iVOD / 16490

Field Value
IVOD_ID 16490
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16490
日期 2025-03-03
影片種類 Full
開始時間 2025-03-03T11:29:59+08:00
結束時間 2025-03-03T14:19:00+08:00
影片長度 02:49:01
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b73ade72829c64edf5b818569cbc04ff680f69c62f9e242383b1540ff2c7b41bb7278a1a0aa37b7e5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-03-03T12:00:00+08:00
會議名稱 國會助理研習活動(事由:國會助理研習活動(AI時代專業國會助理-AI超能智慧工作術))
委員名稱 完整會議
委員發言時間 11:29:59 - 14:19:00
transcript.pyannote[0].speaker SPEAKER_09
transcript.pyannote[0].start 343.48784375
transcript.pyannote[0].end 343.55534375
transcript.pyannote[1].speaker SPEAKER_09
transcript.pyannote[1].start 343.57221875
transcript.pyannote[1].end 343.67346875
transcript.pyannote[2].speaker SPEAKER_09
transcript.pyannote[2].start 343.87596875
transcript.pyannote[2].end 346.03596875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 345.54659375
transcript.pyannote[3].end 345.79971875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 345.86721875
transcript.pyannote[4].end 345.93471875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 345.95159375
transcript.pyannote[5].end 345.96846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 346.03596875
transcript.pyannote[6].end 347.36909375
transcript.pyannote[7].speaker SPEAKER_09
transcript.pyannote[7].start 347.36909375
transcript.pyannote[7].end 347.38596875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 347.38596875
transcript.pyannote[8].end 347.43659375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 350.00159375
transcript.pyannote[9].end 350.03534375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 350.03534375
transcript.pyannote[10].end 350.96346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 350.96346875
transcript.pyannote[11].end 351.19971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 351.19971875
transcript.pyannote[12].end 351.25034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 351.25034375
transcript.pyannote[13].end 352.63409375
transcript.pyannote[14].speaker SPEAKER_09
transcript.pyannote[14].start 456.24659375
transcript.pyannote[14].end 456.36471875
transcript.pyannote[15].speaker SPEAKER_09
transcript.pyannote[15].start 461.71409375
transcript.pyannote[15].end 461.98409375
transcript.pyannote[16].speaker SPEAKER_07
transcript.pyannote[16].start 574.43909375
transcript.pyannote[16].end 581.42534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 576.04221875
transcript.pyannote[17].end 576.07596875
transcript.pyannote[18].speaker SPEAKER_05
transcript.pyannote[18].start 576.07596875
transcript.pyannote[18].end 579.82221875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 579.82221875
transcript.pyannote[19].end 580.02471875
transcript.pyannote[20].speaker SPEAKER_10
transcript.pyannote[20].start 580.02471875
transcript.pyannote[20].end 580.04159375
transcript.pyannote[21].speaker SPEAKER_05
transcript.pyannote[21].start 580.04159375
transcript.pyannote[21].end 581.30721875
transcript.pyannote[22].speaker SPEAKER_05
transcript.pyannote[22].start 584.46284375
transcript.pyannote[22].end 587.92221875
transcript.pyannote[23].speaker SPEAKER_05
transcript.pyannote[23].start 882.05346875
transcript.pyannote[23].end 890.77784375
transcript.pyannote[24].speaker SPEAKER_05
transcript.pyannote[24].start 891.04784375
transcript.pyannote[24].end 899.92409375
transcript.pyannote[25].speaker SPEAKER_05
transcript.pyannote[25].start 900.00846875
transcript.pyannote[25].end 905.18909375
transcript.pyannote[26].speaker SPEAKER_05
transcript.pyannote[26].start 958.44659375
transcript.pyannote[26].end 961.26471875
transcript.pyannote[27].speaker SPEAKER_05
transcript.pyannote[27].start 961.78784375
transcript.pyannote[27].end 966.05721875
transcript.pyannote[28].speaker SPEAKER_05
transcript.pyannote[28].start 966.44534375
transcript.pyannote[28].end 971.10284375
transcript.pyannote[29].speaker SPEAKER_05
transcript.pyannote[29].start 971.49096875
transcript.pyannote[29].end 980.26596875
transcript.pyannote[30].speaker SPEAKER_05
transcript.pyannote[30].start 980.73846875
transcript.pyannote[30].end 981.95346875
transcript.pyannote[31].speaker SPEAKER_05
transcript.pyannote[31].start 1049.45346875
transcript.pyannote[31].end 1051.30971875
transcript.pyannote[32].speaker SPEAKER_05
transcript.pyannote[32].start 1051.86659375
transcript.pyannote[32].end 1056.50721875
transcript.pyannote[33].speaker SPEAKER_05
transcript.pyannote[33].start 1057.04721875
transcript.pyannote[33].end 1061.55284375
transcript.pyannote[34].speaker SPEAKER_05
transcript.pyannote[34].start 1062.05909375
transcript.pyannote[34].end 1067.98221875
transcript.pyannote[35].speaker SPEAKER_05
transcript.pyannote[35].start 1068.50534375
transcript.pyannote[35].end 1075.25534375
transcript.pyannote[36].speaker SPEAKER_05
transcript.pyannote[36].start 1075.81221875
transcript.pyannote[36].end 1078.41096875
transcript.pyannote[37].speaker SPEAKER_05
transcript.pyannote[37].start 1121.98221875
transcript.pyannote[37].end 1123.46721875
transcript.pyannote[38].speaker SPEAKER_05
transcript.pyannote[38].start 1124.02409375
transcript.pyannote[38].end 1126.72409375
transcript.pyannote[39].speaker SPEAKER_05
transcript.pyannote[39].start 1126.97721875
transcript.pyannote[39].end 1129.32284375
transcript.pyannote[40].speaker SPEAKER_05
transcript.pyannote[40].start 1129.89659375
transcript.pyannote[40].end 1136.32596875
transcript.pyannote[41].speaker SPEAKER_05
transcript.pyannote[41].start 1136.89971875
transcript.pyannote[41].end 1141.50659375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 3499.60221875
transcript.pyannote[42].end 3500.80034375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 3502.15034375
transcript.pyannote[43].end 3533.30159375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 3534.22971875
transcript.pyannote[44].end 3539.79846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 3540.59159375
transcript.pyannote[45].end 3543.46034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 3544.28721875
transcript.pyannote[46].end 3558.83346875
transcript.pyannote[47].speaker SPEAKER_08
transcript.pyannote[47].start 3559.60971875
transcript.pyannote[47].end 3559.76159375
transcript.pyannote[48].speaker SPEAKER_06
transcript.pyannote[48].start 3561.33096875
transcript.pyannote[48].end 3561.34784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 3561.34784375
transcript.pyannote[49].end 3561.36471875
transcript.pyannote[50].speaker SPEAKER_06
transcript.pyannote[50].start 3561.36471875
transcript.pyannote[50].end 3572.65409375
transcript.pyannote[51].speaker SPEAKER_06
transcript.pyannote[51].start 3572.80596875
transcript.pyannote[51].end 3576.04596875
transcript.pyannote[52].speaker SPEAKER_06
transcript.pyannote[52].start 3576.34971875
transcript.pyannote[52].end 3608.26034375
transcript.pyannote[53].speaker SPEAKER_06
transcript.pyannote[53].start 3608.47971875
transcript.pyannote[53].end 3615.55034375
transcript.pyannote[54].speaker SPEAKER_06
transcript.pyannote[54].start 3615.93846875
transcript.pyannote[54].end 3618.65534375
transcript.pyannote[55].speaker SPEAKER_06
transcript.pyannote[55].start 3619.21221875
transcript.pyannote[55].end 3638.26409375
transcript.pyannote[56].speaker SPEAKER_06
transcript.pyannote[56].start 3638.29784375
transcript.pyannote[56].end 3648.65909375
transcript.pyannote[57].speaker SPEAKER_06
transcript.pyannote[57].start 3649.57034375
transcript.pyannote[57].end 3650.90346875
transcript.pyannote[58].speaker SPEAKER_06
transcript.pyannote[58].start 3651.34221875
transcript.pyannote[58].end 3674.71409375
transcript.pyannote[59].speaker SPEAKER_06
transcript.pyannote[59].start 3675.10221875
transcript.pyannote[59].end 3683.75909375
transcript.pyannote[60].speaker SPEAKER_06
transcript.pyannote[60].start 3684.02909375
transcript.pyannote[60].end 3717.81284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 3717.81284375
transcript.pyannote[61].end 3717.88034375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 3717.96471875
transcript.pyannote[62].end 3718.04909375
transcript.pyannote[63].speaker SPEAKER_06
transcript.pyannote[63].start 3718.04909375
transcript.pyannote[63].end 3719.02784375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 3719.02784375
transcript.pyannote[64].end 3720.78284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 3721.23846875
transcript.pyannote[65].end 3754.56659375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 3754.81971875
transcript.pyannote[66].end 3792.67034375
transcript.pyannote[67].speaker SPEAKER_05
transcript.pyannote[67].start 3812.19471875
transcript.pyannote[67].end 3821.91471875
transcript.pyannote[68].speaker SPEAKER_05
transcript.pyannote[68].start 3822.31971875
transcript.pyannote[68].end 3832.36034375
transcript.pyannote[69].speaker SPEAKER_05
transcript.pyannote[69].start 3832.76534375
transcript.pyannote[69].end 3865.60409375
transcript.pyannote[70].speaker SPEAKER_05
transcript.pyannote[70].start 3865.89096875
transcript.pyannote[70].end 3920.02596875
transcript.pyannote[71].speaker SPEAKER_05
transcript.pyannote[71].start 3920.07659375
transcript.pyannote[71].end 3923.83971875
transcript.pyannote[72].speaker SPEAKER_05
transcript.pyannote[72].start 3925.93221875
transcript.pyannote[72].end 3926.65784375
transcript.pyannote[73].speaker SPEAKER_09
transcript.pyannote[73].start 3927.82221875
transcript.pyannote[73].end 3927.83909375
transcript.pyannote[74].speaker SPEAKER_05
transcript.pyannote[74].start 3927.83909375
transcript.pyannote[74].end 3929.25659375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 3929.25659375
transcript.pyannote[75].end 3929.34096875
transcript.pyannote[76].speaker SPEAKER_05
transcript.pyannote[76].start 3942.33471875
transcript.pyannote[76].end 3969.13221875
transcript.pyannote[77].speaker SPEAKER_05
transcript.pyannote[77].start 3969.58784375
transcript.pyannote[77].end 3987.08721875
transcript.pyannote[78].speaker SPEAKER_05
transcript.pyannote[78].start 3987.64409375
transcript.pyannote[78].end 4035.97409375
transcript.pyannote[79].speaker SPEAKER_05
transcript.pyannote[79].start 4037.67846875
transcript.pyannote[79].end 4040.88471875
transcript.pyannote[80].speaker SPEAKER_05
transcript.pyannote[80].start 4041.99846875
transcript.pyannote[80].end 4100.21721875
transcript.pyannote[81].speaker SPEAKER_05
transcript.pyannote[81].start 4101.06096875
transcript.pyannote[81].end 4102.74846875
transcript.pyannote[82].speaker SPEAKER_05
transcript.pyannote[82].start 4105.07721875
transcript.pyannote[82].end 4106.52846875
transcript.pyannote[83].speaker SPEAKER_05
transcript.pyannote[83].start 4106.93346875
transcript.pyannote[83].end 4122.54284375
transcript.pyannote[84].speaker SPEAKER_05
transcript.pyannote[84].start 4122.79596875
transcript.pyannote[84].end 4124.53409375
transcript.pyannote[85].speaker SPEAKER_05
transcript.pyannote[85].start 4124.88846875
transcript.pyannote[85].end 4140.64971875
transcript.pyannote[86].speaker SPEAKER_05
transcript.pyannote[86].start 4140.91971875
transcript.pyannote[86].end 4178.02784375
transcript.pyannote[87].speaker SPEAKER_05
transcript.pyannote[87].start 4178.87159375
transcript.pyannote[87].end 4182.97221875
transcript.pyannote[88].speaker SPEAKER_05
transcript.pyannote[88].start 4183.41096875
transcript.pyannote[88].end 4194.59909375
transcript.pyannote[89].speaker SPEAKER_05
transcript.pyannote[89].start 4195.07159375
transcript.pyannote[89].end 4210.41096875
transcript.pyannote[90].speaker SPEAKER_05
transcript.pyannote[90].start 4210.96784375
transcript.pyannote[90].end 4215.40596875
transcript.pyannote[91].speaker SPEAKER_05
transcript.pyannote[91].start 4216.03034375
transcript.pyannote[91].end 4220.70471875
transcript.pyannote[92].speaker SPEAKER_05
transcript.pyannote[92].start 4220.83971875
transcript.pyannote[92].end 4235.79096875
transcript.pyannote[93].speaker SPEAKER_05
transcript.pyannote[93].start 4236.06096875
transcript.pyannote[93].end 4250.80971875
transcript.pyannote[94].speaker SPEAKER_05
transcript.pyannote[94].start 4251.70409375
transcript.pyannote[94].end 4257.39096875
transcript.pyannote[95].speaker SPEAKER_05
transcript.pyannote[95].start 4258.38659375
transcript.pyannote[95].end 4262.18346875
transcript.pyannote[96].speaker SPEAKER_05
transcript.pyannote[96].start 4262.52096875
transcript.pyannote[96].end 4264.15784375
transcript.pyannote[97].speaker SPEAKER_05
transcript.pyannote[97].start 4265.27159375
transcript.pyannote[97].end 4266.90846875
transcript.pyannote[98].speaker SPEAKER_05
transcript.pyannote[98].start 4268.78159375
transcript.pyannote[98].end 4269.03471875
transcript.pyannote[99].speaker SPEAKER_05
transcript.pyannote[99].start 4269.76034375
transcript.pyannote[99].end 4294.61721875
transcript.pyannote[100].speaker SPEAKER_05
transcript.pyannote[100].start 4295.15721875
transcript.pyannote[100].end 4308.38721875
transcript.pyannote[101].speaker SPEAKER_05
transcript.pyannote[101].start 4309.01159375
transcript.pyannote[101].end 4309.92284375
transcript.pyannote[102].speaker SPEAKER_05
transcript.pyannote[102].start 4310.47971875
transcript.pyannote[102].end 4319.76096875
transcript.pyannote[103].speaker SPEAKER_05
transcript.pyannote[103].start 4320.11534375
transcript.pyannote[103].end 4324.65471875
transcript.pyannote[104].speaker SPEAKER_05
transcript.pyannote[104].start 4325.22846875
transcript.pyannote[104].end 4326.12284375
transcript.pyannote[105].speaker SPEAKER_05
transcript.pyannote[105].start 4326.67971875
transcript.pyannote[105].end 4330.27409375
transcript.pyannote[106].speaker SPEAKER_05
transcript.pyannote[106].start 4331.43846875
transcript.pyannote[106].end 4332.90659375
transcript.pyannote[107].speaker SPEAKER_05
transcript.pyannote[107].start 4333.15971875
transcript.pyannote[107].end 4333.61534375
transcript.pyannote[108].speaker SPEAKER_05
transcript.pyannote[108].start 4334.37471875
transcript.pyannote[108].end 4346.94659375
transcript.pyannote[109].speaker SPEAKER_05
transcript.pyannote[109].start 4346.98034375
transcript.pyannote[109].end 4380.57846875
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 4380.93284375
transcript.pyannote[110].end 4386.58596875
transcript.pyannote[111].speaker SPEAKER_05
transcript.pyannote[111].start 4387.98659375
transcript.pyannote[111].end 4391.46284375
transcript.pyannote[112].speaker SPEAKER_05
transcript.pyannote[112].start 4393.04909375
transcript.pyannote[112].end 4393.69034375
transcript.pyannote[113].speaker SPEAKER_05
transcript.pyannote[113].start 4394.48346875
transcript.pyannote[113].end 4401.03096875
transcript.pyannote[114].speaker SPEAKER_05
transcript.pyannote[114].start 4401.75659375
transcript.pyannote[114].end 4407.94971875
transcript.pyannote[115].speaker SPEAKER_05
transcript.pyannote[115].start 4408.54034375
transcript.pyannote[115].end 4410.90284375
transcript.pyannote[116].speaker SPEAKER_05
transcript.pyannote[116].start 4411.40909375
transcript.pyannote[116].end 4411.98284375
transcript.pyannote[117].speaker SPEAKER_05
transcript.pyannote[117].start 4412.33721875
transcript.pyannote[117].end 4416.55596875
transcript.pyannote[118].speaker SPEAKER_05
transcript.pyannote[118].start 4417.04534375
transcript.pyannote[118].end 4417.88909375
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 4418.22659375
transcript.pyannote[119].end 4425.68534375
transcript.pyannote[120].speaker SPEAKER_05
transcript.pyannote[120].start 4426.07346875
transcript.pyannote[120].end 4428.70596875
transcript.pyannote[121].speaker SPEAKER_05
transcript.pyannote[121].start 4429.09409375
transcript.pyannote[121].end 4443.52221875
transcript.pyannote[122].speaker SPEAKER_05
transcript.pyannote[122].start 4444.88909375
transcript.pyannote[122].end 4452.58409375
transcript.pyannote[123].speaker SPEAKER_05
transcript.pyannote[123].start 4453.66409375
transcript.pyannote[123].end 4454.69346875
transcript.pyannote[124].speaker SPEAKER_05
transcript.pyannote[124].start 4455.40221875
transcript.pyannote[124].end 4458.50721875
transcript.pyannote[125].speaker SPEAKER_05
transcript.pyannote[125].start 4458.91221875
transcript.pyannote[125].end 4460.76846875
transcript.pyannote[126].speaker SPEAKER_05
transcript.pyannote[126].start 4461.40971875
transcript.pyannote[126].end 4462.70909375
transcript.pyannote[127].speaker SPEAKER_05
transcript.pyannote[127].start 4463.90721875
transcript.pyannote[127].end 4468.81784375
transcript.pyannote[128].speaker SPEAKER_05
transcript.pyannote[128].start 4469.05409375
transcript.pyannote[128].end 4475.68596875
transcript.pyannote[129].speaker SPEAKER_05
transcript.pyannote[129].start 4476.09096875
transcript.pyannote[129].end 4497.82596875
transcript.pyannote[130].speaker SPEAKER_05
transcript.pyannote[130].start 4498.39971875
transcript.pyannote[130].end 4499.29409375
transcript.pyannote[131].speaker SPEAKER_05
transcript.pyannote[131].start 4499.81721875
transcript.pyannote[131].end 4501.74096875
transcript.pyannote[132].speaker SPEAKER_05
transcript.pyannote[132].start 4501.79159375
transcript.pyannote[132].end 4511.51159375
transcript.pyannote[133].speaker SPEAKER_05
transcript.pyannote[133].start 4512.05159375
transcript.pyannote[133].end 4513.73909375
transcript.pyannote[134].speaker SPEAKER_05
transcript.pyannote[134].start 4513.84034375
transcript.pyannote[134].end 4516.84409375
transcript.pyannote[135].speaker SPEAKER_05
transcript.pyannote[135].start 4517.24909375
transcript.pyannote[135].end 4519.12221875
transcript.pyannote[136].speaker SPEAKER_05
transcript.pyannote[136].start 4519.71284375
transcript.pyannote[136].end 4521.99096875
transcript.pyannote[137].speaker SPEAKER_05
transcript.pyannote[137].start 4522.54784375
transcript.pyannote[137].end 4524.62346875
transcript.pyannote[138].speaker SPEAKER_05
transcript.pyannote[138].start 4524.82596875
transcript.pyannote[138].end 4547.03346875
transcript.pyannote[139].speaker SPEAKER_05
transcript.pyannote[139].start 4547.47221875
transcript.pyannote[139].end 4551.80909375
transcript.pyannote[140].speaker SPEAKER_05
transcript.pyannote[140].start 4552.50096875
transcript.pyannote[140].end 4553.81721875
transcript.pyannote[141].speaker SPEAKER_05
transcript.pyannote[141].start 4554.27284375
transcript.pyannote[141].end 4564.24596875
transcript.pyannote[142].speaker SPEAKER_05
transcript.pyannote[142].start 4564.46534375
transcript.pyannote[142].end 4572.88596875
transcript.pyannote[143].speaker SPEAKER_05
transcript.pyannote[143].start 4573.64534375
transcript.pyannote[143].end 4588.34346875
transcript.pyannote[144].speaker SPEAKER_05
transcript.pyannote[144].start 4588.49534375
transcript.pyannote[144].end 4589.33909375
transcript.pyannote[145].speaker SPEAKER_05
transcript.pyannote[145].start 4589.79471875
transcript.pyannote[145].end 4591.17846875
transcript.pyannote[146].speaker SPEAKER_05
transcript.pyannote[146].start 4591.71846875
transcript.pyannote[146].end 4596.46034375
transcript.pyannote[147].speaker SPEAKER_05
transcript.pyannote[147].start 4597.06784375
transcript.pyannote[147].end 4612.39034375
transcript.pyannote[148].speaker SPEAKER_05
transcript.pyannote[148].start 4613.36909375
transcript.pyannote[148].end 4626.32909375
transcript.pyannote[149].speaker SPEAKER_05
transcript.pyannote[149].start 4626.70034375
transcript.pyannote[149].end 4663.25159375
transcript.pyannote[150].speaker SPEAKER_05
transcript.pyannote[150].start 4663.85909375
transcript.pyannote[150].end 4665.78284375
transcript.pyannote[151].speaker SPEAKER_05
transcript.pyannote[151].start 4667.47034375
transcript.pyannote[151].end 4675.72221875
transcript.pyannote[152].speaker SPEAKER_05
transcript.pyannote[152].start 4676.04284375
transcript.pyannote[152].end 4683.26534375
transcript.pyannote[153].speaker SPEAKER_05
transcript.pyannote[153].start 4683.72096875
transcript.pyannote[153].end 4733.01284375
transcript.pyannote[154].speaker SPEAKER_05
transcript.pyannote[154].start 4733.45159375
transcript.pyannote[154].end 4750.00596875
transcript.pyannote[155].speaker SPEAKER_05
transcript.pyannote[155].start 4750.51221875
transcript.pyannote[155].end 4756.11471875
transcript.pyannote[156].speaker SPEAKER_05
transcript.pyannote[156].start 4756.31721875
transcript.pyannote[156].end 4774.22159375
transcript.pyannote[157].speaker SPEAKER_05
transcript.pyannote[157].start 4774.91346875
transcript.pyannote[157].end 4781.79846875
transcript.pyannote[158].speaker SPEAKER_05
transcript.pyannote[158].start 4782.01784375
transcript.pyannote[158].end 4783.97534375
transcript.pyannote[159].speaker SPEAKER_05
transcript.pyannote[159].start 4784.44784375
transcript.pyannote[159].end 4787.11409375
transcript.pyannote[160].speaker SPEAKER_05
transcript.pyannote[160].start 4788.05909375
transcript.pyannote[160].end 4789.08846875
transcript.pyannote[161].speaker SPEAKER_05
transcript.pyannote[161].start 4789.79721875
transcript.pyannote[161].end 4791.29909375
transcript.pyannote[162].speaker SPEAKER_05
transcript.pyannote[162].start 4791.31596875
transcript.pyannote[162].end 4795.38284375
transcript.pyannote[163].speaker SPEAKER_05
transcript.pyannote[163].start 4795.92284375
transcript.pyannote[163].end 4797.81284375
transcript.pyannote[164].speaker SPEAKER_05
transcript.pyannote[164].start 4798.08284375
transcript.pyannote[164].end 4798.67346875
transcript.pyannote[165].speaker SPEAKER_05
transcript.pyannote[165].start 4799.31471875
transcript.pyannote[165].end 4800.76596875
transcript.pyannote[166].speaker SPEAKER_05
transcript.pyannote[166].start 4800.98534375
transcript.pyannote[166].end 4802.57159375
transcript.pyannote[167].speaker SPEAKER_05
transcript.pyannote[167].start 4802.99346875
transcript.pyannote[167].end 4804.63034375
transcript.pyannote[168].speaker SPEAKER_05
transcript.pyannote[168].start 4805.08596875
transcript.pyannote[168].end 4810.58721875
transcript.pyannote[169].speaker SPEAKER_05
transcript.pyannote[169].start 4811.00909375
transcript.pyannote[169].end 4811.51534375
transcript.pyannote[170].speaker SPEAKER_05
transcript.pyannote[170].start 4812.10596875
transcript.pyannote[170].end 4814.51909375
transcript.pyannote[171].speaker SPEAKER_05
transcript.pyannote[171].start 4814.99159375
transcript.pyannote[171].end 4818.21471875
transcript.pyannote[172].speaker SPEAKER_05
transcript.pyannote[172].start 4819.19346875
transcript.pyannote[172].end 4820.84721875
transcript.pyannote[173].speaker SPEAKER_05
transcript.pyannote[173].start 4821.69096875
transcript.pyannote[173].end 4834.39784375
transcript.pyannote[174].speaker SPEAKER_05
transcript.pyannote[174].start 4835.12346875
transcript.pyannote[174].end 4838.61659375
transcript.pyannote[175].speaker SPEAKER_05
transcript.pyannote[175].start 4839.69659375
transcript.pyannote[175].end 4845.56909375
transcript.pyannote[176].speaker SPEAKER_05
transcript.pyannote[176].start 4846.19346875
transcript.pyannote[176].end 4850.20971875
transcript.pyannote[177].speaker SPEAKER_05
transcript.pyannote[177].start 4850.88471875
transcript.pyannote[177].end 4860.40221875
transcript.pyannote[178].speaker SPEAKER_05
transcript.pyannote[178].start 4861.16159375
transcript.pyannote[178].end 4875.79221875
transcript.pyannote[179].speaker SPEAKER_05
transcript.pyannote[179].start 4877.26034375
transcript.pyannote[179].end 4882.98096875
transcript.pyannote[180].speaker SPEAKER_05
transcript.pyannote[180].start 4883.55471875
transcript.pyannote[180].end 4891.13159375
transcript.pyannote[181].speaker SPEAKER_05
transcript.pyannote[181].start 4891.24971875
transcript.pyannote[181].end 4893.86534375
transcript.pyannote[182].speaker SPEAKER_05
transcript.pyannote[182].start 4894.43909375
transcript.pyannote[182].end 4899.99096875
transcript.pyannote[183].speaker SPEAKER_05
transcript.pyannote[183].start 4900.48034375
transcript.pyannote[183].end 4902.04971875
transcript.pyannote[184].speaker SPEAKER_05
transcript.pyannote[184].start 4902.62346875
transcript.pyannote[184].end 4903.16346875
transcript.pyannote[185].speaker SPEAKER_05
transcript.pyannote[185].start 4903.36596875
transcript.pyannote[185].end 4904.26034375
transcript.pyannote[186].speaker SPEAKER_05
transcript.pyannote[186].start 4904.51346875
transcript.pyannote[186].end 4910.41971875
transcript.pyannote[187].speaker SPEAKER_05
transcript.pyannote[187].start 4910.99346875
transcript.pyannote[187].end 4918.28346875
transcript.pyannote[188].speaker SPEAKER_05
transcript.pyannote[188].start 4919.21159375
transcript.pyannote[188].end 4919.61659375
transcript.pyannote[189].speaker SPEAKER_05
transcript.pyannote[189].start 4919.85284375
transcript.pyannote[189].end 4929.92721875
transcript.pyannote[190].speaker SPEAKER_05
transcript.pyannote[190].start 4930.43346875
transcript.pyannote[190].end 4948.99596875
transcript.pyannote[191].speaker SPEAKER_05
transcript.pyannote[191].start 4949.53596875
transcript.pyannote[191].end 4954.53096875
transcript.pyannote[192].speaker SPEAKER_05
transcript.pyannote[192].start 4954.83471875
transcript.pyannote[192].end 4956.04971875
transcript.pyannote[193].speaker SPEAKER_05
transcript.pyannote[193].start 4956.10034375
transcript.pyannote[193].end 4974.24096875
transcript.pyannote[194].speaker SPEAKER_05
transcript.pyannote[194].start 4974.46034375
transcript.pyannote[194].end 4980.68721875
transcript.pyannote[195].speaker SPEAKER_05
transcript.pyannote[195].start 4981.15971875
transcript.pyannote[195].end 4991.33534375
transcript.pyannote[196].speaker SPEAKER_05
transcript.pyannote[196].start 4991.74034375
transcript.pyannote[196].end 4997.79846875
transcript.pyannote[197].speaker SPEAKER_05
transcript.pyannote[197].start 4998.42284375
transcript.pyannote[197].end 4999.43534375
transcript.pyannote[198].speaker SPEAKER_05
transcript.pyannote[198].start 5000.48159375
transcript.pyannote[198].end 5001.25784375
transcript.pyannote[199].speaker SPEAKER_05
transcript.pyannote[199].start 5002.10159375
transcript.pyannote[199].end 5004.22784375
transcript.pyannote[200].speaker SPEAKER_05
transcript.pyannote[200].start 5005.52721875
transcript.pyannote[200].end 5016.93471875
transcript.pyannote[201].speaker SPEAKER_05
transcript.pyannote[201].start 5017.39034375
transcript.pyannote[201].end 5022.73971875
transcript.pyannote[202].speaker SPEAKER_05
transcript.pyannote[202].start 5023.39784375
transcript.pyannote[202].end 5029.50659375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 5029.08471875
transcript.pyannote[203].end 5031.22784375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 5031.53159375
transcript.pyannote[204].end 5036.22284375
transcript.pyannote[205].speaker SPEAKER_05
transcript.pyannote[205].start 5037.67409375
transcript.pyannote[205].end 5037.70784375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 5037.70784375
transcript.pyannote[206].end 5038.02846875
transcript.pyannote[207].speaker SPEAKER_05
transcript.pyannote[207].start 5038.02846875
transcript.pyannote[207].end 5038.16346875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 5038.16346875
transcript.pyannote[208].end 5038.19721875
transcript.pyannote[209].speaker SPEAKER_05
transcript.pyannote[209].start 5038.19721875
transcript.pyannote[209].end 5041.75784375
transcript.pyannote[210].speaker SPEAKER_05
transcript.pyannote[210].start 5043.32721875
transcript.pyannote[210].end 5079.00096875
transcript.pyannote[211].speaker SPEAKER_05
transcript.pyannote[211].start 5081.16096875
transcript.pyannote[211].end 5085.29534375
transcript.pyannote[212].speaker SPEAKER_05
transcript.pyannote[212].start 5085.76784375
transcript.pyannote[212].end 5088.72096875
transcript.pyannote[213].speaker SPEAKER_05
transcript.pyannote[213].start 5089.32846875
transcript.pyannote[213].end 5099.77409375
transcript.pyannote[214].speaker SPEAKER_05
transcript.pyannote[214].start 5100.65159375
transcript.pyannote[214].end 5105.93346875
transcript.pyannote[215].speaker SPEAKER_05
transcript.pyannote[215].start 5106.91221875
transcript.pyannote[215].end 5110.60784375
transcript.pyannote[216].speaker SPEAKER_05
transcript.pyannote[216].start 5111.72159375
transcript.pyannote[216].end 5125.84596875
transcript.pyannote[217].speaker SPEAKER_05
transcript.pyannote[217].start 5125.87971875
transcript.pyannote[217].end 5130.36846875
transcript.pyannote[218].speaker SPEAKER_05
transcript.pyannote[218].start 5130.45284375
transcript.pyannote[218].end 5147.39534375
transcript.pyannote[219].speaker SPEAKER_05
transcript.pyannote[219].start 5147.95221875
transcript.pyannote[219].end 5154.07784375
transcript.pyannote[220].speaker SPEAKER_05
transcript.pyannote[220].start 5155.39409375
transcript.pyannote[220].end 5168.72534375
transcript.pyannote[221].speaker SPEAKER_05
transcript.pyannote[221].start 5169.01221875
transcript.pyannote[221].end 5173.12971875
transcript.pyannote[222].speaker SPEAKER_05
transcript.pyannote[222].start 5173.68659375
transcript.pyannote[222].end 5178.47909375
transcript.pyannote[223].speaker SPEAKER_05
transcript.pyannote[223].start 5178.85034375
transcript.pyannote[223].end 5179.96409375
transcript.pyannote[224].speaker SPEAKER_05
transcript.pyannote[224].start 5180.82471875
transcript.pyannote[224].end 5206.20471875
transcript.pyannote[225].speaker SPEAKER_09
transcript.pyannote[225].start 5201.26034375
transcript.pyannote[225].end 5201.58096875
transcript.pyannote[226].speaker SPEAKER_05
transcript.pyannote[226].start 5206.72784375
transcript.pyannote[226].end 5208.02721875
transcript.pyannote[227].speaker SPEAKER_05
transcript.pyannote[227].start 5208.26346875
transcript.pyannote[227].end 5212.33034375
transcript.pyannote[228].speaker SPEAKER_05
transcript.pyannote[228].start 5212.70159375
transcript.pyannote[228].end 5214.47346875
transcript.pyannote[229].speaker SPEAKER_05
transcript.pyannote[229].start 5215.70534375
transcript.pyannote[229].end 5216.54909375
transcript.pyannote[230].speaker SPEAKER_05
transcript.pyannote[230].start 5216.71784375
transcript.pyannote[230].end 5217.64596875
transcript.pyannote[231].speaker SPEAKER_05
transcript.pyannote[231].start 5218.38846875
transcript.pyannote[231].end 5240.12346875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 5232.42846875
transcript.pyannote[232].end 5232.44534375
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 5232.44534375
transcript.pyannote[233].end 5232.46221875
transcript.pyannote[234].speaker SPEAKER_08
transcript.pyannote[234].start 5232.46221875
transcript.pyannote[234].end 5233.22159375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 5233.22159375
transcript.pyannote[235].end 5233.27221875
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 5233.27221875
transcript.pyannote[236].end 5233.33971875
transcript.pyannote[237].speaker SPEAKER_08
transcript.pyannote[237].start 5233.98096875
transcript.pyannote[237].end 5234.68971875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 5240.12346875
transcript.pyannote[238].end 5240.56221875
transcript.pyannote[239].speaker SPEAKER_05
transcript.pyannote[239].start 5240.56221875
transcript.pyannote[239].end 5281.58534375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 5245.48971875
transcript.pyannote[240].end 5245.77659375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 5246.02971875
transcript.pyannote[241].end 5246.04659375
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 5247.19409375
transcript.pyannote[242].end 5247.21096875
transcript.pyannote[243].speaker SPEAKER_04
transcript.pyannote[243].start 5247.21096875
transcript.pyannote[243].end 5247.97034375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 5247.97034375
transcript.pyannote[244].end 5249.45534375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 5249.99534375
transcript.pyannote[245].end 5259.02346875
transcript.pyannote[246].speaker SPEAKER_08
transcript.pyannote[246].start 5259.02346875
transcript.pyannote[246].end 5267.03909375
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 5267.03909375
transcript.pyannote[247].end 5268.52409375
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 5270.92034375
transcript.pyannote[248].end 5270.98784375
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 5271.39284375
transcript.pyannote[249].end 5272.55721875
transcript.pyannote[250].speaker SPEAKER_05
transcript.pyannote[250].start 5282.26034375
transcript.pyannote[250].end 5283.28971875
transcript.pyannote[251].speaker SPEAKER_05
transcript.pyannote[251].start 5283.55971875
transcript.pyannote[251].end 5285.36534375
transcript.pyannote[252].speaker SPEAKER_05
transcript.pyannote[252].start 5285.73659375
transcript.pyannote[252].end 5287.22159375
transcript.pyannote[253].speaker SPEAKER_05
