IVOD_ID |
163973 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/163973 |
日期 |
2025-10-09 |
會議資料.會議代碼 |
委員會-11-4-26-2 |
會議資料.會議代碼:str |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
4 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-10-09T09:34:29+08:00 |
結束時間 |
2025-10-09T09:46:11+08:00 |
影片長度 |
00:11:42 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0913948005eacb6273c4b370c83c9461819c05f3ca7f3b919ebc85139e6d204f5639f62fdc189b545ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱鎮軍 |
委員發言時間 |
09:34:29 - 09:46:11 |
會議時間 |
2025-10-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請勞動部部長針對「因關稅造成我國市場就業及勞動環境衝擊之影響及因應對策」進行專題報告,並備質詢。【10月8日及9日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
2.59596875 |
transcript.pyannote[0].end |
5.09346875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
8.38409375 |
transcript.pyannote[1].end |
35.35034375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
35.77221875 |
transcript.pyannote[2].end |
35.97471875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
35.97471875 |
transcript.pyannote[3].end |
42.16784375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
42.92721875 |
transcript.pyannote[4].end |
56.03909375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
48.49596875 |
transcript.pyannote[5].end |
48.71534375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
49.79534375 |
transcript.pyannote[6].end |
50.20034375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
53.42346875 |
transcript.pyannote[7].end |
54.73971875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
56.03909375 |
transcript.pyannote[8].end |
62.65409375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
62.97471875 |
transcript.pyannote[9].end |
65.21909375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
63.24471875 |
transcript.pyannote[10].end |
63.68346875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
64.83096875 |
transcript.pyannote[11].end |
69.82596875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
68.03721875 |
transcript.pyannote[12].end |
71.51346875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
71.93534375 |
transcript.pyannote[13].end |
77.18346875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
75.58034375 |
transcript.pyannote[14].end |
92.15159375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
81.53721875 |
transcript.pyannote[15].end |
82.48221875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
82.66784375 |
transcript.pyannote[16].end |
83.14034375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
85.43534375 |
transcript.pyannote[17].end |
86.11034375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
86.34659375 |
transcript.pyannote[18].end |
86.63346875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
86.85284375 |
transcript.pyannote[19].end |
88.45596875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
90.37971875 |
transcript.pyannote[20].end |
91.03784375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
91.64534375 |
transcript.pyannote[21].end |
95.29034375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
93.48471875 |
transcript.pyannote[22].end |
93.82221875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
94.22721875 |
transcript.pyannote[23].end |
94.80096875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
95.59409375 |
transcript.pyannote[24].end |
103.28909375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
100.89284375 |
transcript.pyannote[25].end |
142.64159375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
110.14034375 |
transcript.pyannote[26].end |
111.08534375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
111.45659375 |
transcript.pyannote[27].end |
111.60846875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
113.63346875 |
transcript.pyannote[28].end |
114.02159375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
114.32534375 |
transcript.pyannote[29].end |
