iVOD / 164594

Field Value
IVOD_ID 164594
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164594
日期 2025-10-22
會議資料.會議代碼 委員會-11-4-20-3
會議資料.會議代碼:str 第11屆第4會期財政委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-22T11:51:45+08:00
結束時間 2025-10-22T12:05:44+08:00
影片長度 00:13:59
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/615807a88c5be4da4304b9378948bf74e29853ba2d60c06d2d78011594ec57579b03abd11ba7a7725ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:51:45 - 12:05:44
會議時間 2025-10-22T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第3次全體委員會議(事由:邀請行政院主計總處、財政部就「中央對直轄市及縣(市)政府補助辦法修正後,一般性補助款審查與評比基準、財務計畫檢核基礎、撥款方式等規範及作業程序為何?修改財力級次計算公式之合理性及對各縣市補助款影響為何?計畫型補助款範圍與業務定義?對各縣市未來整體財政補助金額之影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 15.92721875
transcript.pyannote[0].end 16.23096875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 16.50096875
transcript.pyannote[1].end 18.35721875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 18.44159375
transcript.pyannote[2].end 20.04471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 24.04409375
transcript.pyannote[3].end 24.68534375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 25.83284375
transcript.pyannote[4].end 25.84971875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 26.42346875
transcript.pyannote[5].end 42.08346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 31.95846875
transcript.pyannote[6].end 32.46471875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 42.69096875
transcript.pyannote[7].end 45.00284375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 45.05346875
transcript.pyannote[8].end 45.12096875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 45.12096875
transcript.pyannote[9].end 45.57659375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 45.57659375
transcript.pyannote[10].end 45.61034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 45.74534375
transcript.pyannote[11].end 52.49534375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 52.54596875
transcript.pyannote[12].end 54.85784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 55.36409375
transcript.pyannote[13].end 56.03909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 56.69721875
transcript.pyannote[14].end 73.13346875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 66.09659375
transcript.pyannote[15].end 66.58596875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 73.21784375
transcript.pyannote[16].end 73.69034375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 73.75784375
transcript.pyannote[17].end 76.89659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 78.06096875
transcript.pyannote[18].end 84.67596875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 85.38471875
transcript.pyannote[19].end 87.03846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 88.70909375
transcript.pyannote[20].end 103.27221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 103.47471875
transcript.pyannote[21].end 106.02284375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 107.30534375
transcript.pyannote[22].end 112.16534375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 113.70096875
transcript.pyannote[23].end 117.19409375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 118.12221875
transcript.pyannote[24].end 120.61971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 120.77159375
transcript.pyannote[25].end 122.50971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 123.72471875
transcript.pyannote[26].end 129.34409375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 129.95159375
transcript.pyannote[27].end 131.03159375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 132.22971875
transcript.pyannote[28].end 135.57096875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 136.19534375
transcript.pyannote[29].end 143.18159375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 143.95784375
transcript.pyannote[30].end 145.03784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 145.89846875
transcript.pyannote[31].end 148.83471875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 149.44221875
transcript.pyannote[32].end 150.18471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 150.43784375
transcript.pyannote[33].end 153.20534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 153.52596875
transcript.pyannote[34].end 155.73659375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 157.15409375