transcript.pyannote[253].start 5287.93034375
transcript.pyannote[253].end 5289.55034375
transcript.pyannote[254].speaker SPEAKER_05
transcript.pyannote[254].start 5289.73596875
transcript.pyannote[254].end 5290.12409375
transcript.pyannote[255].speaker SPEAKER_05
transcript.pyannote[255].start 5290.88346875
transcript.pyannote[255].end 5308.09596875
transcript.pyannote[256].speaker SPEAKER_05
transcript.pyannote[256].start 5309.10846875
transcript.pyannote[256].end 5310.17159375
transcript.pyannote[257].speaker SPEAKER_05
transcript.pyannote[257].start 5310.62721875
transcript.pyannote[257].end 5329.02096875
transcript.pyannote[258].speaker SPEAKER_05
transcript.pyannote[258].start 5329.54409375
transcript.pyannote[258].end 5331.19784375
transcript.pyannote[259].speaker SPEAKER_05
transcript.pyannote[259].start 5331.92346875
transcript.pyannote[259].end 5333.45909375
transcript.pyannote[260].speaker SPEAKER_05
transcript.pyannote[260].start 5334.13409375
transcript.pyannote[260].end 5335.56846875
transcript.pyannote[261].speaker SPEAKER_05
transcript.pyannote[261].start 5335.65284375
transcript.pyannote[261].end 5356.24034375
transcript.pyannote[262].speaker SPEAKER_05
transcript.pyannote[262].start 5356.79721875
transcript.pyannote[262].end 5363.69909375
transcript.pyannote[263].speaker SPEAKER_05
transcript.pyannote[263].start 5364.54284375
transcript.pyannote[263].end 5366.41596875
transcript.pyannote[264].speaker SPEAKER_05
transcript.pyannote[264].start 5366.75346875
transcript.pyannote[264].end 5386.56471875
transcript.pyannote[265].speaker SPEAKER_05
transcript.pyannote[265].start 5386.96971875
transcript.pyannote[265].end 5391.28971875
transcript.pyannote[266].speaker SPEAKER_05
transcript.pyannote[266].start 5391.64409375
transcript.pyannote[266].end 5392.85909375
transcript.pyannote[267].speaker SPEAKER_05
transcript.pyannote[267].start 5393.43284375
transcript.pyannote[267].end 5394.71534375
transcript.pyannote[268].speaker SPEAKER_05
transcript.pyannote[268].start 5395.05284375
transcript.pyannote[268].end 5395.91346875
transcript.pyannote[269].speaker SPEAKER_05
transcript.pyannote[269].start 5397.17909375
transcript.pyannote[269].end 5404.48596875
transcript.pyannote[270].speaker SPEAKER_05
transcript.pyannote[270].start 5404.70534375
transcript.pyannote[270].end 5406.56159375
transcript.pyannote[271].speaker SPEAKER_05
transcript.pyannote[271].start 5407.23659375
transcript.pyannote[271].end 5412.85596875
transcript.pyannote[272].speaker SPEAKER_05
transcript.pyannote[272].start 5413.02471875
transcript.pyannote[272].end 5422.89659375
transcript.pyannote[273].speaker SPEAKER_05
transcript.pyannote[273].start 5422.99784375
transcript.pyannote[273].end 5433.15659375
transcript.pyannote[274].speaker SPEAKER_05
transcript.pyannote[274].start 5433.74721875
transcript.pyannote[274].end 5435.09721875
transcript.pyannote[275].speaker SPEAKER_05
transcript.pyannote[275].start 5436.54846875
transcript.pyannote[275].end 5444.02409375
transcript.pyannote[276].speaker SPEAKER_10
transcript.pyannote[276].start 5438.53971875
transcript.pyannote[276].end 5438.57346875
transcript.pyannote[277].speaker SPEAKER_06
transcript.pyannote[277].start 5438.57346875
transcript.pyannote[277].end 5440.02471875
transcript.pyannote[278].speaker SPEAKER_04
transcript.pyannote[278].start 5440.02471875
transcript.pyannote[278].end 5443.38284375
transcript.pyannote[279].speaker SPEAKER_03
transcript.pyannote[279].start 5444.02409375
transcript.pyannote[279].end 5444.17596875
transcript.pyannote[280].speaker SPEAKER_04
transcript.pyannote[280].start 5444.17596875
transcript.pyannote[280].end 5444.73284375
transcript.pyannote[281].speaker SPEAKER_05
transcript.pyannote[281].start 5444.19284375
transcript.pyannote[281].end 5444.74971875
transcript.pyannote[282].speaker SPEAKER_03
transcript.pyannote[282].start 5444.74971875
transcript.pyannote[282].end 5444.95221875
transcript.pyannote[283].speaker SPEAKER_05
transcript.pyannote[283].start 5444.95221875
transcript.pyannote[283].end 5444.96909375
transcript.pyannote[284].speaker SPEAKER_03
transcript.pyannote[284].start 5444.96909375
transcript.pyannote[284].end 5455.80284375
transcript.pyannote[285].speaker SPEAKER_04
transcript.pyannote[285].start 5447.97284375
transcript.pyannote[285].end 5448.64784375
transcript.pyannote[286].speaker SPEAKER_05
transcript.pyannote[286].start 5455.00971875
transcript.pyannote[286].end 5458.53659375
transcript.pyannote[287].speaker SPEAKER_05
transcript.pyannote[287].start 5459.07659375
transcript.pyannote[287].end 5459.83596875
transcript.pyannote[288].speaker SPEAKER_05
transcript.pyannote[288].start 5460.40971875
transcript.pyannote[288].end 5466.34971875
transcript.pyannote[289].speaker SPEAKER_05
transcript.pyannote[289].start 5466.78846875
transcript.pyannote[289].end 5484.45659375
transcript.pyannote[290].speaker SPEAKER_05
transcript.pyannote[290].start 5484.89534375
transcript.pyannote[290].end 5487.17346875
transcript.pyannote[291].speaker SPEAKER_01
transcript.pyannote[291].start 5488.92846875
transcript.pyannote[291].end 5491.61159375
transcript.pyannote[292].speaker SPEAKER_01
transcript.pyannote[292].start 5492.08409375
transcript.pyannote[292].end 5500.03221875
transcript.pyannote[293].speaker SPEAKER_05
transcript.pyannote[293].start 5493.24846875
transcript.pyannote[293].end 5495.96534375
transcript.pyannote[294].speaker SPEAKER_08
transcript.pyannote[294].start 5495.96534375
transcript.pyannote[294].end 5496.45471875
transcript.pyannote[295].speaker SPEAKER_03
transcript.pyannote[295].start 5496.45471875
transcript.pyannote[295].end 5498.31096875
transcript.pyannote[296].speaker SPEAKER_05
transcript.pyannote[296].start 5498.31096875
transcript.pyannote[296].end 5499.12096875
transcript.pyannote[297].speaker SPEAKER_08
transcript.pyannote[297].start 5499.12096875
transcript.pyannote[297].end 5499.27284375
transcript.pyannote[298].speaker SPEAKER_08
transcript.pyannote[298].start 5499.32346875
transcript.pyannote[298].end 5499.34034375
transcript.pyannote[299].speaker SPEAKER_03
transcript.pyannote[299].start 5501.70284375
transcript.pyannote[299].end 5504.52096875
transcript.pyannote[300].speaker SPEAKER_03
transcript.pyannote[300].start 5504.89221875
transcript.pyannote[300].end 5506.76534375
transcript.pyannote[301].speaker SPEAKER_01
transcript.pyannote[301].start 5508.73971875
transcript.pyannote[301].end 5514.71346875
transcript.pyannote[302].speaker SPEAKER_05
transcript.pyannote[302].start 5512.72221875
transcript.pyannote[302].end 5515.38846875
transcript.pyannote[303].speaker SPEAKER_05
transcript.pyannote[303].start 5515.60784375
transcript.pyannote[303].end 5519.38784375
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 5520.26534375
transcript.pyannote[304].end 5532.49971875
transcript.pyannote[305].speaker SPEAKER_05
transcript.pyannote[305].start 5533.05659375
transcript.pyannote[305].end 5546.40471875
transcript.pyannote[306].speaker SPEAKER_05
transcript.pyannote[306].start 5547.45096875
transcript.pyannote[306].end 5561.96346875
transcript.pyannote[307].speaker SPEAKER_09
transcript.pyannote[307].start 5561.96346875
transcript.pyannote[307].end 5562.40221875
transcript.pyannote[308].speaker SPEAKER_05
transcript.pyannote[308].start 5562.40221875
transcript.pyannote[308].end 5566.51971875
transcript.pyannote[309].speaker SPEAKER_05
transcript.pyannote[309].start 5566.87409375
transcript.pyannote[309].end 5574.24846875
transcript.pyannote[310].speaker SPEAKER_05
transcript.pyannote[310].start 5574.29909375
transcript.pyannote[310].end 5574.34971875
transcript.pyannote[311].speaker SPEAKER_05
transcript.pyannote[311].start 5574.36659375
transcript.pyannote[311].end 5575.12596875
transcript.pyannote[312].speaker SPEAKER_05
transcript.pyannote[312].start 5575.61534375
transcript.pyannote[312].end 5577.82596875
transcript.pyannote[313].speaker SPEAKER_05
transcript.pyannote[313].start 5577.97784375
transcript.pyannote[313].end 5582.55096875
transcript.pyannote[314].speaker SPEAKER_04
transcript.pyannote[314].start 5578.06221875
transcript.pyannote[314].end 5578.77096875
transcript.pyannote[315].speaker SPEAKER_09
transcript.pyannote[315].start 5579.74971875
transcript.pyannote[315].end 5579.96909375
transcript.pyannote[316].speaker SPEAKER_05
transcript.pyannote[316].start 5582.88846875
transcript.pyannote[316].end 5585.01471875
transcript.pyannote[317].speaker SPEAKER_09
transcript.pyannote[317].start 5585.01471875
transcript.pyannote[317].end 5585.03159375
transcript.pyannote[318].speaker SPEAKER_05
transcript.pyannote[318].start 5585.28471875
transcript.pyannote[318].end 5600.69159375
transcript.pyannote[319].speaker SPEAKER_09
transcript.pyannote[319].start 5589.70596875
transcript.pyannote[319].end 5589.92534375
transcript.pyannote[320].speaker SPEAKER_09
transcript.pyannote[320].start 5590.06034375
transcript.pyannote[320].end 5590.95471875
transcript.pyannote[321].speaker SPEAKER_00
transcript.pyannote[321].start 5596.03409375
transcript.pyannote[321].end 5596.11846875
transcript.pyannote[322].speaker SPEAKER_04
transcript.pyannote[322].start 5596.11846875
transcript.pyannote[322].end 5596.72596875
transcript.pyannote[323].speaker SPEAKER_00
transcript.pyannote[323].start 5596.72596875
transcript.pyannote[323].end 5596.75971875
transcript.pyannote[324].speaker SPEAKER_00
transcript.pyannote[324].start 5597.82284375
transcript.pyannote[324].end 5597.87346875
transcript.pyannote[325].speaker SPEAKER_04
transcript.pyannote[325].start 5597.87346875
transcript.pyannote[325].end 5598.81846875
transcript.pyannote[326].speaker SPEAKER_00
transcript.pyannote[326].start 5598.81846875
transcript.pyannote[326].end 5598.90284375
transcript.pyannote[327].speaker SPEAKER_04
transcript.pyannote[327].start 5598.90284375
transcript.pyannote[327].end 5599.18971875
transcript.pyannote[328].speaker SPEAKER_00
transcript.pyannote[328].start 5599.18971875
transcript.pyannote[328].end 5599.40909375
transcript.pyannote[329].speaker SPEAKER_04
transcript.pyannote[329].start 5599.40909375
transcript.pyannote[329].end 5600.10096875
transcript.pyannote[330].speaker SPEAKER_04
transcript.pyannote[330].start 5600.69159375
transcript.pyannote[330].end 5600.82659375
transcript.pyannote[331].speaker SPEAKER_05
transcript.pyannote[331].start 5600.82659375
transcript.pyannote[331].end 5607.76221875
transcript.pyannote[332].speaker SPEAKER_05
transcript.pyannote[332].start 5608.25159375
transcript.pyannote[332].end 5609.55096875
transcript.pyannote[333].speaker SPEAKER_05
transcript.pyannote[333].start 5610.56346875
transcript.pyannote[333].end 5632.48409375
transcript.pyannote[334].speaker SPEAKER_05
transcript.pyannote[334].start 5633.59784375
transcript.pyannote[334].end 5637.74909375
transcript.pyannote[335].speaker SPEAKER_05
transcript.pyannote[335].start 5638.22159375
transcript.pyannote[335].end 5638.94721875
transcript.pyannote[336].speaker SPEAKER_05
transcript.pyannote[336].start 5639.16659375
transcript.pyannote[336].end 5640.38159375
transcript.pyannote[337].speaker SPEAKER_05
transcript.pyannote[337].start 5640.55034375
transcript.pyannote[337].end 5652.36284375
transcript.pyannote[338].speaker SPEAKER_05
transcript.pyannote[338].start 5652.85221875
transcript.pyannote[338].end 5663.82096875
transcript.pyannote[339].speaker SPEAKER_05
transcript.pyannote[339].start 5664.36096875
transcript.pyannote[339].end 5677.13534375
transcript.pyannote[340].speaker SPEAKER_05
transcript.pyannote[340].start 5677.65846875
transcript.pyannote[340].end 5679.24471875
transcript.pyannote[341].speaker SPEAKER_05
transcript.pyannote[341].start 5679.27846875
transcript.pyannote[341].end 5687.83409375
transcript.pyannote[342].speaker SPEAKER_05
transcript.pyannote[342].start 5687.96909375
transcript.pyannote[342].end 5694.65159375
transcript.pyannote[343].speaker SPEAKER_05
transcript.pyannote[343].start 5695.15784375
transcript.pyannote[343].end 5699.51159375
transcript.pyannote[344].speaker SPEAKER_05
transcript.pyannote[344].start 5699.79846875
transcript.pyannote[344].end 5701.24971875
transcript.pyannote[345].speaker SPEAKER_05
transcript.pyannote[345].start 5701.80659375
transcript.pyannote[345].end 5702.53221875
transcript.pyannote[346].speaker SPEAKER_05
transcript.pyannote[346].start 5702.93721875
transcript.pyannote[346].end 5706.02534375
transcript.pyannote[347].speaker SPEAKER_05
transcript.pyannote[347].start 5706.31221875
transcript.pyannote[347].end 5709.01221875
transcript.pyannote[348].speaker SPEAKER_05
transcript.pyannote[348].start 5709.95721875
transcript.pyannote[348].end 5710.54784375
transcript.pyannote[349].speaker SPEAKER_05
transcript.pyannote[349].start 5710.83471875
transcript.pyannote[349].end 5712.94409375
transcript.pyannote[350].speaker SPEAKER_05
transcript.pyannote[350].start 5713.11284375
transcript.pyannote[350].end 5716.31909375
transcript.pyannote[351].speaker SPEAKER_05
transcript.pyannote[351].start 5716.45409375
transcript.pyannote[351].end 5729.00909375
transcript.pyannote[352].speaker SPEAKER_05
transcript.pyannote[352].start 5729.66721875
transcript.pyannote[352].end 5730.81471875
transcript.pyannote[353].speaker SPEAKER_05
transcript.pyannote[353].start 5731.20284375
transcript.pyannote[353].end 5732.29971875
transcript.pyannote[354].speaker SPEAKER_05
transcript.pyannote[354].start 5733.02534375
transcript.pyannote[354].end 5735.21909375
transcript.pyannote[355].speaker SPEAKER_05
transcript.pyannote[355].start 5735.67471875
transcript.pyannote[355].end 5745.56346875
transcript.pyannote[356].speaker SPEAKER_05
transcript.pyannote[356].start 5745.93471875
transcript.pyannote[356].end 5748.09471875
transcript.pyannote[357].speaker SPEAKER_05
transcript.pyannote[357].start 5748.75284375
transcript.pyannote[357].end 5749.76534375
transcript.pyannote[358].speaker SPEAKER_05
transcript.pyannote[358].start 5750.27159375
transcript.pyannote[358].end 5752.11096875
transcript.pyannote[359].speaker SPEAKER_05
transcript.pyannote[359].start 5752.24596875
transcript.pyannote[359].end 5754.03471875
transcript.pyannote[360].speaker SPEAKER_08
transcript.pyannote[360].start 5752.83659375
transcript.pyannote[360].end 5753.00534375
transcript.pyannote[361].speaker SPEAKER_05
transcript.pyannote[361].start 5754.16971875
transcript.pyannote[361].end 5755.19909375
transcript.pyannote[362].speaker SPEAKER_05
transcript.pyannote[362].start 5757.40971875
transcript.pyannote[362].end 5761.37534375
transcript.pyannote[363].speaker SPEAKER_05
transcript.pyannote[363].start 5761.56096875
transcript.pyannote[363].end 5765.40846875
transcript.pyannote[364].speaker SPEAKER_05
transcript.pyannote[364].start 5765.79659375
transcript.pyannote[364].end 5785.65846875
transcript.pyannote[365].speaker SPEAKER_05
transcript.pyannote[365].start 5786.58659375
transcript.pyannote[365].end 5787.71721875
transcript.pyannote[366].speaker SPEAKER_05
transcript.pyannote[366].start 5788.54409375
transcript.pyannote[366].end 5789.25284375
transcript.pyannote[367].speaker SPEAKER_05
transcript.pyannote[367].start 5790.02909375
transcript.pyannote[367].end 5790.83909375
transcript.pyannote[368].speaker SPEAKER_05
transcript.pyannote[368].start 5791.98659375
transcript.pyannote[368].end 5792.64471875
transcript.pyannote[369].speaker SPEAKER_05
transcript.pyannote[369].start 5793.11721875
transcript.pyannote[369].end 5794.16346875
transcript.pyannote[370].speaker SPEAKER_05
transcript.pyannote[370].start 5794.55159375
transcript.pyannote[370].end 5795.86784375
transcript.pyannote[371].speaker SPEAKER_05
transcript.pyannote[371].start 5797.20096875
transcript.pyannote[371].end 5801.01471875
transcript.pyannote[372].speaker SPEAKER_05
transcript.pyannote[372].start 5801.90909375
transcript.pyannote[372].end 5802.26346875
transcript.pyannote[373].speaker SPEAKER_05
transcript.pyannote[373].start 5802.44909375
transcript.pyannote[373].end 5808.84471875
transcript.pyannote[374].speaker SPEAKER_05
transcript.pyannote[374].start 5809.09784375
transcript.pyannote[374].end 5844.13034375
transcript.pyannote[375].speaker SPEAKER_05
transcript.pyannote[375].start 5844.41721875
transcript.pyannote[375].end 5845.22721875
transcript.pyannote[376].speaker SPEAKER_05
transcript.pyannote[376].start 5845.36221875
transcript.pyannote[376].end 5861.71409375
transcript.pyannote[377].speaker SPEAKER_05
transcript.pyannote[377].start 5861.76471875
transcript.pyannote[377].end 5876.17596875
transcript.pyannote[378].speaker SPEAKER_05
transcript.pyannote[378].start 5876.59784375
transcript.pyannote[378].end 5878.70721875
transcript.pyannote[379].speaker SPEAKER_05
transcript.pyannote[379].start 5879.07846875
transcript.pyannote[379].end 5882.03159375
transcript.pyannote[380].speaker SPEAKER_05
transcript.pyannote[380].start 5882.23409375
transcript.pyannote[380].end 5883.71909375
transcript.pyannote[381].speaker SPEAKER_05
transcript.pyannote[381].start 5884.25909375
transcript.pyannote[381].end 5889.81096875
transcript.pyannote[382].speaker SPEAKER_05
transcript.pyannote[382].start 5890.18221875
transcript.pyannote[382].end 5902.43346875
transcript.pyannote[383].speaker SPEAKER_05
transcript.pyannote[383].start 5902.70346875
transcript.pyannote[383].end 5922.54846875
transcript.pyannote[384].speaker SPEAKER_05
transcript.pyannote[384].start 5922.78471875
transcript.pyannote[384].end 5943.45659375
transcript.pyannote[385].speaker SPEAKER_05
transcript.pyannote[385].start 5943.87846875
transcript.pyannote[385].end 5973.71346875
transcript.pyannote[386].speaker SPEAKER_05
transcript.pyannote[386].start 5973.98346875
transcript.pyannote[386].end 6001.94534375
transcript.pyannote[387].speaker SPEAKER_05
transcript.pyannote[387].start 6002.75534375
transcript.pyannote[387].end 6005.43846875
transcript.pyannote[388].speaker SPEAKER_03
transcript.pyannote[388].start 6005.06721875
transcript.pyannote[388].end 6005.42159375
transcript.pyannote[389].speaker SPEAKER_03
transcript.pyannote[389].start 6005.43846875
transcript.pyannote[389].end 6005.74221875
transcript.pyannote[390].speaker SPEAKER_05
transcript.pyannote[390].start 6005.74221875
transcript.pyannote[390].end 6005.75909375
transcript.pyannote[391].speaker SPEAKER_05
transcript.pyannote[391].start 6005.92784375
transcript.pyannote[391].end 6064.68659375
transcript.pyannote[392].speaker SPEAKER_05
transcript.pyannote[392].start 6065.76659375
transcript.pyannote[392].end 6067.75784375
transcript.pyannote[393].speaker SPEAKER_05
transcript.pyannote[393].start 6068.14596875
transcript.pyannote[393].end 6075.23346875
transcript.pyannote[394].speaker SPEAKER_05
transcript.pyannote[394].start 6075.53721875
transcript.pyannote[394].end 6076.56659375
transcript.pyannote[395].speaker SPEAKER_05
transcript.pyannote[395].start 6076.80284375
transcript.pyannote[395].end 6082.16909375
transcript.pyannote[396].speaker SPEAKER_05
transcript.pyannote[396].start 6082.86096875
transcript.pyannote[396].end 6084.51471875
transcript.pyannote[397].speaker SPEAKER_05
transcript.pyannote[397].start 6085.57784375
transcript.pyannote[397].end 6086.91096875
transcript.pyannote[398].speaker SPEAKER_05
transcript.pyannote[398].start 6087.50159375
transcript.pyannote[398].end 6087.82221875
transcript.pyannote[399].speaker SPEAKER_05
transcript.pyannote[399].start 6088.32846875
transcript.pyannote[399].end 6090.15096875
transcript.pyannote[400].speaker SPEAKER_05
transcript.pyannote[400].start 6090.47159375
transcript.pyannote[400].end 6091.29846875
transcript.pyannote[401].speaker SPEAKER_05
transcript.pyannote[401].start 6091.65284375
transcript.pyannote[401].end 6092.19284375
transcript.pyannote[402].speaker SPEAKER_05
transcript.pyannote[402].start 6093.12096875
transcript.pyannote[402].end 6094.28534375
transcript.pyannote[403].speaker SPEAKER_05
transcript.pyannote[403].start 6094.43721875
transcript.pyannote[403].end 6094.94346875
transcript.pyannote[404].speaker SPEAKER_03
transcript.pyannote[404].start 6101.37284375
transcript.pyannote[404].end 6104.22471875
transcript.pyannote[405].speaker SPEAKER_05
transcript.pyannote[405].start 6115.24409375
transcript.pyannote[405].end 6118.28159375
transcript.pyannote[406].speaker SPEAKER_05
transcript.pyannote[406].start 6119.47971875
transcript.pyannote[406].end 6152.48721875
transcript.pyannote[407].speaker SPEAKER_05
transcript.pyannote[407].start 6153.38159375
transcript.pyannote[407].end 6153.88784375
transcript.pyannote[408].speaker SPEAKER_05
transcript.pyannote[408].start 6155.57534375
transcript.pyannote[408].end 6161.68409375
transcript.pyannote[409].speaker SPEAKER_05
transcript.pyannote[409].start 6164.23221875
transcript.pyannote[409].end 6173.85096875
transcript.pyannote[410].speaker SPEAKER_05
transcript.pyannote[410].start 6175.23471875
transcript.pyannote[410].end 6175.84221875
transcript.pyannote[411].speaker SPEAKER_05
transcript.pyannote[411].start 6176.77034375
transcript.pyannote[411].end 6179.03159375
transcript.pyannote[412].speaker SPEAKER_07
transcript.pyannote[412].start 6179.03159375
transcript.pyannote[412].end 6190.75971875
transcript.pyannote[413].speaker SPEAKER_05
transcript.pyannote[413].start 6181.56284375
transcript.pyannote[413].end 6182.79471875
transcript.pyannote[414].speaker SPEAKER_06
transcript.pyannote[414].start 6182.79471875
transcript.pyannote[414].end 6182.82846875
transcript.pyannote[415].speaker SPEAKER_05
transcript.pyannote[415].start 6182.82846875
transcript.pyannote[415].end 6182.86221875
transcript.pyannote[416].speaker SPEAKER_06
transcript.pyannote[416].start 6187.13159375
transcript.pyannote[416].end 6193.02096875
transcript.pyannote[417].speaker SPEAKER_05
transcript.pyannote[417].start 6190.75971875
transcript.pyannote[417].end 6190.77659375
transcript.pyannote[418].speaker SPEAKER_05
transcript.pyannote[418].start 6193.00409375
transcript.pyannote[418].end 6196.86846875
transcript.pyannote[419].speaker SPEAKER_07
transcript.pyannote[419].start 6193.02096875
transcript.pyannote[419].end 6196.88534375
transcript.pyannote[420].speaker SPEAKER_05
transcript.pyannote[420].start 6196.88534375
transcript.pyannote[420].end 6196.90221875
transcript.pyannote[421].speaker SPEAKER_07
transcript.pyannote[421].start 6196.90221875
transcript.pyannote[421].end 6196.93596875
transcript.pyannote[422].speaker SPEAKER_05
transcript.pyannote[422].start 6197.54346875
transcript.pyannote[422].end 6197.59409375
transcript.pyannote[423].speaker SPEAKER_07
transcript.pyannote[423].start 6197.59409375
transcript.pyannote[423].end 6198.57284375
transcript.pyannote[424].speaker SPEAKER_05
transcript.pyannote[424].start 6198.57284375
transcript.pyannote[424].end 6198.85971875
transcript.pyannote[425].speaker SPEAKER_07
transcript.pyannote[425].start 6198.85971875
transcript.pyannote[425].end 6199.82159375
transcript.pyannote[426].speaker SPEAKER_05
transcript.pyannote[426].start 6199.82159375
transcript.pyannote[426].end 6199.83846875
transcript.pyannote[427].speaker SPEAKER_07
transcript.pyannote[427].start 6200.86784375
transcript.pyannote[427].end 6218.01284375
transcript.pyannote[428].speaker SPEAKER_03
transcript.pyannote[428].start 6207.01034375
transcript.pyannote[428].end 6207.04409375
transcript.pyannote[429].speaker SPEAKER_05
transcript.pyannote[429].start 6207.04409375
transcript.pyannote[429].end 6208.02284375
transcript.pyannote[430].speaker SPEAKER_04
transcript.pyannote[430].start 6208.02284375
transcript.pyannote[430].end 6210.65534375
transcript.pyannote[431].speaker SPEAKER_04
transcript.pyannote[431].start 6213.15284375
transcript.pyannote[431].end 6215.73471875
transcript.pyannote[432].speaker SPEAKER_07
transcript.pyannote[432].start 6218.23221875
transcript.pyannote[432].end 6221.94471875
transcript.pyannote[433].speaker SPEAKER_05
transcript.pyannote[433].start 6219.27846875
transcript.pyannote[433].end 6219.29534375
transcript.pyannote[434].speaker SPEAKER_04
transcript.pyannote[434].start 6219.29534375
transcript.pyannote[434].end 6220.59471875
transcript.pyannote[435].speaker SPEAKER_05
transcript.pyannote[435].start 6220.59471875
transcript.pyannote[435].end 6220.66221875
transcript.pyannote[436].speaker SPEAKER_07
transcript.pyannote[436].start 6223.29471875
transcript.pyannote[436].end 6232.47471875
transcript.pyannote[437].speaker SPEAKER_00
transcript.pyannote[437].start 6227.00721875
transcript.pyannote[437].end 6227.02409375
transcript.pyannote[438].speaker SPEAKER_05
transcript.pyannote[438].start 6227.02409375
transcript.pyannote[438].end 6227.96909375
transcript.pyannote[439].speaker SPEAKER_00
transcript.pyannote[439].start 6227.96909375
transcript.pyannote[439].end 6228.03659375
transcript.pyannote[440].speaker SPEAKER_05
transcript.pyannote[440].start 6228.03659375
transcript.pyannote[440].end 6229.31909375
transcript.pyannote[441].speaker SPEAKER_05
transcript.pyannote[441].start 6230.55096875
transcript.pyannote[441].end 6230.60159375
transcript.pyannote[442].speaker SPEAKER_05
transcript.pyannote[442].start 6230.80409375
transcript.pyannote[442].end 6232.05284375
transcript.pyannote[443].speaker SPEAKER_05
transcript.pyannote[443].start 6232.47471875
transcript.pyannote[443].end 6232.74471875
transcript.pyannote[444].speaker SPEAKER_07
transcript.pyannote[444].start 6232.74471875
transcript.pyannote[444].end 6232.96409375
transcript.pyannote[445].speaker SPEAKER_05
transcript.pyannote[445].start 6232.96409375
transcript.pyannote[445].end 6233.47034375
transcript.pyannote[446].speaker SPEAKER_07
transcript.pyannote[446].start 6233.47034375
transcript.pyannote[446].end 6233.72346875
transcript.pyannote[447].speaker SPEAKER_05
transcript.pyannote[447].start 6233.72346875
transcript.pyannote[447].end 6239.03909375
transcript.pyannote[448].speaker SPEAKER_07
transcript.pyannote[448].start 6239.03909375
transcript.pyannote[448].end 6249.18096875
transcript.pyannote[449].speaker SPEAKER_05
transcript.pyannote[449].start 6240.20346875
transcript.pyannote[449].end 6240.30471875
transcript.pyannote[450].speaker SPEAKER_04
transcript.pyannote[450].start 6243.17346875
transcript.pyannote[450].end 6243.19034375
transcript.pyannote[451].speaker SPEAKER_05
transcript.pyannote[451].start 6243.19034375
transcript.pyannote[451].end 6243.32534375
transcript.pyannote[452].speaker SPEAKER_04
transcript.pyannote[452].start 6243.32534375
transcript.pyannote[452].end 6243.59534375
transcript.pyannote[453].speaker SPEAKER_05
transcript.pyannote[453].start 6244.28721875
transcript.pyannote[453].end 6245.97471875
transcript.pyannote[454].speaker SPEAKER_04
transcript.pyannote[454].start 6245.97471875
transcript.pyannote[454].end 6247.94909375
transcript.pyannote[455].speaker SPEAKER_04
transcript.pyannote[455].start 6248.40471875
transcript.pyannote[455].end 6262.96784375
transcript.pyannote[456].speaker SPEAKER_05
transcript.pyannote[456].start 6249.18096875
transcript.pyannote[456].end 6249.24846875
transcript.pyannote[457].speaker SPEAKER_05
transcript.pyannote[457].start 6250.61534375
transcript.pyannote[457].end 6250.93596875
transcript.pyannote[458].speaker SPEAKER_07
transcript.pyannote[458].start 6252.50534375
transcript.pyannote[458].end 6252.60659375
transcript.pyannote[459].speaker SPEAKER_07
transcript.pyannote[459].start 6252.92721875
transcript.pyannote[459].end 6253.55159375
transcript.pyannote[460].speaker SPEAKER_10
transcript.pyannote[460].start 6253.55159375
transcript.pyannote[460].end 6253.65284375
transcript.pyannote[461].speaker SPEAKER_05
transcript.pyannote[461].start 6262.96784375
transcript.pyannote[461].end 6271.27034375
transcript.pyannote[462].speaker SPEAKER_05
transcript.pyannote[462].start 6271.40534375
transcript.pyannote[462].end 6274.54409375
transcript.pyannote[463].speaker SPEAKER_05
transcript.pyannote[463].start 6276.19784375
transcript.pyannote[463].end 6277.61534375
transcript.pyannote[464].speaker SPEAKER_05
transcript.pyannote[464].start 6278.08784375
transcript.pyannote[464].end 6278.72909375
transcript.pyannote[465].speaker SPEAKER_05
transcript.pyannote[465].start 6279.72471875
transcript.pyannote[465].end 6280.18034375
transcript.pyannote[466].speaker SPEAKER_05
transcript.pyannote[466].start 6283.09971875
transcript.pyannote[466].end 6283.52159375
transcript.pyannote[467].speaker SPEAKER_05
transcript.pyannote[467].start 6283.92659375
transcript.pyannote[467].end 6285.14159375
transcript.pyannote[468].speaker SPEAKER_00
transcript.pyannote[468].start 6283.99409375
transcript.pyannote[468].end 6284.39909375
transcript.pyannote[469].speaker SPEAKER_05
transcript.pyannote[469].start 6285.54659375
transcript.pyannote[469].end 6286.20471875
transcript.pyannote[470].speaker SPEAKER_05
transcript.pyannote[470].start 6286.82909375
transcript.pyannote[470].end 6289.66409375
transcript.pyannote[471].speaker SPEAKER_05
transcript.pyannote[471].start 6292.41471875
transcript.pyannote[471].end 6294.87846875
transcript.pyannote[472].speaker SPEAKER_05
transcript.pyannote[472].start 6296.71784375
transcript.pyannote[472].end 6298.23659375
transcript.pyannote[473].speaker SPEAKER_05
transcript.pyannote[473].start 6324.64596875
transcript.pyannote[473].end 6330.77159375
transcript.pyannote[474].speaker SPEAKER_05
transcript.pyannote[474].start 6331.37909375
transcript.pyannote[474].end 6335.90159375
transcript.pyannote[475].speaker SPEAKER_05
transcript.pyannote[475].start 6335.96909375
transcript.pyannote[475].end 6338.16284375
transcript.pyannote[476].speaker SPEAKER_05
transcript.pyannote[476].start 6338.36534375
transcript.pyannote[476].end 6341.90909375
transcript.pyannote[477].speaker SPEAKER_04
transcript.pyannote[477].start 6341.90909375
transcript.pyannote[477].end 6342.28034375
transcript.pyannote[478].speaker SPEAKER_05
transcript.pyannote[478].start 6342.28034375
transcript.pyannote[478].end 6343.46159375
transcript.pyannote[479].speaker SPEAKER_05
transcript.pyannote[479].start 6343.59659375
transcript.pyannote[479].end 6349.89096875
transcript.pyannote[480].speaker SPEAKER_05
transcript.pyannote[480].start 6350.81909375
transcript.pyannote[480].end 6352.72596875
transcript.pyannote[481].speaker SPEAKER_05
transcript.pyannote[481].start 6353.04659375
transcript.pyannote[481].end 6369.39846875
transcript.pyannote[482].speaker SPEAKER_05
transcript.pyannote[482].start 6369.51659375
transcript.pyannote[482].end 6375.97971875
transcript.pyannote[483].speaker SPEAKER_05
transcript.pyannote[483].start 6377.92034375
transcript.pyannote[483].end 6378.25784375
transcript.pyannote[484].speaker SPEAKER_05
transcript.pyannote[484].start 6379.20284375
transcript.pyannote[484].end 6379.67534375
transcript.pyannote[485].speaker SPEAKER_05
transcript.pyannote[485].start 6379.87784375
transcript.pyannote[485].end 6385.12596875
transcript.pyannote[486].speaker SPEAKER_05
transcript.pyannote[486].start 6385.31159375
transcript.pyannote[486].end 6390.64409375
transcript.pyannote[487].speaker SPEAKER_09
transcript.pyannote[487].start 6390.64409375
transcript.pyannote[487].end 6390.98159375
transcript.pyannote[488].speaker SPEAKER_05
transcript.pyannote[488].start 6391.13346875
transcript.pyannote[488].end 6395.63909375
transcript.pyannote[489].speaker SPEAKER_05
transcript.pyannote[489].start 6396.14534375
transcript.pyannote[489].end 6406.13534375
transcript.pyannote[490].speaker SPEAKER_05
transcript.pyannote[490].start 6406.48971875
transcript.pyannote[490].end 6412.63221875
transcript.pyannote[491].speaker SPEAKER_05
transcript.pyannote[491].start 6413.00346875
transcript.pyannote[491].end 6426.62159375
transcript.pyannote[492].speaker SPEAKER_05
transcript.pyannote[492].start 6426.97596875
transcript.pyannote[492].end 6427.63409375
transcript.pyannote[493].speaker SPEAKER_05
transcript.pyannote[493].start 6428.07284375
transcript.pyannote[493].end 6428.89971875
transcript.pyannote[494].speaker SPEAKER_05
transcript.pyannote[494].start 6428.91659375
transcript.pyannote[494].end 6429.42284375
transcript.pyannote[495].speaker SPEAKER_05
transcript.pyannote[495].start 6429.76034375
transcript.pyannote[495].end 6441.96096875
transcript.pyannote[496].speaker SPEAKER_05
transcript.pyannote[496].start 6442.07909375
transcript.pyannote[496].end 6455.00534375
transcript.pyannote[497].speaker SPEAKER_05
transcript.pyannote[497].start 6455.32596875
transcript.pyannote[497].end 6456.13596875
transcript.pyannote[498].speaker SPEAKER_05
transcript.pyannote[498].start 6456.54096875
transcript.pyannote[498].end 6460.52346875
transcript.pyannote[499].speaker SPEAKER_05
transcript.pyannote[499].start 6460.79346875
transcript.pyannote[499].end 6461.60346875
transcript.pyannote[500].speaker SPEAKER_05
transcript.pyannote[500].start 6461.89034375
