900.42909375 |
transcript.pyannote[1066].speaker |
SPEAKER_03 |
transcript.pyannote[1066].start |
8900.95221875 |
transcript.pyannote[1066].end |
8901.18846875 |
transcript.pyannote[1067].speaker |
SPEAKER_05 |
transcript.pyannote[1067].start |
8901.67784375 |
transcript.pyannote[1067].end |
8903.39909375 |
transcript.pyannote[1068].speaker |
SPEAKER_05 |
transcript.pyannote[1068].start |
8906.06534375 |
transcript.pyannote[1068].end |
8909.01846875 |
transcript.pyannote[1069].speaker |
SPEAKER_05 |
transcript.pyannote[1069].start |
8909.94659375 |
transcript.pyannote[1069].end |
8914.60409375 |
transcript.pyannote[1070].speaker |
SPEAKER_05 |
transcript.pyannote[1070].start |
8915.19471875 |
transcript.pyannote[1070].end |
8928.18846875 |
transcript.pyannote[1071].speaker |
SPEAKER_05 |
transcript.pyannote[1071].start |
8928.57659375 |
transcript.pyannote[1071].end |
8929.96034375 |
transcript.pyannote[1072].speaker |
SPEAKER_05 |
transcript.pyannote[1072].start |
8930.21346875 |
transcript.pyannote[1072].end |
8931.09096875 |
transcript.pyannote[1073].speaker |
SPEAKER_05 |
transcript.pyannote[1073].start |
8931.88409375 |
transcript.pyannote[1073].end |
8932.96409375 |
transcript.pyannote[1074].speaker |
SPEAKER_05 |
transcript.pyannote[1074].start |
8933.48721875 |
transcript.pyannote[1074].end |
8935.57971875 |
transcript.pyannote[1075].speaker |
SPEAKER_05 |
transcript.pyannote[1075].start |
8936.86221875 |
transcript.pyannote[1075].end |
8940.92909375 |
transcript.pyannote[1076].speaker |
SPEAKER_05 |
transcript.pyannote[1076].start |
8941.46909375 |
transcript.pyannote[1076].end |
8942.34659375 |
transcript.pyannote[1077].speaker |
SPEAKER_05 |
transcript.pyannote[1077].start |
8944.13534375 |
transcript.pyannote[1077].end |
8944.33784375 |
transcript.pyannote[1078].speaker |
SPEAKER_05 |
transcript.pyannote[1078].start |
8944.37159375 |
transcript.pyannote[1078].end |
8953.77096875 |
transcript.pyannote[1079].speaker |
SPEAKER_05 |
transcript.pyannote[1079].start |
8955.08721875 |
transcript.pyannote[1079].end |
8961.58409375 |
transcript.pyannote[1080].speaker |
SPEAKER_05 |
transcript.pyannote[1080].start |
8963.23784375 |
transcript.pyannote[1080].end |
8965.46534375 |
transcript.pyannote[1081].speaker |
SPEAKER_05 |
transcript.pyannote[1081].start |
8966.03909375 |
transcript.pyannote[1081].end |
8967.06846875 |
transcript.pyannote[1082].speaker |
SPEAKER_05 |
transcript.pyannote[1082].start |
8969.02596875 |
transcript.pyannote[1082].end |
8970.91596875 |
transcript.pyannote[1083].speaker |
SPEAKER_05 |
transcript.pyannote[1083].start |
8971.50659375 |
transcript.pyannote[1083].end |
8971.77659375 |
transcript.pyannote[1084].speaker |
SPEAKER_05 |
transcript.pyannote[1084].start |
8972.13096875 |
transcript.pyannote[1084].end |
8974.29096875 |
transcript.pyannote[1085].speaker |
SPEAKER_05 |
transcript.pyannote[1085].start |
8974.67909375 |
transcript.pyannote[1085].end |
8991.25034375 |
transcript.pyannote[1086].speaker |
SPEAKER_05 |
transcript.pyannote[1086].start |
8991.55409375 |
transcript.pyannote[1086].end |
9016.66409375 |
transcript.pyannote[1087].speaker |
SPEAKER_05 |
transcript.pyannote[1087].start |
9017.55846875 |
transcript.pyannote[1087].end |
9019.16159375 |
transcript.pyannote[1088].speaker |
SPEAKER_05 |
transcript.pyannote[1088].start |
9020.51159375 |
transcript.pyannote[1088].end |
9023.04284375 |
transcript.pyannote[1089].speaker |
SPEAKER_05 |
transcript.pyannote[1089].start |
9026.56971875 |
transcript.pyannote[1089].end |
9028.20659375 |
transcript.pyannote[1090].speaker |
SPEAKER_05 |
transcript.pyannote[1090].start |
9029.62409375 |
transcript.pyannote[1090].end |
9030.38346875 |
transcript.pyannote[1091].speaker |
SPEAKER_05 |
transcript.pyannote[1091].start |
9034.16346875 |
transcript.pyannote[1091].end |
9034.61909375 |
transcript.pyannote[1092].speaker |
SPEAKER_05 |
transcript.pyannote[1092].start |
9035.36159375 |
transcript.pyannote[1092].end |
9036.50909375 |
transcript.pyannote[1093].speaker |
SPEAKER_05 |
transcript.pyannote[1093].start |
9038.23034375 |
transcript.pyannote[1093].end |
9039.04034375 |
transcript.pyannote[1094].speaker |
SPEAKER_05 |
transcript.pyannote[1094].start |
9039.56346875 |
transcript.pyannote[1094].end |
9040.06971875 |
transcript.pyannote[1095].speaker |
SPEAKER_05 |
transcript.pyannote[1095].start |
9041.16659375 |
transcript.pyannote[1095].end |
9041.57159375 |
transcript.pyannote[1096].speaker |
SPEAKER_05 |
transcript.pyannote[1096].start |
9043.57971875 |
transcript.pyannote[1096].end |
9045.30096875 |
transcript.pyannote[1097].speaker |
SPEAKER_05 |
transcript.pyannote[1097].start |
9045.62159375 |
transcript.pyannote[1097].end |
9046.90409375 |
transcript.pyannote[1098].speaker |
SPEAKER_05 |
transcript.pyannote[1098].start |
9046.95471875 |
transcript.pyannote[1098].end |
9046.97159375 |
transcript.pyannote[1099].speaker |
SPEAKER_05 |
transcript.pyannote[1099].start |
9047.42721875 |
transcript.pyannote[1099].end |
9048.00096875 |
transcript.pyannote[1100].speaker |
SPEAKER_05 |
transcript.pyannote[1100].start |
9048.91221875 |
transcript.pyannote[1100].end |
9050.27909375 |
transcript.pyannote[1101].speaker |
SPEAKER_05 |
transcript.pyannote[1101].start |
9052.03409375 |
transcript.pyannote[1101].end |
9053.14784375 |
transcript.pyannote[1102].speaker |
SPEAKER_05 |
transcript.pyannote[1102].start |
9057.48471875 |
transcript.pyannote[1102].end |
9058.12596875 |
transcript.pyannote[1103].speaker |
SPEAKER_05 |
transcript.pyannote[1103].start |
9060.99471875 |
transcript.pyannote[1103].end |
9061.60221875 |
transcript.pyannote[1104].speaker |
SPEAKER_05 |
transcript.pyannote[1104].start |
9062.20971875 |
transcript.pyannote[1104].end |
9062.76659375 |
transcript.pyannote[1105].speaker |
SPEAKER_05 |
transcript.pyannote[1105].start |
9064.09971875 |
transcript.pyannote[1105].end |
9066.14159375 |
transcript.pyannote[1106].speaker |
SPEAKER_05 |
transcript.pyannote[1106].start |
9066.85034375 |
transcript.pyannote[1106].end |
9075.37221875 |
transcript.pyannote[1107].speaker |
SPEAKER_05 |
transcript.pyannote[1107].start |
9075.96284375 |
transcript.pyannote[1107].end |
9076.57034375 |
transcript.pyannote[1108].speaker |
SPEAKER_05 |
transcript.pyannote[1108].start |
9076.67159375 |
transcript.pyannote[1108].end |
9078.35909375 |
transcript.pyannote[1109].speaker |
SPEAKER_05 |
transcript.pyannote[1109].start |
9078.54471875 |
transcript.pyannote[1109].end |
9086.93159375 |
transcript.pyannote[1110].speaker |
SPEAKER_05 |
transcript.pyannote[1110].start |
9087.64034375 |
transcript.pyannote[1110].end |
9090.05346875 |
transcript.pyannote[1111].speaker |
SPEAKER_05 |
transcript.pyannote[1111].start |
9090.17159375 |
transcript.pyannote[1111].end |
9091.47096875 |
transcript.pyannote[1112].speaker |
SPEAKER_05 |
transcript.pyannote[1112].start |
9091.87596875 |
transcript.pyannote[1112].end |
9108.37971875 |
transcript.pyannote[1113].speaker |
SPEAKER_05 |
transcript.pyannote[1113].start |
9109.74659375 |
transcript.pyannote[1113].end |
9115.14659375 |
transcript.pyannote[1114].speaker |
SPEAKER_05 |
transcript.pyannote[1114].start |
9115.88909375 |
transcript.pyannote[1114].end |
9141.35346875 |
transcript.pyannote[1115].speaker |
SPEAKER_05 |
transcript.pyannote[1115].start |
9142.07909375 |
transcript.pyannote[1115].end |
9142.39971875 |
transcript.pyannote[1116].speaker |
SPEAKER_05 |
transcript.pyannote[1116].start |
9142.55159375 |
transcript.pyannote[1116].end |
9148.23846875 |
transcript.pyannote[1117].speaker |
SPEAKER_05 |
transcript.pyannote[1117].start |
9148.66034375 |
transcript.pyannote[1117].end |
9152.77784375 |
transcript.pyannote[1118].speaker |
SPEAKER_05 |
transcript.pyannote[1118].start |
9153.97596875 |
transcript.pyannote[1118].end |
9155.30909375 |
transcript.pyannote[1119].speaker |
SPEAKER_05 |
transcript.pyannote[1119].start |
9155.46096875 |
transcript.pyannote[1119].end |
9171.59346875 |
transcript.pyannote[1120].speaker |
SPEAKER_05 |
transcript.pyannote[1120].start |
9172.30221875 |
transcript.pyannote[1120].end |
9176.30159375 |
transcript.pyannote[1121].speaker |
SPEAKER_05 |
transcript.pyannote[1121].start |
9177.88784375 |
transcript.pyannote[1121].end |
9178.78221875 |
transcript.pyannote[1122].speaker |
SPEAKER_05 |
transcript.pyannote[1122].start |
9179.13659375 |
transcript.pyannote[1122].end |
9179.69346875 |
transcript.pyannote[1123].speaker |
SPEAKER_05 |
transcript.pyannote[1123].start |
9180.60471875 |
transcript.pyannote[1123].end |
9187.28721875 |
transcript.pyannote[1124].speaker |
SPEAKER_05 |
transcript.pyannote[1124].start |
9188.26596875 |
transcript.pyannote[1124].end |
9190.98284375 |
transcript.pyannote[1125].speaker |
SPEAKER_05 |
transcript.pyannote[1125].start |
9191.25284375 |
transcript.pyannote[1125].end |
9198.72846875 |
transcript.pyannote[1126].speaker |
SPEAKER_05 |
transcript.pyannote[1126].start |
9198.96471875 |
transcript.pyannote[1126].end |
9202.49159375 |
transcript.pyannote[1127].speaker |
SPEAKER_05 |
transcript.pyannote[1127].start |
9202.89659375 |
transcript.pyannote[1127].end |
9203.94284375 |
transcript.pyannote[1128].speaker |
SPEAKER_05 |
transcript.pyannote[1128].start |
9204.38159375 |
transcript.pyannote[1128].end |
9204.95534375 |
transcript.pyannote[1129].speaker |
SPEAKER_05 |
transcript.pyannote[1129].start |
9205.14096875 |
transcript.pyannote[1129].end |
9208.76909375 |
transcript.pyannote[1130].speaker |
SPEAKER_05 |
transcript.pyannote[1130].start |
9209.83221875 |
transcript.pyannote[1130].end |
9214.06784375 |
transcript.pyannote[1131].speaker |
SPEAKER_05 |
transcript.pyannote[1131].start |
9214.55721875 |
transcript.pyannote[1131].end |
9221.10471875 |
transcript.pyannote[1132].speaker |
SPEAKER_05 |
transcript.pyannote[1132].start |
9227.61846875 |
transcript.pyannote[1132].end |
9230.20034375 |
transcript.pyannote[1133].speaker |
SPEAKER_05 |
transcript.pyannote[1133].start |
9231.49971875 |
transcript.pyannote[1133].end |
9232.98471875 |
transcript.pyannote[1134].speaker |
SPEAKER_05 |
transcript.pyannote[1134].start |
9234.48659375 |
transcript.pyannote[1134].end |
9235.39784375 |
transcript.pyannote[1135].speaker |
SPEAKER_05 |
transcript.pyannote[1135].start |
9235.63409375 |
transcript.pyannote[1135].end |
9237.20346875 |
transcript.pyannote[1136].speaker |
SPEAKER_05 |
transcript.pyannote[1136].start |
9238.87409375 |
transcript.pyannote[1136].end |
9242.28284375 |
transcript.pyannote[1137].speaker |
SPEAKER_05 |
transcript.pyannote[1137].start |
9242.58659375 |
transcript.pyannote[1137].end |
9246.21471875 |
transcript.pyannote[1138].speaker |
SPEAKER_05 |
transcript.pyannote[1138].start |
9246.75471875 |
transcript.pyannote[1138].end |
9255.71534375 |
transcript.pyannote[1139].speaker |
SPEAKER_05 |
transcript.pyannote[1139].start |
9256.57596875 |
transcript.pyannote[1139].end |
9275.62784375 |
transcript.pyannote[1140].speaker |
SPEAKER_05 |
transcript.pyannote[1140].start |
9276.37034375 |
transcript.pyannote[1140].end |
9279.62721875 |
transcript.pyannote[1141].speaker |
SPEAKER_05 |
transcript.pyannote[1141].start |
9280.25159375 |
transcript.pyannote[1141].end |
9286.47846875 |
transcript.pyannote[1142].speaker |
SPEAKER_05 |
transcript.pyannote[1142].start |
9291.89534375 |
transcript.pyannote[1142].end |
9293.63346875 |
transcript.pyannote[1143].speaker |
SPEAKER_05 |
transcript.pyannote[1143].start |
9294.27471875 |
transcript.pyannote[1143].end |
9294.88221875 |
transcript.pyannote[1144].speaker |
SPEAKER_05 |
transcript.pyannote[1144].start |
9297.68346875 |
transcript.pyannote[1144].end |
9307.48784375 |
transcript.pyannote[1145].speaker |
SPEAKER_05 |
transcript.pyannote[1145].start |
9307.82534375 |
transcript.pyannote[1145].end |
9309.83346875 |
transcript.pyannote[1146].speaker |
SPEAKER_05 |
transcript.pyannote[1146].start |
9310.28909375 |
transcript.pyannote[1146].end |
9312.01034375 |
transcript.pyannote[1147].speaker |
SPEAKER_05 |
transcript.pyannote[1147].start |
9312.71909375 |
transcript.pyannote[1147].end |
9315.04784375 |
transcript.pyannote[1148].speaker |
SPEAKER_05 |
transcript.pyannote[1148].start |
9316.17846875 |
transcript.pyannote[1148].end |
9319.26659375 |
transcript.pyannote[1149].speaker |
SPEAKER_05 |
transcript.pyannote[1149].start |
9320.98784375 |
transcript.pyannote[1149].end |
9323.09721875 |
transcript.pyannote[1150].speaker |
SPEAKER_05 |
transcript.pyannote[1150].start |
9323.70471875 |
transcript.pyannote[1150].end |
9327.21471875 |
transcript.pyannote[1151].speaker |
SPEAKER_05 |
transcript.pyannote[1151].start |
9327.50159375 |
transcript.pyannote[1151].end |
9330.45471875 |
transcript.pyannote[1152].speaker |
SPEAKER_05 |
transcript.pyannote[1152].start |