114.71346875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
143.28284375 |
transcript.pyannote[30].end |
145.27409375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
147.02909375 |
transcript.pyannote[31].end |
147.99096875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
148.76721875 |
transcript.pyannote[32].end |
153.03659375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
153.44159375 |
transcript.pyannote[33].end |
155.24721875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
153.47534375 |
transcript.pyannote[34].end |
158.67284375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
155.92221875 |
transcript.pyannote[35].end |
156.41159375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
159.39846875 |
transcript.pyannote[36].end |
162.31784375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
163.21221875 |
transcript.pyannote[37].end |
175.78409375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
175.02471875 |
transcript.pyannote[38].end |
190.36409375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
184.33971875 |
transcript.pyannote[39].end |
184.55909375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
190.66784375 |
transcript.pyannote[40].end |
197.18159375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
197.73846875 |
transcript.pyannote[41].end |
198.63284375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
198.63284375 |
transcript.pyannote[42].end |
203.86409375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
203.37471875 |
transcript.pyannote[43].end |
203.57721875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
203.96534375 |
transcript.pyannote[44].end |
241.57971875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
217.66784375 |
transcript.pyannote[45].end |
217.75221875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
240.75284375 |
transcript.pyannote[46].end |
260.74971875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
260.74971875 |
transcript.pyannote[47].end |
275.24534375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
276.12284375 |
transcript.pyannote[48].end |
281.03346875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
281.03346875 |
transcript.pyannote[49].end |
302.78534375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
303.44346875 |
transcript.pyannote[50].end |
303.96659375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
303.96659375 |
transcript.pyannote[51].end |
337.66596875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
304.57409375 |
transcript.pyannote[52].end |
304.92846875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
337.76721875 |
transcript.pyannote[53].end |
356.86971875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
357.37596875 |
transcript.pyannote[54].end |
357.96659375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
357.96659375 |
transcript.pyannote[55].end |
364.15971875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
364.27784375 |
transcript.pyannote[56].end |
364.29471875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
364.29471875 |
transcript.pyannote[57].end |
370.01534375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
370.01534375 |
transcript.pyannote[58].end |
379.73534375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
376.09034375 |
transcript.pyannote[59].end |
377.10284375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
378.68909375 |
transcript.pyannote[60].end |
378.92534375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
379.29659375 |
transcript.pyannote[61].end |
379.95471875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
379.83659375 |
transcript.pyannote[62].end |
379.93784375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
379.95471875 |
transcript.pyannote[63].end |
380.47784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
380.02221875 |
transcript.pyannote[64].end |
384.22409375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
384.25784375 |
transcript.pyannote[65].end |
