iVOD / 164284

Field Value
IVOD_ID 164284
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164284
日期 2025-10-16
會議資料.會議代碼 委員會-11-4-15-5
會議資料.會議代碼:str 第11屆第4會期內政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第4會期內政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-10-16T11:07:18+08:00
結束時間 2025-10-16T11:16:57+08:00
影片長度 00:09:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6022c9f6d63255a31fcff4215c8c61c4a3b07049f443442ad77ab6ef5aede8985dc74b8a2e1778a35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳琪銘
委員發言時間 11:07:18 - 11:16:57
會議時間 2025-10-16T09:00:00+08:00
會議名稱 立法院第11屆第4會期內政委員會第5次全體委員會議(事由:邀請內政部部長、海洋委員會主任委員、內政部警政署署長、內政部消防署署長就「警察、消防、海巡、移民及空中勤務總隊人員危勞津貼及退休權益之保障」進行專題報告並備質詢,另請行政院人事行政總處、行政院主計總處、銓敘部派員列席備詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.63846875
transcript.pyannote[0].end 7.84409375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 9.66659375
transcript.pyannote[1].end 12.34971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 12.36659375
transcript.pyannote[2].end 21.51284375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 21.91784375
transcript.pyannote[3].end 25.14096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 25.37721875
transcript.pyannote[4].end 30.49034375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 30.70971875
transcript.pyannote[5].end 31.90784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 32.44784375
transcript.pyannote[6].end 35.68784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 35.95784375
transcript.pyannote[7].end 37.91534375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 38.26971875
transcript.pyannote[8].end 39.26534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 39.68721875
transcript.pyannote[9].end 43.06221875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 43.24784375
transcript.pyannote[10].end 44.51346875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 44.80034375
transcript.pyannote[11].end 46.01534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 46.45409375
transcript.pyannote[12].end 48.63096875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 48.81659375
transcript.pyannote[13].end 50.04846875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 50.41971875
transcript.pyannote[14].end 52.74846875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 52.90034375
transcript.pyannote[15].end 56.17409375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 56.34284375
transcript.pyannote[16].end 58.99221875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 59.44784375
transcript.pyannote[17].end 60.52784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 61.01721875
transcript.pyannote[18].end 63.17721875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 63.51471875
transcript.pyannote[19].end 65.21909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 66.28221875
transcript.pyannote[20].end 68.59409375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 68.94846875
transcript.pyannote[21].end 70.55159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 70.75409375
transcript.pyannote[22].end 73.20096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 73.53846875
transcript.pyannote[23].end 76.66034375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 77.08221875
transcript.pyannote[24].end 80.30534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 80.79471875
transcript.pyannote[25].end 81.77346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 82.48221875
transcript.pyannote[26].end 83.10659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 84.13596875
transcript.pyannote[27].end 84.65909375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 84.97971875
transcript.pyannote[28].end 89.58659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 89.94096875
transcript.pyannote[29].end 93.43409375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 93.92346875
transcript.pyannote[30].end 94.24409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 95.15534375
transcript.pyannote[31].end 96.47159375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 96.97784375
transcript.pyannote[32].end 97.66971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 97.97346875
transcript.pyannote[33].end 99.18846875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 99.72846875
transcript.pyannote[34].end 107.52471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 107.92971875
transcript.pyannote[35].end 109.07721875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 109.63409375
transcript.pyannote[36].end 110.86596875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 111.03471875
transcript.pyannote[37].end 114.12284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 114.57846875
