iVOD / 163996

Field Value
IVOD_ID 163996
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163996
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-26-3
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-13T09:15:04+08:00
結束時間 2025-10-13T09:27:29+08:00
影片長度 00:12:25
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edc3cfc5b1f262c6811eadaba8731997982ef4ee7f50dc8c1790fb57351b41a9d0d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳昭姿
委員發言時間 09:15:04 - 09:27:29
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議(事由:邀請衛生福利部部長及行政院食品安全辦公室就「重大食安事件處理之檢討與食安稽核人力不足問題」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.04721875
transcript.pyannote[0].end 5.39721875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 5.58284375
transcript.pyannote[1].end 6.39284375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.61159375
transcript.pyannote[2].end 11.26971875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 10.84784375
transcript.pyannote[3].end 16.21409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.21409375
transcript.pyannote[4].end 16.24784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 16.24784375
transcript.pyannote[5].end 18.79596875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.72846875
transcript.pyannote[6].end 25.32659375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 18.96471875
transcript.pyannote[7].end 21.07409375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 21.95159375
transcript.pyannote[8].end 22.93034375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 23.84159375
transcript.pyannote[9].end 27.87471875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 26.42346875
transcript.pyannote[10].end 26.81159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 27.82409375
transcript.pyannote[11].end 28.11096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 28.04346875
transcript.pyannote[12].end 31.53659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 31.78971875
transcript.pyannote[13].end 52.56284375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 52.73159375
transcript.pyannote[14].end 58.78971875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 59.05971875
transcript.pyannote[15].end 61.43909375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 59.11034375
transcript.pyannote[16].end 60.49409375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 61.97909375
transcript.pyannote[17].end 88.27034375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 86.39721875
transcript.pyannote[18].end 89.18159375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 88.67534375
transcript.pyannote[19].end 93.07971875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 91.62846875
transcript.pyannote[20].end 97.38284375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 94.22721875
transcript.pyannote[21].end 94.58159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 96.33659375
transcript.pyannote[22].end 96.65721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 96.99471875
transcript.pyannote[23].end 97.29846875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 97.61909375
transcript.pyannote[24].end 106.44471875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 98.24346875
transcript.pyannote[25].end 98.26034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 98.26034375
transcript.pyannote[26].end 98.53034375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 98.53034375
transcript.pyannote[27].end 98.56409375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 104.90909375
transcript.pyannote[28].end 105.26346875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 105.71909375
transcript.pyannote[29].end 106.09034375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 106.32659375
transcript.pyannote[30].end 106.59659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 106.59659375
transcript.pyannote[31].end 109.97159375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 109.70159375