9332.32784375 |
transcript.pyannote[1152].end |
9338.45346875 |
transcript.pyannote[1153].speaker |
SPEAKER_05 |
transcript.pyannote[1153].start |
9339.65159375 |
transcript.pyannote[1153].end |
9341.84534375 |
transcript.pyannote[1154].speaker |
SPEAKER_05 |
transcript.pyannote[1154].start |
9342.19971875 |
transcript.pyannote[1154].end |
9343.51596875 |
transcript.pyannote[1155].speaker |
SPEAKER_05 |
transcript.pyannote[1155].start |
9344.25846875 |
transcript.pyannote[1155].end |
9345.57471875 |
transcript.pyannote[1156].speaker |
SPEAKER_05 |
transcript.pyannote[1156].start |
9346.04721875 |
transcript.pyannote[1156].end |
9346.62096875 |
transcript.pyannote[1157].speaker |
SPEAKER_05 |
transcript.pyannote[1157].start |
9347.36346875 |
transcript.pyannote[1157].end |
9347.83596875 |
transcript.pyannote[1158].speaker |
SPEAKER_05 |
transcript.pyannote[1158].start |
9348.30846875 |
transcript.pyannote[1158].end |
9349.99596875 |
transcript.pyannote[1159].speaker |
SPEAKER_05 |
transcript.pyannote[1159].start |
9350.16471875 |
transcript.pyannote[1159].end |
9357.99471875 |
transcript.pyannote[1160].speaker |
SPEAKER_05 |
transcript.pyannote[1160].start |
9358.41659375 |
transcript.pyannote[1160].end |
9358.87221875 |
transcript.pyannote[1161].speaker |
SPEAKER_05 |
transcript.pyannote[1161].start |
9359.32784375 |
transcript.pyannote[1161].end |
9361.69034375 |
transcript.pyannote[1162].speaker |
SPEAKER_05 |
transcript.pyannote[1162].start |
9361.77471875 |
transcript.pyannote[1162].end |
9362.51721875 |
transcript.pyannote[1163].speaker |
SPEAKER_08 |
transcript.pyannote[1163].start |
9362.97284375 |
transcript.pyannote[1163].end |
9363.02346875 |
transcript.pyannote[1164].speaker |
SPEAKER_05 |
transcript.pyannote[1164].start |
9363.02346875 |
transcript.pyannote[1164].end |
9363.29346875 |
transcript.pyannote[1165].speaker |
SPEAKER_08 |
transcript.pyannote[1165].start |
9363.20909375 |
transcript.pyannote[1165].end |
9364.06971875 |
transcript.pyannote[1166].speaker |
SPEAKER_05 |
transcript.pyannote[1166].start |
9365.31846875 |
transcript.pyannote[1166].end |
9368.72721875 |
transcript.pyannote[1167].speaker |
SPEAKER_05 |
transcript.pyannote[1167].start |
9370.21221875 |
transcript.pyannote[1167].end |
9380.08409375 |
transcript.pyannote[1168].speaker |
SPEAKER_05 |
transcript.pyannote[1168].start |
9380.35409375 |
transcript.pyannote[1168].end |
9383.69534375 |
transcript.pyannote[1169].speaker |
SPEAKER_05 |
transcript.pyannote[1169].start |
9384.47159375 |
transcript.pyannote[1169].end |
9386.26034375 |
transcript.pyannote[1170].speaker |
SPEAKER_05 |
transcript.pyannote[1170].start |
9386.42909375 |
transcript.pyannote[1170].end |
9388.18409375 |
transcript.pyannote[1171].speaker |
SPEAKER_05 |
transcript.pyannote[1171].start |
9389.83784375 |
transcript.pyannote[1171].end |
9390.59721875 |
transcript.pyannote[1172].speaker |
SPEAKER_05 |
transcript.pyannote[1172].start |
9390.76596875 |
transcript.pyannote[1172].end |
9400.41846875 |
transcript.pyannote[1173].speaker |
SPEAKER_05 |
transcript.pyannote[1173].start |
9401.29596875 |
transcript.pyannote[1173].end |
9408.48471875 |
transcript.pyannote[1174].speaker |
SPEAKER_05 |
transcript.pyannote[1174].start |
9408.78846875 |
transcript.pyannote[1174].end |
9415.16721875 |
transcript.pyannote[1175].speaker |
SPEAKER_05 |
transcript.pyannote[1175].start |
9415.40346875 |
transcript.pyannote[1175].end |
9432.39659375 |
transcript.pyannote[1176].speaker |
SPEAKER_05 |
transcript.pyannote[1176].start |
9432.58221875 |
transcript.pyannote[1176].end |
9440.98596875 |
transcript.pyannote[1177].speaker |
SPEAKER_05 |
transcript.pyannote[1177].start |
9441.34034375 |
transcript.pyannote[1177].end |
9444.34409375 |
transcript.pyannote[1178].speaker |
SPEAKER_05 |
transcript.pyannote[1178].start |
9444.83346875 |
transcript.pyannote[1178].end |
9458.36721875 |
transcript.pyannote[1179].speaker |
SPEAKER_05 |
transcript.pyannote[1179].start |
9459.05909375 |
transcript.pyannote[1179].end |
9460.57784375 |
transcript.pyannote[1180].speaker |
SPEAKER_05 |
transcript.pyannote[1180].start |
9461.03346875 |
transcript.pyannote[1180].end |
9466.65284375 |
transcript.pyannote[1181].speaker |
SPEAKER_05 |
transcript.pyannote[1181].start |
9467.58096875 |
transcript.pyannote[1181].end |
9475.81596875 |
transcript.pyannote[1182].speaker |
SPEAKER_05 |
transcript.pyannote[1182].start |
9476.03534375 |
transcript.pyannote[1182].end |
9478.46534375 |
transcript.pyannote[1183].speaker |
SPEAKER_05 |
transcript.pyannote[1183].start |
9479.81534375 |
transcript.pyannote[1183].end |
9489.40034375 |
transcript.pyannote[1184].speaker |
SPEAKER_09 |
transcript.pyannote[1184].start |
9489.97409375 |
transcript.pyannote[1184].end |
9490.02471875 |
transcript.pyannote[1185].speaker |
SPEAKER_05 |
transcript.pyannote[1185].start |
9494.27721875 |
transcript.pyannote[1185].end |
9496.06596875 |
transcript.pyannote[1186].speaker |
SPEAKER_05 |
transcript.pyannote[1186].start |
9498.05721875 |
transcript.pyannote[1186].end |
9499.60971875 |
transcript.pyannote[1187].speaker |
SPEAKER_05 |
transcript.pyannote[1187].start |
9499.94721875 |
transcript.pyannote[1187].end |
9507.38909375 |
transcript.pyannote[1188].speaker |
SPEAKER_05 |
transcript.pyannote[1188].start |
9508.55346875 |
transcript.pyannote[1188].end |
9514.03784375 |
transcript.pyannote[1189].speaker |
SPEAKER_04 |
transcript.pyannote[1189].start |
9514.24034375 |
transcript.pyannote[1189].end |
9514.59471875 |
transcript.pyannote[1190].speaker |
SPEAKER_05 |
transcript.pyannote[1190].start |
9514.81409375 |
transcript.pyannote[1190].end |
9516.09659375 |
transcript.pyannote[1191].speaker |
SPEAKER_05 |
transcript.pyannote[1191].start |
9516.90659375 |
transcript.pyannote[1191].end |
9517.27784375 |
transcript.pyannote[1192].speaker |
SPEAKER_05 |
transcript.pyannote[1192].start |
9518.99909375 |
transcript.pyannote[1192].end |
9521.29409375 |
transcript.pyannote[1193].speaker |
SPEAKER_05 |
transcript.pyannote[1193].start |
9521.51346875 |
transcript.pyannote[1193].end |
9526.25534375 |
transcript.pyannote[1194].speaker |
SPEAKER_09 |
transcript.pyannote[1194].start |
9537.07221875 |
transcript.pyannote[1194].end |
9537.76409375 |
transcript.pyannote[1195].speaker |
SPEAKER_05 |
transcript.pyannote[1195].start |
9540.58221875 |
transcript.pyannote[1195].end |
9543.13034375 |
transcript.pyannote[1196].speaker |
SPEAKER_09 |
transcript.pyannote[1196].start |
9541.22346875 |
transcript.pyannote[1196].end |
9541.37534375 |
transcript.pyannote[1197].speaker |
SPEAKER_09 |
transcript.pyannote[1197].start |
9541.42596875 |
transcript.pyannote[1197].end |
9541.45971875 |
transcript.pyannote[1198].speaker |
SPEAKER_05 |
transcript.pyannote[1198].start |
9543.21471875 |
transcript.pyannote[1198].end |
9545.10471875 |
transcript.pyannote[1199].speaker |
SPEAKER_05 |
transcript.pyannote[1199].start |
9545.61096875 |
transcript.pyannote[1199].end |
9546.92721875 |
transcript.pyannote[1200].speaker |
SPEAKER_05 |
transcript.pyannote[1200].start |
9546.97784375 |
transcript.pyannote[1200].end |
9547.04534375 |
transcript.pyannote[1201].speaker |
SPEAKER_05 |
transcript.pyannote[1201].start |
9547.14659375 |
transcript.pyannote[1201].end |
9547.97346875 |
transcript.pyannote[1202].speaker |
SPEAKER_05 |
transcript.pyannote[1202].start |
9549.81284375 |
transcript.pyannote[1202].end |
9552.07409375 |
transcript.pyannote[1203].speaker |
SPEAKER_05 |
transcript.pyannote[1203].start |
9552.49596875 |
transcript.pyannote[1203].end |
9556.22534375 |
transcript.pyannote[1204].speaker |
SPEAKER_00 |
transcript.pyannote[1204].start |
9555.31409375 |
transcript.pyannote[1204].end |
9555.82034375 |
transcript.pyannote[1205].speaker |
SPEAKER_05 |
transcript.pyannote[1205].start |
9556.30971875 |
transcript.pyannote[1205].end |
9564.51096875 |
transcript.pyannote[1206].speaker |
SPEAKER_05 |
transcript.pyannote[1206].start |
9565.69221875 |
transcript.pyannote[1206].end |
9565.91159375 |
transcript.pyannote[1207].speaker |
SPEAKER_05 |
transcript.pyannote[1207].start |
9565.96221875 |
transcript.pyannote[1207].end |
9566.09721875 |
transcript.pyannote[1208].speaker |
SPEAKER_05 |
transcript.pyannote[1208].start |
9566.46846875 |
transcript.pyannote[1208].end |
9567.02534375 |
transcript.pyannote[1209].speaker |
SPEAKER_05 |
transcript.pyannote[1209].start |
9568.24034375 |
transcript.pyannote[1209].end |
9573.67409375 |
transcript.pyannote[1210].speaker |
SPEAKER_00 |
transcript.pyannote[1210].start |
9570.94034375 |
transcript.pyannote[1210].end |
9571.05846875 |
transcript.pyannote[1211].speaker |
SPEAKER_05 |
transcript.pyannote[1211].start |
9577.31909375 |
transcript.pyannote[1211].end |
9578.04471875 |
transcript.pyannote[1212].speaker |
SPEAKER_05 |
transcript.pyannote[1212].start |
9578.53409375 |
transcript.pyannote[1212].end |
9579.12471875 |
transcript.pyannote[1213].speaker |
SPEAKER_05 |
transcript.pyannote[1213].start |
9579.49596875 |
transcript.pyannote[1213].end |
9582.02721875 |
transcript.pyannote[1214].speaker |
SPEAKER_05 |
transcript.pyannote[1214].start |
9582.46596875 |
transcript.pyannote[1214].end |
9583.56284375 |
transcript.pyannote[1215].speaker |
SPEAKER_05 |
transcript.pyannote[1215].start |
9583.69784375 |
transcript.pyannote[1215].end |
9584.15346875 |
transcript.pyannote[1216].speaker |
SPEAKER_05 |
transcript.pyannote[1216].start |
9584.54159375 |
transcript.pyannote[1216].end |
9584.98034375 |
transcript.pyannote[1217].speaker |
SPEAKER_05 |
transcript.pyannote[1217].start |
9585.33471875 |
transcript.pyannote[1217].end |
9586.04346875 |
transcript.pyannote[1218].speaker |
SPEAKER_05 |
transcript.pyannote[1218].start |
9586.39784375 |
transcript.pyannote[1218].end |
9594.02534375 |
transcript.pyannote[1219].speaker |
SPEAKER_05 |
transcript.pyannote[1219].start |
9595.39221875 |
transcript.pyannote[1219].end |
9596.53971875 |
transcript.pyannote[1220].speaker |
SPEAKER_05 |
transcript.pyannote[1220].start |
9597.90659375 |
transcript.pyannote[1220].end |
9599.49284375 |
transcript.pyannote[1221].speaker |
SPEAKER_05 |
transcript.pyannote[1221].start |
9600.30284375 |
transcript.pyannote[1221].end |
9600.91034375 |
transcript.pyannote[1222].speaker |
SPEAKER_05 |
transcript.pyannote[1222].start |
9601.56846875 |
transcript.pyannote[1222].end |
9602.37846875 |
transcript.pyannote[1223].speaker |
SPEAKER_05 |
transcript.pyannote[1223].start |
9603.01971875 |
transcript.pyannote[1223].end |
9603.96471875 |
transcript.pyannote[1224].speaker |
SPEAKER_05 |
transcript.pyannote[1224].start |
9604.31909375 |
transcript.pyannote[1224].end |
9605.97284375 |
transcript.pyannote[1225].speaker |
SPEAKER_05 |
transcript.pyannote[1225].start |
9607.99784375 |
transcript.pyannote[1225].end |
9610.27596875 |
transcript.pyannote[1226].speaker |
SPEAKER_05 |
transcript.pyannote[1226].start |
9610.74846875 |
transcript.pyannote[1226].end |
9613.48221875 |
transcript.pyannote[1227].speaker |
SPEAKER_05 |
transcript.pyannote[1227].start |
9613.51596875 |
transcript.pyannote[1227].end |
9615.10221875 |
transcript.pyannote[1228].speaker |
SPEAKER_05 |
transcript.pyannote[1228].start |
9615.99659375 |
transcript.pyannote[1228].end |
9616.24971875 |
transcript.pyannote[1229].speaker |
SPEAKER_05 |
transcript.pyannote[1229].start |
9616.57034375 |
transcript.pyannote[1229].end |
9616.95846875 |
transcript.pyannote[1230].speaker |
SPEAKER_05 |
transcript.pyannote[1230].start |
9617.53221875 |
transcript.pyannote[1230].end |
9618.42659375 |
transcript.pyannote[1231].speaker |
SPEAKER_05 |
transcript.pyannote[1231].start |
9620.60346875 |
transcript.pyannote[1231].end |
9630.54284375 |
transcript.pyannote[1232].speaker |
SPEAKER_00 |
transcript.pyannote[1232].start |
9625.10909375 |
transcript.pyannote[1232].end |
9625.12596875 |
transcript.pyannote[1233].speaker |
SPEAKER_10 |
transcript.pyannote[1233].start |
9625.12596875 |
transcript.pyannote[1233].end |
9625.31159375 |
transcript.pyannote[1234].speaker |
SPEAKER_00 |
transcript.pyannote[1234].start |
9625.31159375 |
transcript.pyannote[1234].end |
9625.37909375 |
transcript.pyannote[1235].speaker |
SPEAKER_00 |
transcript.pyannote[1235].start |
9626.59409375 |
transcript.pyannote[1235].end |
9627.03284375 |
transcript.pyannote[1236].speaker |
SPEAKER_08 |
transcript.pyannote[1236].start |
9627.03284375 |
transcript.pyannote[1236].end |
9627.62346875 |
transcript.pyannote[1237].speaker |
SPEAKER_00 |
transcript.pyannote[1237].start |
9627.62346875 |
transcript.pyannote[1237].end |
9627.65721875 |
transcript.pyannote[1238].speaker |
SPEAKER_05 |
transcript.pyannote[1238].start |
9630.89721875 |
transcript.pyannote[1238].end |
9634.89659375 |