transcript.pyannote[38].end 117.44721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 118.30784375
transcript.pyannote[39].end 119.59034375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 119.59034375
transcript.pyannote[40].end 119.64096875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 119.72534375
transcript.pyannote[41].end 121.98659375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 122.07096875
transcript.pyannote[42].end 137.74784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 127.33596875
transcript.pyannote[43].end 127.67346875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 138.23721875
transcript.pyannote[44].end 147.73784375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 147.85596875
transcript.pyannote[45].end 159.11159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 159.16221875
transcript.pyannote[46].end 166.67159375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 166.89096875
transcript.pyannote[47].end 169.79346875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 169.97909375
transcript.pyannote[48].end 174.02909375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 174.18096875
transcript.pyannote[49].end 178.72034375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 178.93971875
transcript.pyannote[50].end 182.63534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 182.80409375
transcript.pyannote[51].end 190.83659375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 191.07284375
transcript.pyannote[52].end 194.14409375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 194.34659375
transcript.pyannote[53].end 198.93659375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 199.10534375
transcript.pyannote[54].end 199.62846875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 200.47221875
transcript.pyannote[55].end 204.13409375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 204.52221875
transcript.pyannote[56].end 206.58096875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 206.96909375
transcript.pyannote[57].end 210.52971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 210.91784375
transcript.pyannote[58].end 214.57971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 214.93409375
transcript.pyannote[59].end 217.09409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 217.44846875
transcript.pyannote[60].end 219.84471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 220.21596875
transcript.pyannote[61].end 220.77284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 220.90784375
transcript.pyannote[62].end 226.13909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 226.69596875
transcript.pyannote[63].end 226.94909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 227.42159375
transcript.pyannote[64].end 231.15096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 231.47159375
transcript.pyannote[65].end 236.61846875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 237.76596875
transcript.pyannote[66].end 237.95159375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 242.87909375
transcript.pyannote[67].end 244.00971875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 244.09409375
transcript.pyannote[68].end 244.11096875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 244.11096875
transcript.pyannote[69].end 248.63346875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 244.56659375
transcript.pyannote[70].end 244.92096875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 246.10221875
transcript.pyannote[71].end 246.43971875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 248.36346875
transcript.pyannote[72].end 248.66721875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 248.66721875
transcript.pyannote[73].end 248.81909375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 249.07221875
transcript.pyannote[74].end 252.05909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 252.26159375
transcript.pyannote[75].end 257.66159375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 258.82596875
transcript.pyannote[76].end 261.45846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 261.67784375
transcript.pyannote[77].end 265.47471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 265.76159375
transcript.pyannote[78].end 268.56284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 268.64721875
transcript.pyannote[79].end 268.74846875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 268.83284375
transcript.pyannote[80].end 269.45721875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 271.38096875
transcript.pyannote[81].end 272.47784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 272.89971875
transcript.pyannote[82].end 275.11034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 275.38034375