386.19846875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
386.19846875 |
transcript.pyannote[66].end |
393.97784375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
386.23221875 |
transcript.pyannote[67].end |
386.48534375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
393.97784375 |
transcript.pyannote[68].end |
418.85159375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
417.13034375 |
transcript.pyannote[69].end |
433.95471875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
434.51159375 |
transcript.pyannote[70].end |
435.65909375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
434.69721875 |
transcript.pyannote[71].end |
439.59096875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
439.59096875 |
transcript.pyannote[72].end |
452.21346875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
452.77034375 |
transcript.pyannote[73].end |
466.42221875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
466.42221875 |
transcript.pyannote[74].end |
473.20596875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
473.22284375 |
transcript.pyannote[75].end |
473.50971875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
473.89784375 |
transcript.pyannote[76].end |
480.10784375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
480.27659375 |
transcript.pyannote[77].end |
485.03534375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
485.03534375 |
transcript.pyannote[78].end |
491.56596875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
491.75159375 |
transcript.pyannote[79].end |
491.97096875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
491.97096875 |
transcript.pyannote[80].end |
498.19784375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
498.19784375 |
transcript.pyannote[81].end |
498.73784375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
498.73784375 |
transcript.pyannote[82].end |
516.64221875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
514.24596875 |
transcript.pyannote[83].end |
528.48846875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
519.29159375 |
transcript.pyannote[84].end |
519.51096875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
529.77096875 |
transcript.pyannote[85].end |
530.47971875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
530.58096875 |
transcript.pyannote[86].end |
530.81721875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
530.81721875 |
transcript.pyannote[87].end |
530.96909375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
530.96909375 |
transcript.pyannote[88].end |
531.03659375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
531.03659375 |
transcript.pyannote[89].end |
531.34034375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
531.34034375 |
transcript.pyannote[90].end |
532.45409375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
531.35721875 |
transcript.pyannote[91].end |
533.48346875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
533.07846875 |
transcript.pyannote[92].end |
533.38221875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
533.48346875 |
transcript.pyannote[93].end |
534.02346875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
534.02346875 |
transcript.pyannote[94].end |
534.96846875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
534.96846875 |
transcript.pyannote[95].end |
535.03596875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
535.03596875 |
transcript.pyannote[96].end |
542.76471875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
535.69409375 |
transcript.pyannote[97].end |
538.96784375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
542.96721875 |
transcript.pyannote[98].end |
546.96659375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
546.96659375 |
transcript.pyannote[99].end |
547.40534375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
548.02971875 |
transcript.pyannote[100].end |
553.85159375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
553.85159375 |