transcript.pyannote[32].end 113.27909375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 112.89096875
transcript.pyannote[33].end 114.91596875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 114.74721875
transcript.pyannote[34].end 117.91971875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 115.03409375
transcript.pyannote[35].end 131.30159375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 121.32846875
transcript.pyannote[36].end 123.50534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 131.31846875
transcript.pyannote[37].end 132.49971875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 132.17909375
transcript.pyannote[38].end 136.51596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 136.76909375
transcript.pyannote[39].end 141.13971875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 142.00034375
transcript.pyannote[40].end 144.66659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 142.64159375
transcript.pyannote[41].end 142.82721875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 144.66659375
transcript.pyannote[42].end 146.05034375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 145.32471875
transcript.pyannote[43].end 146.89409375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 146.15159375
transcript.pyannote[44].end 174.09659375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 156.25971875
transcript.pyannote[45].end 157.30596875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 169.32096875
transcript.pyannote[46].end 169.54034375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 169.99596875
transcript.pyannote[47].end 172.05471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 173.26971875
transcript.pyannote[48].end 175.49721875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 175.96971875
transcript.pyannote[49].end 178.02846875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 175.98659375
transcript.pyannote[50].end 180.12096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 180.94784375
transcript.pyannote[51].end 183.95159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 183.09096875
transcript.pyannote[52].end 184.49159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 184.33971875
transcript.pyannote[53].end 185.70659375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 186.04409375
transcript.pyannote[54].end 186.98909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 186.55034375
transcript.pyannote[55].end 187.90034375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 188.01846875
transcript.pyannote[56].end 188.03534375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 188.03534375
transcript.pyannote[57].end 195.54471875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 188.05221875
transcript.pyannote[58].end 189.19971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 189.38534375
transcript.pyannote[59].end 190.36409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 190.90409375
transcript.pyannote[60].end 192.33846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 193.68846875
transcript.pyannote[61].end 196.50659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 196.60784375
transcript.pyannote[62].end 211.35659375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 197.38409375
transcript.pyannote[63].end 198.37971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 210.24284375
transcript.pyannote[64].end 223.77659375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 214.52909375
transcript.pyannote[65].end 214.90034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 216.50346875
transcript.pyannote[66].end 216.85784375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 224.38409375
transcript.pyannote[67].end 258.08346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 226.71284375
transcript.pyannote[68].end 227.08409375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 227.75909375
transcript.pyannote[69].end 228.51846875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 230.27346875
