iVOD / 164571

Field Value
IVOD_ID 164571
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164571
日期 2025-10-22
會議資料.會議代碼 委員會-11-4-19-6
會議資料.會議代碼:str 第11屆第4會期經濟委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-10-22T11:20:55+08:00
結束時間 2025-10-22T11:29:37+08:00
影片長度 00:08:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/615807a88c5be4da69fe220a6d145a8ee072f7c27276b8ae83c966d97180d5d2142e1c090ea04b925ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡易餘
委員發言時間 11:20:55 - 11:29:37
會議時間 2025-10-22T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第6次全體委員會議(事由:邀請經濟部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.02659375
transcript.pyannote[1].end 1.51596875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 13.32846875
transcript.pyannote[2].end 16.46721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 16.63596875
transcript.pyannote[3].end 17.15909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.14221875
transcript.pyannote[4].end 18.18846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 23.92596875
transcript.pyannote[5].end 24.63471875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 25.63034375
transcript.pyannote[6].end 26.40659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 27.01409375
transcript.pyannote[7].end 36.70034375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 36.86909375
transcript.pyannote[8].end 54.11534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 54.45284375
transcript.pyannote[9].end 56.51159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 57.18659375
transcript.pyannote[10].end 57.74346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 58.16534375
transcript.pyannote[11].end 61.87784375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 60.17346875
transcript.pyannote[12].end 60.59534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 62.09721875
transcript.pyannote[13].end 63.36284375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.02096875
transcript.pyannote[14].end 69.23534375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 69.40409375
transcript.pyannote[15].end 72.07034375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 72.81284375
transcript.pyannote[16].end 74.16284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 74.83784375
transcript.pyannote[17].end 80.17034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 79.05659375
transcript.pyannote[18].end 83.02221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 81.46971875
transcript.pyannote[19].end 92.53971875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 89.73846875
transcript.pyannote[20].end 93.19784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 92.75909375
transcript.pyannote[21].end 111.05159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 94.42971875
transcript.pyannote[22].end 94.78409375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 100.30221875
transcript.pyannote[23].end 101.29784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 102.46221875
transcript.pyannote[24].end 102.93471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 111.94596875
transcript.pyannote[25].end 114.76409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 114.98346875
transcript.pyannote[26].end 121.91909375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 120.97409375
transcript.pyannote[27].end 121.37909375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 122.13846875
transcript.pyannote[28].end 131.16659375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 131.21721875
transcript.pyannote[29].end 133.64721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 133.93409375
transcript.pyannote[30].end 153.89721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 139.65471875
transcript.pyannote[31].end 142.48971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 145.27409375
transcript.pyannote[32].end 146.45534375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 148.54784375
transcript.pyannote[33].end 148.96971875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 149.64471875
transcript.pyannote[34].end 150.99471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 153.37409375
transcript.pyannote[35].end 160.83284375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 157.47471875
transcript.pyannote[36].end 159.83721875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 160.49534375
transcript.pyannote[37].end 160.88346875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 160.88346875
transcript.pyannote[38].end 161.01846875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 161.01846875
transcript.pyannote[39].end 161.05221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 161.18721875
transcript.pyannote[40].end 167.07659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 161.22096875
transcript.pyannote[41].end 161.57534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 167.27909375