transcript.pyannote[101].end |
554.03721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
554.03721875 |
transcript.pyannote[102].end |
554.13846875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
554.13846875 |
transcript.pyannote[103].end |
554.40846875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
554.40846875 |
transcript.pyannote[104].end |
555.03284375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
555.03284375 |
transcript.pyannote[105].end |
555.65721875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
555.65721875 |
transcript.pyannote[106].end |
556.28159375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
555.70784375 |
transcript.pyannote[107].end |
563.06534375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
563.48721875 |
transcript.pyannote[108].end |
563.97659375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
563.67284375 |
transcript.pyannote[109].end |
563.95971875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
563.97659375 |
transcript.pyannote[110].end |
571.30034375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
571.48596875 |
transcript.pyannote[111].end |
577.66221875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
577.02096875 |
transcript.pyannote[112].end |
577.20659375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
578.06721875 |
transcript.pyannote[113].end |
585.98159375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
585.98159375 |
transcript.pyannote[114].end |
590.38596875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
590.52096875 |
transcript.pyannote[115].end |
598.53659375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
598.53659375 |
transcript.pyannote[116].end |
598.58721875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
599.05971875 |
transcript.pyannote[117].end |
605.99534375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
599.07659375 |
transcript.pyannote[118].end |
600.51096875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
604.98284375 |
transcript.pyannote[119].end |
606.02909375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
606.02909375 |
transcript.pyannote[120].end |
608.02034375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
607.27784375 |
transcript.pyannote[121].end |
607.54784375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
608.59409375 |
transcript.pyannote[122].end |
617.79096875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
618.36471875 |
transcript.pyannote[123].end |
624.84471875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
622.90409375 |
transcript.pyannote[124].end |
647.13659375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
630.05909375 |
transcript.pyannote[125].end |
634.17659375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
647.13659375 |
transcript.pyannote[126].end |
652.94159375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
647.15346875 |
transcript.pyannote[127].end |
648.11534375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
652.94159375 |
transcript.pyannote[128].end |
659.40471875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
652.95846875 |
transcript.pyannote[129].end |
655.00034375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
659.94471875 |
transcript.pyannote[130].end |
672.39846875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
660.04596875 |
transcript.pyannote[131].end |
662.20596875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
666.00284375 |
transcript.pyannote[132].end |
666.39096875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
672.39846875 |
transcript.pyannote[133].end |
679.78971875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
679.33409375 |
transcript.pyannote[134].end |
684.00846875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
684.14346875 |
transcript.pyannote[135].end |
685.17284375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
684.22784375 |
transcript.pyannote[136].end |