transcript.pyannote[70].end 231.18471875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 231.82596875
transcript.pyannote[71].end 232.65284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 236.01096875
transcript.pyannote[72].end 236.41596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 239.04846875
transcript.pyannote[73].end 239.25096875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 242.38971875
transcript.pyannote[74].end 242.99721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 244.31346875
transcript.pyannote[75].end 244.60034375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 250.67534375
transcript.pyannote[76].end 250.89471875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 252.34596875
transcript.pyannote[77].end 252.53159375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 252.63284375
transcript.pyannote[78].end 252.93659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 258.08346875
transcript.pyannote[79].end 282.01221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 282.28221875
transcript.pyannote[80].end 287.20971875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 282.31596875
transcript.pyannote[81].end 283.36221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 283.56471875
transcript.pyannote[82].end 284.32409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 287.69909375
transcript.pyannote[83].end 291.69846875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 291.07409375
transcript.pyannote[84].end 299.15721875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 293.79096875
transcript.pyannote[85].end 294.29721875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 298.88721875
transcript.pyannote[86].end 313.07909375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 303.59534375
transcript.pyannote[87].end 304.82721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 305.21534375
transcript.pyannote[88].end 306.04221875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 307.03784375
transcript.pyannote[89].end 307.27409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 307.74659375
transcript.pyannote[90].end 308.37096875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 310.71659375
transcript.pyannote[91].end 337.00784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 315.35721875
transcript.pyannote[92].end 315.57659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 316.79159375
transcript.pyannote[93].end 317.23034375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 337.00784375
transcript.pyannote[94].end 371.04471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 337.91909375
transcript.pyannote[95].end 338.71221875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 342.57659375
transcript.pyannote[96].end 344.39909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 344.39909375
transcript.pyannote[97].end 344.46659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 369.47534375
transcript.pyannote[98].end 407.74784375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 371.83784375
transcript.pyannote[99].end 372.24284375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 373.00221875
transcript.pyannote[100].end 373.96409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 377.00159375
transcript.pyannote[101].end 377.42346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 379.97159375
transcript.pyannote[102].end 379.98846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 379.98846875
transcript.pyannote[103].end 380.34284375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 381.30471875
transcript.pyannote[104].end 381.64221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 383.53221875
transcript.pyannote[105].end 383.93721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 385.30409375
transcript.pyannote[106].end 388.17284375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 393.57284375
transcript.pyannote[107].end 393.97784375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 397.08284375
