iVOD / 164697

Field Value
IVOD_ID 164697
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164697
日期 2025-10-23
會議資料.會議代碼 公聽會-2025101636
會議資料.會議代碼:str 「公立學校教職員退休資遣撫卹條例部分條文修正草案」公聽會
會議資料.屆 11
會議資料.會期 4
會議資料.種類 公聽會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 立法院第11屆第4會期司法及法制委員會公聽會(事由:「公立學校教職員退休資遣撫卹條例部分條文修正草案」公聽會)
影片種類 Clip
開始時間 2025-10-23T12:19:01+08:00
結束時間 2025-10-23T12:28:57+08:00
影片長度 00:09:56
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/1f1f5c91750503d34484a89c2b95600b8145a59dfde0be428b7bf11cd0d9a0f43b1f0242bc217b355ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 張啓楷
委員發言時間 12:19:01 - 12:28:57
會議時間 2025-10-23T09:00:00+08:00
會議名稱 立法院第11屆第4會期司法及法制委員會公聽會(事由:「公立學校教職員退休資遣撫卹條例部分條文修正草案」公聽會)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 7.35471875
transcript.pyannote[0].end 17.09159375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 17.34471875
transcript.pyannote[1].end 19.62284375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 20.06159375
transcript.pyannote[2].end 21.32721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 21.85034375
transcript.pyannote[3].end 34.48971875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 34.70909375
transcript.pyannote[4].end 36.34596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 38.18534375
transcript.pyannote[5].end 41.23971875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 41.74596875
transcript.pyannote[6].end 42.67409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 43.63596875
transcript.pyannote[7].end 46.43721875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 47.60159375
transcript.pyannote[8].end 52.79909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 52.81596875
transcript.pyannote[9].end 67.22721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 67.73346875
transcript.pyannote[10].end 68.91471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 69.26909375
transcript.pyannote[11].end 75.88409375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 76.49159375
transcript.pyannote[12].end 78.43221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 79.07346875
transcript.pyannote[13].end 82.95471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 83.47784375
transcript.pyannote[14].end 85.90784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 86.85284375
transcript.pyannote[15].end 90.34596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 91.34159375
transcript.pyannote[16].end 96.62346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 97.11284375
transcript.pyannote[17].end 99.44159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 100.53846875
transcript.pyannote[18].end 102.54659375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 103.33971875
transcript.pyannote[19].end 105.26346875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 106.46159375
transcript.pyannote[20].end 112.48596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 113.31284375
transcript.pyannote[21].end 116.83971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 117.68346875
transcript.pyannote[22].end 121.61534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 122.42534375
transcript.pyannote[23].end 123.04971875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 123.85971875
transcript.pyannote[24].end 128.75346875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 129.00659375
transcript.pyannote[25].end 132.33096875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 132.78659375
transcript.pyannote[26].end 137.51159375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 137.81534375
transcript.pyannote[27].end 139.18221875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 139.50284375
transcript.pyannote[28].end 153.57659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 154.08284375
transcript.pyannote[29].end 156.34409375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 157.45784375
