iVOD / 163825

Field Value
IVOD_ID 163825
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163825
日期 2025-10-07
會議資料.會議代碼 院會-11-4-3
會議資料.會議代碼:str 第11屆第4會期第3次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 院會
會議資料.標題 第11屆第4會期第3次會議
影片種類 Clip
開始時間 2025-10-07T14:30:33+08:00
結束時間 2025-10-07T15:01:07+08:00
影片長度 00:30:34
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/7828e564de0d60cb244bf5a096a0bb44ac1daff01b5f928259e7dd61fff6f801effd30bbe266b48c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉書彬
委員發言時間 14:30:33 - 15:01:07
會議時間 2025-10-07T09:00:00+08:00
會議名稱 第11屆第4會期第3次會議(事由:一、行政院院長、主計長、財政部部長、經濟部部長及相關部會首長列席報告「中央政府因應國際情勢強化經濟社會及民生國安韌性特別預算案」編製經過並備質詢(10月3日)。二、對行政院院長施政報告繼續質詢(10月7日)。三、10月3日上午9時至10時為國是論壇時間。四、10月7日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 7.32096875
transcript.pyannote[0].end 8.16471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 8.87346875
transcript.pyannote[1].end 9.51471875
transcript.pyannote[2].speaker SPEAKER_05
transcript.pyannote[2].start 10.18971875
transcript.pyannote[2].end 11.55659375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 22.60971875
transcript.pyannote[3].end 23.36909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 24.09471875
transcript.pyannote[4].end 24.55034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 27.65534375
transcript.pyannote[5].end 36.02534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 36.78471875
transcript.pyannote[6].end 39.06284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 39.16409375
transcript.pyannote[7].end 42.16784375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 42.62346875
transcript.pyannote[8].end 45.49221875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 45.67784375
transcript.pyannote[9].end 59.63346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 60.07221875
transcript.pyannote[10].end 64.24034375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 64.59471875
transcript.pyannote[11].end 72.22221875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 72.42471875
transcript.pyannote[12].end 94.15971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 94.31159375
transcript.pyannote[13].end 99.57659375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 100.08284375
transcript.pyannote[14].end 118.61159375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 117.31221875
transcript.pyannote[15].end 118.44284375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 118.84784375
transcript.pyannote[16].end 123.48846875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 123.18471875
transcript.pyannote[17].end 124.18034375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 123.70784375
transcript.pyannote[18].end 126.22221875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 125.49659375
transcript.pyannote[19].end 131.53784375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 127.28534375
transcript.pyannote[20].end 129.37784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 131.90909375
transcript.pyannote[21].end 174.33284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 174.56909375
transcript.pyannote[22].end 175.05846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 175.36221875
transcript.pyannote[23].end 176.59409375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 176.64471875
transcript.pyannote[24].end 181.09971875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 181.62284375
transcript.pyannote[25].end 184.23846875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 184.87971875
transcript.pyannote[26].end 185.50409375
transcript.pyannote[27].speaker SPEAKER_04
transcript.pyannote[27].start 186.01034375
transcript.pyannote[27].end 186.28034375
transcript.pyannote[28].speaker SPEAKER_04
transcript.pyannote[28].start 186.43221875
transcript.pyannote[28].end 187.73159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 188.32221875
transcript.pyannote[29].end 191.07284375
transcript.pyannote[30].speaker SPEAKER_04
transcript.pyannote[30].start 188.96346875
transcript.pyannote[30].end 192.89534375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 193.35096875
transcript.pyannote[31].end 194.41409375
transcript.pyannote[32].speaker SPEAKER_04
transcript.pyannote[32].start 193.38471875
transcript.pyannote[32].end 194.66721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 194.66721875
transcript.pyannote[33].end 205.18034375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 205.46721875
transcript.pyannote[34].end 209.87159375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 210.17534375
transcript.pyannote[35].end 223.45596875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 224.29971875
transcript.pyannote[36].end 225.49784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 225.44721875
transcript.pyannote[37].end 226.29096875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 225.63284375
transcript.pyannote[38].end 228.65346875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 227.42159375
transcript.pyannote[39].end 229.56471875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 229.81784375
transcript.pyannote[40].end 230.84721875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 230.00346875
transcript.pyannote[41].end 230.81346875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 230.84721875
transcript.pyannote[42].end 231.45471875
transcript.pyannote[43].speaker SPEAKER_04
transcript.pyannote[43].start 231.45471875
transcript.pyannote[43].end 231.55596875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 231.55596875
transcript.pyannote[44].end 256.05846875
transcript.pyannote[45].speaker SPEAKER_04
transcript.pyannote[45].start 231.65721875
transcript.pyannote[45].end 231.67409375
transcript.pyannote[46].speaker SPEAKER_04
transcript.pyannote[46].start 235.15034375
transcript.pyannote[46].end 235.75784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 235.75784375
transcript.pyannote[47].end 235.80846875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 235.97721875
transcript.pyannote[48].end 236.07846875
transcript.pyannote[49].speaker SPEAKER_04
transcript.pyannote[49].start 236.07846875
transcript.pyannote[49].end 237.27659375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 237.27659375
transcript.pyannote[50].end 237.32721875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 256.24409375
transcript.pyannote[51].end 256.69971875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 257.59409375
transcript.pyannote[52].end 261.88034375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 262.55534375
transcript.pyannote[53].end 273.18659375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 273.62534375
transcript.pyannote[54].end 280.69596875
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 281.32034375
transcript.pyannote[55].end 286.56846875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 287.12534375
transcript.pyannote[56].end 294.68534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 295.52909375
transcript.pyannote[57].end 296.40659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 296.91284375
transcript.pyannote[58].end 303.39284375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 303.81471875
transcript.pyannote[59].end 304.89471875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 305.87346875
transcript.pyannote[60].end 320.04846875
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 320.33534375
transcript.pyannote[61].end 320.82471875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 321.21284375
transcript.pyannote[62].end 321.97221875