transcript.pyannote[108].end 397.48784375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 402.39846875
transcript.pyannote[109].end 404.03534375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 408.86159375
transcript.pyannote[110].end 426.44534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 411.54471875
transcript.pyannote[111].end 411.69659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 411.88221875
transcript.pyannote[112].end 412.20284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 419.84721875
transcript.pyannote[113].end 419.99909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 420.20159375
transcript.pyannote[114].end 420.21846875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 426.15846875
transcript.pyannote[115].end 443.99534375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 441.98721875
transcript.pyannote[116].end 442.13909375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 442.51034375
transcript.pyannote[117].end 443.50596875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 443.99534375
transcript.pyannote[118].end 448.50096875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 444.13034375
transcript.pyannote[119].end 445.26096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 445.56471875
transcript.pyannote[120].end 445.69971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 446.18909375
transcript.pyannote[121].end 447.16784375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 447.94409375
transcript.pyannote[122].end 475.80471875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 462.64221875
transcript.pyannote[123].end 463.97534375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 463.97534375
transcript.pyannote[124].end 464.66721875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 473.89784375
transcript.pyannote[125].end 479.56784375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 476.83409375
transcript.pyannote[126].end 486.55409375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 480.41159375
transcript.pyannote[127].end 481.84596875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 482.50409375
transcript.pyannote[128].end 484.12409375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 485.11971875
transcript.pyannote[129].end 485.28846875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 486.75659375
transcript.pyannote[130].end 490.70534375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 488.37659375
transcript.pyannote[131].end 488.84909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 489.69284375
transcript.pyannote[132].end 524.96159375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 493.48971875
transcript.pyannote[133].end 493.91159375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 496.49346875
transcript.pyannote[134].end 496.56096875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 496.56096875
transcript.pyannote[135].end 496.61159375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 496.61159375
transcript.pyannote[136].end 496.64534375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 496.66221875
transcript.pyannote[137].end 496.71284375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 503.37846875
transcript.pyannote[138].end 503.81721875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 506.48346875
transcript.pyannote[139].end 506.85471875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 508.57596875
transcript.pyannote[140].end 509.13284375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 510.16221875
transcript.pyannote[141].end 511.14096875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 511.69784375
transcript.pyannote[142].end 512.08596875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 516.33846875
transcript.pyannote[143].end 516.76034375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 523.57784375
transcript.pyannote[144].end 523.89846875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 525.06284375
