iVOD / 164247

Field Value
IVOD_ID 164247
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164247
日期 2025-10-16
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-16T09:46:44+08:00
結束時間 2025-10-16T09:58:17+08:00
影片長度 00:11:33
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6022c9f6d63255a30e21fae9997afeb79ba2ba11b833fe0a5dd201981b308a87e389c4a505309a2e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 09:46:44 - 09:58:17
會議時間 2025-10-16T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請財政部莊部長翠雲率所屬機關首長暨國營事業董事長、總經理(含各轉投資事業機構公股代表之董、監事)列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 2.42721875
transcript.pyannote[0].end 3.03471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 3.03471875
transcript.pyannote[1].end 3.16971875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 3.47346875
transcript.pyannote[2].end 24.01034375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 25.71471875
transcript.pyannote[3].end 26.28846875
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 26.28846875
transcript.pyannote[4].end 32.49846875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 27.03096875
transcript.pyannote[5].end 27.84096875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 29.30909375
transcript.pyannote[6].end 29.74784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 31.13159375
transcript.pyannote[7].end 59.95409375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 62.24909375
transcript.pyannote[8].end 82.97159375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 70.01159375
transcript.pyannote[9].end 70.92284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 74.17971875
transcript.pyannote[10].end 74.95596875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 81.23346875
transcript.pyannote[11].end 81.57096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 82.31346875
transcript.pyannote[12].end 82.75221875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 82.97159375
transcript.pyannote[13].end 83.35971875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 83.35971875
transcript.pyannote[14].end 83.37659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 83.37659375
transcript.pyannote[15].end 83.39346875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 83.39346875
transcript.pyannote[16].end 87.13971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 85.08096875
transcript.pyannote[17].end 85.24971875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 86.14409375
transcript.pyannote[18].end 87.91596875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 87.39284375
transcript.pyannote[19].end 89.58659375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 88.37159375
transcript.pyannote[20].end 99.72846875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 93.07971875
transcript.pyannote[21].end 94.49721875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 96.62346875
transcript.pyannote[22].end 98.10846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 98.10846875
transcript.pyannote[23].end 98.12534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 99.88034375
transcript.pyannote[24].end 122.62784375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 112.97534375
transcript.pyannote[25].end 113.97096875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 122.54346875
transcript.pyannote[26].end 129.05721875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 127.40346875
transcript.pyannote[27].end 132.21284375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 130.12034375
transcript.pyannote[28].end 130.62659375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 131.92596875
transcript.pyannote[29].end 136.26284375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 134.76096875
transcript.pyannote[30].end 137.51159375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 136.68471875
transcript.pyannote[31].end 138.79409375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 138.65909375
transcript.pyannote[32].end 144.78471875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 139.73909375