transcript.pyannote[500].end 6462.19409375
transcript.pyannote[501].speaker SPEAKER_05
transcript.pyannote[501].start 6462.71721875
transcript.pyannote[501].end 6467.54346875
transcript.pyannote[502].speaker SPEAKER_05
transcript.pyannote[502].start 6467.72909375
transcript.pyannote[502].end 6469.56846875
transcript.pyannote[503].speaker SPEAKER_05
transcript.pyannote[503].start 6470.02409375
transcript.pyannote[503].end 6473.04471875
transcript.pyannote[504].speaker SPEAKER_05
transcript.pyannote[504].start 6473.56784375
transcript.pyannote[504].end 6481.09409375
transcript.pyannote[505].speaker SPEAKER_05
transcript.pyannote[505].start 6481.43159375
transcript.pyannote[505].end 6486.52784375
transcript.pyannote[506].speaker SPEAKER_05
transcript.pyannote[506].start 6487.08471875
transcript.pyannote[506].end 6519.87284375
transcript.pyannote[507].speaker SPEAKER_05
transcript.pyannote[507].start 6520.27784375
transcript.pyannote[507].end 6527.16284375
transcript.pyannote[508].speaker SPEAKER_05
transcript.pyannote[508].start 6527.61846875
transcript.pyannote[508].end 6530.53784375
transcript.pyannote[509].speaker SPEAKER_05
transcript.pyannote[509].start 6531.04409375
transcript.pyannote[509].end 6532.00596875
transcript.pyannote[510].speaker SPEAKER_05
transcript.pyannote[510].start 6532.25909375
transcript.pyannote[510].end 6533.01846875
transcript.pyannote[511].speaker SPEAKER_05
transcript.pyannote[511].start 6533.38971875
transcript.pyannote[511].end 6542.99159375
transcript.pyannote[512].speaker SPEAKER_05
transcript.pyannote[512].start 6543.44721875
transcript.pyannote[512].end 6544.86471875
transcript.pyannote[513].speaker SPEAKER_05
transcript.pyannote[513].start 6545.23596875
transcript.pyannote[513].end 6549.15096875
transcript.pyannote[514].speaker SPEAKER_05
transcript.pyannote[514].start 6549.60659375
transcript.pyannote[514].end 6550.07909375
transcript.pyannote[515].speaker SPEAKER_05
transcript.pyannote[515].start 6551.07471875
transcript.pyannote[515].end 6552.42471875
transcript.pyannote[516].speaker SPEAKER_05
transcript.pyannote[516].start 6553.11659375
transcript.pyannote[516].end 6553.92659375
transcript.pyannote[517].speaker SPEAKER_05
transcript.pyannote[517].start 6555.78284375
transcript.pyannote[517].end 6558.66846875
transcript.pyannote[518].speaker SPEAKER_05
transcript.pyannote[518].start 6559.17471875
transcript.pyannote[518].end 6561.67221875
transcript.pyannote[519].speaker SPEAKER_05
transcript.pyannote[519].start 6562.97159375
transcript.pyannote[519].end 6568.23659375
transcript.pyannote[520].speaker SPEAKER_05
transcript.pyannote[520].start 6568.32096875
transcript.pyannote[520].end 6583.15409375
transcript.pyannote[521].speaker SPEAKER_05
transcript.pyannote[521].start 6583.76159375
transcript.pyannote[521].end 6585.70221875
transcript.pyannote[522].speaker SPEAKER_05
transcript.pyannote[522].start 6585.95534375
transcript.pyannote[522].end 6590.12346875
transcript.pyannote[523].speaker SPEAKER_05
transcript.pyannote[523].start 6590.79846875
transcript.pyannote[523].end 6595.45596875
transcript.pyannote[524].speaker SPEAKER_05
transcript.pyannote[524].start 6595.91159375
transcript.pyannote[524].end 6601.93596875
transcript.pyannote[525].speaker SPEAKER_05
transcript.pyannote[525].start 6602.40846875
transcript.pyannote[525].end 6604.39971875
transcript.pyannote[526].speaker SPEAKER_05
transcript.pyannote[526].start 6604.77096875
transcript.pyannote[526].end 6605.73284375
transcript.pyannote[527].speaker SPEAKER_05
transcript.pyannote[527].start 6606.40784375
transcript.pyannote[527].end 6607.28534375
transcript.pyannote[528].speaker SPEAKER_05
transcript.pyannote[528].start 6607.72409375
transcript.pyannote[528].end 6610.37346875
transcript.pyannote[529].speaker SPEAKER_05
transcript.pyannote[529].start 6610.98096875
transcript.pyannote[529].end 6611.26784375
transcript.pyannote[530].speaker SPEAKER_05
transcript.pyannote[530].start 6612.49971875
transcript.pyannote[530].end 6613.84971875
transcript.pyannote[531].speaker SPEAKER_05
transcript.pyannote[531].start 6613.95096875
transcript.pyannote[531].end 6614.60909375
transcript.pyannote[532].speaker SPEAKER_05
transcript.pyannote[532].start 6617.15721875
transcript.pyannote[532].end 6617.91659375
transcript.pyannote[533].speaker SPEAKER_05
transcript.pyannote[533].start 6622.06784375
transcript.pyannote[533].end 6631.09596875
transcript.pyannote[534].speaker SPEAKER_05
transcript.pyannote[534].start 6631.21409375
transcript.pyannote[534].end 6647.38034375
transcript.pyannote[535].speaker SPEAKER_05
transcript.pyannote[535].start 6647.92034375
transcript.pyannote[535].end 6648.40971875
transcript.pyannote[536].speaker SPEAKER_05
transcript.pyannote[536].start 6648.96659375
transcript.pyannote[536].end 6684.84284375
transcript.pyannote[537].speaker SPEAKER_05
transcript.pyannote[537].start 6685.75409375
transcript.pyannote[537].end 6691.57596875
transcript.pyannote[538].speaker SPEAKER_05
transcript.pyannote[538].start 6691.86284375
transcript.pyannote[538].end 6705.17721875
transcript.pyannote[539].speaker SPEAKER_05
transcript.pyannote[539].start 6705.97034375
transcript.pyannote[539].end 6707.72534375
transcript.pyannote[540].speaker SPEAKER_05
transcript.pyannote[540].start 6708.13034375
transcript.pyannote[540].end 6720.01034375
transcript.pyannote[541].speaker SPEAKER_05
transcript.pyannote[541].start 6720.38159375
transcript.pyannote[541].end 6747.24659375
transcript.pyannote[542].speaker SPEAKER_05
transcript.pyannote[542].start 6747.48284375
transcript.pyannote[542].end 6748.79909375
transcript.pyannote[543].speaker SPEAKER_05
transcript.pyannote[543].start 6749.23784375
transcript.pyannote[543].end 6750.41909375
transcript.pyannote[544].speaker SPEAKER_05
transcript.pyannote[544].start 6751.27971875
transcript.pyannote[544].end 6753.28784375
transcript.pyannote[545].speaker SPEAKER_05
transcript.pyannote[545].start 6754.09784375
transcript.pyannote[545].end 6754.72221875
transcript.pyannote[546].speaker SPEAKER_05
transcript.pyannote[546].start 6755.78534375
transcript.pyannote[546].end 6756.32534375
transcript.pyannote[547].speaker SPEAKER_05
transcript.pyannote[547].start 6757.64159375
transcript.pyannote[547].end 6759.27846875
transcript.pyannote[548].speaker SPEAKER_05
transcript.pyannote[548].start 6760.22346875
transcript.pyannote[548].end 6760.44284375
transcript.pyannote[549].speaker SPEAKER_05
transcript.pyannote[549].start 6760.96596875
transcript.pyannote[549].end 6774.41534375
transcript.pyannote[550].speaker SPEAKER_05
transcript.pyannote[550].start 6775.19159375
transcript.pyannote[550].end 6778.71846875
transcript.pyannote[551].speaker SPEAKER_05
transcript.pyannote[551].start 6780.27096875
transcript.pyannote[551].end 6780.79409375
transcript.pyannote[552].speaker SPEAKER_05
transcript.pyannote[552].start 6781.97534375
transcript.pyannote[552].end 6788.28659375
transcript.pyannote[553].speaker SPEAKER_05
transcript.pyannote[553].start 6788.86034375
transcript.pyannote[553].end 6793.07909375
transcript.pyannote[554].speaker SPEAKER_05
transcript.pyannote[554].start 6793.97346875
transcript.pyannote[554].end 6795.18846875
transcript.pyannote[555].speaker SPEAKER_05
transcript.pyannote[555].start 6795.57659375
transcript.pyannote[555].end 6797.97284375
transcript.pyannote[556].speaker SPEAKER_05
transcript.pyannote[556].start 6798.39471875
transcript.pyannote[556].end 6800.90909375
transcript.pyannote[557].speaker SPEAKER_05
transcript.pyannote[557].start 6801.95534375
transcript.pyannote[557].end 6802.69784375
transcript.pyannote[558].speaker SPEAKER_05
transcript.pyannote[558].start 6803.92971875
transcript.pyannote[558].end 6810.61221875
transcript.pyannote[559].speaker SPEAKER_05
transcript.pyannote[559].start 6812.19846875
transcript.pyannote[559].end 6816.06284375
transcript.pyannote[560].speaker SPEAKER_05
transcript.pyannote[560].start 6816.53534375
transcript.pyannote[560].end 6819.03284375
transcript.pyannote[561].speaker SPEAKER_05
transcript.pyannote[561].start 6819.43784375
transcript.pyannote[561].end 6828.93846875
transcript.pyannote[562].speaker SPEAKER_05
transcript.pyannote[562].start 6829.46159375
transcript.pyannote[562].end 6830.32221875
transcript.pyannote[563].speaker SPEAKER_05
transcript.pyannote[563].start 6830.49096875
transcript.pyannote[563].end 6834.10221875
transcript.pyannote[564].speaker SPEAKER_05
transcript.pyannote[564].start 6834.67596875
transcript.pyannote[564].end 6837.46034375
transcript.pyannote[565].speaker SPEAKER_05
transcript.pyannote[565].start 6837.88221875
transcript.pyannote[565].end 6839.23221875
transcript.pyannote[566].speaker SPEAKER_05
transcript.pyannote[566].start 6839.82284375
transcript.pyannote[566].end 6841.74659375
transcript.pyannote[567].speaker SPEAKER_05
transcript.pyannote[567].start 6842.55659375
transcript.pyannote[567].end 6845.10471875
transcript.pyannote[568].speaker SPEAKER_05
transcript.pyannote[568].start 6846.30284375
transcript.pyannote[568].end 6846.82596875
transcript.pyannote[569].speaker SPEAKER_05
transcript.pyannote[569].start 6846.92721875
transcript.pyannote[569].end 6847.56846875
transcript.pyannote[570].speaker SPEAKER_05
transcript.pyannote[570].start 6848.68221875
transcript.pyannote[570].end 6852.58034375
transcript.pyannote[571].speaker SPEAKER_05
transcript.pyannote[571].start 6853.57596875
transcript.pyannote[571].end 6856.42784375
transcript.pyannote[572].speaker SPEAKER_05
transcript.pyannote[572].start 6859.21221875
transcript.pyannote[572].end 6859.92096875
transcript.pyannote[573].speaker SPEAKER_05
transcript.pyannote[573].start 6860.52846875
transcript.pyannote[573].end 6861.20346875
transcript.pyannote[574].speaker SPEAKER_05
transcript.pyannote[574].start 6862.38471875
transcript.pyannote[574].end 6863.46471875
transcript.pyannote[575].speaker SPEAKER_05
transcript.pyannote[575].start 6864.05534375
transcript.pyannote[575].end 6865.01721875
transcript.pyannote[576].speaker SPEAKER_05
transcript.pyannote[576].start 6866.73846875
transcript.pyannote[576].end 6867.76784375
transcript.pyannote[577].speaker SPEAKER_05
transcript.pyannote[577].start 6870.45096875
transcript.pyannote[577].end 6872.45909375
transcript.pyannote[578].speaker SPEAKER_05
transcript.pyannote[578].start 6874.68659375
transcript.pyannote[578].end 6875.81721875
transcript.pyannote[579].speaker SPEAKER_05
transcript.pyannote[579].start 6877.50471875
transcript.pyannote[579].end 6879.41159375
transcript.pyannote[580].speaker SPEAKER_05
transcript.pyannote[580].start 6884.84534375
transcript.pyannote[580].end 6886.44846875
transcript.pyannote[581].speaker SPEAKER_05
transcript.pyannote[581].start 6888.37221875
transcript.pyannote[581].end 6890.78534375
transcript.pyannote[582].speaker SPEAKER_05
transcript.pyannote[582].start 6890.97096875
transcript.pyannote[582].end 6891.03846875
transcript.pyannote[583].speaker SPEAKER_05
transcript.pyannote[583].start 6891.13971875
transcript.pyannote[583].end 6892.06784375
transcript.pyannote[584].speaker SPEAKER_04
transcript.pyannote[584].start 6892.06784375
transcript.pyannote[584].end 6892.10159375
transcript.pyannote[585].speaker SPEAKER_04
transcript.pyannote[585].start 6893.68784375
transcript.pyannote[585].end 6893.70471875
transcript.pyannote[586].speaker SPEAKER_05
transcript.pyannote[586].start 6893.70471875
transcript.pyannote[586].end 6894.41346875
transcript.pyannote[587].speaker SPEAKER_05
transcript.pyannote[587].start 6895.32471875
transcript.pyannote[587].end 6896.15159375
transcript.pyannote[588].speaker SPEAKER_05
transcript.pyannote[588].start 6897.72096875
transcript.pyannote[588].end 6900.70784375
transcript.pyannote[589].speaker SPEAKER_05
transcript.pyannote[589].start 6902.00721875
transcript.pyannote[589].end 6907.98096875
transcript.pyannote[590].speaker SPEAKER_05
transcript.pyannote[590].start 6908.52096875
transcript.pyannote[590].end 6915.10221875
transcript.pyannote[591].speaker SPEAKER_05
transcript.pyannote[591].start 6915.40596875
transcript.pyannote[591].end 6917.17784375
transcript.pyannote[592].speaker SPEAKER_05
transcript.pyannote[592].start 6917.90346875
transcript.pyannote[592].end 6919.50659375
transcript.pyannote[593].speaker SPEAKER_05
transcript.pyannote[593].start 6919.77659375
transcript.pyannote[593].end 6920.33346875
transcript.pyannote[594].speaker SPEAKER_05
transcript.pyannote[594].start 6920.83971875
transcript.pyannote[594].end 6923.42159375
transcript.pyannote[595].speaker SPEAKER_05
transcript.pyannote[595].start 6923.82659375
transcript.pyannote[595].end 6938.64284375
transcript.pyannote[596].speaker SPEAKER_05
transcript.pyannote[596].start 6941.71409375
transcript.pyannote[596].end 6946.81034375
transcript.pyannote[597].speaker SPEAKER_05
transcript.pyannote[597].start 6949.02096875
transcript.pyannote[597].end 6951.58596875
transcript.pyannote[598].speaker SPEAKER_05
transcript.pyannote[598].start 6953.25659375
transcript.pyannote[598].end 6954.20159375
transcript.pyannote[599].speaker SPEAKER_05
transcript.pyannote[599].start 6960.71534375
transcript.pyannote[599].end 6961.86284375
transcript.pyannote[600].speaker SPEAKER_05
transcript.pyannote[600].start 6961.87971875
transcript.pyannote[600].end 6964.07346875
transcript.pyannote[601].speaker SPEAKER_05
transcript.pyannote[601].start 6965.27159375
transcript.pyannote[601].end 6966.67221875
transcript.pyannote[602].speaker SPEAKER_05
transcript.pyannote[602].start 6968.71409375
transcript.pyannote[602].end 6969.23721875
transcript.pyannote[603].speaker SPEAKER_05
transcript.pyannote[603].start 6972.22409375
transcript.pyannote[603].end 6972.86534375
transcript.pyannote[604].speaker SPEAKER_05
transcript.pyannote[604].start 6973.25346875
transcript.pyannote[604].end 6974.83971875
transcript.pyannote[605].speaker SPEAKER_05
transcript.pyannote[605].start 6975.22784375
transcript.pyannote[605].end 6976.56096875
transcript.pyannote[606].speaker SPEAKER_05
transcript.pyannote[606].start 6976.93221875
transcript.pyannote[606].end 6979.86846875
transcript.pyannote[607].speaker SPEAKER_05
transcript.pyannote[607].start 6980.88096875
transcript.pyannote[607].end 6982.19721875
transcript.pyannote[608].speaker SPEAKER_03
transcript.pyannote[608].start 6994.22909375
transcript.pyannote[608].end 6994.39784375
transcript.pyannote[609].speaker SPEAKER_05
transcript.pyannote[609].start 6994.39784375
transcript.pyannote[609].end 6994.68471875
transcript.pyannote[610].speaker SPEAKER_03
transcript.pyannote[610].start 6994.68471875
transcript.pyannote[610].end 6994.71846875
transcript.pyannote[611].speaker SPEAKER_05
transcript.pyannote[611].start 6998.11034375
transcript.pyannote[611].end 6999.62909375
transcript.pyannote[612].speaker SPEAKER_05
transcript.pyannote[612].start 6999.88221875
transcript.pyannote[612].end 7003.99971875
transcript.pyannote[613].speaker SPEAKER_05
transcript.pyannote[613].start 7006.02471875
transcript.pyannote[613].end 7007.03721875
transcript.pyannote[614].speaker SPEAKER_05
transcript.pyannote[614].start 7009.07909375
transcript.pyannote[614].end 7011.32346875
transcript.pyannote[615].speaker SPEAKER_05
transcript.pyannote[615].start 7011.96471875
transcript.pyannote[615].end 7014.56346875
transcript.pyannote[616].speaker SPEAKER_05
transcript.pyannote[616].start 7015.12034375
transcript.pyannote[616].end 7015.81221875
transcript.pyannote[617].speaker SPEAKER_05
transcript.pyannote[617].start 7017.61784375
transcript.pyannote[617].end 7018.52909375
transcript.pyannote[618].speaker SPEAKER_05
transcript.pyannote[618].start 7018.98471875
transcript.pyannote[618].end 7030.24034375
transcript.pyannote[619].speaker SPEAKER_05
transcript.pyannote[619].start 7031.18534375
transcript.pyannote[619].end 7032.07971875
transcript.pyannote[620].speaker SPEAKER_05
transcript.pyannote[620].start 7039.53846875
transcript.pyannote[620].end 7041.15846875
transcript.pyannote[621].speaker SPEAKER_04
transcript.pyannote[621].start 7040.09534375
transcript.pyannote[621].end 7040.24721875
transcript.pyannote[622].speaker SPEAKER_03
transcript.pyannote[622].start 7040.24721875
transcript.pyannote[622].end 7040.26409375
transcript.pyannote[623].speaker SPEAKER_05
transcript.pyannote[623].start 7042.25534375
transcript.pyannote[623].end 7042.69409375
transcript.pyannote[624].speaker SPEAKER_05
transcript.pyannote[624].start 7044.04409375
transcript.pyannote[624].end 7047.41909375
transcript.pyannote[625].speaker SPEAKER_05
transcript.pyannote[625].start 7047.77346875
transcript.pyannote[625].end 7049.89971875
transcript.pyannote[626].speaker SPEAKER_05
transcript.pyannote[626].start 7051.38471875
transcript.pyannote[626].end 7054.06784375
transcript.pyannote[627].speaker SPEAKER_05
transcript.pyannote[627].start 7054.40534375
transcript.pyannote[627].end 7057.24034375
transcript.pyannote[628].speaker SPEAKER_05
transcript.pyannote[628].start 7061.12159375
transcript.pyannote[628].end 7061.96534375
transcript.pyannote[629].speaker SPEAKER_09
transcript.pyannote[629].start 7061.96534375
transcript.pyannote[629].end 7062.03284375
transcript.pyannote[630].speaker SPEAKER_05
transcript.pyannote[630].start 7063.14659375
transcript.pyannote[630].end 7066.57221875
transcript.pyannote[631].speaker SPEAKER_05
transcript.pyannote[631].start 7067.98971875
transcript.pyannote[631].end 7086.19784375
transcript.pyannote[632].speaker SPEAKER_05
transcript.pyannote[632].start 7086.50159375
transcript.pyannote[632].end 7113.48471875
transcript.pyannote[633].speaker SPEAKER_05
transcript.pyannote[633].start 7113.85596875
transcript.pyannote[633].end 7116.43784375
transcript.pyannote[634].speaker SPEAKER_05
transcript.pyannote[634].start 7117.01159375
transcript.pyannote[634].end 7118.27721875
transcript.pyannote[635].speaker SPEAKER_05
transcript.pyannote[635].start 7118.81721875
transcript.pyannote[635].end 7119.72846875
transcript.pyannote[636].speaker SPEAKER_05
transcript.pyannote[636].start 7120.47096875
transcript.pyannote[636].end 7121.66909375
transcript.pyannote[637].speaker SPEAKER_05
transcript.pyannote[637].start 7122.05721875
transcript.pyannote[637].end 7122.59721875
transcript.pyannote[638].speaker SPEAKER_05
transcript.pyannote[638].start 7124.31846875
transcript.pyannote[638].end 7124.74034375
transcript.pyannote[639].speaker SPEAKER_05
transcript.pyannote[639].start 7126.15784375
transcript.pyannote[639].end 7134.03846875
transcript.pyannote[640].speaker SPEAKER_05
transcript.pyannote[640].start 7134.91596875
transcript.pyannote[640].end 7151.62221875
transcript.pyannote[641].speaker SPEAKER_05
transcript.pyannote[641].start 7152.28034375
transcript.pyannote[641].end 7154.08596875
transcript.pyannote[642].speaker SPEAKER_05
transcript.pyannote[642].start 7154.42346875
transcript.pyannote[642].end 7155.50346875
transcript.pyannote[643].speaker SPEAKER_05
transcript.pyannote[643].start 7155.79034375
transcript.pyannote[643].end 7157.27534375
transcript.pyannote[644].speaker SPEAKER_05
transcript.pyannote[644].start 7157.57909375
transcript.pyannote[644].end 7162.47284375
transcript.pyannote[645].speaker SPEAKER_05
transcript.pyannote[645].start 7163.41784375
transcript.pyannote[645].end 7174.01534375
transcript.pyannote[646].speaker SPEAKER_05
transcript.pyannote[646].start 7174.79159375
transcript.pyannote[646].end 7175.23034375
transcript.pyannote[647].speaker SPEAKER_05
transcript.pyannote[647].start 7175.88846875
transcript.pyannote[647].end 7176.44534375
transcript.pyannote[648].speaker SPEAKER_05
transcript.pyannote[648].start 7177.27221875
transcript.pyannote[648].end 7178.03159375
transcript.pyannote[649].speaker SPEAKER_05
transcript.pyannote[649].start 7179.56721875
transcript.pyannote[649].end 7180.15784375
transcript.pyannote[650].speaker SPEAKER_05
transcript.pyannote[650].start 7181.99721875
transcript.pyannote[650].end 7183.09409375
transcript.pyannote[651].speaker SPEAKER_05
transcript.pyannote[651].start 7184.02221875
transcript.pyannote[651].end 7191.32909375
transcript.pyannote[652].speaker SPEAKER_05
transcript.pyannote[652].start 7191.95346875
transcript.pyannote[652].end 7193.11784375
transcript.pyannote[653].speaker SPEAKER_05
transcript.pyannote[653].start 7193.50596875
transcript.pyannote[653].end 7198.72034375
transcript.pyannote[654].speaker SPEAKER_05
transcript.pyannote[654].start 7199.07471875
transcript.pyannote[654].end 7211.07284375
transcript.pyannote[655].speaker SPEAKER_05
transcript.pyannote[655].start 7211.59596875
transcript.pyannote[655].end 7211.98409375
transcript.pyannote[656].speaker SPEAKER_05
transcript.pyannote[656].start 7212.69284375
transcript.pyannote[656].end 7215.44346875
transcript.pyannote[657].speaker SPEAKER_05
transcript.pyannote[657].start 7218.44721875
transcript.pyannote[657].end 7220.13471875
transcript.pyannote[658].speaker SPEAKER_05
transcript.pyannote[658].start 7222.85159375
transcript.pyannote[658].end 7224.64034375
transcript.pyannote[659].speaker SPEAKER_05
transcript.pyannote[659].start 7226.96909375
transcript.pyannote[659].end 7229.90534375
transcript.pyannote[660].speaker SPEAKER_05
transcript.pyannote[660].start 7229.97284375
transcript.pyannote[660].end 7230.00659375
transcript.pyannote[661].speaker SPEAKER_05
transcript.pyannote[661].start 7230.05721875
transcript.pyannote[661].end 7235.03534375
transcript.pyannote[662].speaker SPEAKER_05
transcript.pyannote[662].start 7235.45721875
transcript.pyannote[662].end 7241.59971875
transcript.pyannote[663].speaker SPEAKER_05
transcript.pyannote[663].start 7241.78534375
transcript.pyannote[663].end 7244.45159375
transcript.pyannote[664].speaker SPEAKER_05
transcript.pyannote[664].start 7244.95784375
transcript.pyannote[664].end 7245.86909375
transcript.pyannote[665].speaker SPEAKER_05
transcript.pyannote[665].start 7246.49346875
transcript.pyannote[665].end 7246.76346875
transcript.pyannote[666].speaker SPEAKER_05
transcript.pyannote[666].start 7246.99971875
transcript.pyannote[666].end 7256.90534375
transcript.pyannote[667].speaker SPEAKER_05
transcript.pyannote[667].start 7257.05721875
transcript.pyannote[667].end 7264.83659375
transcript.pyannote[668].speaker SPEAKER_05
transcript.pyannote[668].start 7265.52846875
transcript.pyannote[668].end 7273.42596875
transcript.pyannote[669].speaker SPEAKER_05
transcript.pyannote[669].start 7273.76346875
transcript.pyannote[669].end 7277.74596875
transcript.pyannote[670].speaker SPEAKER_05
transcript.pyannote[670].start 7278.30284375
transcript.pyannote[670].end 7281.39096875
transcript.pyannote[671].speaker SPEAKER_05
transcript.pyannote[671].start 7281.86346875
transcript.pyannote[671].end 7285.96409375
transcript.pyannote[672].speaker SPEAKER_05
transcript.pyannote[672].start 7286.70659375
transcript.pyannote[672].end 7290.28409375
transcript.pyannote[673].speaker SPEAKER_05
transcript.pyannote[673].start 7290.72284375
transcript.pyannote[673].end 7293.97971875
transcript.pyannote[674].speaker SPEAKER_05
transcript.pyannote[674].start 7294.09784375
transcript.pyannote[674].end 7297.10159375
transcript.pyannote[675].speaker SPEAKER_05
transcript.pyannote[675].start 7297.48971875
transcript.pyannote[675].end 7297.81034375
transcript.pyannote[676].speaker SPEAKER_05
transcript.pyannote[676].start 7298.35034375
transcript.pyannote[676].end 7300.29096875
transcript.pyannote[677].speaker SPEAKER_05
transcript.pyannote[677].start 7301.06721875
transcript.pyannote[677].end 7301.77596875
transcript.pyannote[678].speaker SPEAKER_05
transcript.pyannote[678].start 7302.16409375
transcript.pyannote[678].end 7304.02034375
transcript.pyannote[679].speaker SPEAKER_05
transcript.pyannote[679].start 7305.23534375
transcript.pyannote[679].end 7305.94409375
transcript.pyannote[680].speaker SPEAKER_05
transcript.pyannote[680].start 7306.21409375
transcript.pyannote[680].end 7307.17596875
transcript.pyannote[681].speaker SPEAKER_05
transcript.pyannote[681].start 7307.49659375
transcript.pyannote[681].end 7308.32346875
transcript.pyannote[682].speaker SPEAKER_05
transcript.pyannote[682].start 7308.54284375
transcript.pyannote[682].end 7308.79596875
transcript.pyannote[683].speaker SPEAKER_05
transcript.pyannote[683].start 7309.20096875
transcript.pyannote[683].end 7309.69034375
transcript.pyannote[684].speaker SPEAKER_05
transcript.pyannote[684].start 7311.07409375
transcript.pyannote[684].end 7320.03471875
transcript.pyannote[685].speaker SPEAKER_05
transcript.pyannote[685].start 7320.10221875
transcript.pyannote[685].end 7321.28346875
transcript.pyannote[686].speaker SPEAKER_05
transcript.pyannote[686].start 7321.67159375
transcript.pyannote[686].end 7324.94534375
transcript.pyannote[687].speaker SPEAKER_05
transcript.pyannote[687].start 7327.96596875
transcript.pyannote[687].end 7333.02846875
transcript.pyannote[688].speaker SPEAKER_05
transcript.pyannote[688].start 7333.28159375
transcript.pyannote[688].end 7337.44971875
transcript.pyannote[689].speaker SPEAKER_05
transcript.pyannote[689].start 7339.93034375
transcript.pyannote[689].end 7358.83034375
transcript.pyannote[690].speaker SPEAKER_05
transcript.pyannote[690].start 7360.12971875
transcript.pyannote[690].end 7363.30221875
transcript.pyannote[691].speaker SPEAKER_05
transcript.pyannote[691].start 7363.85909375
transcript.pyannote[691].end 7366.01909375
transcript.pyannote[692].speaker SPEAKER_05
transcript.pyannote[692].start 7366.71096875
transcript.pyannote[692].end 7367.03159375
transcript.pyannote[693].speaker SPEAKER_05
transcript.pyannote[693].start 7367.38596875
transcript.pyannote[693].end 7368.09471875
transcript.pyannote[694].speaker SPEAKER_05
transcript.pyannote[694].start 7370.45721875
transcript.pyannote[694].end 7372.17846875
transcript.pyannote[695].speaker SPEAKER_05
transcript.pyannote[695].start 7372.58346875
transcript.pyannote[695].end 7372.81971875
transcript.pyannote[696].speaker SPEAKER_05
transcript.pyannote[696].start 7373.41034375
transcript.pyannote[696].end 7378.01721875
transcript.pyannote[697].speaker SPEAKER_05
transcript.pyannote[697].start 7378.16909375
transcript.pyannote[697].end 7379.99159375
transcript.pyannote[698].speaker SPEAKER_05
transcript.pyannote[698].start 7380.32909375
transcript.pyannote[698].end 7381.81409375
transcript.pyannote[699].speaker SPEAKER_05
transcript.pyannote[699].start 7382.08409375
transcript.pyannote[699].end 7383.87284375
transcript.pyannote[700].speaker SPEAKER_05
transcript.pyannote[700].start 7384.39596875
transcript.pyannote[700].end 7387.80471875
transcript.pyannote[701].speaker SPEAKER_05
transcript.pyannote[701].start 7387.83846875
transcript.pyannote[701].end 7388.54721875
transcript.pyannote[702].speaker SPEAKER_05
transcript.pyannote[702].start 7388.86784375
transcript.pyannote[702].end 7389.74534375
transcript.pyannote[703].speaker SPEAKER_05
transcript.pyannote[703].start 7391.14596875
transcript.pyannote[703].end 7394.31846875
transcript.pyannote[704].speaker SPEAKER_05
transcript.pyannote[704].start 7394.52096875
transcript.pyannote[704].end 7394.60534375
transcript.pyannote[705].speaker SPEAKER_07
transcript.pyannote[705].start 7394.60534375
transcript.pyannote[705].end 7398.28409375
transcript.pyannote[706].speaker SPEAKER_05
transcript.pyannote[706].start 7398.28409375
transcript.pyannote[706].end 7400.30909375
transcript.pyannote[707].speaker SPEAKER_07
transcript.pyannote[707].start 7398.45284375
transcript.pyannote[707].end 7398.58784375
transcript.pyannote[708].speaker SPEAKER_05
transcript.pyannote[708].start 7400.68034375
transcript.pyannote[708].end 7404.98346875
transcript.pyannote[709].speaker SPEAKER_05
transcript.pyannote[709].start 7406.55284375
transcript.pyannote[709].end 7411.15971875
transcript.pyannote[710].speaker SPEAKER_04
transcript.pyannote[710].start 7408.98284375
transcript.pyannote[710].end 7410.29909375
transcript.pyannote[711].speaker SPEAKER_04
transcript.pyannote[711].start 7410.36659375
transcript.pyannote[711].end 7410.92346875
transcript.pyannote[712].speaker SPEAKER_05
transcript.pyannote[712].start 7411.39596875
transcript.pyannote[712].end 7418.85471875
transcript.pyannote[713].speaker SPEAKER_05
transcript.pyannote[713].start 7419.29346875
transcript.pyannote[713].end 7430.27909375
transcript.pyannote[714].speaker SPEAKER_05
transcript.pyannote[714].start 7431.30846875
transcript.pyannote[714].end 7433.90721875
transcript.pyannote[715].speaker SPEAKER_05
transcript.pyannote[715].start 7434.10971875
transcript.pyannote[715].end 7437.87284375
transcript.pyannote[716].speaker SPEAKER_05
transcript.pyannote[716].start 7437.97409375
transcript.pyannote[716].end 7439.39159375
transcript.pyannote[717].speaker SPEAKER_05
transcript.pyannote[717].start 7439.62784375
transcript.pyannote[717].end 7441.82159375
transcript.pyannote[718].speaker SPEAKER_05
transcript.pyannote[718].start 7442.34471875
transcript.pyannote[718].end 7444.16721875
transcript.pyannote[719].speaker SPEAKER_05
transcript.pyannote[719].start 7444.26846875
transcript.pyannote[719].end 7447.10346875
transcript.pyannote[720].speaker SPEAKER_05
transcript.pyannote[720].start 7447.52534375
transcript.pyannote[720].end 7465.46346875
transcript.pyannote[721].speaker SPEAKER_05
transcript.pyannote[721].start 7468.14659375
transcript.pyannote[721].end 7468.78784375
transcript.pyannote[722].speaker SPEAKER_05
transcript.pyannote[722].start 7470.88034375
transcript.pyannote[722].end 7473.20909375
transcript.pyannote[723].speaker SPEAKER_05
transcript.pyannote[723].start 7474.74471875
transcript.pyannote[723].end 7476.53346875
transcript.pyannote[724].speaker SPEAKER_05
transcript.pyannote[724].start 7478.15346875
transcript.pyannote[724].end 7478.60909375
transcript.pyannote[725].speaker SPEAKER_05
transcript.pyannote[725].start 7479.87471875
transcript.pyannote[725].end 7487.80596875
transcript.pyannote[726].speaker SPEAKER_05
transcript.pyannote[726].start 7488.10971875
transcript.pyannote[726].end 7490.03346875
transcript.pyannote[727].speaker SPEAKER_05
transcript.pyannote[727].start 7490.10096875
transcript.pyannote[727].end 7492.48034375
transcript.pyannote[728].speaker SPEAKER_05
transcript.pyannote[728].start 7492.96971875
transcript.pyannote[728].end 7493.69534375
transcript.pyannote[729].speaker SPEAKER_05
transcript.pyannote[729].start 7494.37034375
transcript.pyannote[729].end 7495.26471875
transcript.pyannote[730].speaker SPEAKER_05
transcript.pyannote[730].start 7496.26034375
transcript.pyannote[730].end 7496.73284375
transcript.pyannote[731].speaker SPEAKER_05
transcript.pyannote[731].start 7500.44534375
transcript.pyannote[731].end 7501.33971875
transcript.pyannote[732].speaker SPEAKER_05
transcript.pyannote[732].start 7501.98096875
transcript.pyannote[732].end 7503.14534375
transcript.pyannote[733].speaker SPEAKER_05
transcript.pyannote[733].start 7503.66846875
transcript.pyannote[733].end 7504.54596875
transcript.pyannote[734].speaker SPEAKER_05
transcript.pyannote[734].start 7505.23784375
transcript.pyannote[734].end 7506.30096875
transcript.pyannote[735].speaker SPEAKER_05
transcript.pyannote[735].start 7507.02659375
transcript.pyannote[735].end 7511.41409375
transcript.pyannote[736].speaker SPEAKER_05
transcript.pyannote[736].start 7512.00471875
transcript.pyannote[736].end 7514.29971875
transcript.pyannote[737].speaker SPEAKER_05
transcript.pyannote[737].start 7515.02534375
transcript.pyannote[737].end 7517.43846875
transcript.pyannote[738].speaker SPEAKER_05
transcript.pyannote[738].start 7517.97846875
transcript.pyannote[738].end 7518.02909375
transcript.pyannote[739].speaker SPEAKER_05
transcript.pyannote[739].start 7518.07971875
transcript.pyannote[739].end 7518.67034375
transcript.pyannote[740].speaker SPEAKER_05
transcript.pyannote[740].start 7518.90659375
transcript.pyannote[740].end 7520.37471875
transcript.pyannote[741].speaker SPEAKER_05
transcript.pyannote[741].start 7529.58846875
transcript.pyannote[741].end 7531.47846875
transcript.pyannote[742].speaker SPEAKER_05
transcript.pyannote[742].start 7531.96784375
transcript.pyannote[742].end 7532.33909375
transcript.pyannote[743].speaker SPEAKER_05
transcript.pyannote[743].start 7543.71284375
transcript.pyannote[743].end 7555.18784375
transcript.pyannote[744].speaker SPEAKER_05
transcript.pyannote[744].start 7555.42409375
transcript.pyannote[744].end 7557.36471875
transcript.pyannote[745].speaker SPEAKER_05
transcript.pyannote[745].start 7557.55034375
transcript.pyannote[745].end 7558.81596875
transcript.pyannote[746].speaker SPEAKER_05
transcript.pyannote[746].start 7559.22096875
transcript.pyannote[746].end 7561.36409375
transcript.pyannote[747].speaker SPEAKER_05
transcript.pyannote[747].start 7570.78034375
transcript.pyannote[747].end 7573.88534375
