iVOD / 163869

Field Value
IVOD_ID 163869
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163869
日期 2025-10-08
會議資料.會議代碼 委員會-11-4-26-2
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-08T10:34:00+08:00
結束時間 2025-10-08T10:45:33+08:00
影片長度 00:11:33
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f0233cd0619a8ff0ec2685169496d0a1cea2f7e777e01e95522ce05ac16c04005676bdfe407d455b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:34:00 - 10:45:33
會議時間 2025-10-08T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請環境部部長、勞動部部長及衛生福利部部長針對「災後復原重建及清理因應作為」進行專題報告,並備質詢,另邀請國防部、經濟部、內政部、賑災基金會列席備詢。【10月8日及9日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 5.46471875
transcript.pyannote[0].end 12.13034375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 13.41284375
transcript.pyannote[1].end 14.71221875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 17.47971875
transcript.pyannote[2].end 18.81284375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 18.96471875
transcript.pyannote[3].end 19.21784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.99409375
transcript.pyannote[4].end 21.14159375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 22.05284375
transcript.pyannote[5].end 26.40659375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 27.87471875
transcript.pyannote[6].end 30.43971875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 32.09346875
transcript.pyannote[7].end 38.23596875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 39.04596875
transcript.pyannote[8].end 52.22534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 52.91721875
transcript.pyannote[9].end 75.96846875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 76.40721875
transcript.pyannote[10].end 81.25034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 80.99721875
transcript.pyannote[11].end 84.91221875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 85.72221875
transcript.pyannote[12].end 85.73909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 85.73909375
transcript.pyannote[13].end 86.43096875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 85.77284375
transcript.pyannote[14].end 87.51096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 87.96659375
transcript.pyannote[15].end 88.99596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 89.18159375
transcript.pyannote[16].end 97.46721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 97.60221875
transcript.pyannote[17].end 102.64784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 103.01909375
transcript.pyannote[18].end 106.09034375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 106.78221875
transcript.pyannote[19].end 107.50784375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 108.38534375
transcript.pyannote[20].end 117.37971875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 113.58284375
transcript.pyannote[21].end 113.76846875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 117.56534375
transcript.pyannote[22].end 123.53909375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 123.77534375
transcript.pyannote[23].end 126.42471875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 125.69909375
transcript.pyannote[24].end 138.27096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 137.96721875
transcript.pyannote[25].end 138.70971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 138.70971875
transcript.pyannote[26].end 138.72659375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 138.72659375
transcript.pyannote[27].end 139.35096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 139.35096875
transcript.pyannote[28].end 139.38471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 139.38471875
transcript.pyannote[29].end 140.32971875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 140.46471875
transcript.pyannote[30].end 141.20721875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 141.20721875
transcript.pyannote[31].end 141.86534375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 141.66284375
transcript.pyannote[32].end 144.31221875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 143.09721875
transcript.pyannote[33].end 147.01221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 147.21471875
transcript.pyannote[34].end 148.56471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 149.84721875
transcript.pyannote[35].end 151.07909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 151.19721875
transcript.pyannote[36].end 151.50096875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 151.93971875
transcript.pyannote[37].end 156.69846875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 152.74971875
transcript.pyannote[38].end 154.04909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 157.87971875
transcript.pyannote[39].end 162.67221875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 158.21721875
