iVOD / 163896

Field Value
IVOD_ID 163896
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163896
日期 2025-10-08
會議資料.會議代碼 委員會-11-4-26-2
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-08T10:56:04+08:00
結束時間 2025-10-08T11:06:46+08:00
影片長度 00:10:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f0233cd0619a8ff05ca546a39261d904cea2f7e777e01e95656cd2b685a6ecb8ff111285ee9a4ebd5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 10:56:04 - 11:06:46
會議時間 2025-10-08T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請環境部部長、勞動部部長及衛生福利部部長針對「災後復原重建及清理因應作為」進行專題報告,並備質詢,另邀請國防部、經濟部、內政部、賑災基金會列席備詢。【10月8日及9日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.56596875
transcript.pyannote[0].end 7.47284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 7.94534375
transcript.pyannote[1].end 8.78909375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 9.49784375
transcript.pyannote[2].end 10.54409375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 20.11221875
transcript.pyannote[3].end 22.54221875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 24.07784375
transcript.pyannote[4].end 26.30534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 26.67659375
transcript.pyannote[5].end 51.90471875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 45.07034375
transcript.pyannote[6].end 45.39096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 53.15346875
transcript.pyannote[7].end 53.84534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 54.85784375
transcript.pyannote[8].end 56.14034375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 56.66346875
transcript.pyannote[9].end 91.76346875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 76.96409375
transcript.pyannote[10].end 77.36909375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 92.37096875
transcript.pyannote[11].end 92.75909375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 93.46784375
transcript.pyannote[12].end 93.99096875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 93.99096875
transcript.pyannote[13].end 94.02471875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 94.17659375
transcript.pyannote[14].end 112.68846875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 107.87909375
transcript.pyannote[15].end 108.35159375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 110.68034375
transcript.pyannote[16].end 111.08534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 112.75596875
transcript.pyannote[17].end 163.44846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 118.57784375
transcript.pyannote[18].end 120.45096875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 153.54284375
transcript.pyannote[19].end 153.99846875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 156.85034375
transcript.pyannote[20].end 157.39034375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 163.80284375
transcript.pyannote[21].end 165.72659375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 166.23284375
transcript.pyannote[22].end 173.23596875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 173.40471875
transcript.pyannote[23].end 183.29346875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 178.21409375
transcript.pyannote[24].end 178.55159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 183.52971875
transcript.pyannote[25].end 184.06971875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 184.74471875
transcript.pyannote[26].end 204.26909375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 201.41721875
transcript.pyannote[27].end 201.50159375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 201.72096875
transcript.pyannote[28].end 201.88971875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 204.58971875
transcript.pyannote[29].end 212.75721875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 212.85846875
transcript.pyannote[30].end 235.26846875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 233.86784375
transcript.pyannote[31].end 234.45846875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 235.20096875
transcript.pyannote[32].end 235.25159375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 235.26846875
transcript.pyannote[33].end 236.92221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 236.92221875
transcript.pyannote[34].end 236.97284375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 237.95159375
transcript.pyannote[35].end 238.03596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 238.03596875
transcript.pyannote[36].end 238.96409375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 239.68971875
transcript.pyannote[37].end 240.87096875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 241.37721875
transcript.pyannote[38].end 256.96971875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 250.84409375