transcript.pyannote[1239].speaker |
SPEAKER_08 |
transcript.pyannote[1239].start |
9633.44534375 |
transcript.pyannote[1239].end |
9634.98096875 |
transcript.pyannote[1240].speaker |
SPEAKER_05 |
transcript.pyannote[1240].start |
9635.48721875 |
transcript.pyannote[1240].end |
9648.93659375 |
transcript.pyannote[1241].speaker |
SPEAKER_05 |
transcript.pyannote[1241].start |
9649.37534375 |
transcript.pyannote[1241].end |
9652.88534375 |
transcript.pyannote[1242].speaker |
SPEAKER_05 |
transcript.pyannote[1242].start |
9653.83034375 |
transcript.pyannote[1242].end |
9656.09159375 |
transcript.pyannote[1243].speaker |
SPEAKER_05 |
transcript.pyannote[1243].start |
9656.63159375 |
transcript.pyannote[1243].end |
9663.66846875 |
transcript.pyannote[1244].speaker |
SPEAKER_05 |
transcript.pyannote[1244].start |
9664.84971875 |
transcript.pyannote[1244].end |
9670.50284375 |
transcript.pyannote[1245].speaker |
SPEAKER_05 |
transcript.pyannote[1245].start |
9671.78534375 |
transcript.pyannote[1245].end |
9672.17346875 |
transcript.pyannote[1246].speaker |
SPEAKER_05 |
transcript.pyannote[1246].start |
9673.74284375 |
transcript.pyannote[1246].end |
9675.41346875 |
transcript.pyannote[1247].speaker |
SPEAKER_05 |
transcript.pyannote[1247].start |
9676.20659375 |
transcript.pyannote[1247].end |
9677.79284375 |
transcript.pyannote[1248].speaker |
SPEAKER_05 |
transcript.pyannote[1248].start |
9677.87721875 |
transcript.pyannote[1248].end |
9684.64409375 |
transcript.pyannote[1249].speaker |
SPEAKER_05 |
transcript.pyannote[1249].start |
9684.94784375 |
transcript.pyannote[1249].end |
9687.95159375 |
transcript.pyannote[1250].speaker |
SPEAKER_05 |
transcript.pyannote[1250].start |
9688.55909375 |
transcript.pyannote[1250].end |
9689.72346875 |
transcript.pyannote[1251].speaker |
SPEAKER_05 |
transcript.pyannote[1251].start |
9690.93846875 |
transcript.pyannote[1251].end |
9691.59659375 |
transcript.pyannote[1252].speaker |
SPEAKER_05 |
transcript.pyannote[1252].start |
9691.69784375 |
transcript.pyannote[1252].end |
9693.67221875 |
transcript.pyannote[1253].speaker |
SPEAKER_05 |
transcript.pyannote[1253].start |
9694.90409375 |
transcript.pyannote[1253].end |
9702.71721875 |
transcript.pyannote[1254].speaker |
SPEAKER_05 |
transcript.pyannote[1254].start |
9702.98721875 |
transcript.pyannote[1254].end |
9704.21909375 |
transcript.pyannote[1255].speaker |
SPEAKER_05 |
transcript.pyannote[1255].start |
9704.40471875 |
transcript.pyannote[1255].end |
9705.04596875 |
transcript.pyannote[1256].speaker |
SPEAKER_05 |
transcript.pyannote[1256].start |
9711.54284375 |
transcript.pyannote[1256].end |
9720.80721875 |
transcript.pyannote[1257].speaker |
SPEAKER_05 |
transcript.pyannote[1257].start |
9723.05159375 |
transcript.pyannote[1257].end |
9725.12721875 |
transcript.pyannote[1258].speaker |
SPEAKER_05 |
transcript.pyannote[1258].start |
9725.71784375 |
transcript.pyannote[1258].end |
9734.71221875 |
transcript.pyannote[1259].speaker |
SPEAKER_05 |
transcript.pyannote[1259].start |
9735.08346875 |
transcript.pyannote[1259].end |
9741.37784375 |
transcript.pyannote[1260].speaker |
SPEAKER_05 |
transcript.pyannote[1260].start |
9741.83346875 |
transcript.pyannote[1260].end |
9750.43971875 |
transcript.pyannote[1261].speaker |
SPEAKER_04 |
transcript.pyannote[1261].start |
9743.65596875 |
transcript.pyannote[1261].end |
9743.75721875 |
transcript.pyannote[1262].speaker |
SPEAKER_04 |
transcript.pyannote[1262].start |
9745.44471875 |
transcript.pyannote[1262].end |
9746.32221875 |
transcript.pyannote[1263].speaker |
SPEAKER_05 |
transcript.pyannote[1263].start |
9750.69284375 |
transcript.pyannote[1263].end |
9755.67096875 |
transcript.pyannote[1264].speaker |
SPEAKER_08 |
transcript.pyannote[1264].start |
9753.83159375 |
transcript.pyannote[1264].end |
9753.94971875 |
transcript.pyannote[1265].speaker |
SPEAKER_08 |
transcript.pyannote[1265].start |
9754.11846875 |
transcript.pyannote[1265].end |
9755.41784375 |
transcript.pyannote[1266].speaker |
SPEAKER_05 |
transcript.pyannote[1266].start |
9756.04221875 |
transcript.pyannote[1266].end |
9762.72471875 |
transcript.pyannote[1267].speaker |
SPEAKER_04 |
transcript.pyannote[1267].start |
9759.40034375 |
transcript.pyannote[1267].end |
9761.62784375 |
transcript.pyannote[1268].speaker |
SPEAKER_05 |
transcript.pyannote[1268].start |
9763.07909375 |
transcript.pyannote[1268].end |
9781.16909375 |
transcript.pyannote[1269].speaker |
SPEAKER_04 |
transcript.pyannote[1269].start |
9770.43659375 |
transcript.pyannote[1269].end |
9771.07784375 |
transcript.pyannote[1270].speaker |
SPEAKER_00 |
transcript.pyannote[1270].start |
9771.07784375 |
transcript.pyannote[1270].end |
9771.11159375 |
transcript.pyannote[1271].speaker |
SPEAKER_05 |
transcript.pyannote[1271].start |
9782.77221875 |
transcript.pyannote[1271].end |
9787.14284375 |
transcript.pyannote[1272].speaker |
SPEAKER_05 |
transcript.pyannote[1272].start |
9787.78409375 |
transcript.pyannote[1272].end |
9788.32409375 |
transcript.pyannote[1273].speaker |
SPEAKER_05 |
transcript.pyannote[1273].start |
9790.85534375 |
transcript.pyannote[1273].end |
9796.55909375 |
transcript.pyannote[1274].speaker |
SPEAKER_05 |
transcript.pyannote[1274].start |
9796.99784375 |
transcript.pyannote[1274].end |
9798.98909375 |
transcript.pyannote[1275].speaker |
SPEAKER_05 |
transcript.pyannote[1275].start |
9799.22534375 |
transcript.pyannote[1275].end |
9805.63784375 |
transcript.pyannote[1276].speaker |
SPEAKER_05 |
transcript.pyannote[1276].start |
9810.22784375 |
transcript.pyannote[1276].end |
9812.48909375 |
transcript.pyannote[1277].speaker |
SPEAKER_05 |
transcript.pyannote[1277].start |
9814.17659375 |
transcript.pyannote[1277].end |
9815.13846875 |
transcript.pyannote[1278].speaker |
SPEAKER_05 |
transcript.pyannote[1278].start |
9821.90534375 |
transcript.pyannote[1278].end |
9825.17909375 |
transcript.pyannote[1279].speaker |
SPEAKER_05 |
transcript.pyannote[1279].start |
9833.76846875 |
transcript.pyannote[1279].end |
9838.05471875 |
transcript.pyannote[1280].speaker |
SPEAKER_05 |
transcript.pyannote[1280].start |
9838.40909375 |
transcript.pyannote[1280].end |
9845.44596875 |
transcript.pyannote[1281].speaker |
SPEAKER_05 |
transcript.pyannote[1281].start |
9845.73284375 |
transcript.pyannote[1281].end |
9856.88721875 |
transcript.pyannote[1282].speaker |
SPEAKER_00 |
transcript.pyannote[1282].start |
9851.94284375 |
transcript.pyannote[1282].end |
9852.02721875 |
transcript.pyannote[1283].speaker |
SPEAKER_08 |
transcript.pyannote[1283].start |
9852.02721875 |
transcript.pyannote[1283].end |
9854.50784375 |
transcript.pyannote[1284].speaker |
SPEAKER_00 |
transcript.pyannote[1284].start |
9854.50784375 |
transcript.pyannote[1284].end |
9854.54159375 |
transcript.pyannote[1285].speaker |
SPEAKER_05 |
transcript.pyannote[1285].start |
9857.10659375 |
transcript.pyannote[1285].end |
9870.37034375 |
transcript.pyannote[1286].speaker |
SPEAKER_05 |
transcript.pyannote[1286].start |
9870.77534375 |
transcript.pyannote[1286].end |
9877.03596875 |
transcript.pyannote[1287].speaker |
SPEAKER_05 |
transcript.pyannote[1287].start |
9877.64346875 |
transcript.pyannote[1287].end |
9878.60534375 |
transcript.pyannote[1288].speaker |
SPEAKER_05 |
transcript.pyannote[1288].start |
9881.50784375 |
transcript.pyannote[1288].end |
9895.07534375 |
transcript.pyannote[1289].speaker |
SPEAKER_05 |
transcript.pyannote[1289].start |
9895.64909375 |
transcript.pyannote[1289].end |
9896.94846875 |
transcript.pyannote[1290].speaker |
SPEAKER_05 |
transcript.pyannote[1290].start |
9898.18034375 |
transcript.pyannote[1290].end |
9898.99034375 |
transcript.pyannote[1291].speaker |
SPEAKER_05 |
transcript.pyannote[1291].start |
9899.73284375 |
transcript.pyannote[1291].end |
9900.07034375 |
transcript.pyannote[1292].speaker |
SPEAKER_05 |
transcript.pyannote[1292].start |
9902.80409375 |
transcript.pyannote[1292].end |
9905.85846875 |
transcript.pyannote[1293].speaker |
SPEAKER_00 |
transcript.pyannote[1293].start |
9908.45721875 |
transcript.pyannote[1293].end |
9909.52034375 |
transcript.pyannote[1294].speaker |
SPEAKER_00 |
transcript.pyannote[1294].start |
9911.05596875 |
transcript.pyannote[1294].end |
9911.44409375 |
transcript.pyannote[1295].speaker |
SPEAKER_05 |
transcript.pyannote[1295].start |
9912.20346875 |
transcript.pyannote[1295].end |
9914.00909375 |
transcript.pyannote[1296].speaker |
SPEAKER_05 |
transcript.pyannote[1296].start |
9914.22846875 |
transcript.pyannote[1296].end |
9915.79784375 |
transcript.pyannote[1297].speaker |
SPEAKER_05 |
transcript.pyannote[1297].start |
9918.61596875 |
transcript.pyannote[1297].end |
9919.40909375 |
transcript.pyannote[1298].speaker |
SPEAKER_05 |
transcript.pyannote[1298].start |
9919.74659375 |
transcript.pyannote[1298].end |
9921.33284375 |
transcript.pyannote[1299].speaker |
SPEAKER_05 |
transcript.pyannote[1299].start |
9923.39159375 |
transcript.pyannote[1299].end |
9923.86409375 |
transcript.pyannote[1300].speaker |
SPEAKER_05 |
transcript.pyannote[1300].start |
9923.96534375 |
transcript.pyannote[1300].end |
9927.94784375 |
transcript.pyannote[1301].speaker |
SPEAKER_05 |
transcript.pyannote[1301].start |
9928.01534375 |
transcript.pyannote[1301].end |
9941.81909375 |
transcript.pyannote[1302].speaker |
SPEAKER_00 |
transcript.pyannote[1302].start |
9940.72221875 |
transcript.pyannote[1302].end |
9940.90784375 |
transcript.pyannote[1303].speaker |
SPEAKER_05 |
transcript.pyannote[1303].start |
9942.20721875 |
transcript.pyannote[1303].end |
9948.31596875 |
transcript.pyannote[1304].speaker |
SPEAKER_05 |
transcript.pyannote[1304].start |
9948.75471875 |
transcript.pyannote[1304].end |
9960.98909375 |
transcript.pyannote[1305].speaker |
SPEAKER_00 |
transcript.pyannote[1305].start |
9952.82159375 |
transcript.pyannote[1305].end |
9953.96909375 |
transcript.pyannote[1306].speaker |
SPEAKER_04 |
transcript.pyannote[1306].start |
9960.38159375 |
transcript.pyannote[1306].end |
9960.95534375 |
transcript.pyannote[1307].speaker |
SPEAKER_05 |
transcript.pyannote[1307].start |
9962.10284375 |
transcript.pyannote[1307].end |
9963.82409375 |
transcript.pyannote[1308].speaker |
SPEAKER_05 |
transcript.pyannote[1308].start |
9964.81971875 |
transcript.pyannote[1308].end |
9967.85721875 |
transcript.pyannote[1309].speaker |
SPEAKER_00 |
transcript.pyannote[1309].start |
9969.19034375 |
transcript.pyannote[1309].end |
9970.70909375 |
transcript.pyannote[1310].speaker |
SPEAKER_00 |
transcript.pyannote[1310].start |
9971.31659375 |
transcript.pyannote[1310].end |
9973.07159375 |
transcript.pyannote[1311].speaker |
SPEAKER_00 |
transcript.pyannote[1311].start |
9973.93221875 |
transcript.pyannote[1311].end |
9976.31159375 |
transcript.pyannote[1312].speaker |
SPEAKER_05 |
transcript.pyannote[1312].start |
9974.75909375 |
transcript.pyannote[1312].end |
9975.73784375 |
transcript.pyannote[1313].speaker |
SPEAKER_00 |
transcript.pyannote[1313].start |
9976.54784375 |
transcript.pyannote[1313].end |
9979.16346875 |
transcript.pyannote[1314].speaker |
SPEAKER_00 |
transcript.pyannote[1314].start |
9979.73721875 |
transcript.pyannote[1314].end |
9980.95221875 |
transcript.pyannote[1315].speaker |
SPEAKER_00 |
transcript.pyannote[1315].start |
9982.48784375 |
transcript.pyannote[1315].end |
9987.49971875 |
transcript.pyannote[1316].speaker |
SPEAKER_00 |
transcript.pyannote[1316].start |
9987.76971875 |
transcript.pyannote[1316].end |
10047.40596875 |
transcript.pyannote[1317].speaker |
SPEAKER_08 |
transcript.pyannote[1317].start |
10023.07221875 |
transcript.pyannote[1317].end |
10024.96221875 |
transcript.pyannote[1318].speaker |
SPEAKER_08 |
transcript.pyannote[1318].start |
10026.16034375 |
transcript.pyannote[1318].end |
10026.32909375 |
transcript.pyannote[1319].speaker |
SPEAKER_05 |
transcript.pyannote[1319].start |
10026.32909375 |
transcript.pyannote[1319].end |
10027.51034375 |
transcript.pyannote[1320].speaker |
SPEAKER_00 |
transcript.pyannote[1320].start |
10048.77284375 |
transcript.pyannote[1320].end |
10054.02096875 |
transcript.pyannote[1321].speaker |
SPEAKER_00 |
transcript.pyannote[1321].start |
10054.22346875 |
transcript.pyannote[1321].end |
10056.19784375 |
transcript.pyannote[1322].speaker |
SPEAKER_00 |
transcript.pyannote[1322].start |
10056.43409375 |
transcript.pyannote[1322].end |
10070.17034375 |
transcript.pyannote[1323].speaker |
SPEAKER_00 |
transcript.pyannote[1323].start |
10070.62596875 |
transcript.pyannote[1323].end |
10077.81471875 |
transcript.pyannote[1324].speaker |
SPEAKER_00 |
transcript.pyannote[1324].start |
10081.39221875 |
transcript.pyannote[1324].end |
10081.40909375 |
transcript.pyannote[1325].speaker |
SPEAKER_05 |
transcript.pyannote[1325].start |