transcript.pyannote[35].end 162.80721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 163.43159375
transcript.pyannote[36].end 165.06846875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 165.50721875
transcript.pyannote[37].end 168.17346875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 170.29971875
transcript.pyannote[38].end 170.99159375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 171.59909375
transcript.pyannote[39].end 173.40471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 174.01221875
transcript.pyannote[40].end 175.00784375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 176.29034375
transcript.pyannote[41].end 181.03221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 181.21784375
transcript.pyannote[42].end 184.32284375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 184.79534375
transcript.pyannote[43].end 185.06534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 185.63909375
transcript.pyannote[44].end 188.64284375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 189.46971875
transcript.pyannote[45].end 191.66346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 193.75596875
transcript.pyannote[46].end 195.67971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 196.21971875
transcript.pyannote[47].end 200.67471875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 201.90659375
transcript.pyannote[48].end 204.08346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 204.97784375
transcript.pyannote[49].end 207.98159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 208.31909375
transcript.pyannote[50].end 209.41596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 210.25971875
transcript.pyannote[51].end 211.62659375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 212.84159375
transcript.pyannote[52].end 213.80346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 214.00596875
transcript.pyannote[53].end 217.07721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 217.88721875
transcript.pyannote[54].end 222.20721875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 222.73034375
transcript.pyannote[55].end 224.60346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 225.41346875
transcript.pyannote[56].end 228.92346875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 229.37909375
transcript.pyannote[57].end 232.83846875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 233.88471875
transcript.pyannote[58].end 238.72784375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 239.28471875
transcript.pyannote[59].end 243.87471875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 244.61721875
transcript.pyannote[60].end 247.04721875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 248.09346875
transcript.pyannote[61].end 250.82721875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 251.21534375
transcript.pyannote[62].end 251.82284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 253.10534375
transcript.pyannote[63].end 253.52721875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 254.59034375
transcript.pyannote[64].end 256.56471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 257.17221875
transcript.pyannote[65].end 265.15409375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 260.10846875
transcript.pyannote[66].end 260.49659375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 265.77846875
transcript.pyannote[67].end 266.26784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 267.14534375
transcript.pyannote[68].end 268.36034375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 269.64284375
transcript.pyannote[69].end 273.18659375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 273.67596875
transcript.pyannote[70].end 276.78096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 276.88221875
transcript.pyannote[71].end 282.58596875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 277.21971875
transcript.pyannote[72].end 277.30409375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 283.42971875
transcript.pyannote[73].end 293.70659375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 294.46596875
transcript.pyannote[74].end 310.42971875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 311.02034375
transcript.pyannote[75].end 316.90971875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 317.58471875
transcript.pyannote[76].end 321.01034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 321.22971875