transcript.pyannote[33].end 140.12721875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 141.20721875
transcript.pyannote[34].end 141.86534375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 142.06784375
transcript.pyannote[35].end 142.08471875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 142.08471875
transcript.pyannote[36].end 142.11846875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 142.11846875
transcript.pyannote[37].end 142.13534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 142.13534375
transcript.pyannote[38].end 142.23659375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 144.91971875
transcript.pyannote[39].end 145.03784375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 145.03784375
transcript.pyannote[40].end 145.35846875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 145.35846875
transcript.pyannote[41].end 145.39221875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 145.39221875
transcript.pyannote[42].end 145.40909375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 145.40909375
transcript.pyannote[43].end 145.74659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 145.74659375
transcript.pyannote[44].end 145.99971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 146.33721875
transcript.pyannote[45].end 161.72721875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 150.85971875
transcript.pyannote[46].end 151.21409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 157.91346875
transcript.pyannote[47].end 178.50096875
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 178.02846875
transcript.pyannote[48].end 212.11596875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 182.50034375
transcript.pyannote[49].end 182.88846875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 187.22534375
transcript.pyannote[50].end 187.81596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 189.48659375
transcript.pyannote[51].end 190.90409375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 191.08971875
transcript.pyannote[52].end 191.42721875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 210.76596875
transcript.pyannote[53].end 215.72721875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 215.94659375
transcript.pyannote[54].end 217.06034375
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 216.70596875
transcript.pyannote[55].end 220.33409375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 219.89534375
transcript.pyannote[56].end 223.91159375
transcript.pyannote[57].speaker SPEAKER_04
transcript.pyannote[57].start 223.91159375
transcript.pyannote[57].end 231.89346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 225.73409375
transcript.pyannote[58].end 227.50596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 231.77534375
transcript.pyannote[59].end 242.59221875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 242.71034375
transcript.pyannote[60].end 253.69596875
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 253.96596875
transcript.pyannote[61].end 254.15159375
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 255.23159375
transcript.pyannote[62].end 265.79534375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 259.82159375
transcript.pyannote[63].end 260.56409375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 262.89284375
transcript.pyannote[64].end 264.64784375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 265.55909375
transcript.pyannote[65].end 266.45346875
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 266.60534375
transcript.pyannote[66].end 268.30971875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 268.10721875
transcript.pyannote[67].end 270.75659375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 271.11096875
transcript.pyannote[68].end 280.00409375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 272.32596875
transcript.pyannote[69].end 272.71409375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 278.33346875
transcript.pyannote[70].end 284.91471875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 283.37909375