transcript.pyannote[39].end 251.13096875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 256.96971875
transcript.pyannote[40].end 263.58471875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 262.87596875
transcript.pyannote[41].end 274.40159375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 264.81659375
transcript.pyannote[42].end 265.32284375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 272.96721875
transcript.pyannote[43].end 273.38909375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 273.38909375
transcript.pyannote[44].end 273.40596875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 273.65909375
transcript.pyannote[45].end 294.02721875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 288.25596875
transcript.pyannote[46].end 288.28971875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 288.28971875
transcript.pyannote[47].end 288.81284375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 294.02721875
transcript.pyannote[48].end 310.68284375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 304.99596875
transcript.pyannote[49].end 305.31659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 310.93596875
transcript.pyannote[50].end 312.31971875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 311.13846875
transcript.pyannote[51].end 311.35784375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 311.79659375
transcript.pyannote[52].end 311.84721875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 311.91471875
transcript.pyannote[53].end 311.94846875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 312.30284375
transcript.pyannote[54].end 323.05221875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 320.11596875
transcript.pyannote[55].end 320.41971875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 323.28846875
transcript.pyannote[56].end 323.67659375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 323.81159375
transcript.pyannote[57].end 362.43846875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 347.03159375
transcript.pyannote[58].end 347.47034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 348.41534375
transcript.pyannote[59].end 348.85409375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 362.43846875
transcript.pyannote[60].end 362.47221875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 362.50596875
transcript.pyannote[61].end 389.38784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 389.13471875
transcript.pyannote[62].end 389.33721875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 389.38784375
transcript.pyannote[63].end 410.14409375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 391.69971875
transcript.pyannote[64].end 392.02034375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 392.91471875
transcript.pyannote[65].end 393.26909375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 396.05346875
transcript.pyannote[66].end 396.40784375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 398.28096875
transcript.pyannote[67].end 398.56784375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 403.07346875
transcript.pyannote[68].end 403.37721875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 404.76096875
transcript.pyannote[69].end 405.01409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 405.01409375
transcript.pyannote[70].end 405.03096875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 408.06846875
transcript.pyannote[71].end 408.10221875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 408.10221875
transcript.pyannote[72].end 408.30471875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 408.30471875
transcript.pyannote[73].end 408.43971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 409.55346875
transcript.pyannote[74].end 409.60409375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 409.60409375
transcript.pyannote[75].end 409.90784375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 410.19471875
transcript.pyannote[76].end 421.63596875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 413.53596875
transcript.pyannote[77].end 413.89034375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 414.22784375
transcript.pyannote[78].end 414.59909375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 419.79659375
transcript.pyannote[79].end 420.20159375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 421.16346875
transcript.pyannote[80].end 449.51346875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 426.02346875
transcript.pyannote[81].end 426.34409375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 430.41096875
transcript.pyannote[82].end 430.42784375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 430.42784375
transcript.pyannote[83].end 431.55846875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 449.81721875
transcript.pyannote[84].end 457.44471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 454.84596875