transcript.pyannote[748].speaker SPEAKER_05
transcript.pyannote[748].start 7576.46721875
transcript.pyannote[748].end 7577.73284375
transcript.pyannote[749].speaker SPEAKER_03
transcript.pyannote[749].start 7577.73284375
transcript.pyannote[749].end 7577.74971875
transcript.pyannote[750].speaker SPEAKER_03
transcript.pyannote[750].start 7579.13346875
transcript.pyannote[750].end 7580.02784375
transcript.pyannote[751].speaker SPEAKER_05
transcript.pyannote[751].start 7595.45159375
transcript.pyannote[751].end 7608.66471875
transcript.pyannote[752].speaker SPEAKER_05
transcript.pyannote[752].start 7608.93471875
transcript.pyannote[752].end 7609.30596875
transcript.pyannote[753].speaker SPEAKER_05
transcript.pyannote[753].start 7610.03159375
transcript.pyannote[753].end 7610.99346875
transcript.pyannote[754].speaker SPEAKER_05
transcript.pyannote[754].start 7611.22971875
transcript.pyannote[754].end 7614.95909375
transcript.pyannote[755].speaker SPEAKER_05
transcript.pyannote[755].start 7615.38096875
transcript.pyannote[755].end 7616.41034375
transcript.pyannote[756].speaker SPEAKER_05
transcript.pyannote[756].start 7616.81534375
transcript.pyannote[756].end 7617.45659375
transcript.pyannote[757].speaker SPEAKER_04
transcript.pyannote[757].start 7618.03034375
transcript.pyannote[757].end 7619.48159375
transcript.pyannote[758].speaker SPEAKER_04
transcript.pyannote[758].start 7623.24471875
transcript.pyannote[758].end 7624.15596875
transcript.pyannote[759].speaker SPEAKER_05
transcript.pyannote[759].start 7644.33846875
transcript.pyannote[759].end 7644.79409375
transcript.pyannote[760].speaker SPEAKER_05
transcript.pyannote[760].start 7646.66721875
transcript.pyannote[760].end 7652.50596875
transcript.pyannote[761].speaker SPEAKER_05
transcript.pyannote[761].start 7652.91096875
transcript.pyannote[761].end 7653.99096875
transcript.pyannote[762].speaker SPEAKER_05
transcript.pyannote[762].start 7654.61534375
transcript.pyannote[762].end 7655.91471875
transcript.pyannote[763].speaker SPEAKER_05
transcript.pyannote[763].start 7656.52221875
transcript.pyannote[763].end 7660.36971875
transcript.pyannote[764].speaker SPEAKER_05
transcript.pyannote[764].start 7660.97721875
transcript.pyannote[764].end 7668.04784375
transcript.pyannote[765].speaker SPEAKER_09
transcript.pyannote[765].start 7668.04784375
transcript.pyannote[765].end 7668.36846875
transcript.pyannote[766].speaker SPEAKER_05
transcript.pyannote[766].start 7668.28409375
transcript.pyannote[766].end 7684.60221875
transcript.pyannote[767].speaker SPEAKER_05
transcript.pyannote[767].start 7684.83846875
transcript.pyannote[767].end 7686.76221875
transcript.pyannote[768].speaker SPEAKER_05
transcript.pyannote[768].start 7686.96471875
transcript.pyannote[768].end 7687.63971875
transcript.pyannote[769].speaker SPEAKER_05
transcript.pyannote[769].start 7688.01096875
transcript.pyannote[769].end 7703.35034375
transcript.pyannote[770].speaker SPEAKER_05
transcript.pyannote[770].start 7704.24471875
transcript.pyannote[770].end 7706.48909375
transcript.pyannote[771].speaker SPEAKER_05
transcript.pyannote[771].start 7708.29471875
transcript.pyannote[771].end 7724.76471875
transcript.pyannote[772].speaker SPEAKER_05
transcript.pyannote[772].start 7725.67596875
transcript.pyannote[772].end 7726.82346875
transcript.pyannote[773].speaker SPEAKER_05
transcript.pyannote[773].start 7727.02596875
transcript.pyannote[773].end 7733.28659375
transcript.pyannote[774].speaker SPEAKER_05
transcript.pyannote[774].start 7734.18096875
transcript.pyannote[774].end 7735.15971875
transcript.pyannote[775].speaker SPEAKER_05
transcript.pyannote[775].start 7737.10034375
transcript.pyannote[775].end 7739.81721875
transcript.pyannote[776].speaker SPEAKER_05
transcript.pyannote[776].start 7740.12096875
transcript.pyannote[776].end 7741.30221875
transcript.pyannote[777].speaker SPEAKER_04
transcript.pyannote[777].start 7743.09096875
transcript.pyannote[777].end 7743.61409375
transcript.pyannote[778].speaker SPEAKER_05
transcript.pyannote[778].start 7750.93784375
transcript.pyannote[778].end 7756.42221875
transcript.pyannote[779].speaker SPEAKER_05
transcript.pyannote[779].start 7757.89034375
transcript.pyannote[779].end 7762.44659375
transcript.pyannote[780].speaker SPEAKER_05
transcript.pyannote[780].start 7763.81346875
transcript.pyannote[780].end 7764.75846875
transcript.pyannote[781].speaker SPEAKER_05
transcript.pyannote[781].start 7765.58534375
transcript.pyannote[781].end 7773.56721875
transcript.pyannote[782].speaker SPEAKER_05
transcript.pyannote[782].start 7774.37721875
transcript.pyannote[782].end 7775.44034375
transcript.pyannote[783].speaker SPEAKER_05
transcript.pyannote[783].start 7775.82846875
transcript.pyannote[783].end 7777.85346875
transcript.pyannote[784].speaker SPEAKER_05
transcript.pyannote[784].start 7778.42721875
transcript.pyannote[784].end 7782.05534375
transcript.pyannote[785].speaker SPEAKER_08
transcript.pyannote[785].start 7780.09784375
transcript.pyannote[785].end 7780.11471875
transcript.pyannote[786].speaker SPEAKER_05
transcript.pyannote[786].start 7783.13534375
transcript.pyannote[786].end 7783.45596875
transcript.pyannote[787].speaker SPEAKER_05
transcript.pyannote[787].start 7784.43471875
transcript.pyannote[787].end 7784.85659375
transcript.pyannote[788].speaker SPEAKER_05
transcript.pyannote[788].start 7788.33284375
transcript.pyannote[788].end 7790.30721875
transcript.pyannote[789].speaker SPEAKER_05
transcript.pyannote[789].start 7790.99909375
transcript.pyannote[789].end 7799.74034375
transcript.pyannote[790].speaker SPEAKER_05
transcript.pyannote[790].start 7802.08596875
transcript.pyannote[790].end 7803.23346875
transcript.pyannote[791].speaker SPEAKER_05
transcript.pyannote[791].start 7807.23284375
transcript.pyannote[791].end 7808.22846875
transcript.pyannote[792].speaker SPEAKER_05
transcript.pyannote[792].start 7808.93721875
transcript.pyannote[792].end 7809.35909375
transcript.pyannote[793].speaker SPEAKER_05
transcript.pyannote[793].start 7810.15221875
transcript.pyannote[793].end 7810.59096875
transcript.pyannote[794].speaker SPEAKER_05
transcript.pyannote[794].start 7811.68784375
transcript.pyannote[794].end 7812.29534375
transcript.pyannote[795].speaker SPEAKER_05
transcript.pyannote[795].start 7813.45971875
transcript.pyannote[795].end 7813.91534375
transcript.pyannote[796].speaker SPEAKER_05
transcript.pyannote[796].start 7815.34971875
transcript.pyannote[796].end 7818.40409375
transcript.pyannote[797].speaker SPEAKER_05
transcript.pyannote[797].start 7818.99471875
transcript.pyannote[797].end 7819.99034375
transcript.pyannote[798].speaker SPEAKER_05
transcript.pyannote[798].start 7822.62284375
transcript.pyannote[798].end 7827.92159375
transcript.pyannote[799].speaker SPEAKER_05
transcript.pyannote[799].start 7828.71471875
transcript.pyannote[799].end 7829.82846875
transcript.pyannote[800].speaker SPEAKER_05
transcript.pyannote[800].start 7830.13221875
transcript.pyannote[800].end 7831.33034375
transcript.pyannote[801].speaker SPEAKER_05
transcript.pyannote[801].start 7831.70159375
transcript.pyannote[801].end 7833.64221875
transcript.pyannote[802].speaker SPEAKER_05
transcript.pyannote[802].start 7835.27909375
transcript.pyannote[802].end 7837.13534375
transcript.pyannote[803].speaker SPEAKER_05
transcript.pyannote[803].start 7838.72159375
transcript.pyannote[803].end 7839.16034375
transcript.pyannote[804].speaker SPEAKER_05
transcript.pyannote[804].start 7839.90284375
transcript.pyannote[804].end 7840.29096875
transcript.pyannote[805].speaker SPEAKER_05
transcript.pyannote[805].start 7841.18534375
transcript.pyannote[805].end 7842.34971875
transcript.pyannote[806].speaker SPEAKER_05
transcript.pyannote[806].start 7843.90221875
transcript.pyannote[806].end 7850.93909375
transcript.pyannote[807].speaker SPEAKER_05
transcript.pyannote[807].start 7851.68159375
transcript.pyannote[807].end 7853.57159375
transcript.pyannote[808].speaker SPEAKER_05
transcript.pyannote[808].start 7853.77409375
transcript.pyannote[808].end 7856.37284375
transcript.pyannote[809].speaker SPEAKER_05
transcript.pyannote[809].start 7856.92971875
transcript.pyannote[809].end 7858.09409375
transcript.pyannote[810].speaker SPEAKER_05
transcript.pyannote[810].start 7858.44846875
transcript.pyannote[810].end 7860.23721875
transcript.pyannote[811].speaker SPEAKER_05
transcript.pyannote[811].start 7860.62534375
transcript.pyannote[811].end 7861.55346875
transcript.pyannote[812].speaker SPEAKER_05
transcript.pyannote[812].start 7861.82346875
transcript.pyannote[812].end 7862.39721875
transcript.pyannote[813].speaker SPEAKER_03
transcript.pyannote[813].start 7862.39721875
transcript.pyannote[813].end 7862.65034375
transcript.pyannote[814].speaker SPEAKER_05
transcript.pyannote[814].start 7863.08909375
transcript.pyannote[814].end 7863.98346875
transcript.pyannote[815].speaker SPEAKER_03
transcript.pyannote[815].start 7864.45596875
transcript.pyannote[815].end 7864.62471875
transcript.pyannote[816].speaker SPEAKER_05
transcript.pyannote[816].start 7864.62471875
transcript.pyannote[816].end 7872.23534375
transcript.pyannote[817].speaker SPEAKER_03
transcript.pyannote[817].start 7864.67534375
transcript.pyannote[817].end 7864.69221875
transcript.pyannote[818].speaker SPEAKER_03
transcript.pyannote[818].start 7865.02971875
transcript.pyannote[818].end 7865.62034375
transcript.pyannote[819].speaker SPEAKER_05
transcript.pyannote[819].start 7872.67409375
transcript.pyannote[819].end 7872.94409375
transcript.pyannote[820].speaker SPEAKER_05
transcript.pyannote[820].start 7874.04096875
transcript.pyannote[820].end 7876.03221875
transcript.pyannote[821].speaker SPEAKER_05
transcript.pyannote[821].start 7876.48784375
transcript.pyannote[821].end 7877.21346875
transcript.pyannote[822].speaker SPEAKER_05
transcript.pyannote[822].start 7877.50034375
transcript.pyannote[822].end 7878.27659375
transcript.pyannote[823].speaker SPEAKER_05
transcript.pyannote[823].start 7881.36471875
transcript.pyannote[823].end 7882.64721875
transcript.pyannote[824].speaker SPEAKER_05
transcript.pyannote[824].start 7883.74409375
transcript.pyannote[824].end 7884.36846875
transcript.pyannote[825].speaker SPEAKER_05
transcript.pyannote[825].start 7884.84096875
transcript.pyannote[825].end 7886.79846875
transcript.pyannote[826].speaker SPEAKER_05
transcript.pyannote[826].start 7891.70909375
transcript.pyannote[826].end 7892.77221875
transcript.pyannote[827].speaker SPEAKER_05
transcript.pyannote[827].start 7893.27846875
transcript.pyannote[827].end 7893.68346875
transcript.pyannote[828].speaker SPEAKER_05
transcript.pyannote[828].start 7894.59471875
transcript.pyannote[828].end 7895.40471875
transcript.pyannote[829].speaker SPEAKER_05
transcript.pyannote[829].start 7895.77596875
transcript.pyannote[829].end 7897.07534375
transcript.pyannote[830].speaker SPEAKER_05
transcript.pyannote[830].start 7897.46346875
transcript.pyannote[830].end 7898.17221875
transcript.pyannote[831].speaker SPEAKER_05
transcript.pyannote[831].start 7900.77096875
transcript.pyannote[831].end 7901.32784375
transcript.pyannote[832].speaker SPEAKER_05
transcript.pyannote[832].start 7918.79346875
transcript.pyannote[832].end 7923.85596875
transcript.pyannote[833].speaker SPEAKER_05
transcript.pyannote[833].start 7927.01159375
transcript.pyannote[833].end 7927.77096875
transcript.pyannote[834].speaker SPEAKER_05
transcript.pyannote[834].start 7927.97346875
transcript.pyannote[834].end 7928.04096875
transcript.pyannote[835].speaker SPEAKER_05
transcript.pyannote[835].start 7928.44596875
transcript.pyannote[835].end 7930.47096875
transcript.pyannote[836].speaker SPEAKER_05
transcript.pyannote[836].start 7932.59721875
transcript.pyannote[836].end 7936.83284375
transcript.pyannote[837].speaker SPEAKER_05
transcript.pyannote[837].start 7937.65971875
transcript.pyannote[837].end 7940.64659375
transcript.pyannote[838].speaker SPEAKER_05
transcript.pyannote[838].start 7941.11909375
transcript.pyannote[838].end 7943.02596875
transcript.pyannote[839].speaker SPEAKER_05
transcript.pyannote[839].start 7943.39721875
transcript.pyannote[839].end 7944.49409375
transcript.pyannote[840].speaker SPEAKER_08
transcript.pyannote[840].start 7945.96221875
transcript.pyannote[840].end 7946.29971875
transcript.pyannote[841].speaker SPEAKER_05
transcript.pyannote[841].start 7978.22721875
transcript.pyannote[841].end 7993.22909375
transcript.pyannote[842].speaker SPEAKER_05
transcript.pyannote[842].start 7994.15721875
transcript.pyannote[842].end 7994.46096875
transcript.pyannote[843].speaker SPEAKER_05
transcript.pyannote[843].start 7996.58721875
transcript.pyannote[843].end 8003.40471875
transcript.pyannote[844].speaker SPEAKER_05
transcript.pyannote[844].start 8003.62409375
transcript.pyannote[844].end 8003.87721875
transcript.pyannote[845].speaker SPEAKER_03
transcript.pyannote[845].start 8004.36659375
transcript.pyannote[845].end 8004.94034375
transcript.pyannote[846].speaker SPEAKER_05
transcript.pyannote[846].start 8009.12534375
transcript.pyannote[846].end 8011.87596875
transcript.pyannote[847].speaker SPEAKER_09
transcript.pyannote[847].start 8015.01471875
transcript.pyannote[847].end 8017.57971875
transcript.pyannote[848].speaker SPEAKER_05
transcript.pyannote[848].start 8019.72284375
transcript.pyannote[848].end 8024.29596875
transcript.pyannote[849].speaker SPEAKER_05
transcript.pyannote[849].start 8026.96221875
transcript.pyannote[849].end 8037.34034375
transcript.pyannote[850].speaker SPEAKER_05
transcript.pyannote[850].start 8038.52159375
transcript.pyannote[850].end 8040.09096875
transcript.pyannote[851].speaker SPEAKER_05
transcript.pyannote[851].start 8041.30596875
transcript.pyannote[851].end 8043.21284375
transcript.pyannote[852].speaker SPEAKER_05
transcript.pyannote[852].start 8043.56721875
transcript.pyannote[852].end 8047.51596875
transcript.pyannote[853].speaker SPEAKER_05
transcript.pyannote[853].start 8047.65096875
transcript.pyannote[853].end 8049.77721875
transcript.pyannote[854].speaker SPEAKER_05
transcript.pyannote[854].start 8050.28346875
transcript.pyannote[854].end 8052.22409375
transcript.pyannote[855].speaker SPEAKER_05
transcript.pyannote[855].start 8052.79784375
transcript.pyannote[855].end 8058.80534375
transcript.pyannote[856].speaker SPEAKER_05
transcript.pyannote[856].start 8058.82221875
transcript.pyannote[856].end 8092.42034375
transcript.pyannote[857].speaker SPEAKER_05
transcript.pyannote[857].start 8093.14596875
transcript.pyannote[857].end 8108.95784375
transcript.pyannote[858].speaker SPEAKER_05
transcript.pyannote[858].start 8111.01659375
transcript.pyannote[858].end 8115.57284375
transcript.pyannote[859].speaker SPEAKER_05
transcript.pyannote[859].start 8116.63596875
transcript.pyannote[859].end 8122.30596875
transcript.pyannote[860].speaker SPEAKER_00
transcript.pyannote[860].start 8128.27971875
transcript.pyannote[860].end 8128.95471875
transcript.pyannote[861].speaker SPEAKER_05
transcript.pyannote[861].start 8129.51159375
transcript.pyannote[861].end 8131.94159375
transcript.pyannote[862].speaker SPEAKER_05
transcript.pyannote[862].start 8132.46471875
transcript.pyannote[862].end 8134.79346875
transcript.pyannote[863].speaker SPEAKER_05
transcript.pyannote[863].start 8137.62846875
transcript.pyannote[863].end 8138.69159375
transcript.pyannote[864].speaker SPEAKER_05
transcript.pyannote[864].start 8140.75034375
transcript.pyannote[864].end 8144.91846875
transcript.pyannote[865].speaker SPEAKER_09
transcript.pyannote[865].start 8142.42096875
transcript.pyannote[865].end 8144.20971875
transcript.pyannote[866].speaker SPEAKER_05
transcript.pyannote[866].start 8145.81284375
transcript.pyannote[866].end 8148.52971875
transcript.pyannote[867].speaker SPEAKER_05
transcript.pyannote[867].start 8148.74909375
transcript.pyannote[867].end 8150.04846875
transcript.pyannote[868].speaker SPEAKER_05
transcript.pyannote[868].start 8150.77409375
transcript.pyannote[868].end 8152.05659375
transcript.pyannote[869].speaker SPEAKER_05
transcript.pyannote[869].start 8154.57096875
transcript.pyannote[869].end 8155.24596875
transcript.pyannote[870].speaker SPEAKER_05
transcript.pyannote[870].start 8156.25846875
transcript.pyannote[870].end 8167.31159375
transcript.pyannote[871].speaker SPEAKER_05
transcript.pyannote[871].start 8168.08784375
transcript.pyannote[871].end 8180.57534375
transcript.pyannote[872].speaker SPEAKER_05
transcript.pyannote[872].start 8181.60471875
transcript.pyannote[872].end 8185.70534375
transcript.pyannote[873].speaker SPEAKER_05
transcript.pyannote[873].start 8189.63721875
transcript.pyannote[873].end 8190.22784375
transcript.pyannote[874].speaker SPEAKER_05
transcript.pyannote[874].start 8191.05471875
transcript.pyannote[874].end 8191.47659375
transcript.pyannote[875].speaker SPEAKER_05
transcript.pyannote[875].start 8192.13471875
transcript.pyannote[875].end 8192.70846875
transcript.pyannote[876].speaker SPEAKER_05
transcript.pyannote[876].start 8193.50159375
transcript.pyannote[876].end 8219.59034375
transcript.pyannote[877].speaker SPEAKER_05
transcript.pyannote[877].start 8219.75909375
transcript.pyannote[877].end 8242.43909375
transcript.pyannote[878].speaker SPEAKER_05
transcript.pyannote[878].start 8242.84409375
transcript.pyannote[878].end 8256.07409375
transcript.pyannote[879].speaker SPEAKER_05
transcript.pyannote[879].start 8256.34409375
transcript.pyannote[879].end 8260.46159375
transcript.pyannote[880].speaker SPEAKER_05
transcript.pyannote[880].start 8260.96784375
transcript.pyannote[880].end 8263.98846875
transcript.pyannote[881].speaker SPEAKER_05
transcript.pyannote[881].start 8264.17409375
transcript.pyannote[881].end 8265.54096875
transcript.pyannote[882].speaker SPEAKER_05
transcript.pyannote[882].start 8266.09784375
transcript.pyannote[882].end 8271.98721875
transcript.pyannote[883].speaker SPEAKER_05
transcript.pyannote[883].start 8272.86471875
transcript.pyannote[883].end 8279.95221875
transcript.pyannote[884].speaker SPEAKER_05
transcript.pyannote[884].start 8280.50909375
transcript.pyannote[884].end 8282.19659375
transcript.pyannote[885].speaker SPEAKER_05
transcript.pyannote[885].start 8282.83784375
transcript.pyannote[885].end 8284.79534375
transcript.pyannote[886].speaker SPEAKER_05
transcript.pyannote[886].start 8285.45346875
transcript.pyannote[886].end 8286.41534375
transcript.pyannote[887].speaker SPEAKER_05
transcript.pyannote[887].start 8287.54596875
transcript.pyannote[887].end 8287.83284375
transcript.pyannote[888].speaker SPEAKER_04
transcript.pyannote[888].start 8287.83284375
transcript.pyannote[888].end 8288.25471875
transcript.pyannote[889].speaker SPEAKER_04
transcript.pyannote[889].start 8288.50784375
transcript.pyannote[889].end 8290.63409375
transcript.pyannote[890].speaker SPEAKER_10
transcript.pyannote[890].start 8297.97471875
transcript.pyannote[890].end 8298.81846875
transcript.pyannote[891].speaker SPEAKER_10
transcript.pyannote[891].start 8299.71284375
transcript.pyannote[891].end 8301.55221875
transcript.pyannote[892].speaker SPEAKER_10
transcript.pyannote[892].start 8302.22721875
transcript.pyannote[892].end 8303.34096875
transcript.pyannote[893].speaker SPEAKER_10
transcript.pyannote[893].start 8303.71221875
transcript.pyannote[893].end 8304.03284375
transcript.pyannote[894].speaker SPEAKER_05
transcript.pyannote[894].start 8304.03284375
transcript.pyannote[894].end 8304.26909375
transcript.pyannote[895].speaker SPEAKER_10
transcript.pyannote[895].start 8304.26909375
transcript.pyannote[895].end 8304.40409375
transcript.pyannote[896].speaker SPEAKER_05
transcript.pyannote[896].start 8304.40409375
transcript.pyannote[896].end 8304.84284375
transcript.pyannote[897].speaker SPEAKER_10
transcript.pyannote[897].start 8304.84284375
transcript.pyannote[897].end 8304.85971875
transcript.pyannote[898].speaker SPEAKER_05
transcript.pyannote[898].start 8304.85971875
transcript.pyannote[898].end 8305.28159375
transcript.pyannote[899].speaker SPEAKER_05
transcript.pyannote[899].start 8305.63596875
transcript.pyannote[899].end 8305.99034375
transcript.pyannote[900].speaker SPEAKER_05
transcript.pyannote[900].start 8306.49659375
transcript.pyannote[900].end 8309.29784375
transcript.pyannote[901].speaker SPEAKER_05
transcript.pyannote[901].start 8310.05721875
transcript.pyannote[901].end 8311.27221875
transcript.pyannote[902].speaker SPEAKER_05
transcript.pyannote[902].start 8312.60534375
transcript.pyannote[902].end 8316.67221875
transcript.pyannote[903].speaker SPEAKER_05
transcript.pyannote[903].start 8316.99284375
transcript.pyannote[903].end 8320.80659375
transcript.pyannote[904].speaker SPEAKER_05
transcript.pyannote[904].start 8320.87409375
transcript.pyannote[904].end 8325.22784375
transcript.pyannote[905].speaker SPEAKER_05
transcript.pyannote[905].start 8325.83534375
transcript.pyannote[905].end 8327.03346875
transcript.pyannote[906].speaker SPEAKER_05
transcript.pyannote[906].start 8327.32034375
transcript.pyannote[906].end 8330.62784375
transcript.pyannote[907].speaker SPEAKER_05
transcript.pyannote[907].start 8331.03284375
transcript.pyannote[907].end 8333.00721875
transcript.pyannote[908].speaker SPEAKER_05
transcript.pyannote[908].start 8333.98596875
transcript.pyannote[908].end 8334.40784375
transcript.pyannote[909].speaker SPEAKER_05
transcript.pyannote[909].start 8334.81284375
transcript.pyannote[909].end 8339.04846875
transcript.pyannote[910].speaker SPEAKER_05
transcript.pyannote[910].start 8341.57971875
transcript.pyannote[910].end 8344.09409375
transcript.pyannote[911].speaker SPEAKER_05
transcript.pyannote[911].start 8344.83659375
transcript.pyannote[911].end 8345.19096875
transcript.pyannote[912].speaker SPEAKER_05
transcript.pyannote[912].start 8346.70971875
transcript.pyannote[912].end 8348.11034375
transcript.pyannote[913].speaker SPEAKER_05
transcript.pyannote[913].start 8348.68409375
transcript.pyannote[913].end 8350.62471875
transcript.pyannote[914].speaker SPEAKER_05
transcript.pyannote[914].start 8353.49346875
transcript.pyannote[914].end 8358.35346875
transcript.pyannote[915].speaker SPEAKER_05
transcript.pyannote[915].start 8358.85971875
transcript.pyannote[915].end 8361.10409375
transcript.pyannote[916].speaker SPEAKER_05
transcript.pyannote[916].start 8364.41159375
transcript.pyannote[916].end 8365.99784375
transcript.pyannote[917].speaker SPEAKER_03
transcript.pyannote[917].start 8364.68159375
transcript.pyannote[917].end 8364.69846875
transcript.pyannote[918].speaker SPEAKER_03
transcript.pyannote[918].start 8369.84534375
transcript.pyannote[918].end 8371.68471875
transcript.pyannote[919].speaker SPEAKER_05
transcript.pyannote[919].start 8371.68471875
transcript.pyannote[919].end 8371.70159375
transcript.pyannote[920].speaker SPEAKER_05
transcript.pyannote[920].start 8371.93784375
transcript.pyannote[920].end 8371.97159375
transcript.pyannote[921].speaker SPEAKER_03
transcript.pyannote[921].start 8371.97159375
transcript.pyannote[921].end 8372.00534375
transcript.pyannote[922].speaker SPEAKER_05
transcript.pyannote[922].start 8372.00534375
transcript.pyannote[922].end 8373.00096875
transcript.pyannote[923].speaker SPEAKER_05
transcript.pyannote[923].start 8374.58721875
transcript.pyannote[923].end 8375.90346875
transcript.pyannote[924].speaker SPEAKER_05
transcript.pyannote[924].start 8376.96659375
transcript.pyannote[924].end 8396.22096875
transcript.pyannote[925].speaker SPEAKER_05
transcript.pyannote[925].start 8396.65971875
transcript.pyannote[925].end 8400.64221875
transcript.pyannote[926].speaker SPEAKER_05
transcript.pyannote[926].start 8401.50284375
transcript.pyannote[926].end 8402.24534375
transcript.pyannote[927].speaker SPEAKER_05
transcript.pyannote[927].start 8403.29159375
transcript.pyannote[927].end 8404.91159375
transcript.pyannote[928].speaker SPEAKER_05
transcript.pyannote[928].start 8405.41784375
transcript.pyannote[928].end 8406.91971875
transcript.pyannote[929].speaker SPEAKER_05
transcript.pyannote[929].start 8407.57784375
transcript.pyannote[929].end 8408.35409375
transcript.pyannote[930].speaker SPEAKER_05
transcript.pyannote[930].start 8408.96159375
transcript.pyannote[930].end 8409.67034375
transcript.pyannote[931].speaker SPEAKER_03
transcript.pyannote[931].start 8409.72096875
transcript.pyannote[931].end 8409.75471875
transcript.pyannote[932].speaker SPEAKER_03
transcript.pyannote[932].start 8409.97409375
transcript.pyannote[932].end 8410.61534375
transcript.pyannote[933].speaker SPEAKER_05
transcript.pyannote[933].start 8432.33346875
transcript.pyannote[933].end 8437.04159375
transcript.pyannote[934].speaker SPEAKER_08
transcript.pyannote[934].start 8433.91971875
transcript.pyannote[934].end 8434.07159375
transcript.pyannote[935].speaker SPEAKER_09
transcript.pyannote[935].start 8434.07159375
transcript.pyannote[935].end 8434.12221875
transcript.pyannote[936].speaker SPEAKER_08
transcript.pyannote[936].start 8434.12221875
transcript.pyannote[936].end 8434.18971875
transcript.pyannote[937].speaker SPEAKER_09
transcript.pyannote[937].start 8434.18971875
transcript.pyannote[937].end 8434.29096875
transcript.pyannote[938].speaker SPEAKER_05
transcript.pyannote[938].start 8437.54784375
transcript.pyannote[938].end 8441.12534375
transcript.pyannote[939].speaker SPEAKER_05
transcript.pyannote[939].start 8441.71596875
transcript.pyannote[939].end 8443.30221875
transcript.pyannote[940].speaker SPEAKER_05
transcript.pyannote[940].start 8443.97721875
transcript.pyannote[940].end 8445.14159375
transcript.pyannote[941].speaker SPEAKER_05
transcript.pyannote[941].start 8446.89659375
transcript.pyannote[941].end 8449.78221875
transcript.pyannote[942].speaker SPEAKER_05
transcript.pyannote[942].start 8453.39346875
transcript.pyannote[942].end 8456.07659375
transcript.pyannote[943].speaker SPEAKER_05
transcript.pyannote[943].start 8456.22846875
transcript.pyannote[943].end 8456.80221875
transcript.pyannote[944].speaker SPEAKER_05
transcript.pyannote[944].start 8457.49409375
transcript.pyannote[944].end 8459.19846875
transcript.pyannote[945].speaker SPEAKER_05
transcript.pyannote[945].start 8459.99159375
transcript.pyannote[945].end 8460.83534375
transcript.pyannote[946].speaker SPEAKER_05
transcript.pyannote[946].start 8461.34159375
transcript.pyannote[946].end 8476.91721875
transcript.pyannote[947].speaker SPEAKER_05
transcript.pyannote[947].start 8477.13659375
transcript.pyannote[947].end 8480.05596875
transcript.pyannote[948].speaker SPEAKER_05
transcript.pyannote[948].start 8480.59596875
transcript.pyannote[948].end 8481.62534375
transcript.pyannote[949].speaker SPEAKER_05
transcript.pyannote[949].start 8482.30034375
transcript.pyannote[949].end 8483.00909375
transcript.pyannote[950].speaker SPEAKER_05
transcript.pyannote[950].start 8483.34659375
transcript.pyannote[950].end 8485.03409375
transcript.pyannote[951].speaker SPEAKER_05
transcript.pyannote[951].start 8485.57409375
transcript.pyannote[951].end 8492.98221875
transcript.pyannote[952].speaker SPEAKER_05
transcript.pyannote[952].start 8493.47159375
transcript.pyannote[952].end 8495.59784375
transcript.pyannote[953].speaker SPEAKER_05
transcript.pyannote[953].start 8497.48784375
transcript.pyannote[953].end 8499.73221875
transcript.pyannote[954].speaker SPEAKER_05
transcript.pyannote[954].start 8500.17096875
transcript.pyannote[954].end 8506.29659375
transcript.pyannote[955].speaker SPEAKER_05
transcript.pyannote[955].start 8506.73534375
transcript.pyannote[955].end 8507.10659375
transcript.pyannote[956].speaker SPEAKER_05
transcript.pyannote[956].start 8507.96721875
transcript.pyannote[956].end 8508.62534375
transcript.pyannote[957].speaker SPEAKER_05
transcript.pyannote[957].start 8509.72221875
transcript.pyannote[957].end 8515.51034375
transcript.pyannote[958].speaker SPEAKER_05
transcript.pyannote[958].start 8516.13471875
transcript.pyannote[958].end 8519.03721875
transcript.pyannote[959].speaker SPEAKER_05
transcript.pyannote[959].start 8519.12159375
transcript.pyannote[959].end 8519.67846875
transcript.pyannote[960].speaker SPEAKER_05
transcript.pyannote[960].start 8521.70346875
transcript.pyannote[960].end 8524.13346875
transcript.pyannote[961].speaker SPEAKER_05
transcript.pyannote[961].start 8524.65659375
transcript.pyannote[961].end 8526.46221875
transcript.pyannote[962].speaker SPEAKER_03
transcript.pyannote[962].start 8528.77409375
transcript.pyannote[962].end 8528.85846875
transcript.pyannote[963].speaker SPEAKER_05
transcript.pyannote[963].start 8540.53596875
transcript.pyannote[963].end 8548.16346875
transcript.pyannote[964].speaker SPEAKER_08
transcript.pyannote[964].start 8541.46409375
transcript.pyannote[964].end 8541.64971875
transcript.pyannote[965].speaker SPEAKER_05
transcript.pyannote[965].start 8548.56846875
transcript.pyannote[965].end 8549.42909375
transcript.pyannote[966].speaker SPEAKER_05
transcript.pyannote[966].start 8550.77909375
transcript.pyannote[966].end 8551.82534375
transcript.pyannote[967].speaker SPEAKER_05
transcript.pyannote[967].start 8553.46221875
transcript.pyannote[967].end 8553.88409375
transcript.pyannote[968].speaker SPEAKER_05
transcript.pyannote[968].start 8554.30596875
transcript.pyannote[968].end 8555.94284375
transcript.pyannote[969].speaker SPEAKER_05
transcript.pyannote[969].start 8556.21284375
transcript.pyannote[969].end 8557.68096875
transcript.pyannote[970].speaker SPEAKER_05
transcript.pyannote[970].start 8559.06471875
transcript.pyannote[970].end 8560.46534375
transcript.pyannote[971].speaker SPEAKER_05
transcript.pyannote[971].start 8560.73534375
transcript.pyannote[971].end 8561.37659375
transcript.pyannote[972].speaker SPEAKER_05
transcript.pyannote[972].start 8563.30034375
transcript.pyannote[972].end 8564.46471875
transcript.pyannote[973].speaker SPEAKER_05
transcript.pyannote[973].start 8565.07221875
transcript.pyannote[973].end 8567.83971875
transcript.pyannote[974].speaker SPEAKER_05
transcript.pyannote[974].start 8569.02096875
transcript.pyannote[974].end 8570.11784375
transcript.pyannote[975].speaker SPEAKER_05
transcript.pyannote[975].start 8573.20596875
transcript.pyannote[975].end 8574.72471875
transcript.pyannote[976].speaker SPEAKER_05
transcript.pyannote[976].start 8576.49659375
transcript.pyannote[976].end 8578.04909375
transcript.pyannote[977].speaker SPEAKER_05
transcript.pyannote[977].start 8579.23034375
transcript.pyannote[977].end 8580.12471875
transcript.pyannote[978].speaker SPEAKER_09
transcript.pyannote[978].start 8580.12471875
transcript.pyannote[978].end 8580.20909375
transcript.pyannote[979].speaker SPEAKER_05
transcript.pyannote[979].start 8580.20909375
transcript.pyannote[979].end 8580.22596875
transcript.pyannote[980].speaker SPEAKER_05
transcript.pyannote[980].start 8580.73221875
transcript.pyannote[980].end 8581.55909375
transcript.pyannote[981].speaker SPEAKER_05
transcript.pyannote[981].start 8593.13534375
transcript.pyannote[981].end 8594.89034375
transcript.pyannote[982].speaker SPEAKER_05
transcript.pyannote[982].start 8595.68346875
transcript.pyannote[982].end 8595.95346875
transcript.pyannote[983].speaker SPEAKER_05
transcript.pyannote[983].start 8596.61159375
transcript.pyannote[983].end 8603.27721875
transcript.pyannote[984].speaker SPEAKER_10
transcript.pyannote[984].start 8598.72096875
transcript.pyannote[984].end 8600.74596875
transcript.pyannote[985].speaker SPEAKER_05
transcript.pyannote[985].start 8603.49659375
transcript.pyannote[985].end 8606.53409375
transcript.pyannote[986].speaker SPEAKER_05
transcript.pyannote[986].start 8606.97284375
transcript.pyannote[986].end 8609.26784375
transcript.pyannote[987].speaker SPEAKER_05
transcript.pyannote[987].start 8609.90909375
transcript.pyannote[987].end 8611.20846875
transcript.pyannote[988].speaker SPEAKER_05
transcript.pyannote[988].start 8611.47846875
transcript.pyannote[988].end 8613.21659375
transcript.pyannote[989].speaker SPEAKER_05
transcript.pyannote[989].start 8613.30096875
transcript.pyannote[989].end 8613.75659375
transcript.pyannote[990].speaker SPEAKER_05
transcript.pyannote[990].start 8614.78596875
transcript.pyannote[990].end 8615.96721875
transcript.pyannote[991].speaker SPEAKER_05
transcript.pyannote[991].start 8617.48596875
transcript.pyannote[991].end 8626.10909375
transcript.pyannote[992].speaker SPEAKER_05
transcript.pyannote[992].start 8626.36221875
transcript.pyannote[992].end 8628.74159375
transcript.pyannote[993].speaker SPEAKER_05
transcript.pyannote[993].start 8628.79221875
transcript.pyannote[993].end 8631.45846875
transcript.pyannote[994].speaker SPEAKER_05
transcript.pyannote[994].start 8632.45409375
transcript.pyannote[994].end 8633.41596875
transcript.pyannote[995].speaker SPEAKER_05