transcript.pyannote[30].end 168.39284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 169.20284375
transcript.pyannote[31].end 172.25721875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 173.37096875
transcript.pyannote[32].end 174.61971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 175.59846875
transcript.pyannote[33].end 177.87659375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 178.45034375
transcript.pyannote[34].end 182.31471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 183.36096875
transcript.pyannote[35].end 184.74471875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 186.33096875
transcript.pyannote[36].end 187.52909375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 188.17034375
transcript.pyannote[37].end 189.04784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 189.40221875
transcript.pyannote[38].end 194.73471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 195.40971875
transcript.pyannote[39].end 207.69471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 208.75784375
transcript.pyannote[40].end 209.78721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 210.34409375
transcript.pyannote[41].end 219.43971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 220.35096875
transcript.pyannote[42].end 226.52721875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 227.16846875
transcript.pyannote[43].end 227.91096875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 228.68721875
transcript.pyannote[44].end 230.49284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 231.15096875
transcript.pyannote[45].end 231.79221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 232.11284375
transcript.pyannote[46].end 232.88909375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 233.91846875
transcript.pyannote[47].end 236.23034375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 237.52971875
transcript.pyannote[48].end 240.04409375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 240.41534375
transcript.pyannote[49].end 249.05534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 251.35034375
transcript.pyannote[50].end 256.12596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 256.51409375
transcript.pyannote[51].end 257.25659375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 257.61096875
transcript.pyannote[52].end 266.36909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 266.87534375
transcript.pyannote[53].end 276.17346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 277.08471875
transcript.pyannote[54].end 279.51471875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 280.49346875
transcript.pyannote[55].end 281.60721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 283.22721875
transcript.pyannote[56].end 288.57659375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 289.42034375
transcript.pyannote[57].end 291.74909375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 292.60971875
transcript.pyannote[58].end 294.98909375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 297.26721875
transcript.pyannote[59].end 297.95909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 298.60034375
transcript.pyannote[60].end 299.59596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 300.43971875
transcript.pyannote[61].end 301.68846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 302.34659375
transcript.pyannote[62].end 305.14784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 305.85659375
transcript.pyannote[63].end 309.80534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 310.85159375
transcript.pyannote[64].end 315.42471875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 316.20096875
transcript.pyannote[65].end 317.53409375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 318.36096875