transcript.pyannote[85].end 455.01471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 455.79096875
transcript.pyannote[86].end 468.37971875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 466.15221875
transcript.pyannote[87].end 466.99596875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 467.97471875
transcript.pyannote[88].end 473.94846875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 474.10034375
transcript.pyannote[89].end 478.77471875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 477.35721875
transcript.pyannote[90].end 478.09971875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 479.77034375
transcript.pyannote[91].end 480.52971875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 481.05284375
transcript.pyannote[92].end 481.52534375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 481.12034375
transcript.pyannote[93].end 481.91346875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 481.91346875
transcript.pyannote[94].end 481.96409375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 481.96409375
transcript.pyannote[95].end 482.50409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 482.50409375
transcript.pyannote[96].end 482.52096875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 485.65971875
transcript.pyannote[97].end 486.48659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 486.48659375
transcript.pyannote[98].end 496.29096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 496.54409375
transcript.pyannote[99].end 498.51846875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 498.82221875
transcript.pyannote[100].end 506.33159375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 506.60159375
transcript.pyannote[101].end 509.62221875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 509.80784375
transcript.pyannote[102].end 524.52284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 525.63659375
transcript.pyannote[103].end 526.05846875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 526.05846875
transcript.pyannote[104].end 541.97159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 526.15971875
transcript.pyannote[105].end 527.99909375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 540.30096875
transcript.pyannote[106].end 541.58346875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 541.97159375
transcript.pyannote[107].end 547.96221875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 547.96221875
transcript.pyannote[108].end 548.68784375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 548.68784375
transcript.pyannote[109].end 549.02534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 549.02534375
transcript.pyannote[110].end 613.06596875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 557.14221875
transcript.pyannote[111].end 557.47971875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 597.32159375
transcript.pyannote[112].end 598.67159375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 612.20534375
transcript.pyannote[113].end 633.87284375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 615.47909375
transcript.pyannote[114].end 615.69846875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 620.25471875
transcript.pyannote[115].end 620.57534375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 621.43596875
transcript.pyannote[116].end 622.12784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 629.83971875
transcript.pyannote[117].end 630.12659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 633.24846875
transcript.pyannote[118].end 635.17221875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 634.71659375
transcript.pyannote[119].end 637.58534375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 636.30284375
transcript.pyannote[120].end 637.87221875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 637.87221875
transcript.pyannote[121].end 638.09159375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 638.09159375
transcript.pyannote[122].end 638.24346875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 638.24346875
transcript.pyannote[123].end 638.27721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 638.27721875
transcript.pyannote[124].end 638.41221875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 639.71159375
transcript.pyannote[125].end 640.90971875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 641.14596875
transcript.pyannote[126].end 641.55096875
transcript.whisperx[0].start 5.958
transcript.whisperx[0].end 10.303
transcript.whisperx[0].text 謝謝主席 主席請一下石崇良部長請石部長部長好
transcript.whisperx[1].start 24.161
transcript.whisperx[1].end 53.411
transcript.whisperx[1].text 部長因為光復鄉的的災情然後秋冬季節剛好又是流感跟新冠比較盛行的的後發時節那所以我有一些有關疫情監控的問題跟部長做個討論是那羅一中羅一鈞署長也在就是誰回答都可以就是說
transcript.whisperx[2].start 55.272