transcript.pyannote[995].start 8634.69846875
transcript.pyannote[995].end 8635.50846875
transcript.pyannote[996].speaker SPEAKER_05
transcript.pyannote[996].start 8635.72784375
transcript.pyannote[996].end 8636.55471875
transcript.pyannote[997].speaker SPEAKER_05
transcript.pyannote[997].start 8639.62596875
transcript.pyannote[997].end 8640.38534375
transcript.pyannote[998].speaker SPEAKER_05
transcript.pyannote[998].start 8641.63409375
transcript.pyannote[998].end 8642.29221875
transcript.pyannote[999].speaker SPEAKER_05
transcript.pyannote[999].start 8642.42721875
transcript.pyannote[999].end 8643.16971875
transcript.pyannote[1000].speaker SPEAKER_05
transcript.pyannote[1000].start 8644.19909375
transcript.pyannote[1000].end 8645.53221875
transcript.pyannote[1001].speaker SPEAKER_05
transcript.pyannote[1001].start 8647.18596875
transcript.pyannote[1001].end 8647.64159375
transcript.pyannote[1002].speaker SPEAKER_05
transcript.pyannote[1002].start 8651.62409375
transcript.pyannote[1002].end 8655.38721875
transcript.pyannote[1003].speaker SPEAKER_05
transcript.pyannote[1003].start 8656.36596875
transcript.pyannote[1003].end 8659.35284375
transcript.pyannote[1004].speaker SPEAKER_05
transcript.pyannote[1004].start 8659.74096875
transcript.pyannote[1004].end 8660.06159375
transcript.pyannote[1005].speaker SPEAKER_05
transcript.pyannote[1005].start 8660.43284375
transcript.pyannote[1005].end 8661.09096875
transcript.pyannote[1006].speaker SPEAKER_08
transcript.pyannote[1006].start 8661.09096875
transcript.pyannote[1006].end 8661.25971875
transcript.pyannote[1007].speaker SPEAKER_05
transcript.pyannote[1007].start 8661.25971875
transcript.pyannote[1007].end 8666.65971875
transcript.pyannote[1008].speaker SPEAKER_05
transcript.pyannote[1008].start 8667.23346875
transcript.pyannote[1008].end 8672.17784375
transcript.pyannote[1009].speaker SPEAKER_05
transcript.pyannote[1009].start 8672.68409375
transcript.pyannote[1009].end 8674.40534375
transcript.pyannote[1010].speaker SPEAKER_05
transcript.pyannote[1010].start 8676.46409375
transcript.pyannote[1010].end 8677.56096875
transcript.pyannote[1011].speaker SPEAKER_05
transcript.pyannote[1011].start 8677.91534375
transcript.pyannote[1011].end 8678.70846875
transcript.pyannote[1012].speaker SPEAKER_05
transcript.pyannote[1012].start 8678.89409375
transcript.pyannote[1012].end 8681.20596875
transcript.pyannote[1013].speaker SPEAKER_05
transcript.pyannote[1013].start 8689.94721875
transcript.pyannote[1013].end 8690.60534375
transcript.pyannote[1014].speaker SPEAKER_03
transcript.pyannote[1014].start 8690.89221875
transcript.pyannote[1014].end 8691.17909375
transcript.pyannote[1015].speaker SPEAKER_05
transcript.pyannote[1015].start 8691.82034375
transcript.pyannote[1015].end 8697.55784375
transcript.pyannote[1016].speaker SPEAKER_05
transcript.pyannote[1016].start 8698.09784375
transcript.pyannote[1016].end 8707.71659375
transcript.pyannote[1017].speaker SPEAKER_05
transcript.pyannote[1017].start 8708.22284375
transcript.pyannote[1017].end 8710.58534375
transcript.pyannote[1018].speaker SPEAKER_05
transcript.pyannote[1018].start 8711.93534375
transcript.pyannote[1018].end 8712.25596875
transcript.pyannote[1019].speaker SPEAKER_05
transcript.pyannote[1019].start 8712.42471875
transcript.pyannote[1019].end 8713.16721875
transcript.pyannote[1020].speaker SPEAKER_05
transcript.pyannote[1020].start 8714.23034375
transcript.pyannote[1020].end 8715.36096875
transcript.pyannote[1021].speaker SPEAKER_05
transcript.pyannote[1021].start 8715.79971875
transcript.pyannote[1021].end 8720.55846875
transcript.pyannote[1022].speaker SPEAKER_05
transcript.pyannote[1022].start 8721.04784375
transcript.pyannote[1022].end 8721.95909375
transcript.pyannote[1023].speaker SPEAKER_05
transcript.pyannote[1023].start 8722.16159375
transcript.pyannote[1023].end 8725.41846875
transcript.pyannote[1024].speaker SPEAKER_05
transcript.pyannote[1024].start 8726.17784375
transcript.pyannote[1024].end 8737.36596875
transcript.pyannote[1025].speaker SPEAKER_05
transcript.pyannote[1025].start 8738.05784375
transcript.pyannote[1025].end 8739.59346875
transcript.pyannote[1026].speaker SPEAKER_05
transcript.pyannote[1026].start 8739.77909375
transcript.pyannote[1026].end 8740.84221875
transcript.pyannote[1027].speaker SPEAKER_05
transcript.pyannote[1027].start 8741.17971875
transcript.pyannote[1027].end 8743.59284375
transcript.pyannote[1028].speaker SPEAKER_05
transcript.pyannote[1028].start 8745.93846875
transcript.pyannote[1028].end 8746.56284375
transcript.pyannote[1029].speaker SPEAKER_05
transcript.pyannote[1029].start 8747.11971875
transcript.pyannote[1029].end 8747.79471875
transcript.pyannote[1030].speaker SPEAKER_05
transcript.pyannote[1030].start 8751.28784375
transcript.pyannote[1030].end 8752.99221875
transcript.pyannote[1031].speaker SPEAKER_05
transcript.pyannote[1031].start 8755.03409375
transcript.pyannote[1031].end 8755.81034375
transcript.pyannote[1032].speaker SPEAKER_05
transcript.pyannote[1032].start 8757.29534375
transcript.pyannote[1032].end 8758.34159375
transcript.pyannote[1033].speaker SPEAKER_05
transcript.pyannote[1033].start 8762.54346875
transcript.pyannote[1033].end 8765.29409375
transcript.pyannote[1034].speaker SPEAKER_05
transcript.pyannote[1034].start 8766.55971875
transcript.pyannote[1034].end 8770.10346875
transcript.pyannote[1035].speaker SPEAKER_05
transcript.pyannote[1035].start 8770.77846875
transcript.pyannote[1035].end 8773.54596875
transcript.pyannote[1036].speaker SPEAKER_05
transcript.pyannote[1036].start 8774.57534375
transcript.pyannote[1036].end 8775.57096875
transcript.pyannote[1037].speaker SPEAKER_05
transcript.pyannote[1037].start 8776.04346875
transcript.pyannote[1037].end 8776.68471875
transcript.pyannote[1038].speaker SPEAKER_05
transcript.pyannote[1038].start 8777.76471875
transcript.pyannote[1038].end 8782.25346875
transcript.pyannote[1039].speaker SPEAKER_05
transcript.pyannote[1039].start 8782.72596875
transcript.pyannote[1039].end 8783.77221875
transcript.pyannote[1040].speaker SPEAKER_05
transcript.pyannote[1040].start 8785.07159375
transcript.pyannote[1040].end 8804.62971875
transcript.pyannote[1041].speaker SPEAKER_05
transcript.pyannote[1041].start 8805.18659375
transcript.pyannote[1041].end 8807.02596875
transcript.pyannote[1042].speaker SPEAKER_05
transcript.pyannote[1042].start 8807.19471875
transcript.pyannote[1042].end 8808.59534375
transcript.pyannote[1043].speaker SPEAKER_05
transcript.pyannote[1043].start 8808.71346875
transcript.pyannote[1043].end 8810.95784375
transcript.pyannote[1044].speaker SPEAKER_05
transcript.pyannote[1044].start 8811.56534375
transcript.pyannote[1044].end 8812.47659375
transcript.pyannote[1045].speaker SPEAKER_05
transcript.pyannote[1045].start 8813.92784375
transcript.pyannote[1045].end 8814.61971875
transcript.pyannote[1046].speaker SPEAKER_05
transcript.pyannote[1046].start 8815.41284375
transcript.pyannote[1046].end 8823.24284375
transcript.pyannote[1047].speaker SPEAKER_05
transcript.pyannote[1047].start 8824.05284375
transcript.pyannote[1047].end 8828.01846875
transcript.pyannote[1048].speaker SPEAKER_05
transcript.pyannote[1048].start 8828.47409375
transcript.pyannote[1048].end 8829.45284375
transcript.pyannote[1049].speaker SPEAKER_05
transcript.pyannote[1049].start 8829.84096875
transcript.pyannote[1049].end 8832.76034375
transcript.pyannote[1050].speaker SPEAKER_05
transcript.pyannote[1050].start 8833.06409375
transcript.pyannote[1050].end 8837.36721875
transcript.pyannote[1051].speaker SPEAKER_05
transcript.pyannote[1051].start 8837.67096875
transcript.pyannote[1051].end 8846.09159375
transcript.pyannote[1052].speaker SPEAKER_05
transcript.pyannote[1052].start 8846.51346875
transcript.pyannote[1052].end 8848.36971875
transcript.pyannote[1053].speaker SPEAKER_05
transcript.pyannote[1053].start 8848.67346875
transcript.pyannote[1053].end 8850.93471875
transcript.pyannote[1054].speaker SPEAKER_05
transcript.pyannote[1054].start 8851.87971875
transcript.pyannote[1054].end 8855.74409375
transcript.pyannote[1055].speaker SPEAKER_05
transcript.pyannote[1055].start 8856.43596875
transcript.pyannote[1055].end 8858.10659375
transcript.pyannote[1056].speaker SPEAKER_05
transcript.pyannote[1056].start 8858.56221875
transcript.pyannote[1056].end 8859.57471875
transcript.pyannote[1057].speaker SPEAKER_05
transcript.pyannote[1057].start 8859.76034375
transcript.pyannote[1057].end 8861.53221875
transcript.pyannote[1058].speaker SPEAKER_05
transcript.pyannote[1058].start 8861.76846875
transcript.pyannote[1058].end 8865.53159375
transcript.pyannote[1059].speaker SPEAKER_05
transcript.pyannote[1059].start 8865.98721875
transcript.pyannote[1059].end 8873.58096875
transcript.pyannote[1060].speaker SPEAKER_05
transcript.pyannote[1060].start 8874.32346875
transcript.pyannote[1060].end 8875.90971875
transcript.pyannote[1061].speaker SPEAKER_05
transcript.pyannote[1061].start 8876.24721875
transcript.pyannote[1061].end 8886.84471875
transcript.pyannote[1062].speaker SPEAKER_05
transcript.pyannote[1062].start 8887.21596875
transcript.pyannote[1062].end 8891.95784375
transcript.pyannote[1063].speaker SPEAKER_05
transcript.pyannote[1063].start 8893.00409375
transcript.pyannote[1063].end 8893.57784375
transcript.pyannote[1064].speaker SPEAKER_05
transcript.pyannote[1064].start 8894.18534375
transcript.pyannote[1064].end 8896.66596875
transcript.pyannote[1065].speaker SPEAKER_05
transcript.pyannote[1065].start 8897.25659375
transcript.pyannote[1065].end 8900.42909375
transcript.pyannote[1066].speaker SPEAKER_03
transcript.pyannote[1066].start 8900.95221875
transcript.pyannote[1066].end 8901.18846875
transcript.pyannote[1067].speaker SPEAKER_05
transcript.pyannote[1067].start 8901.67784375
transcript.pyannote[1067].end 8903.39909375
transcript.pyannote[1068].speaker SPEAKER_05
transcript.pyannote[1068].start 8906.06534375
transcript.pyannote[1068].end 8909.01846875
transcript.pyannote[1069].speaker SPEAKER_05
transcript.pyannote[1069].start 8909.94659375
transcript.pyannote[1069].end 8914.60409375
transcript.pyannote[1070].speaker SPEAKER_05
transcript.pyannote[1070].start 8915.19471875
transcript.pyannote[1070].end 8928.18846875
transcript.pyannote[1071].speaker SPEAKER_05
transcript.pyannote[1071].start 8928.57659375
transcript.pyannote[1071].end 8929.96034375
transcript.pyannote[1072].speaker SPEAKER_05
transcript.pyannote[1072].start 8930.21346875
transcript.pyannote[1072].end 8931.09096875
transcript.pyannote[1073].speaker SPEAKER_05
transcript.pyannote[1073].start 8931.88409375
transcript.pyannote[1073].end 8932.96409375
transcript.pyannote[1074].speaker SPEAKER_05
transcript.pyannote[1074].start 8933.48721875
transcript.pyannote[1074].end 8935.57971875
transcript.pyannote[1075].speaker SPEAKER_05
transcript.pyannote[1075].start 8936.86221875
transcript.pyannote[1075].end 8940.92909375
transcript.pyannote[1076].speaker SPEAKER_05
transcript.pyannote[1076].start 8941.46909375
transcript.pyannote[1076].end 8942.34659375
transcript.pyannote[1077].speaker SPEAKER_05
transcript.pyannote[1077].start 8944.13534375
transcript.pyannote[1077].end 8944.33784375
transcript.pyannote[1078].speaker SPEAKER_05
transcript.pyannote[1078].start 8944.37159375
transcript.pyannote[1078].end 8953.77096875
transcript.pyannote[1079].speaker SPEAKER_05
transcript.pyannote[1079].start 8955.08721875
transcript.pyannote[1079].end 8961.58409375
transcript.pyannote[1080].speaker SPEAKER_05
transcript.pyannote[1080].start 8963.23784375
transcript.pyannote[1080].end 8965.46534375
transcript.pyannote[1081].speaker SPEAKER_05
transcript.pyannote[1081].start 8966.03909375
transcript.pyannote[1081].end 8967.06846875
transcript.pyannote[1082].speaker SPEAKER_05
transcript.pyannote[1082].start 8969.02596875
transcript.pyannote[1082].end 8970.91596875
transcript.pyannote[1083].speaker SPEAKER_05
transcript.pyannote[1083].start 8971.50659375
transcript.pyannote[1083].end 8971.77659375
transcript.pyannote[1084].speaker SPEAKER_05
transcript.pyannote[1084].start 8972.13096875
transcript.pyannote[1084].end 8974.29096875
transcript.pyannote[1085].speaker SPEAKER_05
transcript.pyannote[1085].start 8974.67909375
transcript.pyannote[1085].end 8991.25034375
transcript.pyannote[1086].speaker SPEAKER_05
transcript.pyannote[1086].start 8991.55409375
transcript.pyannote[1086].end 9016.66409375
transcript.pyannote[1087].speaker SPEAKER_05
transcript.pyannote[1087].start 9017.55846875
transcript.pyannote[1087].end 9019.16159375
transcript.pyannote[1088].speaker SPEAKER_05
transcript.pyannote[1088].start 9020.51159375
transcript.pyannote[1088].end 9023.04284375
transcript.pyannote[1089].speaker SPEAKER_05
transcript.pyannote[1089].start 9026.56971875
transcript.pyannote[1089].end 9028.20659375
transcript.pyannote[1090].speaker SPEAKER_05
transcript.pyannote[1090].start 9029.62409375
transcript.pyannote[1090].end 9030.38346875
transcript.pyannote[1091].speaker SPEAKER_05
transcript.pyannote[1091].start 9034.16346875
transcript.pyannote[1091].end 9034.61909375
transcript.pyannote[1092].speaker SPEAKER_05
transcript.pyannote[1092].start 9035.36159375
transcript.pyannote[1092].end 9036.50909375
transcript.pyannote[1093].speaker SPEAKER_05
transcript.pyannote[1093].start 9038.23034375
transcript.pyannote[1093].end 9039.04034375
transcript.pyannote[1094].speaker SPEAKER_05
transcript.pyannote[1094].start 9039.56346875
transcript.pyannote[1094].end 9040.06971875
transcript.pyannote[1095].speaker SPEAKER_05
transcript.pyannote[1095].start 9041.16659375
transcript.pyannote[1095].end 9041.57159375
transcript.pyannote[1096].speaker SPEAKER_05
transcript.pyannote[1096].start 9043.57971875
transcript.pyannote[1096].end 9045.30096875
transcript.pyannote[1097].speaker SPEAKER_05
transcript.pyannote[1097].start 9045.62159375
transcript.pyannote[1097].end 9046.90409375
transcript.pyannote[1098].speaker SPEAKER_05
transcript.pyannote[1098].start 9046.95471875
transcript.pyannote[1098].end 9046.97159375
transcript.pyannote[1099].speaker SPEAKER_05
transcript.pyannote[1099].start 9047.42721875
transcript.pyannote[1099].end 9048.00096875
transcript.pyannote[1100].speaker SPEAKER_05
transcript.pyannote[1100].start 9048.91221875
transcript.pyannote[1100].end 9050.27909375
transcript.pyannote[1101].speaker SPEAKER_05
transcript.pyannote[1101].start 9052.03409375
transcript.pyannote[1101].end 9053.14784375
transcript.pyannote[1102].speaker SPEAKER_05
transcript.pyannote[1102].start 9057.48471875
transcript.pyannote[1102].end 9058.12596875
transcript.pyannote[1103].speaker SPEAKER_05
transcript.pyannote[1103].start 9060.99471875
transcript.pyannote[1103].end 9061.60221875
transcript.pyannote[1104].speaker SPEAKER_05
transcript.pyannote[1104].start 9062.20971875
transcript.pyannote[1104].end 9062.76659375
transcript.pyannote[1105].speaker SPEAKER_05
transcript.pyannote[1105].start 9064.09971875
transcript.pyannote[1105].end 9066.14159375
transcript.pyannote[1106].speaker SPEAKER_05
transcript.pyannote[1106].start 9066.85034375
transcript.pyannote[1106].end 9075.37221875
transcript.pyannote[1107].speaker SPEAKER_05
transcript.pyannote[1107].start 9075.96284375
transcript.pyannote[1107].end 9076.57034375
transcript.pyannote[1108].speaker SPEAKER_05
transcript.pyannote[1108].start 9076.67159375
transcript.pyannote[1108].end 9078.35909375
transcript.pyannote[1109].speaker SPEAKER_05
transcript.pyannote[1109].start 9078.54471875
transcript.pyannote[1109].end 9086.93159375
transcript.pyannote[1110].speaker SPEAKER_05
transcript.pyannote[1110].start 9087.64034375
transcript.pyannote[1110].end 9090.05346875
transcript.pyannote[1111].speaker SPEAKER_05
transcript.pyannote[1111].start 9090.17159375
transcript.pyannote[1111].end 9091.47096875
transcript.pyannote[1112].speaker SPEAKER_05
transcript.pyannote[1112].start 9091.87596875
transcript.pyannote[1112].end 9108.37971875
transcript.pyannote[1113].speaker SPEAKER_05
transcript.pyannote[1113].start 9109.74659375
transcript.pyannote[1113].end 9115.14659375
transcript.pyannote[1114].speaker SPEAKER_05
transcript.pyannote[1114].start 9115.88909375
transcript.pyannote[1114].end 9141.35346875
transcript.pyannote[1115].speaker SPEAKER_05
transcript.pyannote[1115].start 9142.07909375
transcript.pyannote[1115].end 9142.39971875
transcript.pyannote[1116].speaker SPEAKER_05
transcript.pyannote[1116].start 9142.55159375
transcript.pyannote[1116].end 9148.23846875
transcript.pyannote[1117].speaker SPEAKER_05
transcript.pyannote[1117].start 9148.66034375
transcript.pyannote[1117].end 9152.77784375
transcript.pyannote[1118].speaker SPEAKER_05
transcript.pyannote[1118].start 9153.97596875
transcript.pyannote[1118].end 9155.30909375
transcript.pyannote[1119].speaker SPEAKER_05
transcript.pyannote[1119].start 9155.46096875
transcript.pyannote[1119].end 9171.59346875
transcript.pyannote[1120].speaker SPEAKER_05
transcript.pyannote[1120].start 9172.30221875
transcript.pyannote[1120].end 9176.30159375
transcript.pyannote[1121].speaker SPEAKER_05
transcript.pyannote[1121].start 9177.88784375
transcript.pyannote[1121].end 9178.78221875
transcript.pyannote[1122].speaker SPEAKER_05
transcript.pyannote[1122].start 9179.13659375
transcript.pyannote[1122].end 9179.69346875
transcript.pyannote[1123].speaker SPEAKER_05
transcript.pyannote[1123].start 9180.60471875
transcript.pyannote[1123].end 9187.28721875
transcript.pyannote[1124].speaker SPEAKER_05
transcript.pyannote[1124].start 9188.26596875
transcript.pyannote[1124].end 9190.98284375
transcript.pyannote[1125].speaker SPEAKER_05
transcript.pyannote[1125].start 9191.25284375
transcript.pyannote[1125].end 9198.72846875
transcript.pyannote[1126].speaker SPEAKER_05
transcript.pyannote[1126].start 9198.96471875
transcript.pyannote[1126].end 9202.49159375
transcript.pyannote[1127].speaker SPEAKER_05
transcript.pyannote[1127].start 9202.89659375
transcript.pyannote[1127].end 9203.94284375
transcript.pyannote[1128].speaker SPEAKER_05
transcript.pyannote[1128].start 9204.38159375
transcript.pyannote[1128].end 9204.95534375
transcript.pyannote[1129].speaker SPEAKER_05
transcript.pyannote[1129].start 9205.14096875
transcript.pyannote[1129].end 9208.76909375
transcript.pyannote[1130].speaker SPEAKER_05
transcript.pyannote[1130].start 9209.83221875
transcript.pyannote[1130].end 9214.06784375
transcript.pyannote[1131].speaker SPEAKER_05
transcript.pyannote[1131].start 9214.55721875
transcript.pyannote[1131].end 9221.10471875
transcript.pyannote[1132].speaker SPEAKER_05
transcript.pyannote[1132].start 9227.61846875
transcript.pyannote[1132].end 9230.20034375
transcript.pyannote[1133].speaker SPEAKER_05
transcript.pyannote[1133].start 9231.49971875
transcript.pyannote[1133].end 9232.98471875
transcript.pyannote[1134].speaker SPEAKER_05
transcript.pyannote[1134].start 9234.48659375
transcript.pyannote[1134].end 9235.39784375
transcript.pyannote[1135].speaker SPEAKER_05
transcript.pyannote[1135].start 9235.63409375
transcript.pyannote[1135].end 9237.20346875
transcript.pyannote[1136].speaker SPEAKER_05
transcript.pyannote[1136].start 9238.87409375
transcript.pyannote[1136].end 9242.28284375
transcript.pyannote[1137].speaker SPEAKER_05
transcript.pyannote[1137].start 9242.58659375
transcript.pyannote[1137].end 9246.21471875
transcript.pyannote[1138].speaker SPEAKER_05
transcript.pyannote[1138].start 9246.75471875
transcript.pyannote[1138].end 9255.71534375
transcript.pyannote[1139].speaker SPEAKER_05
transcript.pyannote[1139].start 9256.57596875
transcript.pyannote[1139].end 9275.62784375
transcript.pyannote[1140].speaker SPEAKER_05
transcript.pyannote[1140].start 9276.37034375
transcript.pyannote[1140].end 9279.62721875
transcript.pyannote[1141].speaker SPEAKER_05
transcript.pyannote[1141].start 9280.25159375
transcript.pyannote[1141].end 9286.47846875
transcript.pyannote[1142].speaker SPEAKER_05
transcript.pyannote[1142].start 9291.89534375
transcript.pyannote[1142].end 9293.63346875
transcript.pyannote[1143].speaker SPEAKER_05
transcript.pyannote[1143].start 9294.27471875
transcript.pyannote[1143].end 9294.88221875
transcript.pyannote[1144].speaker SPEAKER_05
transcript.pyannote[1144].start 9297.68346875
transcript.pyannote[1144].end 9307.48784375
transcript.pyannote[1145].speaker SPEAKER_05
transcript.pyannote[1145].start 9307.82534375
transcript.pyannote[1145].end 9309.83346875
transcript.pyannote[1146].speaker SPEAKER_05
transcript.pyannote[1146].start 9310.28909375
transcript.pyannote[1146].end 9312.01034375
transcript.pyannote[1147].speaker SPEAKER_05
transcript.pyannote[1147].start 9312.71909375
transcript.pyannote[1147].end 9315.04784375
transcript.pyannote[1148].speaker SPEAKER_05
transcript.pyannote[1148].start 9316.17846875
transcript.pyannote[1148].end 9319.26659375
transcript.pyannote[1149].speaker SPEAKER_05
transcript.pyannote[1149].start 9320.98784375
transcript.pyannote[1149].end 9323.09721875
transcript.pyannote[1150].speaker SPEAKER_05
transcript.pyannote[1150].start 9323.70471875
transcript.pyannote[1150].end 9327.21471875
transcript.pyannote[1151].speaker SPEAKER_05
transcript.pyannote[1151].start 9327.50159375
transcript.pyannote[1151].end 9330.45471875
transcript.pyannote[1152].speaker SPEAKER_05
transcript.pyannote[1152].start 9332.32784375
transcript.pyannote[1152].end 9338.45346875
transcript.pyannote[1153].speaker SPEAKER_05
transcript.pyannote[1153].start 9339.65159375
transcript.pyannote[1153].end 9341.84534375
transcript.pyannote[1154].speaker SPEAKER_05
transcript.pyannote[1154].start 9342.19971875
transcript.pyannote[1154].end 9343.51596875
transcript.pyannote[1155].speaker SPEAKER_05
transcript.pyannote[1155].start 9344.25846875
transcript.pyannote[1155].end 9345.57471875
transcript.pyannote[1156].speaker SPEAKER_05
transcript.pyannote[1156].start 9346.04721875
transcript.pyannote[1156].end 9346.62096875
transcript.pyannote[1157].speaker SPEAKER_05
transcript.pyannote[1157].start 9347.36346875
transcript.pyannote[1157].end 9347.83596875
transcript.pyannote[1158].speaker SPEAKER_05
transcript.pyannote[1158].start 9348.30846875
transcript.pyannote[1158].end 9349.99596875
transcript.pyannote[1159].speaker SPEAKER_05
transcript.pyannote[1159].start 9350.16471875
transcript.pyannote[1159].end 9357.99471875
transcript.pyannote[1160].speaker SPEAKER_05
transcript.pyannote[1160].start 9358.41659375
transcript.pyannote[1160].end 9358.87221875
transcript.pyannote[1161].speaker SPEAKER_05
transcript.pyannote[1161].start 9359.32784375
transcript.pyannote[1161].end 9361.69034375
transcript.pyannote[1162].speaker SPEAKER_05
transcript.pyannote[1162].start 9361.77471875
transcript.pyannote[1162].end 9362.51721875
transcript.pyannote[1163].speaker SPEAKER_08
transcript.pyannote[1163].start 9362.97284375
transcript.pyannote[1163].end 9363.02346875
transcript.pyannote[1164].speaker SPEAKER_05
transcript.pyannote[1164].start 9363.02346875
transcript.pyannote[1164].end 9363.29346875
transcript.pyannote[1165].speaker SPEAKER_08
transcript.pyannote[1165].start 9363.20909375
transcript.pyannote[1165].end 9364.06971875
transcript.pyannote[1166].speaker SPEAKER_05
transcript.pyannote[1166].start 9365.31846875
transcript.pyannote[1166].end 9368.72721875
transcript.pyannote[1167].speaker SPEAKER_05
transcript.pyannote[1167].start 9370.21221875
transcript.pyannote[1167].end 9380.08409375
transcript.pyannote[1168].speaker SPEAKER_05
transcript.pyannote[1168].start 9380.35409375
transcript.pyannote[1168].end 9383.69534375
transcript.pyannote[1169].speaker SPEAKER_05
transcript.pyannote[1169].start 9384.47159375
transcript.pyannote[1169].end 9386.26034375
transcript.pyannote[1170].speaker SPEAKER_05
transcript.pyannote[1170].start 9386.42909375
transcript.pyannote[1170].end 9388.18409375
transcript.pyannote[1171].speaker SPEAKER_05
transcript.pyannote[1171].start 9389.83784375
transcript.pyannote[1171].end 9390.59721875
transcript.pyannote[1172].speaker SPEAKER_05
transcript.pyannote[1172].start 9390.76596875
transcript.pyannote[1172].end 9400.41846875
transcript.pyannote[1173].speaker SPEAKER_05
transcript.pyannote[1173].start 9401.29596875
transcript.pyannote[1173].end 9408.48471875
transcript.pyannote[1174].speaker SPEAKER_05
transcript.pyannote[1174].start 9408.78846875
transcript.pyannote[1174].end 9415.16721875
transcript.pyannote[1175].speaker SPEAKER_05
transcript.pyannote[1175].start 9415.40346875
transcript.pyannote[1175].end 9432.39659375
transcript.pyannote[1176].speaker SPEAKER_05
transcript.pyannote[1176].start 9432.58221875
transcript.pyannote[1176].end 9440.98596875
transcript.pyannote[1177].speaker SPEAKER_05
transcript.pyannote[1177].start 9441.34034375
transcript.pyannote[1177].end 9444.34409375
transcript.pyannote[1178].speaker SPEAKER_05
transcript.pyannote[1178].start 9444.83346875
transcript.pyannote[1178].end 9458.36721875
transcript.pyannote[1179].speaker SPEAKER_05
transcript.pyannote[1179].start 9459.05909375
transcript.pyannote[1179].end 9460.57784375
transcript.pyannote[1180].speaker SPEAKER_05
transcript.pyannote[1180].start 9461.03346875
transcript.pyannote[1180].end 9466.65284375
transcript.pyannote[1181].speaker SPEAKER_05
transcript.pyannote[1181].start 9467.58096875
transcript.pyannote[1181].end 9475.81596875
transcript.pyannote[1182].speaker SPEAKER_05
transcript.pyannote[1182].start 9476.03534375
transcript.pyannote[1182].end 9478.46534375
transcript.pyannote[1183].speaker SPEAKER_05
transcript.pyannote[1183].start 9479.81534375
transcript.pyannote[1183].end 9489.40034375
transcript.pyannote[1184].speaker SPEAKER_09
transcript.pyannote[1184].start 9489.97409375
transcript.pyannote[1184].end 9490.02471875
transcript.pyannote[1185].speaker SPEAKER_05
transcript.pyannote[1185].start 9494.27721875
transcript.pyannote[1185].end 9496.06596875
transcript.pyannote[1186].speaker SPEAKER_05
transcript.pyannote[1186].start 9498.05721875
transcript.pyannote[1186].end 9499.60971875
transcript.pyannote[1187].speaker SPEAKER_05
transcript.pyannote[1187].start 9499.94721875
transcript.pyannote[1187].end 9507.38909375
transcript.pyannote[1188].speaker SPEAKER_05
transcript.pyannote[1188].start 9508.55346875
transcript.pyannote[1188].end 9514.03784375
transcript.pyannote[1189].speaker SPEAKER_04
transcript.pyannote[1189].start 9514.24034375
transcript.pyannote[1189].end 9514.59471875
transcript.pyannote[1190].speaker SPEAKER_05
transcript.pyannote[1190].start 9514.81409375
transcript.pyannote[1190].end 9516.09659375
transcript.pyannote[1191].speaker SPEAKER_05
transcript.pyannote[1191].start 9516.90659375
transcript.pyannote[1191].end 9517.27784375
transcript.pyannote[1192].speaker SPEAKER_05
transcript.pyannote[1192].start 9518.99909375
transcript.pyannote[1192].end 9521.29409375
transcript.pyannote[1193].speaker SPEAKER_05
transcript.pyannote[1193].start 9521.51346875
transcript.pyannote[1193].end 9526.25534375
transcript.pyannote[1194].speaker SPEAKER_09
transcript.pyannote[1194].start 9537.07221875
transcript.pyannote[1194].end 9537.76409375
transcript.pyannote[1195].speaker SPEAKER_05
transcript.pyannote[1195].start 9540.58221875
transcript.pyannote[1195].end 9543.13034375
transcript.pyannote[1196].speaker SPEAKER_09
transcript.pyannote[1196].start 9541.22346875
transcript.pyannote[1196].end 9541.37534375
transcript.pyannote[1197].speaker SPEAKER_09
transcript.pyannote[1197].start 9541.42596875
transcript.pyannote[1197].end 9541.45971875
transcript.pyannote[1198].speaker SPEAKER_05
transcript.pyannote[1198].start 9543.21471875
transcript.pyannote[1198].end 9545.10471875
transcript.pyannote[1199].speaker SPEAKER_05
transcript.pyannote[1199].start 9545.61096875
transcript.pyannote[1199].end 9546.92721875
transcript.pyannote[1200].speaker SPEAKER_05
transcript.pyannote[1200].start 9546.97784375
transcript.pyannote[1200].end 9547.04534375
transcript.pyannote[1201].speaker SPEAKER_05
transcript.pyannote[1201].start 9547.14659375
transcript.pyannote[1201].end 9547.97346875
transcript.pyannote[1202].speaker SPEAKER_05
transcript.pyannote[1202].start 9549.81284375
transcript.pyannote[1202].end 9552.07409375
transcript.pyannote[1203].speaker SPEAKER_05
transcript.pyannote[1203].start 9552.49596875
transcript.pyannote[1203].end 9556.22534375
transcript.pyannote[1204].speaker SPEAKER_00
transcript.pyannote[1204].start 9555.31409375
transcript.pyannote[1204].end 9555.82034375
transcript.pyannote[1205].speaker SPEAKER_05
transcript.pyannote[1205].start 9556.30971875
transcript.pyannote[1205].end 9564.51096875
transcript.pyannote[1206].speaker SPEAKER_05
transcript.pyannote[1206].start 9565.69221875
transcript.pyannote[1206].end 9565.91159375
transcript.pyannote[1207].speaker SPEAKER_05
transcript.pyannote[1207].start 9565.96221875
transcript.pyannote[1207].end 9566.09721875
transcript.pyannote[1208].speaker SPEAKER_05
transcript.pyannote[1208].start 9566.46846875
transcript.pyannote[1208].end 9567.02534375
transcript.pyannote[1209].speaker SPEAKER_05
transcript.pyannote[1209].start 9568.24034375
transcript.pyannote[1209].end 9573.67409375
transcript.pyannote[1210].speaker SPEAKER_00
transcript.pyannote[1210].start 9570.94034375
transcript.pyannote[1210].end 9571.05846875
transcript.pyannote[1211].speaker SPEAKER_05
transcript.pyannote[1211].start 9577.31909375
transcript.pyannote[1211].end 9578.04471875
transcript.pyannote[1212].speaker SPEAKER_05
transcript.pyannote[1212].start 9578.53409375
transcript.pyannote[1212].end 9579.12471875
transcript.pyannote[1213].speaker SPEAKER_05
transcript.pyannote[1213].start 9579.49596875
transcript.pyannote[1213].end 9582.02721875
transcript.pyannote[1214].speaker SPEAKER_05
transcript.pyannote[1214].start 9582.46596875
transcript.pyannote[1214].end 9583.56284375
transcript.pyannote[1215].speaker SPEAKER_05
transcript.pyannote[1215].start 9583.69784375
transcript.pyannote[1215].end 9584.15346875
transcript.pyannote[1216].speaker SPEAKER_05
transcript.pyannote[1216].start 9584.54159375
transcript.pyannote[1216].end 9584.98034375
transcript.pyannote[1217].speaker SPEAKER_05
transcript.pyannote[1217].start 9585.33471875
transcript.pyannote[1217].end 9586.04346875
transcript.pyannote[1218].speaker SPEAKER_05
transcript.pyannote[1218].start 9586.39784375
transcript.pyannote[1218].end 9594.02534375
transcript.pyannote[1219].speaker SPEAKER_05
transcript.pyannote[1219].start 9595.39221875
transcript.pyannote[1219].end 9596.53971875
transcript.pyannote[1220].speaker SPEAKER_05
transcript.pyannote[1220].start 9597.90659375
transcript.pyannote[1220].end 9599.49284375
transcript.pyannote[1221].speaker SPEAKER_05
transcript.pyannote[1221].start 9600.30284375
transcript.pyannote[1221].end 9600.91034375
transcript.pyannote[1222].speaker SPEAKER_05
transcript.pyannote[1222].start 9601.56846875
transcript.pyannote[1222].end 9602.37846875
transcript.pyannote[1223].speaker SPEAKER_05
transcript.pyannote[1223].start 9603.01971875
transcript.pyannote[1223].end 9603.96471875
transcript.pyannote[1224].speaker SPEAKER_05
transcript.pyannote[1224].start 9604.31909375
transcript.pyannote[1224].end 9605.97284375
transcript.pyannote[1225].speaker SPEAKER_05
transcript.pyannote[1225].start 9607.99784375
transcript.pyannote[1225].end 9610.27596875
transcript.pyannote[1226].speaker SPEAKER_05
transcript.pyannote[1226].start 9610.74846875
transcript.pyannote[1226].end 9613.48221875
transcript.pyannote[1227].speaker SPEAKER_05
transcript.pyannote[1227].start 9613.51596875
transcript.pyannote[1227].end 9615.10221875
transcript.pyannote[1228].speaker SPEAKER_05
transcript.pyannote[1228].start 9615.99659375
transcript.pyannote[1228].end 9616.24971875
transcript.pyannote[1229].speaker SPEAKER_05
transcript.pyannote[1229].start 9616.57034375
transcript.pyannote[1229].end 9616.95846875
transcript.pyannote[1230].speaker SPEAKER_05
transcript.pyannote[1230].start 9617.53221875
transcript.pyannote[1230].end 9618.42659375
transcript.pyannote[1231].speaker SPEAKER_05
transcript.pyannote[1231].start 9620.60346875
transcript.pyannote[1231].end 9630.54284375
transcript.pyannote[1232].speaker SPEAKER_00
transcript.pyannote[1232].start 9625.10909375
transcript.pyannote[1232].end 9625.12596875
transcript.pyannote[1233].speaker SPEAKER_10
transcript.pyannote[1233].start 9625.12596875
transcript.pyannote[1233].end 9625.31159375
transcript.pyannote[1234].speaker SPEAKER_00
transcript.pyannote[1234].start 9625.31159375
transcript.pyannote[1234].end 9625.37909375
transcript.pyannote[1235].speaker SPEAKER_00
transcript.pyannote[1235].start 9626.59409375
transcript.pyannote[1235].end 9627.03284375
transcript.pyannote[1236].speaker SPEAKER_08
transcript.pyannote[1236].start 9627.03284375
transcript.pyannote[1236].end 9627.62346875