transcript.pyannote[71].end 288.34034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 288.05346875
transcript.pyannote[72].end 288.44159375
transcript.pyannote[73].speaker SPEAKER_04
transcript.pyannote[73].start 288.40784375
transcript.pyannote[73].end 300.10221875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 291.39471875
transcript.pyannote[74].end 291.73221875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 293.57159375
transcript.pyannote[75].end 293.58846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 293.58846875
transcript.pyannote[76].end 297.65534375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 299.78159375
transcript.pyannote[77].end 302.86971875
transcript.pyannote[78].speaker SPEAKER_04
transcript.pyannote[78].start 302.76846875
transcript.pyannote[78].end 309.55221875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 303.54471875
transcript.pyannote[79].end 304.38846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 304.45596875
transcript.pyannote[80].end 334.45971875
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 311.54346875
transcript.pyannote[81].end 311.93159375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 311.93159375
transcript.pyannote[82].end 312.08346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 312.08346875
transcript.pyannote[83].end 312.18471875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 312.18471875
transcript.pyannote[84].end 312.26909375
transcript.pyannote[85].speaker SPEAKER_04
transcript.pyannote[85].start 312.26909375
transcript.pyannote[85].end 313.16346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 334.71284375
transcript.pyannote[86].end 344.29784375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 344.71971875
transcript.pyannote[87].end 361.22346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 361.59471875
transcript.pyannote[88].end 367.38284375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 367.78784375
transcript.pyannote[89].end 372.64784375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 373.05284375
transcript.pyannote[90].end 390.34971875
transcript.pyannote[91].speaker SPEAKER_04
transcript.pyannote[91].start 391.39596875
transcript.pyannote[91].end 392.77971875
transcript.pyannote[92].speaker SPEAKER_04
transcript.pyannote[92].start 392.79659375
transcript.pyannote[92].end 392.81346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 392.81346875
transcript.pyannote[93].end 401.87534375
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 393.06659375
transcript.pyannote[94].end 393.20159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 402.49971875
transcript.pyannote[95].end 402.88784375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 403.90034375
transcript.pyannote[96].end 409.19909375
transcript.pyannote[97].speaker SPEAKER_04
transcript.pyannote[97].start 410.68409375
transcript.pyannote[97].end 443.01659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 413.70471875
transcript.pyannote[98].end 414.02534375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 414.80159375
transcript.pyannote[99].end 415.24034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 415.24034375
transcript.pyannote[100].end 415.27409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 417.95721875
transcript.pyannote[101].end 418.32846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 418.32846875
transcript.pyannote[102].end 418.37909375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 433.54971875
transcript.pyannote[103].end 433.92096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 434.69721875
transcript.pyannote[104].end 434.73096875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 434.73096875
transcript.pyannote[105].end 435.49034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 436.11471875
transcript.pyannote[106].end 437.48159375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 438.15659375
transcript.pyannote[107].end 438.20721875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 438.20721875