transcript.pyannote[145].end 530.95221875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 526.85159375
transcript.pyannote[146].end 527.05409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 529.93971875
transcript.pyannote[147].end 536.48721875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 532.31909375
transcript.pyannote[148].end 532.97721875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 535.52534375
transcript.pyannote[149].end 538.49534375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 536.75721875
transcript.pyannote[150].end 545.07659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 541.41471875
transcript.pyannote[151].end 544.77284375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 545.07659375
transcript.pyannote[152].end 552.24846875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 548.85659375
transcript.pyannote[153].end 548.99159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 552.90659375
transcript.pyannote[154].end 553.59846875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 553.19346875
transcript.pyannote[155].end 554.88096875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 553.78409375
transcript.pyannote[156].end 566.55846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 557.83409375
transcript.pyannote[157].end 558.10409375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 562.33971875
transcript.pyannote[158].end 562.59284375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 562.59284375
transcript.pyannote[159].end 562.71096875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 567.72284375
transcript.pyannote[160].end 568.49909375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 569.24159375
transcript.pyannote[161].end 582.99471875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 583.73721875
transcript.pyannote[162].end 586.97721875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 587.14596875
transcript.pyannote[163].end 587.39909375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 588.44534375
transcript.pyannote[164].end 589.81221875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 589.49159375
transcript.pyannote[165].end 593.86221875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 589.84596875
transcript.pyannote[166].end 589.87971875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 589.89659375
transcript.pyannote[167].end 589.91346875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 593.62596875
transcript.pyannote[168].end 606.75471875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 607.51409375
transcript.pyannote[169].end 615.02346875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 610.31534375
transcript.pyannote[170].end 610.41659375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 613.28534375
transcript.pyannote[171].end 647.72721875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 648.04784375
transcript.pyannote[172].end 649.39784375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 649.60034375
transcript.pyannote[173].end 660.67034375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 658.30784375
transcript.pyannote[174].end 668.41596875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 660.97409375
transcript.pyannote[175].end 661.46346875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 669.04034375
transcript.pyannote[176].end 671.36909375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 671.74034375
transcript.pyannote[177].end 674.42346875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 675.55409375
transcript.pyannote[178].end 683.92409375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 677.54534375
transcript.pyannote[179].end 678.32159375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 681.89909375
transcript.pyannote[180].end 722.16284375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 722.83784375
transcript.pyannote[181].end 723.36096875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 723.37784375