transcript.pyannote[42].end 167.97096875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 167.31284375
transcript.pyannote[43].end 174.34971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 174.34971875
transcript.pyannote[44].end 174.43409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 174.43409375
transcript.pyannote[45].end 174.53534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 174.70409375
transcript.pyannote[46].end 176.22284375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 174.77159375
transcript.pyannote[47].end 175.26096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 176.72909375
transcript.pyannote[48].end 177.35346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 177.47159375
transcript.pyannote[49].end 187.61346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 180.50909375
transcript.pyannote[50].end 180.77909375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 183.36096875
transcript.pyannote[51].end 183.68159375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 187.61346875
transcript.pyannote[52].end 197.70471875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 197.92409375
transcript.pyannote[53].end 199.54409375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 200.23596875
transcript.pyannote[54].end 204.91034375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 200.33721875
transcript.pyannote[55].end 200.75909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 201.21471875
transcript.pyannote[56].end 201.77159375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 203.34096875
transcript.pyannote[57].end 204.16784375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 204.82596875
transcript.pyannote[58].end 206.09159375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 205.50096875
transcript.pyannote[59].end 212.08221875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 212.45346875
transcript.pyannote[60].end 213.09471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 213.51659375
transcript.pyannote[61].end 216.97596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 217.07721875
transcript.pyannote[62].end 222.15659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 222.56159375
transcript.pyannote[63].end 227.21909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 227.79284375
transcript.pyannote[64].end 229.39596875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 229.73346875
transcript.pyannote[65].end 237.79971875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 238.15409375
transcript.pyannote[66].end 244.11096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 244.36409375
transcript.pyannote[67].end 248.51534375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 249.08909375
transcript.pyannote[68].end 256.68284375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 257.10471875
transcript.pyannote[69].end 258.08346875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 258.31971875
transcript.pyannote[70].end 275.76846875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 272.03909375
transcript.pyannote[71].end 272.47784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 275.78534375
transcript.pyannote[72].end 280.03784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 279.75096875
transcript.pyannote[73].end 286.65284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 286.41659375
transcript.pyannote[74].end 297.28409375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 297.68909375
transcript.pyannote[75].end 313.77096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 300.03471875
transcript.pyannote[76].end 300.45659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 302.59971875
transcript.pyannote[77].end 303.03846875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 311.17221875
transcript.pyannote[78].end 311.66159375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 314.07471875
transcript.pyannote[79].end 317.09534375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 317.09534375
transcript.pyannote[80].end 321.98909375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 317.43284375
transcript.pyannote[81].end 318.10784375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 321.51659375
transcript.pyannote[82].end 322.41096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 322.07346875
transcript.pyannote[83].end 333.75096875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 334.37534375
transcript.pyannote[84].end 338.91471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 339.69096875
transcript.pyannote[85].end 340.85534375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 341.02409375
transcript.pyannote[86].end 347.18346875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 347.40284375
transcript.pyannote[87].end 351.85784375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 352.48221875
transcript.pyannote[88].end 364.80096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 352.60034375