10081.40909375 |
transcript.pyannote[1325].end |
10082.84346875 |
transcript.pyannote[1326].speaker |
SPEAKER_05 |
transcript.pyannote[1326].start |
10085.42534375 |
transcript.pyannote[1326].end |
10093.00221875 |
transcript.pyannote[1327].speaker |
SPEAKER_00 |
transcript.pyannote[1327].start |
10098.09846875 |
transcript.pyannote[1327].end |
10100.54534375 |
transcript.pyannote[1328].speaker |
SPEAKER_00 |
transcript.pyannote[1328].start |
10101.33846875 |
transcript.pyannote[1328].end |
10102.06409375 |
transcript.pyannote[1329].speaker |
SPEAKER_10 |
transcript.pyannote[1329].start |
10102.06409375 |
transcript.pyannote[1329].end |
10102.08096875 |
transcript.whisperx[0].start |
343.404 |
transcript.whisperx[0].end |
344.827 |
transcript.whisperx[0].text |
要不要在這邊簽到比較好 |
transcript.whisperx[1].start |
461.698 |
transcript.whisperx[1].end |
461.937 |
transcript.whisperx[1].text |
呃 |
transcript.whisperx[2].start |
574.451 |
transcript.whisperx[2].end |
581.303 |
transcript.whisperx[2].text |
and then red in the ductal archand specifically because the ductal arch isoriented more in a |
transcript.whisperx[3].start |
882.379 |
transcript.whisperx[3].end |
905.016 |
transcript.whisperx[3].text |
總統先生 閱讀了DeepSeek的案例在要您對這家中國AI公司及其對OpenAI的挑戰有何出不看法您認為這對美國的AI發展戰略特別是關於算力資源分配和開源策略的權衡帶來了那些新的考量您對於確保美國在AI領域的領先地位有哪些更具體的想法呢 |
transcript.whisperx[4].start |
958.842 |
transcript.whisperx[4].end |
981.464 |
transcript.whisperx[4].text |
總統先生您的回應相當直接我理解您對於新興AI技術可能帶來的影響有所警惕關於DeepSeek以及中國AI的崛起我認為我們不能掉以輕心他們的快速發展確實對美國的AI領先地位構成挑戰尤其是在算力資源的增多和開源策略的應用上就您提到的開源 |
transcript.whisperx[5].start |
1049.511 |
transcript.whisperx[5].end |
1078.267 |
transcript.whisperx[5].text |
受到强烈的不越狱防卫您的眼神锐利略带奴役禁闭的罪存更陷入出您的决绝虽然我能理解您对问题的自律反应但我们必须冷静看待Deep Seek的崛起确实对美国的AI战略构成了一种挑战而这个挑战不容忽视我们需要更深入的分析Deep Seek的技术优势以及中国在算理资源和开源策略上的布局这并非威严送听而是关乎国家 |
transcript.whisperx[6].start |
1122.014 |
transcript.whisperx[6].end |
1141.221 |
transcript.whisperx[6].text |
尊敬的總統先生我理解您對於我之前問題措辭的疑慮也理解您對於台灣地位的重視我稱之的向您道歉若我的提問方式讓您覺得台灣受到侵蝕這絕非我的本意您的反應提醒我在處理設計國家主權政治敏感性 |
transcript.whisperx[7].start |
3499.819 |
transcript.whisperx[7].end |
3521.309 |
transcript.whisperx[7].text |
我先開個場首先歡迎各委員辦公室的助理來參加今天的課程今天的課程是由我們立法院人事處還有我們經濟部的產業技術師還有助理工會所舉辦的一場活動今天活動很特別 |
transcript.whisperx[8].start |
3522.129 |
transcript.whisperx[8].end |
3541.916 |
transcript.whisperx[8].text |
講AI我想在座的同仁應該有些助理已經會用AI的一些去找資料那有些可能還不曉得那沒關係今天很高興有邀請到我們工業院那個產業學院的數位訓練長廖兆宏博士來講今天的課程那我們立法院人事處的陳叔 |
transcript.whisperx[9].start |
3545.13 |
transcript.whisperx[9].end |
3558.653 |
transcript.whisperx[9].text |
科長還有秋葉群秘書也在現場謝謝他們也都跟助理工會配合辦一些活動那在課程開始之前我先邀請我們經濟部產業技術室的秋秋蕙市長來幫我們支持一下好不好 |
transcript.whisperx[10].start |
3561.774 |
transcript.whisperx[10].end |
3583.024 |
transcript.whisperx[10].text |
田副理事長還有人事處的陳科長還有各位委員辦公室的主任副主任以及國會助理們大家午安我非常榮幸有這個機會跟我們的國會助理工會以及人事處來共同主辦這樣的一個活動事實上 |
transcript.whisperx[11].start |
3584.625 |
transcript.whisperx[11].end |
3606.179 |
transcript.whisperx[11].text |
我們部長也非常重視這個AI的人陪他也甚至要求我們的經濟部的同仁們也都要去上這個AI的課他認為說這個AI不只是幫助產業也要幫助那個行政的政府的人員透過AI來提升競爭力所以那時候部長人陪是叫我幫忙主辦找講師 |
transcript.whisperx[12].start |
3608.841 |
transcript.whisperx[12].end |
3627.791 |
transcript.whisperx[12].text |
當初我經過一番打聽就發現公文院的這個產業學院的這個數位教育訓練長廖兆宏廖博士他是公文院有關於這個AI人才培訓的第一把交椅所以我當初我們經濟部內部的人才培訓也是找廖博士來訓練的那這一次跟那個 |
transcript.whisperx[13].start |
3629.732 |
transcript.whisperx[13].end |
3648.362 |
transcript.whisperx[13].text |
這個田副理事長一起來討論這個事情的時候我就想到這個廖博士在我們經濟部內部訓練的時候得到很大的這個迴響跟肯定所以這一次我們也就是跟工業的這個產業學院再次的合作來舉辦的這樣的一個訓練活動那各位知道 |
transcript.whisperx[14].start |
3649.722 |
transcript.whisperx[14].end |
3674.191 |
transcript.whisperx[14].text |
AI現在是一個熱潮可以說是在產業界完全是蓬勃的發展那它在百工百業都可以來提升他們這些產業的一些不管是行政的能力啦還是說工作的效率啦乃至於說自動化或者是說做更好的這個決策可以說是產生了一個很大很大的一個產業的革命啦那我覺得 |
transcript.whisperx[15].start |
3675.451 |
transcript.whisperx[15].end |
3698.07 |
transcript.whisperx[15].text |
作为一个我们在立法机关怎么样能够在法案上面工作上面都能够透过AI来帮助我们提升我们工作的效率乃至于我们对AI更了解将来在相关的一些预算或者是说法案方面能够做更好的决策我想基于这样的一个目的的话副理事长 |
transcript.whisperx[16].start |
3698.65 |
transcript.whisperx[16].end |
3717.335 |
transcript.whisperx[16].text |
跟我們才這一次來安排這樣子的一個課程那希望大家可以從今天的這個課程裡面能夠幫助各位可以提升更多的這個行政效率那如果有需要的話我們也可以繼續來做安排那謝謝各位今天波隆的這個出席進行各位會議指導 謝謝好 我們謝謝邱師長 |
transcript.whisperx[17].start |
3722.301 |
transcript.whisperx[17].end |
3742.653 |
transcript.whisperx[17].text |
邱師長他也是台大機械工程系的博士雖然是學理工的 可是他對人文其實是很追求你只要去注意看邱師長的臉書他幾乎每個禮拜六禮拜天都去爬山他也出了一本一山一故事的書他對歷史人文是蠻轉眼蠻深的 不簡單科技人能這樣也不簡單 |
transcript.whisperx[18].start |
3746.955 |
transcript.whisperx[18].end |
3771.98 |
transcript.whisperx[18].text |
經濟部的產業技術大家知道的話其實我們國內的那個科專預算就在師長這個師所以他掌管一年掌管預算超過好幾個部位的預算所以蠻重要的對我們國內的產業科技研發不簡單那接下來我們再掌聲來邀請我們今天的講師我們工業產業學院數位訓練長的廖昭仰博士他的經歷也是非常豐富他也是經歷 |
transcript.whisperx[19].start |
3773.26 |
transcript.whisperx[19].end |
3791.262 |
transcript.whisperx[19].text |
不管是教育部 數位部 經濟部的一些多個計畫主持人那同時也擔任過那個Microsoft IBM PwC的特聘顧問那也在世界一些500強的企業擔任顧問所以說也是學績力相當有豐富那我們就熱烈掌聲來請我們廖博士今天為我們來講課好不好 謝謝 |
transcript.whisperx[20].start |
3812.23 |
transcript.whisperx[20].end |
3832.002 |
transcript.whisperx[20].text |
好 謝謝司長跟這個副理事長我是趙宏 叫我醬也可以那今天非常榮幸有這個機會能夠跟大家在這個好像有兩個小時一個半小時左右的時間那剛剛副理事長已經大略介紹過我就不再贅述就是 |
transcript.whisperx[21].start |
3833.583 |
transcript.whisperx[21].end |
3855.359 |
transcript.whisperx[21].text |
吳少爺兼顧多能鄙視就是產管學研兩岸三地五四海跑很多地方然後又再度回到工研院來這個20年後再回首大概是這樣的一個情況那AI這一題大概因為我從比較早年的時候就是年輕的時候大學的時候開始創業就一直在IT數位這個領域然後後來在整個的這個政府部門 |
transcript.whisperx[22].start |
3861.543 |
transcript.whisperx[22].end |
3884.485 |
transcript.whisperx[22].text |
也好啦在一些企業在國內外的一些機構服務大概都跟數位這一題有關所以大概是這樣的情況右上角那個QR code很多朋友可能已經加入了是我們這個這次會有個班群因為等一下會用光速前進因為我們AIS用光速在前進會有很多的實作的範例就是讓各位除了聽一些比較 |
transcript.whisperx[23].start |
3885.206 |
transcript.whisperx[23].end |
3905.917 |
transcript.whisperx[23].text |
新穎的這個趨勢概念之外我想讓各位實際在操作上能夠運用這個把握這個比較寶貴的中午的時光很快一些實作的部分那這大概是我過去幾年來大概都在數位大規模的人陪或者是網路的學院這樣的一些經驗那政府部會大概 |
transcript.whisperx[24].start |
3906.917 |
transcript.whisperx[24].end |
3923.164 |
transcript.whisperx[24].text |
接觸的也不少啦就是大概在12年到15年是國發會的這個顧問那也編撰了一些指引那跟很多長官也都是很不錯的這個這個請益的這個對象跟交流的這樣一個關係等一下稍等一下 |
transcript.whisperx[25].start |
3942.526 |
transcript.whisperx[25].end |
3968.807 |
transcript.whisperx[25].text |
那當然因為這幾年來大概接近30年了這個這個默然回首其實在第四屆第五屆會期的時候我也在立法院有參與一些啦所以就是也對這個環境挺熟悉也有很多朋友在這不過在人才培訓或人才發展這一塊大概有一些琢磨所以也不小心得到了這個一些大獎那在24年就是去年 |
transcript.whisperx[26].start |
3969.928 |
transcript.whisperx[26].end |
3986.227 |
transcript.whisperx[26].text |
就很榮幸有這個機會 很多 包含邱司長 包含行政院 很多部會的長官但是厚愛 就是有一些機會在AIJ快速的發展都需要人才培育這樣的一個 |
transcript.whisperx[27].start |
3987.728 |
transcript.whisperx[27].end |
4004.682 |
transcript.whisperx[27].text |
工作所以可能就包含了全國公務人員包含了一些相關的這個培育的計畫就開始展開了比較積極的一些推進的一個計畫大概是這樣包含數位發展部包含行政院人總大概都在這個議題上有一些參與 |
transcript.whisperx[28].start |
4005.603 |
transcript.whisperx[28].end |
4021.562 |
transcript.whisperx[28].text |
好 那以上就是趙鴻在這幾年的一個過程所以今天這個AI這一題算是在培訓或者說我們在整個的發展上跟各位來就教很榮幸有這個機會來交流首先我們先看一下我想請問一下在座各位 |
transcript.whisperx[29].start |
4022.984 |
transcript.whisperx[29].end |
4034.675 |
transcript.whisperx[29].text |
您反正AI這個部分卻GBT啦Cloud很多工具我先請教一下各位請問你目前不管任何一個工具你是有付20塊美金200塊美金的訂閱用戶朋友請舉手好那是不是屬於高手有付200塊美金的請舉手 |
transcript.whisperx[30].start |
4042.062 |
transcript.whisperx[30].end |
4070.801 |
transcript.whisperx[30].text |
所以我們現場沒有土豪就是了所以200塊是超人等級那20塊已經非常強了那當然免費的也是還是可以用我們今天還是可以用很多的這個免費工具來做到一個不錯的效果當然你覺得很不錯我個人覺得20塊美金是投資啦那我投資了很多AI的工具我覺得對我的生產力提升很高不過呢在我們談到操作之前先看一下有一個基本的概念就整個的AI發展的歷程 |
transcript.whisperx[31].start |
4071.761 |
transcript.whisperx[31].end |
4099.633 |
transcript.whisperx[31].text |
當然這一兩年是風風火火有人說橫空出世不過我們看一下整個AI的發展也不是近年才開始發展其實它在早在1950年代左右有一位學者各位可能聽過叫圖靈他是英國非常有名的一個數學家科學家計算機科學家等等他最早期提出一個非常思辨性的問題因為他最早的故事可能各位應該看過一部Netflix上聽到還有的電影 |
transcript.whisperx[32].start |
4101.364 |
transcript.whisperx[32].end |
4102.215 |
transcript.whisperx[32].text |
就是所謂的 |
transcript.whisperx[33].start |
4105.114 |
transcript.whisperx[33].end |
4132.147 |
transcript.whisperx[33].text |
他叫做模仿遊戲那模仿遊戲呢簡單來講就是機器或電腦當時還不叫電腦叫計算機他不斷要模仿人類的思維啦運算啦邏輯等等那他最著名的故事就是在二戰的時候協助英軍破解了德軍的密碼掌握了這個情報以後克敵制勝所以整個二戰的這個翻轉這個在電影裡面描寫得非常非常詳細我也推薦各位去看 |
transcript.whisperx[34].start |
4133.328 |
transcript.whisperx[34].end |
4158.062 |
transcript.whisperx[34].text |
模仿遊戲當然後世有很多很多的學者前仆後繼的在這個人工智慧的道路上獻出了他們的專業沒有生命獻出了他們的專業跟熱情那當然因為這些呢整個人工智慧他也是算是三起三落在最近當然是因為深層式AI的關係所以整個人工智慧的發展他其實可以回溯到1950年代左右 |
transcript.whisperx[35].start |
4158.342 |
transcript.whisperx[35].end |
4178.19 |
transcript.whisperx[35].text |
那當然有非常多的學者 這個就是Netflix上各位應該可以找得到就模仿遊戲 非常經典的一個算是著作 自傳那再來這個1956年是一個非常重要的年份 就達特茅斯會議有很多的學者 當時有一位非常重要的學者叫John McCarthy |
transcript.whisperx[36].start |
4179.102 |
transcript.whisperx[36].end |
4194.105 |
transcript.whisperx[36].text |
約翰麥卡錫先生他當時在這個達特茅斯大學裡面擔任研究員他當時接了一個project就是IBM公司的一個project可是他遇到了當然他也是計算機科學家遇到了一些 |
transcript.whisperx[37].start |
4195.126 |
transcript.whisperx[37].end |
4215.139 |
transcript.whisperx[37].text |
困難就是反正都是有些撞牆期他遇到這些困難他想說那我找一些學術界的同好當然也都是學術圈的就是在大學工作研究機構工作的一些學者來開了一個質量含高這個知識含量極高的一個小型的研導會但是這個後世呢 |
transcript.whisperx[38].start |
4216.107 |
transcript.whisperx[38].end |
4231.193 |
transcript.whisperx[38].text |
把這個會議稱為人工智慧這個名詞起名的一個起點就AI從此定名因為在他們的meeting note上就寫了official intelligence由這個會議的交集人John McCarthy教授他把它定名下來 |
transcript.whisperx[39].start |
4231.633 |
transcript.whisperx[39].end |
4257.311 |
transcript.whisperx[39].text |
所以這個在1956年或者1950年都有人說是人工智慧的一個起點那所以John McCarthy也被稱為是AI之父那也有人說是圖靈英國人就說是圖靈美國人就說是John McCarthy簡單來講是這樣那他在這整個過程當中各位掐指一算1956年也好 1950年也好到目前為止大概發展了多少年 |
transcript.whisperx[40].start |
4258.444 |
transcript.whisperx[40].end |
4266.88 |
transcript.whisperx[40].text |
人工智慧的起點不管是1950或1956到今天為止我們2025年年初嘛 這樣大概多少年 |
transcript.whisperx[41].start |
4270.311 |
transcript.whisperx[41].end |
4294.293 |
transcript.whisperx[41].text |
70來年嘛 70來年其實還沒有到人的平均壽命的一生啦所以他的發展其實也是算是相當的快速所以他從最早期的啟蒙時代一直到目前為止聽說讀寫 琴棋書畫 國不精通已經到了這個人類的感知能力甚至到所謂的AGI就是通用型人工智慧會超越人類的思維所有能力的總和 可能會 |
transcript.whisperx[42].start |
4295.254 |
transcript.whisperx[42].end |
4324.514 |
transcript.whisperx[42].text |
有很多的先進很多的學者擔心說我們會不會被AI統治就是通用型人工智慧的時代已經快要到來那當然它的發展非常快每一次人工智慧的突飛猛進各位請注意因為各位都是國會未來之星可能各位可能都是非常這個我們在這個國內的政壇想當當的人物記住這一點就好每一次人工智慧的突飛猛進都來自於演算法 |
transcript.whisperx[43].start |
4325.307 |
transcript.whisperx[43].end |
4333.49 |
transcript.whisperx[43].text |
的突破也就是在數學上有很多演算法的突破包含Deep Seek最近是不是很紅為什麼 |
transcript.whisperx[44].start |
4334.434 |
transcript.whisperx[44].end |
4355.159 |
transcript.whisperx[44].text |
因為它在很多的演算法很多流程很多的這些運作機制上有一些突破性的一個模式所以讓很多的運算能力大幅的提升那當然從最早最早從AI的最早1950年代左右到第一波的我們所謂的Machine Learning就是機器學習大概 |
transcript.whisperx[45].start |
4356.299 |
transcript.whisperx[45].end |
4377.716 |
transcript.whisperx[45].text |
記憶學習比較像是我們所謂的專家系統就他可以讀很多書可是呢在這個圖書館之外的知識他可能就無法觸及所以就沒有辦法去進行更深度的一些探索但是在deep learning呢他一樣在演算法模擬了人類的類神經網絡所以在這個類神經網絡上他就大幅的整個思維的能力大幅的躍進到了2020年 |
transcript.whisperx[46].start |
4381.86 |
transcript.whisperx[46].end |
4406.998 |
transcript.whisperx[46].text |
尤其是最近這一波為什麼AI有這麼火熱在上一波AI火熱的時候是什麼時候各位應該聽過AlphaGo應該還記得吧AlphaGoAlphaGo的時代大概是2017、18年左右也就是在疫情前但是疫情打亂的時候的佈局在疫情後CheckGPT各位思考一下是什麼時候開始火熱的 |
transcript.whisperx[47].start |
4408.598 |
transcript.whisperx[47].end |
4425.307 |
transcript.whisperx[47].text |
沒有很久對不對大概一年多前還不到兩年那所以呢在這個過程當中就是疫情結束的尾聲的時候JGBT突然橫空出事其實不是啊其實他們持續在研究只是當時疫情打亂了一些佈局好不管怎麼樣呢我們在二零 |
transcript.whisperx[48].start |
4426.487 |
transcript.whisperx[48].end |
4454.316 |
transcript.whisperx[48].text |
22年左右開始了生成式AI讓大家覺得橫空出世所以它也是在演算法上得到了非常非常大的突破可是這一波的生成式AI跟之前的AI非常非常的不一樣在於它的創作能力不只是分析能力可能超越一般人類過去對於AI好像只是一個機器只是一個軟體這樣一種想像那各位看一下 |
transcript.whisperx[49].start |
4455.444 |
transcript.whisperx[49].end |
4462.039 |
transcript.whisperx[49].text |
我們把它稱為一個全新的歷史 全新的旅程即將展開這幾幅作品 各位可以看一下有看過的朋友請舉手 |
transcript.whisperx[50].start |
4464.296 |
transcript.whisperx[50].end |
4487.116 |
transcript.whisperx[50].text |
好有看過朋友應該是對AI比較關注的朋友那這分別是三幅作品左邊這一幅呢就是引起了世人對於真的是AI有很多的爭論有很多的這個讚嘆就是複雜的情緒矛盾的這個心情開始的一個緣由各位可以看到疫情末端末生的時候2022年的8月26號 |
transcript.whisperx[51].start |
4489.338 |
transcript.whisperx[51].end |
4511.345 |
transcript.whisperx[51].text |
舉行了一次克羅拉多州的一次這個叫做競賽那這幅作品得到了算是非常不錯的獎項得到首獎可是呢這位獲獎者John Allen就說這個不好意思啊我這一幅作品抱歉抱歉是用深層的各位不是用P圖不是合成深層就是無中生有 |
transcript.whisperx[52].start |
4512.205 |
transcript.whisperx[52].end |
4531.403 |
transcript.whisperx[52].text |
突然大家覺得說怎麼可以用AI生成來跟我們真人的畫作來PK呢可是大家一看這個圖畫得還真好怎麼生成的大家開始好奇所以又要罵他又要誇他的情況下情緒一時難以平復可是在這個過程當中大家還在 |
transcript.whisperx[53].start |
4532.283 |
transcript.whisperx[53].end |
4551.597 |
transcript.whisperx[53].text |
討論生存式AI道德、創作、隱私、自宅權的各式各樣的問題的時候層出不窮的事件陸續的爆發開來2063年沒有多久Sony的攝影大賽各位這是攝影這不是畫作攝影大賽一樣又得到一個首獎然後一樣這位創作者又說抱歉抱歉我這是生存 |
transcript.whisperx[54].start |
4552.56 |
transcript.whisperx[54].end |
4572.68 |
transcript.whisperx[54].text |
各位這也是深層的深層到還模擬兩可現在我們已經不覺得奇怪可是各位想一想在當時大家會非常訝異竟然如此逼真對不對然後呢這中間這一幅呢是國內有一有一所非常著名的這個美術人才美工學校叫做 |
transcript.whisperx[55].start |
4574.28 |
transcript.whisperx[55].end |
4595.167 |
transcript.whisperx[55].text |
這個在新北市那復興商工的這位同學這位齊天大聖也是畫得很好也得到很不錯的獎項同樣因為是這所學校的這個師生實在太專業了拿著放大鏡檢視有七十幾處不合理的地方七十幾處應該不是他畫的結果這位同學呢就神隱一周之後發現就告訴大家說對 |
transcript.whisperx[56].start |
4597.128 |
transcript.whisperx[56].end |