transcript.pyannote[108].end 438.56159375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 443.05034375
transcript.pyannote[109].end 443.06721875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 443.08409375
transcript.pyannote[110].end 453.64784375
transcript.pyannote[111].speaker SPEAKER_04
transcript.pyannote[111].start 444.31596875
transcript.pyannote[111].end 444.60284375
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 446.10471875
transcript.pyannote[112].end 447.10034375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 453.85034375
transcript.pyannote[113].end 457.69784375
transcript.pyannote[114].speaker SPEAKER_04
transcript.pyannote[114].start 457.69784375
transcript.pyannote[114].end 461.62971875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 461.15721875
transcript.pyannote[115].end 471.72096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 466.59096875
transcript.pyannote[116].end 466.64159375
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 466.64159375
transcript.pyannote[117].end 466.65846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 466.65846875
transcript.pyannote[118].end 467.53596875
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 467.92409375
transcript.pyannote[119].end 468.04221875
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 469.10534375
transcript.pyannote[120].end 469.74659375
transcript.pyannote[121].speaker SPEAKER_04
transcript.pyannote[121].start 471.70409375
transcript.pyannote[121].end 474.01596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 472.66596875
transcript.pyannote[122].end 473.50971875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 473.77971875
transcript.pyannote[123].end 473.89784375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 474.31971875
transcript.pyannote[124].end 476.32784375
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 476.29409375
transcript.pyannote[125].end 479.07846875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 479.07846875
transcript.pyannote[126].end 483.11159375
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 479.98971875
transcript.pyannote[127].end 480.27659375
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 483.11159375
transcript.pyannote[128].end 484.52909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 484.52909375
transcript.pyannote[129].end 502.07909375
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 502.04534375
transcript.pyannote[130].end 503.63159375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 502.43346875
transcript.pyannote[131].end 504.25596875
transcript.pyannote[132].speaker SPEAKER_04
transcript.pyannote[132].start 504.00284375
transcript.pyannote[132].end 504.35721875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 504.35721875
transcript.pyannote[133].end 505.77471875
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 504.39096875
transcript.pyannote[134].end 504.42471875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 505.97721875
transcript.pyannote[135].end 513.14909375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 513.62159375
transcript.pyannote[136].end 518.24534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 518.85284375
transcript.pyannote[137].end 525.88971875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 525.90659375
transcript.pyannote[138].end 526.00784375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 526.02471875
transcript.pyannote[139].end 536.75721875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 538.05659375
transcript.pyannote[140].end 539.27159375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 540.33471875
transcript.pyannote[141].end 545.70096875
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 545.70096875
transcript.pyannote[142].end 546.83159375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 546.39284375
transcript.pyannote[143].end 552.34971875
transcript.pyannote[144].speaker SPEAKER_04
transcript.pyannote[144].start 552.61971875