transcript.pyannote[77].end 321.75284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 322.73159375
transcript.pyannote[78].end 323.06909375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 324.58784375
transcript.pyannote[79].end 325.34721875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 325.63409375
transcript.pyannote[80].end 328.62096875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 329.24534375
transcript.pyannote[81].end 331.69221875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 332.11409375
transcript.pyannote[82].end 341.39534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 342.00284375
transcript.pyannote[83].end 352.54971875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 352.90409375
transcript.pyannote[84].end 362.99534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 363.68721875
transcript.pyannote[85].end 367.36596875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 367.73721875
transcript.pyannote[86].end 371.61846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 373.06971875
transcript.pyannote[87].end 374.48721875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 373.81221875
transcript.pyannote[88].end 375.53346875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 376.07346875
transcript.pyannote[89].end 379.71846875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 380.42721875
transcript.pyannote[90].end 380.64659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 380.56221875
transcript.pyannote[91].end 380.78159375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 381.38909375
transcript.pyannote[92].end 383.46471875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 383.63346875
transcript.pyannote[93].end 385.33784375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 386.23221875
transcript.pyannote[94].end 386.46846875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 386.46846875
transcript.pyannote[95].end 387.21096875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 387.81846875
transcript.pyannote[96].end 388.08846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 390.95721875
transcript.pyannote[97].end 391.59846875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 392.03721875
transcript.pyannote[98].end 392.05409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 392.05409375
transcript.pyannote[99].end 392.44221875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 393.64034375
transcript.pyannote[100].end 394.16346875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 396.27284375
transcript.pyannote[101].end 397.70721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 398.93909375
transcript.pyannote[102].end 399.32721875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 400.22159375
transcript.pyannote[103].end 403.14096875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 403.69784375
transcript.pyannote[104].end 404.96346875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 405.40221875
transcript.pyannote[105].end 413.50221875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 413.99159375
transcript.pyannote[106].end 417.38346875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 418.09221875
transcript.pyannote[107].end 423.12096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 423.50909375
transcript.pyannote[108].end 424.85909375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 425.38221875
transcript.pyannote[109].end 429.14534375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 429.90471875
transcript.pyannote[110].end 430.61346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 431.33909375
transcript.pyannote[111].end 432.23346875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 433.00971875
transcript.pyannote[112].end 439.08471875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 439.65846875
transcript.pyannote[113].end 446.12159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 446.77971875
transcript.pyannote[114].end 450.47534375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 450.76221875
transcript.pyannote[115].end 452.11221875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 453.00659375
transcript.pyannote[116].end 453.56346875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 453.93471875
transcript.pyannote[117].end 455.65596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 456.12846875
transcript.pyannote[118].end 457.49534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 457.66409375