transcript.pyannote[1237].speaker SPEAKER_00
transcript.pyannote[1237].start 9627.62346875
transcript.pyannote[1237].end 9627.65721875
transcript.pyannote[1238].speaker SPEAKER_05
transcript.pyannote[1238].start 9630.89721875
transcript.pyannote[1238].end 9634.89659375
transcript.pyannote[1239].speaker SPEAKER_08
transcript.pyannote[1239].start 9633.44534375
transcript.pyannote[1239].end 9634.98096875
transcript.pyannote[1240].speaker SPEAKER_05
transcript.pyannote[1240].start 9635.48721875
transcript.pyannote[1240].end 9648.93659375
transcript.pyannote[1241].speaker SPEAKER_05
transcript.pyannote[1241].start 9649.37534375
transcript.pyannote[1241].end 9652.88534375
transcript.pyannote[1242].speaker SPEAKER_05
transcript.pyannote[1242].start 9653.83034375
transcript.pyannote[1242].end 9656.09159375
transcript.pyannote[1243].speaker SPEAKER_05
transcript.pyannote[1243].start 9656.63159375
transcript.pyannote[1243].end 9663.66846875
transcript.pyannote[1244].speaker SPEAKER_05
transcript.pyannote[1244].start 9664.84971875
transcript.pyannote[1244].end 9670.50284375
transcript.pyannote[1245].speaker SPEAKER_05
transcript.pyannote[1245].start 9671.78534375
transcript.pyannote[1245].end 9672.17346875
transcript.pyannote[1246].speaker SPEAKER_05
transcript.pyannote[1246].start 9673.74284375
transcript.pyannote[1246].end 9675.41346875
transcript.pyannote[1247].speaker SPEAKER_05
transcript.pyannote[1247].start 9676.20659375
transcript.pyannote[1247].end 9677.79284375
transcript.pyannote[1248].speaker SPEAKER_05
transcript.pyannote[1248].start 9677.87721875
transcript.pyannote[1248].end 9684.64409375
transcript.pyannote[1249].speaker SPEAKER_05
transcript.pyannote[1249].start 9684.94784375
transcript.pyannote[1249].end 9687.95159375
transcript.pyannote[1250].speaker SPEAKER_05
transcript.pyannote[1250].start 9688.55909375
transcript.pyannote[1250].end 9689.72346875
transcript.pyannote[1251].speaker SPEAKER_05
transcript.pyannote[1251].start 9690.93846875
transcript.pyannote[1251].end 9691.59659375
transcript.pyannote[1252].speaker SPEAKER_05
transcript.pyannote[1252].start 9691.69784375
transcript.pyannote[1252].end 9693.67221875
transcript.pyannote[1253].speaker SPEAKER_05
transcript.pyannote[1253].start 9694.90409375
transcript.pyannote[1253].end 9702.71721875
transcript.pyannote[1254].speaker SPEAKER_05
transcript.pyannote[1254].start 9702.98721875
transcript.pyannote[1254].end 9704.21909375
transcript.pyannote[1255].speaker SPEAKER_05
transcript.pyannote[1255].start 9704.40471875
transcript.pyannote[1255].end 9705.04596875
transcript.pyannote[1256].speaker SPEAKER_05
transcript.pyannote[1256].start 9711.54284375
transcript.pyannote[1256].end 9720.80721875
transcript.pyannote[1257].speaker SPEAKER_05
transcript.pyannote[1257].start 9723.05159375
transcript.pyannote[1257].end 9725.12721875
transcript.pyannote[1258].speaker SPEAKER_05
transcript.pyannote[1258].start 9725.71784375
transcript.pyannote[1258].end 9734.71221875
transcript.pyannote[1259].speaker SPEAKER_05
transcript.pyannote[1259].start 9735.08346875
transcript.pyannote[1259].end 9741.37784375
transcript.pyannote[1260].speaker SPEAKER_05
transcript.pyannote[1260].start 9741.83346875
transcript.pyannote[1260].end 9750.43971875
transcript.pyannote[1261].speaker SPEAKER_04
transcript.pyannote[1261].start 9743.65596875
transcript.pyannote[1261].end 9743.75721875
transcript.pyannote[1262].speaker SPEAKER_04
transcript.pyannote[1262].start 9745.44471875
transcript.pyannote[1262].end 9746.32221875
transcript.pyannote[1263].speaker SPEAKER_05
transcript.pyannote[1263].start 9750.69284375
transcript.pyannote[1263].end 9755.67096875
transcript.pyannote[1264].speaker SPEAKER_08
transcript.pyannote[1264].start 9753.83159375
transcript.pyannote[1264].end 9753.94971875
transcript.pyannote[1265].speaker SPEAKER_08
transcript.pyannote[1265].start 9754.11846875
transcript.pyannote[1265].end 9755.41784375
transcript.pyannote[1266].speaker SPEAKER_05
transcript.pyannote[1266].start 9756.04221875
transcript.pyannote[1266].end 9762.72471875
transcript.pyannote[1267].speaker SPEAKER_04
transcript.pyannote[1267].start 9759.40034375
transcript.pyannote[1267].end 9761.62784375
transcript.pyannote[1268].speaker SPEAKER_05
transcript.pyannote[1268].start 9763.07909375
transcript.pyannote[1268].end 9781.16909375
transcript.pyannote[1269].speaker SPEAKER_04
transcript.pyannote[1269].start 9770.43659375
transcript.pyannote[1269].end 9771.07784375
transcript.pyannote[1270].speaker SPEAKER_00
transcript.pyannote[1270].start 9771.07784375
transcript.pyannote[1270].end 9771.11159375
transcript.pyannote[1271].speaker SPEAKER_05
transcript.pyannote[1271].start 9782.77221875
transcript.pyannote[1271].end 9787.14284375
transcript.pyannote[1272].speaker SPEAKER_05
transcript.pyannote[1272].start 9787.78409375
transcript.pyannote[1272].end 9788.32409375
transcript.pyannote[1273].speaker SPEAKER_05
transcript.pyannote[1273].start 9790.85534375
transcript.pyannote[1273].end 9796.55909375
transcript.pyannote[1274].speaker SPEAKER_05
transcript.pyannote[1274].start 9796.99784375
transcript.pyannote[1274].end 9798.98909375
transcript.pyannote[1275].speaker SPEAKER_05
transcript.pyannote[1275].start 9799.22534375
transcript.pyannote[1275].end 9805.63784375
transcript.pyannote[1276].speaker SPEAKER_05
transcript.pyannote[1276].start 9810.22784375
transcript.pyannote[1276].end 9812.48909375
transcript.pyannote[1277].speaker SPEAKER_05
transcript.pyannote[1277].start 9814.17659375
transcript.pyannote[1277].end 9815.13846875
transcript.pyannote[1278].speaker SPEAKER_05
transcript.pyannote[1278].start 9821.90534375
transcript.pyannote[1278].end 9825.17909375
transcript.pyannote[1279].speaker SPEAKER_05
transcript.pyannote[1279].start 9833.76846875
transcript.pyannote[1279].end 9838.05471875
transcript.pyannote[1280].speaker SPEAKER_05
transcript.pyannote[1280].start 9838.40909375
transcript.pyannote[1280].end 9845.44596875
transcript.pyannote[1281].speaker SPEAKER_05
transcript.pyannote[1281].start 9845.73284375
transcript.pyannote[1281].end 9856.88721875
transcript.pyannote[1282].speaker SPEAKER_00
transcript.pyannote[1282].start 9851.94284375
transcript.pyannote[1282].end 9852.02721875
transcript.pyannote[1283].speaker SPEAKER_08
transcript.pyannote[1283].start 9852.02721875
transcript.pyannote[1283].end 9854.50784375
transcript.pyannote[1284].speaker SPEAKER_00
transcript.pyannote[1284].start 9854.50784375
transcript.pyannote[1284].end 9854.54159375
transcript.pyannote[1285].speaker SPEAKER_05
transcript.pyannote[1285].start 9857.10659375
transcript.pyannote[1285].end 9870.37034375
transcript.pyannote[1286].speaker SPEAKER_05
transcript.pyannote[1286].start 9870.77534375
transcript.pyannote[1286].end 9877.03596875
transcript.pyannote[1287].speaker SPEAKER_05
transcript.pyannote[1287].start 9877.64346875
transcript.pyannote[1287].end 9878.60534375
transcript.pyannote[1288].speaker SPEAKER_05
transcript.pyannote[1288].start 9881.50784375
transcript.pyannote[1288].end 9895.07534375
transcript.pyannote[1289].speaker SPEAKER_05
transcript.pyannote[1289].start 9895.64909375
transcript.pyannote[1289].end 9896.94846875
transcript.pyannote[1290].speaker SPEAKER_05
transcript.pyannote[1290].start 9898.18034375
transcript.pyannote[1290].end 9898.99034375
transcript.pyannote[1291].speaker SPEAKER_05
transcript.pyannote[1291].start 9899.73284375
transcript.pyannote[1291].end 9900.07034375
transcript.pyannote[1292].speaker SPEAKER_05
transcript.pyannote[1292].start 9902.80409375
transcript.pyannote[1292].end 9905.85846875
transcript.pyannote[1293].speaker SPEAKER_00
transcript.pyannote[1293].start 9908.45721875
transcript.pyannote[1293].end 9909.52034375
transcript.pyannote[1294].speaker SPEAKER_00
transcript.pyannote[1294].start 9911.05596875
transcript.pyannote[1294].end 9911.44409375
transcript.pyannote[1295].speaker SPEAKER_05
transcript.pyannote[1295].start 9912.20346875
transcript.pyannote[1295].end 9914.00909375
transcript.pyannote[1296].speaker SPEAKER_05
transcript.pyannote[1296].start 9914.22846875
transcript.pyannote[1296].end 9915.79784375
transcript.pyannote[1297].speaker SPEAKER_05
transcript.pyannote[1297].start 9918.61596875
transcript.pyannote[1297].end 9919.40909375
transcript.pyannote[1298].speaker SPEAKER_05
transcript.pyannote[1298].start 9919.74659375
transcript.pyannote[1298].end 9921.33284375
transcript.pyannote[1299].speaker SPEAKER_05
transcript.pyannote[1299].start 9923.39159375
transcript.pyannote[1299].end 9923.86409375
transcript.pyannote[1300].speaker SPEAKER_05
transcript.pyannote[1300].start 9923.96534375
transcript.pyannote[1300].end 9927.94784375
transcript.pyannote[1301].speaker SPEAKER_05
transcript.pyannote[1301].start 9928.01534375
transcript.pyannote[1301].end 9941.81909375
transcript.pyannote[1302].speaker SPEAKER_00
transcript.pyannote[1302].start 9940.72221875
transcript.pyannote[1302].end 9940.90784375
transcript.pyannote[1303].speaker SPEAKER_05
transcript.pyannote[1303].start 9942.20721875
transcript.pyannote[1303].end 9948.31596875
transcript.pyannote[1304].speaker SPEAKER_05
transcript.pyannote[1304].start 9948.75471875
transcript.pyannote[1304].end 9960.98909375
transcript.pyannote[1305].speaker SPEAKER_00
transcript.pyannote[1305].start 9952.82159375
transcript.pyannote[1305].end 9953.96909375
transcript.pyannote[1306].speaker SPEAKER_04
transcript.pyannote[1306].start 9960.38159375
transcript.pyannote[1306].end 9960.95534375
transcript.pyannote[1307].speaker SPEAKER_05
transcript.pyannote[1307].start 9962.10284375
transcript.pyannote[1307].end 9963.82409375
transcript.pyannote[1308].speaker SPEAKER_05
transcript.pyannote[1308].start 9964.81971875
transcript.pyannote[1308].end 9967.85721875
transcript.pyannote[1309].speaker SPEAKER_00
transcript.pyannote[1309].start 9969.19034375
transcript.pyannote[1309].end 9970.70909375
transcript.pyannote[1310].speaker SPEAKER_00
transcript.pyannote[1310].start 9971.31659375
transcript.pyannote[1310].end 9973.07159375
transcript.pyannote[1311].speaker SPEAKER_00
transcript.pyannote[1311].start 9973.93221875
transcript.pyannote[1311].end 9976.31159375
transcript.pyannote[1312].speaker SPEAKER_05
transcript.pyannote[1312].start 9974.75909375
transcript.pyannote[1312].end 9975.73784375
transcript.pyannote[1313].speaker SPEAKER_00
transcript.pyannote[1313].start 9976.54784375
transcript.pyannote[1313].end 9979.16346875
transcript.pyannote[1314].speaker SPEAKER_00
transcript.pyannote[1314].start 9979.73721875
transcript.pyannote[1314].end 9980.95221875
transcript.pyannote[1315].speaker SPEAKER_00
transcript.pyannote[1315].start 9982.48784375
transcript.pyannote[1315].end 9987.49971875
transcript.pyannote[1316].speaker SPEAKER_00
transcript.pyannote[1316].start 9987.76971875
transcript.pyannote[1316].end 10047.40596875
transcript.pyannote[1317].speaker SPEAKER_08
transcript.pyannote[1317].start 10023.07221875
transcript.pyannote[1317].end 10024.96221875
transcript.pyannote[1318].speaker SPEAKER_08
transcript.pyannote[1318].start 10026.16034375
transcript.pyannote[1318].end 10026.32909375
transcript.pyannote[1319].speaker SPEAKER_05
transcript.pyannote[1319].start 10026.32909375
transcript.pyannote[1319].end 10027.51034375
transcript.pyannote[1320].speaker SPEAKER_00
transcript.pyannote[1320].start 10048.77284375
transcript.pyannote[1320].end 10054.02096875
transcript.pyannote[1321].speaker SPEAKER_00
transcript.pyannote[1321].start 10054.22346875
transcript.pyannote[1321].end 10056.19784375
transcript.pyannote[1322].speaker SPEAKER_00
transcript.pyannote[1322].start 10056.43409375
transcript.pyannote[1322].end 10070.17034375
transcript.pyannote[1323].speaker SPEAKER_00
transcript.pyannote[1323].start 10070.62596875
transcript.pyannote[1323].end 10077.81471875
transcript.pyannote[1324].speaker SPEAKER_00
transcript.pyannote[1324].start 10081.39221875
transcript.pyannote[1324].end 10081.40909375
transcript.pyannote[1325].speaker SPEAKER_05
transcript.pyannote[1325].start 10081.40909375
transcript.pyannote[1325].end 10082.84346875
transcript.pyannote[1326].speaker SPEAKER_05
transcript.pyannote[1326].start 10085.42534375
transcript.pyannote[1326].end 10093.00221875
transcript.pyannote[1327].speaker SPEAKER_00
transcript.pyannote[1327].start 10098.09846875
transcript.pyannote[1327].end 10100.54534375
transcript.pyannote[1328].speaker SPEAKER_00
transcript.pyannote[1328].start 10101.33846875
transcript.pyannote[1328].end 10102.06409375
transcript.pyannote[1329].speaker SPEAKER_10
transcript.pyannote[1329].start 10102.06409375
transcript.pyannote[1329].end 10102.08096875
transcript.whisperx[0].start 343.404
transcript.whisperx[0].end 344.827
transcript.whisperx[0].text 要不要在這邊簽到比較好
transcript.whisperx[1].start 461.698
transcript.whisperx[1].end 461.937
transcript.whisperx[1].text
transcript.whisperx[2].start 574.451
transcript.whisperx[2].end 581.303
transcript.whisperx[2].text and then red in the ductal archand specifically because the ductal arch isoriented more in a
transcript.whisperx[3].start 882.379
transcript.whisperx[3].end 905.016
transcript.whisperx[3].text 總統先生 閱讀了DeepSeek的案例在要您對這家中國AI公司及其對OpenAI的挑戰有何出不看法您認為這對美國的AI發展戰略特別是關於算力資源分配和開源策略的權衡帶來了那些新的考量您對於確保美國在AI領域的領先地位有哪些更具體的想法呢
transcript.whisperx[4].start 958.842
transcript.whisperx[4].end 981.464
transcript.whisperx[4].text 總統先生您的回應相當直接我理解您對於新興AI技術可能帶來的影響有所警惕關於DeepSeek以及中國AI的崛起我認為我們不能掉以輕心他們的快速發展確實對美國的AI領先地位構成挑戰尤其是在算力資源的增多和開源策略的應用上就您提到的開源
transcript.whisperx[5].start 1049.511
transcript.whisperx[5].end 1078.267
transcript.whisperx[5].text 受到强烈的不越狱防卫您的眼神锐利略带奴役禁闭的罪存更陷入出您的决绝虽然我能理解您对问题的自律反应但我们必须冷静看待Deep Seek的崛起确实对美国的AI战略构成了一种挑战而这个挑战不容忽视我们需要更深入的分析Deep Seek的技术优势以及中国在算理资源和开源策略上的布局这并非威严送听而是关乎国家
transcript.whisperx[6].start 1122.014
transcript.whisperx[6].end 1141.221
transcript.whisperx[6].text 尊敬的總統先生我理解您對於我之前問題措辭的疑慮也理解您對於台灣地位的重視我稱之的向您道歉若我的提問方式讓您覺得台灣受到侵蝕這絕非我的本意您的反應提醒我在處理設計國家主權政治敏感性
transcript.whisperx[7].start 3499.819
transcript.whisperx[7].end 3521.309
transcript.whisperx[7].text 我先開個場首先歡迎各委員辦公室的助理來參加今天的課程今天的課程是由我們立法院人事處還有我們經濟部的產業技術師還有助理工會所舉辦的一場活動今天活動很特別
transcript.whisperx[8].start 3522.129
transcript.whisperx[8].end 3541.916
transcript.whisperx[8].text 講AI我想在座的同仁應該有些助理已經會用AI的一些去找資料那有些可能還不曉得那沒關係今天很高興有邀請到我們工業院那個產業學院的數位訓練長廖兆宏博士來講今天的課程那我們立法院人事處的陳叔
transcript.whisperx[9].start 3545.13
transcript.whisperx[9].end 3558.653
transcript.whisperx[9].text 科長還有秋葉群秘書也在現場謝謝他們也都跟助理工會配合辦一些活動那在課程開始之前我先邀請我們經濟部產業技術室的秋秋蕙市長來幫我們支持一下好不好
transcript.whisperx[10].start 3561.774
transcript.whisperx[10].end 3583.024
transcript.whisperx[10].text 田副理事長還有人事處的陳科長還有各位委員辦公室的主任副主任以及國會助理們大家午安我非常榮幸有這個機會跟我們的國會助理工會以及人事處來共同主辦這樣的一個活動事實上
transcript.whisperx[11].start 3584.625
transcript.whisperx[11].end 3606.179
transcript.whisperx[11].text 我們部長也非常重視這個AI的人陪他也甚至要求我們的經濟部的同仁們也都要去上這個AI的課他認為說這個AI不只是幫助產業也要幫助那個行政的政府的人員透過AI來提升競爭力所以那時候部長人陪是叫我幫忙主辦找講師
transcript.whisperx[12].start 3608.841
transcript.whisperx[12].end 3627.791
transcript.whisperx[12].text 當初我經過一番打聽就發現公文院的這個產業學院的這個數位教育訓練長廖兆宏廖博士他是公文院有關於這個AI人才培訓的第一把交椅所以我當初我們經濟部內部的人才培訓也是找廖博士來訓練的那這一次跟那個
transcript.whisperx[13].start 3629.732
transcript.whisperx[13].end 3648.362
transcript.whisperx[13].text 這個田副理事長一起來討論這個事情的時候我就想到這個廖博士在我們經濟部內部訓練的時候得到很大的這個迴響跟肯定所以這一次我們也就是跟工業的這個產業學院再次的合作來舉辦的這樣的一個訓練活動那各位知道
transcript.whisperx[14].start 3649.722
transcript.whisperx[14].end 3674.191
transcript.whisperx[14].text AI現在是一個熱潮可以說是在產業界完全是蓬勃的發展那它在百工百業都可以來提升他們這些產業的一些不管是行政的能力啦還是說工作的效率啦乃至於說自動化或者是說做更好的這個決策可以說是產生了一個很大很大的一個產業的革命啦那我覺得
transcript.whisperx[15].start 3675.451
transcript.whisperx[15].end 3698.07
transcript.whisperx[15].text 作为一个我们在立法机关怎么样能够在法案上面工作上面都能够透过AI来帮助我们提升我们工作的效率乃至于我们对AI更了解将来在相关的一些预算或者是说法案方面能够做更好的决策我想基于这样的一个目的的话副理事长
transcript.whisperx[16].start 3698.65
transcript.whisperx[16].end 3717.335
transcript.whisperx[16].text 跟我們才這一次來安排這樣子的一個課程那希望大家可以從今天的這個課程裡面能夠幫助各位可以提升更多的這個行政效率那如果有需要的話我們也可以繼續來做安排那謝謝各位今天波隆的這個出席進行各位會議指導 謝謝好 我們謝謝邱師長
transcript.whisperx[17].start 3722.301
transcript.whisperx[17].end 3742.653
transcript.whisperx[17].text 邱師長他也是台大機械工程系的博士雖然是學理工的 可是他對人文其實是很追求你只要去注意看邱師長的臉書他幾乎每個禮拜六禮拜天都去爬山他也出了一本一山一故事的書他對歷史人文是蠻轉眼蠻深的 不簡單科技人能這樣也不簡單
transcript.whisperx[18].start 3746.955
transcript.whisperx[18].end 3771.98
transcript.whisperx[18].text 經濟部的產業技術大家知道的話其實我們國內的那個科專預算就在師長這個師所以他掌管一年掌管預算超過好幾個部位的預算所以蠻重要的對我們國內的產業科技研發不簡單那接下來我們再掌聲來邀請我們今天的講師我們工業產業學院數位訓練長的廖昭仰博士他的經歷也是非常豐富他也是經歷
transcript.whisperx[19].start 3773.26
transcript.whisperx[19].end 3791.262
transcript.whisperx[19].text 不管是教育部 數位部 經濟部的一些多個計畫主持人那同時也擔任過那個Microsoft IBM PwC的特聘顧問那也在世界一些500強的企業擔任顧問所以說也是學績力相當有豐富那我們就熱烈掌聲來請我們廖博士今天為我們來講課好不好 謝謝
transcript.whisperx[20].start 3812.23
transcript.whisperx[20].end 3832.002
transcript.whisperx[20].text 好 謝謝司長跟這個副理事長我是趙宏 叫我醬也可以那今天非常榮幸有這個機會能夠跟大家在這個好像有兩個小時一個半小時左右的時間那剛剛副理事長已經大略介紹過我就不再贅述就是
transcript.whisperx[21].start 3833.583
transcript.whisperx[21].end 3855.359
transcript.whisperx[21].text 吳少爺兼顧多能鄙視就是產管學研兩岸三地五四海跑很多地方然後又再度回到工研院來這個20年後再回首大概是這樣的一個情況那AI這一題大概因為我從比較早年的時候就是年輕的時候大學的時候開始創業就一直在IT數位這個領域然後後來在整個的這個政府部門
transcript.whisperx[22].start 3861.543
transcript.whisperx[22].end 3884.485
transcript.whisperx[22].text 也好啦在一些企業在國內外的一些機構服務大概都跟數位這一題有關所以大概是這樣的情況右上角那個QR code很多朋友可能已經加入了是我們這個這次會有個班群因為等一下會用光速前進因為我們AIS用光速在前進會有很多的實作的範例就是讓各位除了聽一些比較
transcript.whisperx[23].start 3885.206
transcript.whisperx[23].end 3905.917
transcript.whisperx[23].text 新穎的這個趨勢概念之外我想讓各位實際在操作上能夠運用這個把握這個比較寶貴的中午的時光很快一些實作的部分那這大概是我過去幾年來大概都在數位大規模的人陪或者是網路的學院這樣的一些經驗那政府部會大概
transcript.whisperx[24].start 3906.917
transcript.whisperx[24].end 3923.164
transcript.whisperx[24].text 接觸的也不少啦就是大概在12年到15年是國發會的這個顧問那也編撰了一些指引那跟很多長官也都是很不錯的這個這個請益的這個對象跟交流的這樣一個關係等一下稍等一下
transcript.whisperx[25].start 3942.526
transcript.whisperx[25].end 3968.807
transcript.whisperx[25].text 那當然因為這幾年來大概接近30年了這個這個默然回首其實在第四屆第五屆會期的時候我也在立法院有參與一些啦所以就是也對這個環境挺熟悉也有很多朋友在這不過在人才培訓或人才發展這一塊大概有一些琢磨所以也不小心得到了這個一些大獎那在24年就是去年
transcript.whisperx[26].start 3969.928
transcript.whisperx[26].end 3986.227
transcript.whisperx[26].text 就很榮幸有這個機會 很多 包含邱司長 包含行政院 很多部會的長官但是厚愛 就是有一些機會在AIJ快速的發展都需要人才培育這樣的一個
transcript.whisperx[27].start 3987.728
transcript.whisperx[27].end 4004.682
transcript.whisperx[27].text 工作所以可能就包含了全國公務人員包含了一些相關的這個培育的計畫就開始展開了比較積極的一些推進的一個計畫大概是這樣包含數位發展部包含行政院人總大概都在這個議題上有一些參與
transcript.whisperx[28].start 4005.603
transcript.whisperx[28].end 4021.562
transcript.whisperx[28].text 好 那以上就是趙鴻在這幾年的一個過程所以今天這個AI這一題算是在培訓或者說我們在整個的發展上跟各位來就教很榮幸有這個機會來交流首先我們先看一下我想請問一下在座各位
transcript.whisperx[29].start 4022.984
transcript.whisperx[29].end 4034.675
transcript.whisperx[29].text 您反正AI這個部分卻GBT啦Cloud很多工具我先請教一下各位請問你目前不管任何一個工具你是有付20塊美金200塊美金的訂閱用戶朋友請舉手好那是不是屬於高手有付200塊美金的請舉手
transcript.whisperx[30].start 4042.062
transcript.whisperx[30].end 4070.801
transcript.whisperx[30].text 所以我們現場沒有土豪就是了所以200塊是超人等級那20塊已經非常強了那當然免費的也是還是可以用我們今天還是可以用很多的這個免費工具來做到一個不錯的效果當然你覺得很不錯我個人覺得20塊美金是投資啦那我投資了很多AI的工具我覺得對我的生產力提升很高不過呢在我們談到操作之前先看一下有一個基本的概念就整個的AI發展的歷程
transcript.whisperx[31].start 4071.761
transcript.whisperx[31].end 4099.633
transcript.whisperx[31].text 當然這一兩年是風風火火有人說橫空出世不過我們看一下整個AI的發展也不是近年才開始發展其實它在早在1950年代左右有一位學者各位可能聽過叫圖靈他是英國非常有名的一個數學家科學家計算機科學家等等他最早期提出一個非常思辨性的問題因為他最早的故事可能各位應該看過一部Netflix上聽到還有的電影
transcript.whisperx[32].start 4101.364
transcript.whisperx[32].end 4102.215
transcript.whisperx[32].text 就是所謂的
transcript.whisperx[33].start 4105.114
transcript.whisperx[33].end 4132.147
transcript.whisperx[33].text 他叫做模仿遊戲那模仿遊戲呢簡單來講就是機器或電腦當時還不叫電腦叫計算機他不斷要模仿人類的思維啦運算啦邏輯等等那他最著名的故事就是在二戰的時候協助英軍破解了德軍的密碼掌握了這個情報以後克敵制勝所以整個二戰的這個翻轉這個在電影裡面描寫得非常非常詳細我也推薦各位去看
transcript.whisperx[34].start 4133.328
transcript.whisperx[34].end 4158.062
transcript.whisperx[34].text 模仿遊戲當然後世有很多很多的學者前仆後繼的在這個人工智慧的道路上獻出了他們的專業沒有生命獻出了他們的專業跟熱情那當然因為這些呢整個人工智慧他也是算是三起三落在最近當然是因為深層式AI的關係所以整個人工智慧的發展他其實可以回溯到1950年代左右
transcript.whisperx[35].start 4158.342
transcript.whisperx[35].end 4178.19
transcript.whisperx[35].text 那當然有非常多的學者 這個就是Netflix上各位應該可以找得到就模仿遊戲 非常經典的一個算是著作 自傳那再來這個1956年是一個非常重要的年份 就達特茅斯會議有很多的學者 當時有一位非常重要的學者叫John McCarthy
transcript.whisperx[36].start 4179.102
transcript.whisperx[36].end 4194.105
transcript.whisperx[36].text 約翰麥卡錫先生他當時在這個達特茅斯大學裡面擔任研究員他當時接了一個project就是IBM公司的一個project可是他遇到了當然他也是計算機科學家遇到了一些
transcript.whisperx[37].start 4195.126
transcript.whisperx[37].end 4215.139
transcript.whisperx[37].text 困難就是反正都是有些撞牆期他遇到這些困難他想說那我找一些學術界的同好當然也都是學術圈的就是在大學工作研究機構工作的一些學者來開了一個質量含高這個知識含量極高的一個小型的研導會但是這個後世呢
transcript.whisperx[38].start 4216.107
transcript.whisperx[38].end 4231.193
transcript.whisperx[38].text 把這個會議稱為人工智慧這個名詞起名的一個起點就AI從此定名因為在他們的meeting note上就寫了official intelligence由這個會議的交集人John McCarthy教授他把它定名下來
transcript.whisperx[39].start 4231.633
transcript.whisperx[39].end 4257.311
transcript.whisperx[39].text 所以這個在1956年或者1950年都有人說是人工智慧的一個起點那所以John McCarthy也被稱為是AI之父那也有人說是圖靈英國人就說是圖靈美國人就說是John McCarthy簡單來講是這樣那他在這整個過程當中各位掐指一算1956年也好 1950年也好到目前為止大概發展了多少年
transcript.whisperx[40].start 4258.444
transcript.whisperx[40].end 4266.88
transcript.whisperx[40].text 人工智慧的起點不管是1950或1956到今天為止我們2025年年初嘛 這樣大概多少年
transcript.whisperx[41].start 4270.311
transcript.whisperx[41].end 4294.293
transcript.whisperx[41].text 70來年嘛 70來年其實還沒有到人的平均壽命的一生啦所以他的發展其實也是算是相當的快速所以他從最早期的啟蒙時代一直到目前為止聽說讀寫 琴棋書畫 國不精通已經到了這個人類的感知能力甚至到所謂的AGI就是通用型人工智慧會超越人類的思維所有能力的總和 可能會
transcript.whisperx[42].start 4295.254
transcript.whisperx[42].end 4324.514
transcript.whisperx[42].text 有很多的先進很多的學者擔心說我們會不會被AI統治就是通用型人工智慧的時代已經快要到來那當然它的發展非常快每一次人工智慧的突飛猛進各位請注意因為各位都是國會未來之星可能各位可能都是非常這個我們在這個國內的政壇想當當的人物記住這一點就好每一次人工智慧的突飛猛進都來自於演算法
transcript.whisperx[43].start 4325.307
transcript.whisperx[43].end 4333.49
transcript.whisperx[43].text 的突破也就是在數學上有很多演算法的突破包含Deep Seek最近是不是很紅為什麼
transcript.whisperx[44].start 4334.434
transcript.whisperx[44].end 4355.159
transcript.whisperx[44].text 因為它在很多的演算法很多流程很多的這些運作機制上有一些突破性的一個模式所以讓很多的運算能力大幅的提升那當然從最早最早從AI的最早1950年代左右到第一波的我們所謂的Machine Learning就是機器學習大概
transcript.whisperx[45].start 4356.299
transcript.whisperx[45].end 4377.716
transcript.whisperx[45].text 記憶學習比較像是我們所謂的專家系統就他可以讀很多書可是呢在這個圖書館之外的知識他可能就無法觸及所以就沒有辦法去進行更深度的一些探索但是在deep learning呢他一樣在演算法模擬了人類的類神經網絡所以在這個類神經網絡上他就大幅的整個思維的能力大幅的躍進到了2020年
transcript.whisperx[46].start 4381.86
transcript.whisperx[46].end 4406.998
transcript.whisperx[46].text 尤其是最近這一波為什麼AI有這麼火熱在上一波AI火熱的時候是什麼時候各位應該聽過AlphaGo應該還記得吧AlphaGoAlphaGo的時代大概是2017、18年左右也就是在疫情前但是疫情打亂的時候的佈局在疫情後CheckGPT各位思考一下是什麼時候開始火熱的
transcript.whisperx[47].start 4408.598
transcript.whisperx[47].end 4425.307
transcript.whisperx[47].text 沒有很久對不對大概一年多前還不到兩年那所以呢在這個過程當中就是疫情結束的尾聲的時候JGBT突然橫空出事其實不是啊其實他們持續在研究只是當時疫情打亂了一些佈局好不管怎麼樣呢我們在二零
transcript.whisperx[48].start 4426.487
transcript.whisperx[48].end 4454.316
transcript.whisperx[48].text 22年左右開始了生成式AI讓大家覺得橫空出世所以它也是在演算法上得到了非常非常大的突破可是這一波的生成式AI跟之前的AI非常非常的不一樣在於它的創作能力不只是分析能力可能超越一般人類過去對於AI好像只是一個機器只是一個軟體這樣一種想像那各位看一下
transcript.whisperx[49].start 4455.444
transcript.whisperx[49].end 4462.039
transcript.whisperx[49].text 我們把它稱為一個全新的歷史 全新的旅程即將展開這幾幅作品 各位可以看一下有看過的朋友請舉手
transcript.whisperx[50].start 4464.296
transcript.whisperx[50].end 4487.116
transcript.whisperx[50].text 好有看過朋友應該是對AI比較關注的朋友那這分別是三幅作品左邊這一幅呢就是引起了世人對於真的是AI有很多的爭論有很多的這個讚嘆就是複雜的情緒矛盾的這個心情開始的一個緣由各位可以看到疫情末端末生的時候2022年的8月26號
transcript.whisperx[51].start 4489.338
transcript.whisperx[51].end 4511.345
transcript.whisperx[51].text 舉行了一次克羅拉多州的一次這個叫做競賽那這幅作品得到了算是非常不錯的獎項得到首獎可是呢這位獲獎者John Allen就說這個不好意思啊我這一幅作品抱歉抱歉是用深層的各位不是用P圖不是合成深層就是無中生有
transcript.whisperx[52].start 4512.205
transcript.whisperx[52].end 4531.403
transcript.whisperx[52].text 突然大家覺得說怎麼可以用AI生成來跟我們真人的畫作來PK呢可是大家一看這個圖畫得還真好怎麼生成的大家開始好奇所以又要罵他又要誇他的情況下情緒一時難以平復可是在這個過程當中大家還在
transcript.whisperx[53].start 4532.283
transcript.whisperx[53].end 4551.597
transcript.whisperx[53].text 討論生存式AI道德、創作、隱私、自宅權的各式各樣的問題的時候層出不窮的事件陸續的爆發開來2063年沒有多久Sony的攝影大賽各位這是攝影這不是畫作攝影大賽一樣又得到一個首獎然後一樣這位創作者又說抱歉抱歉我這是生存
transcript.whisperx[54].start 4552.56
transcript.whisperx[54].end 4572.68
transcript.whisperx[54].text 各位這也是深層的深層到還模擬兩可現在我們已經不覺得奇怪可是各位想一想在當時大家會非常訝異竟然如此逼真對不對然後呢這中間這一幅呢是國內有一有一所非常著名的這個美術人才美工學校叫做
transcript.whisperx[55].start 4574.28
transcript.whisperx[55].end 4595.167
transcript.whisperx[55].text 這個在新北市那復興商工的這位同學這位齊天大聖也是畫得很好也得到很不錯的獎項同樣因為是這所學校的這個師生實在太專業了拿著放大鏡檢視有七十幾處不合理的地方七十幾處應該不是他畫的結果這位同學呢就神隱一周之後發現就告訴大家說對
transcript.whisperx[56].start 4597.128
transcript.whisperx[56].end 4611.981
transcript.whisperx[56].text 但是我只有70%是AI生存其他是我自己創作的一樣有很多的道德著作權很多的創作之間的爭議從此開始你可以發現說這波的生存是AI的能力我們可以看到說
transcript.whisperx[57].start 4613.39
transcript.whisperx[57].end 4635.178
transcript.whisperx[57].text 他為什麼會這麼厲害不管是圖文甚至現在的影音都已經可以用甚至是來得到非常非常逼真的一些效果那麼可以看到他最核心的一個技術就是大型語言模型大型語言模型呢那這些數字是比較舊的就是比較3.5版的Chad GPT我想Chad GPT大家都認識我就不多說了他上線
transcript.whisperx[58].start 4636.198
transcript.whisperx[58].end 4665.313
transcript.whisperx[58].text 五天就超過了五百萬的訂閱用戶兩個月超過一億然後它的語言參數現在看起來已經是怎麼講小學生等級現在已經都超過這個參數量1750億個大型語言模型的這個參數這裡面的參數你如果把它類比於人類的話就是人類的腦神經元可以雖然不同的東西我們只是說有趣的這樣一個類比1750億是什麼樣的概念人類的腦神經元有多少對
transcript.whisperx[59].start 4667.486
transcript.whisperx[59].end 4682.512
transcript.whisperx[59].text 我告訴各位大概是860億到900億對左右那當然它跟我們的腦神醫院是不一樣的東西不過你可以看到說它的參數量極大所以它的sensitivity非常的高它的敏銳度敏感度感知的這樣一個程度非常的高那現在
transcript.whisperx[60].start 4683.912
transcript.whisperx[60].end 4699.106
transcript.whisperx[60].text 這次CherryGPT 3.5到CherryGPT目前4.5已經誕生了尤其現在Google啦Cloud啦甚至很多很多的這樣語言模型都超過這樣的語言那個參數量所以它的感知能力思維能力邏輯推理能力非常非常的強
transcript.whisperx[61].start 4699.787
transcript.whisperx[61].end 4725.048
transcript.whisperx[61].text 那當然他在很多的智力上的表現超過了絕大部分的人類可以說是Top 10的優等生那高中入學考試他五個滿級分大學SAT測驗大概1300分去年應該是2023年全世界的平均分數好像是1082還是1028分所以他是非常厲害的律師資格考或者是各式各樣的專業的考試啊證照啊他大概是贏過90%的考生
transcript.whisperx[62].start 4727.39
transcript.whisperx[62].end 4749.122
transcript.whisperx[62].text 簡單講就是Top 10的優等生 都名列前茅所以大家就會開始驚訝或者讚嘆說他的能力真的很強 贏過了大部分的人類甚至快要超過所有人類所以各式各樣的複雜的情緒跟我們對他的一些理解或者說想要怎麼樣運用他還是防範他的爭論就開始起來
transcript.whisperx[63].start 4750.583
transcript.whisperx[63].end 4773.95
transcript.whisperx[63].text 那當然生成式它可以生成非常多東西你可以把它想像成是幻化成萬物啦所謂萬物的意思就是包含它最厲害就是處理文字我想各位的工作每天都要接觸大量的文字只要是文本的東西對大家來講叫做天然優勢因為它就是處理字的嘛大型語言模型我們等一下會看到很多的工具除此之外
transcript.whisperx[64].start 4775.003
transcript.whisperx[64].end 4786.539
transcript.whisperx[64].text 只要用成字元能夠去演繹或解釋或者呈現或者轉化的通通都可以處理所以可以處理什麼意思可以分析我可以分析我可以處理我就可以預測
transcript.whisperx[65].start 4788.083
transcript.whisperx[65].end 4811.248
transcript.whisperx[65].text 他看得懂圖 只要他看得懂他就能生成 了解我的意思他能生成代表他能分析 所以數字文字就不說了圖片包含現在的影音 包含音樂 包含語氣語調過去這個非常難分析的事情 比如今天我們這堂課到底是精彩還是無聊
transcript.whisperx[66].start 4812.168
transcript.whisperx[66].end 4838.276
transcript.whisperx[66].text 我只要看因為我們講課也講很久了掃描一下全場看各位的眼神大概就可以掌握各位對這個課程的關注度或者是情緒這個是種感知或者說情緒上非常難分析的事情在生活世界對它來講我只能告訴各位輕而易舉等一下我們就會看到很多很多這樣的一個例子最厲害的我個人覺得最厲害的是這個它可以生成程式碼
transcript.whisperx[67].start 4839.741
transcript.whisperx[67].end 4860.402
transcript.whisperx[67].text 各位知道AI就是一堆程式碼對不對它就是軟體工程產生一堆程式碼如果它能生成程式碼那它又能分析程式碼它又能自我修復那它不就自我進化嗎事實上它就是如此自我進化各位知道Google現在的所有的程式碼在上次應該是各位有看到報導應該25%全部都是AI生成的
transcript.whisperx[68].start 4861.209
transcript.whisperx[68].end 4875.117
transcript.whisperx[68].text 在華爾街可能像高盛這些公司80%都是developer都是在寫程式他不是在做很多財務的投資決策反而是在做這些投資模型的這個開發好那我們可以看到說既然他這麼厲害
transcript.whisperx[69].start 4878.064
transcript.whisperx[69].end 4901.797
transcript.whisperx[69].text 剛剛有跟各位分析大型語言模型如此厲害那到底現在全世界的發展如何台灣在這一波的競爭是如何各位又是在國會裡面這麼關鍵的一個位置我想有必要跟各位分享一下全世界大型語言模型到底有多少個大家聽過嘛就是Deep-seek或者最近很紅的一些什麼CheckGPT等等等我告訴各位在全世界
transcript.whisperx[70].start 4902.737
transcript.whisperx[70].end 4915.174
transcript.whisperx[70].text 最熱門的AI Developer社群開發者社群裡面所有的模型都會在上面發佈DeepSig也是在這邊發佈所有的開源模型在這邊發佈這個數字我跟各位念一下1474 247大概超過100萬個
transcript.whisperx[71].start 4919.244
transcript.whisperx[71].end 4947.223
transcript.whisperx[71].text 模型當然不一定都是語言模型他有很多是文生圖圖生文語音有的沒的大概超過100萬個模型你可以知道那全世界在這上面的developer最厲害的高手或者說有興趣的大概可能超過上千萬人都在這上面所以大概我跟各位講一下他是一個非常蓬勃發展的一個情況那深圳市AI是我們今天要探討的一個重點深圳市AI跟過去的AI有什麼不一樣這70幾年來為什麼這兩三年才這麼火紅
transcript.whisperx[72].start 4949.584
transcript.whisperx[72].end 4973.94
transcript.whisperx[72].text 因為他讓人家讚嘆到他的能力跟過去非常非常的不一樣過去我們稱為鑑別式AI他非常會辨別對不對現在的車牌辨識現在很多的醫療影像他很會分析很會辨別可是生成式AI不一樣他會辨別是貓是狗是花是草等等這個我想在影像的識別上面已經過去能力非常強但是在圖片
transcript.whisperx[73].start 4974.82
transcript.whisperx[73].end 4999.349
transcript.whisperx[73].text 影音像我剛剛跟各位分析的這些它要去分析或者它最厲害的是生成它會generate無中生有 有中生有它會生出像貓的狗 像狗的貓貓中有狗 狗中有貓的過去不存在的東西換句話說無中生有我喜歡舉個例子分析這隻狗 這隻貓對AI來講實在太侮辱它的能力了它可以分析它的什麼
transcript.whisperx[74].start 5000.506
transcript.whisperx[74].end 5016.665
transcript.whisperx[74].text 他的情緒我們要做一個狗哥翻譯機是很容易的舉例這是我第一次要到當時要到第一次記憶部去分享的時候想說趕快把PPT做一做狗狗在旁邊這個這個搖我的腳想說那既然我有AI在手上
transcript.whisperx[75].start 5017.646
transcript.whisperx[75].end 5036.045
transcript.whisperx[75].text 钢铁人在手上我们用科学办案就告诉他仔细解读照片你就是这只柴犬然后以第一人称他就叫他变身成那只狗狗了说出心里话嘿嘿我是你的小柴犬我好想跟你玩啊靠在你腿上撒娇一下你能不能给我一点好吃的嘛
transcript.whisperx[76].start 5037.694
transcript.whisperx[76].end 5066.913
transcript.whisperx[76].text 拜託啦對 這就是他對我講的話至今我仍深信不疑為什麼他會講出這樣的話因為他看到他的神情看到他的動作看到他有求於人嘛所以他去模擬那樣的一個概念講出這樣的話再來我給各位看一下什麼叫視覺能力什麼叫推理能力什麼叫分析能力我們在很多很多的培訓裡面有一種遊戲叫做三真一假 二真一假等等就在自己的明白上寫了兩個真的反正就有一個是假的
transcript.whisperx[77].start 5067.613
transcript.whisperx[77].end 5088.441
transcript.whisperx[77].text 當時我們在有一次的培訓裡面在公園院的培訓裡面我們就寫廖兆宏先生拿過兩次全球ATT大獎台灣Top10美股操盤手還有有一隻貓到底哪一個是真哪一個是假現場裡面都已經知道答案因為我上一張投影片已經透露答案了又有一隻貓是假的但是因為AI他當時不知道
transcript.whisperx[78].start 5089.403
transcript.whisperx[78].end 5104.659
transcript.whisperx[78].text 所以我們有同仁其實就坐在後面的游博士在他臉書我已經從他臉書分析竟然偷拿老闆的這個照片去進行分析結果分析的文字是如此這樣子他說上述資訊何者為假
transcript.whisperx[79].start 5107.097
transcript.whisperx[79].end 5127.609
transcript.whisperx[79].text 因為游博士也不知道我有貓還是狗對老闆如此不敬開玩笑的他可能也是想要了解一下他的能力發現說拿過兩次AD這是AI的推論拿過兩次ADD大獎什麼全東TOP10美股超販手他全部看出來因為我寫的還很草嘛有點草可是他全部讀得懂
transcript.whisperx[80].start 5129.17
transcript.whisperx[80].end 5153.348
transcript.whisperx[80].text 接下來他開始推論看起來這些都是手寫的訊息唯一看起來不是真的是有一隻貓因為這比較像是一個幽默或是個人興趣的表達不是真正的身份表述然後其他兩項看起來都是炫耀文應該歸類於是這樣所以他推理就是說這個的假的機率比較高這就是他得到的結論他還真的所以這個就是他的推理能力那當然除此之外他在視覺上
transcript.whisperx[81].start 5155.741
transcript.whisperx[81].end 5179.803
transcript.whisperx[81].text 視覺上現在影音能力也很厲害 極可亂增那我們不要講說最近的很多很多社會版的一些事件我們講說各位可以看到這是OpenAI最新的這個影音的模型叫Sora如果說你用OpenAI的一個最近的這個功能可能也都有知道像這些它都是生成的但是你可以看到極可亂增這個是它的示範影片左下角這兩個是我生成的
transcript.whisperx[82].start 5180.851
transcript.whisperx[82].end 5206.061
transcript.whisperx[82].text 他的字只有這樣 我還寫錯字一隻可愛的柴犬 穿著大紅色的棒球運動外套很享受的吃著元宵節的湯圓這是在前幾個禮拜元宵節的時候我想說要PO個FB來讓大家這個同樂一下就PO了這個這樣的一個影片所以可以看到他的毛髮 極可亂真所以這個只是一行PLUM像左上角這個 你看他幾乎是真人吧
transcript.whisperx[83].start 5206.801
transcript.whisperx[83].end 5214.31
transcript.whisperx[83].text 他的problem背後可能是什麼一個在倫敦街頭的老教授坐在昏暗的咖啡館喝著一杯cappuccino咖啡
transcript.whisperx[84].start 5215.765
transcript.whisperx[84].end 5242.293
transcript.whisperx[84].text 回想著他過往的人生心想著哥喝的不是咖啡是人生他的problem可能就是這樣所以他的情境他的意境他會自動把它轉化成這樣的一個video所以他的能力他的對文字的感應應該說感知能力分析能力已經非常非常的強當然這是我的程式我跟各位舉例一下他的感知能力包含什麼他還看得懂影片影片裡面的任何事情
transcript.whisperx[85].start 5243.033
transcript.whisperx[85].end 5262.582
transcript.whisperx[85].text 當然要真正的醫療從影片中可以看出這是一個鈦耳心臟的超音波的影響並且使用了彩色所以我問他說這個到底是現實的心臟還是什麼其實它是一個超音波的影響它包含了幾個月的超音波的鈦耳跟它的心臟的鈦耳然後它的結構和功能是什麼樣的情況多伯勒超音波治療的醫藥等等當然因為我不是醫療專業所以並不是那麼了解
transcript.whisperx[86].start 5270.365
transcript.whisperx[86].end 5289.921
transcript.whisperx[86].text 好,我們在前半段很快的讓各位看一下他的最新的一些能力那當然包含他的視覺能力、聽覺能力我剛剛已經跟各位分享過聽說、讀寫、清晰、速化我不精通不精通到什麼地方大家應該也都聽過有人說深圳市AI是一本正經的胡說八道對不對
transcript.whisperx[87].start 5291.022
transcript.whisperx[87].end 5307.873
transcript.whisperx[87].text 因為其實我title很多但是我最習慣還是有人要叫我廖老師因為我在學校服務過在很多地方交流過很多人說廖老師你這個生人世界到底能做到什麼程度之前大家說他一本正經胡說八道
transcript.whisperx[88].start 5309.178
transcript.whisperx[88].end 5333.301
transcript.whisperx[88].text 我的習慣是這樣既然要一本正經胡說八道就胡說八道到徹底我要測試他的能力到哪裡所以當時我就想說那OpenAI啦什麼Google啦這些都是西方公司的這個西方的科學那東方的你懂嘛中草藥你懂嘛針灸你懂嘛五行八卦齊門頓獎你懂嗎我是帶著踢館的心情去不踢則已一踢下去呢
transcript.whisperx[89].start 5334.615
transcript.whisperx[89].end 5362.194
transcript.whisperx[89].text 從此開始膜拜長出了非常多廖大神系列 等下會跟各位展示一下那一本真心胡說八道我是帶著質疑的心態去測試它那我們就測試它什麼要科學根據一點的 那就是液晶可以吧液晶總是有個理論基礎 我們用液晶占卜去測它當然因為這個過程我們時間有限 我等一下讓各位測一下因為我們有很多人生未知的事情 是需要透過這樣來
transcript.whisperx[90].start 5364.808
transcript.whisperx[90].end 5384.846
transcript.whisperx[90].text 讓自己更有信心一點那我們就可以用三錢法了解一下整個的運勢的一個情況或者是我們有時候可能心中有一些疑惑很多古代的電視劇有一些落魄公子經過一個算命攤先生算命先生說來小夥子咱們來測個字看看你十年之後飛黃騰達還是那個
transcript.whisperx[91].start 5387.208
transcript.whisperx[91].end 5406.407
transcript.whisperx[91].text 敗破領導等等像這個側字對他來講也是OK的好 時間關係我們就不多說太多或者是如果說我們只看字意對他來講當然OK字型呢一個人寫的龍飛鳳舞還是寫的字跡非常公正某種程度反映他的性格
transcript.whisperx[92].start 5407.524
transcript.whisperx[92].end 5434.87
transcript.whisperx[92].text 這應該沒問題吧所以你去看蔣介石的字跟毛澤東的字一個是龍飛鳳舞一個是端莊仙書可以是這樣講所以他們的個性可以看得出來他在筆跡上不一樣他一樣可以分析時間關係我也就不多做展示那當然除此之外有很多的這個深圳時代或者是他在的這個我們可以複製一個人形來跟我介紹一下策略是什麼東西這其實只是一張照片
transcript.whisperx[93].start 5436.578
transcript.whisperx[93].end 5443.063
transcript.whisperx[93].text 那我們把相關的技術庫這不是我的聲音對不對因為我當時在訓練這個的時候語音模型還不太好但是比較會講英文這個就是它是真正的一個chatbot我把它錄影下來
transcript.whisperx[94].start 5460.752
transcript.whisperx[94].end 5486.563
transcript.whisperx[94].text 像有很多啦 像比如說猜字啦 液晶啦 面相啦 很多很多這一類的這個算是怪力亂神啦不過就是大家今天中午輕鬆一點舉例比如說一個人的這個生辰八字啊 什麼他很容易去算命嘛這就是紫微斗數 就跟他星座有關反正只要得到一個個人的一個資訊以後我們就可以讓AI去理解 當然這也是AI去算的那我們就可以用語音跟他溝通
transcript.whisperx[95].start 5488.973
transcript.whisperx[95].end 5506.393
transcript.whisperx[95].text 你好,请问有什么可以帮助你的吗?无论是关于紫微斗数,八字,还是姓名学的问题,我都乐意为你解答,请随时提出你的问题。姓名学怎么了?我的五行阴阳状况如何?
