iVOD / 164198

Field Value
IVOD_ID 164198
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164198
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-15T12:16:44+08:00
結束時間 2025-10-15T12:28:58+08:00
影片長度 00:12:14
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db66e34cd5677a1af0e97bc26f8a2da1058b6741136213cfef621e6da3feca83ab35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 12:16:44 - 12:28:58
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、審計部陳審計長瑞敏率所屬單位主管列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.04784375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 0.09846875
transcript.pyannote[1].end 2.52846875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 28.16159375
transcript.pyannote[2].end 29.91659375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 30.45659375
transcript.pyannote[3].end 31.65471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 35.56971875
transcript.pyannote[4].end 36.29534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 37.34159375
transcript.pyannote[5].end 42.45471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 42.60659375
transcript.pyannote[6].end 45.61034375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 45.89721875
transcript.pyannote[7].end 46.31909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 46.57221875
transcript.pyannote[8].end 52.00596875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 49.67721875
transcript.pyannote[9].end 50.43659375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 52.88346875
transcript.pyannote[10].end 55.75221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 56.41034375
transcript.pyannote[11].end 58.94159375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 60.40971875
transcript.pyannote[12].end 60.54471875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 60.81471875
transcript.pyannote[13].end 64.64534375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 65.25284375
transcript.pyannote[14].end 77.89221875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 77.97659375
transcript.pyannote[15].end 80.59221875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 80.77784375
transcript.pyannote[16].end 81.16596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 81.09846875
transcript.pyannote[17].end 82.80284375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 83.07284375
transcript.pyannote[18].end 83.44409375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 83.51159375
transcript.pyannote[19].end 84.91221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 85.77284375
transcript.pyannote[20].end 86.54909375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 87.76409375
transcript.pyannote[21].end 88.82721875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 89.09721875
transcript.pyannote[22].end 93.23159375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 93.97409375
transcript.pyannote[23].end 95.39159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 96.11721875
transcript.pyannote[24].end 97.02846875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 97.58534375
transcript.pyannote[25].end 99.50909375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 99.54284375
transcript.pyannote[26].end 100.87596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 101.71971875
transcript.pyannote[27].end 102.49596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 103.13721875
transcript.pyannote[28].end 115.23659375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 115.84409375
transcript.pyannote[29].end 117.90284375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 118.71284375
transcript.pyannote[30].end 124.24784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 124.88909375
transcript.pyannote[31].end 128.16284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 128.38221875
transcript.pyannote[32].end 130.40721875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 130.96409375
transcript.pyannote[33].end 131.87534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 132.29721875
transcript.pyannote[34].end 142.82721875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 143.38409375
transcript.pyannote[35].end 146.01659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 146.26971875
transcript.pyannote[36].end 148.39596875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 149.39159375
transcript.pyannote[37].end 153.47534375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 154.09971875