transcript.pyannote[66].end 321.66846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 323.27159375
transcript.pyannote[67].end 324.94221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 325.31346875
transcript.pyannote[68].end 327.15284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 327.38909375
transcript.pyannote[69].end 329.02596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 329.86971875
transcript.pyannote[70].end 331.18596875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 332.45159375
transcript.pyannote[71].end 333.73409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 335.26971875
transcript.pyannote[72].end 337.98659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 338.50971875
transcript.pyannote[73].end 342.99846875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 343.63971875
transcript.pyannote[74].end 345.22596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 345.56346875
transcript.pyannote[75].end 351.31784375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 351.87471875
transcript.pyannote[76].end 357.05534375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 357.91596875
transcript.pyannote[77].end 358.45596875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 358.82721875
transcript.pyannote[78].end 372.14159375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 373.28909375
transcript.pyannote[79].end 377.44034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 378.75659375
transcript.pyannote[80].end 381.32159375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 382.41846875
transcript.pyannote[81].end 388.93221875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 389.65784375
transcript.pyannote[82].end 391.61534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 392.22284375
transcript.pyannote[83].end 398.11221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 399.31034375
transcript.pyannote[84].end 403.93409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 404.86221875
transcript.pyannote[85].end 405.95909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 407.22471875
transcript.pyannote[86].end 408.30471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 409.03034375
transcript.pyannote[87].end 414.02534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 414.37971875
transcript.pyannote[88].end 415.44284375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 415.79721875
transcript.pyannote[89].end 418.86846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 419.93159375
transcript.pyannote[90].end 427.05284375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 427.37346875
transcript.pyannote[91].end 428.87534375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 429.34784375
transcript.pyannote[92].end 430.41096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 430.69784375
transcript.pyannote[93].end 433.12784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 433.71846875
transcript.pyannote[94].end 434.84909375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 435.92909375
transcript.pyannote[95].end 439.21971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 439.82721875
transcript.pyannote[96].end 443.13471875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 443.99534375
transcript.pyannote[97].end 449.54721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 449.76659375
transcript.pyannote[98].end 453.39471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 453.83346875
transcript.pyannote[99].end 456.76971875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 457.96784375
transcript.pyannote[100].end 462.18659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 463.45221875
transcript.pyannote[101].end 465.40971875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 465.94971875
transcript.pyannote[102].end 468.88596875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 469.22346875