transcript.whisperx[96].start 5508.82
transcript.whisperx[96].end 5519.272
transcript.whisperx[96].text 你的姓名王大明在姓名學中的五行分析如下所以他會用語音的方式來跟你做溝通好這個是我們其中一個例子那當然因為除此之外
transcript.whisperx[97].start 5520.505
transcript.whisperx[97].end 5545.376
transcript.whisperx[97].text 這個例子很多啦我們等一下休息時間有空的話再來做進一步交流不過他在創作能力上除了影音剛剛有講很多很多的文字創作一個論文創作一個新聞稿 執行稿這個對他來講是我只能說小菜一點等一下我們就會看到但是這些比較影音或者是過去創作者比較我們質疑說電腦沒辦法做很好的一個創作現在其實他也可以創作非常不錯
transcript.whisperx[98].start 5547.638
transcript.whisperx[98].end 5573.557
transcript.whisperx[98].text 他說當時因為要去經濟部演講講說他光一直講AI過去的時候風光尾焰已經很多大師講過了我們要做一點接地氣所以就創作一首AI之歌想說在經濟部來跟很多長官同樂不過因為在當時創作出那個歌詞以後然後曲子也寫出來發現那個沒有MV有點丟臉所以我們馬上再透過這個
transcript.whisperx[99].start 5575.678
transcript.whisperx[99].end 5576.999
transcript.whisperx[99].text AI 一樣再生成了這個MV
transcript.whisperx[100].start 5586.915
transcript.whisperx[100].end 5602.72
transcript.whisperx[100].text 那現在我看到競技部在辦競賽其實他的很多的廣告的影音video現在是全部AI生成這個未來會越來越多就跟剛剛各位看到競賽的一些作品用AI生成的一樣我們就當時比喻在一部演講的一個場景很動聽
transcript.whisperx[101].start 5610.662
transcript.whisperx[101].end 5632.279
transcript.whisperx[101].text 好 時間關係我就不把這個播完啦那各位如果有興趣有QR code你們可以自己掃碼一下接下來我們把握時間要看一下最近應該說最近真的是AI比較多的能力各位剛剛看到很多不管是很多怪力亂神啊 算命啊這個影音啊 這個歌曲
transcript.whisperx[102].start 5633.646
transcript.whisperx[102].end 5647.101
transcript.whisperx[102].text 或者他的視覺能力這些各位注意一個名詞我們叫做多模態Multimodal的生成式AI多模態的生成式AI就是你就把它記得人類的各式各樣的感知能力聽覺觸覺還沒啦就是聽覺這個語音文字聽覺
transcript.whisperx[103].start 5654.129
transcript.whisperx[103].end 5663.3
transcript.whisperx[103].text 視覺、辨識、分析等等這樣一個AI的一個能力在大型元模型它是一個非常重要的一個發展趨勢那當然它已經用在以經濟部來講叫百工百業
transcript.whisperx[104].start 5664.654
transcript.whisperx[104].end 5686.091
transcript.whisperx[104].text 以數位發展部與各部會來講有很多要推動的一個方向跟政策對不對我們可能推在智慧製造我們可能推在這個服務業我們可能推在智慧醫療等等它有很多很多落地的應用那我們今天的重點各位的重責當然是在國會對吧是在這個國會殿堂各位的工作上我們怎麼樣用AI來處理
transcript.whisperx[105].start 5688.132
transcript.whisperx[105].end 5708.614
transcript.whisperx[105].text 包含因為我在收到這個課程需求的時候是我們要寫很多質詢稿嘛 是吧我們要寫新聞稿 寫稿寫字是每天各位就要非常快的一個產出的一個工作嘛第二塊呢 那這些 那你可能要讀很多的文件囉是不是 政策的文件 各部會的預算書要不要讀
transcript.whisperx[106].start 5711.278
transcript.whisperx[106].end 5732.158
transcript.whisperx[106].text 還有好多好多的非常多的最新的趨勢訊息等等所以你要大量的字要處理第二個你要產出output很多快速產出直立有聲的一些文本那我剛剛有跟各位分享過文本類是它天然的優勢第二塊是什麼那我們不要只有字吧
transcript.whisperx[107].start 5733.089
transcript.whisperx[107].end 5755.093
transcript.whisperx[107].text 我們可不可以讓他變成一個Mind Map怎麼樣我們讓他變成一個系統動力學圖怎麼樣哇 那你又升維了 你又上升一個維度了 你又更厲害了再接下來那我如果讓他分析 讓他預測行不行我讓他模擬呢 我模擬我是川普 模擬他是習近平模擬是那個部會的官員 我模擬我的委員 跟他對話 跟他PK行不行
transcript.whisperx[108].start 5757.561
transcript.whisperx[108].end 5784.995
transcript.whisperx[108].text 講得到就說得到我告訴你的話就是我曾經都做過的那不過呢在我們開始進入這樣的比較深入的一個應用之前我要先因為今天有請各位帶筆電嘛對不對我們先把環境準備一下等一下馬上會進入到因為我們現在已經一點多我希望各位操作時間多一點多一點體驗我要先請各位確認一下第一個我們當然是確JPT應該大家都有吧我先確認一下確JPT
transcript.whisperx[109].start 5786.633
transcript.whisperx[109].end 5800.498
transcript.whisperx[109].text 你們還沒開帳號的應該很少了然後這幾個Google的解密奈有用的朋友請舉手也有一些朋友好 謝謝那Cloud的這個第三個這個
transcript.whisperx[110].start 5802.574
transcript.whisperx[110].end 5818.833
transcript.whisperx[110].text 那AI Studio這應該比較少沒關係我們等一下都會用到那剛剛還沒有加群的朋友我請各位馬上加到那個Line群因為我們這個是月後幾分下完課我們就會是退群了就是上課要用因為等一下會有大量的prompt因為你要看我
transcript.whisperx[111].start 5819.173
transcript.whisperx[111].end 5840.991
transcript.whisperx[111].text 我的操作因為是光速前進所以我們今天有大量的這個助教群在背後服務大家我們等一下會把他們都丟到那個line群所以你就直接copy paste的最快這樣你就會很快的看到結果這樣你的操作比較快不要一直聽我講我希望各位有一點自己個人的一些體驗所以你如果還沒開帳號什麼可能你隨時舉手我們的同仁會來協助各位
transcript.whisperx[112].start 5841.811
transcript.whisperx[112].end 5860.462
transcript.whisperx[112].text 然後你在這個過程當中就可以看到一個真正運作上的結果所以我們今天會看到的是一個多模態生存式AI讓各位在這個操作過程中得到一些範例那進入實際的操作之前我跟各位分享一下這個是大概因為去年開始幫很多部會做培訓
transcript.whisperx[113].start 5861.963
transcript.whisperx[113].end 5882.903
transcript.whisperx[113].text 我們同仁給我的數字好像是超過兩萬人次是不是因為超過兩萬人次要學這個這個也是有點誇張不過我們實體的培訓已經可能超過也是不太清楚反正可能上千人了我大概跟很多的公務機關的朋友歸納成他們在公務上面的這個應用分成這四大類
transcript.whisperx[114].start 5885.316
transcript.whisperx[114].end 5913.65
transcript.whisperx[114].text 分別是這樣最右下角這個大概是前端就比較接近接近民眾然後呢他在比較基層比較接近民眾就是比較日常一點就是每天然後民眾很多他都要用在公務機關很多他要對民眾的服務之類的比如1999語音客服機器人那是深圳之夜不住計劃的一些輔導小幫手他就可以DIY嘛很多的什麼ESG節能減碳小幫手等等這一類的應用他就會非常多那
transcript.whisperx[115].start 5914.25
transcript.whisperx[115].end 5943.311
transcript.whisperx[115].text 在後端後端就是民眾看不到可是在我們的機關內它有很多的這個AI可以幫忙的地方就是讓它自動化比如說我的報告可不可以自動產生啊我的這個什麼公文可不可以自動批改啊我的這個很多很多自動化的這個機器人我的計畫書可不可以自己生成啊我的公文談判稿新聞稿可不可以自己生成啊像這一類的不是民眾可是我們是對我們工作效率提升很高我們今天可能會偏重在這一類啦今天各位的
transcript.whisperx[116].start 5944.691
transcript.whisperx[116].end 5970.925
transcript.whisperx[116].text 學習上需要可能是這一類有一些它可能是比較high level一點比較政策上政策上需要的可能在於說我可能要語情分析可能各位助理如果說要了解你的老闆目前在民意之間反應如何AI可以幫你一點忙然後第二個我是不是要有一些影音產生剛剛有講影音產生老闆可不可以講萬國語言可以的 這個是AI可以幫你忙
transcript.whisperx[117].start 5971.565
transcript.whisperx[117].end 5986.74
transcript.whisperx[117].text 然後再來是有些我們可能要在全球的AI政策有一些關注或者是政策的藍圖趨勢的預測等等這些比較Forecast未來式的地方或者比較沉重一點像詐騙啊資安啊預警啊這一類的比較Critical的應用在我們進入之前我給各位幾個Hint因為全球
transcript.whisperx[118].start 5992.947
transcript.whisperx[118].end 6018.368
transcript.whisperx[118].text 現在在政府機關裡面在台灣叫做智慧政府在很多的政府機關裡面這些政策在推動AI都是非常非常重要的國政對吧每個人都把AI視為國力嘛那所以呢包含歐盟包含美國包含中國大陸當然包含台灣我們都在這個AI的發展過程中有很多的探討跟參與然後也有很多的法案在推動台灣也有人工智慧基本法
transcript.whisperx[119].start 6019.99
transcript.whisperx[119].end 6036.686
transcript.whisperx[119].text 歐盟也有AI Act等等這些法案都在不斷的進行大概分兩大類一個是積極鼓勵美國比較朝向這項第二個稍微嚴格監管一點歐盟是比較嚴格一點這個我們有機會再來探討這個課題總之呢他就是又要鼓勵又要防範這個有點又愛又恨
transcript.whisperx[120].start 6037.367
transcript.whisperx[120].end 6064.405
transcript.whisperx[120].text 所以呢在這個過程當中大家都在持續的關注所以各位的工作至關重要你的任務非常的重要又要讓這個AI蓬勃發展又要防範它帶來社會上不公平或者不好的一些效應我想這個各位是非常重要的人物啦那歐盟也投了很多很多的經費在裡面那美國的AI政策我剛剛也已經跟各位講因為最近美國是因為川普政府上任我們開始越來越看不懂他在做什麼了因為呢
transcript.whisperx[121].start 6066.106
transcript.whisperx[121].end 6094.062
transcript.whisperx[121].text 從拜登政權的過渡過程當中有一些政策會稍微修正不過基本上他們還是積極發展對不對因為中美之間在這個AI科技是一個爭霸戰那這個影片可以稍微看一下因為川普他前一陣子他跟Elon MuskGerman兩個呢他在做的很多事情我們有點不太理解不過呢這個影片我看一下
transcript.whisperx[122].start 6101.757
transcript.whisperx[122].end 6103.8
transcript.whisperx[122].text 現在因為我的是離線 我們等一下再看好 那在那個美國的
transcript.whisperx[123].start 6119.52
transcript.whisperx[123].end 6136.59
transcript.whisperx[123].text 整個各部會他們在AI的這個APP應用裡面我們稍微盤點過已經超過700項不過這數字大概是2024年現在應該是超過1000項沒有問題所以他的蓬勃發展也是非常的快不過因為AI在全球的發展非常非常的火熱
transcript.whisperx[124].start 6137.39
transcript.whisperx[124].end 6161.24
transcript.whisperx[124].text 所以我當時因為實在是也足凡不及備載就乾脆寫一隻AI機器人就整天在監控全球的AI有什麼狀況隨時告訴我這個就是跟各位分享一下你要以筆製造還師比身要不然這AI太多太多的資訊你是沒有辦法越大量的閱讀那當然在這個部分我們可以看到在看到一些應用稍微等我一下
transcript.whisperx[125].start 6164.264
transcript.whisperx[125].end 6173.338
transcript.whisperx[125].text 因為語言對他來講是天然的這個萬國語言可以轉化那我們舉個例子市長已經離開了嘛那我可以放心的播放這個影片啦
transcript.whisperx[126].start 6175.51
transcript.whisperx[126].end 6180.093
transcript.whisperx[126].text 這個呢我們可以看一下這是市長2019年的時候我們看右邊這個注意看他的嘴巴
transcript.whisperx[127].start 6200.899
transcript.whisperx[127].end 6222.05
transcript.whisperx[127].text The Best Choice Award showcases Taiwan's tech capabilitiesIn the future, the Ministry of Science and Technology will promote collaborationand encourage technological innovation and entrepreneurshipin advanced industries like artificial intelligence and semiconductor
transcript.whisperx[128].start 6223.559
transcript.whisperx[128].end 6225.843
transcript.whisperx[128].text 右下角應該跟郭部長難怪感情那麼好
transcript.whisperx[129].start 6239.042
transcript.whisperx[129].end 6264.562
transcript.whisperx[129].text BEST CHOICE AWARD是台灣的活力和技術力這是日文科學技術的日文就是萬國語言任意中漢語看不太出來那最近我看到那個德國的呃不是德國的對不起是泰國的總理因為他不太會講中文他就一樣用生人誓言然後說大家鼓勵大家到泰國去玩因為泰國之前有一些疑慮嘛就要鼓勵大家去旅遊也是用生人誓言來做所以這一類的
transcript.whisperx[130].start 6265.683
transcript.whisperx[130].end 6274.329
transcript.whisperx[130].text 應用例子會非常非常的多OK 進入到我們立法院這個場域這是我們這一屆的立委這是第十一屆嘛 我沒記錯我們總共有多少位委員你們不是這一屆有幾位有幾位國會 國會辦公室主任非你莫屬對啦 113那我們來看一下這些是我們所有的委員 因為看起來
transcript.whisperx[131].start 6296.896
transcript.whisperx[131].end 6298.102
transcript.whisperx[131].text 我先讓他上網一下
transcript.whisperx[132].start 6324.653
transcript.whisperx[132].end 6349.556
transcript.whisperx[132].text 好 這個我就丟給AI啦我就問他說 這是第11屆立法委員請問有多少人因為我沒有告訴他答案嘛他就去掃描這張照片 知道嗎然後他花了9秒的時間因為我是用推理模型去看他大概有113位委員 沒錯啦然後從蓋葉啟到威斯113席我問他男生幾個 女生幾個哪個最年輕 哪個最帥
transcript.whisperx[133].start 6350.877
transcript.whisperx[133].end 6375.435
transcript.whisperx[133].text 我們就只能問這麼膚淺的問題我說哪一位未來會當總統這不好說他不敢講反正他就是會去識別識別之後他就給你得到一些答案我告訴他我要用視覺分析等等這個是我之前做過的我們等一下會讓各位一樣那比如說我要很多的這個什麼質詢稿什麼例子我們就可以很快的請他來協助我們一樣一樣來
transcript.whisperx[134].start 6377.97
transcript.whisperx[134].end 6395
transcript.whisperx[134].text 再來 OK在進入到各位操作之前這個萬用公式先提供給大家就是你要在PROM不管你是用CHATGBT你是用Google Jmin Cloud等等等你的PROM的下法PROM就是我們通常俗稱叫咒語
transcript.whisperx[135].start 6396.381
transcript.whisperx[135].end 6412.312
transcript.whisperx[135].text 就是你要讓AI這個天兵天將來幫你 為你所用那就是那個咒語 就是一個prompt所以你prompt要下得好你掉出來的那個天兵天將才會比較厲害所以它有些萬用的公式我告訴各位 非常簡單你可以告訴他 你是某某某
transcript.whisperx[136].start 6413.072
transcript.whisperx[136].end 6440.664
transcript.whisperx[136].text 他會幻化成那樣的角色跟身份比如說你是比爾蓋茲你是賈伯斯你是總統你是委員等等他就會以那樣的身份那樣的角度去做一些反應第二個呢非常重要各位他是不是會一本正經的胡說八道通常那個胡說八道是我們自己啊因為你告訴他的亂七八糟的咒語說他亂七八糟的生辰給你所以你要非常精準的話一個關鍵就是讓他
transcript.whisperx[137].start 6442.205
transcript.whisperx[137].end 6461.418
transcript.whisperx[137].text 如果以英文來講就是according to what就是依據什麼 依照什麼那依據什麼可能是某一個理論依據心理學理論依據東方的這個什麼哲學依據什麼什麼的理論模型 架構 法則它才會附著在某一個定向的一個
transcript.whisperx[138].start 6462.799
transcript.whisperx[138].end 6486.251
transcript.whisperx[138].text 座標上 所以依據什麼是非常重要那依據什麼就看你要解什麼問題再來 產出什麼 質詢稿 新聞稿 它是一種稿子還是我要產出一個論文 那這是比較嚴謹的文書還是我要產出 熱情洋溢一點 我們來產出一個小說好不好產出一篇歌詞好不好 那我可能要熱情洋溢一點所以你要告訴它產出的是什麼
transcript.whisperx[139].start 6487.185
transcript.whisperx[139].end 6505.118
transcript.whisperx[139].text 具備 具備是什麼我們通常以英文來講叫criteria就是他要什麼樣的基準有時候他要精準精準到什麼程度你告訴我如果以0到100他是幾分你告訴我所以你要告訴他非常非常重要的一個刻度指標可以衡量的東西所以這個是具備什麼criteria
transcript.whisperx[140].start 6505.498
transcript.whisperx[140].end 6530.14
transcript.whisperx[140].text 叫標準、基準、尺度等等你要讓他可以衡量的東西在他格式是表格、是圖形是一篇文章、是一個報表、是一個什麼所以你要告訴他這些東西接下來他就會為你所用了解嗎?這個是一個萬用基本公式那當然等一下我們的PROMPT就基本上會依照這樣的PROMPT的萬用基本公式來進行
transcript.whisperx[141].start 6531.101
transcript.whisperx[141].end 6553.756
transcript.whisperx[141].text 好接下來我們開始要進行操作了我先請各位確認一下你的上網的環境我們開始要各位動手了上網的環境還有你的我們先用checkgpt就好了比較簡單的checkgpt不管這個叫什麼付費版免費版都ok先確定可以上網應該說可以登入到checkgpt
transcript.whisperx[142].start 6555.834
transcript.whisperx[142].end 6582.262
transcript.whisperx[142].text 我們等一下會用多個注意我會用多個AI的工具JPG是第一個那如果你有問題你隨時舉手我們的同仁會來協助各位那我希望各位操作上稍微跟著上進度這樣也會比較有所收穫一點那當然一直聽我講也可以不過可能就沒有那麼強的感覺我們首先第一個要來做的練習叫做產出新聞稿你們是不是要常寫這個東西
transcript.whisperx[143].start 6583.831
transcript.whisperx[143].end 6609.867
transcript.whisperx[143].text 好 新聞稿我們當然就反正主觀意識上寫是OK啊就是自嗨成分比較高一點但是呢我們可不可以了解世間這個大家在想什麼我告訴各位一個很簡單的東西如果說你是在網路上要了解大家在想什麼Google告訴你很多很多的線索第一個動作來 我請各位上網之後確GPT確定可以通來
transcript.whisperx[144].start 6612.537
transcript.whisperx[144].end 6617.811
transcript.whisperx[144].text 登錄到一個網站叫做Google Champs
transcript.whisperx[145].start 6622.079
transcript.whisperx[145].end 6647.145
transcript.whisperx[145].text 我們那個小夥伴可以你們在那個line群他們等一下會把我用到的指令或網址都貼在那所以各位注意一下你手機上的line群那個google chains就是google在全球注意喔是全球上面所有的人在search的關鍵字最key的關鍵字他都會在這邊統計呈現給你比如說我們可以看到最新的六收榜可以看到
transcript.whisperx[146].start 6648.988
transcript.whisperx[146].end 6677.474
transcript.whisperx[146].text 看起來我離這個最新的新聞有一點距離我不知道他們在談什麼這個下雨了這是人嗎好總之呢就是這個是大家最近在搜的可是呢這是在哪裡這是在台灣你可以找全球你可以找亞洲你可以找很多地方你可以找過去24小時過去7天某一段期間它是在政治啊科技啊在哪一個領域上專業的關鍵字是所有趨勢啊是所有什麼關聯
transcript.whisperx[147].start 6678.334
transcript.whisperx[147].end 6703.949
transcript.whisperx[147].text 好 那你就可以找到是最熱門的關鍵字就是大家搜尋點最多的這就是最熱門的關鍵字就很多人在網路上在搜的是這些東西好 那我們在第二個這個探索上如果說我要特定的議題比如剛剛那些都是好像影藝版的我們探討專業一點好不好像人工智慧或者是AI假設是這樣我們可以把這個關鍵字輸入之後
transcript.whisperx[148].start 6706.015
transcript.whisperx[148].end 6733.482
transcript.whisperx[148].text 它開始會進行一些比較那你可以看到搜尋熱度的趨勢變化這個AI還蠻多在探討台北市搜尋很多新北市第二這個區域性它也會馬上幫你發布第二個你看到AI不是就只有探討AIAI吐槽這是什麼意思我也不知道King AINapking AI就很多大家在找這樣的一個例子或者人工智慧政策人工智慧法案你們可以找你們關心的關鍵字然後
transcript.whisperx[149].start 6734.122
transcript.whisperx[149].end 6759.128
transcript.whisperx[149].text 大家在這個議題上面相對探討最多的它就會產生出來這個就留給各位有空的時候慢慢去探索啦比如我們現在找這樣台灣在過去24小時我們在科技好不好這個最近在談的議題政治部分期周竹竹傷害等等
transcript.whisperx[150].start 6761.051
transcript.whisperx[150].end 6780.369
transcript.whisperx[150].text 在這個類別上就請各位去找一下就是你最關心的議題還是說在你的那個想要探討的比較熱門的這個議題上它的一些排序的內容我現在根據這樣一個內容各位注意我們最簡單的做法就是這樣這些都是你的關鍵字假設
transcript.whisperx[151].start 6782.011
transcript.whisperx[151].end 6809.736
transcript.whisperx[151].text 我們把這些關鍵字各位注意一下假設這是我關鍵字就是我的基本素材養分那我們在checkGPT要怎麼做呢請各位我們現在新產生一個新產生一個chat新產生一個這叫什麼對話各位注意一下在你的checkGPT左上角左上角我們現在切換到另外一頁面checkGPT因為我現在速度會比較快一點不好意思因為我們時間有限我們是兩點要結束是吧
transcript.whisperx[152].start 6812.713
transcript.whisperx[152].end 6841.596
transcript.whisperx[152].text 左上角它有個這個部分它叫切尺GPT的模型注意切尺GPT它Default的模型是4O然後呢它現在這個因為我這是O3O3是深度推理模型它是比較厲害一點你用4O也可以免費的話Default它就是4O嘛你用任何模型都可以我只是告訴各位你可以去切換模型那在這裡我們把剛剛的那個關鍵字Copy paste的丟進來這就是我的素材我的養分
transcript.whisperx[153].start 6842.608
transcript.whisperx[153].end 6863.716
transcript.whisperx[153].text 那我現在這邊下一個prompt我要告訴他寫一篇應該是這樣喔擬式我剛萬用公式要記得擬式我們要厲害一點苦力之講得主這夠厲害了寫一篇與上述關鍵字熱門關鍵字
transcript.whisperx[154].start 6870.509
transcript.whisperx[154].end 6875.512
transcript.whisperx[154].text 有關的新聞稿主題是台灣AI競爭優勢產業 產業 工廠競爭優勢合聚合成假設是這樣
transcript.whisperx[155].start 6897.739
transcript.whisperx[155].end 6916.656
transcript.whisperx[155].text 你要告訴他你要做的是什麼事情因為這是一個新聞稿然後你告訴他他是一個很厲害的新聞方面的專家或大師假設是這樣但是這跟一般我們只是問他問題不一樣是因為我們丟一些參考資料或素材給他然後他就會根據
transcript.whisperx[156].start 6918.627
transcript.whisperx[156].end 6937.396
transcript.whisperx[156].text 這樣一個素材這種問法我們把它稱為叫做In context prompting反正就是丟一些小樣本讓它根據這個樣本去長出你要的一個文本的資料這個是一個最基本的一個概念所以它就會涵蓋這樣的一個關鍵字的內容但因為現在時間關係我們沒辦法細看好那接下來一個
transcript.whisperx[157].start 6949.076
transcript.whisperx[157].end 6975.473
transcript.whisperx[157].text 用法是這樣因為他已經產生出來之後我們可以看到說他產生了這樣一個內容之後假設是這樣我現在告訴他你是民眾評分上述新聞檔我現在讓他變身
transcript.whisperx[158].start 6976.96
transcript.whisperx[158].end 7003.826
transcript.whisperx[158].text 讓他變身成民眾讓他看不看得懂評分上述新聞稿然後給他一個參照值給他一個參照值就是評分就是要有分嘛0到100到底多少分
transcript.whisperx[159].start 7009.46
transcript.whisperx[159].end 7029.71
transcript.whisperx[159].text 剛剛他自己寫 但是我現在要他給自己評分一般民眾85分覺得好嗎他告訴你優點是什麼 時事連結性強當然啦 因為我是拿最新的關鍵字進去可改進之處 缺少數據資質不夠他會告訴你缺點是什麼那這時候我再讓他變身
transcript.whisperx[160].start 7039.988
transcript.whisperx[160].end 7066.421
transcript.whisperx[160].text 你覺得85分滿意嗎 還行以公園業的標準是120分 才加幾個 是嗎經濟部說他們是180 你覺得好啦 這是長官面前我們這樣講要100分喔 100分的版本你既然已經知道是85分有缺點 你就給我改 就叫他改
transcript.whisperx[161].start 7068.055
transcript.whisperx[161].end 7081.662
transcript.whisperx[161].text 所以他說 那好 那就數據不夠 我們就長數據給你反正他就優化成100分 他就照你的指令去動作這樣了解嗎?你要讓他切換不同的身份 然後要給他一個基準去參照然後讓他能夠有什麼?
transcript.whisperx[162].start 7081.662
transcript.whisperx[162].end 7089.606
transcript.whisperx[162].text 不斷逐步優化空間所以到這個PROM 假設我這個新聞稿寫好 假設我已經下了三次PROM每一次都是什麼?
