iVOD / 164109

Field Value
IVOD_ID 164109
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164109
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-19-3
會議資料.會議代碼:str 第11屆第4會期經濟委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-15T10:01:26+08:00
結束時間 2025-10-15T10:10:28+08:00
影片長度 00:09:02
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db635be2dbdf6d6bfc81d8817d393176c43fda6f2d8e3477daea58ef45d272994b75ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳亭妃
委員發言時間 10:01:26 - 10:10:28
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第3次全體委員會議(事由:邀請農業部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 10.45971875
transcript.pyannote[0].end 12.85596875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 13.15971875
transcript.pyannote[1].end 13.96971875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 19.96034375
transcript.pyannote[2].end 20.46659375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 20.66909375
transcript.pyannote[3].end 25.39409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 26.27159375
transcript.pyannote[4].end 27.92534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 27.84096875
transcript.pyannote[5].end 28.26284375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 28.46534375
transcript.pyannote[6].end 30.79409375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 30.92909375
transcript.pyannote[7].end 31.09784375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 31.21596875
transcript.pyannote[8].end 32.48159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 32.68409375
transcript.pyannote[9].end 33.52784375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 33.93284375
transcript.pyannote[10].end 35.09721875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 35.19846875
transcript.pyannote[11].end 36.83534375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 37.30784375
transcript.pyannote[12].end 47.61846875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 40.34534375
transcript.pyannote[13].end 40.51409375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 49.20471875
transcript.pyannote[14].end 51.82034375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 52.15784375
transcript.pyannote[15].end 54.48659375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 54.36846875
transcript.pyannote[16].end 55.38096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 54.70596875
transcript.pyannote[17].end 58.75596875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 58.23284375
transcript.pyannote[18].end 60.15659375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 59.24534375
transcript.pyannote[19].end 61.67534375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 60.27471875
transcript.pyannote[20].end 73.30221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 62.33346875
transcript.pyannote[21].end 63.07596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 65.26971875
transcript.pyannote[22].end 65.43846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 67.71659375
transcript.pyannote[23].end 68.08784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 74.02784375
transcript.pyannote[24].end 75.27659375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 74.07846875
transcript.pyannote[25].end 74.51721875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 75.58034375
transcript.pyannote[26].end 75.59721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 75.59721875
transcript.pyannote[27].end 75.64784375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 75.64784375
transcript.pyannote[28].end 75.71534375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 75.71534375
transcript.pyannote[29].end 76.55909375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 77.58846875
transcript.pyannote[30].end 99.69471875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 100.25159375
transcript.pyannote[31].end 114.25784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 111.13596875
transcript.pyannote[32].end 111.43971875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 114.40971875
transcript.pyannote[33].end 122.64471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 120.14721875
transcript.pyannote[34].end 121.66596875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 122.91471875
transcript.pyannote[35].end 134.79471875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 135.63846875
transcript.pyannote[36].end 139.40159375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 140.88659375
transcript.pyannote[37].end 143.55284375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 141.69659375
transcript.pyannote[38].end 143.73846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 143.63721875
transcript.pyannote[39].end 150.74159375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 146.47221875
transcript.pyannote[40].end 146.91096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 146.91096875
transcript.pyannote[41].end 147.02909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 148.02471875
transcript.pyannote[42].end 148.41284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 150.91034375