transcript.pyannote[119].end 459.01409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 460.27971875
transcript.pyannote[120].end 461.98409375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 462.30471875
transcript.pyannote[121].end 467.06346875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 467.48534375
transcript.pyannote[122].end 468.27846875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 469.07159375
transcript.pyannote[123].end 500.22284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 500.64471875
transcript.pyannote[124].end 513.18284375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 514.38096875
transcript.pyannote[125].end 517.38471875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 518.00909375
transcript.pyannote[126].end 519.89909375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 520.40534375
transcript.pyannote[127].end 520.91159375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 521.83971875
transcript.pyannote[128].end 525.21471875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 526.31159375
transcript.pyannote[129].end 527.56034375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 527.99909375
transcript.pyannote[130].end 539.32221875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 540.13221875
transcript.pyannote[131].end 543.35534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 544.33409375
transcript.pyannote[132].end 545.86971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 546.61221875
transcript.pyannote[133].end 548.36721875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 548.55284375
transcript.pyannote[134].end 549.17721875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 549.95346875
transcript.pyannote[135].end 559.89284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 560.50034375
transcript.pyannote[136].end 569.22471875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 569.66346875
transcript.pyannote[137].end 571.31721875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 571.75596875
transcript.pyannote[138].end 574.03409375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 574.87784375
transcript.pyannote[139].end 575.48534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 576.09284375
transcript.pyannote[140].end 589.60971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 589.87971875
transcript.pyannote[141].end 590.65596875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 591.09471875
transcript.pyannote[142].end 592.24221875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 593.05221875
transcript.pyannote[143].end 593.08596875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 593.96346875
transcript.pyannote[144].end 595.27971875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 595.87034375
transcript.pyannote[145].end 597.89534375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 598.51971875
transcript.pyannote[146].end 602.35034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 602.70471875
transcript.pyannote[147].end 610.09596875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 610.85534375
transcript.pyannote[148].end 615.02346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 615.61409375
transcript.pyannote[149].end 623.78159375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 624.05159375
transcript.pyannote[150].end 629.14784375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 630.04221875
transcript.pyannote[151].end 631.13909375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 631.79721875
transcript.pyannote[152].end 633.02909375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 633.38346875
transcript.pyannote[153].end 637.78784375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 638.29409375
transcript.pyannote[154].end 640.52159375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 641.21346875
transcript.pyannote[155].end 643.33971875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 644.18346875
transcript.pyannote[156].end 650.86596875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 651.00096875
transcript.pyannote[157].end 654.39284375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 654.86534375
transcript.pyannote[158].end 658.49346875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 657.21096875
transcript.pyannote[159].end 657.44721875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 658.66221875
transcript.pyannote[160].end 658.74659375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 659.60721875