transcript.pyannote[38].end 155.24721875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 155.80409375
transcript.pyannote[39].end 156.36096875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 157.49159375
transcript.pyannote[40].end 163.21221875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 163.46534375
transcript.pyannote[41].end 163.87034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 163.87034375
transcript.pyannote[42].end 166.04721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 166.57034375
transcript.pyannote[43].end 168.64596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 169.13534375
transcript.pyannote[44].end 169.96221875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 170.28284375
transcript.pyannote[45].end 170.62034375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 170.78909375
transcript.pyannote[46].end 171.37971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 172.18971875
transcript.pyannote[47].end 174.53534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 174.53534375
transcript.pyannote[48].end 174.65346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 174.65346875
transcript.pyannote[49].end 176.02034375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 176.17221875
transcript.pyannote[50].end 176.42534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 177.11721875
transcript.pyannote[51].end 179.47971875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 180.03659375
transcript.pyannote[52].end 189.36846875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 191.08971875
transcript.pyannote[53].end 193.38471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 194.02596875
transcript.pyannote[54].end 202.02471875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 202.32846875
transcript.pyannote[55].end 203.13846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 203.57721875
transcript.pyannote[56].end 205.18034375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 205.70346875
transcript.pyannote[57].end 207.39096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 207.94784375
transcript.pyannote[58].end 210.85034375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 211.99784375
transcript.pyannote[59].end 213.90471875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 214.29284375
transcript.pyannote[60].end 216.77346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 218.35971875
transcript.pyannote[61].end 219.72659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 220.23284375
transcript.pyannote[62].end 227.77596875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 228.18096875
transcript.pyannote[63].end 232.31534375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 233.41221875
transcript.pyannote[64].end 242.27159375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 243.14909375
transcript.pyannote[65].end 256.78409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 256.96971875
transcript.pyannote[66].end 259.75409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 260.09159375
transcript.pyannote[67].end 264.15846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 265.08659375
transcript.pyannote[68].end 266.95971875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 266.95971875
transcript.pyannote[69].end 267.36471875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 267.80346875
transcript.pyannote[70].end 273.86159375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 273.97971875
transcript.pyannote[71].end 276.37596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 276.69659375
transcript.pyannote[72].end 279.29534375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 279.31221875
transcript.pyannote[73].end 279.32909375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 279.36284375
transcript.pyannote[74].end 279.41346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 279.78471875
transcript.pyannote[75].end 285.91034375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 286.29846875
transcript.pyannote[76].end 287.31096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 288.27284375
transcript.pyannote[77].end 288.96471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 289.35284375
transcript.pyannote[78].end 290.50034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 290.98971875
transcript.pyannote[79].end 291.69846875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 292.64346875