4611.981 |
transcript.whisperx[56].text |
但是我只有70%是AI生存其他是我自己創作的一樣有很多的道德著作權很多的創作之間的爭議從此開始你可以發現說這波的生存是AI的能力我們可以看到說 |
transcript.whisperx[57].start |
4613.39 |
transcript.whisperx[57].end |
4635.178 |
transcript.whisperx[57].text |
他為什麼會這麼厲害不管是圖文甚至現在的影音都已經可以用甚至是來得到非常非常逼真的一些效果那麼可以看到他最核心的一個技術就是大型語言模型大型語言模型呢那這些數字是比較舊的就是比較3.5版的Chad GPT我想Chad GPT大家都認識我就不多說了他上線 |
transcript.whisperx[58].start |
4636.198 |
transcript.whisperx[58].end |
4665.313 |
transcript.whisperx[58].text |
五天就超過了五百萬的訂閱用戶兩個月超過一億然後它的語言參數現在看起來已經是怎麼講小學生等級現在已經都超過這個參數量1750億個大型語言模型的這個參數這裡面的參數你如果把它類比於人類的話就是人類的腦神經元可以雖然不同的東西我們只是說有趣的這樣一個類比1750億是什麼樣的概念人類的腦神經元有多少對 |
transcript.whisperx[59].start |
4667.486 |
transcript.whisperx[59].end |
4682.512 |
transcript.whisperx[59].text |
我告訴各位大概是860億到900億對左右那當然它跟我們的腦神醫院是不一樣的東西不過你可以看到說它的參數量極大所以它的sensitivity非常的高它的敏銳度敏感度感知的這樣一個程度非常的高那現在 |
transcript.whisperx[60].start |
4683.912 |
transcript.whisperx[60].end |
4699.106 |
transcript.whisperx[60].text |
這次CherryGPT 3.5到CherryGPT目前4.5已經誕生了尤其現在Google啦Cloud啦甚至很多很多的這樣語言模型都超過這樣的語言那個參數量所以它的感知能力思維能力邏輯推理能力非常非常的強 |
transcript.whisperx[61].start |
4699.787 |
transcript.whisperx[61].end |
4725.048 |
transcript.whisperx[61].text |
那當然他在很多的智力上的表現超過了絕大部分的人類可以說是Top 10的優等生那高中入學考試他五個滿級分大學SAT測驗大概1300分去年應該是2023年全世界的平均分數好像是1082還是1028分所以他是非常厲害的律師資格考或者是各式各樣的專業的考試啊證照啊他大概是贏過90%的考生 |
transcript.whisperx[62].start |
4727.39 |
transcript.whisperx[62].end |
4749.122 |
transcript.whisperx[62].text |
簡單講就是Top 10的優等生 都名列前茅所以大家就會開始驚訝或者讚嘆說他的能力真的很強 贏過了大部分的人類甚至快要超過所有人類所以各式各樣的複雜的情緒跟我們對他的一些理解或者說想要怎麼樣運用他還是防範他的爭論就開始起來 |
transcript.whisperx[63].start |
4750.583 |
transcript.whisperx[63].end |
4773.95 |
transcript.whisperx[63].text |
那當然生成式它可以生成非常多東西你可以把它想像成是幻化成萬物啦所謂萬物的意思就是包含它最厲害就是處理文字我想各位的工作每天都要接觸大量的文字只要是文本的東西對大家來講叫做天然優勢因為它就是處理字的嘛大型語言模型我們等一下會看到很多的工具除此之外 |
transcript.whisperx[64].start |
4775.003 |
transcript.whisperx[64].end |
4786.539 |
transcript.whisperx[64].text |
只要用成字元能夠去演繹或解釋或者呈現或者轉化的通通都可以處理所以可以處理什麼意思可以分析我可以分析我可以處理我就可以預測 |
transcript.whisperx[65].start |
4788.083 |
transcript.whisperx[65].end |
4811.248 |
transcript.whisperx[65].text |
他看得懂圖 只要他看得懂他就能生成 了解我的意思他能生成代表他能分析 所以數字文字就不說了圖片包含現在的影音 包含音樂 包含語氣語調過去這個非常難分析的事情 比如今天我們這堂課到底是精彩還是無聊 |
transcript.whisperx[66].start |
4812.168 |
transcript.whisperx[66].end |
4838.276 |
transcript.whisperx[66].text |
我只要看因為我們講課也講很久了掃描一下全場看各位的眼神大概就可以掌握各位對這個課程的關注度或者是情緒這個是種感知或者說情緒上非常難分析的事情在生活世界對它來講我只能告訴各位輕而易舉等一下我們就會看到很多很多這樣的一個例子最厲害的我個人覺得最厲害的是這個它可以生成程式碼 |
transcript.whisperx[67].start |
4839.741 |
transcript.whisperx[67].end |
4860.402 |
transcript.whisperx[67].text |
各位知道AI就是一堆程式碼對不對它就是軟體工程產生一堆程式碼如果它能生成程式碼那它又能分析程式碼它又能自我修復那它不就自我進化嗎事實上它就是如此自我進化各位知道Google現在的所有的程式碼在上次應該是各位有看到報導應該25%全部都是AI生成的 |
transcript.whisperx[68].start |
4861.209 |
transcript.whisperx[68].end |
4875.117 |
transcript.whisperx[68].text |
在華爾街可能像高盛這些公司80%都是developer都是在寫程式他不是在做很多財務的投資決策反而是在做這些投資模型的這個開發好那我們可以看到說既然他這麼厲害 |
transcript.whisperx[69].start |
4878.064 |
transcript.whisperx[69].end |
4901.797 |
transcript.whisperx[69].text |
剛剛有跟各位分析大型語言模型如此厲害那到底現在全世界的發展如何台灣在這一波的競爭是如何各位又是在國會裡面這麼關鍵的一個位置我想有必要跟各位分享一下全世界大型語言模型到底有多少個大家聽過嘛就是Deep-seek或者最近很紅的一些什麼CheckGPT等等等我告訴各位在全世界 |
transcript.whisperx[70].start |
4902.737 |
transcript.whisperx[70].end |
4915.174 |
transcript.whisperx[70].text |
最熱門的AI Developer社群開發者社群裡面所有的模型都會在上面發佈DeepSig也是在這邊發佈所有的開源模型在這邊發佈這個數字我跟各位念一下1474 247大概超過100萬個 |
transcript.whisperx[71].start |
4919.244 |
transcript.whisperx[71].end |
4947.223 |
transcript.whisperx[71].text |
模型當然不一定都是語言模型他有很多是文生圖圖生文語音有的沒的大概超過100萬個模型你可以知道那全世界在這上面的developer最厲害的高手或者說有興趣的大概可能超過上千萬人都在這上面所以大概我跟各位講一下他是一個非常蓬勃發展的一個情況那深圳市AI是我們今天要探討的一個重點深圳市AI跟過去的AI有什麼不一樣這70幾年來為什麼這兩三年才這麼火紅 |
transcript.whisperx[72].start |
4949.584 |
transcript.whisperx[72].end |
4973.94 |
transcript.whisperx[72].text |
因為他讓人家讚嘆到他的能力跟過去非常非常的不一樣過去我們稱為鑑別式AI他非常會辨別對不對現在的車牌辨識現在很多的醫療影像他很會分析很會辨別可是生成式AI不一樣他會辨別是貓是狗是花是草等等這個我想在影像的識別上面已經過去能力非常強但是在圖片 |
transcript.whisperx[73].start |
4974.82 |
transcript.whisperx[73].end |
4999.349 |
transcript.whisperx[73].text |
影音像我剛剛跟各位分析的這些它要去分析或者它最厲害的是生成它會generate無中生有 有中生有它會生出像貓的狗 像狗的貓貓中有狗 狗中有貓的過去不存在的東西換句話說無中生有我喜歡舉個例子分析這隻狗 這隻貓對AI來講實在太侮辱它的能力了它可以分析它的什麼 |
transcript.whisperx[74].start |
5000.506 |
transcript.whisperx[74].end |
5016.665 |
transcript.whisperx[74].text |
他的情緒我們要做一個狗哥翻譯機是很容易的舉例這是我第一次要到當時要到第一次記憶部去分享的時候想說趕快把PPT做一做狗狗在旁邊這個這個搖我的腳想說那既然我有AI在手上 |
transcript.whisperx[75].start |
5017.646 |
transcript.whisperx[75].end |
5036.045 |
transcript.whisperx[75].text |
钢铁人在手上我们用科学办案就告诉他仔细解读照片你就是这只柴犬然后以第一人称他就叫他变身成那只狗狗了说出心里话嘿嘿我是你的小柴犬我好想跟你玩啊靠在你腿上撒娇一下你能不能给我一点好吃的嘛 |
transcript.whisperx[76].start |
5037.694 |
transcript.whisperx[76].end |
5066.913 |
transcript.whisperx[76].text |
拜託啦對 這就是他對我講的話至今我仍深信不疑為什麼他會講出這樣的話因為他看到他的神情看到他的動作看到他有求於人嘛所以他去模擬那樣的一個概念講出這樣的話再來我給各位看一下什麼叫視覺能力什麼叫推理能力什麼叫分析能力我們在很多很多的培訓裡面有一種遊戲叫做三真一假 二真一假等等就在自己的明白上寫了兩個真的反正就有一個是假的 |
transcript.whisperx[77].start |
5067.613 |
transcript.whisperx[77].end |
5088.441 |
transcript.whisperx[77].text |
當時我們在有一次的培訓裡面在公園院的培訓裡面我們就寫廖兆宏先生拿過兩次全球ATT大獎台灣Top10美股操盤手還有有一隻貓到底哪一個是真哪一個是假現場裡面都已經知道答案因為我上一張投影片已經透露答案了又有一隻貓是假的但是因為AI他當時不知道 |
transcript.whisperx[78].start |
5089.403 |
transcript.whisperx[78].end |
5104.659 |
transcript.whisperx[78].text |
所以我們有同仁其實就坐在後面的游博士在他臉書我已經從他臉書分析竟然偷拿老闆的這個照片去進行分析結果分析的文字是如此這樣子他說上述資訊何者為假 |
transcript.whisperx[79].start |
5107.097 |
transcript.whisperx[79].end |
5127.609 |
transcript.whisperx[79].text |
因為游博士也不知道我有貓還是狗對老闆如此不敬開玩笑的他可能也是想要了解一下他的能力發現說拿過兩次AD這是AI的推論拿過兩次ADD大獎什麼全東TOP10美股超販手他全部看出來因為我寫的還很草嘛有點草可是他全部讀得懂 |
transcript.whisperx[80].start |
5129.17 |
transcript.whisperx[80].end |
5153.348 |
transcript.whisperx[80].text |
接下來他開始推論看起來這些都是手寫的訊息唯一看起來不是真的是有一隻貓因為這比較像是一個幽默或是個人興趣的表達不是真正的身份表述然後其他兩項看起來都是炫耀文應該歸類於是這樣所以他推理就是說這個的假的機率比較高這就是他得到的結論他還真的所以這個就是他的推理能力那當然除此之外他在視覺上 |
transcript.whisperx[81].start |
5155.741 |
transcript.whisperx[81].end |
5179.803 |
transcript.whisperx[81].text |
視覺上現在影音能力也很厲害 極可亂增那我們不要講說最近的很多很多社會版的一些事件我們講說各位可以看到這是OpenAI最新的這個影音的模型叫Sora如果說你用OpenAI的一個最近的這個功能可能也都有知道像這些它都是生成的但是你可以看到極可亂增這個是它的示範影片左下角這兩個是我生成的 |
transcript.whisperx[82].start |
5180.851 |
transcript.whisperx[82].end |
5206.061 |
transcript.whisperx[82].text |
他的字只有這樣 我還寫錯字一隻可愛的柴犬 穿著大紅色的棒球運動外套很享受的吃著元宵節的湯圓這是在前幾個禮拜元宵節的時候我想說要PO個FB來讓大家這個同樂一下就PO了這個這樣的一個影片所以可以看到他的毛髮 極可亂真所以這個只是一行PLUM像左上角這個 你看他幾乎是真人吧 |
transcript.whisperx[83].start |
5206.801 |
transcript.whisperx[83].end |
5214.31 |
transcript.whisperx[83].text |
他的problem背後可能是什麼一個在倫敦街頭的老教授坐在昏暗的咖啡館喝著一杯cappuccino咖啡 |
transcript.whisperx[84].start |
5215.765 |
transcript.whisperx[84].end |
5242.293 |
transcript.whisperx[84].text |
回想著他過往的人生心想著哥喝的不是咖啡是人生他的problem可能就是這樣所以他的情境他的意境他會自動把它轉化成這樣的一個video所以他的能力他的對文字的感應應該說感知能力分析能力已經非常非常的強當然這是我的程式我跟各位舉例一下他的感知能力包含什麼他還看得懂影片影片裡面的任何事情 |
transcript.whisperx[85].start |
5243.033 |
transcript.whisperx[85].end |
5262.582 |
transcript.whisperx[85].text |
當然要真正的醫療從影片中可以看出這是一個鈦耳心臟的超音波的影響並且使用了彩色所以我問他說這個到底是現實的心臟還是什麼其實它是一個超音波的影響它包含了幾個月的超音波的鈦耳跟它的心臟的鈦耳然後它的結構和功能是什麼樣的情況多伯勒超音波治療的醫藥等等當然因為我不是醫療專業所以並不是那麼了解 |
transcript.whisperx[86].start |
5270.365 |
transcript.whisperx[86].end |
5289.921 |
transcript.whisperx[86].text |
好,我們在前半段很快的讓各位看一下他的最新的一些能力那當然包含他的視覺能力、聽覺能力我剛剛已經跟各位分享過聽說、讀寫、清晰、速化我不精通不精通到什麼地方大家應該也都聽過有人說深圳市AI是一本正經的胡說八道對不對 |
transcript.whisperx[87].start |
5291.022 |
transcript.whisperx[87].end |
5307.873 |
transcript.whisperx[87].text |
因為其實我title很多但是我最習慣還是有人要叫我廖老師因為我在學校服務過在很多地方交流過很多人說廖老師你這個生人世界到底能做到什麼程度之前大家說他一本正經胡說八道 |
transcript.whisperx[88].start |
5309.178 |
transcript.whisperx[88].end |
5333.301 |
transcript.whisperx[88].text |
我的習慣是這樣既然要一本正經胡說八道就胡說八道到徹底我要測試他的能力到哪裡所以當時我就想說那OpenAI啦什麼Google啦這些都是西方公司的這個西方的科學那東方的你懂嘛中草藥你懂嘛針灸你懂嘛五行八卦齊門頓獎你懂嗎我是帶著踢館的心情去不踢則已一踢下去呢 |
transcript.whisperx[89].start |
5334.615 |
transcript.whisperx[89].end |
5362.194 |
transcript.whisperx[89].text |
從此開始膜拜長出了非常多廖大神系列 等下會跟各位展示一下那一本真心胡說八道我是帶著質疑的心態去測試它那我們就測試它什麼要科學根據一點的 那就是液晶可以吧液晶總是有個理論基礎 我們用液晶占卜去測它當然因為這個過程我們時間有限 我等一下讓各位測一下因為我們有很多人生未知的事情 是需要透過這樣來 |
transcript.whisperx[90].start |
5364.808 |
transcript.whisperx[90].end |
5384.846 |
transcript.whisperx[90].text |
讓自己更有信心一點那我們就可以用三錢法了解一下整個的運勢的一個情況或者是我們有時候可能心中有一些疑惑很多古代的電視劇有一些落魄公子經過一個算命攤先生算命先生說來小夥子咱們來測個字看看你十年之後飛黃騰達還是那個 |
transcript.whisperx[91].start |
5387.208 |
transcript.whisperx[91].end |
5406.407 |
transcript.whisperx[91].text |
敗破領導等等像這個側字對他來講也是OK的好 時間關係我們就不多說太多或者是如果說我們只看字意對他來講當然OK字型呢一個人寫的龍飛鳳舞還是寫的字跡非常公正某種程度反映他的性格 |
transcript.whisperx[92].start |
5407.524 |
transcript.whisperx[92].end |
5434.87 |
transcript.whisperx[92].text |
這應該沒問題吧所以你去看蔣介石的字跟毛澤東的字一個是龍飛鳳舞一個是端莊仙書可以是這樣講所以他們的個性可以看得出來他在筆跡上不一樣他一樣可以分析時間關係我也就不多做展示那當然除此之外有很多的這個深圳時代或者是他在的這個我們可以複製一個人形來跟我介紹一下策略是什麼東西這其實只是一張照片 |
transcript.whisperx[93].start |
5436.578 |
transcript.whisperx[93].end |
5443.063 |
transcript.whisperx[93].text |
那我們把相關的技術庫這不是我的聲音對不對因為我當時在訓練這個的時候語音模型還不太好但是比較會講英文這個就是它是真正的一個chatbot我把它錄影下來 |
transcript.whisperx[94].start |
5460.752 |
transcript.whisperx[94].end |
5486.563 |
transcript.whisperx[94].text |
像有很多啦 像比如說猜字啦 液晶啦 面相啦 很多很多這一類的這個算是怪力亂神啦不過就是大家今天中午輕鬆一點舉例比如說一個人的這個生辰八字啊 什麼他很容易去算命嘛這就是紫微斗數 就跟他星座有關反正只要得到一個個人的一個資訊以後我們就可以讓AI去理解 當然這也是AI去算的那我們就可以用語音跟他溝通 |
transcript.whisperx[95].start |
5488.973 |
transcript.whisperx[95].end |
5506.393 |
transcript.whisperx[95].text |
你好,请问有什么可以帮助你的吗?无论是关于紫微斗数,八字,还是姓名学的问题,我都乐意为你解答,请随时提出你的问题。姓名学怎么了?我的五行阴阳状况如何? |
transcript.whisperx[96].start |
5508.82 |
transcript.whisperx[96].end |
5519.272 |
transcript.whisperx[96].text |
你的姓名王大明在姓名學中的五行分析如下所以他會用語音的方式來跟你做溝通好這個是我們其中一個例子那當然因為除此之外 |
transcript.whisperx[97].start |
5520.505 |
transcript.whisperx[97].end |
5545.376 |
transcript.whisperx[97].text |
這個例子很多啦我們等一下休息時間有空的話再來做進一步交流不過他在創作能力上除了影音剛剛有講很多很多的文字創作一個論文創作一個新聞稿 執行稿這個對他來講是我只能說小菜一點等一下我們就會看到但是這些比較影音或者是過去創作者比較我們質疑說電腦沒辦法做很好的一個創作現在其實他也可以創作非常不錯 |
transcript.whisperx[98].start |
5547.638 |
transcript.whisperx[98].end |
5573.557 |
transcript.whisperx[98].text |
他說當時因為要去經濟部演講講說他光一直講AI過去的時候風光尾焰已經很多大師講過了我們要做一點接地氣所以就創作一首AI之歌想說在經濟部來跟很多長官同樂不過因為在當時創作出那個歌詞以後然後曲子也寫出來發現那個沒有MV有點丟臉所以我們馬上再透過這個 |
transcript.whisperx[99].start |
5575.678 |
transcript.whisperx[99].end |
5576.999 |
transcript.whisperx[99].text |
AI 一樣再生成了這個MV |
transcript.whisperx[100].start |
5586.915 |
transcript.whisperx[100].end |
5602.72 |
transcript.whisperx[100].text |
那現在我看到競技部在辦競賽其實他的很多的廣告的影音video現在是全部AI生成這個未來會越來越多就跟剛剛各位看到競賽的一些作品用AI生成的一樣我們就當時比喻在一部演講的一個場景很動聽 |
transcript.whisperx[101].start |
5610.662 |
transcript.whisperx[101].end |
5632.279 |
transcript.whisperx[101].text |
好 時間關係我就不把這個播完啦那各位如果有興趣有QR code你們可以自己掃碼一下接下來我們把握時間要看一下最近應該說最近真的是AI比較多的能力各位剛剛看到很多不管是很多怪力亂神啊 算命啊這個影音啊 這個歌曲 |
transcript.whisperx[102].start |
5633.646 |
transcript.whisperx[102].end |
5647.101 |
transcript.whisperx[102].text |
或者他的視覺能力這些各位注意一個名詞我們叫做多模態Multimodal的生成式AI多模態的生成式AI就是你就把它記得人類的各式各樣的感知能力聽覺觸覺還沒啦就是聽覺這個語音文字聽覺 |
transcript.whisperx[103].start |
5654.129 |
transcript.whisperx[103].end |
5663.3 |
transcript.whisperx[103].text |
視覺、辨識、分析等等這樣一個AI的一個能力在大型元模型它是一個非常重要的一個發展趨勢那當然它已經用在以經濟部來講叫百工百業 |
transcript.whisperx[104].start |
5664.654 |
transcript.whisperx[104].end |
5686.091 |
transcript.whisperx[104].text |
以數位發展部與各部會來講有很多要推動的一個方向跟政策對不對我們可能推在智慧製造我們可能推在這個服務業我們可能推在智慧醫療等等它有很多很多落地的應用那我們今天的重點各位的重責當然是在國會對吧是在這個國會殿堂各位的工作上我們怎麼樣用AI來處理 |
transcript.whisperx[105].start |
5688.132 |
transcript.whisperx[105].end |
5708.614 |
transcript.whisperx[105].text |
包含因為我在收到這個課程需求的時候是我們要寫很多質詢稿嘛 是吧我們要寫新聞稿 寫稿寫字是每天各位就要非常快的一個產出的一個工作嘛第二塊呢 那這些 那你可能要讀很多的文件囉是不是 政策的文件 各部會的預算書要不要讀 |
transcript.whisperx[106].start |
5711.278 |
transcript.whisperx[106].end |
5732.158 |
transcript.whisperx[106].text |
還有好多好多的非常多的最新的趨勢訊息等等所以你要大量的字要處理第二個你要產出output很多快速產出直立有聲的一些文本那我剛剛有跟各位分享過文本類是它天然的優勢第二塊是什麼那我們不要只有字吧 |
transcript.whisperx[107].start |
5733.089 |
transcript.whisperx[107].end |
5755.093 |
transcript.whisperx[107].text |
我們可不可以讓他變成一個Mind Map怎麼樣我們讓他變成一個系統動力學圖怎麼樣哇 那你又升維了 你又上升一個維度了 你又更厲害了再接下來那我如果讓他分析 讓他預測行不行我讓他模擬呢 我模擬我是川普 模擬他是習近平模擬是那個部會的官員 我模擬我的委員 跟他對話 跟他PK行不行 |
transcript.whisperx[108].start |
5757.561 |
transcript.whisperx[108].end |
5784.995 |
transcript.whisperx[108].text |
講得到就說得到我告訴你的話就是我曾經都做過的那不過呢在我們開始進入這樣的比較深入的一個應用之前我要先因為今天有請各位帶筆電嘛對不對我們先把環境準備一下等一下馬上會進入到因為我們現在已經一點多我希望各位操作時間多一點多一點體驗我要先請各位確認一下第一個我們當然是確JPT應該大家都有吧我先確認一下確JPT |
transcript.whisperx[109].start |
5786.633 |
transcript.whisperx[109].end |
5800.498 |
transcript.whisperx[109].text |
你們還沒開帳號的應該很少了然後這幾個Google的解密奈有用的朋友請舉手也有一些朋友好 謝謝那Cloud的這個第三個這個 |
transcript.whisperx[110].start |
5802.574 |
transcript.whisperx[110].end |
5818.833 |
transcript.whisperx[110].text |
那AI Studio這應該比較少沒關係我們等一下都會用到那剛剛還沒有加群的朋友我請各位馬上加到那個Line群因為我們這個是月後幾分下完課我們就會是退群了就是上課要用因為等一下會有大量的prompt因為你要看我 |
transcript.whisperx[111].start |
5819.173 |
transcript.whisperx[111].end |
5840.991 |
transcript.whisperx[111].text |
我的操作因為是光速前進所以我們今天有大量的這個助教群在背後服務大家我們等一下會把他們都丟到那個line群所以你就直接copy paste的最快這樣你就會很快的看到結果這樣你的操作比較快不要一直聽我講我希望各位有一點自己個人的一些體驗所以你如果還沒開帳號什麼可能你隨時舉手我們的同仁會來協助各位 |
transcript.whisperx[112].start |
5841.811 |
transcript.whisperx[112].end |