transcript.pyannote[89].end 353.39346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 353.86596875
transcript.pyannote[90].end 353.88284375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 353.93346875
transcript.pyannote[91].end 354.22034375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 357.29159375
transcript.pyannote[92].end 357.88221875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 358.64159375
transcript.pyannote[93].end 358.92846875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 364.80096875
transcript.pyannote[94].end 365.10471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 365.10471875
transcript.pyannote[95].end 374.23409375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 374.21721875
transcript.pyannote[96].end 377.71034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 377.96346875
transcript.pyannote[97].end 384.96659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 380.69721875
transcript.pyannote[98].end 381.03471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 384.37596875
transcript.pyannote[99].end 403.07346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 386.09721875
transcript.pyannote[100].end 386.53596875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 390.68721875
transcript.pyannote[101].end 390.95721875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 403.42784375
transcript.pyannote[102].end 405.97596875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 403.54596875
transcript.pyannote[103].end 403.93409375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 405.97596875
transcript.pyannote[104].end 408.79409375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 408.79409375
transcript.pyannote[105].end 409.19909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 409.73909375
transcript.pyannote[106].end 411.56159375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 411.93284375
transcript.pyannote[107].end 425.48346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 414.44721875
transcript.pyannote[108].end 415.20659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 420.08346875
transcript.pyannote[109].end 421.73721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 425.83784375
transcript.pyannote[110].end 441.59909375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 433.93784375
transcript.pyannote[111].end 435.33846875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 437.19471875
transcript.pyannote[112].end 437.98784375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 438.83159375
transcript.pyannote[113].end 439.16909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 441.49784375
transcript.pyannote[114].end 447.40409375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 443.06721875
transcript.pyannote[115].end 443.23596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 445.69971875
transcript.pyannote[116].end 446.17221875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 447.65721875
transcript.pyannote[117].end 448.02846875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 448.65284375
transcript.pyannote[118].end 450.47534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 450.72846875
transcript.pyannote[119].end 461.17409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 451.97721875
transcript.pyannote[120].end 452.36534375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 453.61409375
transcript.pyannote[121].end 453.91784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 461.17409375
transcript.pyannote[122].end 461.30909375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 461.30909375
transcript.pyannote[123].end 461.44409375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 461.44409375
transcript.pyannote[124].end 461.47784375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 461.47784375
transcript.pyannote[125].end 461.51159375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 461.51159375
transcript.pyannote[126].end 479.02784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 479.43284375
transcript.pyannote[127].end 494.18159375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 479.50034375
transcript.pyannote[128].end 480.14159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 493.30409375
transcript.pyannote[129].end 508.47471875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 496.32471875
transcript.pyannote[130].end 496.67909375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 497.13471875
transcript.pyannote[131].end 497.48909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 499.91909375
transcript.pyannote[132].end 500.30721875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 505.03221875
transcript.pyannote[133].end 505.28534375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 506.36534375
transcript.pyannote[134].end 506.77034375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 508.47471875
transcript.pyannote[135].end 508.89659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 508.89659375