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 321.97221875
transcript.pyannote[63].end 322.59659375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 322.07346875
transcript.pyannote[64].end 322.44471875
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 322.73159375
transcript.pyannote[65].end 324.14909375
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 324.50346875
transcript.pyannote[66].end 326.91659375
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 327.76034375
transcript.pyannote[67].end 328.06409375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 328.19909375
transcript.pyannote[68].end 331.21971875
transcript.pyannote[69].speaker SPEAKER_04
transcript.pyannote[69].start 329.43096875
transcript.pyannote[69].end 333.51471875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 333.93659375
transcript.pyannote[70].end 335.37096875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 334.02096875
transcript.pyannote[71].end 336.45096875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 336.56909375
transcript.pyannote[72].end 341.02409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 341.53034375
transcript.pyannote[73].end 342.37409375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 342.52596875
transcript.pyannote[74].end 352.43159375
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 351.72284375
transcript.pyannote[75].end 353.27534375
transcript.pyannote[76].speaker SPEAKER_04
transcript.pyannote[76].start 353.54534375
transcript.pyannote[76].end 354.94596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 356.22846875
transcript.pyannote[77].end 376.36034375
transcript.pyannote[78].speaker SPEAKER_04
transcript.pyannote[78].start 359.75534375
transcript.pyannote[78].end 361.62846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 364.39596875
transcript.pyannote[79].end 365.64471875
transcript.pyannote[80].speaker SPEAKER_04
transcript.pyannote[80].start 375.44909375
transcript.pyannote[80].end 376.30971875
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 376.36034375
transcript.pyannote[81].end 377.62596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 377.62596875
transcript.pyannote[82].end 379.02659375
transcript.pyannote[83].speaker SPEAKER_04
transcript.pyannote[83].start 377.98034375
transcript.pyannote[83].end 381.99659375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 381.23721875
transcript.pyannote[84].end 384.94971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 385.23659375
transcript.pyannote[85].end 390.48471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 391.02471875
transcript.pyannote[86].end 394.65284375
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 393.50534375
transcript.pyannote[87].end 399.34409375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 397.09971875
transcript.pyannote[88].end 397.80846875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 398.83784375
transcript.pyannote[89].end 403.63034375
transcript.pyannote[90].speaker SPEAKER_04
transcript.pyannote[90].start 399.86721875
transcript.pyannote[90].end 400.30596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 404.01846875
transcript.pyannote[91].end 406.06034375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 406.58346875
transcript.pyannote[92].end 414.80159375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 407.52846875
transcript.pyannote[93].end 407.59596875
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 407.59596875
transcript.pyannote[94].end 408.55784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 409.38471875
transcript.pyannote[95].end 409.40159375
transcript.pyannote[96].speaker SPEAKER_04
transcript.pyannote[96].start 409.40159375
transcript.pyannote[96].end 410.76846875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 410.76846875
transcript.pyannote[97].end 410.80221875
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 411.79784375
transcript.pyannote[98].end 412.15221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 413.73846875
transcript.pyannote[99].end 413.75534375
transcript.pyannote[100].speaker SPEAKER_04
transcript.pyannote[100].start 413.75534375
transcript.pyannote[100].end 414.31221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 415.35846875
transcript.pyannote[101].end 416.94471875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 417.87284375
transcript.pyannote[102].end 419.64471875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 420.18471875
transcript.pyannote[103].end 420.84284375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 421.39971875
transcript.pyannote[104].end 421.87221875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 422.54721875
transcript.pyannote[105].end 422.93534375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 423.45846875
transcript.pyannote[106].end 424.85909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 426.39471875
transcript.pyannote[107].end 429.21284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 429.48284375
transcript.pyannote[108].end 431.23784375
transcript.pyannote[109].speaker SPEAKER_04
transcript.pyannote[109].start 431.96346875
transcript.pyannote[109].end 435.55784375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 434.83221875
transcript.pyannote[110].end 437.81909375
transcript.pyannote[111].speaker SPEAKER_04
transcript.pyannote[111].start 435.79409375
transcript.pyannote[111].end 435.82784375
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 438.07221875
transcript.pyannote[112].end 438.27471875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 438.30846875
transcript.pyannote[113].end 440.56971875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 440.85659375
transcript.pyannote[114].end 444.41721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 445.19346875
transcript.pyannote[115].end 448.75409375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 449.22659375
transcript.pyannote[116].end 450.55971875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 450.64409375
transcript.pyannote[117].end 455.68971875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 450.69471875
transcript.pyannote[118].end 450.71159375
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 450.71159375
transcript.pyannote[119].end 451.40346875
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 452.50034375
transcript.pyannote[120].end 465.51096875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 457.10721875
transcript.pyannote[121].end 457.56284375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 460.49909375
transcript.pyannote[122].end 460.71846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 462.05159375
transcript.pyannote[123].end 465.52784375
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 465.52784375
transcript.pyannote[124].end 465.57846875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 465.57846875
transcript.pyannote[125].end 477.62721875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 478.26846875
transcript.pyannote[126].end 482.62221875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 483.41534375
transcript.pyannote[127].end 483.88784375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 484.42784375
transcript.pyannote[128].end 485.65971875
transcript.pyannote[129].speaker SPEAKER_04
transcript.pyannote[129].start 486.85784375
transcript.pyannote[129].end 487.75221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 487.93784375
transcript.pyannote[130].end 489.96284375
transcript.pyannote[131].speaker SPEAKER_04