transcript.pyannote[103].end 476.68221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 478.04909375
transcript.pyannote[104].end 479.24721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 480.95159375
transcript.pyannote[105].end 482.38596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 483.33096875
transcript.pyannote[106].end 484.37721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 484.93409375
transcript.pyannote[107].end 486.04784375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 486.40221875
transcript.pyannote[108].end 487.51596875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 487.97159375
transcript.pyannote[109].end 490.13159375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 490.77284375
transcript.pyannote[110].end 492.07221875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 494.53596875
transcript.pyannote[111].end 498.09659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 498.68721875
transcript.pyannote[112].end 506.65221875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 507.19221875
transcript.pyannote[113].end 508.47471875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 508.94721875
transcript.pyannote[114].end 519.78096875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 520.20284375
transcript.pyannote[115].end 524.28659375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 524.87721875
transcript.pyannote[116].end 532.74096875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 533.01096875
transcript.pyannote[117].end 542.22471875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 543.05159375
transcript.pyannote[118].end 543.60846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 544.46909375
transcript.pyannote[119].end 549.09284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 549.66659375
transcript.pyannote[120].end 556.29846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 556.63596875
transcript.pyannote[121].end 557.19284375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 557.42909375
transcript.pyannote[122].end 559.40346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 560.71971875
transcript.pyannote[123].end 562.71096875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 563.72346875
transcript.pyannote[124].end 570.33846875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 571.48596875
transcript.pyannote[125].end 574.27034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 574.59096875
transcript.pyannote[126].end 578.48909375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 578.77596875
transcript.pyannote[127].end 585.42471875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 585.61034375
transcript.pyannote[128].end 586.92659375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 587.21346875
transcript.pyannote[129].end 595.83659375
transcript.whisperx[0].start 7.832
transcript.whisperx[0].end 33.787
transcript.whisperx[0].text 謝謝小玲辦了這麼好的公聽會也謝謝這麼多專家寫者提供了這麼深刻的這個建議我今天要提出兩個水庫三個解決方案兩個水庫呢就是在2017年那時候為什麼要犧牲我們的軍工價要砍退休金因為他們說大水庫國家財政有困難第二個小水庫退府基金的錢不夠啦現在這兩個問題都解決了
transcript.whisperx[1].start 38.243
transcript.whisperx[1].end 66.811
transcript.whisperx[1].text 我們的最近幾年的財政良好過去五年我們的稅收超增了兩兆在2017年推動年金改革的時候國家財政確實是困難的可是那時候的中央政府總預算的規模兩兆出頭現在我們快速膨脹到三兆了我們現在是一個有錢的國家不應該再犧牲我們的金工教人員第二個
transcript.whisperx[2].start 67.873
transcript.whisperx[2].end 96.25
transcript.whisperx[2].text 小水庫以前的經營績效確實也不好以前大概2% 3%有時候還是負的大家知道嗎最近幾年 最近5年退府基金這個小水庫經營績效變好了過去5年平均超過9%你現在去看看那個小水庫裡面的這個這個水位啊105年它裡面的錢是5785億今年呢 我剛剛去看了一下
transcript.whisperx[3].start 97.439
transcript.whisperx[3].end 121.301
transcript.whisperx[3].text 1兆810億水位整整成長了快一倍所以國家財政變好了退伍基金的這個經營績效也變好了我覺得不應該再對不起我們的金工教人員犧牲也過多了好 接下來我要提出三個具體的解決方案
transcript.whisperx[4].start 122.486
transcript.whisperx[4].end 136.392
transcript.whisperx[4].text 第一個 尊重當初的主管機關提出的改革方案那時候的主管機關是考試院我的恩師我台大政治系研究所的恩師黃警長黃老師在現場
transcript.whisperx[5].start 137.898
transcript.whisperx[5].end 156.134