transcript.pyannote[80].end 293.53784375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 294.51659375
transcript.pyannote[81].end 295.36034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 295.57971875
transcript.pyannote[82].end 296.59221875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 297.31784375
transcript.pyannote[83].end 298.22909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 298.85346875
transcript.pyannote[84].end 300.65909375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 300.79409375
transcript.pyannote[85].end 300.81096875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 300.81096875
transcript.pyannote[86].end 301.11471875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 301.33409375
transcript.pyannote[87].end 304.23659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 304.70909375
transcript.pyannote[88].end 305.73846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 306.34596875
transcript.pyannote[89].end 306.71721875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 307.13909375
transcript.pyannote[90].end 309.11346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 309.46784375
transcript.pyannote[91].end 309.48471875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 310.21034375
transcript.pyannote[92].end 313.66971875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 314.69909375
transcript.pyannote[93].end 318.05721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 318.66471875
transcript.pyannote[94].end 321.80346875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 322.56284375
transcript.pyannote[95].end 323.35596875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 323.81159375
transcript.pyannote[96].end 346.67721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 346.98096875
transcript.pyannote[97].end 349.64721875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 350.35596875
transcript.pyannote[98].end 358.96221875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 359.60346875
transcript.pyannote[99].end 360.09284375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 360.61596875
transcript.pyannote[100].end 360.93659375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 361.00409375
transcript.pyannote[101].end 363.21471875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 363.77159375
transcript.pyannote[102].end 372.25971875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 373.39034375
transcript.pyannote[103].end 374.06534375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 374.65596875
transcript.pyannote[104].end 376.09034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 376.39409375
transcript.pyannote[105].end 378.26721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 376.44471875
transcript.pyannote[106].end 376.73159375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 378.58784375
transcript.pyannote[107].end 378.77346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 379.19534375
transcript.pyannote[108].end 381.33846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 382.30034375
transcript.pyannote[109].end 382.92471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 384.07221875
transcript.pyannote[110].end 385.70909375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 386.60346875
transcript.pyannote[111].end 387.80159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 388.57784375
transcript.pyannote[112].end 390.28221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 391.64909375
transcript.pyannote[113].end 392.30721875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 392.99909375
transcript.pyannote[114].end 397.99409375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 400.03596875
transcript.pyannote[115].end 402.24659375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 402.87096875
transcript.pyannote[116].end 405.95909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 406.76909375
transcript.pyannote[117].end 408.38909375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 408.45659375
transcript.pyannote[118].end 408.49034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 408.50721875
transcript.pyannote[119].end 410.22846875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 411.13971875
transcript.pyannote[120].end 419.52659375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 419.86409375
transcript.pyannote[121].end 425.28096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 425.46659375