5860.462 |
transcript.whisperx[112].text |
然後你在這個過程當中就可以看到一個真正運作上的結果所以我們今天會看到的是一個多模態生存式AI讓各位在這個操作過程中得到一些範例那進入實際的操作之前我跟各位分享一下這個是大概因為去年開始幫很多部會做培訓 |
transcript.whisperx[113].start |
5861.963 |
transcript.whisperx[113].end |
5882.903 |
transcript.whisperx[113].text |
我們同仁給我的數字好像是超過兩萬人次是不是因為超過兩萬人次要學這個這個也是有點誇張不過我們實體的培訓已經可能超過也是不太清楚反正可能上千人了我大概跟很多的公務機關的朋友歸納成他們在公務上面的這個應用分成這四大類 |
transcript.whisperx[114].start |
5885.316 |
transcript.whisperx[114].end |
5913.65 |
transcript.whisperx[114].text |
分別是這樣最右下角這個大概是前端就比較接近接近民眾然後呢他在比較基層比較接近民眾就是比較日常一點就是每天然後民眾很多他都要用在公務機關很多他要對民眾的服務之類的比如1999語音客服機器人那是深圳之夜不住計劃的一些輔導小幫手他就可以DIY嘛很多的什麼ESG節能減碳小幫手等等這一類的應用他就會非常多那 |
transcript.whisperx[115].start |
5914.25 |
transcript.whisperx[115].end |
5943.311 |
transcript.whisperx[115].text |
在後端後端就是民眾看不到可是在我們的機關內它有很多的這個AI可以幫忙的地方就是讓它自動化比如說我的報告可不可以自動產生啊我的這個什麼公文可不可以自動批改啊我的這個很多很多自動化的這個機器人我的計畫書可不可以自己生成啊我的公文談判稿新聞稿可不可以自己生成啊像這一類的不是民眾可是我們是對我們工作效率提升很高我們今天可能會偏重在這一類啦今天各位的 |
transcript.whisperx[116].start |
5944.691 |
transcript.whisperx[116].end |
5970.925 |
transcript.whisperx[116].text |
學習上需要可能是這一類有一些它可能是比較high level一點比較政策上政策上需要的可能在於說我可能要語情分析可能各位助理如果說要了解你的老闆目前在民意之間反應如何AI可以幫你一點忙然後第二個我是不是要有一些影音產生剛剛有講影音產生老闆可不可以講萬國語言可以的 這個是AI可以幫你忙 |
transcript.whisperx[117].start |
5971.565 |
transcript.whisperx[117].end |
5986.74 |
transcript.whisperx[117].text |
然後再來是有些我們可能要在全球的AI政策有一些關注或者是政策的藍圖趨勢的預測等等這些比較Forecast未來式的地方或者比較沉重一點像詐騙啊資安啊預警啊這一類的比較Critical的應用在我們進入之前我給各位幾個Hint因為全球 |
transcript.whisperx[118].start |
5992.947 |
transcript.whisperx[118].end |
6018.368 |
transcript.whisperx[118].text |
現在在政府機關裡面在台灣叫做智慧政府在很多的政府機關裡面這些政策在推動AI都是非常非常重要的國政對吧每個人都把AI視為國力嘛那所以呢包含歐盟包含美國包含中國大陸當然包含台灣我們都在這個AI的發展過程中有很多的探討跟參與然後也有很多的法案在推動台灣也有人工智慧基本法 |
transcript.whisperx[119].start |
6019.99 |
transcript.whisperx[119].end |
6036.686 |
transcript.whisperx[119].text |
歐盟也有AI Act等等這些法案都在不斷的進行大概分兩大類一個是積極鼓勵美國比較朝向這項第二個稍微嚴格監管一點歐盟是比較嚴格一點這個我們有機會再來探討這個課題總之呢他就是又要鼓勵又要防範這個有點又愛又恨 |
transcript.whisperx[120].start |
6037.367 |
transcript.whisperx[120].end |
6064.405 |
transcript.whisperx[120].text |
所以呢在這個過程當中大家都在持續的關注所以各位的工作至關重要你的任務非常的重要又要讓這個AI蓬勃發展又要防範它帶來社會上不公平或者不好的一些效應我想這個各位是非常重要的人物啦那歐盟也投了很多很多的經費在裡面那美國的AI政策我剛剛也已經跟各位講因為最近美國是因為川普政府上任我們開始越來越看不懂他在做什麼了因為呢 |
transcript.whisperx[121].start |
6066.106 |
transcript.whisperx[121].end |
6094.062 |
transcript.whisperx[121].text |
從拜登政權的過渡過程當中有一些政策會稍微修正不過基本上他們還是積極發展對不對因為中美之間在這個AI科技是一個爭霸戰那這個影片可以稍微看一下因為川普他前一陣子他跟Elon MuskGerman兩個呢他在做的很多事情我們有點不太理解不過呢這個影片我看一下 |
transcript.whisperx[122].start |
6101.757 |
transcript.whisperx[122].end |
6103.8 |
transcript.whisperx[122].text |
現在因為我的是離線 我們等一下再看好 那在那個美國的 |
transcript.whisperx[123].start |
6119.52 |
transcript.whisperx[123].end |
6136.59 |
transcript.whisperx[123].text |
整個各部會他們在AI的這個APP應用裡面我們稍微盤點過已經超過700項不過這數字大概是2024年現在應該是超過1000項沒有問題所以他的蓬勃發展也是非常的快不過因為AI在全球的發展非常非常的火熱 |
transcript.whisperx[124].start |
6137.39 |
transcript.whisperx[124].end |
6161.24 |
transcript.whisperx[124].text |
所以我當時因為實在是也足凡不及備載就乾脆寫一隻AI機器人就整天在監控全球的AI有什麼狀況隨時告訴我這個就是跟各位分享一下你要以筆製造還師比身要不然這AI太多太多的資訊你是沒有辦法越大量的閱讀那當然在這個部分我們可以看到在看到一些應用稍微等我一下 |
transcript.whisperx[125].start |
6164.264 |
transcript.whisperx[125].end |
6173.338 |
transcript.whisperx[125].text |
因為語言對他來講是天然的這個萬國語言可以轉化那我們舉個例子市長已經離開了嘛那我可以放心的播放這個影片啦 |
transcript.whisperx[126].start |
6175.51 |
transcript.whisperx[126].end |
6180.093 |
transcript.whisperx[126].text |
這個呢我們可以看一下這是市長2019年的時候我們看右邊這個注意看他的嘴巴 |
transcript.whisperx[127].start |
6200.899 |
transcript.whisperx[127].end |
6222.05 |
transcript.whisperx[127].text |
The Best Choice Award showcases Taiwan's tech capabilitiesIn the future, the Ministry of Science and Technology will promote collaborationand encourage technological innovation and entrepreneurshipin advanced industries like artificial intelligence and semiconductor |
transcript.whisperx[128].start |
6223.559 |
transcript.whisperx[128].end |
6225.843 |
transcript.whisperx[128].text |
右下角應該跟郭部長難怪感情那麼好 |
transcript.whisperx[129].start |
6239.042 |
transcript.whisperx[129].end |
6264.562 |
transcript.whisperx[129].text |
BEST CHOICE AWARD是台灣的活力和技術力這是日文科學技術的日文就是萬國語言任意中漢語看不太出來那最近我看到那個德國的呃不是德國的對不起是泰國的總理因為他不太會講中文他就一樣用生人誓言然後說大家鼓勵大家到泰國去玩因為泰國之前有一些疑慮嘛就要鼓勵大家去旅遊也是用生人誓言來做所以這一類的 |
transcript.whisperx[130].start |
6265.683 |
transcript.whisperx[130].end |
6274.329 |
transcript.whisperx[130].text |
應用例子會非常非常的多OK 進入到我們立法院這個場域這是我們這一屆的立委這是第十一屆嘛 我沒記錯我們總共有多少位委員你們不是這一屆有幾位有幾位國會 國會辦公室主任非你莫屬對啦 113那我們來看一下這些是我們所有的委員 因為看起來 |
transcript.whisperx[131].start |
6296.896 |
transcript.whisperx[131].end |
6298.102 |
transcript.whisperx[131].text |
我先讓他上網一下 |
transcript.whisperx[132].start |
6324.653 |
transcript.whisperx[132].end |
6349.556 |
transcript.whisperx[132].text |
好 這個我就丟給AI啦我就問他說 這是第11屆立法委員請問有多少人因為我沒有告訴他答案嘛他就去掃描這張照片 知道嗎然後他花了9秒的時間因為我是用推理模型去看他大概有113位委員 沒錯啦然後從蓋葉啟到威斯113席我問他男生幾個 女生幾個哪個最年輕 哪個最帥 |
transcript.whisperx[133].start |
6350.877 |
transcript.whisperx[133].end |
6375.435 |
transcript.whisperx[133].text |
我們就只能問這麼膚淺的問題我說哪一位未來會當總統這不好說他不敢講反正他就是會去識別識別之後他就給你得到一些答案我告訴他我要用視覺分析等等這個是我之前做過的我們等一下會讓各位一樣那比如說我要很多的這個什麼質詢稿什麼例子我們就可以很快的請他來協助我們一樣一樣來 |
transcript.whisperx[134].start |
6377.97 |
transcript.whisperx[134].end |
6395 |
transcript.whisperx[134].text |
再來 OK在進入到各位操作之前這個萬用公式先提供給大家就是你要在PROM不管你是用CHATGBT你是用Google Jmin Cloud等等等你的PROM的下法PROM就是我們通常俗稱叫咒語 |
transcript.whisperx[135].start |
6396.381 |
transcript.whisperx[135].end |
6412.312 |
transcript.whisperx[135].text |
就是你要讓AI這個天兵天將來幫你 為你所用那就是那個咒語 就是一個prompt所以你prompt要下得好你掉出來的那個天兵天將才會比較厲害所以它有些萬用的公式我告訴各位 非常簡單你可以告訴他 你是某某某 |
transcript.whisperx[136].start |
6413.072 |
transcript.whisperx[136].end |
6440.664 |
transcript.whisperx[136].text |
他會幻化成那樣的角色跟身份比如說你是比爾蓋茲你是賈伯斯你是總統你是委員等等他就會以那樣的身份那樣的角度去做一些反應第二個呢非常重要各位他是不是會一本正經的胡說八道通常那個胡說八道是我們自己啊因為你告訴他的亂七八糟的咒語說他亂七八糟的生辰給你所以你要非常精準的話一個關鍵就是讓他 |
transcript.whisperx[137].start |
6442.205 |
transcript.whisperx[137].end |
6461.418 |
transcript.whisperx[137].text |
如果以英文來講就是according to what就是依據什麼 依照什麼那依據什麼可能是某一個理論依據心理學理論依據東方的這個什麼哲學依據什麼什麼的理論模型 架構 法則它才會附著在某一個定向的一個 |
transcript.whisperx[138].start |
6462.799 |
transcript.whisperx[138].end |
6486.251 |
transcript.whisperx[138].text |
座標上 所以依據什麼是非常重要那依據什麼就看你要解什麼問題再來 產出什麼 質詢稿 新聞稿 它是一種稿子還是我要產出一個論文 那這是比較嚴謹的文書還是我要產出 熱情洋溢一點 我們來產出一個小說好不好產出一篇歌詞好不好 那我可能要熱情洋溢一點所以你要告訴它產出的是什麼 |
transcript.whisperx[139].start |
6487.185 |
transcript.whisperx[139].end |
6505.118 |
transcript.whisperx[139].text |
具備 具備是什麼我們通常以英文來講叫criteria就是他要什麼樣的基準有時候他要精準精準到什麼程度你告訴我如果以0到100他是幾分你告訴我所以你要告訴他非常非常重要的一個刻度指標可以衡量的東西所以這個是具備什麼criteria |
transcript.whisperx[140].start |
6505.498 |
transcript.whisperx[140].end |
6530.14 |
transcript.whisperx[140].text |
叫標準、基準、尺度等等你要讓他可以衡量的東西在他格式是表格、是圖形是一篇文章、是一個報表、是一個什麼所以你要告訴他這些東西接下來他就會為你所用了解嗎?這個是一個萬用基本公式那當然等一下我們的PROMPT就基本上會依照這樣的PROMPT的萬用基本公式來進行 |
transcript.whisperx[141].start |
6531.101 |
transcript.whisperx[141].end |
6553.756 |
transcript.whisperx[141].text |
好接下來我們開始要進行操作了我先請各位確認一下你的上網的環境我們開始要各位動手了上網的環境還有你的我們先用checkgpt就好了比較簡單的checkgpt不管這個叫什麼付費版免費版都ok先確定可以上網應該說可以登入到checkgpt |
transcript.whisperx[142].start |
6555.834 |
transcript.whisperx[142].end |
6582.262 |
transcript.whisperx[142].text |
我們等一下會用多個注意我會用多個AI的工具JPG是第一個那如果你有問題你隨時舉手我們的同仁會來協助各位那我希望各位操作上稍微跟著上進度這樣也會比較有所收穫一點那當然一直聽我講也可以不過可能就沒有那麼強的感覺我們首先第一個要來做的練習叫做產出新聞稿你們是不是要常寫這個東西 |
transcript.whisperx[143].start |
6583.831 |
transcript.whisperx[143].end |
6609.867 |
transcript.whisperx[143].text |
好 新聞稿我們當然就反正主觀意識上寫是OK啊就是自嗨成分比較高一點但是呢我們可不可以了解世間這個大家在想什麼我告訴各位一個很簡單的東西如果說你是在網路上要了解大家在想什麼Google告訴你很多很多的線索第一個動作來 我請各位上網之後確GPT確定可以通來 |
transcript.whisperx[144].start |
6612.537 |
transcript.whisperx[144].end |
6617.811 |
transcript.whisperx[144].text |
登錄到一個網站叫做Google Champs |
transcript.whisperx[145].start |
6622.079 |
transcript.whisperx[145].end |
6647.145 |
transcript.whisperx[145].text |
我們那個小夥伴可以你們在那個line群他們等一下會把我用到的指令或網址都貼在那所以各位注意一下你手機上的line群那個google chains就是google在全球注意喔是全球上面所有的人在search的關鍵字最key的關鍵字他都會在這邊統計呈現給你比如說我們可以看到最新的六收榜可以看到 |
transcript.whisperx[146].start |
6648.988 |
transcript.whisperx[146].end |
6677.474 |
transcript.whisperx[146].text |
看起來我離這個最新的新聞有一點距離我不知道他們在談什麼這個下雨了這是人嗎好總之呢就是這個是大家最近在搜的可是呢這是在哪裡這是在台灣你可以找全球你可以找亞洲你可以找很多地方你可以找過去24小時過去7天某一段期間它是在政治啊科技啊在哪一個領域上專業的關鍵字是所有趨勢啊是所有什麼關聯 |
transcript.whisperx[147].start |
6678.334 |
transcript.whisperx[147].end |
6703.949 |
transcript.whisperx[147].text |
好 那你就可以找到是最熱門的關鍵字就是大家搜尋點最多的這就是最熱門的關鍵字就很多人在網路上在搜的是這些東西好 那我們在第二個這個探索上如果說我要特定的議題比如剛剛那些都是好像影藝版的我們探討專業一點好不好像人工智慧或者是AI假設是這樣我們可以把這個關鍵字輸入之後 |
transcript.whisperx[148].start |
6706.015 |
transcript.whisperx[148].end |
6733.482 |
transcript.whisperx[148].text |
它開始會進行一些比較那你可以看到搜尋熱度的趨勢變化這個AI還蠻多在探討台北市搜尋很多新北市第二這個區域性它也會馬上幫你發布第二個你看到AI不是就只有探討AIAI吐槽這是什麼意思我也不知道King AINapking AI就很多大家在找這樣的一個例子或者人工智慧政策人工智慧法案你們可以找你們關心的關鍵字然後 |
transcript.whisperx[149].start |
6734.122 |
transcript.whisperx[149].end |
6759.128 |
transcript.whisperx[149].text |
大家在這個議題上面相對探討最多的它就會產生出來這個就留給各位有空的時候慢慢去探索啦比如我們現在找這樣台灣在過去24小時我們在科技好不好這個最近在談的議題政治部分期周竹竹傷害等等 |
transcript.whisperx[150].start |
6761.051 |
transcript.whisperx[150].end |
6780.369 |
transcript.whisperx[150].text |
在這個類別上就請各位去找一下就是你最關心的議題還是說在你的那個想要探討的比較熱門的這個議題上它的一些排序的內容我現在根據這樣一個內容各位注意我們最簡單的做法就是這樣這些都是你的關鍵字假設 |
transcript.whisperx[151].start |
6782.011 |
transcript.whisperx[151].end |
6809.736 |
transcript.whisperx[151].text |
我們把這些關鍵字各位注意一下假設這是我關鍵字就是我的基本素材養分那我們在checkGPT要怎麼做呢請各位我們現在新產生一個新產生一個chat新產生一個這叫什麼對話各位注意一下在你的checkGPT左上角左上角我們現在切換到另外一頁面checkGPT因為我現在速度會比較快一點不好意思因為我們時間有限我們是兩點要結束是吧 |
transcript.whisperx[152].start |
6812.713 |
transcript.whisperx[152].end |
6841.596 |
transcript.whisperx[152].text |
左上角它有個這個部分它叫切尺GPT的模型注意切尺GPT它Default的模型是4O然後呢它現在這個因為我這是O3O3是深度推理模型它是比較厲害一點你用4O也可以免費的話Default它就是4O嘛你用任何模型都可以我只是告訴各位你可以去切換模型那在這裡我們把剛剛的那個關鍵字Copy paste的丟進來這就是我的素材我的養分 |
transcript.whisperx[153].start |
6842.608 |
transcript.whisperx[153].end |
6863.716 |
transcript.whisperx[153].text |
那我現在這邊下一個prompt我要告訴他寫一篇應該是這樣喔擬式我剛萬用公式要記得擬式我們要厲害一點苦力之講得主這夠厲害了寫一篇與上述關鍵字熱門關鍵字 |
transcript.whisperx[154].start |
6870.509 |
transcript.whisperx[154].end |
6875.512 |
transcript.whisperx[154].text |
有關的新聞稿主題是台灣AI競爭優勢產業 產業 工廠競爭優勢合聚合成假設是這樣 |
transcript.whisperx[155].start |
6897.739 |
transcript.whisperx[155].end |
6916.656 |
transcript.whisperx[155].text |
你要告訴他你要做的是什麼事情因為這是一個新聞稿然後你告訴他他是一個很厲害的新聞方面的專家或大師假設是這樣但是這跟一般我們只是問他問題不一樣是因為我們丟一些參考資料或素材給他然後他就會根據 |
transcript.whisperx[156].start |
6918.627 |
transcript.whisperx[156].end |
6937.396 |
transcript.whisperx[156].text |
這樣一個素材這種問法我們把它稱為叫做In context prompting反正就是丟一些小樣本讓它根據這個樣本去長出你要的一個文本的資料這個是一個最基本的一個概念所以它就會涵蓋這樣的一個關鍵字的內容但因為現在時間關係我們沒辦法細看好那接下來一個 |
transcript.whisperx[157].start |
6949.076 |
transcript.whisperx[157].end |
6975.473 |
transcript.whisperx[157].text |
用法是這樣因為他已經產生出來之後我們可以看到說他產生了這樣一個內容之後假設是這樣我現在告訴他你是民眾評分上述新聞檔我現在讓他變身 |
transcript.whisperx[158].start |
6976.96 |
transcript.whisperx[158].end |
7003.826 |
transcript.whisperx[158].text |
讓他變身成民眾讓他看不看得懂評分上述新聞稿然後給他一個參照值給他一個參照值就是評分就是要有分嘛0到100到底多少分 |
transcript.whisperx[159].start |
7009.46 |
transcript.whisperx[159].end |
7029.71 |
transcript.whisperx[159].text |
剛剛他自己寫 但是我現在要他給自己評分一般民眾85分覺得好嗎他告訴你優點是什麼 時事連結性強當然啦 因為我是拿最新的關鍵字進去可改進之處 缺少數據資質不夠他會告訴你缺點是什麼那這時候我再讓他變身 |
transcript.whisperx[160].start |
7039.988 |
transcript.whisperx[160].end |
7066.421 |
transcript.whisperx[160].text |
你覺得85分滿意嗎 還行以公園業的標準是120分 才加幾個 是嗎經濟部說他們是180 你覺得好啦 這是長官面前我們這樣講要100分喔 100分的版本你既然已經知道是85分有缺點 你就給我改 就叫他改 |
transcript.whisperx[161].start |
7068.055 |
transcript.whisperx[161].end |
7081.662 |
transcript.whisperx[161].text |
所以他說 那好 那就數據不夠 我們就長數據給你反正他就優化成100分 他就照你的指令去動作這樣了解嗎?你要讓他切換不同的身份 然後要給他一個基準去參照然後讓他能夠有什麼? |
transcript.whisperx[162].start |
7081.662 |
transcript.whisperx[162].end |
7089.606 |
transcript.whisperx[162].text |
不斷逐步優化空間所以到這個PROM 假設我這個新聞稿寫好 假設我已經下了三次PROM每一次都是什麼? |
transcript.whisperx[163].start |
7089.606 |
transcript.whisperx[163].end |
7093.348 |
transcript.whisperx[163].text |
朝朝見谷就是讓他有東西可以依循 可以改進 可以迭代 可以優化 |
transcript.whisperx[164].start |
7094.048 |
transcript.whisperx[164].end |
7121.457 |
transcript.whisperx[164].text |
要不然的話你跟他只是無聊的聊天而已那個對你的工作上效率並沒有提升太高好所以這個是我們的有關這樣的一種迭代優化或者是說讓他逐步改進的一種產生一個方法所以新聞稿、談餐稿或者很多的稿件的內容大概同理可證差不多是這樣一個概念然後我們再來厲害一點好這個也給大家看一下時間 |
transcript.whisperx[165].start |
7124.332 |
transcript.whisperx[165].end |
7133.779 |
transcript.whisperx[165].text |
比如我們有這個叫做隨選視訊是吧我們國會也有國會頻道直播嘛YT頻道直播總是有影音內容 |
transcript.whisperx[166].start |
7134.963 |
transcript.whisperx[166].end |
7161.919 |
transcript.whisperx[166].text |
我們是不是要大量的會議記錄你是不是要趕快聽一下大家在談什麼然後開始有一些法案有一些記錄有一些資料整理給老闆整理給選民之類的那各位看一下這是我真實狀況分析的馬上我告訴他說這一場會議告訴我那個正方反方贊成的反對的是多少然後支持程度是多少反對程度是多少通通給我展開我不想聽那麼多 |
transcript.whisperx[167].start |
7163.479 |
transcript.whisperx[167].end |
7192.799 |
transcript.whisperx[167].text |
直接告訴我視覺上看得到綠燈的還是紅燈的這樣了解嗎知識程度多少你用百分比給我知識程度多少反正程度多少裡面的論點是什麼一頁全部講全部講這樣可以嗎想不想學這個想啦好 可以嗎但是你不要跟老闆說學過這個你說你工作很認真但是你可能一秒你就結束了一秒太誇張了一分鐘好 各位可以看一下 |
transcript.whisperx[168].start |
7193.904 |
transcript.whisperx[168].end |