transcript.pyannote[144].end 565.24221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 562.81221875
transcript.pyannote[145].end 562.96409375
transcript.pyannote[146].speaker SPEAKER_04
transcript.pyannote[146].start 565.47846875
transcript.pyannote[146].end 573.54471875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 573.15659375
transcript.pyannote[147].end 574.15221875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 573.81471875
transcript.pyannote[148].end 596.71409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 583.55159375
transcript.pyannote[149].end 583.93971875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 587.68596875
transcript.pyannote[150].end 588.10784375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 595.02659375
transcript.pyannote[151].end 596.56221875
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 596.83221875
transcript.pyannote[152].end 597.18659375
transcript.pyannote[153].speaker SPEAKER_04
transcript.pyannote[153].start 597.40596875
transcript.pyannote[153].end 603.95346875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 601.55721875
transcript.pyannote[154].end 603.97034375
transcript.pyannote[155].speaker SPEAKER_04
transcript.pyannote[155].start 603.97034375
transcript.pyannote[155].end 603.98721875
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 604.12221875
transcript.pyannote[156].end 656.19846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 610.88909375
transcript.pyannote[157].end 611.00721875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 612.35721875
transcript.pyannote[158].end 612.50909375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 612.50909375
transcript.pyannote[159].end 612.61034375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 618.14534375
transcript.pyannote[160].end 618.55034375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 623.02221875
transcript.pyannote[161].end 623.03909375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 623.03909375
transcript.pyannote[162].end 623.12346875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 623.19096875
transcript.pyannote[163].end 623.32596875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 623.32596875
transcript.pyannote[164].end 623.39346875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 626.12721875
transcript.pyannote[165].end 626.17784375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 626.17784375
transcript.pyannote[166].end 626.75159375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 629.72159375
transcript.pyannote[167].end 629.94096875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 630.36284375
transcript.pyannote[168].end 630.78471875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 631.84784375
transcript.pyannote[169].end 632.28659375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 640.06596875
transcript.pyannote[170].end 640.35284375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 647.52471875
transcript.pyannote[171].end 647.55846875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 647.55846875
transcript.pyannote[172].end 647.87909375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 656.19846875
transcript.pyannote[173].end 662.02034375
transcript.pyannote[174].speaker SPEAKER_04
transcript.pyannote[174].start 656.82284375
transcript.pyannote[174].end 658.20659375
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 661.09221875
transcript.pyannote[175].end 666.23909375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 663.75846875
transcript.pyannote[176].end 664.39971875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 665.44596875
transcript.pyannote[177].end 668.07846875
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 666.96471875
transcript.pyannote[178].end 673.22534375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 669.93471875
transcript.pyannote[179].end 670.50846875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 670.86284375
transcript.pyannote[180].end 674.03534375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 673.22534375