transcript.pyannote[131].start 489.96284375
transcript.pyannote[131].end 489.99659375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 489.99659375
transcript.pyannote[132].end 490.13159375
transcript.pyannote[133].speaker SPEAKER_04
transcript.pyannote[133].start 490.13159375
transcript.pyannote[133].end 493.81034375
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 494.35034375
transcript.pyannote[134].end 497.06721875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 494.82284375
transcript.pyannote[135].end 500.76284375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 501.42096875
transcript.pyannote[136].end 515.35971875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 515.76471875
transcript.pyannote[137].end 521.31659375
transcript.pyannote[138].speaker SPEAKER_04
transcript.pyannote[138].start 521.31659375
transcript.pyannote[138].end 521.41784375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 521.41784375
transcript.pyannote[139].end 521.46846875
transcript.pyannote[140].speaker SPEAKER_04
transcript.pyannote[140].start 521.46846875
transcript.pyannote[140].end 522.05909375
transcript.pyannote[141].speaker SPEAKER_04
transcript.pyannote[141].start 523.18971875
transcript.pyannote[141].end 525.75471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 523.24034375
transcript.pyannote[142].end 523.76346875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 524.65784375
transcript.pyannote[143].end 525.16409375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 525.75471875
transcript.pyannote[144].end 537.38159375
transcript.pyannote[145].speaker SPEAKER_04
transcript.pyannote[145].start 526.69971875
transcript.pyannote[145].end 528.37034375
transcript.pyannote[146].speaker SPEAKER_04
transcript.pyannote[146].start 528.43784375
transcript.pyannote[146].end 531.17159375
transcript.pyannote[147].speaker SPEAKER_04
transcript.pyannote[147].start 536.63909375
transcript.pyannote[147].end 539.65971875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 539.81159375
transcript.pyannote[148].end 542.44409375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 541.65096875
transcript.pyannote[149].end 550.29096875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 550.54409375
transcript.pyannote[150].end 553.15971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 553.44659375
transcript.pyannote[151].end 554.54346875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 554.76284375
transcript.pyannote[152].end 556.73721875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 557.49659375
transcript.pyannote[153].end 560.68596875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 561.17534375
transcript.pyannote[154].end 565.41096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 566.00159375
transcript.pyannote[155].end 567.01409375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 567.60471875
transcript.pyannote[156].end 580.76721875
transcript.pyannote[157].speaker SPEAKER_04
transcript.pyannote[157].start 580.04159375
transcript.pyannote[157].end 583.33221875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 583.48409375
transcript.pyannote[158].end 597.52409375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 583.72034375
transcript.pyannote[159].end 583.75409375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 583.95659375
transcript.pyannote[160].end 583.97346875
transcript.pyannote[161].speaker SPEAKER_04
transcript.pyannote[161].start 584.00721875
transcript.pyannote[161].end 585.27284375
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 587.46659375
transcript.pyannote[162].end 588.91784375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 593.40659375
transcript.pyannote[163].end 595.04346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 595.31346875
transcript.pyannote[164].end 596.49471875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 598.35096875
transcript.pyannote[165].end 606.02909375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 606.06284375
transcript.pyannote[166].end 609.33659375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 610.38284375
transcript.pyannote[167].end 613.08284375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 613.97721875
transcript.pyannote[168].end 614.46659375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 614.66909375
transcript.pyannote[169].end 630.78471875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 631.15596875
transcript.pyannote[170].end 631.62846875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 633.28221875
transcript.pyannote[171].end 633.51846875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 633.94034375
transcript.pyannote[172].end 638.74971875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 639.30659375
transcript.pyannote[173].end 652.73909375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 652.90784375
transcript.pyannote[174].end 656.78909375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 657.17721875
transcript.pyannote[175].end 661.86846875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 662.20596875
transcript.pyannote[176].end 662.77971875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 663.13409375
transcript.pyannote[177].end 681.89909375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 682.03409375
transcript.pyannote[178].end 690.75846875
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 687.01221875
transcript.pyannote[179].end 687.07971875
transcript.pyannote[180].speaker SPEAKER_04
transcript.pyannote[180].start 690.75846875
transcript.pyannote[180].end 697.76159375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 694.15034375
transcript.pyannote[181].end 694.50471875
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 698.08221875
transcript.pyannote[182].end 703.88721875
transcript.pyannote[183].speaker SPEAKER_04
transcript.pyannote[183].start 704.17409375
transcript.pyannote[183].end 707.38034375
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 708.25784375
transcript.pyannote[184].end 709.65846875
transcript.pyannote[185].speaker SPEAKER_04
transcript.pyannote[185].start 709.96221875
transcript.pyannote[185].end 711.91971875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 710.70471875
transcript.pyannote[186].end 718.33221875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 718.55159375
transcript.pyannote[187].end 719.68221875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 720.07034375
transcript.pyannote[188].end 727.91721875
transcript.pyannote[189].speaker SPEAKER_04
transcript.pyannote[189].start 726.63471875
transcript.pyannote[189].end 731.93346875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 729.79034375
transcript.pyannote[190].end 751.22159375
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 735.81471875
transcript.pyannote[191].end 736.33784375
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 736.57409375
transcript.pyannote[192].end 736.91159375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 745.31534375
transcript.pyannote[193].end 745.50096875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 751.67721875
transcript.pyannote[194].end 759.37221875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 757.85346875
transcript.pyannote[195].end 757.90409375
transcript.pyannote[196].speaker SPEAKER_04
transcript.pyannote[196].start 757.90409375
transcript.pyannote[196].end 763.47284375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 759.82784375
transcript.pyannote[197].end 761.78534375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 761.78534375