transcript.pyannote[182].end 729.89159375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 726.04409375
transcript.pyannote[183].end 726.33096875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 729.82409375
transcript.pyannote[184].end 730.11096875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 730.00971875
transcript.pyannote[185].end 731.76471875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 731.15721875
transcript.pyannote[186].end 734.65034375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 733.35096875
transcript.pyannote[187].end 739.07159375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 735.20721875
transcript.pyannote[188].end 735.54471875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 736.35471875
transcript.pyannote[189].end 737.06346875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 738.14346875
transcript.pyannote[190].end 741.58596875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 740.86034375
transcript.pyannote[191].end 743.02034375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 742.88534375
transcript.pyannote[192].end 745.87221875
transcript.whisperx[0].start 4.379
transcript.whisperx[0].end 27.407
transcript.whisperx[0].text 謝謝主席 有請部長來 請市部長委員長 部長早部長食安五環 我不會要求你背的啦但是江署長大家要背清楚這個源頭的管理然後重建生產的管理然後整合產製銷整個生產鏈然後加重惡意廠商的責任還有全民監督
transcript.whisperx[1].start 28.147
transcript.whisperx[1].end 55.115
transcript.whisperx[1].text 對 但是這個食安五營看起來看起來是一再證明他失靈了啦 不定失靈了因為不論是巴西蛋或是這個我們之前去年的那個蘇丹紅的那個辣椒粉還是這次的黑心腸事件因為衛福部沒有能夠在第一時間主動偵測或者封鎖這個源頭而是讓民眾的檢舉還有媒體的爆料才會去動才啟動這件事情所以部長您
transcript.whisperx[2].start 56.015
transcript.whisperx[2].end 77.785
transcript.whisperx[2].text 認不認為 同不同意五環現在是失靈中五環現在是形同虛設跟委員報告確實我們對食安部分還有努力的空間來確保國人的食用安全不過因為有食安五環過去推動的結果讓我們很容易可以追蹤追溯很快的掌握所有的
transcript.whisperx[3].start 78.865
transcript.whisperx[3].end 101.412
transcript.whisperx[3].text 這個不合格產品的流向以這一次的事件為例我們很快就可以掌握它的上游它的屠宰場是不是合法然後它的下游倉儲在哪裡然後銷售可能到哪裡去可以快速的回應最源頭的那個地方對不對我們都像從源頭開始嘛你本身念醫療嘛就大家都從源頭開始從源頭這個五雲還是在後面應變您剛才報告也是發生問題的時候怎麼處理為主
transcript.whisperx[4].start 106.673
transcript.whisperx[4].end 132.15
transcript.whisperx[4].text 但是我們還是希望這個食安五雲要能夠更主動的跟委員報我們會去加強這次也是靠民眾檢舉啊那就是案發了嘛那請問部長你看過審計部對我國食品安全管理的報告嗎有看過那請問我幾個問題請教部長那剛剛你是報告但是我在確認是全國地方衛生局食品稽查人力共有多少人463人那他們要負責稽查多少的廠商
transcript.whisperx[5].start 136.793
transcript.whisperx[5].end 139.898
transcript.whisperx[5].text 以目前我們合格登記的食品業者大概是71萬
transcript.whisperx[6].start 142.582
transcript.whisperx[6].end 168.739
transcript.whisperx[6].text 那你觉得这样的稽查人力够吗以去年为例它是稽查大概16万家次如果我们用简单的数学来算的话大概差不多4年会稽查一次不过因为现在的食品厂它是需要符合GHP的规范所以它的稽查可能有一些是属于我们叫做专案稽查的为多就是对于比较高风险的
transcript.whisperx[7].start 169.159
transcript.whisperx[7].end 196.244
transcript.whisperx[7].text 具風險性的會加強去查核倒不會是全部都是random去做就是有高風險名單嗎有有有那這次黑心廠有在高風險名單裡面嗎這一次的這個廠商有沒有在高風險名單裡面這一個廠商是沒有在你們是以廠商為名單項目有的是項目有的是廠商那這個項目本身沒有在我們的高風險那現在會進去了是不是
transcript.whisperx[8].start 197.124
transcript.whisperx[8].end 222.945
transcript.whisperx[8].text 我们在这个事件之后就扩大市场查核所以全国各县市卫生局都在市场上进行抽验还有业者也都去集合到目前为止是检验出来的产品我现在听到你的人力然后versus这个所有厂商我知道一定是不够所以你是一定要有一些重点那一般是四年一次其实很久了那你说现在有高风险这个食品清单所以
transcript.whisperx[9].start 224.446
transcript.whisperx[9].end 240.76
transcript.whisperx[9].text 我們再來瞭解今天也許沒這麼多時間你怎麼是建立的那已經發生重大案件是不是當然就列入然後頻率等等這個集合的頻率那我這樣問是因為審計部他有講審計部的報告有提到當然部分事件查驗稽查人員上有缺額代補時他認為你們人力是不夠的
transcript.whisperx[10].start 244.463
transcript.whisperx[10].end 266.058
transcript.whisperx[10].text 那食品衛生查驗計畫未聚焦未聚焦在稽查這個高風險項目這是神蹟部講的嘛所以對不對食藥署請問這樣子的話神蹟部提出這樣報告您有什麼想法嗎我們非常感謝神蹟部的指導那原則上高風險尤其化學物質高風險我們的食品源裡面的勾結跟
transcript.whisperx[11].start 266.798
transcript.whisperx[11].end 286.976
transcript.whisperx[11].text 整個跟化學署共同的62項跟19項其實這些已經列進去這一次的H2O2事件裡面其實雙氧水其實是非常非常簡單的它是在食品添加物裡面稱為叫做殺菌劑所以它是可用的但是食品級跟工業級是我們是切得很清楚
transcript.whisperx[12].start 287.777
transcript.whisperx[12].end 311.194
transcript.whisperx[12].text 不能夠使用的就不能使用這家業者明知不可使用而使用您我的背景都知道等級級數的意思但是就是說你未來因為已經審計部寫的這麼清楚了所以你未來怎麼做我們針對這個高風險的化學物質我們其實做所謂的業者勾肌跟過去的有必要去做更精準的所以我們在人工智慧導入的部分人力不夠你就要想方設法來看看盯住這些廠商
transcript.whisperx[13].start 315.737
transcript.whisperx[13].end 336.725
transcript.whisperx[13].text 那請問部長 食藥署公佈流向花了兩天那中央跟地方的數據差了600多公斤那部長你有說是重複計算但我覺得這已經感受不是算數問題而是一個食安的信任問題因為從最高主管機關你連追查流向都有差了一倍 差了一倍這個數字那民眾會不安心喔