transcript.pyannote[43].end 151.39971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 151.18034375
transcript.pyannote[44].end 155.01096875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 155.53409375
transcript.pyannote[45].end 157.25534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 156.90096875
transcript.pyannote[46].end 157.22159375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 157.71096875
transcript.pyannote[47].end 158.31846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 158.60534375
transcript.pyannote[48].end 158.67284375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 158.67284375
transcript.pyannote[49].end 160.10721875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 160.19159375
transcript.pyannote[50].end 166.75596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 165.77721875
transcript.pyannote[51].end 166.13159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 166.75596875
transcript.pyannote[52].end 181.87596875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 167.54909375
transcript.pyannote[53].end 168.73034375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 175.81784375
transcript.pyannote[54].end 176.29034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 176.47596875
transcript.pyannote[55].end 176.56034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 178.61909375
transcript.pyannote[56].end 178.95659375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 181.99409375
transcript.pyannote[57].end 191.07284375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 191.64659375
transcript.pyannote[58].end 193.60409375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 192.00096875
transcript.pyannote[59].end 192.97971875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 193.70534375
transcript.pyannote[60].end 196.97909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 197.45159375
transcript.pyannote[61].end 198.64971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 199.72971875
transcript.pyannote[62].end 205.80471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 206.26034375
transcript.pyannote[63].end 215.17034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 208.67346875
transcript.pyannote[64].end 208.70721875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 208.70721875
transcript.pyannote[65].end 209.21346875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 213.73596875
transcript.pyannote[66].end 265.35659375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 215.27159375
transcript.pyannote[67].end 215.77784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 216.68909375
transcript.pyannote[68].end 217.07721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 217.71846875
transcript.pyannote[69].end 218.14034375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 218.24159375
transcript.pyannote[70].end 218.81534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 224.06346875
transcript.pyannote[71].end 224.50221875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 232.87221875
transcript.pyannote[72].end 233.29409375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 238.03596875
transcript.pyannote[73].end 238.44096875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 242.25471875
transcript.pyannote[74].end 242.57534375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 266.67284375
transcript.pyannote[75].end 266.72346875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 267.26346875
transcript.pyannote[76].end 300.55784375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 290.92221875
transcript.pyannote[77].end 292.77846875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 300.65909375
transcript.pyannote[78].end 301.87409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 302.48159375
transcript.pyannote[79].end 304.65846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 304.97909375
transcript.pyannote[80].end 312.75846875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 312.84284375
transcript.pyannote[81].end 330.59534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 316.97721875
transcript.pyannote[82].end 317.48346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 318.15846875
transcript.pyannote[83].end 318.44534375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 327.40596875
transcript.pyannote[84].end 327.76034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 331.32096875
transcript.pyannote[85].end 334.74659375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 334.96596875
transcript.pyannote[86].end 345.29346875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 345.47909375
transcript.pyannote[87].end 355.16534375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 355.35096875
transcript.pyannote[88].end 362.74221875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 363.13034375
transcript.pyannote[89].end 369.61034375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 370.06596875
transcript.pyannote[90].end 373.76159375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 373.96409375