transcript.pyannote[198].end 771.62346875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 763.47284375
transcript.pyannote[199].end 763.60784375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 763.62471875
transcript.pyannote[200].end 763.67534375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 763.70909375
transcript.pyannote[201].end 763.75971875
transcript.pyannote[202].speaker SPEAKER_04
transcript.pyannote[202].start 763.75971875
transcript.pyannote[202].end 764.53596875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 764.53596875
transcript.pyannote[203].end 764.58659375
transcript.pyannote[204].speaker SPEAKER_04
transcript.pyannote[204].start 764.58659375
transcript.pyannote[204].end 764.65409375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 764.65409375
transcript.pyannote[205].end 764.73846875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 766.94909375
transcript.pyannote[206].end 767.03346875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 769.73346875
transcript.pyannote[207].end 783.03096875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 783.43596875
transcript.pyannote[208].end 806.33534375
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 794.32034375
transcript.pyannote[209].end 794.67471875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 806.74034375
transcript.pyannote[210].end 826.45034375
transcript.pyannote[211].speaker SPEAKER_04
transcript.pyannote[211].start 826.70346875
transcript.pyannote[211].end 831.39471875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 831.66471875
transcript.pyannote[212].end 831.93471875
transcript.pyannote[213].speaker SPEAKER_04
transcript.pyannote[213].start 831.93471875
transcript.pyannote[213].end 833.25096875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 831.95159375
transcript.pyannote[214].end 838.11096875
transcript.pyannote[215].speaker SPEAKER_04
transcript.pyannote[215].start 836.49096875
transcript.pyannote[215].end 837.28409375
transcript.pyannote[216].speaker SPEAKER_04
transcript.pyannote[216].start 837.68909375
transcript.pyannote[216].end 837.72284375
transcript.pyannote[217].speaker SPEAKER_04
transcript.pyannote[217].start 837.80721875
transcript.pyannote[217].end 837.84096875
transcript.pyannote[218].speaker SPEAKER_04
transcript.pyannote[218].start 837.99284375
transcript.pyannote[218].end 838.75221875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 838.90409375
transcript.pyannote[219].end 846.63284375
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 846.85221875
transcript.pyannote[220].end 850.48034375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 850.69971875
transcript.pyannote[221].end 854.54721875
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 854.80034375
transcript.pyannote[222].end 858.00659375
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 858.05721875
transcript.pyannote[223].end 859.05284375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 859.28909375
transcript.pyannote[224].end 860.63909375
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 860.85846875
transcript.pyannote[225].end 870.03846875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 869.66721875
transcript.pyannote[226].end 870.88221875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 871.01721875
transcript.pyannote[227].end 876.04596875
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 874.03784375
transcript.pyannote[228].end 875.33721875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 875.33721875
transcript.pyannote[229].end 875.40471875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 876.23159375
transcript.pyannote[230].end 883.47096875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 884.51721875
transcript.pyannote[231].end 889.10721875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 889.96784375
transcript.pyannote[232].end 890.84534375
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 889.98471875
transcript.pyannote[233].end 891.01409375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 891.40221875
transcript.pyannote[234].end 892.73534375
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 891.97596875
transcript.pyannote[235].end 892.22909375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 894.20346875
transcript.pyannote[236].end 898.60784375
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 899.56971875
transcript.pyannote[237].end 900.34596875
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 899.63721875
transcript.pyannote[238].end 902.96159375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 902.96159375
transcript.pyannote[239].end 914.50409375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 904.93596875
transcript.pyannote[240].end 905.62784375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 908.22659375
transcript.pyannote[241].end 908.27721875
transcript.pyannote[242].speaker SPEAKER_04
transcript.pyannote[242].start 908.27721875
transcript.pyannote[242].end 908.47971875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 908.47971875
transcript.pyannote[243].end 908.53034375
transcript.pyannote[244].speaker SPEAKER_04
transcript.pyannote[244].start 908.53034375
transcript.pyannote[244].end 908.66534375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 908.66534375
transcript.pyannote[245].end 908.73284375
transcript.pyannote[246].speaker SPEAKER_04
transcript.pyannote[246].start 908.73284375
transcript.pyannote[246].end 908.76659375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 908.76659375
transcript.pyannote[247].end 908.78346875
transcript.pyannote[248].speaker SPEAKER_04
transcript.pyannote[248].start 908.78346875
transcript.pyannote[248].end 908.88471875
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 908.88471875
transcript.pyannote[249].end 909.08721875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 914.95971875
transcript.pyannote[250].end 920.47784375
transcript.pyannote[251].speaker SPEAKER_04
transcript.pyannote[251].start 920.47784375
transcript.pyannote[251].end 923.38034375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 920.49471875
transcript.pyannote[252].end 921.30471875
transcript.pyannote[253].speaker SPEAKER_04
transcript.pyannote[253].start 923.73471875
transcript.pyannote[253].end 933.35346875
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 929.64096875
transcript.pyannote[254].end 941.20034375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 941.74034375
transcript.pyannote[255].end 965.93909375
transcript.pyannote[256].speaker SPEAKER_04
transcript.pyannote[256].start 941.85846875
transcript.pyannote[256].end 943.29284375
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 944.74409375
transcript.pyannote[257].end 945.21659375
transcript.pyannote[258].speaker SPEAKER_04
transcript.pyannote[258].start 945.21659375
transcript.pyannote[258].end 946.66784375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 946.66784375
transcript.pyannote[259].end 946.68471875
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 966.24284375
transcript.pyannote[260].end 974.08971875
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 967.49159375
transcript.pyannote[261].end 968.14971875
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 974.64659375
transcript.pyannote[262].end 977.97096875
transcript.pyannote[263].speaker SPEAKER_04
transcript.pyannote[263].start 977.97096875
transcript.pyannote[263].end 978.05534375
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 978.05534375