transcript.whisperx[5].text 他是那時候的考試委員當初考試院跟全系部提出的改革方案是從所得替代率的80%開始每一年砍1%就到70%的時候會停然後講這個已經很嚴重了你一開始就被砍了20%後來每一年還要砍1%現在更嚴重是什麼
transcript.whisperx[6].start 157.503
transcript.whisperx[6].end 184.138
transcript.whisperx[6].text 民進黨那時候殺紅了眼砍到刀刀劍骨他把80%又降到75多砍 一開始就多了5%了而且把本來每一年的1.5砍成1.5所以大家可以算一下我們今年已經是年改的第7年了年改的第7年了多了5%再加6乘以5 9%我們已經被砍了14%了如果再加前面的20%
transcript.whisperx[7].start 186.345
transcript.whisperx[7].end 206.032
transcript.whisperx[7].text 已經砍了34%了非常嚴重那回到考試院原來的版本他從八成每一年只有砍1%應該到70%就要停了大家很明顯的看得出來當初民進黨砍得太兇了你說尊重主管機關考試院的版本事實上也是蔡英文臨改會議的結論
transcript.whisperx[8].start 208.803
transcript.whisperx[8].end 232.236
transcript.whisperx[8].text 尊重專業的話現在已經砍過頭了所以應該回過頭去尊重是不是要慎重考慮 填砍這是第一個解決方案第二個方案更簡單就比較勞工同樣在這個地方每次我在質詢每次有勞動部的部長來勞動部說撥補就是改革他們有三個地方我記得清空教應該都一樣
transcript.whisperx[9].start 234.159
transcript.whisperx[9].end 242.609
transcript.whisperx[9].text 勞工沒有砍 到現在沒有砍 對不對第二個更重要的 他撥補很多最近這7年已經撥補超過5000億了今年撥補1100億 上個禮拜喔特別預算又多了100億 對不對
transcript.whisperx[10].start 251.363
transcript.whisperx[10].end 278.603
transcript.whisperx[10].text 第三個更重要的 每次勞動部長都講啊我們不會破產 因為政府一定會負責到底只要跟對我們的公教人員 對我們的這個教育人員請教育部間在場的同仁 權序部在場的同仁跟勞動部部長都學一點撥補就是改革 不只不要再砍 該撥補的要撥補而且要抬頭挺胸 我們保障公教人員不會破產 政府負最大責任第三個解決方案 問他錢哪邊來
transcript.whisperx[11].start 280.763
transcript.whisperx[11].end 306.428
transcript.whisperx[11].text 減少浪費啊我們的政府現在是歷年來114年最有錢的中央政府一年有三兆的預算可是浪費非常的多我講最近幾個案子光是上個禮拜通過的特別預算出現什麼國防部說國防部說編那個編那個長效的飲用水一瓶水120塊錢一共編了8億要去買水我們民眾黨說哇這個太離譜了
transcript.whisperx[12].start 310.882
transcript.whisperx[12].end 330.036
transcript.whisperx[12].text 我們說砍兩億後來國安部長自己講抱歉抱歉我們之前沒有房價我們自己砍 砍四億四億就省下來啦可以給公教成員給警校啊 給軍公教啊說聯合作戰中心桌椅啊什麼設備要整修一張桌子250萬一張椅子五萬塊錢那是空間還是防彈
transcript.whisperx[13].start 335.842
transcript.whisperx[13].end 356.76
transcript.whisperx[13].text 後來國防部連部長自己都拍謝他吃太多了國防部的錢一下子編太多了自己都吐出來了這個錢也都四處都砍了所以光是去上個禮拜通過這個三讀預算國防部編的預算裡面就省了51下來這51就可以給軍公教給公教人員啊為什麼會說他們的錢不夠呢
transcript.whisperx[14].start 357.97
transcript.whisperx[14].end 380.792
transcript.whisperx[14].text 另外你看光電板幣那麼多浪費那麼多錢幣又那麼多還發生槍擊案那個錢只要整下來錢怎麼會不過呢所以我今天提出了三個解決方案另外我做幾個簡單的提醒我們現在公教之前坎德太兄這個事情已經發生了後遺症了我們的公教我給大家看一下這個圖
transcript.whisperx[15].start 382.492
transcript.whisperx[15].end 401.919
transcript.whisperx[15].text 我去統計了106年到113年各項公務員考試來報考的人大家知道多嚴重嗎 大家看這個圖106年 就是年金改革之前一年來報考公務人員的47萬到了年金改革完之後到了去年113 剩下29萬少了17萬
transcript.whisperx[16].start 407.284
transcript.whisperx[16].end 427.693
transcript.whisperx[16].text 公務員是這樣子這不只傷害公務員的品質啊傷害也是國家啊傷害是我們全民啊再來看教育右邊這個你看那個土那個像一個剖頭多嚴重在107年年金改革的時候你如果拿到教師證的你會進到這個職場去當老師的70%到了111年已經那個抖到什麼地方剩下57
transcript.whisperx[17].start 435.973
transcript.whisperx[17].end 464.37
transcript.whisperx[17].text 就是你也連拿到老師的這個資格你都不一定再去教書了那不只傷害到老師啊傷害到學生 對不對所以他後遺症已經出現了嘛傷害到公務員 傷害到老師也傷害到學生 傷害到整個社會了這個後遺症非常嚴重我們要趕快去補破網 把它補起來另外今天全系部在現場 我要提醒一下今年一月份的時候我在這邊大罵全系部部長說你是八十八點因為他每次精算報告都亂搞
transcript.whisperx[18].start 466.004
transcript.whisperx[18].end 491.416
transcript.whisperx[18].text 他竟然那天對著全國的民眾講說退休的這個警消人員啦有八成領的錢平均起來是七萬六千塊錢我問你對他眼睛看到這個後來真相是什麼可以領到七萬六的不到千分之一一千個不到一個那今天讓我生氣的今天全席部會報告他什麼樣下的你為什麼要去強調
transcript.whisperx[19].start 494.877
transcript.whisperx[19].end 519.395
transcript.whisperx[19].text 約有31%的退休人員超過5萬5你應該是對那個一般可能領的更少人家去講啊你這個報告不是自拿嘴巴嗎你講31%你為什麼不講69%的呢你到底要凸顯什麼所以我剛在講第一個你們學一學人家勞動部好不好去爭取公務員跟教師應該有這個權利好不好我拜託一下請教育部的人員跟前續部抬頭挺胸
transcript.whisperx[20].start 520.276
transcript.whisperx[20].end 541.571
transcript.whisperx[20].text 好 捍衛自己該有的這個權益最後我做一個很重要的提議事實上年金改革這是急著要再處理的是因為當初在年金改革的時候沒有算到高齡的CPI物價指數這個事情所以我們在1120的8月份開始要求高齡超過65歲的CPI是要我給大家看一下大家看一下一般的家庭是左邊這個
transcript.whisperx[21].start 544.524
transcript.whisperx[21].end 569.462
transcript.whisperx[21].text 從 你看 從108年到113年如果算一般的家庭成長多少 9.91可是如果是高齡的 高齡的這個很多長輩因為退下來嘛 可能醫療要很多啊 對不對他是多少 11.39結果他越 年紀越長越沒有錢所以這個是迫切的 迫切的一個改革好 最後說一個結論啦我們今天談的不是一個冰冷這個數據
transcript.whisperx[22].start 572.028
transcript.whisperx[22].end 595.334
transcript.whisperx[22].text 我們希望給我們的公教人員一個有尊嚴有保障的晚年因為我們肯定他們一輩子對我們國家的這個貢獻那今天我也提出三個解決方案好不好請大家好好去看一下減少浪費尊重主管機關而且只要像在照顧勞工一樣來照顧我們的公教人員所有問題都可以解決好 我們一起努力 謝謝