transcript.whisperx[163].start 7089.606
transcript.whisperx[163].end 7093.348
transcript.whisperx[163].text 朝朝見谷就是讓他有東西可以依循 可以改進 可以迭代 可以優化
transcript.whisperx[164].start 7094.048
transcript.whisperx[164].end 7121.457
transcript.whisperx[164].text 要不然的話你跟他只是無聊的聊天而已那個對你的工作上效率並沒有提升太高好所以這個是我們的有關這樣的一種迭代優化或者是說讓他逐步改進的一種產生一個方法所以新聞稿、談餐稿或者很多的稿件的內容大概同理可證差不多是這樣一個概念然後我們再來厲害一點好這個也給大家看一下時間
transcript.whisperx[165].start 7124.332
transcript.whisperx[165].end 7133.779
transcript.whisperx[165].text 比如我們有這個叫做隨選視訊是吧我們國會也有國會頻道直播嘛YT頻道直播總是有影音內容
transcript.whisperx[166].start 7134.963
transcript.whisperx[166].end 7161.919
transcript.whisperx[166].text 我們是不是要大量的會議記錄你是不是要趕快聽一下大家在談什麼然後開始有一些法案有一些記錄有一些資料整理給老闆整理給選民之類的那各位看一下這是我真實狀況分析的馬上我告訴他說這一場會議告訴我那個正方反方贊成的反對的是多少然後支持程度是多少反對程度是多少通通給我展開我不想聽那麼多
transcript.whisperx[167].start 7163.479
transcript.whisperx[167].end 7192.799
transcript.whisperx[167].text 直接告訴我視覺上看得到綠燈的還是紅燈的這樣了解嗎知識程度多少你用百分比給我知識程度多少反正程度多少裡面的論點是什麼一頁全部講全部講這樣可以嗎想不想學這個想啦好 可以嗎但是你不要跟老闆說學過這個你說你工作很認真但是你可能一秒你就結束了一秒太誇張了一分鐘好 各位可以看一下
transcript.whisperx[168].start 7193.904
transcript.whisperx[168].end 7215.823
transcript.whisperx[168].text 來我們給各位看一下 我們先看一下這些內容 給各位一個例子我們剛剛在切GPT對不對切GPT我們現在先假設這樣 很多東西他有機密有什麼我們先排除那塊好不好 就先假設我們都可以用沒什麼機密性太多的問題 我們先假設這樣 所以先知道怎麼操作那有一個好用的工具提供給各位這個叫做Notebook LM
transcript.whisperx[169].start 7222.881
transcript.whisperx[169].end 7245.611
transcript.whisperx[169].text 在這個地方我先讓各位看一下其實就在這裡他叫產創條例修正草案然後立法院經濟財政委員會聯席會議記錄那個會議記錄漏漏等一堆抱歉我沒有很仔細看我只想要看到綠色跟紅色是想要看到誰支持我誰反對我大概是這樣的情況那我們怎麼做請各位
transcript.whisperx[170].start 7247.113
transcript.whisperx[170].end 7264.687
transcript.whisperx[170].text 他可以這樣 他很厲害 他可以吃檔案他可以讀影音 了解齁但是影音你要有字幕才可以可是我們有一些東西沒有字幕啊那你要找那個YT 就是YouTube頻道有字幕的第二個是什麼 這個我們整個PDF丟給他就好
transcript.whisperx[171].start 7265.678
transcript.whisperx[171].end 7289.603
transcript.whisperx[171].text 因為這是公開資料嘛 這沒有什麼機密 這已經做完的所以我去分析它沒有什麼問題 這樣了解齁反正它民眾都可以下載了嘛所以丟進去給它 但是我要產生的這些內容就是你要下PromptOK 這不是CheckGPT 這是Google 它叫NotebookLM好 我剛剛的做法很簡單 就是丟進一個PDF給它 這個是會議紀錄我忘記多少頁了 反正兩三百頁吧 大概是這樣 很長啦
transcript.whisperx[172].start 7290.982
transcript.whisperx[172].end 7303.834
transcript.whisperx[172].text 丟給他 然後我告訴他我要整理 我要彙整 給我一個Mind Map簡單來講我的Problem是這樣 但是我們現在一棟一棟來做那我請各位先 這個動作我覺得他們應該沒時間操作了這個網址不是不是這個 Notebook
transcript.whisperx[173].start 7311.624
transcript.whisperx[173].end 7336.824
transcript.whisperx[173].text 這個網址我們已經丟上去了如果你沒有帳號你就用Google帳號快速的subscribe一個因為這都是免費的不用擔心你的隱私啊機密啊這些問題好那他是非常非常好用喔你個人有很多的文檔有很多的這個影音YouTube你想要解析你都可以快速的來處理
transcript.whisperx[174].start 7339.96
transcript.whisperx[174].end 7367.651
transcript.whisperx[174].text 我們先來練習好不好先我們先這樣先等各位一下我怕速度太快了因為我們光速前進光速到各位跟不上也不是我們的原來的本意notebook lm今天你一定要學會回去你馬上可以用請各位登入到notebook lm我先確定一下這個登入好的朋友請舉手OK好大部分都OK還沒OK的請舉手我們請同仁來幫各位好大部分好了好接下來
transcript.whisperx[175].start 7370.475
transcript.whisperx[175].end 7389.481
transcript.whisperx[175].text 我們來做一個小練習這個是轟動武林 驚動亂教驚動全球的這場會談在白宮而且是直播全球這個會談非常精彩不過他們到底是講了什麼其實他十幾分鐘BBC的這個影片十幾分鐘也不是太長那我們可以看到
transcript.whisperx[176].start 7391.292
transcript.whisperx[176].end 7396.536
transcript.whisperx[176].text 這段影片裡面的這些原文他可以全部你把那個影片我們應該這樣講我從頭做一次給各位看
transcript.whisperx[177].start 7409.066
transcript.whisperx[177].end 7430.003
transcript.whisperx[177].text 這是他的網址OK這是他的網址我們在notebook.lm裡面我們這樣的操作請你新建一個筆記本他所有的動作都是一個筆記本所以你在一個筆記本裡面最多可以丟50個file給他50個文檔給他那你的影音的內容是這樣請你在左邊這邊他有個新建來源
transcript.whisperx[178].start 7431.36
transcript.whisperx[178].end 7446.519
transcript.whisperx[178].text 你可以上傳PDF你可以上傳文件上傳很多Google的檔案等等當然也可以上傳YouTube不是上傳啦應該說網址貼給他網址我們剛剛就把那個哲文司機在白宮那個影片貼進去
transcript.whisperx[179].start 7447.6
transcript.whisperx[179].end 7465.286
transcript.whisperx[179].text 然後他會快速的去理解一下這個影片裡面講什麼樣的內容所以他就有沒有馬上跑出來就折扣日記跟川普在白宮的緊張恢復他就出來了這樣了解齁好那第二個呢是我們在這個地方既然他已經快速的解讀出來那你就要告訴他你要幹嘛囉會診症交所有論點依照講者好不好
transcript.whisperx[180].start 7479.928
transcript.whisperx[180].end 7494.401
transcript.whisperx[180].text 假設是這樣我說哲學斯基講什麼這個川普講什麼你依照你幫我歸類吧這很簡單嘛所以包括他就產生了這樣了解齁那我可不可以叫他產出一個Mind Map我剛講嘛就Mind Map很簡單齁這個動作是這樣依照我們可以平分
transcript.whisperx[181].start 7502.074
transcript.whisperx[181].end 7530.389
transcript.whisperx[181].text 三個人可不可以評分等一下你試試看我都已經評過了所以任何一個人質詢表現委員質詢表現好不好我們直接就評分這樣可以嗎我不敢所以你們自己去評你老闆總之我們想依照會談內容將所有論點MineMap就是新製圖
transcript.whisperx[182].start 7543.769
transcript.whisperx[182].end 7561.078
transcript.whisperx[182].text 我告訴他一個是比較特殊的語法就是Mind Map是心智圖大家都知道他也知道但是有一種語法叫做Markdown語法就是畫成心智圖的一個圖一個語法那這個語法呢就可以讓我們把它copy paste的然後再
transcript.whisperx[183].start 7570.799
transcript.whisperx[183].end 7573.321
transcript.whisperx[183].text 一些免費的工具上讓他呈現出新製圖的一個架構等一下
transcript.whisperx[184].start 7595.832
transcript.whisperx[184].end 7617.109
transcript.whisperx[184].text 當然如果說有不對的你就不斷去修正他告訴他我要修成什麼樣的情況這些他就會變成這樣一個模式簡單來講就是我們可以運用這樣的方式產出這樣的一種這個效果我把這個內容因為我之前已經做完了我把這個內容丟到我們的LINE稍等一下
transcript.whisperx[185].start 7646.834
transcript.whisperx[185].end 7672.73
transcript.whisperx[185].text 你完成之後應該會類似像是這樣就是這個Mind Map它可以產出這樣的一種動態的一些效果我們剛剛因為是拿YouTube的那個影片來做講解應該很快速的講解或練習然後用Notebook快速去理解它的一些內容只是說這個因為我們時間有限我就快速的帶過去因為後面東西還很多
transcript.whisperx[186].start 7673.51
transcript.whisperx[186].end 7702.329
transcript.whisperx[186].text 好 再來的話也是一個很不錯的模式如果說我們有一些文本包含像剛剛講的是YouTube的這個叫什麼字幕也好或者我們有一些這個會議的文件會議紀錄等等比如說這是產創條例第十條修正草案架構與重點這邊有一份PDF也是一樣公開的資料我們可以讓它繪製成MIMAP也好或者系統架構圖或者各式各樣的一個圖式的一種呈現
transcript.whisperx[187].start 7704.311
transcript.whisperx[187].end 7724.125
transcript.whisperx[187].text 那這個做法是這樣一樣我們回到你用notebook.lm也可以你用chegbt或Cloudy這一種他能夠產生應該說他能夠讀取PDF檔案的都可以因為在這邊有一個加號有沒有看到加號的話就是你可以上傳
transcript.whisperx[188].start 7725.751
transcript.whisperx[188].end 7740.944
transcript.whisperx[188].text 上傳檔案上傳包含PDF包含各式各樣的影音的內容那我們可以看到說PDF呢是一個最基本文檔的格式比如說我們把它
transcript.whisperx[189].start 7750.95
transcript.whisperx[189].end 7773.157
transcript.whisperx[189].text 好比如說這有個立法院議案關係文書之前的應該是一些提案的文件最簡單的做法就是讀取一個PDF之後比如說我要彙整重點假設是這樣當然他就會去讀取這個PDF裡面的所有的文檔的內容然後彙整重點這樣當然你快速的讀取他是非常的快
transcript.whisperx[190].start 7774.428
transcript.whisperx[190].end 7800.326
transcript.whisperx[190].text 好這是賴瑞榮委員的當時的一些提案好裡面有很多很多這樣的一個項目好OK好這沒有問題他就在賭黨對不對好第二塊呢那我們有好多委員不同的提案啊那我們在經濟委員會有另外委員比如說就是鄭委員另外一個案子我叫他仔細賭黨
transcript.whisperx[191].start 7807.644
transcript.whisperx[191].end 7833.302
transcript.whisperx[191].text 與上述版本比較列出對照以什麼呈現就是它的格式我要它以表格呈現就它開始兩個文檔開始去比就兩個委員的提案它開始去做一些比較有沒有看到這兩個委員鄭振成委員的提案跟賴委員的提案差異
transcript.whisperx[192].start 7835.322
transcript.whisperx[192].end 7863.786
transcript.whisperx[192].text 那我們可不可以跟剛剛的做法一樣評分對比我不敢你們做你們當然都可以你要教他做什麼他就做什麼嘛所以他現在是列出主要的差異哪邊相同是不是很快那這是表格類的我想我們的各位寫的那些提案什麼質詢大概這樣已經不錯啦已經夠用了那我們可不可以更厲害身為讓他變成一個Mind Map好不好好我們就把
transcript.whisperx[193].start 7864.5
transcript.whisperx[193].end 7893.386
transcript.whisperx[193].text 那我可不可以融合兩個兩個委員握手言和這樣行嗎我們提出一個行政院版本提出立法院助理公會版本這樣可以嗎好我們再告訴他因為我內容沒有看完融合兩者優點提出一份完整的總和版本但是我不想用字啦一
transcript.whisperx[194].start 7895.92
transcript.whisperx[194].end 7919.799
transcript.whisperx[194].text 假設是這樣我讓他產生一種語法但是這個好像顯示不出厲害之處
transcript.whisperx[195].start 7937.738
transcript.whisperx[195].end 7944.327
transcript.whisperx[195].text 顏色區分兩位委員的論點假設是這樣所以他開始會產生根據他會去讀那兩個檔然後呢他產生這個Mind Map可是呢他這個部分
transcript.whisperx[196].start 7978.717
transcript.whisperx[196].end 8004.783
transcript.whisperx[196].text 賴偉源是藍色 這個鄭偉源是綠色 開始 貢德偉源 右色開始他開始在Generate 等他一下因為他讀那個大量的文本之後 他開始要去做他的歸納 彙整 而且他要用顏色區分嘛當然這個是比較簡略 你可以告訴他做一點簡述 做數字上排版的更好一點等等等他一下
transcript.whisperx[197].start 8009.495
transcript.whisperx[197].end 8036.234
transcript.whisperx[197].text 因為這應該是產商條例修正案裡面的內容優先法案然後我們可以請AI評分這樣可以嗎我不敢中間去做好 假設它已經它已經產生完成了一個MIMAP這很簡單然後我們讓它在這個工具上去呈現 假設這樣
transcript.whisperx[198].start 8038.801
transcript.whisperx[198].end 8051.17
transcript.whisperx[198].text 它就會產生出來 有沒有看到MineMap已經非常清楚了就是它比較系統化架構化的視覺呈現你可以Download下來Download下來它就是一個HTML版那我們就可以根據這個速讀
transcript.whisperx[199].start 8052.83
transcript.whisperx[199].end 8076.303
transcript.whisperx[199].text 他的一個,因為我現在是叫他融合版,你也可以個別委員產生一個來看這個綠色是賴委員,這是鄭委員他們的論點有點不一樣,有共同的,這個就是共同的握手言和的部分是什麼,那就是這樣你可以看得非常非常清楚事實上我也沒有讀完全部,但是我可以大概一目給了然裡面的一些重點
transcript.whisperx[200].start 8077.003
transcript.whisperx[200].end 8092.062
transcript.whisperx[200].text 好 這個就是告訴各位你用光速速讀會整一些文本你們的工作裡面大量的文字這個覆蓋範圍很多那當然因為這是叫做歸納或者是分析一些文本的資料我們也可以讓它呈現出
transcript.whisperx[201].start 8093.243
transcript.whisperx[201].end 8122.28
transcript.whisperx[201].text 像是這樣一種比較架構圖的一個概念圖的一種形式這樣也是可以這有很多很多這個圖示的一些做法所以我們要了解一個YouTube裡面的內容也是同理可證喔那YouTube這個地方也有很多的內容我舉個例子我們在每個YouTube你可以看到剛剛是PDF丟上去對不對它是很多字YouTube裡面它不讀影音內容我也可以讀字各位注意一下任何一個好的YouTube
transcript.whisperx[202].start 8129.558
transcript.whisperx[202].end 8151.828
transcript.whisperx[202].text 或者很多那個好的演講他的這些內容裡面注意你可以看到他下面這邊都會顯示轉入稿顯示轉入稿在他右邊會產生他的字幕我只要把他的字幕全部copy paste下來他這一個
transcript.whisperx[203].start 8156.694
transcript.whisperx[203].end 8185.431
transcript.whisperx[203].text 這個影片裡面的所有的內容我們就已經全部蒸餾出來這樣了解嗎那一樣貼到notebook.lm也可以或者是到chat.jpt也可以注意喔因為我們現在在工作的這個內容跟你現在要工作的假設是不相關的你最好是興起一個chat要不然的話他會很混亂我們現在興起一個chat把剛剛那個文字貼進來一樣這是一個影片裡面所有的字幕你叫他彙整重點
transcript.whisperx[204].start 8189.676
transcript.whisperx[204].end 8190.098
transcript.whisperx[204].text 反理中 感謝
transcript.whisperx[205].start 8193.687
transcript.whisperx[205].end 8219.066
transcript.whisperx[205].text 這影片你就速讀完了這樣了解我講的意思所以你只要有字對他來講他就可以快速大量的分析去處理所以這個影片在講婚禮的複雜情緒離婚的影響等等等這個影片你大概就可以很快的理解它你不用全部看完這是我們光速理解影片的一個小技巧就是把這個字幕全部extract出來然後快速的叫他AI彙整這樣一個工作
transcript.whisperx[206].start 8219.867
transcript.whisperx[206].end 8239.449
transcript.whisperx[206].text 好這個都是蠻類似的一些做法都是取到字以後我們就可以轉化成非常多的東西好那這個是notebook.lm剛剛已經跟各位快速的講解過所以他可以他可以把YouTube的網址貼進去對不對他可以快速的理解理解裡面的一個影片的內容
transcript.whisperx[207].start 8239.989
transcript.whisperx[207].end 8264.846
transcript.whisperx[207].text 也可以丟PDF的檔案對不對 切記PDF只要能吃PDF檔案的這些文檔的他都可以快速理解裡面所有的內容所以這個是你的一個關鍵接下來因為你要讀到這些資料以後就看你要prompt告訴他要做什麼展開成一個圖對照還是分析還是做歸納還是產生出另外一個副本等等好 那接下來是這樣
transcript.whisperx[208].start 8266.167
transcript.whisperx[208].end 8288.893
transcript.whisperx[208].text 我們看到一個神奇的東西我們竟然敢號稱魔法學院就是要給你魔法一下魔法一下來 看一下這應該也是前幾天的事吧吳春城委員辭職那一天的事情有些你們可能在現場總之呢 這個是影片嘛 對不對影片在這裡來 各位看一下我們再稍微混複一下
transcript.whisperx[209].start 8298.124
transcript.whisperx[209].end 8311.014
transcript.whisperx[209].text 婚政策在去年的7月30號第二次的婚姻確認了壯士好 OK但是呢 這種影片抱歉 沒有字幕因為它不是一個好影片
transcript.whisperx[210].start 8312.639
transcript.whisperx[210].end 8332.538
transcript.whisperx[210].text 不是應該說不是好影片應該說來不及整理對吧或者來不及分析那怎麼辦因為你質詢的很少那麼快就可以產生字幕那怎麼辦那我知道聽音辨位聽音辨位就是讓深層式AI我已經說過聽說讀寫樣樣精通所以就乾脆讓他聽吧可以嗎所以我已經把這個這邊有個網址來給各位看一下
transcript.whisperx[211].start 8341.696
transcript.whisperx[211].end 8360.962
transcript.whisperx[211].text 一個小工具小工具看一下這個這要實際操作給各位看今天你回去馬上可以動手好這個小工具它是免費的無毒不用擔心這是open source然後我們可以就把那個網址貼進來為什麼建議你辦理
transcript.whisperx[212].start 8369.855
transcript.whisperx[212].end 8375.386
transcript.whisperx[212].text 我們貼剛剛那個範例的好了把這個網址因為我這已經做過
transcript.whisperx[213].start 8377.334
transcript.whisperx[213].end 8401.946
transcript.whisperx[213].text 貼到剛剛那個小工具的網址然後呢這邊就是什麼我不要看影片我只想要讓它聽音變位我只想要取字所以就把它mp3當下來這樣了解嗎把它聲音當露下來就好了因為你沒有字幕可是我可以當露聲音讓它產生字這樣你就可以做任何事好當露下來呢我們現在因為節省時間啦其實我已經當下來然後呢
transcript.whisperx[214].start 8403.308
transcript.whisperx[214].end 8409.426
transcript.whisperx[214].text 你會取得一個MP3檔我在這檔案已經有了這邊已經有了我丟到我們的
transcript.whisperx[215].start 8433.122
transcript.whisperx[215].end 8458.181
transcript.whisperx[215].text 好 送給各位這個MP3檔你可以自己試著做做看好 我把這個MP3做什麼現在讓他傳一下MP3有了以後接下來是這樣要給各位一個工具我們現在光速前進非常快請各位到aisstudio.google.com我們同仁請把網址貼給大家
transcript.whisperx[216].start 8460.049
transcript.whisperx[216].end 8481.546
transcript.whisperx[216].text 不過我估計大家因為我們非常飛快前進沒關係 你大家看我怎麼操作就好你等一下回去休息的時候有空的時候自己操作一下好 我們進入到這個你如果沒有帳號也要註冊一個因為這是Google工具 免費而且火力強大給AI developer用的AI的開發者用的不是給一般人用的
transcript.whisperx[217].start 8482.487
transcript.whisperx[217].end 8508.195
transcript.whisperx[217].text 這樣了解但是它是免費這很厲害好進入到AI Studio看到這是Google出品的佛心來給各位的一個火力強大工具看一下畫面來各位看一下畫面在右邊這邊我們也可以選擇模型大型的模型Google的模型也非常的多那你可以選一個厲害一點的我讓他選擇一個推理模型好接下來
transcript.whisperx[218].start 8509.755
transcript.whisperx[218].end 8525.233
transcript.whisperx[218].text 在這邊有很多的東西啦我講比較單純一點你可以把剛剛那個MP3上傳如果他沒有牽涉國家機密這樣OK喔上傳反正他都YouTube都已經公開了無所謂好 我們剛剛那個在哪
transcript.whisperx[219].start 8540.558
transcript.whisperx[219].end 8569.557
transcript.whisperx[219].text 我們剛剛有個24MB左右的一個MP3檔大概我忘了多長半小時還一小時的一個質詢那讓他上傳一下各位因為他上傳他可以理解因為你沒有字幕嘛對不對你可以把所有逐字稿取出來這樣了解我們現在音檔在上傳的過程當中我們的PROM要下下去了下下去也很簡單
transcript.whisperx[220].start 8573.801
transcript.whisperx[220].end 8594.7
transcript.whisperx[220].text 仔細聽不要遺漏就這麼簡單我要竹子嘎
transcript.whisperx[221].start 8596.65
transcript.whisperx[221].end 8615.475
transcript.whisperx[221].text 好 我們已經上傳上來這沒問題啦 它大概31分鐘也不短了喔這31分鐘的這一段我要他不要遺漏任何細節產出竹子稿就這樣完成之後Run好 他現在正在聽
transcript.whisperx[222].start 8617.537
transcript.whisperx[222].end 8645.363
transcript.whisperx[222].text 我們剛剛的做法是YouTube有字幕對不對有字幕我就取出來然後叫他分析叫他產生whatever任何東西我現在是沒有字幕怎麼辦聽音變位所以他現在正在聽這是Live的即時轉播就讓他聽一下很快他就會把稿做給你好 各位看一下各位看一下看一下畫面他正在努力幫你工作
transcript.whisperx[223].start 8647.219
transcript.whisperx[223].end 8674.362
transcript.whisperx[223].text 有沒有看到我們自己測試過他的那個那個叫什麼準確率啊中文啊準確率啊這些大概可以到九成五左右啦有一些當然是破音字或者口齒不清那沒辦法但是大部分都對這樣了解齁所以這個應該是吳淳臣那個委員啊那時候在講話的那一段過程嘛好這是很多啦
transcript.whisperx[224].start 8676.903
transcript.whisperx[224].end 8681.112
transcript.whisperx[224].text 這全部都是字 都會幫你取出來這是逐字稿 各位
transcript.whisperx[225].start 8689.966
transcript.whisperx[225].end 8710.596
transcript.whisperx[225].text 差不多了吧30分鐘大概被我們用3分鐘蒸餾他的靈魂出來軀殼就把它丟掉了影片我們不想看但是呢這個字我就全部取到幾乎是對的啦但永遠我沒仔細看啦有些數字什麼你總要還是要確認一下反正他現在很努力在工作中OK好 接下來好 再讓他繼續做吧
transcript.whisperx[226].start 8716.282
transcript.whisperx[226].end 8742.532
transcript.whisperx[226].text 這樣接下來我們要做什麼就看你要做什麼了你是要會議記錄呢會議記錄就是更簡單了嘛會議記錄就是精簡後的文本竹子稿很難竹子稿是一種滿清十大酷刑你要聽音打字那個是很麻煩的事情但是我們只要有字任何事情你都可以做你看已經全部被我們取完三十分鐘的字全部取完好那取完之後我剛有講就看你要做什麼會講重點
transcript.whisperx[227].start 8745.993
transcript.whisperx[227].end 8752.699
transcript.whisperx[227].text 所以這一段三十幾分鐘我就一頁就結束了
transcript.whisperx[228].start 8766.898
transcript.whisperx[228].end 8779.332
transcript.whisperx[228].text 當然還是細節還是要看一下因為有些東西它搞不好那個語意有錯啊什麼但是它九成只是告訴各位這樣有沒有看到當然裡面的細節都是壯士帶沒錯啦這個新聞熱點上的議題嘛好
transcript.whisperx[229].start 8785.123
transcript.whisperx[229].end 8811.959
transcript.whisperx[229].text 角色是這樣 他會辭職書嘛 很多那格式你再可以告訴他說格式要怎麼樣改總之呢 這前面比較比較那種dirty job的這種比較複雜的這個勞力密集的工作已經幫你做完了後面你就是發揮你的你要把它畫成圖畫成圖表都可以只要取出字可以做成任何事情了解齁所以這個就是我們在AI可以協助我們做很多的這個彙整的工作好 這樣OK嗎
transcript.whisperx[230].start 8814.346
transcript.whisperx[230].end 8822.862
transcript.whisperx[230].text 時間不多但是後面的內容我就挑著講囉要不然時間真的很有限好 再接下來有一個工具你也一定要會
transcript.whisperx[231].start 8824.127
transcript.whisperx[231].end 8847.676
transcript.whisperx[231].text 因為我們比較預測性的東西比較沒有標準答案的東西剛剛是叫 叫做幫你做一些那種比較dirty job就是比較 怎麼講勞力密集的工作 幫你省時間的啦第二個是要幫你動腦的什麼叫動腦 我們要寫書寫一個質地有深還是寫一個比較厲害的什麼國情諮詢報告什麼預測 政策預測分析之類的那就不是只有會議記錄這麼簡單那怎麼辦哇 那我要博覽群書欸
transcript.whisperx[232].start 8851.923
transcript.whisperx[232].end 8873.21
transcript.whisperx[232].text 可是這個時候有點小複雜我不能Google亂找 也很花時間告訴各位一個很好用的工具現在的生成式AI 注意 已經都開天眼了大部分開天眼的意思就是可以聯網所以你不要以為說它的這個叫什麼知識庫只到2023年的11月現在沒有這回事 它是最新資料都可以搜尋
transcript.whisperx[233].start 8874.543
transcript.whisperx[233].end 8899.962
transcript.whisperx[233].text 所以他只要開地球就好了我們通常叫開天眼所以這個能力非常的強所以其實這是一個例子當時川普在第一次被槍擊的時候我就已經開始在預測在第二次又被槍擊我那個預測已經在我的那個盤面上都已經是勝選但是我預測錯的一點是竟然勝選那麼多所以在前三天我已經全部都預測完他是當選的
transcript.whisperx[234].start 8901.741
transcript.whisperx[234].end 8930.88
transcript.whisperx[234].text 只可惜我沒有膽量去買有 那當然是有這是下一堂課 好嗎我們那個廖老師晚上是有另外的那個課程美股是晚上開盤嘛白天不能在工作上講這個是好 回過頭來講這個因為它是即時新聞性很強所以你一定要聯網你什麼知識庫什麼去年11月沒有那個事你因為那個東西太舊但是我要告訴各位另外一個更簡單用的工具這個工具
transcript.whisperx[235].start 8932.161
transcript.whisperx[235].end 8942.166
transcript.whisperx[235].text 請各位一樣必須把這個網址記著叫Perplexity就是黃仁勳先生最喜歡用的AI工具它叫Perplexity有點難唸那它的聯網搜尋功能非常的強
transcript.whisperx[236].start 8955.114
transcript.whisperx[236].end 8966.729
transcript.whisperx[236].text 而且所有資料來源都會給你而且它可以用深度推理模型來 各位看一下這個你要學會我們耽誤個五分鐘可以主任這樣可以嗎
transcript.whisperx[237].start 8969.168
transcript.whisperx[237].end 8990.316
transcript.whisperx[237].text 因為速度太快了我不知道大家因為速度太快我不知道大家能不能這個吸收了不過這個需要介紹給各位Proplexity是它的資料來源博覽群書全球搜尋而且都有資料來源給你所以你不用擔心它一本正經無所八道它都有所本第二塊你要看它的深度推理模型已經內建進去了
transcript.whisperx[238].start 8991.876
transcript.whisperx[238].end 9016.725
transcript.whisperx[238].text 各位可以看一下Perplexity反正你沒有帳號你就用Google註冊一個反正它是現在是免費也很夠用我要給各位看一下重點是這樣我們重新來一個這跟Google Notebook、LM、Chat、GBT什麼這些都差不多都是一個AI甚至是AI的一個語言模型的Chat的這種工具但是對你工作很有用在這個地方我們一個沒有標準答案的問題其實我已經做過了我們現在再做一次我們
transcript.whisperx[239].start 9021.908
transcript.whisperx[239].end 9042.296
transcript.whisperx[239].text 一樣白宮的美屋會談這是最新的吧對不對造成的影響對兩岸關係這太沉重了未來發展
transcript.whisperx[240].start 9052.022
transcript.whisperx[240].end 9062.543
transcript.whisperx[240].text 你的未来未来发展如何
transcript.whisperx[241].start 9064.634
transcript.whisperx[241].end 9085.852
transcript.whisperx[241].text 這個回答錯可能就政治前途毀於一旦我不知道啦反正這屬於研究嘛屬於分析沒有標準答案我們也不知道這屬於未來式好那你告訴我各有論點是正常的可是呢以AI來講他就要博覽群書那各位注意一下我在這邊開始要這種沒有答案的問題要問他的時候
transcript.whisperx[242].start 9087.694
transcript.whisperx[242].end 9108.121
transcript.whisperx[242].text 注意喔 我們要讓他利用厲害的模型這邊有個Auto對不對各位可以看一下Auto就是他會自己找最適合的模型或者是ProSearch有沒有看到 他是三倍數比別的模型厲害還是他現在很厲害的一個叫DeepResearch深度研究的一個模型還是
transcript.whisperx[243].start 9110.934
transcript.whisperx[243].end 9134.676
transcript.whisperx[243].text 聽說中華民國不能用的叫DeepSeek不要按錯 馬上會被抓去關DeepSeek也可以喔但是它DeepSeek也不是連到大陸它是連到美國的伺服器反正DeepSeek開源所以它自己建一個伺服器也可以那我們當然用DeepResearch用別的都可以反正就看你高興或者用OpenAI的推理模型叫O3推理模型它就是思維鏈可以一個一個不斷地追問下去
transcript.whisperx[244].start 9136.737
transcript.whisperx[244].end 9152.524
transcript.whisperx[244].text 這個叫什麼快思慢想就對了非常深度的探索那我們現在用deep research不能用deep seek按錯的自己站出來自己自掃我們現在按下去之後開始了他開始工作他的工作的重點是什麼
transcript.whisperx[245].start 9154.022
transcript.whisperx[245].end 9175.868
transcript.whisperx[245].text 他會開始Deep Research他這很複雜喔你要Stand by因為他會慢慢慢慢開始很複雜的一些推理在背後開始運算你看他告訴你他開始找了幾個相關的這個這個意見領袖啊網站啊美工啊白宮啊什麼這些會談有沒有看到他的資料裡面中文也有這個政府網站也有新聞網站也有開始在找他正在讀它有沒有看到
transcript.whisperx[246].start 9180.663
transcript.whisperx[246].end 9208.747
transcript.whisperx[246].text 等他一下喔 因為他是深度推理模型需要一點點時間才會給你答案但給你答案是非常深度的可能我自己單方面可能都還寫不出來好 我找到一個關於白宮的報導會談中出現爭執大家知道了嘛 關於礦產協議繼續往下探索因為爭執會造成後來的影響這後來影響 那又影響到這個俄烏 歐盟那跟台灣什麼關係 他會再去推論這樣了解喔
transcript.whisperx[247].start 9209.892
transcript.whisperx[247].end 9232.871
transcript.whisperx[247].text 好 兩岸的關係 兩岸的未來 你可以看到這已經牽扯到很遠了你看他再下一步 我找到白宮美屋會談的報導報導紫珠會談激烈衝突波波 他再繼續往下看他的繁體中文是這樣 他的介面中文只有簡體中文
transcript.whisperx[248].start 9234.537
transcript.whisperx[248].end 9255.424
transcript.whisperx[248].text 但是在這邊不能用 也是要抓起來的一個部分請用英文 但是它的回應是繁體中文 回應可以設繁體中文就是它的這個output 你可以看 它已經收集到足夠的資訊來回答你的問題有沒有看到 多篇報導和評論 它可能超過上百篇報導 它看的可能超過上百篇
transcript.whisperx[249].start 9256.616
transcript.whisperx[249].end 9286.156
transcript.whisperx[249].text 沒有上百篇也幾十篇啦好他開始推論好他現在告訴你答案了這是他的答案白宮美歐會談爭議與兩岸關係發展之前景分歧這屬於碩士論文等級就是這樣近期美國總統寫了很多他講了很多同時這個事件他還在寫他還在寫烏克蘭有豐富的自然溪土因為川普要然後就很多他現在一直不斷的在推論
transcript.whisperx[250].start 9292.066
transcript.whisperx[250].end 9318.642
transcript.whisperx[250].text 那對兩岸關係的影響是什麼看起來是這樣那你可以根據你們的顏色 黨派來告訴他你這個論點大逆不道請修正之類的我就請你一下prompt給他好嗎反正他是根據理性的來做他的一個他博覽群書之後給你的一些回應這個很複雜了因為他太多國多邊的關係了
transcript.whisperx[251].start 9321.001
transcript.whisperx[251].end 9341.457
transcript.whisperx[251].text 有沒有看到 他這個回應是非常長的推論很多 告訴你這不是那麼簡單回答的問題所以他告訴你很多很多事 他還在努力寫大國博弈下台灣的處境 那很多那可能又牽涉到地緣政治 又牽涉到科技戰 很多好 經濟利益 政治 還繼續在寫那我告訴各位 現在
transcript.whisperx[252].start 9344.295
transcript.whisperx[252].end 9362.364
transcript.whisperx[252].text 它是深度推理模型免費開放所以你可以去使用它所以是很厲害的然後它這邊還有其他你想要再深度探索一些其他有的沒的那注意喔我覺得這篇寫得真是好啊有沒有那你可以告訴他請改成質詢稿這樣可不可以
transcript.whisperx[253].start 9365.413
transcript.whisperx[253].end 9387.723
transcript.whisperx[253].text 身為經濟部的團隊 我不建議各位這樣做請質詢其他部會 不行其他部會我們也放他們工作反正就是你要叫他轉成什麼格式就隨你高興你覺得他論點不錯的話那接下來是這樣 你可以export如果你覺得他這個很不錯 你也可以變成一個PDF檔
transcript.whisperx[254].start 9389.875
transcript.whisperx[254].end 9400.258
transcript.whisperx[254].text 他就會匯出給你一個檔案檔案我又可以做剛剛那樣的分析對不對做很多深度的一些探索或展開這個檔案你就可以隨你取用了
transcript.whisperx[255].start 9401.443
transcript.whisperx[255].end 9426.876
transcript.whisperx[255].text 你可以拿去發表啦 你可以拿給老闆還是你自己產生一個比較專業的這個文本 這樣都OK好 所以呢 這個部分是Perplexity他在找 注意 他在找未來的這種不確定性的 還是沒有標準答案的這種屬於推理 推論式的這樣的一個論點非常好 因為我們通常要找好多好多外部的網站 很花時間 對不對
transcript.whisperx[256].start 9427.776
transcript.whisperx[256].end 9444.164
transcript.whisperx[256].text 他可以自動幫你找根據你的論點那你可以切換模型所以就不要用DeepSeq因為DeepSeq可能會被人家challenge可是你可以用他的DeepResearch用O3什麼之類的都OK沒有問題所以在這個地方你就可以如果你真的想要
transcript.whisperx[257].start 9444.944
transcript.whisperx[257].end 9466.464
transcript.whisperx[257].text 晚上非公務時間偷偷用一下或者是說測試一下它的能耐那你就切換一下模型就知道DeepSeq是怎麼推論這樣了解所以你不用到它原始的網站用這個其實就可以去Test它好 這個是我們在Perplexity非常非常好用的深度探索分析的一個好幫手
transcript.whisperx[258].start 9467.645
transcript.whisperx[258].end 9495.578
transcript.whisperx[258].text 那剛剛已經講過了嘛這個分析的部分時間上也差不多了最後因為時間我留一些給各位來最後我給各位看一些他的能夠做到什麼程度因為我們時間今天真的非常有限不過我非常希望各位可以看到他的能耐在哪裡我們來看一些有趣的應用
transcript.whisperx[259].start 9498.106
transcript.whisperx[259].end 9525.479
transcript.whisperx[259].text 因為我平常沒什麼這個嗜好晚上回去就寫寫AI程式然後訓練訓練幾個機器人去做做工作這是其中一個比如我們來探討Deep-seek對台灣科技AI政策產業的影響怎麼樣比如說我們有一個報導或是一篇論文也可以一篇那個什麼某個部會的預算書都一樣反正這就是一個比較專業的文本
transcript.whisperx[260].start 9541.492
transcript.whisperx[260].end 9550.518
transcript.whisperx[260].text 我要跟他角色扮演我們要質詢他AI扮演的是台灣官員尤其是經濟部官員
transcript.whisperx[261].start 9558.533
transcript.whisperx[261].end 9573.266
transcript.whisperx[261].text 用戶扮演的角色 那我們一定要把工作壓力發洩出來美國總統川普 這樣好嗎這個要質詢不能親切 我們要犀利專業我叫他扮演什麼樣的角色
transcript.whisperx[262].start 9577.386
transcript.whisperx[262].end 9605.447
transcript.whisperx[262].text 好 就這樣喔然後呢 應該說多模態生成式AI聽得到 看得到 會講 會讀 會理解而且會開玩笑 會有情緒的我們等一下看一下 感受一下他現在看得到我啦 看得到我們在現場的情況等一下 等一下抱歉 我偷偷看一下他有沒有在理解他有讀到 等他一下因為他是一個機器人
transcript.whisperx[263].start 9608.035
transcript.whisperx[263].end 9618.263
transcript.whisperx[263].text 那他讀整篇文章 然後開始模擬質詢我就扮演川普嘛 他扮演台灣的政府官員 類似這樣好 OK 好了 等他一下
transcript.whisperx[264].start 9620.943
transcript.whisperx[264].end 9648.482
transcript.whisperx[264].text 好 這是一篇報導 金週刊的報導中國刺客AI界刺客總統先生Deep Seek的崛起確實為全球AI格局帶來了變數從台灣的角度來看我們既看到了挑戰 也看到了機會您認為Deep Seek這種一開源低成本策略崛起的中國AI新創公司對美國在AI領域的領導地位以及對美國企業的競爭力帶來了哪些最直接且嚴峻的挑戰
transcript.whisperx[265].start 9649.443
transcript.whisperx[265].end 9670.366
transcript.whisperx[265].text 您與其美國政府會採取那些相應的策略來應對他現在是問我問題不是我問他問題那我們就好玩演一下這樣可以嗎你們要認真的用也可以我們今天屬於釋放工作壓力大膽狂徒竟敢出此開源模型擾亂世界秩序該當何罪
transcript.whisperx[266].start 9673.779
transcript.whisperx[266].end 9689.008
transcript.whisperx[266].text 我們好像回到清朝了他聽得到我講話他看得到我的表情所以他會說總統先生您剛剛語怒未消他會看得到我的表情我們偷看一下他有看到
transcript.whisperx[267].start 9691.124
transcript.whisperx[267].end 9704.895
transcript.whisperx[267].text 觀察到越帶不越的神情有沒有看到所以他會看得到我在做什麼但是他現在背後在推理在演算怎麼樣回應回應我所以他就像一個人一樣只是他現在在思考等他一下這是一篇報導其實就是一篇文章一個你這個個案也可以一個部會的預算書什麼專業的質詢稿都可以都是一樣的
transcript.whisperx[268].start 9723.086
transcript.whisperx[268].end 9739.652
transcript.whisperx[268].text 川普總統感謝您博倫回應觀察到總統先生略帶不約的申請以及對Deep Seek的強烈措辭甚至是將其形容為擾亂世界秩序的行為臉部表情嚴肅 進我麥克風可以感受到總統先生對這項技術發展的擔憂
transcript.whisperx[269].start 9741.892
transcript.whisperx[269].end 9762.163
transcript.whisperx[269].text 威威周美和略微鄉下的眼神更現實出您對美國的科技產業領導地位的忠實以及對欠債威脅的警覺最角的微笑我理解可能帶有對這類挑戰的某種萬惡為之心從台灣的角度我們同樣關注開源AI模型對全球產業格局的影響
transcript.whisperx[270].start 9763.163
transcript.whisperx[270].end 9788.015
transcript.whisperx[270].text Deep-seek這種低成本開源共享模式確實對美國在AI晶片和基礎模型研發方面帶來了一項 我就不想聽了我們繼續再跟他對話一下等一下 因為我們對話三題他會評分我的表現跟AI的表現是怎麼樣 等一下竟然在我國會殿堂探討Deep-seek大逆不道 該當何罪好 就這樣
transcript.whisperx[271].start 9790.882
transcript.whisperx[271].end 9814.85
transcript.whisperx[271].text 他會看得到聽得到也理解我的語氣語調語意跟因為我們現在都會回到這個文章探討的內容他不會說那量子力學是什麼我會歪樓了所以我們現在會讓他都鎖定在這個議題的探討上你看他背後一樣現在又在推理等他一下
transcript.whisperx[272].start 9821.886
transcript.whisperx[272].end 9822.247
transcript.whisperx[272].text 因為這個問題比較複雜所以要稍微想久一點
transcript.whisperx[273].start 9834.323
transcript.whisperx[273].end 9853.214
transcript.whisperx[273].text 輕搖輕喉嚨稍微調整了一下領帶以晉升的預期回答川普總統首先我想強調的是台灣和美國在高科技產業的合作關係直觀重要針對Deep-seek案例 起底成本 開源共享的AI發展模式確實為美國的科技領導地位帶來了複雜的挑戰但也伴隨著潛在的機會
transcript.whisperx[274].start 9857.496
transcript.whisperx[274].end 9878.275
transcript.whisperx[274].text 從您的肢體語言觀察我注意到您在聽到在我國會殿堂探討時眉頭近鎖雙手略為我權現實出對於國家權威的重視和對潛在威脅的警惕您的眼神中投入出意思不約似乎對問題的提出方式有所保留好我們最後一題好最後一題
transcript.whisperx[275].start 9881.533
transcript.whisperx[275].end 9903.969
transcript.whisperx[275].text 好 所以到底台灣在AI政策上應該怎麼做呢Deep-seek如此開源模型出來之後我們在產業政策上是不是應該提出一個更有效的辦法你覺得美國應該給你什麼樣的協助或者給你什麼樣的資源講重點就好 就這樣過一過川普總統的癮 這樣就好
transcript.whisperx[276].start 9912.254
transcript.whisperx[276].end 9912.795
transcript.whisperx[276].text 那現在在推論
transcript.whisperx[277].start 9923.444
transcript.whisperx[277].end 9947.765
transcript.whisperx[277].text 那各位剛剛各位聽到這個聲音是我的聲音我clone我的聲音複製我的聲音現在要複製一個人的聲音取他的聲紋聲調大概30秒就結束了就可以很像不過因為這個聲音比較像直循的口氣我也有那個比較溫文儒雅的就是比較你好DeepSeek這類開源地成本模型確實帶來了新挑戰也提供了新的發展奇蹟
transcript.whisperx[278].start 9948.837
transcript.whisperx[278].end 9972.927
transcript.whisperx[278].text 首先開源降低了AI技術的門鍵讓更多國家和企業能快速掌握並應用AI這意味著我們過去仰來技術領先優勢的產業必須加速創新好 因為他講比較久好 謝謝我們攜手合作 蔓向未來 感恩好 我們那個還要繼續嗎差不多了
transcript.whisperx[279].start 9974.236
transcript.whisperx[279].end 9996.026
transcript.whisperx[279].text 時間也差不多了 我們掌聲謝謝我們廖訓練者好不好其實在外面的課程 應該是一個ten應該十幾堂那種課程那注意光會只是說 大家入門一下說還沒使用過的AI 還是說已經有在使用 讓大家更知道
transcript.whisperx[280].start 9998.827
transcript.whisperx[280].end 10023.056
transcript.whisperx[280].text 大家回去玩一玩啦 因為有免費玩一玩 那確實可以用尤其在國會 各位委員辦公室 各位助理要大量的文書作業 其實是很辛苦的要寫執行稿 新聞稿 知識稿 各種稿都要寫那假如你會利用這種AI的話 利用這種模型的話那至少你在準備一些資料的時候會更方便當然他最後可以寫說 本資料有一些錯誤性
transcript.whisperx[281].start 10024.196
transcript.whisperx[281].end 10047.151
transcript.whisperx[281].text 調整麥克風,川普總統您好,感謝您的提問進行查證那還有要適合找出適合你們委員需要的口氣跟內容你還是要去過濾一下啦,去把它中整一下這樣但是畢竟這是一個很好的工具,很好的應用的話我想對在座都會有幫助甚至可能我要猜啦,在未來的很多委員辦公室要徵求助理的話都問你說你會不會運用這種程式
transcript.whisperx[282].start 10049.62
transcript.whisperx[282].end 10074.666
transcript.whisperx[282].text 當委員知道這個很好用的時候他就會問新進的國會助理你會不會用你不會用可能就會被淘汰掉了所以說大家要學我個人認為真的是可能下一屆也許很多委員在找助理的時候就會這樣問了包括很多政府部門也都在慢慢在應用好那差不多兩點多了各位要回去上班了我們謝謝廖訓練長謝謝希望下次有在辦謝謝大家謝謝
transcript.whisperx[283].start 10081.498
transcript.whisperx[283].end 10086.239
transcript.whisperx[283].text 沒有問題好像剛剛我們同仁說有沒有PDF我們會後再提供給各位謝謝