transcript.pyannote[264].end 978.22409375
transcript.pyannote[265].speaker SPEAKER_04
transcript.pyannote[265].start 978.22409375
transcript.pyannote[265].end 981.48096875
transcript.pyannote[266].speaker SPEAKER_04
transcript.pyannote[266].start 982.25721875
transcript.pyannote[266].end 987.21846875
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 983.55659375
transcript.pyannote[267].end 984.28221875
transcript.pyannote[268].speaker SPEAKER_00
transcript.pyannote[268].start 984.28221875
transcript.pyannote[268].end 984.41721875
transcript.pyannote[269].speaker SPEAKER_04
transcript.pyannote[269].start 987.28596875
transcript.pyannote[269].end 991.30221875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 990.84659375
transcript.pyannote[270].end 991.60596875
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 992.19659375
transcript.pyannote[271].end 997.07346875
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 997.36034375
transcript.pyannote[272].end 997.81596875
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 998.47409375
transcript.pyannote[273].end 1003.50284375
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 1004.17784375
transcript.pyannote[274].end 1005.30846875
transcript.pyannote[275].speaker SPEAKER_02
transcript.pyannote[275].start 1005.73034375
transcript.pyannote[275].end 1008.02534375
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 1008.16034375
transcript.pyannote[276].end 1011.67034375
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 1012.61534375
transcript.pyannote[277].end 1018.62284375
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 1013.10471875
transcript.pyannote[278].end 1013.17221875
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 1013.22284375
transcript.pyannote[279].end 1013.27346875
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 1018.92659375
transcript.pyannote[280].end 1021.79534375
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 1021.84596875
transcript.pyannote[281].end 1022.50409375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 1023.21284375
transcript.pyannote[282].end 1026.73971875
transcript.pyannote[283].speaker SPEAKER_03
transcript.pyannote[283].start 1026.73971875
transcript.pyannote[283].end 1030.73909375
transcript.pyannote[284].speaker SPEAKER_03
transcript.pyannote[284].start 1031.04284375
transcript.pyannote[284].end 1033.86096875
transcript.pyannote[285].speaker SPEAKER_03
transcript.pyannote[285].start 1034.18159375
transcript.pyannote[285].end 1043.39534375
transcript.pyannote[286].speaker SPEAKER_03
transcript.pyannote[286].start 1043.41221875
transcript.pyannote[286].end 1043.42909375
transcript.pyannote[287].speaker SPEAKER_04
transcript.pyannote[287].start 1043.42909375
transcript.pyannote[287].end 1047.22596875
transcript.pyannote[288].speaker SPEAKER_04
transcript.pyannote[288].start 1047.36096875
transcript.pyannote[288].end 1048.52534375
transcript.pyannote[289].speaker SPEAKER_04
transcript.pyannote[289].start 1048.77846875
transcript.pyannote[289].end 1049.03159375
transcript.pyannote[290].speaker SPEAKER_02
transcript.pyannote[290].start 1049.03159375
transcript.pyannote[290].end 1052.44034375
transcript.pyannote[291].speaker SPEAKER_02
transcript.pyannote[291].start 1052.52471875
transcript.pyannote[291].end 1054.68471875
transcript.pyannote[292].speaker SPEAKER_02
transcript.pyannote[292].start 1055.88284375
transcript.pyannote[292].end 1069.16346875
transcript.pyannote[293].speaker SPEAKER_04
transcript.pyannote[293].start 1062.98721875
transcript.pyannote[293].end 1063.96596875
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 1063.96596875
transcript.pyannote[294].end 1064.10096875
transcript.pyannote[295].speaker SPEAKER_00
transcript.pyannote[295].start 1065.14721875
transcript.pyannote[295].end 1065.48471875
transcript.pyannote[296].speaker SPEAKER_02
transcript.pyannote[296].start 1069.75409375
transcript.pyannote[296].end 1078.83284375
transcript.pyannote[297].speaker SPEAKER_02
transcript.pyannote[297].start 1079.27159375
transcript.pyannote[297].end 1081.60034375
transcript.pyannote[298].speaker SPEAKER_04
transcript.pyannote[298].start 1081.60034375
transcript.pyannote[298].end 1081.61721875
transcript.pyannote[299].speaker SPEAKER_04
transcript.pyannote[299].start 1081.66784375
transcript.pyannote[299].end 1090.15596875
transcript.pyannote[300].speaker SPEAKER_05
transcript.pyannote[300].start 1090.15596875
transcript.pyannote[300].end 1105.17471875
transcript.pyannote[301].speaker SPEAKER_04
transcript.pyannote[301].start 1090.18971875
transcript.pyannote[301].end 1090.20659375
transcript.pyannote[302].speaker SPEAKER_03
transcript.pyannote[302].start 1090.20659375
transcript.pyannote[302].end 1090.27409375
transcript.pyannote[303].speaker SPEAKER_04
transcript.pyannote[303].start 1090.27409375
transcript.pyannote[303].end 1090.29096875
transcript.pyannote[304].speaker SPEAKER_03
transcript.pyannote[304].start 1090.29096875
transcript.pyannote[304].end 1090.32471875
transcript.pyannote[305].speaker SPEAKER_04
transcript.pyannote[305].start 1090.32471875
transcript.pyannote[305].end 1090.34159375
transcript.pyannote[306].speaker SPEAKER_02
transcript.pyannote[306].start 1106.13659375
transcript.pyannote[306].end 1108.68471875
transcript.pyannote[307].speaker SPEAKER_02
transcript.pyannote[307].start 1109.10659375
transcript.pyannote[307].end 1111.11471875
transcript.pyannote[308].speaker SPEAKER_02
transcript.pyannote[308].start 1111.77284375
transcript.pyannote[308].end 1111.78971875
transcript.pyannote[309].speaker SPEAKER_04
transcript.pyannote[309].start 1111.78971875
transcript.pyannote[309].end 1111.95846875
transcript.pyannote[310].speaker SPEAKER_02
transcript.pyannote[310].start 1112.49846875
transcript.pyannote[310].end 1122.11721875
transcript.pyannote[311].speaker SPEAKER_05
transcript.pyannote[311].start 1122.43784375
transcript.pyannote[311].end 1122.99471875
transcript.pyannote[312].speaker SPEAKER_02
transcript.pyannote[312].start 1122.65721875
transcript.pyannote[312].end 1123.50096875
transcript.pyannote[313].speaker SPEAKER_05
transcript.pyannote[313].start 1123.50096875
transcript.pyannote[313].end 1132.05659375
transcript.pyannote[314].speaker SPEAKER_02
transcript.pyannote[314].start 1123.56846875
transcript.pyannote[314].end 1123.58534375
transcript.pyannote[315].speaker SPEAKER_02
transcript.pyannote[315].start 1131.83721875
transcript.pyannote[315].end 1145.25284375
transcript.pyannote[316].speaker SPEAKER_03
transcript.pyannote[316].start 1144.35846875
transcript.pyannote[316].end 1153.87596875
transcript.pyannote[317].speaker SPEAKER_02
transcript.pyannote[317].start 1145.70846875
transcript.pyannote[317].end 1145.97846875
transcript.pyannote[318].speaker SPEAKER_03
transcript.pyannote[318].start 1154.28096875
transcript.pyannote[318].end 1157.30159375
transcript.pyannote[319].speaker SPEAKER_02
transcript.pyannote[319].start 1157.30159375
transcript.pyannote[319].end 1168.20284375
transcript.pyannote[320].speaker SPEAKER_03
transcript.pyannote[320].start 1160.79471875
transcript.pyannote[320].end 1161.57096875
transcript.pyannote[321].speaker SPEAKER_03
transcript.pyannote[321].start 1161.63846875
transcript.pyannote[321].end 1161.73971875
transcript.pyannote[322].speaker SPEAKER_02
transcript.pyannote[322].start 1168.48971875
transcript.pyannote[322].end 1170.39659375
transcript.pyannote[323].speaker SPEAKER_02
transcript.pyannote[323].start 1170.97034375
transcript.pyannote[323].end 1182.96846875
transcript.pyannote[324].speaker SPEAKER_02