transcript.pyannote[161].end 672.98909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 673.78221875
transcript.pyannote[162].end 675.33471875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 675.94221875
transcript.pyannote[163].end 677.39346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 677.73096875
transcript.pyannote[164].end 678.49034375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 678.91221875
transcript.pyannote[165].end 678.94596875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 678.94596875
transcript.pyannote[166].end 685.91534375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 686.03346875
transcript.pyannote[167].end 686.35409375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 686.35409375
transcript.pyannote[168].end 689.86409375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 689.88096875
transcript.pyannote[169].end 724.93034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 724.17096875
transcript.pyannote[170].end 729.60471875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 728.35596875
transcript.pyannote[171].end 735.69659375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 734.93721875
transcript.pyannote[172].end 762.66284375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 739.13909375
transcript.pyannote[173].end 739.35846875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 746.85096875
transcript.pyannote[174].end 747.03659375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 747.03659375
transcript.pyannote[175].end 747.05346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 747.05346875
transcript.pyannote[176].end 747.13784375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 747.13784375
transcript.pyannote[177].end 747.15471875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 747.15471875
transcript.pyannote[178].end 747.17159375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 762.76409375
transcript.pyannote[179].end 786.23721875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 786.23721875
transcript.pyannote[180].end 811.53284375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 811.85346875
transcript.pyannote[181].end 818.51909375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 818.65409375
transcript.pyannote[182].end 840.13596875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 820.45971875
transcript.pyannote[183].end 822.55221875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 832.84596875
transcript.pyannote[184].end 834.53346875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 836.25471875
transcript.pyannote[185].end 837.62159375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 837.90846875
transcript.pyannote[186].end 838.53284375
transcript.whisperx[0].start 17.07
transcript.whisperx[0].end 19.951
transcript.whisperx[0].text 謝謝主席 我請主席長好 請陳主席長委員好主席長我們前年112年國庫統計那麼在台股多頭助攻之下我們平均每戶家庭資產1889萬1889萬創
transcript.whisperx[1].start 43.139
transcript.whisperx[1].end 65.777
transcript.whisperx[1].text 數十年來新高啦那這當然是好事不過我覺得這些數字背後還是有一些問題啦就是說如果你看一下我們財富分配表這個財富分配也是我們主計處30年前民國80年你們先公布一次
transcript.whisperx[2].start 66.738
transcript.whisperx[2].end 86.876
transcript.whisperx[2].text 那麼拿來跟30年後就是最新的這一次是在你們在4年前公布的那麼如果我們把財富五等分來分每20%這樣子來做一個區塊來分那麼這個財富的差距最前段的
transcript.whisperx[3].start 89.712
transcript.whisperx[3].end 99.436
transcript.whisperx[3].text 20%跟最後段的20%相比30年前民國80年的時候是16.8倍最有錢的20%是最貧窮的20%的16.8倍竟然經過30年大家全國上下舉國的奮鬥之後結論竟然是高達66.9倍
transcript.whisperx[4].start 118.188
transcript.whisperx[4].end 144.621
transcript.whisperx[4].text 也就是說富者越富 貧者越貧那更可怕的是你如果把前20%財富佔比那本來啊30年前民國80年的時候是大概將近50% 49.71%在最新的這一次竟然
transcript.whisperx[5].start 146.027
transcript.whisperx[5].end 155.271
transcript.whisperx[5].text 前20%的富有民眾竟然佔比是高達62.68有6成多的財富集中在前20%的民眾當中你覺得這樣對嗎那更可怕更可怕的還什麼後段最後20%的財富
transcript.whisperx[6].start 177.485
transcript.whisperx[6].end 200.289
transcript.whisperx[6].text 本來還僅僅只有2.95 30年前至少還有佔將近3%30年後竟然佔不到1%只有0.94那所得更不用講所得更不用講前20%所得有1306萬
transcript.whisperx[7].start 205.051
transcript.whisperx[7].end 232.507
transcript.whisperx[7].text 要升到五千一百三十三萬這很好喔我們大家不忌妒他們但是後百分之二十的家庭財富竟然是衰退三十年前七十八萬三十年後的今天七十七萬看起來表面跌了一萬但是主席長你如果把幣值
transcript.whisperx[8].start 233.939
transcript.whisperx[8].end 251.751
transcript.whisperx[8].text 跟這30年來的通貨膨脹相比而言現在如果家庭財富77萬元一個家庭那可以說是赤貧那可以說是一窮二白不是嗎所以
transcript.whisperx[9].start 254.622
transcript.whisperx[9].end 282.37
transcript.whisperx[9].text 我為什麼提到這個事情我們上個禮拜在這邊質詢的時候我在講說我們主計數的數字一定要很詳實為什麼因為越詳實越能找出問題那我們用國家的稅制來做個平衡不是這樣嗎所以我上禮拜說我們如果實質調查的結果