transcript.pyannote[181].end 673.24221875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 674.03534375
transcript.pyannote[182].end 674.89596875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 674.87909375
transcript.pyannote[183].end 674.91284375
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 674.89596875
transcript.pyannote[184].end 675.68909375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 674.91284375
transcript.pyannote[185].end 675.01409375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 675.01409375
transcript.pyannote[186].end 675.03096875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 675.03096875
transcript.pyannote[187].end 676.41471875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 675.68909375
transcript.pyannote[188].end 675.80721875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 676.04346875
transcript.pyannote[189].end 676.06034375
transcript.pyannote[190].speaker SPEAKER_04
transcript.pyannote[190].start 676.06034375
transcript.pyannote[190].end 677.19096875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 677.17409375
transcript.pyannote[191].end 678.25409375
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 677.22471875
transcript.pyannote[192].end 677.27534375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 679.40159375
transcript.pyannote[193].end 683.95784375
transcript.pyannote[194].speaker SPEAKER_04
transcript.pyannote[194].start 689.39159375
transcript.pyannote[194].end 691.43346875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 691.85534375
transcript.pyannote[195].end 692.78346875
transcript.whisperx[0].start 2.458
transcript.whisperx[0].end 23.004
transcript.whisperx[0].text 委員好部長好我想剛剛這個委員有問到有關於最近有人爆料說公股的這一個行庫有因為中國的制裁而拒絕對退役軍人辦理貸款保險那剛剛台銀的這個董事長已經否認我想進一步了解一下其他的公股銀行有類似的狀況嗎
transcript.whisperx[1].start 25.745
transcript.whisperx[1].end 45.311
transcript.whisperx[1].text 有沒有我們大概也初步跟各個公股行戶了解並沒有這樣初步了解並沒有這樣的一個信息都沒有這種狀況那如果確認的話麻煩財政部對外說明一下否則的話這是非常不合理的事情那另外一個部分就我所知道我們八大公股銀行現在已經有啟動黃金的WRWA也就是實質資產代幣化的這個部分
transcript.whisperx[2].start 51.853
transcript.whisperx[2].end 58.859
transcript.whisperx[2].text 這個部分我想請問一下銀行這邊有沒有誰可以出來講一個話狀況如何 進度如何台銀
transcript.whisperx[3].start 62.478
transcript.whisperx[3].end 83.839
transcript.whisperx[3].text 報告委員這個代幣化的研究其實我們由台灣銀行還有其他的七家銀行共同參與目前是進行一個試驗的階段我們的代幣後面的資產是用黃金因為台灣銀行是唯一有銷售實體黃金的一個銀行所以現在成效還不錯
transcript.whisperx[4].start 84.44
transcript.whisperx[4].end 89.361
transcript.whisperx[4].text 因為這個狀況還可以吧對 目前是在進行接下來你們在9月10號的時候你們有討論到穩定幣對不對對 就是用穩定幣因為這等於是在發行穩定幣一個前身的一個概念也是一個代幣化的業務對不對如果是這樣子的話照你上台灣銀行是這種處理的話台灣銀行接下來在穩定幣要綁住這個實體的貨幣的話 法幣的話那台銀是目前新台幣的發行
transcript.whisperx[5].start 112.327
transcript.whisperx[5].end 141.02
transcript.whisperx[5].text 那兆豐銀行是外匯的一個結算銀行有沒有可能從由台銀來做台幣的穩定幣然後由兆豐來負責外幣的穩定幣的這樣分工台灣銀行目前不是台幣的發行機構現在新台幣的發行是中央銀行主要會不會由你們比較代表性的國營來做代表我們是幫他做一些這個發行就是他印完以後我們幫他發行那實際上印製是中央銀行印製是中央銀行沒有錯然後發行業務是你們嘛對不對
transcript.whisperx[6].start 141.98
transcript.whisperx[6].end 159.106
transcript.whisperx[6].text 那有沒有可能這樣子然後另外董董外幣的部分我們並沒有商定要發行穩定幣我們在財政部記的檢討報告裡面我們有一個報告就是談到穩定幣而已並沒有說我們所有關股要做穩定幣那我就請教一下部長
transcript.whisperx[7].start 163.268
transcript.whisperx[7].end 166.63
transcript.whisperx[7].text 那各位就請回 董事長就請回了部長 我請教你一下如果這樣子的話以現在央行的這個央行的總裁有提到說將來這個發行權是由金融機構那公股銀行不會帶頭嗎來從事這金融科技嗎跟委員報告目前來說有關數位資產服務法這個部分
transcript.whisperx[8].start 184.028
transcript.whisperx[8].end 190.592
transcript.whisperx[8].text 金管會已經研擬了應該在行政院的研討當中那未來會對於穩定幣有相關的一個第一個發行的條件還有他要怎麼樣透明以及跟有關的一個法定資產怎麼樣去連結以及監管等等我想這個部分未來在這個服務法裡面都要做詳細的規定那麼有這樣的一個法規以後後面要怎麼樣去誰來做發行這個未來可能都要看市場的一個情況
transcript.whisperx[9].start 211.806
transcript.whisperx[9].end 222.91
transcript.whisperx[9].text 公股銀行有沒有意思來做這一個發行的機構我想這個部分會由銀行他們來做評估那財政部都有一個意見表示嗎他剛剛問財政部因為現在來說穩定幣在國外有像比如說跟美元綁跟美債綁
transcript.whisperx[10].start 231.914
transcript.whisperx[10].end 253.5
transcript.whisperx[10].text 如果你还没有评估的话我建议你稍微慎重评估一下因为这是未来一个很重要的一个空间跟市场那另外一个部分我请教一下部长的部分部长前几天那个院长被追问到说要不要送这个财发法的修正案他很用力的点头那这个点头的意思是这个会请能不能送进来这个版本 院的版本
transcript.whisperx[11].start 255.325
transcript.whisperx[11].end 270.564
transcript.whisperx[11].text 我們的部分其實財政部有相關的一些方案那也持續在跟行政院再跟行政院報告那行政院如果說什麼時候送我們會提版本你們就馬上送我們馬上是就版本就馬上送如果院長說送你們就送