transcript.pyannote[122].end 427.52534375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 428.01471875
transcript.pyannote[123].end 429.17909375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 429.75284375
transcript.pyannote[124].end 435.11909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 436.35096875
transcript.pyannote[125].end 436.77284375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 437.51534375
transcript.pyannote[126].end 438.69659375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 439.11846875
transcript.pyannote[127].end 439.32096875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 440.01284375
transcript.pyannote[128].end 443.79284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 443.97846875
transcript.pyannote[129].end 444.63659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 445.24409375
transcript.pyannote[130].end 446.02034375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 446.91471875
transcript.pyannote[131].end 449.98596875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 450.67784375
transcript.pyannote[132].end 453.61409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 453.61409375
transcript.pyannote[133].end 453.95159375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 454.33971875
transcript.pyannote[134].end 454.72784375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 454.91346875
transcript.pyannote[135].end 457.76534375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 458.72721875
transcript.pyannote[136].end 462.81096875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 464.29596875
transcript.pyannote[137].end 465.29159375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 466.59096875
transcript.pyannote[138].end 466.77659375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 467.48534375
transcript.pyannote[139].end 469.39221875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 469.94909375
transcript.pyannote[140].end 471.67034375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 472.59846875
transcript.pyannote[141].end 474.06659375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 475.38284375
transcript.pyannote[142].end 476.26034375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 476.41221875
transcript.pyannote[143].end 480.74909375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 481.37346875
transcript.pyannote[144].end 482.65596875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 483.14534375
transcript.pyannote[145].end 483.83721875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 484.66409375
transcript.pyannote[146].end 486.30096875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 486.33471875
transcript.pyannote[147].end 487.14471875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 488.57909375
transcript.pyannote[148].end 489.47346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 489.62534375
transcript.pyannote[149].end 492.64596875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 492.86534375
transcript.pyannote[150].end 496.72971875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 497.60721875
transcript.pyannote[151].end 497.99534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 499.75034375
transcript.pyannote[152].end 500.54346875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 500.86409375
transcript.pyannote[153].end 502.70346875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 500.89784375
transcript.pyannote[154].end 501.31971875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 503.61471875
transcript.pyannote[155].end 504.18846875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 504.61034375
transcript.pyannote[156].end 506.38221875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 506.75346875
transcript.pyannote[157].end 508.42409375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 509.18346875
transcript.pyannote[158].end 510.63471875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 511.30971875
transcript.pyannote[159].end 522.46409375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 522.78471875
transcript.pyannote[160].end 523.64534375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 523.72971875
transcript.pyannote[161].end 524.16846875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 524.16846875
transcript.pyannote[162].end 525.70409375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 525.85596875
transcript.pyannote[163].end 527.20596875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 529.41659375