transcript.whisperx[10].start 283.476
transcript.whisperx[10].end 293.243
transcript.whisperx[10].text 我認為我們台灣貧窮黑素的人口有高達兩百萬之多啦當時我們有做這樣的切磋那麼
transcript.whisperx[11].start 294.537
transcript.whisperx[11].end 321.565
transcript.whisperx[11].text 我們當然政府必須去宣傳國家的好這是應當的每個國家都一樣歐美日大家都一樣都講股票很好股票是經濟的櫥窗沒有錯我們這些年股票確實是好但是並不是2300萬台灣人每個人都在買賣股票不是啊而且買賣股票的人也不一定每個人都賺不是嗎那
transcript.whisperx[12].start 324.656
transcript.whisperx[12].end 339.632
transcript.whisperx[12].text 能力有高低運氣有好壞所以每個人機運不同那可能人家能力強的運氣好的他去富有這個沒有人會去忌妒問題是
transcript.whisperx[13].start 342.134
transcript.whisperx[13].end 359.818
transcript.whisperx[13].text 在我們的稅制在我們現行的制度下我們已經很嚴重造成貧富不均所以我認為稅制的改革那第一步應該從主計處給的數字主計處給的數字如果給的數字不是在那麼詳實的時候那麼他們在計稅的稅制的調整下他們會麻木不仁所以時間暫停我請那個複稅署
transcript.whisperx[14].start 373.266
transcript.whisperx[14].end 387.899
transcript.whisperx[14].text 我們時間暫停一下 今天署長沒有來嗎請李副署長 副署長喔是負責應付也來應付就對了你請就位那個 委員好署長在署長
transcript.whisperx[15].start 401.053
transcript.whisperx[15].end 427.64
transcript.whisperx[15].text 這個我跟他嚴厲的要求對每一項我們國內各項數字的統計一定要詳實那這些數字都有到你們負稅署的手上那麼我們可以很清楚的看到我們數十年來綜合所得稅薪資所得佔的稅比將近是最高的佔了21.6之高
transcript.whisperx[16].start 429.983
transcript.whisperx[16].end 458.715
transcript.whisperx[16].text 高過營業稅高過資產稅高過政交稅高過關稅也高過貨物稅也就是我們來自壽星階層我們辛苦的工作血汗錢那大家都盡了國民應盡的義務都給到這麼高但是這上面針對薪資的部分薪資的部分
transcript.whisperx[17].start 460.599
transcript.whisperx[17].end 467.626
transcript.whisperx[17].text 這麼多年來調整慢如牛布了所以十幾年前大概12年前吧那麼
transcript.whisperx[18].start 469.404
transcript.whisperx[18].end 495.862
transcript.whisperx[18].text 櫃鼠有跟經濟部有聯合當時有說針對這個中小企業發展條例來修法因為也就是說我們希望能夠加薪減稅那當時好不容易修了增加了一些條款減去了一些排除條款之後員工加薪租稅的優惠有達成但是你們修好的時候
transcript.whisperx[19].start 496.522
transcript.whisperx[19].end 512.654
transcript.whisperx[19].text 也只有實質也只有兩年只有這兩年有動用到這個條例讓企業去加薪減稅那加薪的人口多少有一年105年2008人隔一年1730人然後加薪總薪師
transcript.whisperx[20].start 522.209
transcript.whisperx[20].end 543.024
transcript.whisperx[20].text 總加多少總加六千萬六千萬而已那當然你們也給企業家中小企業家這六千萬的給了一千七百萬的租稅減免這是很好也就是說啊這個修法還不夠徹底績效不彰啦績效不彰好啦那
transcript.whisperx[21].start 550.051
transcript.whisperx[21].end 573.784
transcript.whisperx[21].text 所以我們立院我們一再敦促之下你們去年七月也修法然後你們刪除了失業率這個門檻那也把這個營運所的減除率由138提高到175%我現在要問你的就是說好 修這樣很好這去年七月修的但到現在一年多
transcript.whisperx[22].start 575.169
transcript.whisperx[22].end 591.883
transcript.whisperx[22].text 現在十月底請問你這個修法以後到現在為止有沒有去檢討它的成效如何不要再像十年前那個一樣好不容易大陣仗修了結果十幾年來
transcript.whisperx[23].start 594.025
transcript.whisperx[23].end 614.165
transcript.whisperx[23].text 就只有兩年有被中小企業運用到可見你們沒有積極去推動 沒有積極去鼓勵結果兩年就我跟你講了我們高達八成的民眾是在中小企業上班內六七百萬人以上 結果兩年合計
transcript.whisperx[24].start 615.686
transcript.whisperx[24].end 643.147
transcript.whisperx[24].text 不到四千人因為這樣被加薪企業因為這樣被減稅金額才六千萬這不是笑話嗎所以我認為土法不足以自行你們修了以後你們要去追蹤要去推動要去鼓勵啊所以我請問你啊去年七月修了以後到現在你們去調查成效如何
transcript.whisperx[25].start 644.612
transcript.whisperx[25].end 657.239
transcript.whisperx[25].text 是 謝謝委員這個成效有顯現出來大概我們有3萬4千的人可以試用那費用的部分大概有減掉了我們4.5億那稅額大概就9千萬所以有去檢討了是的
transcript.whisperx[26].start 659.62
transcript.whisperx[26].end 679.058
transcript.whisperx[26].text 我檢討這點我就覺得很好很好但是金額還太少啦你不覺得嗎就我跟你講的啊中小企業壽星的民眾那高達八成之多耶所以這個部分是好的開始但是數字還太少持續push
transcript.whisperx[27].start 679.358
transcript.whisperx[27].end 697.048
transcript.whisperx[27].text 那是不是那個主計長你就繼續跟負稅署跟他們提點把精確的數字告知他們好不好我跟委員報告一下因為30年前的國務調查和現在110年調查的一個他調查方法是不一樣
transcript.whisperx[28].start 698.749
transcript.whisperx[28].end 714.118
transcript.whisperx[28].text 110年是用大數據那將來呢我們大因為這間隔30年他有一些相關的一個數據差距很大那現在這個部分呢他不能說一個直接去比較但是我們現在是每4年我們就要發布一次整個一個
transcript.whisperx[29].start 715.699
transcript.whisperx[29].end 737.974
transcript.whisperx[29].text 財務的一個數據整個家庭財務分配的一個我們大概四年會用大數據來公布一次所以你的意思是那過去三十年前比較不精準他調查的方法不一樣不能用來比較因為調查方法不一樣比較的方式出來的但是你可以看出這個絕對值第一個我認為絕對可以比較因為這個在我們民眾之間
transcript.whisperx[30].start 742.617
transcript.whisperx[30].end 759.673
transcript.whisperx[30].text 大家感覺上也是這樣第二點你以絕對值來看那我們就講30年後的今天現在110年這一次竟然家戶的財富最平的20%末段班的20%竟然只有77萬我請問你這是對的嗎
transcript.whisperx[31].start 762.796
transcript.whisperx[31].end 786.106
transcript.whisperx[31].text 因为后末段班的他的财富为什么是77万他也有可能是他的资产他很大一个资产但是他很大的负债因为为什么他买房可能要负债很多所以减去之后他是这样的一个数值来呈现表示说现在比较多数比较就是单人或者是年轻人他比较会有说他买房的负担是这样子
transcript.whisperx[32].start 786.306
transcript.whisperx[32].end 800.716
transcript.whisperx[32].text 本來資產就是要算淨值這跟他借不借款無關這本來就要扣除的嘛但是他可資用家庭財富就是77萬你不覺得77萬在現今的社會物價這麼高漲幣值這麼薄弱之下你不覺得這是赤貧嗎你不覺得這是一窮二白嗎
transcript.whisperx[33].start 812.183
transcript.whisperx[33].end 822.97
transcript.whisperx[33].text 所以我們很透過很多政府的一個補助的支出移轉式的支出有去做改善你去看我們上禮拜的質詢我才跟你說貧窮黑數那個補助那個少之又少只有佔2.1%而我們貧窮的黑數有高達16%這麼一插這麼一來一回一插200萬人之多好不好好謝謝王師傑