transcript.pyannote[83].end 277.74284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 275.53221875
transcript.pyannote[84].end 276.24096875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 277.91159375
transcript.pyannote[85].end 280.20659375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 280.52721875
transcript.pyannote[86].end 308.67471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 288.62721875
transcript.pyannote[87].end 289.16721875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 291.88409375
transcript.pyannote[88].end 292.08659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 294.90471875
transcript.pyannote[89].end 295.20846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 308.38784375
transcript.pyannote[90].end 310.88534375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 309.01221875
transcript.pyannote[91].end 309.24846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 310.36221875
transcript.pyannote[92].end 318.69846875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 313.82159375
transcript.pyannote[93].end 314.47971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 319.06971875
transcript.pyannote[94].end 334.83096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 322.78221875
transcript.pyannote[95].end 325.56659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 325.56659375
transcript.pyannote[96].end 325.63409375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 326.30909375
transcript.pyannote[97].end 326.32596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 326.32596875
transcript.pyannote[98].end 326.95034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 326.95034375
transcript.pyannote[99].end 326.96721875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 329.95409375
transcript.pyannote[100].end 330.27471875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 330.27471875
transcript.pyannote[101].end 330.30846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 335.59034375
transcript.pyannote[102].end 345.25971875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 340.93971875
transcript.pyannote[103].end 343.43721875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 343.60596875
transcript.pyannote[104].end 347.68971875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 347.95971875
transcript.pyannote[105].end 353.05596875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 353.27534375
transcript.pyannote[106].end 363.60284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 353.47784375
transcript.pyannote[107].end 353.66346875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 364.17659375
transcript.pyannote[108].end 365.37471875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 365.77971875
transcript.pyannote[109].end 370.74096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 371.02784375
transcript.pyannote[110].end 386.75534375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 387.10971875
transcript.pyannote[111].end 396.07034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 391.61534375
transcript.pyannote[112].end 392.12159375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 396.23909375
transcript.pyannote[113].end 397.13346875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 397.69034375
transcript.pyannote[114].end 399.59721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 400.03596875
transcript.pyannote[115].end 402.80346875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 403.09034375
transcript.pyannote[116].end 404.35596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 404.64284375
transcript.pyannote[117].end 405.36846875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 405.73971875
transcript.pyannote[118].end 406.60034375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 406.87034375
transcript.pyannote[119].end 409.18221875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 409.95846875
transcript.pyannote[120].end 411.19034375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 411.66284375
transcript.pyannote[121].end 422.86784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 416.01659375
transcript.pyannote[122].end 416.03346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 416.11784375
transcript.pyannote[123].end 416.64096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 423.18846875
transcript.pyannote[124].end 426.02346875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 426.27659375
transcript.pyannote[125].end 432.80721875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 433.02659375
transcript.pyannote[126].end 442.24034375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 442.00409375
transcript.pyannote[127].end 444.24846875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 442.51034375