transcript.pyannote[91].end 384.22409375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 384.93284375
transcript.pyannote[92].end 390.43409375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 390.75471875
transcript.pyannote[93].end 393.57284375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 393.77534375
transcript.pyannote[94].end 393.79221875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 393.79221875
transcript.pyannote[95].end 393.97784375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 393.97784375
transcript.pyannote[96].end 394.16346875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 394.23096875
transcript.pyannote[97].end 415.72971875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 407.29221875
transcript.pyannote[98].end 407.30909375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 407.30909375
transcript.pyannote[99].end 407.69721875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 415.93221875
transcript.pyannote[100].end 418.19346875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 418.54784375
transcript.pyannote[101].end 425.58471875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 426.05721875
transcript.pyannote[102].end 433.68471875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 433.85346875
transcript.pyannote[103].end 437.98784375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 438.12284375
transcript.pyannote[104].end 440.73846875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 441.29534375
transcript.pyannote[105].end 444.72096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 443.47221875
transcript.pyannote[106].end 447.20159375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 445.24409375
transcript.pyannote[107].end 445.91909375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 447.04971875
transcript.pyannote[108].end 447.57284375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 447.38721875
transcript.pyannote[109].end 449.49659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 448.93971875
transcript.pyannote[110].end 459.19971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 458.10284375
transcript.pyannote[111].end 462.52409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 460.49909375
transcript.pyannote[112].end 464.00909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 464.05971875
transcript.pyannote[113].end 465.52784375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 465.52784375
transcript.pyannote[114].end 465.91596875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 465.91596875
transcript.pyannote[115].end 486.45284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 473.77971875
transcript.pyannote[116].end 473.96534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 474.13409375
transcript.pyannote[117].end 474.26909375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 475.56846875
transcript.pyannote[118].end 476.12534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 482.16659375
transcript.pyannote[119].end 482.40284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 485.72721875
transcript.pyannote[120].end 485.77784375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 485.77784375
transcript.pyannote[121].end 486.16596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 487.60034375
transcript.pyannote[122].end 491.29596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 492.40971875
transcript.pyannote[123].end 496.03784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 496.34159375
transcript.pyannote[124].end 498.50159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 496.86471875
transcript.pyannote[125].end 499.59846875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 499.10909375
transcript.pyannote[126].end 511.42784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 500.84721875
transcript.pyannote[127].end 501.33659375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 511.09034375
transcript.pyannote[128].end 513.53721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 513.62159375
transcript.pyannote[129].end 514.00971875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 514.51596875
transcript.pyannote[130].end 517.01346875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 517.77284375
transcript.pyannote[131].end 519.81471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 519.07221875
transcript.pyannote[132].end 520.06784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 520.35471875
transcript.pyannote[133].end 535.98096875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 523.74659375
transcript.pyannote[134].end 524.15159375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 527.02034375
transcript.pyannote[135].end 527.35784375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 527.35784375
transcript.pyannote[136].end 527.40846875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 529.78784375
transcript.pyannote[137].end 530.04096875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 532.31909375
transcript.pyannote[138].end 532.79159375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 533.31471875