688.07534375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
686.03346875 |
transcript.pyannote[137].end |
689.67846875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
690.01596875 |
transcript.pyannote[138].end |
690.03284375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
690.06659375 |
transcript.pyannote[139].end |
691.39971875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
693.57659375 |
transcript.pyannote[140].end |
694.67346875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
693.74534375 |
transcript.pyannote[141].end |
693.77909375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
699.02721875 |
transcript.pyannote[142].end |
700.68096875 |
transcript.whisperx[0].start |
2.706 |
transcript.whisperx[0].end |
3.875 |
transcript.whisperx[0].text |
我們有請我們洪部長請洪部長 |
transcript.whisperx[1].start |
8.493 |
transcript.whisperx[1].end |
35.045 |
transcript.whisperx[1].text |
邱委員早部長好部長我請問勞動部在我們10月1日的時候公布最新的這個減班休息統計那全國共有398家企業8505名勞工比9月中旬再增加了65家1171人可是我看到你們報告裡面在寫較前期平緩一些我不知道我想請教一下就是我們這平緩的意思是什麼 |
transcript.whisperx[2].start |
36.005 |
transcript.whisperx[2].end |
62.304 |
transcript.whisperx[2].text |
因為前一期9月16號的時候那一天那一次的公佈是增加2471人那在10月1號的時候人數是增加1171人那我們這個因為是慢慢往上漲嗎人數還是增加的但是增加的數字比前一次公佈來的少一些可是他的整個數字看起來是那一個月增加了3000多人 |
transcript.whisperx[3].start |
63.044 |
transcript.whisperx[3].end |
71.262 |
transcript.whisperx[3].text |
对所以他比上一个月来讲所以我的意思说我们跟前一期比较的话的确他增加的人数你看这个图是你们画的嘛 |
transcript.whisperx[4].start |
72.014 |
transcript.whisperx[4].end |
95.155 |
transcript.whisperx[4].text |
對不對 你看那個線 這個怎麼會覺得會平緩呢所以我覺得很奇怪啊那個 秋遠 如果可以仔細看我們那個寫的句子如果前一張投影片 你是指前一次嘛對不對 跟前一期9月16號的發佈來比較 到了這個9月底嘛那一次是增加2400 那因為這一次增加是1100你看那個線也看起來很陡耶 怎麼會平緩 走路會跌倒耶 |
transcript.whisperx[5].start |
96.553 |
transcript.whisperx[5].end |
112.964 |
transcript.whisperx[5].text |
我們不會因為這個數字的起伏而放鬆我其實沒有要指責什麼意思啊我只是說有時候用詞啊這有點讓人家覺得說你這個是在粉飾太平沒有我們絕對沒有要粉飾太平所以因為我們看到這個 |
transcript.whisperx[6].start |
113.504 |
transcript.whisperx[6].end |
138.324 |
transcript.whisperx[6].text |
絕對沒有粉飾太平這個已經已經從你這個來看就是從全國無薪加是245家4863人9月底變成398家8505人這個數字一個月呢增加了3600多人那增幅高達75%所以當然我們從4月份來看它的整個是非常明顯的那整個來看它沒有一個月是下降的這個確實說我們應該要多注意一下這個狀況那這個 |
transcript.whisperx[7].start |
143.359 |
transcript.whisperx[7].end |
162.006 |
transcript.whisperx[7].text |
部長你認為這個還會往上漲嗎我覺得這都要從趨勢來看那我覺得我們要有目前您看這樣子我們關稅的影響狀況已經達到高峰了沒有我自己是認為我們其實都要 |
transcript.whisperx[8].start |
163.291 |
transcript.whisperx[8].end |
189.833 |
transcript.whisperx[8].text |
我們都不應該去預設最好的狀況是怎樣一個行政部門的角度來說我們一定是預設如果狀況還會惡化那我們的因應措施能不能夠讓勞工或讓企業得到幫助我們應該都是要從這個角度我也看到了你們在報告裡面寫到從4月9號到10月1號我們勞動力發展署已經仿視了20619家這點我當然給你們肯定只是說那我想請問一下就是說有多少家 |
transcript.whisperx[9].start |
190.774 |
transcript.whisperx[9].end |
195.793 |
transcript.whisperx[9].text |
目前是正在實施減班或休息的又有多少家未來有可能會走向這個無薪 |
transcript.whisperx[10].start |
197.828 |
transcript.whisperx[10].end |
223.402 |
transcript.whisperx[10].text |
有沒有評估過跟委員說明現在實施減半休息總共是398大概快400家那我們的確現在看到在這些實施減半休息加速裡面比較集中在幾個行業那大概幾個我們在報告裡面有提到包括像金屬製品製造那機械設備製造業然後也包括這個其他運輸工具 |
transcript.whisperx[11].start |
224.122 |
transcript.whisperx[11].end |
241.552 |
transcript.whisperx[11].text |
那也包括像這個汽車零組件那這幾個行業是現在看到減慢休息比較集中的行業對 所以我們也針對這幾個行業也去做特別的關心也掌握他們行業內現在一些變化的動態那這也要很謝謝我們發展署各地分署的同仁 |
transcript.whisperx[12].start |
242.192 |
transcript.whisperx[12].end |
260.485 |
transcript.whisperx[12].text |
我希望就是說你們在這個過程當中不要只是為了這個達成這個數字而去做這件事情不是說我看了多少家應該是我們期待看到說我們幫多少家企業解決了問題協助到了多少家企業這才是我們仿似的目的嘛 對不對 |
transcript.whisperx[13].start |
260.785 |
transcript.whisperx[13].end |
274.659 |
transcript.whisperx[13].text |
跟文說明剛才講我們講到幾個減班休息比較多的行業其實現在我們都有放到我們這個強化版安定措施的行業別裡面也就是現在這些比較多的減班休息的企業其實 |
transcript.whisperx[14].start |
276.435 |
transcript.whisperx[14].end |
300.348 |
transcript.whisperx[14].text |
只要他們有來通報那我們都可以有相關的薪資差額補貼給他們我看到你們在報告裡面講到有76.3293家企業適用這個雇用安定基金的措施那有83.6%大概7106位的勞工可以申請這個薪資差額補貼那我請問一下這個有在領了嗎有有多少人領 |
transcript.whisperx[15].start |
303.49 |
transcript.whisperx[15].end |
320.035 |
transcript.whisperx[15].text |
目前來申請的目前在有申請資格跟我說明目前有申請資格然後有來申請的大概快接近一半那另外一半現在我們因為每個來跟我們通報的我們都會去了解 |
transcript.whisperx[16].start |
320.795 |