transcript.pyannote[136].end 508.98096875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 508.98096875
transcript.pyannote[137].end 522.81846875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 521.18159375
transcript.pyannote[138].end 521.60346875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 521.97471875
transcript.pyannote[139].end 522.10971875
transcript.whisperx[0].start 0.646
transcript.whisperx[0].end 18.071
transcript.whisperx[0].text 蔡委員請做詢答好 謝謝主席那我們是不是有請部長 龔部長我們再請龔部長蔡委員好部長好
transcript.whisperx[1].start 27.062
transcript.whisperx[1].end 55.392
transcript.whisperx[1].text 部長首先還是要問一下今天大家在關心的就是說整個關稅談判的進度現在到底會如何呢因為大家也都有看到說賴總統事實上在對外也說這個關稅朝向正面的方向在發展那大家還是期待說最後談判的進度那到底現在你們的評估狀況是怎樣的就像總統講的就是說
transcript.whisperx[2].start 58.231
transcript.whisperx[2].end 71.824
transcript.whisperx[2].text 没有涉及到汇率嘛这个总统讲另外就是说关税从暂时暂定的这个20%往下降不叠加那这个部分是比较正面的方向在进行当中20%
transcript.whisperx[3].start 74.909
transcript.whisperx[3].end 92.192
transcript.whisperx[3].text 二死往下又不叠加那就很成功啊是 所以說這是一個正面的方向是啊 這個聽起來那這一次的談判大概大家會給整個行政談判團隊會給予掌聲如果可以吵到這樣所以我們現在會期待喔
transcript.whisperx[4].start 93.293
transcript.whisperx[4].end 109.318
transcript.whisperx[4].text 總結會議還沒有開當然當然但是但是部長既然我們這樣講大家會期待喔所以真的要努力喔是是是真的因為都講出口了嘛我們都講了但是大家就會覺得嗯那會是一個好的狀況那我想要再進一步問說那針對232條款呢
transcript.whisperx[5].start 112.008
transcript.whisperx[5].end 133.745
transcript.whisperx[5].text 这两条款主要跟我们牵扯比较大的就是主要是半导体的部分所以我们也会谈到一个比较好的条件那美国他也有一个想法如果你有去之前也有讲嘛如果你有去那边投资的话基本上是可以豁免那当然我们希望这个可以豁免的范围越大是越好的
transcript.whisperx[6].start 134.005
transcript.whisperx[6].end 159.939
transcript.whisperx[6].text 我們半導體在美國投資目前是有的嘛我們包括台積電台積電已經有宣布了台灣本來就有在投資美國在半導體這一塊也不是現在才叫半導體業去是以前就有投資了嘛對不對可是美國現在是要我們加碼投資4月2號之前台積電本來就有在美國有做投資了本來就有了現在第一個廠也開始正式營運了
transcript.whisperx[7].start 162.06
transcript.whisperx[7].end 186.874
transcript.whisperx[7].text 所以如果有投資的話就可以朝向說會拿到更好的一個因為基本上從廠商的角度台積電一直講只要有訂單上的需求他就願意去投資而且就是說如果就是說他也要賺錢如果說有訂單沒賺錢也不可能去所以就是說要確保他有訂單而且可以賺到錢
transcript.whisperx[8].start 187.674
transcript.whisperx[8].end 194.968
transcript.whisperx[8].text 好但是部長我想台灣除了ICT產業之外事實上還是有其他的產業啦是尤其是傳統產業是那傳統產業事實上會被232條款衝擊很大
transcript.whisperx[9].start 200.49
transcript.whisperx[9].end 221.639
transcript.whisperx[9].text 如果你這個鋼鋁目前還是50%鋼鋁產業也是台灣很重要的傳統產業的一環因為它涉及到後端可能就是工具機所以現在大家都預估如果現在台灣整個外銷在這一些ICT產業大概是會蓬勃發展而且外銷訂單會擴張但是相對的傳統上在鋼鋁產業
transcript.whisperx[10].start 227.842
transcript.whisperx[10].end 247.912
transcript.whisperx[10].text 大概會進入寒冬所以就是說整個科技產業蓬勃翻產但是傳統產業還是會被這一次的關稅然後232條款的影響那這個產業會受到衝擊那部長你身為經濟部長就針對不同的產業你要有不同的照顧那你針對其他的產業呢
transcript.whisperx[11].start 249.324
transcript.whisperx[11].end 273.966
transcript.whisperx[11].text 報告委員所以我們為什麼這個特別預算裡面會編了這個460億那這460億基本上主要要支持的對象主要大概就是傳統性的產業跟這個中小微企業因為高科技產業基本上是相對而言是比較沒有受到這次關稅或是國際形勢的一些影響所以他們也比較不會用到這個460億對
transcript.whisperx[12].start 275.908
transcript.whisperx[12].end 303.582
transcript.whisperx[12].text 那所以我們為什麼因為這個關稅的影響最重要還是那具體上461你要怎麼去協助這一些受到受到關稅影響的產業第一個他的訂單如果沒有訂單就慘了所以我們為什麼要保住他的訂單那保住他的訂單多元開拓市場他們去除了美國市場之外他還有去其他的地方要去參展我們給他補助甚至於設台灣館因為中小企業可能
transcript.whisperx[13].start 304.142
transcript.whisperx[13].end 329.139
transcript.whisperx[13].text 沒有辦法做到這一點那我們也會把顧客引導到台灣來那這個是訂單希望他不要中斷另外一個是他的金流也不要中斷所以雨天不收傘甚至還要撐更大的傘就是兩個嘛一方面就是希望他們協助他們在國外找訂單那協助他們在國外找訂單這件事我跟部長稍微呼籲一下因為很多產業是跟我講過去台灣在面對產業的時候往往
transcript.whisperx[14].start 334.685
transcript.whisperx[14].end 338.358
transcript.whisperx[14].text 你看到他們越要去參加越大型的國際展
transcript.whisperx[15].start 339.881
transcript.whisperx[15].end 363.015
transcript.whisperx[15].text 結果我們經濟部就會認為說你就有人家去參加大型的三展了所以反而對他們協助的力道反而變小事實上應該要反向要去做既然有人要去參加大型的你就要讓他去拚大大隻回來所以我們應該要站在說要怎麼讓他們可以去跟國際的企業競爭
transcript.whisperx[16].start 365.256
transcript.whisperx[16].end 382.337
transcript.whisperx[16].text 而不是在國內斤斤計較說你這一家企業就已經本身有夠強了你不需要政府再去協助你做訂單這個觀念不能這樣所以我們是全面性的因為很感謝立法院給我們這樣的額度所以可以我們比較充裕
transcript.whisperx[17].start 383.297
transcript.whisperx[17].end 396.566
transcript.whisperx[17].text 對於這個全面性的461金額不少啊是啊 但是產業有這麼多種他們大家如果要去拚國際淨灘經濟部就是要給他們可以到位的協助讓他們可以多去拚拚他們的產品拚他們的產品可以給國外的人可以接受這個是經濟部要去打拚的所以我們現在做法就是這樣子 沒有錯
transcript.whisperx[18].start 409.793
transcript.whisperx[18].end 423.621
transcript.whisperx[18].text 那期待啦因為460億都已經編了可以執行了嘛那現在開始有不少產業已經在問我了那接下來要怎麼做因為確實他們現在看到的就是我剛講的光是鋼鋁50%
transcript.whisperx[19].start 426.422
transcript.whisperx[19].end 446.36
transcript.whisperx[19].text 50%的關稅 這個真的對國內這一些鋼鋁的這一些產業鏈他們的衝擊真的是很大所以我覺得部長你要靠你下鄉去跟這些傳統產業跟這些工具機器產業 你自己去開工一下除了我自己之外的話 我們事實上在北中南東已經成立了這個輔導團
transcript.whisperx[20].start 448.74
transcript.whisperx[20].end 469.143
transcript.whisperx[20].text 工協會還有我們二十幾個法人全部把它集結起來然後分這個區域主動式的去拜會這些廠商看看他們需要真正的協助是什麼那我們就來 部長你要相信過去台灣有很多像這種工具局甚至像那種做馬達的我們家依舊有一家做馬達
transcript.whisperx[21].start 469.864
transcript.whisperx[21].end 498.106
transcript.whisperx[21].text 它都是台灣的隱形冠軍欸是是是 要做那種一些反正在一些工具機一些做包膜的啦怎樣台灣都很強而且我們這個強是在於我們的產品是有創新的我們有辦法做出世界看起來我們的品質是好的但是我們遇到的關稅的衝擊的時候經濟部今天下箱下去讓大家關心前兩天我還去馬首厚第一期啊那個做地毯的那個
transcript.whisperx[22].start 498.886
transcript.whisperx[22].end 521.992
transcript.whisperx[22].text 他就做得非常好 他還要加裝他知道我們有太舊換新的這個機械補助以後他就要趕快來申請因為他的確要買一個比較先進的機械所以部長這樣就對了下鄉然後去聽產業的心聲然後461的預算就直接讓他們可以感受到困難的時候進戶及時的救援然後馬上協助他們 好不好是是是好 謝謝