transcript.pyannote[128].end 446.89784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 444.41721875
transcript.pyannote[129].end 445.22721875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 446.03721875
transcript.pyannote[130].end 446.49284375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 447.47159375
transcript.pyannote[131].end 451.13346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 451.13346875
transcript.pyannote[132].end 451.77471875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 451.60596875
transcript.pyannote[133].end 455.92596875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 452.53409375
transcript.pyannote[134].end 453.86721875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 454.44096875
transcript.pyannote[135].end 455.40284375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 456.09471875
transcript.pyannote[136].end 456.26346875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 456.26346875
transcript.pyannote[137].end 491.70096875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 456.29721875
transcript.pyannote[138].end 456.36471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 457.88346875
transcript.pyannote[139].end 458.67659375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 459.58784375
transcript.pyannote[140].end 460.44846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 461.54534375
transcript.pyannote[141].end 462.79409375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 463.38471875
transcript.pyannote[142].end 463.63784375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 473.23971875
transcript.pyannote[143].end 473.27346875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 492.10596875
transcript.pyannote[144].end 493.82721875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 494.31659375
transcript.pyannote[145].end 505.03221875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 505.43721875
transcript.pyannote[146].end 507.59721875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 507.96846875
transcript.pyannote[147].end 513.16596875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 513.30096875
transcript.pyannote[148].end 517.21596875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 517.45221875
transcript.pyannote[149].end 519.19034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 519.64596875
transcript.pyannote[150].end 523.69596875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 524.18534375
transcript.pyannote[151].end 525.87284375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 525.95721875
transcript.pyannote[152].end 539.84534375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 530.96909375
transcript.pyannote[153].end 530.98596875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 531.00284375
transcript.pyannote[154].end 531.01971875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 531.25596875
transcript.pyannote[155].end 531.37409375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 533.29784375
transcript.pyannote[156].end 535.25534375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 535.79534375
transcript.pyannote[157].end 535.96409375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 536.80784375
transcript.pyannote[158].end 538.46159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 539.08596875
transcript.pyannote[159].end 544.55346875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 541.58346875
transcript.pyannote[160].end 544.01346875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 544.55346875
transcript.pyannote[161].end 547.13534375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 545.85284375
transcript.pyannote[162].end 546.12284375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 547.69221875
transcript.pyannote[163].end 552.14721875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 552.70409375
transcript.pyannote[164].end 561.59721875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 558.17159375
transcript.pyannote[165].end 558.18846875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 558.20534375
transcript.pyannote[166].end 567.46971875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 562.13721875
transcript.pyannote[167].end 563.92596875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 564.41534375
transcript.pyannote[168].end 573.24096875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 571.62096875
transcript.pyannote[169].end 572.56596875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 575.14784375
transcript.pyannote[170].end 577.89846875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 578.59034375
transcript.pyannote[171].end 579.38346875
transcript.whisperx[0].start 0.643
transcript.whisperx[0].end 7.627