transcript.pyannote[324].start 1183.03596875
transcript.pyannote[324].end 1184.23409375
transcript.pyannote[325].speaker SPEAKER_02
transcript.pyannote[325].start 1184.45346875
transcript.pyannote[325].end 1190.35971875
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 1191.33846875
transcript.pyannote[326].end 1199.21909375
transcript.pyannote[327].speaker SPEAKER_02
transcript.pyannote[327].start 1199.50596875
transcript.pyannote[327].end 1201.04159375
transcript.pyannote[328].speaker SPEAKER_02
transcript.pyannote[328].start 1201.91909375
transcript.pyannote[328].end 1209.49596875
transcript.pyannote[329].speaker SPEAKER_02
transcript.pyannote[329].start 1209.90096875
transcript.pyannote[329].end 1234.85909375
transcript.pyannote[330].speaker SPEAKER_02
transcript.pyannote[330].start 1235.12909375
transcript.pyannote[330].end 1237.08659375
transcript.pyannote[331].speaker SPEAKER_02
transcript.pyannote[331].start 1238.33534375
transcript.pyannote[331].end 1272.00096875
transcript.pyannote[332].speaker SPEAKER_02
transcript.pyannote[332].start 1272.42284375
transcript.pyannote[332].end 1273.08096875
transcript.pyannote[333].speaker SPEAKER_02
transcript.pyannote[333].start 1273.65471875
transcript.pyannote[333].end 1280.94471875
transcript.pyannote[334].speaker SPEAKER_02
transcript.pyannote[334].start 1281.13034375
transcript.pyannote[334].end 1283.74596875
transcript.pyannote[335].speaker SPEAKER_02
transcript.pyannote[335].start 1284.06659375
transcript.pyannote[335].end 1299.57471875
transcript.pyannote[336].speaker SPEAKER_03
transcript.pyannote[336].start 1300.78971875
transcript.pyannote[336].end 1306.86471875
transcript.pyannote[337].speaker SPEAKER_03
transcript.pyannote[337].start 1307.23596875
transcript.pyannote[337].end 1308.60284375
transcript.pyannote[338].speaker SPEAKER_03
transcript.pyannote[338].start 1308.83909375
transcript.pyannote[338].end 1313.02409375
transcript.pyannote[339].speaker SPEAKER_03
transcript.pyannote[339].start 1313.71596875
transcript.pyannote[339].end 1319.08221875
transcript.pyannote[340].speaker SPEAKER_03
transcript.pyannote[340].start 1319.31846875
transcript.pyannote[340].end 1320.95534375
transcript.pyannote[341].speaker SPEAKER_03
transcript.pyannote[341].start 1321.42784375
transcript.pyannote[341].end 1332.24471875
transcript.pyannote[342].speaker SPEAKER_02
transcript.pyannote[342].start 1331.38409375
transcript.pyannote[342].end 1357.54034375
transcript.pyannote[343].speaker SPEAKER_03
transcript.pyannote[343].start 1335.67034375
transcript.pyannote[343].end 1336.14284375
transcript.pyannote[344].speaker SPEAKER_03
transcript.pyannote[344].start 1340.20971875
transcript.pyannote[344].end 1341.34034375
transcript.pyannote[345].speaker SPEAKER_02
transcript.pyannote[345].start 1357.70909375
transcript.pyannote[345].end 1362.09659375
transcript.pyannote[346].speaker SPEAKER_02
transcript.pyannote[346].start 1362.26534375
transcript.pyannote[346].end 1365.38721875
transcript.pyannote[347].speaker SPEAKER_02
transcript.pyannote[347].start 1366.33221875
transcript.pyannote[347].end 1366.80471875
transcript.pyannote[348].speaker SPEAKER_02
transcript.pyannote[348].start 1367.05784375
transcript.pyannote[348].end 1367.81721875
transcript.pyannote[349].speaker SPEAKER_02
transcript.pyannote[349].start 1370.71971875
transcript.pyannote[349].end 1379.14034375
transcript.pyannote[350].speaker SPEAKER_03
transcript.pyannote[350].start 1379.61284375
transcript.pyannote[350].end 1387.18971875
transcript.pyannote[351].speaker SPEAKER_03
transcript.pyannote[351].start 1387.40909375
transcript.pyannote[351].end 1396.67346875
transcript.pyannote[352].speaker SPEAKER_03
transcript.pyannote[352].start 1396.79159375
transcript.pyannote[352].end 1401.87096875
transcript.pyannote[353].speaker SPEAKER_02
transcript.pyannote[353].start 1402.32659375
transcript.pyannote[353].end 1409.78534375
transcript.pyannote[354].speaker SPEAKER_01
transcript.pyannote[354].start 1410.71346875
transcript.pyannote[354].end 1420.21409375
transcript.pyannote[355].speaker SPEAKER_01
transcript.pyannote[355].start 1420.28159375
transcript.pyannote[355].end 1425.05721875
transcript.pyannote[356].speaker SPEAKER_01
transcript.pyannote[356].start 1425.73221875
transcript.pyannote[356].end 1432.14471875
transcript.pyannote[357].speaker SPEAKER_02
transcript.pyannote[357].start 1431.40221875
transcript.pyannote[357].end 1433.61284375
transcript.pyannote[358].speaker SPEAKER_01
transcript.pyannote[358].start 1434.16971875
transcript.pyannote[358].end 1440.53159375
transcript.pyannote[359].speaker SPEAKER_02
transcript.pyannote[359].start 1439.94096875
transcript.pyannote[359].end 1448.91846875
transcript.pyannote[360].speaker SPEAKER_02
transcript.pyannote[360].start 1449.49221875
transcript.pyannote[360].end 1462.57034375
transcript.pyannote[361].speaker SPEAKER_02
transcript.pyannote[361].start 1462.65471875
transcript.pyannote[361].end 1475.44596875
transcript.pyannote[362].speaker SPEAKER_02
transcript.pyannote[362].start 1476.00284375
transcript.pyannote[362].end 1485.36846875
transcript.pyannote[363].speaker SPEAKER_02
transcript.pyannote[363].start 1485.57096875
transcript.pyannote[363].end 1499.20596875
transcript.pyannote[364].speaker SPEAKER_01
transcript.pyannote[364].start 1499.74596875
transcript.pyannote[364].end 1503.01971875
transcript.pyannote[365].speaker SPEAKER_01
transcript.pyannote[365].start 1503.79596875
transcript.pyannote[365].end 1531.96034375
transcript.pyannote[366].speaker SPEAKER_00
transcript.pyannote[366].start 1511.54159375
transcript.pyannote[366].end 1511.55846875
transcript.pyannote[367].speaker SPEAKER_02
transcript.pyannote[367].start 1511.55846875
transcript.pyannote[367].end 1512.53721875
transcript.pyannote[368].speaker SPEAKER_01
transcript.pyannote[368].start 1532.02784375
transcript.pyannote[368].end 1532.07846875
transcript.pyannote[369].speaker SPEAKER_02
transcript.pyannote[369].start 1532.07846875
transcript.pyannote[369].end 1542.03471875
transcript.pyannote[370].speaker SPEAKER_01
transcript.pyannote[370].start 1532.24721875
transcript.pyannote[370].end 1532.63534375
transcript.pyannote[371].speaker SPEAKER_02
transcript.pyannote[371].start 1542.87846875
transcript.pyannote[371].end 1556.95221875
transcript.pyannote[372].speaker SPEAKER_01
transcript.pyannote[372].start 1556.64846875
transcript.pyannote[372].end 1556.93534375
transcript.pyannote[373].speaker SPEAKER_01
transcript.pyannote[373].start 1556.95221875
transcript.pyannote[373].end 1557.08721875
transcript.pyannote[374].speaker SPEAKER_02
transcript.pyannote[374].start 1557.08721875
transcript.pyannote[374].end 1559.11221875
transcript.pyannote[375].speaker SPEAKER_01
transcript.pyannote[375].start 1558.62284375
transcript.pyannote[375].end 1579.78409375
transcript.pyannote[376].speaker SPEAKER_01
transcript.pyannote[376].start 1580.22284375
transcript.pyannote[376].end 1586.58471875
transcript.pyannote[377].speaker SPEAKER_01
transcript.pyannote[377].start 1587.09096875
transcript.pyannote[377].end 1590.49971875
transcript.pyannote[378].speaker SPEAKER_02
transcript.pyannote[378].start 1588.15409375
transcript.pyannote[378].end 1588.79534375
transcript.pyannote[379].speaker SPEAKER_02
transcript.pyannote[379].start 1589.23409375
transcript.pyannote[379].end 1590.31409375
transcript.pyannote[380].speaker SPEAKER_02
transcript.pyannote[380].start 1590.60096875
transcript.pyannote[380].end 1597.16534375
transcript.pyannote[381].speaker SPEAKER_01
transcript.pyannote[381].start 1596.32159375
transcript.pyannote[381].end 1611.57659375