transcript.whisperx[2].end 75.537
transcript.whisperx[2].text 風災的時候造成了嚴重的積水那它可能對於生態跟環境有一些影響飲水也會受到一定的污染這個就沒有辦法的事情只是我們在廢棄物陸續清理完成以後災區可能還會有短暫的陣雨
transcript.whisperx[3].start 78.538
transcript.whisperx[3].end 86.922
transcript.whisperx[3].text 會引發很多例如長病毒等等的傳染風險我不知道衛福部這邊對於光復鄉災區的疫情監控的狀況如何
transcript.whisperx[4].start 94.514
transcript.whisperx[4].end 112.092
transcript.whisperx[4].text 跟委員報告大概在災後我們會有注意到兩類的傳染病一類呢是從這個土壤接觸汙汙接觸引發的那像這個類組病啊還有這個溝體螺旋體就是Leptospirosis這種的
transcript.whisperx[5].start 114.954
transcript.whisperx[5].end 137.203
transcript.whisperx[5].text 因為這個是要通報的通報的傳染病這個會被通報所以我們有在監控到目前為止大概有一例疑似通報而已疑似而已這是一個第二個是因為不潔飲水或者是人的過度密集
transcript.whisperx[6].start 137.683
transcript.whisperx[6].end 162.631
transcript.whisperx[6].text 居住所引發的傳染病那他大概大概就是些什麼腸胃炎呼吸道的疾病等等所以這個都我們都會在這個不斷的在透過媒體或者是宣導這樣請大家去注意乾淨飲水飲食的安全等等這個打疫苗這個我們也都這個優先施打在災區這樣對就是說因為
transcript.whisperx[7].start 166.331
transcript.whisperx[7].end 182.503
transcript.whisperx[7].text 天災過後的傳染病的防止必須要做好免得再引發另外一波的災情出現部長剛剛有講到疫苗的接種
transcript.whisperx[8].start 184.815
transcript.whisperx[8].end 212.413
transcript.whisperx[8].text 疾管署這邊有宣布過公費流感跟新冠疫苗的接種對象就是擴大納入光復鄉的全體居民那大概就是有一萬兩千人左右那有關疫苗的因為災區可能供應供電不穩定疫苗的保存還行
transcript.whisperx[9].start 213.258
transcript.whisperx[9].end 239.803
transcript.whisperx[9].text 那個當然這個當地只有一家衛生所啦就是光復衛生所它毀損算是嚴重所以本來的疫苗都毀損掉了所以我們那個CDC有馬上在現在有在另外撥補這個給他那那個冷凍的冷藏的設備也都沒有問題疫苗供應沒有問題那現在施打的狀況怎麼樣 知道嗎來 讓我請那個
transcript.whisperx[10].start 241.434
transcript.whisperx[10].end 262.454
transcript.whisperx[10].text 截至目前是流感施打了960多劑然後新冠接種了330多劑那主要是因為學校這個部分的集中接種還沒開始目前已經排定因為學校已經復課了所以10月14、15這兩天就會入校去做集中接種對 要不然假如到署長現在的答覆就是其實接種的比例是偏低的
transcript.whisperx[11].start 263.255
transcript.whisperx[11].end 288.858
transcript.whisperx[11].text 對 因為災民忙著復原加原那從昨天開始光復鄉衛生所也成為第二個疫苗接種點開始提供服務所以我們預期這個接種人數會快速的增加我們在那個光復糖廠那現在衛生所也加入所以那個接種的地點也擴大那今年的因為疫情來得比較早流感疫情來得比較早所以都鼓勵大家因為不是馬上打了就有保護力要趕快打
transcript.whisperx[12].start 289.338
transcript.whisperx[12].end 310.225
transcript.whisperx[12].text 那今年的接種情形也比去年踴躍所以請大家趕快打對 那因為我看現在的比例偏低所以還是要趕快加強宣導當然災民在忙著家園的復健可是他的身體的健康我們盡可能的幫他把
transcript.whisperx[13].start 311.065
transcript.whisperx[13].end 333.523
transcript.whisperx[13].text 防護做好而且我們還開放到那個光復救災的志工、工作人員也可以打跟我們一般現在施打的對象不一樣比較寬因為救災的人也一直在裡面所以整體的保護力要完善還是他們也要納入這個很好
transcript.whisperx[14].start 336.244
transcript.whisperx[14].end 360.652
transcript.whisperx[14].text 那我還是要請教一下還是災區的問題因為災區重振的過程中我覺得災民跟一線工作人員在心理層面是非常需要被照顧的我不知道部裡面這邊除了短期的心理資源輔導以外有沒有中長期的心理
transcript.whisperx[15].start 361.532
transcript.whisperx[15].end 378.704
transcript.whisperx[15].text 資源的計畫跟委員報告確實我們現在現階段來講還是主要是針對災民或者是在災區的一些脆弱家庭這些特別著重而已不過呢接下來我們還會有新的方案要推出
transcript.whisperx[16].start 379.364
transcript.whisperx[16].end 395.081
transcript.whisperx[16].text 特別是對於投入救災的工作人員或者是志工他可能也有後續上的這些可能需要的心理支持方案因為投入的志工跟工作人員他可能跟災區的災民
transcript.whisperx[17].start 398.485
transcript.whisperx[17].end 423.207
transcript.whisperx[17].text 其實是不同類型的因為他救完災他就會回到原本的居住地所以這個部分會比較善居在全台各地可能會用原本的支持方案來支持可是光復鄉因為他是一個集體的創商所以他的中長期支持計畫可能要另外我們大概會分成兩大塊
transcript.whisperx[18].start 423.848
transcript.whisperx[18].end 442.894
transcript.whisperx[18].text 一個是團體性的團體性的像國軍投入的很多所以我們也會跟國防部來提醒對於這些投入不管是我們的替代役或者是國軍都要把他注意到這個後段的心理支持的部分
transcript.whisperx[19].start 443.474
transcript.whisperx[19].end 460.208
transcript.whisperx[19].text 有一些志工團體我們也會提醒他們他們過去比較有制度化另外就是還有很多是志願來的那些那我們就要擴大我們專線服務或者網絡性的這個資源的提供衛福部這邊就是除了
transcript.whisperx[20].start 462.069
transcript.whisperx[20].end 482.222
transcript.whisperx[20].text 除了災民的身體健康以外在心理的知識上還是要注意而且我們這個案子還會稍微久一點可能要長達一年或者更久好 謝謝部長部長請回主席我請一下環境部請環境部彭部長
transcript.whisperx[21].start 486.664
transcript.whisperx[21].end 506
transcript.whisperx[21].text 部長好 部長我簡單問一個災區的垃圾處理的問題就是說根據你們的網站資料到10月1號為止的統計我們清除了淤泥和垃圾大概有8.5萬噸
transcript.whisperx[22].start 508.341
transcript.whisperx[22].end 523.472
transcript.whisperx[22].text 那請問一下你們現在除了暫時性先集中戰制以外後續地方政府你們怎麼協助他去去去化這麼大量的廢棄物
transcript.whisperx[23].start 526.417
transcript.whisperx[23].end 543.662
transcript.whisperx[23].text 好 謝謝楊委員好 第一個是說目前的最新的資料已經超過10萬噸了10萬噸了那它主要是淤泥加上這個廢棄物那目前因為處理這個我們預估有幾十萬噸啦不是只有10萬噸而已光是我這邊你們10月1號
transcript.whisperx[24].start 545.723
transcript.whisperx[24].end 563.94
transcript.whisperx[24].text 到現在就又多出1.5萬噸所以這個反應要很迅速的那目前我們第一個是我們現在最近這幾個月應該是趕快把救災復原市區復原那廢棄物的處理我們是鎖定我們希望明年再開始做因為第一個是處理要把所有的廢棄物要分類
transcript.whisperx[25].start 564.781
transcript.whisperx[25].end 589.068
transcript.whisperx[25].text 分篩 要物理去分篩這個所謂的砂石歸砂石 土歸土這個我們已經有請專家來驗它後面有什麼用途那廢棄物的部分呢現在花蓮的是委託給台泥再做一個後續的處理那當然一定要先篩分 篩分完之後才能夠做去化那這個幾十萬 其實因為還要包含的我們大概還有10公頃的田是垃圾加淤泥
transcript.whisperx[26].start 589.628
transcript.whisperx[26].end 615.373
transcript.whisperx[26].text 那還有大概是六七百公頃是淤泥那這個是農業部跟水利署跟我們循環署三個部會還有國土署應該是四個部會我們要處理這個事情那這個也希望這個立法院可以因為我們現在有提出可能要爭取一些這個追加的預算因為這個處理這個廢棄物吼還有未來的淤泥這是要花很多很多錢的我想這個預算大家應該會支持啦因為
transcript.whisperx[27].start 618.194
transcript.whisperx[27].end 637.395
transcript.whisperx[27].text 災後很多事情要處理都是需要錢的啦我只是因為救災到最後的一個階段可能就是環境部必須要把環境重新再整理起來所以我今天做個提醒我們在規劃了 也希望委員到時候給我們多指教謝謝部長 謝謝主席謝謝楊耀委員