transcript.whisperx[0].text 好 召委 議會同仁請我們內政部部長還有我們警政署署長 消防署署長請以上提到列席你好 部長 署長針對深淚的危老津貼我們從113年6月實施到現在其實我們都知道警察跟消防尤其過去跟我們的漁民還有空情機關
transcript.whisperx[1].start 30.819
transcript.whisperx[1].end 45.772
transcript.whisperx[1].text 其實都很辛苦因為我們身為一個署長身為一個部長我們要提示我們下面的工作人員尤其我們知道台灣這個地方不管是警察尤其消防
transcript.whisperx[2].start 46.639
transcript.whisperx[2].end 72.62
transcript.whisperx[2].text 這都是大家有機都日月顛倒所以說日月顛倒我們過去我們說針對就是說他出勤的外勤單位但是我們現在說他在內勤的備勤人員備勤人員我們也是一樣因為既然說他日月顛倒這備勤人員我們還是要體系要是經費許可我跟你說
transcript.whisperx[3].start 73.635
transcript.whisperx[3].end 96.19
transcript.whisperx[3].text 這一點,對他們的保險,也對他們的保障尤其我們身為公務人員,尤其是警察消防我們知道,你要想,福利好,但是他們是用到他們的身體,用到他們的死命往來所以我們要說,大大的提升他們的待遇這對未來,對未來,我們要用的
transcript.whisperx[4].start 100.516
transcript.whisperx[4].end 107.285
transcript.whisperx[4].text 他們在那裡投入的意願大家都非常的高尤其我們的年輕人大家都會去想
transcript.whisperx[5].start 108.221
transcript.whisperx[5].end 136.82
transcript.whisperx[5].text 大意的問題是這個部分我也拜託說補充跟我們兩位署長一定要提醒說我們下面的工作人員是不是這樣 補充是 感謝委員的關心啦委員在這裡關心警員跟消防人員以外還有關心我們移民署也是同樣很認真 很靠譜所以我們移民署呢是針對這個危牢的情婦津貼的編列他們其實也編列大概是一千兩百多萬
transcript.whisperx[6].start 138.301
transcript.whisperx[6].end 158.85
transcript.whisperx[6].text 就是說大家都會了解說他們需要去出勤的部分我們這裡適用的對象就是北區中區南區跟國進事務大隊輪班輪休人員那也一樣就是說我們都能夠體恤深夜圍牢確實是圍跟牢兩件事情都需要把它考慮在內所以我們這是希望能夠擴大113年6月的標準希望
transcript.whisperx[7].start 159.851
transcript.whisperx[7].end 181.809
transcript.whisperx[7].text 這個警察人員跟那個消防人員也可以或者是海巡人都可以適用這樣的標準把它編列進去那我們會再多跟縣市地方政府來溝通就是中央的各機關大概都沒有意見但是在地方上面的話他們也會考慮到說地方政府預算支出的問題那現在我們在溝通的結果是大多數都會同意
transcript.whisperx[8].start 182.93
transcript.whisperx[8].end 195.535
transcript.whisperx[8].text 只有少數可能會考慮到他們自己這個縣市政府裡面的這個預算編熱的情形我們來跟他們溝通因為他們在某一個地方每一個地方都很辛苦他們需要這個深夜為勞津貼一點點的補貼其實是為他們慰問這樣
transcript.whisperx[9].start 200.826
transcript.whisperx[9].end 225.977
transcript.whisperx[9].text 這很好,因為跟地方政府大家都要去協調因為我們中央負擔一部分,地方政府他們還有一部分所以說一定要跟他們協調才能夠落實我們的警察跟消防跟移民署在這個部分,我們一定要主動跟地方政府大家來溝通總是要改過吧,好不好
transcript.whisperx[10].start 227.452
transcript.whisperx[10].end 230.117
transcript.whisperx[10].text 好 輸定 兩位輸定好 沒問題 我們要持續溝通好 謝謝 謝謝好 那你們請回我請海委會
transcript.whisperx[11].start 245.256
transcript.whisperx[11].end 262.322
transcript.whisperx[11].text 主委好 主委 針對我們的海底電纜我們的台澎 台澎三號的電纜線因為我們的海南 它的電纜線有三條都回去嘛這都是我們的電話 它的專家來 定義是信譽還是
transcript.whisperx[12].start 271.414
transcript.whisperx[12].end 276.776
transcript.whisperx[12].text 有的是階段 譬如說有一條是階段有的比較是破壞有人說的三條是現在要不修理好才有三條前面有兩條已經修理好就是說七月以來有兩條已經修理好的所以七月以來就有五條是壞掉的
transcript.whisperx[13].start 295.765
transcript.whisperx[13].end 308.932
transcript.whisperx[13].text 最近的一條是十月初七十月初七一台中古磚又把我們重重一條有一條十二針重了兩針那個我們就抓回來我們磚上已經抓回來它是四月還是什麼這就要檢測過它水凹水凹才有發動現在是要檢視是要責負收容是
transcript.whisperx[14].start 320.766
transcript.whisperx[14].end 339.36
transcript.whisperx[14].text 因為我們還是要比較保養因為我們海巡都很認真我們還是海巡人員還是要去健康嘛我剛才看到在明天在報我們的海巡人員他長期請假又可以
transcript.whisperx[15].start 339.847
transcript.whisperx[15].end 345.828
transcript.whisperx[15].text 連年終獎金都有我跟委員報告他不是說我們連年終獎金這個我跟委員報告就是說一體醫生的精靈是三軍中醫三軍中醫醫生就是寫得很明確的說叫他要長期居家休養以免病情惡化
transcript.whisperx[16].start 364.544
transcript.whisperx[16].end 373.394
transcript.whisperx[16].text 醫生這樣說 要長期 還要居家 要休養如果沒有病情會惡化所以凱旋這個鑑體紛索不夠準 還有一些中風發生這我也不扁 因為這有個人的個資問題還有一些中風發生嘛
transcript.whisperx[17].start 383.085
transcript.whisperx[17].end 393.313
transcript.whisperx[17].text 所以有準備,結果發生這個事情的時候我們要去,我們其實這個政風,七月就開始調查有人在調查但是我們這個行政調查,要去拿骨頭的證據是有困難的一直到早上我們拿到證據,早上拿到這個餐廳賠薪水給他的證據,我們早上才拿到
transcript.whisperx[18].start 411.787
transcript.whisperx[18].end 422.155
transcript.whisperx[18].text 早上拿到就把它撤掉了,這我們沒辦法用完但是七月我們其實就已經懷疑,就開始一直調查這個調查的中間遇到很多的困難主要是我們是行政的調查,我們不是訴犯他這個當初他違反的,他這個訴犯違反的是公務人員毫無犯
transcript.whisperx[19].start 433.424
transcript.whisperx[19].end 440.371
transcript.whisperx[19].text 說不定他們有沒有犯,他們犯的罪行,我們如果沒辦法說,刑事及檢察官的職位沒辦法,所以早上去拿到,早上有人看了新聞後,早上有人就把他請去給我們,
transcript.whisperx[20].start 451.721
transcript.whisperx[20].end 457.544
transcript.whisperx[20].text 因為這個醫生的專業醫生的專業我們要如何去看待問題他寫得這麼明顯所以我有跟衛福部在溝通我說這個醫學醫生寫這種證明是不是他最了解這個病情
transcript.whisperx[21].start 473.732
transcript.whisperx[21].end 485.425
transcript.whisperx[21].text 這個病情 譬如說這個病情需要半年追蹤一遍這個病情需要兩個月追蹤一遍所以他在想說你登記需要休養的時候他就要還有一條說叫他看幾個月再來調查 再來檢查一遍因為他可以這樣寫我們就遵律這幾個月嘛
transcript.whisperx[22].start 494.495
transcript.whisperx[22].end 509.701
transcript.whisperx[22].text 你說你兩位要對中 我就相信你兩位兩位的醫療你再拿證明來嘛但是這是醫學的專業啦 我有跟施部長在溝通啦施部長是說這種事情 他要通靈救醫療單位做不可能啦就是醫療 醫療 我們如果遇到這種事情的時候我們就要看說 你醫生是不是跟我們說
transcript.whisperx[23].start 520.205
transcript.whisperx[23].end 538.451
transcript.whisperx[23].text 說你這要回去休養但是你外國要對中一邊我們不覺得這中邊要外國對中一邊這我們沒辦法這要醫生利益才有辦法我現在有在處理這塊如果這塊我們拿下去所以我馬上明天11點就開會去開除沒有人查真的不行是啦 這對海巡很對不起海巡海巡你看這樣
transcript.whisperx[24].start 548.094
transcript.whisperx[24].end 561.666
transcript.whisperx[24].text 來三個 早上 早上做禮這樣 跟半夜他就金門來一個偷渡啦媽祖來兩個偷渡啦 我們都抓到啦沒有啦 海巡 海巡 鯪門 鯪門 全都很辛苦的全都很辛苦的 但是你說 辛苦的人對阿你剛才那個掃帚 你這樣阿你一個人一個新聞喔 喔 大家很氣的啦對啦我氣到 好 好 好 各位 謝謝
transcript.whisperx[25].start 575.209
transcript.whisperx[25].end 575.37
transcript.whisperx[25].text 謝謝吳啟明委員