transcript.pyannote[382].speaker SPEAKER_02
transcript.pyannote[382].start 1607.66159375
transcript.pyannote[382].end 1610.41221875
transcript.pyannote[383].speaker SPEAKER_02
transcript.pyannote[383].start 1610.64846875
transcript.pyannote[383].end 1613.82096875
transcript.pyannote[384].speaker SPEAKER_02
transcript.pyannote[384].start 1614.61409375
transcript.pyannote[384].end 1618.09034375
transcript.pyannote[385].speaker SPEAKER_01
transcript.pyannote[385].start 1617.31409375
transcript.pyannote[385].end 1619.42346875
transcript.pyannote[386].speaker SPEAKER_01
transcript.pyannote[386].start 1619.45721875
transcript.pyannote[386].end 1624.55346875
transcript.pyannote[387].speaker SPEAKER_02
transcript.pyannote[387].start 1619.50784375
transcript.pyannote[387].end 1621.02659375
transcript.pyannote[388].speaker SPEAKER_02
transcript.pyannote[388].start 1623.65909375
transcript.pyannote[388].end 1627.87784375
transcript.pyannote[389].speaker SPEAKER_01
transcript.pyannote[389].start 1624.99221875
transcript.pyannote[389].end 1625.61659375
transcript.pyannote[390].speaker SPEAKER_02
transcript.pyannote[390].start 1628.21534375
transcript.pyannote[390].end 1641.51284375
transcript.pyannote[391].speaker SPEAKER_01
transcript.pyannote[391].start 1642.20471875
transcript.pyannote[391].end 1650.42284375
transcript.pyannote[392].speaker SPEAKER_02
transcript.pyannote[392].start 1647.45284375
transcript.pyannote[392].end 1651.68846875
transcript.pyannote[393].speaker SPEAKER_03
transcript.pyannote[393].start 1650.42284375
transcript.pyannote[393].end 1650.50721875
transcript.pyannote[394].speaker SPEAKER_02
transcript.pyannote[394].start 1652.22846875
transcript.pyannote[394].end 1652.70096875
transcript.pyannote[395].speaker SPEAKER_02
transcript.pyannote[395].start 1653.40971875
transcript.pyannote[395].end 1655.48534375
transcript.pyannote[396].speaker SPEAKER_02
transcript.pyannote[396].start 1655.70471875
transcript.pyannote[396].end 1657.35846875
transcript.pyannote[397].speaker SPEAKER_03
transcript.pyannote[397].start 1657.64534375
transcript.pyannote[397].end 1669.28909375
transcript.pyannote[398].speaker SPEAKER_03
transcript.pyannote[398].start 1669.39034375
transcript.pyannote[398].end 1679.05971875
transcript.pyannote[399].speaker SPEAKER_02
transcript.pyannote[399].start 1672.95096875
transcript.pyannote[399].end 1675.04346875
transcript.pyannote[400].speaker SPEAKER_02
transcript.pyannote[400].start 1675.53284375
transcript.pyannote[400].end 1682.99159375
transcript.pyannote[401].speaker SPEAKER_02
transcript.pyannote[401].start 1683.27846875
transcript.pyannote[401].end 1683.78471875
transcript.pyannote[402].speaker SPEAKER_03
transcript.pyannote[402].start 1684.71284375
transcript.pyannote[402].end 1687.34534375
transcript.pyannote[403].speaker SPEAKER_02
transcript.pyannote[403].start 1686.70409375
transcript.pyannote[403].end 1692.49221875
transcript.pyannote[404].speaker SPEAKER_05
transcript.pyannote[404].start 1700.47409375
transcript.pyannote[404].end 1700.89596875
transcript.pyannote[405].speaker SPEAKER_02
transcript.pyannote[405].start 1702.39784375
transcript.pyannote[405].end 1719.96471875
transcript.pyannote[406].speaker SPEAKER_00
transcript.pyannote[406].start 1711.88159375
transcript.pyannote[406].end 1712.84346875
transcript.pyannote[407].speaker SPEAKER_00
transcript.pyannote[407].start 1720.26846875
transcript.pyannote[407].end 1726.32659375
transcript.pyannote[408].speaker SPEAKER_00
transcript.pyannote[408].start 1726.63034375
transcript.pyannote[408].end 1735.23659375
transcript.pyannote[409].speaker SPEAKER_02
transcript.pyannote[409].start 1735.13534375
transcript.pyannote[409].end 1739.30346875
transcript.pyannote[410].speaker SPEAKER_00
transcript.pyannote[410].start 1735.25346875
transcript.pyannote[410].end 1735.30409375
transcript.pyannote[411].speaker SPEAKER_02
transcript.pyannote[411].start 1739.72534375
transcript.pyannote[411].end 1751.89221875
transcript.pyannote[412].speaker SPEAKER_03
transcript.pyannote[412].start 1752.34784375
transcript.pyannote[412].end 1761.22409375
transcript.pyannote[413].speaker SPEAKER_03
transcript.pyannote[413].start 1761.44346875
transcript.pyannote[413].end 1774.65659375
transcript.pyannote[414].speaker SPEAKER_03
transcript.pyannote[414].start 1774.87596875
transcript.pyannote[414].end 1790.60346875
transcript.pyannote[415].speaker SPEAKER_03
transcript.pyannote[415].start 1790.85659375
transcript.pyannote[415].end 1798.31534375
transcript.pyannote[416].speaker SPEAKER_02
transcript.pyannote[416].start 1798.92284375
transcript.pyannote[416].end 1806.36471875
transcript.pyannote[417].speaker SPEAKER_03
transcript.pyannote[417].start 1807.25909375
transcript.pyannote[417].end 1809.46971875
transcript.pyannote[418].speaker SPEAKER_03
transcript.pyannote[418].start 1809.73971875
transcript.pyannote[418].end 1816.89471875
transcript.pyannote[419].speaker SPEAKER_02
transcript.pyannote[419].start 1816.30409375
transcript.pyannote[419].end 1817.50221875
transcript.pyannote[420].speaker SPEAKER_03
transcript.pyannote[420].start 1817.80596875
transcript.pyannote[420].end 1828.31909375
transcript.pyannote[421].speaker SPEAKER_05
transcript.pyannote[421].start 1832.21721875
transcript.pyannote[421].end 1833.09471875
transcript.pyannote[422].speaker SPEAKER_05
transcript.pyannote[422].start 1833.41534375
transcript.pyannote[422].end 1835.33909375
transcript.whisperx[0].start 7.369
transcript.whisperx[0].end 11.333
transcript.whisperx[0].text 有請左院長麻煩請左院長備詢劉元豪好
transcript.whisperx[1].start 27.657
transcript.whisperx[1].end 45.343
transcript.whisperx[1].text 今天呢來跟您討論一下台電的資訊用電的資訊那我們看到的是在您看過院長想請問一下您看過在台電的官網的用電資訊嗎我幾乎天天都會看今天的備轉容量率多少
transcript.whisperx[2].start 46.045
transcript.whisperx[2].end 63.858
transcript.whisperx[2].text 非常好我們現在來看一下第一個看到這個是一天的用電資訊只有兩天內的曲線第二我們來看一下全天的各能源的用電的曲線只有當天有這個圖表這部分包括的是台電他最近台電他最不敢
transcript.whisperx[3].start 65.039
transcript.whisperx[3].end 93.074
transcript.whisperx[3].text 貼的24小時的用電的曲線圖因為再生能源在只有24小時的量大概就只有10%而已我們再繼續往下看包括的是備轉的容量率這部分它時間比較多了有112到113年的3年曲線但是瞬間的部分也只能查到1.5個月前的部分的數據卻沒有每天的使用的高峰跟備轉容量率每天的低峰的數據
transcript.whisperx[4].start 94.435
transcript.whisperx[4].end 118.277
transcript.whisperx[4].text 那部分我們看到這裡第四項我們看到是各機組當中的影響倍轉容量率的部分他只有每天的每小時的瞬間那這部分呢經濟部或者是台電他最喜歡是在中午的時候把資料PO出來因為那時候可以看到再生能源非常多的這個發電量就是太陽能源這邊我們再繼續往下看的時候我剛才
transcript.whisperx[5].start 119.237
transcript.whisperx[5].end 141.887
transcript.whisperx[5].text 隨時都有 像我現在手上的就是15.26 今天的備轉容量率他沒有在中午才做 早上在做 晚上我現在沒有做 包括112年到114年我們現在把我剛剛講的部分這部分呈現出來沒有錯 我現在是其實我把它整理出來的那我們現在看看剛才所呈現出來的部分等一下我要讓你看到日本的情況是每次都可以查到的我現在再講講看
transcript.whisperx[6].start 143.348
transcript.whisperx[6].end 158.207
transcript.whisperx[6].text 在這裡我們看到是把剛才我四項的資料都把它彙整起來的時候就得到這樣的資訊就是說台電的這個電網的官網的資訊揭露它其實是並就是兩天的當日的三年內的部分是一個
transcript.whisperx[7].start 159.308
transcript.whisperx[7].end 184.026
transcript.whisperx[7].text 備轉容量率的部分像你剛才說的有到這個情況還有備轉的過去的用電資料是記錄到上個月例如說我今天用的我今天10月7號我實際上看到歷史性的記錄的完整的部分只看到今年的8月31號這部分就想要請問的這樣的一個台電官網資訊街道是否符合一個保障民眾基本知情權呢
transcript.whisperx[8].start 185.107
transcript.whisperx[8].end 204.859
transcript.whisperx[8].text 請問院長他每天都有公佈啊你每天都有公佈歷史資料我記得是日間封是有好 沒關係因為你現在講片段資料我剛才呈現出來是不夠完整的這邊我們繼續往下看現在我們現在講的是一個9月16號到9月17、18號連續三天的用電封負載這部分你現在已經絕對查不到啦
transcript.whisperx[9].start 210.262
transcript.whisperx[9].end 223.076
transcript.whisperx[9].text 那我們看到的是在9月16、17、18三天喔這個資訊你現在絕對是查不到在官網當中絕對現在是查不到那請問一下院長你知道9月17號的夜間尖峰的備轉容量率是多少嗎
transcript.whisperx[10].start 224.569
transcript.whisperx[10].end 239.616
transcript.whisperx[10].text 9月17號 你應該不知道那當然我要去查一下 現在不可能知道部長知道嗎 郭部長你知道嗎好 我現在跟你講 我現在呈現出來就是三天的時候呢 黃色是供電吃緊 綠色是充電17號是充綠的