transcript.pyannote[40].end 159.46596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 163.43159375
transcript.pyannote[41].end 167.65034375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 163.49909375
transcript.pyannote[42].end 163.53284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 165.87846875
transcript.pyannote[43].end 169.21971875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 169.21971875
transcript.pyannote[44].end 169.23659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 169.64159375
transcript.pyannote[45].end 172.45971875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 170.04659375
transcript.pyannote[46].end 173.10096875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 173.10096875
transcript.pyannote[47].end 188.55846875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 173.11784375
transcript.pyannote[48].end 173.91096875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 175.46346875
transcript.pyannote[49].end 176.69534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 176.99909375
transcript.pyannote[50].end 177.23534375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 177.26909375
transcript.pyannote[51].end 178.29846875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 189.68909375
transcript.pyannote[52].end 190.46534375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 191.74784375
transcript.pyannote[53].end 201.55221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 202.42971875
transcript.pyannote[54].end 203.27346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 203.74596875
transcript.pyannote[55].end 205.36596875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 205.63596875
transcript.pyannote[56].end 206.51346875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 206.85096875
transcript.pyannote[57].end 218.83221875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 209.97284375
transcript.pyannote[58].end 210.29346875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 218.93346875
transcript.pyannote[59].end 221.97096875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 221.07659375
transcript.pyannote[60].end 223.99596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 226.34159375
transcript.pyannote[61].end 233.96909375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 231.96096875
transcript.pyannote[62].end 232.01159375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 232.18034375
transcript.pyannote[63].end 232.23096875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 233.64846875
transcript.pyannote[64].end 233.78346875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 234.10409375
transcript.pyannote[65].end 237.51284375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 237.61409375
transcript.pyannote[66].end 245.96721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 246.99659375
transcript.pyannote[67].end 248.46471875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 248.66721875
transcript.pyannote[68].end 252.93659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 253.72971875
transcript.pyannote[69].end 256.85159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 256.12596875
transcript.pyannote[70].end 268.76534375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 266.28471875
transcript.pyannote[71].end 266.77409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 269.00159375
transcript.pyannote[72].end 279.12659375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 275.85284375
transcript.pyannote[73].end 276.74721875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 279.48096875
transcript.pyannote[74].end 281.57346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 280.44284375
transcript.pyannote[75].end 283.48034375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 283.48034375
transcript.pyannote[76].end 285.60659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 286.24784375
transcript.pyannote[77].end 289.01534375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 286.85534375
transcript.pyannote[78].end 288.67784375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 289.06596875
transcript.pyannote[79].end 303.52784375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 304.08471875
transcript.pyannote[80].end 318.51284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 321.34784375
transcript.pyannote[81].end 331.60784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 329.07659375
transcript.pyannote[82].end 329.22846875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 332.48534375
transcript.pyannote[83].end 335.47221875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 335.96159375
transcript.pyannote[84].end 339.72471875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 340.21409375
transcript.pyannote[85].end 349.19159375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 350.52471875