transcript.pyannote[164].end 529.78784375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 530.29409375
transcript.pyannote[165].end 531.84659375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 532.16721875
transcript.pyannote[166].end 533.70284375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 534.27659375
transcript.pyannote[167].end 535.93034375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 536.50409375
transcript.pyannote[168].end 537.14534375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 537.55034375
transcript.pyannote[169].end 540.97596875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 541.43159375
transcript.pyannote[170].end 544.09784375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 544.48596875
transcript.pyannote[171].end 547.30409375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 548.02971875
transcript.pyannote[172].end 551.57346875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 551.75909375
transcript.pyannote[173].end 560.07846875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 560.87159375
transcript.pyannote[174].end 563.77409375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 564.16221875
transcript.pyannote[175].end 564.33096875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 564.98909375
transcript.pyannote[176].end 566.69346875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 568.02659375
transcript.pyannote[177].end 568.95471875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 569.89971875
transcript.pyannote[178].end 579.29909375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 580.46346875
transcript.pyannote[179].end 581.47596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 581.76284375
transcript.pyannote[180].end 587.61846875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 588.47909375
transcript.pyannote[181].end 592.93409375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 594.19971875
transcript.pyannote[182].end 604.69596875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 604.96596875
transcript.pyannote[183].end 609.04971875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 609.69096875
transcript.pyannote[184].end 610.73721875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 610.73721875
transcript.pyannote[185].end 611.12534375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 611.12534375
transcript.pyannote[186].end 620.40659375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 620.84534375
transcript.pyannote[187].end 651.35534375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 634.78409375
transcript.pyannote[188].end 636.26909375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 639.03659375
transcript.pyannote[189].end 639.05346875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 639.05346875
transcript.pyannote[190].end 639.13784375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 651.50721875
transcript.pyannote[191].end 684.98721875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 684.34596875
transcript.pyannote[192].end 715.19346875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 686.75909375
transcript.pyannote[193].end 686.99534375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 715.93596875
transcript.pyannote[194].end 732.22034375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 733.04721875
transcript.pyannote[195].end 735.15659375
transcript.whisperx[0].start 0.402
transcript.whisperx[0].end 28.839
transcript.whisperx[0].text 下一位王世堅委員謝謝主席我請主席在
transcript.whisperx[1].start 30.512
transcript.whisperx[1].end 53.603
transcript.whisperx[1].text 我們請陳主計長委員好主計長你們跟主計處還有包括我們今天列席的審計處你們確實是很用心努力於公務這是事實我確實非常肯定主計處審計處你們的貢獻不過你主計處的數字
transcript.whisperx[2].start 60.868
transcript.whisperx[2].end 84.414
transcript.whisperx[2].text 不能有那麼大的差異必須很詳實因為主計處掌管的全國所有包括經濟發展財政各部會還有我們全民工作努力所有的這些成果這些數字都必須很詳實的去記錄詳實的去分析那這個部分我對於貧窮
transcript.whisperx[3].start 88.297
transcript.whisperx[3].end 100.693
transcript.whisperx[3].text 這個計算 我覺得這個奇怪我們怎麼跟世界這幾個主流國家不但有差異而且這十幾年來都差異 越差越大
transcript.whisperx[4].start 101.772
transcript.whisperx[4].end 123.984
transcript.whisperx[4].text 我們就講美國他們的統計好了美國統計了全世界有140個國家他有把每個國家的大概的這些數字他們有做了一些分析那他們的分析以外包括英國、德國、日本、韓國這些先進國家他們也都有他們的分析
transcript.whisperx[5].start 125.104
transcript.whisperx[5].end 147.911
transcript.whisperx[5].text 所有他們的分析起來他們認為他們自己國家貧窮率大概從14%到16%中間14%到16%我們講平均大概15%以他們認為他們自己國家的貧窮率但是在我們國家我們貧窮率的計算
transcript.whisperx[6].start 149.434
transcript.whisperx[6].end 175.303