7215.823 |
transcript.whisperx[168].text |
來我們給各位看一下 我們先看一下這些內容 給各位一個例子我們剛剛在切GPT對不對切GPT我們現在先假設這樣 很多東西他有機密有什麼我們先排除那塊好不好 就先假設我們都可以用沒什麼機密性太多的問題 我們先假設這樣 所以先知道怎麼操作那有一個好用的工具提供給各位這個叫做Notebook LM |
transcript.whisperx[169].start |
7222.881 |
transcript.whisperx[169].end |
7245.611 |
transcript.whisperx[169].text |
在這個地方我先讓各位看一下其實就在這裡他叫產創條例修正草案然後立法院經濟財政委員會聯席會議記錄那個會議記錄漏漏等一堆抱歉我沒有很仔細看我只想要看到綠色跟紅色是想要看到誰支持我誰反對我大概是這樣的情況那我們怎麼做請各位 |
transcript.whisperx[170].start |
7247.113 |
transcript.whisperx[170].end |
7264.687 |
transcript.whisperx[170].text |
他可以這樣 他很厲害 他可以吃檔案他可以讀影音 了解齁但是影音你要有字幕才可以可是我們有一些東西沒有字幕啊那你要找那個YT 就是YouTube頻道有字幕的第二個是什麼 這個我們整個PDF丟給他就好 |
transcript.whisperx[171].start |
7265.678 |
transcript.whisperx[171].end |
7289.603 |
transcript.whisperx[171].text |
因為這是公開資料嘛 這沒有什麼機密 這已經做完的所以我去分析它沒有什麼問題 這樣了解齁反正它民眾都可以下載了嘛所以丟進去給它 但是我要產生的這些內容就是你要下PromptOK 這不是CheckGPT 這是Google 它叫NotebookLM好 我剛剛的做法很簡單 就是丟進一個PDF給它 這個是會議紀錄我忘記多少頁了 反正兩三百頁吧 大概是這樣 很長啦 |
transcript.whisperx[172].start |
7290.982 |
transcript.whisperx[172].end |
7303.834 |
transcript.whisperx[172].text |
丟給他 然後我告訴他我要整理 我要彙整 給我一個Mind Map簡單來講我的Problem是這樣 但是我們現在一棟一棟來做那我請各位先 這個動作我覺得他們應該沒時間操作了這個網址不是不是這個 Notebook |
transcript.whisperx[173].start |
7311.624 |
transcript.whisperx[173].end |
7336.824 |
transcript.whisperx[173].text |
這個網址我們已經丟上去了如果你沒有帳號你就用Google帳號快速的subscribe一個因為這都是免費的不用擔心你的隱私啊機密啊這些問題好那他是非常非常好用喔你個人有很多的文檔有很多的這個影音YouTube你想要解析你都可以快速的來處理 |
transcript.whisperx[174].start |
7339.96 |
transcript.whisperx[174].end |
7367.651 |
transcript.whisperx[174].text |
我們先來練習好不好先我們先這樣先等各位一下我怕速度太快了因為我們光速前進光速到各位跟不上也不是我們的原來的本意notebook lm今天你一定要學會回去你馬上可以用請各位登入到notebook lm我先確定一下這個登入好的朋友請舉手OK好大部分都OK還沒OK的請舉手我們請同仁來幫各位好大部分好了好接下來 |
transcript.whisperx[175].start |
7370.475 |
transcript.whisperx[175].end |
7389.481 |
transcript.whisperx[175].text |
我們來做一個小練習這個是轟動武林 驚動亂教驚動全球的這場會談在白宮而且是直播全球這個會談非常精彩不過他們到底是講了什麼其實他十幾分鐘BBC的這個影片十幾分鐘也不是太長那我們可以看到 |
transcript.whisperx[176].start |
7391.292 |
transcript.whisperx[176].end |
7396.536 |
transcript.whisperx[176].text |
這段影片裡面的這些原文他可以全部你把那個影片我們應該這樣講我從頭做一次給各位看 |
transcript.whisperx[177].start |
7409.066 |
transcript.whisperx[177].end |
7430.003 |
transcript.whisperx[177].text |
這是他的網址OK這是他的網址我們在notebook.lm裡面我們這樣的操作請你新建一個筆記本他所有的動作都是一個筆記本所以你在一個筆記本裡面最多可以丟50個file給他50個文檔給他那你的影音的內容是這樣請你在左邊這邊他有個新建來源 |
transcript.whisperx[178].start |
7431.36 |
transcript.whisperx[178].end |
7446.519 |
transcript.whisperx[178].text |
你可以上傳PDF你可以上傳文件上傳很多Google的檔案等等當然也可以上傳YouTube不是上傳啦應該說網址貼給他網址我們剛剛就把那個哲文司機在白宮那個影片貼進去 |
transcript.whisperx[179].start |
7447.6 |
transcript.whisperx[179].end |
7465.286 |
transcript.whisperx[179].text |
然後他會快速的去理解一下這個影片裡面講什麼樣的內容所以他就有沒有馬上跑出來就折扣日記跟川普在白宮的緊張恢復他就出來了這樣了解齁好那第二個呢是我們在這個地方既然他已經快速的解讀出來那你就要告訴他你要幹嘛囉會診症交所有論點依照講者好不好 |
transcript.whisperx[180].start |
7479.928 |
transcript.whisperx[180].end |
7494.401 |
transcript.whisperx[180].text |
假設是這樣我說哲學斯基講什麼這個川普講什麼你依照你幫我歸類吧這很簡單嘛所以包括他就產生了這樣了解齁那我可不可以叫他產出一個Mind Map我剛講嘛就Mind Map很簡單齁這個動作是這樣依照我們可以平分 |
transcript.whisperx[181].start |
7502.074 |
transcript.whisperx[181].end |
7530.389 |
transcript.whisperx[181].text |
三個人可不可以評分等一下你試試看我都已經評過了所以任何一個人質詢表現委員質詢表現好不好我們直接就評分這樣可以嗎我不敢所以你們自己去評你老闆總之我們想依照會談內容將所有論點MineMap就是新製圖 |
transcript.whisperx[182].start |
7543.769 |
transcript.whisperx[182].end |
7561.078 |
transcript.whisperx[182].text |
我告訴他一個是比較特殊的語法就是Mind Map是心智圖大家都知道他也知道但是有一種語法叫做Markdown語法就是畫成心智圖的一個圖一個語法那這個語法呢就可以讓我們把它copy paste的然後再 |
transcript.whisperx[183].start |
7570.799 |
transcript.whisperx[183].end |
7573.321 |
transcript.whisperx[183].text |
一些免費的工具上讓他呈現出新製圖的一個架構等一下 |
transcript.whisperx[184].start |
7595.832 |
transcript.whisperx[184].end |
7617.109 |
transcript.whisperx[184].text |
當然如果說有不對的你就不斷去修正他告訴他我要修成什麼樣的情況這些他就會變成這樣一個模式簡單來講就是我們可以運用這樣的方式產出這樣的一種這個效果我把這個內容因為我之前已經做完了我把這個內容丟到我們的LINE稍等一下 |
transcript.whisperx[185].start |
7646.834 |
transcript.whisperx[185].end |
7672.73 |
transcript.whisperx[185].text |
你完成之後應該會類似像是這樣就是這個Mind Map它可以產出這樣的一種動態的一些效果我們剛剛因為是拿YouTube的那個影片來做講解應該很快速的講解或練習然後用Notebook快速去理解它的一些內容只是說這個因為我們時間有限我就快速的帶過去因為後面東西還很多 |
transcript.whisperx[186].start |
7673.51 |
transcript.whisperx[186].end |
7702.329 |
transcript.whisperx[186].text |
好 再來的話也是一個很不錯的模式如果說我們有一些文本包含像剛剛講的是YouTube的這個叫什麼字幕也好或者我們有一些這個會議的文件會議紀錄等等比如說這是產創條例第十條修正草案架構與重點這邊有一份PDF也是一樣公開的資料我們可以讓它繪製成MIMAP也好或者系統架構圖或者各式各樣的一個圖式的一種呈現 |
transcript.whisperx[187].start |
7704.311 |
transcript.whisperx[187].end |
7724.125 |
transcript.whisperx[187].text |
那這個做法是這樣一樣我們回到你用notebook.lm也可以你用chegbt或Cloudy這一種他能夠產生應該說他能夠讀取PDF檔案的都可以因為在這邊有一個加號有沒有看到加號的話就是你可以上傳 |
transcript.whisperx[188].start |
7725.751 |
transcript.whisperx[188].end |
7740.944 |
transcript.whisperx[188].text |
上傳檔案上傳包含PDF包含各式各樣的影音的內容那我們可以看到說PDF呢是一個最基本文檔的格式比如說我們把它 |
transcript.whisperx[189].start |
7750.95 |
transcript.whisperx[189].end |
7773.157 |
transcript.whisperx[189].text |
好比如說這有個立法院議案關係文書之前的應該是一些提案的文件最簡單的做法就是讀取一個PDF之後比如說我要彙整重點假設是這樣當然他就會去讀取這個PDF裡面的所有的文檔的內容然後彙整重點這樣當然你快速的讀取他是非常的快 |
transcript.whisperx[190].start |
7774.428 |
transcript.whisperx[190].end |
7800.326 |
transcript.whisperx[190].text |
好這是賴瑞榮委員的當時的一些提案好裡面有很多很多這樣的一個項目好OK好這沒有問題他就在賭黨對不對好第二塊呢那我們有好多委員不同的提案啊那我們在經濟委員會有另外委員比如說就是鄭委員另外一個案子我叫他仔細賭黨 |
transcript.whisperx[191].start |
7807.644 |
transcript.whisperx[191].end |
7833.302 |
transcript.whisperx[191].text |
與上述版本比較列出對照以什麼呈現就是它的格式我要它以表格呈現就它開始兩個文檔開始去比就兩個委員的提案它開始去做一些比較有沒有看到這兩個委員鄭振成委員的提案跟賴委員的提案差異 |
transcript.whisperx[192].start |
7835.322 |
transcript.whisperx[192].end |
7863.786 |
transcript.whisperx[192].text |
那我們可不可以跟剛剛的做法一樣評分對比我不敢你們做你們當然都可以你要教他做什麼他就做什麼嘛所以他現在是列出主要的差異哪邊相同是不是很快那這是表格類的我想我們的各位寫的那些提案什麼質詢大概這樣已經不錯啦已經夠用了那我們可不可以更厲害身為讓他變成一個Mind Map好不好好我們就把 |
transcript.whisperx[193].start |
7864.5 |
transcript.whisperx[193].end |
7893.386 |
transcript.whisperx[193].text |
那我可不可以融合兩個兩個委員握手言和這樣行嗎我們提出一個行政院版本提出立法院助理公會版本這樣可以嗎好我們再告訴他因為我內容沒有看完融合兩者優點提出一份完整的總和版本但是我不想用字啦一 |
transcript.whisperx[194].start |
7895.92 |
transcript.whisperx[194].end |
7919.799 |
transcript.whisperx[194].text |
假設是這樣我讓他產生一種語法但是這個好像顯示不出厲害之處 |
transcript.whisperx[195].start |
7937.738 |
transcript.whisperx[195].end |
7944.327 |
transcript.whisperx[195].text |
顏色區分兩位委員的論點假設是這樣所以他開始會產生根據他會去讀那兩個檔然後呢他產生這個Mind Map可是呢他這個部分 |
transcript.whisperx[196].start |
7978.717 |
transcript.whisperx[196].end |
8004.783 |
transcript.whisperx[196].text |
賴偉源是藍色 這個鄭偉源是綠色 開始 貢德偉源 右色開始他開始在Generate 等他一下因為他讀那個大量的文本之後 他開始要去做他的歸納 彙整 而且他要用顏色區分嘛當然這個是比較簡略 你可以告訴他做一點簡述 做數字上排版的更好一點等等等他一下 |
transcript.whisperx[197].start |
8009.495 |
transcript.whisperx[197].end |
8036.234 |
transcript.whisperx[197].text |
因為這應該是產商條例修正案裡面的內容優先法案然後我們可以請AI評分這樣可以嗎我不敢中間去做好 假設它已經它已經產生完成了一個MIMAP這很簡單然後我們讓它在這個工具上去呈現 假設這樣 |
transcript.whisperx[198].start |
8038.801 |
transcript.whisperx[198].end |
8051.17 |
transcript.whisperx[198].text |
它就會產生出來 有沒有看到MineMap已經非常清楚了就是它比較系統化架構化的視覺呈現你可以Download下來Download下來它就是一個HTML版那我們就可以根據這個速讀 |
transcript.whisperx[199].start |
8052.83 |
transcript.whisperx[199].end |
8076.303 |
transcript.whisperx[199].text |
他的一個,因為我現在是叫他融合版,你也可以個別委員產生一個來看這個綠色是賴委員,這是鄭委員他們的論點有點不一樣,有共同的,這個就是共同的握手言和的部分是什麼,那就是這樣你可以看得非常非常清楚事實上我也沒有讀完全部,但是我可以大概一目給了然裡面的一些重點 |
transcript.whisperx[200].start |
8077.003 |
transcript.whisperx[200].end |
8092.062 |
transcript.whisperx[200].text |
好 這個就是告訴各位你用光速速讀會整一些文本你們的工作裡面大量的文字這個覆蓋範圍很多那當然因為這是叫做歸納或者是分析一些文本的資料我們也可以讓它呈現出 |
transcript.whisperx[201].start |
8093.243 |
transcript.whisperx[201].end |
8122.28 |
transcript.whisperx[201].text |
像是這樣一種比較架構圖的一個概念圖的一種形式這樣也是可以這有很多很多這個圖示的一些做法所以我們要了解一個YouTube裡面的內容也是同理可證喔那YouTube這個地方也有很多的內容我舉個例子我們在每個YouTube你可以看到剛剛是PDF丟上去對不對它是很多字YouTube裡面它不讀影音內容我也可以讀字各位注意一下任何一個好的YouTube |
transcript.whisperx[202].start |
8129.558 |
transcript.whisperx[202].end |
8151.828 |
transcript.whisperx[202].text |
或者很多那個好的演講他的這些內容裡面注意你可以看到他下面這邊都會顯示轉入稿顯示轉入稿在他右邊會產生他的字幕我只要把他的字幕全部copy paste下來他這一個 |
transcript.whisperx[203].start |
8156.694 |
transcript.whisperx[203].end |
8185.431 |
transcript.whisperx[203].text |
這個影片裡面的所有的內容我們就已經全部蒸餾出來這樣了解嗎那一樣貼到notebook.lm也可以或者是到chat.jpt也可以注意喔因為我們現在在工作的這個內容跟你現在要工作的假設是不相關的你最好是興起一個chat要不然的話他會很混亂我們現在興起一個chat把剛剛那個文字貼進來一樣這是一個影片裡面所有的字幕你叫他彙整重點 |
transcript.whisperx[204].start |
8189.676 |
transcript.whisperx[204].end |
8190.098 |
transcript.whisperx[204].text |
反理中 感謝 |
transcript.whisperx[205].start |
8193.687 |
transcript.whisperx[205].end |
8219.066 |
transcript.whisperx[205].text |
這影片你就速讀完了這樣了解我講的意思所以你只要有字對他來講他就可以快速大量的分析去處理所以這個影片在講婚禮的複雜情緒離婚的影響等等等這個影片你大概就可以很快的理解它你不用全部看完這是我們光速理解影片的一個小技巧就是把這個字幕全部extract出來然後快速的叫他AI彙整這樣一個工作 |
transcript.whisperx[206].start |
8219.867 |
transcript.whisperx[206].end |
8239.449 |
transcript.whisperx[206].text |
好這個都是蠻類似的一些做法都是取到字以後我們就可以轉化成非常多的東西好那這個是notebook.lm剛剛已經跟各位快速的講解過所以他可以他可以把YouTube的網址貼進去對不對他可以快速的理解理解裡面的一個影片的內容 |
transcript.whisperx[207].start |
8239.989 |
transcript.whisperx[207].end |
8264.846 |
transcript.whisperx[207].text |
也可以丟PDF的檔案對不對 切記PDF只要能吃PDF檔案的這些文檔的他都可以快速理解裡面所有的內容所以這個是你的一個關鍵接下來因為你要讀到這些資料以後就看你要prompt告訴他要做什麼展開成一個圖對照還是分析還是做歸納還是產生出另外一個副本等等好 那接下來是這樣 |
transcript.whisperx[208].start |
8266.167 |
transcript.whisperx[208].end |
8288.893 |
transcript.whisperx[208].text |
我們看到一個神奇的東西我們竟然敢號稱魔法學院就是要給你魔法一下魔法一下來 看一下這應該也是前幾天的事吧吳春城委員辭職那一天的事情有些你們可能在現場總之呢 這個是影片嘛 對不對影片在這裡來 各位看一下我們再稍微混複一下 |
transcript.whisperx[209].start |
8298.124 |
transcript.whisperx[209].end |
8311.014 |
transcript.whisperx[209].text |
婚政策在去年的7月30號第二次的婚姻確認了壯士好 OK但是呢 這種影片抱歉 沒有字幕因為它不是一個好影片 |
transcript.whisperx[210].start |
8312.639 |
transcript.whisperx[210].end |
8332.538 |
transcript.whisperx[210].text |
不是應該說不是好影片應該說來不及整理對吧或者來不及分析那怎麼辦因為你質詢的很少那麼快就可以產生字幕那怎麼辦那我知道聽音辨位聽音辨位就是讓深層式AI我已經說過聽說讀寫樣樣精通所以就乾脆讓他聽吧可以嗎所以我已經把這個這邊有個網址來給各位看一下 |
transcript.whisperx[211].start |
8341.696 |
transcript.whisperx[211].end |
8360.962 |
transcript.whisperx[211].text |
一個小工具小工具看一下這個這要實際操作給各位看今天你回去馬上可以動手好這個小工具它是免費的無毒不用擔心這是open source然後我們可以就把那個網址貼進來為什麼建議你辦理 |
transcript.whisperx[212].start |
8369.855 |
transcript.whisperx[212].end |
8375.386 |
transcript.whisperx[212].text |
我們貼剛剛那個範例的好了把這個網址因為我這已經做過 |
transcript.whisperx[213].start |
8377.334 |
transcript.whisperx[213].end |
8401.946 |
transcript.whisperx[213].text |
貼到剛剛那個小工具的網址然後呢這邊就是什麼我不要看影片我只想要讓它聽音變位我只想要取字所以就把它mp3當下來這樣了解嗎把它聲音當露下來就好了因為你沒有字幕可是我可以當露聲音讓它產生字這樣你就可以做任何事好當露下來呢我們現在因為節省時間啦其實我已經當下來然後呢 |
transcript.whisperx[214].start |
8403.308 |
transcript.whisperx[214].end |
8409.426 |
transcript.whisperx[214].text |
你會取得一個MP3檔我在這檔案已經有了這邊已經有了我丟到我們的 |
transcript.whisperx[215].start |
8433.122 |
transcript.whisperx[215].end |
8458.181 |
transcript.whisperx[215].text |
好 送給各位這個MP3檔你可以自己試著做做看好 我把這個MP3做什麼現在讓他傳一下MP3有了以後接下來是這樣要給各位一個工具我們現在光速前進非常快請各位到aisstudio.google.com我們同仁請把網址貼給大家 |
transcript.whisperx[216].start |
8460.049 |
transcript.whisperx[216].end |
8481.546 |
transcript.whisperx[216].text |
不過我估計大家因為我們非常飛快前進沒關係 你大家看我怎麼操作就好你等一下回去休息的時候有空的時候自己操作一下好 我們進入到這個你如果沒有帳號也要註冊一個因為這是Google工具 免費而且火力強大給AI developer用的AI的開發者用的不是給一般人用的 |
transcript.whisperx[217].start |
8482.487 |
transcript.whisperx[217].end |
8508.195 |
transcript.whisperx[217].text |
這樣了解但是它是免費這很厲害好進入到AI Studio看到這是Google出品的佛心來給各位的一個火力強大工具看一下畫面來各位看一下畫面在右邊這邊我們也可以選擇模型大型的模型Google的模型也非常的多那你可以選一個厲害一點的我讓他選擇一個推理模型好接下來 |
transcript.whisperx[218].start |
8509.755 |
transcript.whisperx[218].end |
8525.233 |
transcript.whisperx[218].text |
在這邊有很多的東西啦我講比較單純一點你可以把剛剛那個MP3上傳如果他沒有牽涉國家機密這樣OK喔上傳反正他都YouTube都已經公開了無所謂好 我們剛剛那個在哪 |
transcript.whisperx[219].start |
8540.558 |
transcript.whisperx[219].end |
8569.557 |
transcript.whisperx[219].text |
我們剛剛有個24MB左右的一個MP3檔大概我忘了多長半小時還一小時的一個質詢那讓他上傳一下各位因為他上傳他可以理解因為你沒有字幕嘛對不對你可以把所有逐字稿取出來這樣了解我們現在音檔在上傳的過程當中我們的PROM要下下去了下下去也很簡單 |
transcript.whisperx[220].start |
8573.801 |
transcript.whisperx[220].end |
8594.7 |
transcript.whisperx[220].text |
仔細聽不要遺漏就這麼簡單我要竹子嘎 |
transcript.whisperx[221].start |
8596.65 |
transcript.whisperx[221].end |
8615.475 |
transcript.whisperx[221].text |
好 我們已經上傳上來這沒問題啦 它大概31分鐘也不短了喔這31分鐘的這一段我要他不要遺漏任何細節產出竹子稿就這樣完成之後Run好 他現在正在聽 |
transcript.whisperx[222].start |
8617.537 |
transcript.whisperx[222].end |
8645.363 |
transcript.whisperx[222].text |
我們剛剛的做法是YouTube有字幕對不對有字幕我就取出來然後叫他分析叫他產生whatever任何東西我現在是沒有字幕怎麼辦聽音變位所以他現在正在聽這是Live的即時轉播就讓他聽一下很快他就會把稿做給你好 各位看一下各位看一下看一下畫面他正在努力幫你工作 |
transcript.whisperx[223].start |
8647.219 |
transcript.whisperx[223].end |
8674.362 |
transcript.whisperx[223].text |
有沒有看到我們自己測試過他的那個那個叫什麼準確率啊中文啊準確率啊這些大概可以到九成五左右啦有一些當然是破音字或者口齒不清那沒辦法但是大部分都對這樣了解齁所以這個應該是吳淳臣那個委員啊那時候在講話的那一段過程嘛好這是很多啦 |
transcript.whisperx[224].start |
8676.903 |
transcript.whisperx[224].end |
8681.112 |
transcript.whisperx[224].text |
這全部都是字 都會幫你取出來這是逐字稿 各位 |
transcript.whisperx[225].start |
8689.966 |
transcript.whisperx[225].end |
8710.596 |
transcript.whisperx[225].text |
差不多了吧30分鐘大概被我們用3分鐘蒸餾他的靈魂出來軀殼就把它丟掉了影片我們不想看但是呢這個字我就全部取到幾乎是對的啦但永遠我沒仔細看啦有些數字什麼你總要還是要確認一下反正他現在很努力在工作中OK好 接下來好 再讓他繼續做吧 |
transcript.whisperx[226].start |
8716.282 |
transcript.whisperx[226].end |
8742.532 |
transcript.whisperx[226].text |