transcript.pyannote[86].end 354.94596875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 355.45221875
transcript.pyannote[87].end 360.53159375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 360.91971875
transcript.pyannote[88].end 361.78034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 363.34971875
transcript.pyannote[89].end 364.95284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 365.12159375
transcript.pyannote[90].end 366.33659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 366.33659375
transcript.pyannote[91].end 366.82596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 368.42909375
transcript.pyannote[92].end 372.74909375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 368.80034375
transcript.pyannote[93].end 370.58909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 371.02784375
transcript.pyannote[94].end 372.36096875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 372.49596875
transcript.pyannote[95].end 373.96409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 373.81221875
transcript.pyannote[96].end 373.84596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 373.96409375
transcript.pyannote[97].end 374.03159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 374.03159375
transcript.pyannote[98].end 374.16659375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 374.75721875
transcript.pyannote[99].end 381.50721875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 382.51971875
transcript.pyannote[100].end 385.92846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 386.33346875
transcript.pyannote[101].end 387.75096875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 388.44284375
transcript.pyannote[102].end 400.57596875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 390.48471875
transcript.pyannote[103].end 390.55221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 392.79659375
transcript.pyannote[104].end 393.03284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 393.37034375
transcript.pyannote[105].end 394.43346875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 401.28471875
transcript.pyannote[106].end 414.02534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 412.81034375
transcript.pyannote[107].end 413.23221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 414.12659375
transcript.pyannote[108].end 420.60659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 420.70784375
transcript.pyannote[109].end 421.14659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 421.87221875
transcript.pyannote[110].end 423.74534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 424.09971875
transcript.pyannote[111].end 424.60596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 425.24721875
transcript.pyannote[112].end 426.27659375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 427.10346875
transcript.pyannote[113].end 428.41971875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 429.07784375
transcript.pyannote[114].end 432.53721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 432.18284375
transcript.pyannote[115].end 477.93096875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 432.72284375
transcript.pyannote[116].end 433.61721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 464.90346875
transcript.pyannote[117].end 465.71346875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 476.59784375
transcript.pyannote[118].end 479.26409375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 479.38221875
transcript.pyannote[119].end 479.71971875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 479.71971875
transcript.pyannote[120].end 481.05284375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 481.25534375
transcript.pyannote[121].end 485.01846875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 485.01846875
transcript.pyannote[122].end 489.37221875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 489.54096875
transcript.pyannote[123].end 489.55784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 489.55784375
transcript.pyannote[124].end 492.35909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 489.79409375
transcript.pyannote[125].end 489.87846875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 492.88221875
transcript.pyannote[126].end 493.86096875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 494.29971875
transcript.pyannote[127].end 504.34034375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 495.41346875
transcript.pyannote[128].end 496.17284375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 505.01534375
transcript.pyannote[129].end 531.59346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 506.66909375
transcript.pyannote[130].end 508.69409375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 532.92659375