transcript.whisperx[6].text 我們對我們自己國內貧窮人口的占比數我們的計算啦大概照這樣看你們所公布你們公布最近公布的一個是7.13%大概是全世界平均15%的一半一半不到那當然如果這是事實這很好喔表示我們國人
transcript.whisperx[7].start 177.199
transcript.whisperx[7].end 189.008
transcript.whisperx[7].text 我們居於世界之冠我們消滅了貧窮但是我怕這些數字如果不詳實有很大的誤差那我們不是志氣氣人嗎
transcript.whisperx[8].start 191.178
transcript.whisperx[8].end 216.531
transcript.whisperx[8].text 自欺欺人的另外一面就是什麼就是說那糟糕那對於我們沒有估算到而實質他是在貧窮線的民眾那變成我們的社福政策我們接濟不到他們這是另外一個更嚴重傷腦筋的問題所以我今天就教於你那照這些估算不但有差
transcript.whisperx[9].start 218.41
transcript.whisperx[9].end 231.799
transcript.whisperx[9].text 我們實質政府在有救助有補助的這一個部分低收入中低收入根據你們公布低收入人數從107年2018年我剛列了這個10年下來31萬多到今年25萬9有減少中低收入從33萬多到24萬2
transcript.whisperx[10].start 243.223
transcript.whisperx[10].end 266.615
transcript.whisperx[10].text 我就把25萬924萬2加起來我們就是有50萬位有接受政府救助補助的低收入戶跟中低收入戶人口50萬人可是這有兩個差距出來了跟我們主計處自己所公布的7.13那就有很大的出路了
transcript.whisperx[11].start 268.164
transcript.whisperx[11].end 296.356
transcript.whisperx[11].text 我們有救助有補助25.9萬加24.2萬這55萬人大概啊大概等於佔我們總人口的2.3%那也就是從你的7.13到2.3有將近5%的黑數那是奇怪那他是誰很怪囉他是貧窮啊但是政府沒有補助他
transcript.whisperx[12].start 297.443
transcript.whisperx[12].end 321.659
transcript.whisperx[12].text 沒有救助他這是一大黑數這就是所謂的窮人黑數窮人黑數那窮人黑數還來自另外一個民間的版本的估算那差更多民間好幾個公民團體他們都很專業喔他們有的來自於我們退休的
transcript.whisperx[13].start 322.605
transcript.whisperx[13].end 344.749
transcript.whisperx[13].text 公務人員有的是各方面會計統計這部分的學者專家教授他們去組成的他們估算他們的估算他們是以年收入不到國人可以支配所得中位數的六成他以這樣子中位數的六成下去算他們認為有12%到13%的全國人口是位於
transcript.whisperx[14].start 351.05
transcript.whisperx[14].end 370.162
transcript.whisperx[14].text 貧窮縣的 是位於貧窮縣那12%到13%那是多少人那就是280萬到300萬人欸欸 土地局長那就跟我們剛剛提的低收入戶中低收入戶加起來的50萬人那黑數就高達250萬啦那比
transcript.whisperx[15].start 374.704
transcript.whisperx[15].end 391.756
transcript.whisperx[15].text 我剛剛跟你提到的你公布的7.137.13的黑數70萬那如果照民間估算的結果那這個貧窮的人數窮人的黑數將會高達250萬人
transcript.whisperx[16].start 400.1
transcript.whisperx[16].end 409.35
transcript.whisperx[16].text 我們台灣才2380萬人也就是說我們有高達一成的我們台灣同胞們他是處於貧窮線
transcript.whisperx[17].start 411.309
transcript.whisperx[17].end 438.594
transcript.whisperx[17].text 這些窮人黑素他是沒辦法接受到政府任何的福利政策任何的救助補助也就是我們政府努力了數十年全民努力了數十年當這些貧窮黑素發生不幸一般生活不濟的時候我們政府我們全民接不到他們這個就是我在害怕的
transcript.whisperx[18].start 440.406
transcript.whisperx[18].end 464.818
transcript.whisperx[18].text 這就是這些黑數一直困擾著我們大家的到底是多少如果我們以現實的觀點來看確實也可以從很多現象看得出來包括從各價位的餐廳包括從一般的小吃包括連在車站連在公園
transcript.whisperx[19].start 468.783
transcript.whisperx[19].end 496.449
transcript.whisperx[19].text 這幾年來陸陸續續增加的這些遊民的人數包括我們可以聽得到的街坊鄰居朋友新聞報導的很多這些黑素民眾他們如果遇到更糟糕的家庭不幸的時候那會導致家破人亡
transcript.whisperx[20].start 497.662
transcript.whisperx[20].end 526.972
transcript.whisperx[20].text 所以主計長我麻煩你務必第一點回去你們把這些數字到底是怎麼回事是民間團體算賺呢還是我們主計處這個部分我們有盲點因為你們就等於出現了兩個數字兩個不同的數字本身就產生了70萬位民眾的差距這個就已經是個黑數第二點是不是
transcript.whisperx[21].start 529.491
transcript.whisperx[21].end 546.646
transcript.whisperx[21].text 你回去跟衛福部 折騰他們衛福部 詳實地算一下到底他列的低收入戶 中低收入戶他是怎麼樣的一個統計的 哪樣的一個資料 不要動不動
transcript.whisperx[22].start 548.267
transcript.whisperx[22].end 568.743
transcript.whisperx[22].text 他們動不動就拿一個說這個排富條款這個因為他怎樣他拿一個三等親裡面有什麼工作這個可以接濟他這個接濟那個接濟講半天結果這怎麼叫接濟呢他如果有個三等親年輕朋友
transcript.whisperx[23].start 570.063
transcript.whisperx[23].end 592.516
transcript.whisperx[23].text 有正職工作每個月三萬多塊的收入那怎麼有辦法去接濟這一位實質有需要幫助的窮人黑素哪有辦法接濟年輕他剛畢業自己的生活費租金不打緊還要還房貸所以有一些都變成我們政府單位我們自己
transcript.whisperx[24].start 594.286
transcript.whisperx[24].end 606.234
transcript.whisperx[24].text 自己往自己資格去想說理所當然的你是三等親嘛你就可以去依這個親事實上不然所以我必須講很現實的啦在現實的
transcript.whisperx[25].start 609.716
transcript.whisperx[25].end 633.481
transcript.whisperx[25].text 陽光底下我們有很多辛苦工作的百姓們都自顧不暇了我們政府不要一廂情願的把這些都認為說這個有這樣子的三等輕所以就不把它列入這個補助就不把它列入貧窮線的補助那這種想法是截然錯誤好不好
transcript.whisperx[26].start 635.281
transcript.whisperx[26].end 651.216
transcript.whisperx[26].text 回去數字想計算更仔細一點要接住每一位我們台灣同胞需要幫助補助的朋友第一步就是要從詳實的數字開始詳實的計算起好不好
transcript.whisperx[27].start 651.536
transcript.whisperx[27].end 668.878
transcript.whisperx[27].text 好謝謝委員那我這裡也說明一下因為衛福部他整個中低收入戶的算法他是要把動產或不動產他有先納入考量那我們這整個是就薪資的一個一個去設算所以我們是7點多他把動產不動產的中低收入的
transcript.whisperx[28].start 670.339
transcript.whisperx[28].end 692.138
transcript.whisperx[28].text 這個納入考量之後所以它整個一些中低收入乎才會變成一點多這個部分所以這個部分就是說我們將來看要怎麼樣跟衛福部來討論說盡量這個部分要怎樣來我們放寬這個限制是這樣子好 處長那我也跟您提一下我也跟沈記長也說明一下其實這個我們立法院
transcript.whisperx[29].start 692.839
transcript.whisperx[29].end 712.34
transcript.whisperx[29].text 我還有其他立委我們有提案我們認為早就應該把這個排富標準金額提高這個我們還在立法院奮戰當中但是我希望說至少我們主計處、審計處在這個部分提供意見給他們的時候要求他們應該與時俱進去調高
transcript.whisperx[30].start 716.45
transcript.whisperx[30].end 731.659
transcript.whisperx[30].text 這個所謂的你不補助的範圍不應該把這個標準還列在四五十年前的標準這樣每個人都被你排富掉了那就講的台灣就均富了嗎台灣就沒有貧窮了嗎事實上不是這樣好不好好我們謝謝王委員