transcript.pyannote[139].end 533.34846875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 533.34846875
transcript.pyannote[140].end 533.61846875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 533.68596875
transcript.pyannote[141].end 533.73659375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 536.09909375
transcript.pyannote[142].end 539.82846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 536.14971875
transcript.pyannote[143].end 537.28034375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 539.55846875
transcript.pyannote[144].end 542.62971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 541.04346875
transcript.pyannote[145].end 541.83659375
transcript.whisperx[0].start 11.036
transcript.whisperx[0].end 12.579
transcript.whisperx[0].text 謝謝主席 我們請部長來 請陳部長國研號
transcript.whisperx[1].start 21.034
transcript.whisperx[1].end 47.399
transcript.whisperx[1].text 部長我一直在追著花卉創新園區終於揭牌了也正式升格了把我們的身份證明了我們不是在委在別人的另外一個區塊而是我們可以獨立出來所以我們現在要問的是我們在115年我們花創中心公務預算是多少
transcript.whisperx[2].start 49.264
transcript.whisperx[2].end 75.077
transcript.whisperx[2].text 我們終於可以自己編預算了 預算多少3.5億左右 3.5億然後不包括建設 建設經費現在在行政院工建 工建還沒過 工建70.52現在還在審工建那是另外的總是我們今天升格之後我們終於有我們自己的預算了嘛所以這個預算是3.5億 這個3.5億主要是在哪一個部分我們是請主任
transcript.whisperx[3].start 77.642
transcript.whisperx[3].end 99.503
transcript.whisperx[3].text 我們在研究的部分大概是3千5百萬左右那另外還有1億7千萬左右是在園區裡面的既有的公共建設的修繕就是一帶園區裡面的修繕大概1億7千萬那另外還有大概是5千萬左右的花卉展覽的部分那其他部分大概就是我們的人事費跟一般的營運費用還有土地的租金
transcript.whisperx[4].start 100.305
transcript.whisperx[4].end 120.535
transcript.whisperx[4].text 因為這個一帶園區我們必須加強它的一些基礎建設的升級雖然我們的重點還是擺在公建預算那個區塊可是我們還是要有一些修整因為你沒有修整的話那我們明年馬上要遇到是我們國際欄展也是要舉辦
transcript.whisperx[5].start 121.636
transcript.whisperx[5].end 139.128
transcript.whisperx[5].text 那以前我們沒有自己的預算可能我們都要拜託這個施捨這裡施捨那裡但是現在不用了所以我們要講的是我們的污水下水道的檢修呢在這一次是不是也會有所謂的污水下水道的檢修
transcript.whisperx[6].start 140.953
transcript.whisperx[6].end 157.004
transcript.whisperx[6].text 管線部分還有自來水的部分還有蓄水池的部分還有監視系統還有路燈還有我們相關的這些所有的排水改善
transcript.whisperx[7].start 157.845
transcript.whisperx[7].end 175.959
transcript.whisperx[7].text 是不是 是好 這些一定要做啦對 基本上整個基礎您剛才所念的基礎設施的部分我們都已經發包在執行了對 在施工在施工了嘛所以我們現在在做監控的部分然後在後續在115年又有自己的預算我剛講的是現在今年 對
transcript.whisperx[8].start 176.779
transcript.whisperx[8].end 196.19
transcript.whisperx[8].text 對不對 現在今年發包的明年115年我們有自己的預算所以我覺得說這個部分再加上我們未來114年到121年有我們的公建預算這公建預算總共有70.52億那麼目前在我們國發會審議中那預計多久呢
transcript.whisperx[9].start 199.758
transcript.whisperx[9].end 215.208
transcript.whisperx[9].text 我们持续在跟国家会还有跟行政院沟通希望说能够在年底能够核定那因为核定它不是一次到位它会分阶段的我们先争取能够核定了以后后续的编列我们就比较放心你一定要先核定啊
transcript.whisperx[10].start 215.768
transcript.whisperx[10].end 233.922
transcript.whisperx[10].text 沒有核定你根本就沒有辦法做編列這是一個公建建設計畫公共建設計畫114年到121年的花卉創新園區的中長城計畫所以這個很重要沒有核定之後我們根本沒有辦法編列這些預算
transcript.whisperx[11].start 234.542
transcript.whisperx[11].end 262.892
transcript.whisperx[11].text 所以我們拜託我也會追國發會我們共同追一定要把我們的計畫趕快下來才有辦法來編列後續的分年預算這個部分再拜託那我再問我們的部長老年農民福利津貼的暫行條例我們一直說要修要修要修修到現在我們也都已經提案了到目前為止
transcript.whisperx[12].start 263.732
transcript.whisperx[12].end 289.903
transcript.whisperx[12].text 到底卡在哪裡我跟委員報告這一次的修法我們其實已經多次我大概跟院長報告了三次相對的針對排富的部分我們大概有一些想法會去做一些因為以現在的CPI的成長跟它的土地供高限值的成長其實都已經超過了60幾%所以我們會在已經太久沒修了對
transcript.whisperx[13].start 293.024
transcript.whisperx[13].end 318.01
transcript.whisperx[13].text 我們希望說在這個會期能夠優先的通過我們的提案那現在已經送到行政院在審議了對 部長這個牌幅基本上整個調整機制已經太久沒修了所以我們現在我們依照CPI平均成長率我們如何依照每年有這樣的一個固定的版本
transcript.whisperx[14].start 318.53
transcript.whisperx[14].end 344.342
transcript.whisperx[14].text 所以我的版本所提案的是一年或一次依照CPI平均成長率如果超過3%的時候我們就要調整然後在農業所得以外之所得總額我調整到60萬因為之前是50萬農業所得以外的所得總額還有個人所有土地及房屋價值我提高到900萬
transcript.whisperx[15].start 345.643
transcript.whisperx[15].end 369.302
transcript.whisperx[15].text 然後沒有農舍的個人所有唯一且用於居住的房屋可額外扣除是700萬這是我提的版本我們在等我們行政院的版本進來我們就可以馬上修這個是現在我們老農福利其實大家期待的太久沒修了還有
transcript.whisperx[16].start 370.203
transcript.whisperx[16].end 393.36
transcript.whisperx[16].text 另外就是我們的農民退休儲金農民退休儲金這個部分在我們主管機關要依農民提繳的農民退休儲金我們要按月提繳相同金額這個部分其實我們所投保的所處理的比例都不高為什麼就是沒有誘因
transcript.whisperx[17].start 394.321
transcript.whisperx[17].end 415.556
transcript.whisperx[17].text 沒有誘因所以這個一定要修所以我們希望在不影響農民的退休保障的水準我們應該調整農民跟主管機關每月提繳金額的比例分攤來提高農民的參與意願這個部分我們已經提過很多次了也一樣在等我們行政院的版本
transcript.whisperx[18].start 415.996
transcript.whisperx[18].end 440.417
transcript.whisperx[18].text 我也跟委員報告就是我們的版本也類似委員的改變這些提繳的比例然後也送到我們退休儲金跟老農津貼這兩個法案都已經同步送到行政院在修改當中然後我們也審查當中我們也希望說在這個會期能夠提出來對啊 那重點是卡在哪裡
transcript.whisperx[19].start 441.343
transcript.whisperx[19].end 459.068
transcript.whisperx[19].text 沒有 現在正在立法院的審議我知道啊沒有啊行政院行政院啊行政院還沒有到立法院因為我已經跟院長有報告過了我剛才說的這兩個案子其實跟院長院長非常重視也跟院長報告了至少三次預計什麼時候預計什麼時候可以送到立法院這個會議一定會送進來
transcript.whisperx[20].start 464.13
transcript.whisperx[20].end 490.93
transcript.whisperx[20].text 好 我們會追喔因為這兩個是對於我們的農民很重要除了老農還有我們農民的一個參與意願其實是極高的所以我們要趕快提出來然後到立法院我們趕快來優先法案來排審好不好這個部分很重要拜託部長追一下我們期待是不是有可能在兩個禮拜後趕快送到立法院來
transcript.whisperx[21].start 492.472
transcript.whisperx[21].end 516.147
transcript.whisperx[21].text 我們審議完以後還要經過院會同意才能送所以說兩個禮拜如果趕快追的話我想我們會盡可能的跟行政院報告說這個其實是委員非常重視的這些案子特別是很多委員都這樣講我們也希望說在這個會期能夠送進來做審查部長 因為這個會期有預算我們一定要利用時間
transcript.whisperx[22].start 517.828
transcript.whisperx[22].end 541.11
transcript.whisperx[22].text 然後排審這些法案否則我們可能會被我們的預算卡到所以我們拜託越快送進來我們可以越快排審把我們的牌付趕快處理掉把我們的農民退休儲金條例趕快調整這樣子才會有更多的誘因好不好我們期待兩個禮拜趕快送到立法院來我們盡量去跟審議院報告 謝謝