transcript.pyannote[131].end 535.10346875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 534.66471875
transcript.pyannote[132].end 537.95534375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 537.60096875
transcript.pyannote[133].end 541.09409375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 538.88346875
transcript.pyannote[134].end 540.45284375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 541.09409375
transcript.pyannote[135].end 548.28284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 549.00846875
transcript.pyannote[136].end 562.79534375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 551.59034375
transcript.pyannote[137].end 551.69159375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 551.82659375
transcript.pyannote[138].end 551.99534375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 562.17096875
transcript.pyannote[139].end 566.32221875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 563.63909375
transcript.pyannote[140].end 564.28034375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 564.93846875
transcript.pyannote[141].end 565.84971875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 566.42346875
transcript.pyannote[142].end 577.89846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 570.92909375
transcript.pyannote[143].end 572.73471875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 578.77596875
transcript.pyannote[144].end 582.21846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 582.70784375
transcript.pyannote[145].end 584.34471875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 584.81721875
transcript.pyannote[146].end 586.16721875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 587.07846875
transcript.pyannote[147].end 594.23346875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 595.60034375
transcript.pyannote[148].end 599.44784375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 600.07221875
transcript.pyannote[149].end 602.24909375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 603.90284375
transcript.pyannote[150].end 605.03346875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 606.68721875
transcript.pyannote[151].end 614.82096875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 615.61409375
transcript.pyannote[152].end 617.25096875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 617.52096875
transcript.pyannote[153].end 621.90846875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 622.70159375
transcript.pyannote[154].end 624.49034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 625.24971875
transcript.pyannote[155].end 625.33409375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 625.50284375
transcript.pyannote[156].end 629.43471875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 630.10971875
transcript.pyannote[157].end 635.15534375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 636.03284375
transcript.pyannote[158].end 646.02284375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 646.10721875
transcript.pyannote[159].end 649.95471875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 650.34284375
transcript.pyannote[160].end 652.58721875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 653.11034375
transcript.pyannote[161].end 660.51846875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 660.85596875
transcript.pyannote[162].end 672.24659375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 672.58409375
transcript.pyannote[163].end 684.73409375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 672.61784375
transcript.pyannote[164].end 673.02284375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 677.15721875
transcript.pyannote[165].end 678.40596875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 684.95346875
transcript.pyannote[166].end 685.76346875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 685.84784375
transcript.pyannote[167].end 686.52284375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 689.39159375
transcript.pyannote[168].end 692.96909375
transcript.whisperx[0].start 5.512
transcript.whisperx[0].end 25.701
transcript.whisperx[0].text 好 謝謝主席請施部長請施部長跟我們食藥署今天是副署長嘛主委你好辛苦了我要問 邱振基問苗栗的我要問這個屏東的來這個大腸啦 大腸
transcript.whisperx[1].start 32.168
transcript.whisperx[1].end 53.004
transcript.whisperx[1].text 一下子說一萬多公斤 一下子說一千多公斤到底是幾公斤 不對跟委員報告 我們把它分成兩個一個是去查這一家公司 這一家百威公司現場就把它封存的 還沒有流出去的 就封存的封存的一共是一萬
transcript.whisperx[2].start 57.427
transcript.whisperx[2].end 72.695
transcript.whisperx[2].text 12604公斤 那個是都還在倉庫還沒有出去的那個就直接封存掉的 12604公斤然後流出去的還有一些還沒有真的賣掉的我們就讓他下架的 所以下架的是2430公斤
transcript.whisperx[3].start 76.477
transcript.whisperx[3].end 84.406
transcript.whisperx[3].text 阿然後真的已經賣出去的就是784公斤不對阿這隻的大腸都是從屠宰場來的嗎還是病死豬的
transcript.whisperx[4].start 89.249
transcript.whisperx[4].end 104.629
transcript.whisperx[4].text 因為我們有做這個整個產製銷整個一貫的追蹤溯源所以它的源頭呢那麼經過這個農業部的證實它並不是來自於病死豬因為我們最怕的就是病死豬