transcript.whisperx[16].end |
337.038 |
transcript.whisperx[16].text |
那還有一半是因為他可能還因為我們的規定是要30天後減慢休息30天後才能來有的是30天還沒到那或者是有些還在補件那也有一些企業他是說他們可能想要三個月來申請一次就是所以可能會有延後來申請的狀況 |
transcript.whisperx[17].start |
337.819 |
transcript.whisperx[17].end |
356.034 |
transcript.whisperx[17].text |
好 我希望不要說這個措施這個既然做了我們這些企業都沒有得到幫助那我再問一個就是說我發現你們在報告裡面講了有105家不適用這個雇用安定措施的廠商是什麼原因讓他們不適用 |
transcript.whisperx[18].start |
357.435 |
transcript.whisperx[18].end |
380.96 |
transcript.whisperx[18].text |
因為其實我們這個強化版的公安徑措施比較是針對國際的經貿情勢的不確定所以它跟經貿沒有關係的就不受這個因為就不用協助就對了應該是說我們這個強化版公安措施其實是比較是針對關稅或者國際經貿情勢所影響的嘛 對不對那的確有一些企業它實時減慢休息的原因它是直接影響還是間接影響這個你們這個怎麼區分呢 |
transcript.whisperx[19].start |
384.902 |
transcript.whisperx[19].end |
405.883 |
transcript.whisperx[19].text |
相關的影響當然我們都是因為他可能他的產業他的工作他只是做人的下游廠商嘛對不對他並沒有直接影響那這樣的適用嗎我們不是用我們不是用上下游來想我們是用行業別來框定那我們現在有公告了九個行業這九個行業當然很大部分是經濟部來跟我們說就是說 |
transcript.whisperx[20].start |
406.964 |
transcript.whisperx[20].end |
433.59 |
transcript.whisperx[20].text |
哪些行業目前因為我們這個關稅的稅率或國際情勢相比於其他國家那包括它供應鏈的分佈的狀態它會受到影響那經營部來跟我們說它會受到影響我們就把它放入行業鏈裡面不啦 我希望這樣啦就是說像這些沒有辦法列入的這些企業我們是不是更要進一步瞭解它是不是真的真的不是因為這個影響因為這個有些會還是會有一些你用行業別來列還是會有一些盲點好不好 |
transcript.whisperx[21].start |
434.554 |
transcript.whisperx[21].end |
449.104 |
transcript.whisperx[21].text |
好 我們當然會持續的檢視是不是這個行業比較在擴大我們其實都在滾動的檢討好 那另外我看到你們那個因應國際情勢強化經濟社會及民生國安韌性特別預算裡面我們勞動部總共拿到250億那就是 |
transcript.whisperx[22].start |
452.853 |
transcript.whisperx[22].end |
472.87 |
transcript.whisperx[22].text |
我們的目的就是要穩就業防關稅的衝擊是吧是可是我看到你們裡面有100億是拿去撥補勞保基金我想請問這個跟這個因應國際情勢有什麼關係呃跟我們說明這是兩個部分我們其實原本在行政院在那為什麼不在本預算裡面提呢 |
transcript.whisperx[23].start |
474.011 |
transcript.whisperx[23].end |
491.114 |
transcript.whisperx[23].text |
我們在行政院編列的過程裡面其實本來就是有150億其實是針對這個關稅的情勢的安定就業那有100億是勞保基金的撥補對啊這個跟這個特別預算特別預算放這個撥補勞保基金不是有點怪嗎 |
transcript.whisperx[24].start |
492.955 |
transcript.whisperx[24].end |
517.361 |
transcript.whisperx[24].text |
跟委員說明我們當然在公務預算裡面明年的公務預算裡面其實有撥補1200億那當然為什麼還在100億其實我們政府其實對於勞保勞保的水位的支持是我們持續性的不斷的在檢視所以當然我們現在在稅計剩餘下我們認為有一點空間可以再多給勞工的勞保多一點安定跟穩定但是我覺得那你在編預算的時候你1200億不然你就編1300嘛 |
transcript.whisperx[25].start |
519.341 |
transcript.whisperx[25].end |
524.193 |
transcript.whisperx[25].text |
你怎麼會在這邊用這個國安任性特別預算裡面來這個讓我們覺得這有點趁火打劫 |
transcript.whisperx[26].start |
529.87 |
transcript.whisperx[26].end |
556.547 |
transcript.whisperx[26].text |
委員 這都是 兩個都不同的事情委員 這都是支持勞工的經費給勞工的經費絕對不是趁火打錢 這是兩件事喔一個是勞退喔 勞保基金喔那一個是因應國際情勢 這不太一樣嘛委員 因應國際情勢是151那勞保的撥補是100億這兩件事情不是同一個事情 對啊那我們當然這次 那好 那我簡單問你 |
transcript.whisperx[27].start |
557.688 |
transcript.whisperx[27].end |
576.462 |
transcript.whisperx[27].text |
那這100億裡面有多少錢是進到這些減半倍降薪的勞工口袋裡面沒有 委員還是要說這是兩件事情我們在因應國際情勢是150億那另外100億是勞保的撥補那之前包括也有用特別預算來去做勞保撥補這是我們的財政狀況跟稅劑剩餘 |
transcript.whisperx[28].start |
578.163 |
transcript.whisperx[28].end |
598.298 |
transcript.whisperx[28].text |
如果國家的財政狀況稅計算有一點餘裕的話我想這代表是勞工政府對於勞保財務的一種支持對啦 勞保財務是長期性的問題啦那每年都在撥補的嘛我希望就事論是這個每一件事情我不希望在你夾雜在這個特別預算裡面就很怪啊 |
transcript.whisperx[29].start |
600.14 |
transcript.whisperx[29].end |
617.253 |
transcript.whisperx[29].text |
委員這不是夾雜特別預算這是我們是我們財政的狀況稅計剩餘的狀況所以你現在覺得財政狀況很好不是不是財政狀況當然因為財化法修法可是今年的稅計剩餘的確有一點空間那我們就認為應該把這一點空間拿來支持勞工跟勞保 |
transcript.whisperx[30].start |
618.427 |
transcript.whisperx[30].end |
631.293 |
transcript.whisperx[30].text |
我們是站在一個希望只要能夠多支持勞工一點 多支持勞保一點我們就願意多做一點就是因為剛好國際情勢那這樣子看起來我們政府覺得國際情勢越亂越好啊這樣你們才可以趕快來編補 趕快多弄點錢這個時候我們大家當然就知道產業受到衝擊我們需要一些經費來支持 |
transcript.whisperx[31].start |
640.237 |
transcript.whisperx[31].end |
659.134 |
transcript.whisperx[31].text |
那可是你不能說看到立法院好像要給錢了然後我們這些部門趕快你們自己沒不夠的趕快補一補 趕快寫一寫委員 這個錢不是叫立法院給錢這個錢國家的財政是來自於稅收跟稅金對 沒錯啊 但是還是要立法院通過嘛 對不對立法院願意給了嘛 願意給了那當然不會擋嘛 |
transcript.whisperx[32].start |
660.035 |
transcript.whisperx[32].end |
683.655 |
transcript.whisperx[32].text |
我們希望盡力爭取立法院的支持我們當然是不會去擋這種什麼特別預算而且是因應國際情勢這個變化的錢只是說我希望說這筆錢一歸一 二歸二就希望把它弄清楚好不好那個跟文說明其實朝野的委員也都希望我們在撥補這部分只要能夠多做的都希望能夠多做一些這不一樣的事情啦當然你如果多做在勞工我全力支持 |
transcript.whisperx[33].start |
684.395 |
transcript.whisperx[33].end |
693.744 |
transcript.whisperx[33].text |
這當然都做在勞工勞保撥補當然都是用在勞工身上的你怎麼那麼愛變咧對不對 好好講不聽不要講了啦 不要講好 謝謝邱振軍委員發言 |