這樣接下來我們要做什麼就看你要做什麼了你是要會議記錄呢會議記錄就是更簡單了嘛會議記錄就是精簡後的文本竹子稿很難竹子稿是一種滿清十大酷刑你要聽音打字那個是很麻煩的事情但是我們只要有字任何事情你都可以做你看已經全部被我們取完三十分鐘的字全部取完好那取完之後我剛有講就看你要做什麼會講重點 |
transcript.whisperx[227].start |
8745.993 |
transcript.whisperx[227].end |
8752.699 |
transcript.whisperx[227].text |
所以這一段三十幾分鐘我就一頁就結束了 |
transcript.whisperx[228].start |
8766.898 |
transcript.whisperx[228].end |
8779.332 |
transcript.whisperx[228].text |
當然還是細節還是要看一下因為有些東西它搞不好那個語意有錯啊什麼但是它九成只是告訴各位這樣有沒有看到當然裡面的細節都是壯士帶沒錯啦這個新聞熱點上的議題嘛好 |
transcript.whisperx[229].start |
8785.123 |
transcript.whisperx[229].end |
8811.959 |
transcript.whisperx[229].text |
角色是這樣 他會辭職書嘛 很多那格式你再可以告訴他說格式要怎麼樣改總之呢 這前面比較比較那種dirty job的這種比較複雜的這個勞力密集的工作已經幫你做完了後面你就是發揮你的你要把它畫成圖畫成圖表都可以只要取出字可以做成任何事情了解齁所以這個就是我們在AI可以協助我們做很多的這個彙整的工作好 這樣OK嗎 |
transcript.whisperx[230].start |
8814.346 |
transcript.whisperx[230].end |
8822.862 |
transcript.whisperx[230].text |
時間不多但是後面的內容我就挑著講囉要不然時間真的很有限好 再接下來有一個工具你也一定要會 |
transcript.whisperx[231].start |
8824.127 |
transcript.whisperx[231].end |
8847.676 |
transcript.whisperx[231].text |
因為我們比較預測性的東西比較沒有標準答案的東西剛剛是叫 叫做幫你做一些那種比較dirty job就是比較 怎麼講勞力密集的工作 幫你省時間的啦第二個是要幫你動腦的什麼叫動腦 我們要寫書寫一個質地有深還是寫一個比較厲害的什麼國情諮詢報告什麼預測 政策預測分析之類的那就不是只有會議記錄這麼簡單那怎麼辦哇 那我要博覽群書欸 |
transcript.whisperx[232].start |
8851.923 |
transcript.whisperx[232].end |
8873.21 |
transcript.whisperx[232].text |
可是這個時候有點小複雜我不能Google亂找 也很花時間告訴各位一個很好用的工具現在的生成式AI 注意 已經都開天眼了大部分開天眼的意思就是可以聯網所以你不要以為說它的這個叫什麼知識庫只到2023年的11月現在沒有這回事 它是最新資料都可以搜尋 |
transcript.whisperx[233].start |
8874.543 |
transcript.whisperx[233].end |
8899.962 |
transcript.whisperx[233].text |
所以他只要開地球就好了我們通常叫開天眼所以這個能力非常的強所以其實這是一個例子當時川普在第一次被槍擊的時候我就已經開始在預測在第二次又被槍擊我那個預測已經在我的那個盤面上都已經是勝選但是我預測錯的一點是竟然勝選那麼多所以在前三天我已經全部都預測完他是當選的 |
transcript.whisperx[234].start |
8901.741 |
transcript.whisperx[234].end |
8930.88 |
transcript.whisperx[234].text |
只可惜我沒有膽量去買有 那當然是有這是下一堂課 好嗎我們那個廖老師晚上是有另外的那個課程美股是晚上開盤嘛白天不能在工作上講這個是好 回過頭來講這個因為它是即時新聞性很強所以你一定要聯網你什麼知識庫什麼去年11月沒有那個事你因為那個東西太舊但是我要告訴各位另外一個更簡單用的工具這個工具 |
transcript.whisperx[235].start |
8932.161 |
transcript.whisperx[235].end |
8942.166 |
transcript.whisperx[235].text |
請各位一樣必須把這個網址記著叫Perplexity就是黃仁勳先生最喜歡用的AI工具它叫Perplexity有點難唸那它的聯網搜尋功能非常的強 |
transcript.whisperx[236].start |
8955.114 |
transcript.whisperx[236].end |
8966.729 |
transcript.whisperx[236].text |
而且所有資料來源都會給你而且它可以用深度推理模型來 各位看一下這個你要學會我們耽誤個五分鐘可以主任這樣可以嗎 |
transcript.whisperx[237].start |
8969.168 |
transcript.whisperx[237].end |
8990.316 |
transcript.whisperx[237].text |
因為速度太快了我不知道大家因為速度太快我不知道大家能不能這個吸收了不過這個需要介紹給各位Proplexity是它的資料來源博覽群書全球搜尋而且都有資料來源給你所以你不用擔心它一本正經無所八道它都有所本第二塊你要看它的深度推理模型已經內建進去了 |
transcript.whisperx[238].start |
8991.876 |
transcript.whisperx[238].end |
9016.725 |
transcript.whisperx[238].text |
各位可以看一下Perplexity反正你沒有帳號你就用Google註冊一個反正它是現在是免費也很夠用我要給各位看一下重點是這樣我們重新來一個這跟Google Notebook、LM、Chat、GBT什麼這些都差不多都是一個AI甚至是AI的一個語言模型的Chat的這種工具但是對你工作很有用在這個地方我們一個沒有標準答案的問題其實我已經做過了我們現在再做一次我們 |
transcript.whisperx[239].start |
9021.908 |
transcript.whisperx[239].end |
9042.296 |
transcript.whisperx[239].text |
一樣白宮的美屋會談這是最新的吧對不對造成的影響對兩岸關係這太沉重了未來發展 |
transcript.whisperx[240].start |
9052.022 |
transcript.whisperx[240].end |
9062.543 |
transcript.whisperx[240].text |
你的未来未来发展如何 |
transcript.whisperx[241].start |
9064.634 |
transcript.whisperx[241].end |
9085.852 |
transcript.whisperx[241].text |
這個回答錯可能就政治前途毀於一旦我不知道啦反正這屬於研究嘛屬於分析沒有標準答案我們也不知道這屬於未來式好那你告訴我各有論點是正常的可是呢以AI來講他就要博覽群書那各位注意一下我在這邊開始要這種沒有答案的問題要問他的時候 |
transcript.whisperx[242].start |
9087.694 |
transcript.whisperx[242].end |
9108.121 |
transcript.whisperx[242].text |
注意喔 我們要讓他利用厲害的模型這邊有個Auto對不對各位可以看一下Auto就是他會自己找最適合的模型或者是ProSearch有沒有看到 他是三倍數比別的模型厲害還是他現在很厲害的一個叫DeepResearch深度研究的一個模型還是 |
transcript.whisperx[243].start |
9110.934 |
transcript.whisperx[243].end |
9134.676 |
transcript.whisperx[243].text |
聽說中華民國不能用的叫DeepSeek不要按錯 馬上會被抓去關DeepSeek也可以喔但是它DeepSeek也不是連到大陸它是連到美國的伺服器反正DeepSeek開源所以它自己建一個伺服器也可以那我們當然用DeepResearch用別的都可以反正就看你高興或者用OpenAI的推理模型叫O3推理模型它就是思維鏈可以一個一個不斷地追問下去 |
transcript.whisperx[244].start |
9136.737 |
transcript.whisperx[244].end |
9152.524 |
transcript.whisperx[244].text |
這個叫什麼快思慢想就對了非常深度的探索那我們現在用deep research不能用deep seek按錯的自己站出來自己自掃我們現在按下去之後開始了他開始工作他的工作的重點是什麼 |
transcript.whisperx[245].start |
9154.022 |
transcript.whisperx[245].end |
9175.868 |
transcript.whisperx[245].text |
他會開始Deep Research他這很複雜喔你要Stand by因為他會慢慢慢慢開始很複雜的一些推理在背後開始運算你看他告訴你他開始找了幾個相關的這個這個意見領袖啊網站啊美工啊白宮啊什麼這些會談有沒有看到他的資料裡面中文也有這個政府網站也有新聞網站也有開始在找他正在讀它有沒有看到 |
transcript.whisperx[246].start |
9180.663 |
transcript.whisperx[246].end |
9208.747 |
transcript.whisperx[246].text |
等他一下喔 因為他是深度推理模型需要一點點時間才會給你答案但給你答案是非常深度的可能我自己單方面可能都還寫不出來好 我找到一個關於白宮的報導會談中出現爭執大家知道了嘛 關於礦產協議繼續往下探索因為爭執會造成後來的影響這後來影響 那又影響到這個俄烏 歐盟那跟台灣什麼關係 他會再去推論這樣了解喔 |
transcript.whisperx[247].start |
9209.892 |
transcript.whisperx[247].end |
9232.871 |
transcript.whisperx[247].text |
好 兩岸的關係 兩岸的未來 你可以看到這已經牽扯到很遠了你看他再下一步 我找到白宮美屋會談的報導報導紫珠會談激烈衝突波波 他再繼續往下看他的繁體中文是這樣 他的介面中文只有簡體中文 |
transcript.whisperx[248].start |
9234.537 |
transcript.whisperx[248].end |
9255.424 |
transcript.whisperx[248].text |
但是在這邊不能用 也是要抓起來的一個部分請用英文 但是它的回應是繁體中文 回應可以設繁體中文就是它的這個output 你可以看 它已經收集到足夠的資訊來回答你的問題有沒有看到 多篇報導和評論 它可能超過上百篇報導 它看的可能超過上百篇 |
transcript.whisperx[249].start |
9256.616 |
transcript.whisperx[249].end |
9286.156 |
transcript.whisperx[249].text |
沒有上百篇也幾十篇啦好他開始推論好他現在告訴你答案了這是他的答案白宮美歐會談爭議與兩岸關係發展之前景分歧這屬於碩士論文等級就是這樣近期美國總統寫了很多他講了很多同時這個事件他還在寫他還在寫烏克蘭有豐富的自然溪土因為川普要然後就很多他現在一直不斷的在推論 |
transcript.whisperx[250].start |
9292.066 |
transcript.whisperx[250].end |
9318.642 |
transcript.whisperx[250].text |
那對兩岸關係的影響是什麼看起來是這樣那你可以根據你們的顏色 黨派來告訴他你這個論點大逆不道請修正之類的我就請你一下prompt給他好嗎反正他是根據理性的來做他的一個他博覽群書之後給你的一些回應這個很複雜了因為他太多國多邊的關係了 |
transcript.whisperx[251].start |
9321.001 |
transcript.whisperx[251].end |
9341.457 |
transcript.whisperx[251].text |
有沒有看到 他這個回應是非常長的推論很多 告訴你這不是那麼簡單回答的問題所以他告訴你很多很多事 他還在努力寫大國博弈下台灣的處境 那很多那可能又牽涉到地緣政治 又牽涉到科技戰 很多好 經濟利益 政治 還繼續在寫那我告訴各位 現在 |
transcript.whisperx[252].start |
9344.295 |
transcript.whisperx[252].end |
9362.364 |
transcript.whisperx[252].text |
它是深度推理模型免費開放所以你可以去使用它所以是很厲害的然後它這邊還有其他你想要再深度探索一些其他有的沒的那注意喔我覺得這篇寫得真是好啊有沒有那你可以告訴他請改成質詢稿這樣可不可以 |
transcript.whisperx[253].start |
9365.413 |
transcript.whisperx[253].end |
9387.723 |
transcript.whisperx[253].text |
身為經濟部的團隊 我不建議各位這樣做請質詢其他部會 不行其他部會我們也放他們工作反正就是你要叫他轉成什麼格式就隨你高興你覺得他論點不錯的話那接下來是這樣 你可以export如果你覺得他這個很不錯 你也可以變成一個PDF檔 |
transcript.whisperx[254].start |
9389.875 |
transcript.whisperx[254].end |
9400.258 |
transcript.whisperx[254].text |
他就會匯出給你一個檔案檔案我又可以做剛剛那樣的分析對不對做很多深度的一些探索或展開這個檔案你就可以隨你取用了 |
transcript.whisperx[255].start |
9401.443 |
transcript.whisperx[255].end |
9426.876 |
transcript.whisperx[255].text |
你可以拿去發表啦 你可以拿給老闆還是你自己產生一個比較專業的這個文本 這樣都OK好 所以呢 這個部分是Perplexity他在找 注意 他在找未來的這種不確定性的 還是沒有標準答案的這種屬於推理 推論式的這樣的一個論點非常好 因為我們通常要找好多好多外部的網站 很花時間 對不對 |
transcript.whisperx[256].start |
9427.776 |
transcript.whisperx[256].end |
9444.164 |
transcript.whisperx[256].text |
他可以自動幫你找根據你的論點那你可以切換模型所以就不要用DeepSeq因為DeepSeq可能會被人家challenge可是你可以用他的DeepResearch用O3什麼之類的都OK沒有問題所以在這個地方你就可以如果你真的想要 |
transcript.whisperx[257].start |
9444.944 |
transcript.whisperx[257].end |
9466.464 |
transcript.whisperx[257].text |
晚上非公務時間偷偷用一下或者是說測試一下它的能耐那你就切換一下模型就知道DeepSeq是怎麼推論這樣了解所以你不用到它原始的網站用這個其實就可以去Test它好 這個是我們在Perplexity非常非常好用的深度探索分析的一個好幫手 |
transcript.whisperx[258].start |
9467.645 |
transcript.whisperx[258].end |
9495.578 |
transcript.whisperx[258].text |
那剛剛已經講過了嘛這個分析的部分時間上也差不多了最後因為時間我留一些給各位來最後我給各位看一些他的能夠做到什麼程度因為我們時間今天真的非常有限不過我非常希望各位可以看到他的能耐在哪裡我們來看一些有趣的應用 |
transcript.whisperx[259].start |
9498.106 |
transcript.whisperx[259].end |
9525.479 |
transcript.whisperx[259].text |
因為我平常沒什麼這個嗜好晚上回去就寫寫AI程式然後訓練訓練幾個機器人去做做工作這是其中一個比如我們來探討Deep-seek對台灣科技AI政策產業的影響怎麼樣比如說我們有一個報導或是一篇論文也可以一篇那個什麼某個部會的預算書都一樣反正這就是一個比較專業的文本 |
transcript.whisperx[260].start |
9541.492 |
transcript.whisperx[260].end |
9550.518 |
transcript.whisperx[260].text |
我要跟他角色扮演我們要質詢他AI扮演的是台灣官員尤其是經濟部官員 |
transcript.whisperx[261].start |
9558.533 |
transcript.whisperx[261].end |
9573.266 |
transcript.whisperx[261].text |
用戶扮演的角色 那我們一定要把工作壓力發洩出來美國總統川普 這樣好嗎這個要質詢不能親切 我們要犀利專業我叫他扮演什麼樣的角色 |
transcript.whisperx[262].start |
9577.386 |
transcript.whisperx[262].end |
9605.447 |
transcript.whisperx[262].text |
好 就這樣喔然後呢 應該說多模態生成式AI聽得到 看得到 會講 會讀 會理解而且會開玩笑 會有情緒的我們等一下看一下 感受一下他現在看得到我啦 看得到我們在現場的情況等一下 等一下抱歉 我偷偷看一下他有沒有在理解他有讀到 等他一下因為他是一個機器人 |
transcript.whisperx[263].start |
9608.035 |
transcript.whisperx[263].end |
9618.263 |
transcript.whisperx[263].text |
那他讀整篇文章 然後開始模擬質詢我就扮演川普嘛 他扮演台灣的政府官員 類似這樣好 OK 好了 等他一下 |
transcript.whisperx[264].start |
9620.943 |
transcript.whisperx[264].end |
9648.482 |
transcript.whisperx[264].text |
好 這是一篇報導 金週刊的報導中國刺客AI界刺客總統先生Deep Seek的崛起確實為全球AI格局帶來了變數從台灣的角度來看我們既看到了挑戰 也看到了機會您認為Deep Seek這種一開源低成本策略崛起的中國AI新創公司對美國在AI領域的領導地位以及對美國企業的競爭力帶來了哪些最直接且嚴峻的挑戰 |
transcript.whisperx[265].start |
9649.443 |
transcript.whisperx[265].end |
9670.366 |
transcript.whisperx[265].text |
您與其美國政府會採取那些相應的策略來應對他現在是問我問題不是我問他問題那我們就好玩演一下這樣可以嗎你們要認真的用也可以我們今天屬於釋放工作壓力大膽狂徒竟敢出此開源模型擾亂世界秩序該當何罪 |
transcript.whisperx[266].start |
9673.779 |
transcript.whisperx[266].end |
9689.008 |
transcript.whisperx[266].text |
我們好像回到清朝了他聽得到我講話他看得到我的表情所以他會說總統先生您剛剛語怒未消他會看得到我的表情我們偷看一下他有看到 |
transcript.whisperx[267].start |
9691.124 |
transcript.whisperx[267].end |
9704.895 |
transcript.whisperx[267].text |
觀察到越帶不越的神情有沒有看到所以他會看得到我在做什麼但是他現在背後在推理在演算怎麼樣回應回應我所以他就像一個人一樣只是他現在在思考等他一下這是一篇報導其實就是一篇文章一個你這個個案也可以一個部會的預算書什麼專業的質詢稿都可以都是一樣的 |
transcript.whisperx[268].start |
9723.086 |
transcript.whisperx[268].end |
9739.652 |
transcript.whisperx[268].text |
川普總統感謝您博倫回應觀察到總統先生略帶不約的申請以及對Deep Seek的強烈措辭甚至是將其形容為擾亂世界秩序的行為臉部表情嚴肅 進我麥克風可以感受到總統先生對這項技術發展的擔憂 |
transcript.whisperx[269].start |
9741.892 |
transcript.whisperx[269].end |
9762.163 |
transcript.whisperx[269].text |
威威周美和略微鄉下的眼神更現實出您對美國的科技產業領導地位的忠實以及對欠債威脅的警覺最角的微笑我理解可能帶有對這類挑戰的某種萬惡為之心從台灣的角度我們同樣關注開源AI模型對全球產業格局的影響 |
transcript.whisperx[270].start |
9763.163 |
transcript.whisperx[270].end |
9788.015 |
transcript.whisperx[270].text |
Deep-seek這種低成本開源共享模式確實對美國在AI晶片和基礎模型研發方面帶來了一項 我就不想聽了我們繼續再跟他對話一下等一下 因為我們對話三題他會評分我的表現跟AI的表現是怎麼樣 等一下竟然在我國會殿堂探討Deep-seek大逆不道 該當何罪好 就這樣 |
transcript.whisperx[271].start |
9790.882 |
transcript.whisperx[271].end |
9814.85 |
transcript.whisperx[271].text |
他會看得到聽得到也理解我的語氣語調語意跟因為我們現在都會回到這個文章探討的內容他不會說那量子力學是什麼我會歪樓了所以我們現在會讓他都鎖定在這個議題的探討上你看他背後一樣現在又在推理等他一下 |
transcript.whisperx[272].start |
9821.886 |
transcript.whisperx[272].end |
9822.247 |
transcript.whisperx[272].text |
因為這個問題比較複雜所以要稍微想久一點 |
transcript.whisperx[273].start |
9834.323 |
transcript.whisperx[273].end |
9853.214 |
transcript.whisperx[273].text |
輕搖輕喉嚨稍微調整了一下領帶以晉升的預期回答川普總統首先我想強調的是台灣和美國在高科技產業的合作關係直觀重要針對Deep-seek案例 起底成本 開源共享的AI發展模式確實為美國的科技領導地位帶來了複雜的挑戰但也伴隨著潛在的機會 |
transcript.whisperx[274].start |
9857.496 |
transcript.whisperx[274].end |
9878.275 |
transcript.whisperx[274].text |
從您的肢體語言觀察我注意到您在聽到在我國會殿堂探討時眉頭近鎖雙手略為我權現實出對於國家權威的重視和對潛在威脅的警惕您的眼神中投入出意思不約似乎對問題的提出方式有所保留好我們最後一題好最後一題 |
transcript.whisperx[275].start |
9881.533 |
transcript.whisperx[275].end |
9903.969 |
transcript.whisperx[275].text |
好 所以到底台灣在AI政策上應該怎麼做呢Deep-seek如此開源模型出來之後我們在產業政策上是不是應該提出一個更有效的辦法你覺得美國應該給你什麼樣的協助或者給你什麼樣的資源講重點就好 就這樣過一過川普總統的癮 這樣就好 |
transcript.whisperx[276].start |
9912.254 |
transcript.whisperx[276].end |
9912.795 |
transcript.whisperx[276].text |
那現在在推論 |
transcript.whisperx[277].start |
9923.444 |
transcript.whisperx[277].end |
9947.765 |
transcript.whisperx[277].text |
那各位剛剛各位聽到這個聲音是我的聲音我clone我的聲音複製我的聲音現在要複製一個人的聲音取他的聲紋聲調大概30秒就結束了就可以很像不過因為這個聲音比較像直循的口氣我也有那個比較溫文儒雅的就是比較你好DeepSeek這類開源地成本模型確實帶來了新挑戰也提供了新的發展奇蹟 |
transcript.whisperx[278].start |
9948.837 |
transcript.whisperx[278].end |
9972.927 |
transcript.whisperx[278].text |
首先開源降低了AI技術的門鍵讓更多國家和企業能快速掌握並應用AI這意味著我們過去仰來技術領先優勢的產業必須加速創新好 因為他講比較久好 謝謝我們攜手合作 蔓向未來 感恩好 我們那個還要繼續嗎差不多了 |
transcript.whisperx[279].start |
9974.236 |
transcript.whisperx[279].end |
9996.026 |
transcript.whisperx[279].text |
時間也差不多了 我們掌聲謝謝我們廖訓練者好不好其實在外面的課程 應該是一個ten應該十幾堂那種課程那注意光會只是說 大家入門一下說還沒使用過的AI 還是說已經有在使用 讓大家更知道 |
transcript.whisperx[280].start |
9998.827 |
transcript.whisperx[280].end |
10023.056 |
transcript.whisperx[280].text |
大家回去玩一玩啦 因為有免費玩一玩 那確實可以用尤其在國會 各位委員辦公室 各位助理要大量的文書作業 其實是很辛苦的要寫執行稿 新聞稿 知識稿 各種稿都要寫那假如你會利用這種AI的話 利用這種模型的話那至少你在準備一些資料的時候會更方便當然他最後可以寫說 本資料有一些錯誤性 |
transcript.whisperx[281].start |
10024.196 |
transcript.whisperx[281].end |
10047.151 |
transcript.whisperx[281].text |
調整麥克風,川普總統您好,感謝您的提問進行查證那還有要適合找出適合你們委員需要的口氣跟內容你還是要去過濾一下啦,去把它中整一下這樣但是畢竟這是一個很好的工具,很好的應用的話我想對在座都會有幫助甚至可能我要猜啦,在未來的很多委員辦公室要徵求助理的話都問你說你會不會運用這種程式 |
transcript.whisperx[282].start |
10049.62 |
transcript.whisperx[282].end |
10074.666 |
transcript.whisperx[282].text |
當委員知道這個很好用的時候他就會問新進的國會助理你會不會用你不會用可能就會被淘汰掉了所以說大家要學我個人認為真的是可能下一屆也許很多委員在找助理的時候就會這樣問了包括很多政府部門也都在慢慢在應用好那差不多兩點多了各位要回去上班了我們謝謝廖訓練長謝謝希望下次有在辦謝謝大家謝謝 |
transcript.whisperx[283].start |
10081.498 |
transcript.whisperx[283].end |
10086.239 |
transcript.whisperx[283].text |
沒有問題好像剛剛我們同仁說有沒有PDF我們會後再提供給各位謝謝 |