transcript.whisperx[5].start 106.852
transcript.whisperx[5].end 121.758
transcript.whisperx[5].text 我們這個台北市公司都設到台北市工廠就設到屏東然後社會成本跟汙染都在屏東我們屏東還背這個爛名跟罵名
transcript.whisperx[6].start 122.898
transcript.whisperx[6].end 147.743
transcript.whisperx[6].text 還有汙民所以這個我全部都接受的這個養豬業者都是合法合規的健康豬這個也有被證實因為而且是國產豬啦所以這個豬是健康的所以是在屠宰場拖出來的後面的加工過程主要這個黑心廠商是加工加工
transcript.whisperx[7].start 150.156
transcript.whisperx[7].end 161.936
transcript.whisperx[7].text 雙氧水嘛他用工業用的雙氧水雙氧水是可以用我們要用食品級的雙氧水他用的是工業級的
transcript.whisperx[8].start 163.422
transcript.whisperx[8].end 186.998
transcript.whisperx[8].text 阿如果用漂白水跟韓綠那是很恐怖的那是H2O2喔H2O2不是不是不是不是漂白水過癮抹清那吃了就死了啊沒死也抹掉嘛阿你食藥署到底是有的有的有的欸補貼不準欸一天在蘇丹洪一天在什麼這食品的每天在出事情出事情的機率不算勞動部捏所以喔
transcript.whisperx[9].start 191.789
transcript.whisperx[9].end 194.332
transcript.whisperx[9].text 所以都要戰戰兢兢的我現在看到很多人每天都在吃大湯麵線 麵線雞
transcript.whisperx[10].start 202.806
transcript.whisperx[10].end 221.692
transcript.whisperx[10].text 所以若不是為死去的破壁這樣我們就比較安心要確定喔你今天為屠宰場開每一個公家的大群的或者是財產法人的屠宰場都有授意吧授意都在做假的 都要回他們那裡
transcript.whisperx[11].start 226.437
transcript.whisperx[11].end 245.683
transcript.whisperx[11].text 所以這地方就一定要到這個時代一定要很扎實那如果是屠宰場出來的放在那邊壞掉 爛掉 炒掉再拿去加工 用過氧化氫用磁力酸 洗一洗讓它沒鼻子
transcript.whisperx[12].start 247.023
transcript.whisperx[12].end 264.378
transcript.whisperx[12].text 大家都吃下肚 那個是很可怕的事情部長 我們食安的問題跟勞安的差不多 都是很重要的這食品 攸關到人民的日常生活所以這絕對沒有半點可以沒有空間所以這個業者我們絕對重罰
transcript.whisperx[13].start 270.223
transcript.whisperx[13].end 283.47
transcript.whisperx[13].text 我們今天就會開出處分五千多萬罰金就會先執行不會等到這家百威還是這幾家百威百威百威因為違法的是這幾家應該是這是你們的土喔這幾間是
transcript.whisperx[14].start 286.292
transcript.whisperx[14].end 303.385
transcript.whisperx[14].text 因為我們是要讓民眾了解流向只是要讓他清楚流向不要造成整個市面上的恐慌所以就是目前看出來有賣出去的大概就主要兩個地方一個是屏東的和聲市場另外一個是台北的寧夏夜市其他地方沒有
transcript.whisperx[15].start 304.11
transcript.whisperx[15].end 317.838
transcript.whisperx[15].text 大家的食安問題都經常互相互動我常常聽到很瘋狂的那個三合一卸財 補償努力那個健保署跟CDC我要問那個花蓮子事
transcript.whisperx[16].start 322.361
transcript.whisperx[16].end 348.598
transcript.whisperx[16].text 你現在大家都在說很多很多很多八八風災的時候我就在拿冰淇淋加冰在救都一樣一模一樣都在外面都是土石流要跟你請教的是說這些老人這些老人他風災要來了火水要來了他們可以先拿著去拿藥嗎拿他們慢性病的藥嗎沒有了藥出問題了他什麼用的無人機要去送藥
transcript.whisperx[17].start 351.744
transcript.whisperx[17].end 357.609
transcript.whisperx[17].text 縫縫這麼大 第一陣子就裂不開 無人機裂不開實際上是有問題的 保證你這樣縫縫可以拿這麼長 這樣縫
transcript.whisperx[18].start 363.413
transcript.whisperx[18].end 381.303
transcript.whisperx[18].text 健保署 健保署不來喔有啦 有啦 健保署健保署的問題我可以回答你那關的啦再來就是藥啊我們常常吃的藥都是用那種大瓶散裝的這個是很糟糕的
transcript.whisperx[19].start 382.574
transcript.whisperx[19].end 398.44
transcript.whisperx[19].text 在八八風災的時候 那個時候楊志良當署長 衛生署署長那時候我去站著看 所以要到呂伯包的 下坡的呂伯定製 放在那裡 下坡也要站起來喔 熱熱的 水沖沖的 裡面的油不淡
transcript.whisperx[20].start 401.368
transcript.whisperx[20].end 420.253
transcript.whisperx[20].text 所以你一定要用 尤其是台灣這麼多災難的地方你一定要用鋁箔袍塞進去可以保留更久 你要讓他們落地反射幫他們補充那個油給我強烈建議因為你那些散裝的油要一小時就淡了我問這個怪獸達人
transcript.whisperx[21].start 427.13
transcript.whisperx[21].end 451.461
transcript.whisperx[21].text 怎麼會這麼快就撐起來CDC你有研究看嗎教委員爸爸 剛才我說的這個油壓的部分對那種排裝藥 不是散裝排裝藥的話我們都有地板架的保護特別合價上 價格上會不一樣那麼這個地板架的落差也不同第二個提早領藥這個問題比較麻煩的是因為
transcript.whisperx[22].start 453.622
transcript.whisperx[22].end 477.157
transcript.whisperx[22].text 每次預警的時候 時間跌跌都不是說很重所以這個比較難說發佈說大家趕快去拿藥這個是比較困難但是長假的話我們都有我們預定的長假 譬如說過年這種長假我們都會提早讓他可以提早拿雖然他的那個藥還沒有吃完他就可以提早來拿慢性藥藥品重疊不用抓到癌
transcript.whisperx[23].start 481.76
transcript.whisperx[23].end 503.675
transcript.whisperx[23].text 是 店鋪就有一個 收尾就有一個上下跟委員報 現在也在研議比如說你有一些自動調劑機那個都是要排裝所以有時候沒辦法算到我們這裡要用加的嘛這樣會影響到採購那個自動調劑的意願所以我們在研究看讓它有一點點
transcript.whisperx[24].start 505.076
transcript.whisperx[24].end 530.591
transcript.whisperx[24].text 淡泊的浪費重疊沒關係這樣才能夠讓整個我們的調劑更安全更自動化也減輕臨床的負擔至於這個個案當然這個是很晚期據我們的了解到目前為止培養的細菌上還沒有完全可以確認當然這個本身的很多的
transcript.whisperx[25].start 533.027
transcript.whisperx[25].end 545.86
transcript.whisperx[25].text 自身的免疫也會受到因為沒幾回啦我看到40幾回因為這有一些有underland disease沒有啦因為我們在屏東要常常處理海洋腐菌那我看這個
transcript.whisperx[26].start 549.062
transcript.whisperx[26].end 577.612
transcript.whisperx[26].text 英雄喔 他是小腿受傷嘛小腿受傷 那就趕快切開 引流 清創我們在海洋附近的切就是抽屎桿 抽屎桿如果沒有就不會活了沒有真的 拜託真的這也要借這個機會呼籲要呼籲就是說因為太投入救災啦稍微沒有去注意到 稍微慢了一點很可惜
transcript.whisperx[27].start 578.823
transcript.whisperx[27].end 602.051
transcript.whisperx[27].text 我覺得在這種救災的地方,如果閒雜人等,不用去那裡倒牢,在那裡讓壯雅的人去就好了,不然大家在那裡插來插去,因為我的印象,像我在林邊那個時候,林邊那個很嗶嗶,非常非常糟糕,你知道在現場有多少人嗎?林邊,兩萬五千人。
transcript.whisperx[28].start 607.004
transcript.whisperx[28].end 622.888
transcript.whisperx[28].text 一天上去便當 兩萬五千粒我在那裡做醫療 我說得很清楚我都不好意思 去別人家便當都在外面住 我上來華谷山的 慈濟的 延遠不絕地上來兩萬五千的
transcript.whisperx[29].start 625.749
transcript.whisperx[29].end 649.512
transcript.whisperx[29].text 效率打折啦所以喔 這裡要呼籲說大家愛心 我們都很欽佩但是如果你沒有專業性的 相信不要去啦去那是真的假造成人的困擾啦所以這裡不是要打大家的士氣是事實上是這樣那這個急性創傷的處理 如果是小腿
transcript.whisperx[30].start 650.653
transcript.whisperx[30].end 671.866
transcript.whisperx[30].text 搞到這樣子我是有點沒辦法接受啦 也很可笑的啦所以在這裡 可能要再加強啦譬如說基層的醫師或者是都要初步傷口創傷處理還有研判啦 這個不是等閒事之啦
transcript.whisperx[31].start 673.347
transcript.whisperx[31].end 674.027
transcript.whisperx[31].text 謝謝蘇清泉委員 謝謝石部長