transcript.whisperx[12].start 271.575
transcript.whisperx[12].end 293.11
transcript.whisperx[12].text 可以的 因為我們會再進一步討論為什麼 因為9月13號的時候各地方政府的首長都有來他們也提相關的意見簡單的講 財政部都已經準備好了版本的都OK了就送行政院做那也要跟委員報告下個禮拜二我們會再次邀請地方政府來開會對 在既有的共識基礎上我們再往前再推動然後會把相關的草案
transcript.whisperx[13].start 293.69
transcript.whisperx[13].end 299.075
transcript.whisperx[13].text 所以最快要下禮拜二再開一次會議之後會再找地方政府來開會開一次會之後然後送行政院看行政院什麼時候送因為之前也開過三次了所以版本也是差不多了只要再確認一下就可以了本席也提出相對的版本出來我著重的地方是在財政的平衡也就讓地方能夠擁有最基本的財政的需求
transcript.whisperx[14].start 319.071
transcript.whisperx[14].end 337.06
transcript.whisperx[14].text 另外我還著重的部分是區域的平衡也能夠滿足各地的建設的需求第三 環境的平衡讓這個產業的分工不要有污染的指標要把污染的指標納入有三個平衡所以這三個平衡當中在版本制定的時候將來我們有機會再來做對話還有一個部分國安基金從4月進場到現在已經六個月了
transcript.whisperx[15].start 344.804
transcript.whisperx[15].end 371.969
transcript.whisperx[15].text 那目前為止國安基金扮演一定的一個角色但是未來還是有不確定的因素不論是關稅的不確定或者地權政治不確定或中國有一些結構性的外溢的效應的不確定都有可能造成股市上的一個衝擊那現在要問我們的台灣的股市現在25年來在股市上已經飆漲了11倍那國安基金的這個嚇阻能力大家擔心會越來越不足
transcript.whisperx[16].start 373.169
transcript.whisperx[16].end 390.112
transcript.whisperx[16].text 本席在三月的時候就已經提出這個議題當時部長你也認同說五千億不夠當初國安基金成立的時候整個IPO的市場總有的市值才八兆而已我三月質詢的時候是七十兆你知道現在幾兆了嗎
transcript.whisperx[17].start 391.445
transcript.whisperx[17].end 409.06
transcript.whisperx[17].text 您上面寫90兆對 90兆答案都給你了就是說等等整個從5000億的角度來看我們從比重的這個6%降到成0.5%部長我們都已經提出版本了我想請問一下院這邊財政這邊要不要提出版本
transcript.whisperx[18].start 411.225
transcript.whisperx[18].end 422.332
transcript.whisperx[18].text 委員是希望擴大那個國安基金的一個規模那我想這個部分也是我們在評估的一個事項那從4月8應該是4月9號開始這一次的一個進場以後我們歷次的例會裡面都在討論目前在上個禮拜四召開的國安基金的例會裡面認為還是持續在進場並沒有退場那最主要是要穩定股市然後加強投資人的信心維護投資人的信心這個繼續在做
transcript.whisperx[19].start 439.241
transcript.whisperx[19].end 451.999
transcript.whisperx[19].text 那委員所關切的這個規模的部分我們會持續的評估是上次說認為不夠你現在要退回去持續評估對對對那我問你說我們要不要提出版本那你之前是尊重那個大院的意見那你到底贊成或不贊成
transcript.whisperx[20].start 455.504
transcript.whisperx[20].end 475.094
transcript.whisperx[20].text 或要或不要提出我想這個部分在我們的國安基金的委員會裡面會再做討論我跟你講國安基金委員會提過很多次了啦大部分都希望提高啦我都打聽過了啦那你為什麼還要再評估我就不曉得為什麼你是不願意提版本是不是也不是也不是我沒有不願意對那你態度怎麼樣我聽不出來耶我們基本上持正面的態度
transcript.whisperx[21].start 479.196
transcript.whisperx[21].end 499.986
transcript.whisperx[21].text 持正面的態度但是沒有很積極的方法方法也不難部長我真的覺得你應該稍微積極一點你應該提出一個相對應的版本出來否則的話你會陷入財政收支劃分法的這種狀況變成立法院的版本裡面沒有版本提出版本才是一個最負責的態度部長
transcript.whisperx[22].start 502.588
transcript.whisperx[22].end 516.341
transcript.whisperx[22].text 本席再跟你慎重提醒最后的部分我想问一下到底过去往年的税收都年年超标超标的结果总共四年累积起来大概有1.87兆
transcript.whisperx[23].start 518.923
transcript.whisperx[23].end 539.062
transcript.whisperx[23].text 那过往当然我们都是用来还债但是我们基本需求跟投资未来都还有很大的一个需求的情况底下这个你看到的这种现象以照目前这个今年的最缩的执行率这个是91点多去年了91.7是不是
transcript.whisperx[24].start 540.37
transcript.whisperx[24].end 552.025
transcript.whisperx[24].text 然后现在是剩下三个月是75.5对不对那你预估起来今年的税收的状况呢还是会超标吗还是会短针
transcript.whisperx[25].start 552.965
transcript.whisperx[25].end 573.345
transcript.whisperx[25].text 跟委员报告今年我刚刚说今年的114年的预算数比113年的时增数时增数增加了947亿那到9月底为止我们今年的时增数比去年113年同期的时增数是减少365亿这中央的部分365亿365亿
transcript.whisperx[26].start 575.246
transcript.whisperx[26].end 595.413
transcript.whisperx[26].text 所以呢今年要達成110年要達成我們的預算數基本上是很具有挑戰性的因為我們的預算數已經比去年的實證書增加但是到9月底是比去年少那當然這個原因我們也去分析第一個銀索稅的部分目前還沒有完全入帳因為9月有一個站腳稅款還沒有完全入帳
transcript.whisperx[27].start 597.495
transcript.whisperx[27].end 603.341
transcript.whisperx[27].text 對那看上半年當然盈利事業貨不錯但是還有部分所以對連達標都感到別觀對還有一個證交稅證交稅是減少比去年同期減少223億那這個部分呢如果後續的股市的成交量能夠
transcript.whisperx[28].start 616.871
transcript.whisperx[28].end 639.542
transcript.whisperx[28].text 達到近5000億的話可能在這個預算數上在證交稅的預算數上是可以達到另外就是貨物稅貨物稅目前來說也是減增到123億這裡面有一部分是因為小客車的部分因為當時的稅制大家在觀望所以就影響到買氣那這個部分我們希望在因為在9月份的時候看起來小客車的貨物稅有一些拉上來了拉上來了
transcript.whisperx[29].start 641.363
transcript.whisperx[29].end 655.639
transcript.whisperx[29].text 所以貨物稅另外在關稅的部分目前也減少42億但是不多啦主要還是貨物稅減少100多億所以我們大概都會分析各個稅務以及去考量今年的預算數能不能達標但是跟委員報告今年的預算數達標具有一定的挑戰性
transcript.whisperx[30].start 656.24
transcript.whisperx[30].end 676.036
transcript.whisperx[30].text 有一定的挑戰性所以說你預期來說恐怕不會有超標的可能要超過可能有點困難有困難我們追求如果能夠達標就偷笑了是不是沒有偷笑都是努力的成果大家努力的成果加油希望還有機會看到你新的紀錄謝謝我們謝謝國委員接下來我們請來會員委員
transcript.whisperx[31].start 689.756
transcript.whisperx[31].end 691.001
transcript.whisperx[31].text 謝謝主席 請部長