transcript.whisperx[14].start 338.566
transcript.whisperx[14].end 362.729
transcript.whisperx[14].text 跟委員報告 因為一開始當然這個都要跟他這一次的產品是這樣他的公司登記是在台北市他的倉儲是在新北市那他的工廠就是在做這個加工的是在屏東縣所以他有跨縣市那我們追蹤他的流向當然一開始還是要配合地方衛生局去查核
transcript.whisperx[15].start 363.189
transcript.whisperx[15].end 385.749
transcript.whisperx[15].text 那一開始是以他的出貨為主但是他double counting所以後來根據金流才確認你有解釋所以雲很重要嘛聯繫有系統的雲是非常重要嘛那根據食安法規定業者要保留這個跟藥品的概念一樣保留產品那供應商就是這個供貨的進貨那產品流向就是出貨等資訊那食藥署也有建立那個食品藥物業者登錄平台
transcript.whisperx[16].start 388.391
transcript.whisperx[16].end 407.506
transcript.whisperx[16].text 食品本身食品有追溯追蹤管理資訊系統但是我們再來談審計部這個查核後發現他說部分縣市沒有事實查證並且輔導業者完成電子申報及使用電子發表我把他講的重點講完以後那我再請部長來回答或是署長那部分縣市業者在平台登錄的字號的加速
transcript.whisperx[17].start 408.925
transcript.whisperx[17].end 423.829
transcript.whisperx[17].text 比少於營業稅籍登記的加速喔或是說在經濟部產業發展署登記的食品製藥工廠的這個但是這邊登記卻沒有在這個平台有登記喔那同一個業者還有兩個以上的登錄字號請問消息署你們怎麼來改善這些資料呢
transcript.whisperx[18].start 427.01
transcript.whisperx[18].end 443.639
transcript.whisperx[18].text 跟委員報告這個追蹤追溯很重要所以呢我們就這幾年一直在努力的就是用電子發票開立電子申報來追蹤那目前大概是九成到九成五都已經採用電子申報所以這個還有一里路最後一里路
transcript.whisperx[19].start 444.059
transcript.whisperx[19].end 458.676
transcript.whisperx[19].text 部長 審計部會寫出來嘛會寫出來就是你們要警訊就是還有一點點這個剛剛講的九成到九成五已經完成電子申報或電子發 使用電子發票讓我們容易掌握整個食品鏈的流向
transcript.whisperx[20].start 459.076
transcript.whisperx[20].end 486.119
transcript.whisperx[20].text 那還差那一點我們會繼續來努力來折承這個衛生局最後有一個是勾基剛剛您說的那個是勾基登錄的勾基就是他的稅政機關的資料跟我們這邊登錄的資料一樣上次我請您跟這個家族簽手的意思一樣大家都不簽手那以今年來講勾基出來這71萬家裡面大概有4萬家左右是不一致
transcript.whisperx[21].start 487.14
transcript.whisperx[21].end 510.305
transcript.whisperx[21].text 所以我們每年會有這樣的這個勾擊的方式不是我說的 審計部的報告也說源頭的控管是失效的那政府建置這個化學雲8年 仍然沒辦法跟其他的系統連線起來那化學物質的流向沒有辦法比對以致於讓工業級的這個雙氧水流入食品部長其實民眾不是很挑剔的我覺得民眾對政府包容度是很大我想他們只是想安心的吃一碗大腸麵線是不是
transcript.whisperx[22].start 512.725
transcript.whisperx[22].end 522.608
transcript.whisperx[22].text 如今每年都有重大的食安事件發生而且不只一樁所以現有的制度是失靈的所以我們希望中央跟地方要聯防不要各自為政應該馬上補這個破口
transcript.whisperx[23].start 527.35
transcript.whisperx[23].end 550.172
transcript.whisperx[23].text 那部長這個食安重要 那個藥品也是一樣這個食安我感同身受這一次這個大腸我幾乎每個禮拜都會吃到您就任部長大概就第一次所以我深深的體會這個是全民非常關注所以絕對是嚴懲不戴那同樣藥品也是一樣有關永豐市民食鹽水的監察報告出爐囉 出爐囉請問部長跟署長看過了嗎
transcript.whisperx[24].start 552.967
transcript.whisperx[24].end 566.106
transcript.whisperx[24].text 有看過報告指出近10年間我們先扣除藥品本身以外的像包裝的異常藥品的標示或是醫事人員操作不當可是他本身永豐生產的藥品發生什麼混入異物
transcript.whisperx[25].start 569.481
transcript.whisperx[25].end 586.797
transcript.whisperx[25].text 雜質 藥品外觀異常或藥品涉及染菌的疑慮他藥品不良品的通報高達71件 但是藥署好像沒有沒有接過這個報告呢 還是說接了這個報告但是沒有去做無預警的一些查核作業 報告量很高啊
transcript.whisperx[26].start 589.528
transcript.whisperx[26].end 606.007
transcript.whisperx[26].text 要比本身欸 一個注射劑裡面這麼多問題很可怕跟委員報告一下 委員指出的這一項議題我們都有看到報告裡面內涵所以我去年 我從今年的二月份來之後我其實逐項的檢討 我們看到的是過去的檢討的
transcript.whisperx[27].start 607.749
transcript.whisperx[27].end 633.118
transcript.whisperx[27].text 過程當中有很多我們精進所以我們確定現在在任何的GMPPIC GMP的藥廠之下我們絕對不能夠允許有一件事我覺得比較不能原諒的是說當然不管是不是你在實藥署去年2月那你還沒有上任去永豐檢查時他就認定永豐下面是實藥署的文字多次含複說詞均未能反駁稽查所見的缺失情形也沒有積極改進措施
transcript.whisperx[28].start 633.778
transcript.whisperx[28].end 647.173
transcript.whisperx[28].text 那這不是代表食藥署現行的這個查場頻率或是要求廠商要限期取出具體的改善這個做法根本還是沒有辦法 不好嘛還是這個無法有效的掌握藥品的這個藥廠的實境改善情形你們自己這樣寫跟委員這邊報告
transcript.whisperx[29].start 649.736
transcript.whisperx[29].end 674.082
transcript.whisperx[29].text 那邊我們看到相關的文字後來我們針對所謂曾經有違規的他的頻率就不會是一般常態性的頻率PIXGMP常常頻率會不會加強他的頻率會繼續調整那我再簡單問兩個問題這個部長在裁罰方面或是署長除了勒令停業請問署長永豐究竟被裁罰多少錢誰做的決定法源依據在哪裡罰了多少錢我可以知道嗎永豐罰了多少錢
transcript.whisperx[30].start 675.735
transcript.whisperx[30].end 696.245
transcript.whisperx[30].text 這跟委員要報告一下我確確的金錢罰錢的部分我是沒有辦法一下回答我再回後再跟你說明因為造成全國醫療恐慌 這個金額足以反映嗎我在想說你可能 可怕你沒有罰錢而且健保署為了這件事還提了11億托來第二年的穩定專案嘛我想那個施措你知道嘛那這樣的話 那這筆錢其實很多人在等耶
transcript.whisperx[31].start 700.987
transcript.whisperx[31].end 722.012
transcript.whisperx[31].text 11億很多患病 癌症病人都在等這筆錢那你就準備要再讓他繼續犯這個錯嗎所以就是累犯的部分我希望這個部長署長 累犯的部分你是不是要訂累犯停產 撤照 一個門檻黑名單名單或是說他累犯很危險而且供應全國大量的生理食鹽水你是不是要做無預警的
transcript.whisperx[32].start 723.775
transcript.whisperx[32].end 743.2
transcript.whisperx[32].text 無預警的查核你告訴他然後你去查都只查到這麼樣子你無預警的查核你會發現更多的真相我覺得這個部分是不行的謝謝委員 建議我們會把它納入來處理有關查核懇罰的部分我想會後請把資料處分的部分的詳細情形我們再跟委員提供謝謝主席 謝謝署長 部長謝謝陳偉 學部長 署長 請回