transcript.whisperx[11].start 241.837
transcript.whisperx[11].end 254.591
transcript.whisperx[11].text 18號呢是吃緊的三天之內卻有一天的話是是一個充裕的情況那被轉容量率那天平常都是那三天的八十八十十點六一到六點一一你可以看到這實際上面的數據是這樣子好
transcript.whisperx[12].start 257.642
transcript.whisperx[12].end 285.474
transcript.whisperx[12].text 我們繼續往下看這邊我們就想到這邊這有一個情況是因為三天的時間當中兩天是用電吃緊黃色一天是綠色是用電的一個是充裕的那我們就想問一下請問在這個情況之下你知道當天的被轉容量率在那天的用電情況是怎麼樣的嗎當天隨時隨地都有那個數據會出來你如果看手機也會顯現
transcript.whisperx[13].start 287.199
transcript.whisperx[13].end 304.586
transcript.whisperx[13].text 沒有 那我們現在因為要查資料我們要做論證需求這是一般人要了解用電的需求狀況繼續往下看這一張圖看得很清楚這一張圖裡面是9月17號緊急跟備用機組的使用狀況大家可以看到是
transcript.whisperx[14].start 305.862
transcript.whisperx[14].end 306.603
transcript.whisperx[14].text 因為那時候南部的興達機組出了問題
transcript.whisperx[15].start 328.828
transcript.whisperx[15].end 354.56
transcript.whisperx[15].text 所以備用的機組就要啟動啊那這樣好玩喔 如果沒有問題都不用啟動部長你現在看看喔 9月9號發生新打對不對那可是9月16號的時候是吃緊的可是9月17號確實充裕的喔 9月18號又是吃緊的可是9月17號就特別 我們才想要來看看因為那時候林口的機組出了問題
transcript.whisperx[16].start 356.294
transcript.whisperx[16].end 377.152
transcript.whisperx[16].text 對沒錯 但是更重要的是林口機組出去的問題可是核二核三廠的清油機組卻全開你知道嗎這邊全開 我現在只讓大家知道這個全開核電廠裡面的清油機組也全開了這是非常緊急需要的時候才開的因為林口電廠出了問題
transcript.whisperx[17].start 379.494
transcript.whisperx[17].end 403.12
transcript.whisperx[17].text 供電正常我們就把它提升可是為什麼9月9月開始9月16、18確實吃緊的情況9月17確實出現到一個充裕的情況這是我們繼續再往下看9月9號的時候是興達出了問題那中間我們有些備用基礎是沒有問題但是我們現在看看興達的部分就是我現在想說的興達這邊您說的是興達他有
transcript.whisperx[18].start 406.701
transcript.whisperx[18].end 431.042
transcript.whisperx[18].text 我們再看看興達的燃煤電廠喔3號4號這個是備用機組對不對可是你看看他發電的時間什麼時候開始的臨時 凌晨就開始啦所以請問發電機組興達電廠的燃煤機組是備用機組他什麼時候才可以開啊
transcript.whisperx[19].start 431.974
transcript.whisperx[19].end 448.231
transcript.whisperx[19].text 就去備用的時候電力假如說我們要供電正常對 他都需要的是在需要在百分之八以下對不對可是你的燈是綠色的喔不要忘記喔你當天的燈是綠色的喔你的綠色你為什麼需要開呢如果是百分之八的話為什麼需要開勒
transcript.whisperx[20].start 449.392
transcript.whisperx[20].end 477.383
transcript.whisperx[20].text 這就是大問題啊我們在另外看到是部長這是事實我就是要出現出來你不是講到實情我們繼續往下看燃煤機組跟天然氣有點不太一樣燃煤可能它的熱氣是比較強所以這邊是沒有錯燃煤機組就是需要燃煤機組就是需要在備轉容量率8的時候才會開嘛對不對可是你是綠燈喔10%以上為什麼要開呢這就是有問題的地方我們繼續往下看
transcript.whisperx[21].start 478.463
transcript.whisperx[21].end 493.469
transcript.whisperx[21].text 9月17號你剛才有說的有些其他機組這部分那我們再生能源不是很棒嗎這部分再生能源有出現狀況嗎再說一次再生能源的基礎再生能源就是如果是太陽能光電就是白天
transcript.whisperx[22].start 495.737
transcript.whisperx[22].end 520.564
transcript.whisperx[22].text 對 非常好 我們繼續往下看可是整個部分就跟大家講了所有包括興達電廠的1234號緊急備用跟備用全部開了還包括的是核二廠核三廠的緊急的清油備用基礎也全部開了才得到綠色的這個結果那表示什麼 就是缺電啊可是缺電你們去還是成立一個綠色的燈飾站
transcript.whisperx[23].start 523.728
transcript.whisperx[23].end 529.653
transcript.whisperx[23].text 領口的領部基礎跟行囊的基礎都是故障的情況下整個特殊的狀況它是一個特殊狀況包圍紅那段時間都供電正常
transcript.whisperx[24].start 539.921
transcript.whisperx[24].end 560.718
transcript.whisperx[24].text 沒有任何缺電的問題事實上面我用資料會說話請重視你們資料所呈現的數據這部分所以9月17號備轉容量綠燈能夠撐起來的就是因為剛才說的核電廠的清油機組還包括興達電廠的燃油機組123號機備轉容量的緊急備轉的通通都開始用了才達到這個效果
transcript.whisperx[25].start 566.102
transcript.whisperx[25].end 594.627
transcript.whisperx[25].text 這就是實情啊所以這部分如果我們不知道這些情況的話我們根本就不知道台電在就是會出現到把該開的部分實行再告訴大家我們繼續再看到有些台電的最重要的任務就是要供電正常對 但是還是必須要合法的情況你們用掩蓋的數據去讓大家以為是供電正常事實上不是的你們在掩蓋缺電的成果
transcript.whisperx[26].start 595.608
transcript.whisperx[26].end 609.17
transcript.whisperx[26].text 決定的結果我們繼續往下看在電網的部分我們看到的是現在如果要看過去的電力供需的部分的時候可以看到在目前10月7號只可以看到過去只看到
transcript.whisperx[27].start 610.664
transcript.whisperx[27].end 631.234
transcript.whisperx[27].text 8月31號最早的因為呢供應的資訊是說呢並沒有完整的平時完整資料是4月中旬才能夠更新所以我10月15號之後才能知道9月份的資料因此我剛才大家知道了9月9號清達電廠爆炸了9月17號我剛才舉的例子當中在
transcript.whisperx[28].start 633.254
transcript.whisperx[28].end 661.51
transcript.whisperx[28].text 在所謂的這個容量的部分的時候你就發現到它其實是是用電應該是吃緊的但是卻呈現一個綠燈狀況這就是出現了很大的問題資訊的不透明讓我們達到了一個沒辦法真正就落實到一個真正的政策的問題我們再繼續往下看這個地方我就要用到的其他國家的日本的日本大家看一下日本東京電力公司它裡面可以看到的是
transcript.whisperx[29].start 662.27
transcript.whisperx[29].end 686.355
transcript.whisperx[29].text 當然把今日的電力使用的預測率啊把需求的高峰跟使用率的高峰就把它呈現出來那我們繼續再往下看的時候他甚至可以馬上的可以看到在9月的時候的部分都可以呈現出來不像我剛才所說的目前我們在台電的官網當中你要查9月的資料在瞬間的或者是在容量的部分上是有問題的
transcript.whisperx[30].start 687.595
transcript.whisperx[30].end 709.027
transcript.whisperx[30].text 這部分我想要以他人知識來做一下我想過去的資料怎麼樣呈現我覺得我們可以來討論但是我跟委員報告就是說當初這個備轉容量率我們最主要的用意是說當天到底會不會供電正常這個是最關鍵的如果今天我們供電正常以後事實上就表示沒有問題了
transcript.whisperx[31].start 710.766
transcript.whisperx[31].end 730.598
transcript.whisperx[31].text 但是每一項的東西每一項的備轉都要等等你必須跟大家實行如果你都這樣做的話就會發生像京達的火力發電天然氣的防電掌你們在試運轉都刺上你們就等下運到一個加快馬力所出現的一個效果出來就爆炸了我們看怎麼呈現我們來討論所以我還跟你講說如果
transcript.whisperx[32].start 732.419
transcript.whisperx[32].end 750.813
transcript.whisperx[32].text 這邊我很高興說部長你有呈現到說這個資料其實你們都有嗎這些部分就是公開的透明呈現就是想跟部長院長也請教的是在於說這種公開的知情權是非常重要的因為你要訂定一個良好的有效率的能源發電政策就必須要這樣子出現
transcript.whisperx[33].start 752.038
transcript.whisperx[33].end 774.01
transcript.whisperx[33].text 謝謝委員的用心我們整天今天各機組的發電量他都會很詳細的列在上每天都有因為我們最關心的是當下到底會不會我們要了解是今天的狀況要有供電穩定那委員希望說你查詢到過去一段時間以來過去要長期的了解讓民眾了解正確的
transcript.whisperx[34].start 775.01
transcript.whisperx[34].end 803.139
transcript.whisperx[34].text 電力政策產能的呈現我需要的是大家知道不是我當立法委員我才要去問政才知道每一個人都可以關心到我的電力包括的是如果NVIDIA輝達他要來用電包括供電的需求每年都要成長到1.8度1.8%到2%的時候那你的用電怎麼不夠難怪各界的國外的投資者都會注意到說你用電現在已經呈現到是一個國安問題啦用電的能源國安的問題是這麼呈現的就是因為這樣子而來的
transcript.whisperx[35].start 804.019
transcript.whisperx[35].end 826.13
transcript.whisperx[35].text 所以這部分的需要因為過去你們只敢備轉容量率高這個部分都是個假象這都是假象開綠燈其實是不是正確的那你知道我就繼續往下去看了好當然我剛才聽到說院長你說你會說限期改善要台電的網站公開透明其實像其他該有的都放上去事實上可以嗎
transcript.whisperx[36].start 826.71
transcript.whisperx[36].end 843.418
transcript.whisperx[36].text 我說real time都有但是就是過去的資料怎麼呈現那個我們看看他必須是要累積的部分在呈現的日本可以 我們有離他更遠嗎我們是AI大國吧部長 院長 院長請你在這邊可以承諾嗎我們應該把這種公開透明的資訊查詢機制讓他更開 公開透明
transcript.whisperx[37].start 846.86
transcript.whisperx[37].end 867.217
transcript.whisperx[37].text 好謝謝委員關心整個能源的政策如果能夠提供更精確而且有一段時間讓大家能夠做參考來比較的話我認為這也是我們開放政府資料治理應該做的事情我請台電能夠進行研究但是我們跟日本到底不是用同一個模組同一個軟體所以不可能完全一樣用我們的方式盡量把過去的資料讓
transcript.whisperx[38].start 867.978
transcript.whisperx[38].end 892.529
transcript.whisperx[38].text 報告委員好 任何人可以公開來查詢什麼時候什麼時候今年年底應該可以吧其實你們之下都有吧只是什麼時候放上去而已嘛 對不對好 謝謝我們繼續往下看喔這邊我就是要詢問的是下面更重要的一個問題就是火力的主義機組轉備任務緊急的時候請問有沒有法源請問有沒有法源有 哪一個法源
transcript.whisperx[39].start 894.624
transcript.whisperx[39].end 914.202
transcript.whisperx[39].text 是這個嗎 環評承諾條件嗎空氣污染排放標準嗎是這些嗎空污法也有依據的沒有 那個空污法也是從環境地方空污這邊去呈現出來了沒有直接的法律的依據 沒有所以這部分您才包括
transcript.whisperx[40].start 915.223
transcript.whisperx[40].end 941.364
transcript.whisperx[40].text 剛才我們看到的核電廠的幾個清油機組也都是在用了沒有 譬如說像那個興達燃煤這個一年當中可以緊急備用多少小時 724個小時如果我記得沒錯的話請你知道這邊是依照電力設施的裡面的空氣污染排放標準是行政命令啊 不是法啊那現在我們也會遵守啊
transcript.whisperx[41].start 942.365
transcript.whisperx[41].end 962.343
transcript.whisperx[41].text 他不是法 他是更一級的規定而已我現在跟大家講的是尤其是這個部分的興達電廠裡面的緊急備用機組跟備用機組當中我們在台電的官網當中其實沒有真正看到資料而是在高雄市環保局專區資料裡面才有啊台電是
transcript.whisperx[42].start 966.306
transcript.whisperx[42].end 981.299
transcript.whisperx[42].text 台電是一個堂堂正正的國營企業為什麼是由地方政府來去決定他到底是一個是一個備用機組在什麼狀態的情況之下呢因為他們要同意我們才可以
transcript.whisperx[43].start 982.681
transcript.whisperx[43].end 1011.42
transcript.whisperx[43].text 這個緊急備用基礎因為他要算在722小時之內所以他要累計計算是不是有超過超過的話重點是董院長您是學法律的應該知道像這邊我們都甚至跟他講一件事情當核電廠的研議他如果還要繼續發展的他都有一個核子設施反應器的管制法嘛對不對這部分都是法那如果你要你要涉及到的是
transcript.whisperx[44].start 1012.681
transcript.whisperx[44].end 1022.026
transcript.whisperx[44].text 精打火力電廠的部分有關研議的部分研議的部分他轉成緊急備轉基礎對不對是不是也應該要有一個
transcript.whisperx[45].start 1023.254
transcript.whisperx[45].end 1048.263
transcript.whisperx[45].text 法源依據呢?是法律的依據呢?要專法來決定呢?依照剛剛部長的答覆他現在我們即使是一個命令那我們也是完全遵守這個命令的內容所以一個備用機組何時該啟動何時必須啟動一個年當中他能夠啟動多少小時這個都是明明白白規定的很實的而且他有規定就是說在空污期間是不能運轉的我們也會遵守
transcript.whisperx[46].start 1048.863
transcript.whisperx[46].end 1053.674
transcript.whisperx[46].text 好 這部分這就是要跟部長跟院長交換意見
transcript.whisperx[47].start 1055.999
transcript.whisperx[47].end 1081.121
transcript.whisperx[47].text 你們用的是環評的承諾條件還包括是空氣污染排放標準也許是在空氣污染法環境部長也上來了可是這麼涉及到我們的人民的健康的部分如果這個資訊沒有公開尤其沒有法律的依據甚至這個公告完全是由地方政府來決定的話經濟部長你不會是失職嗎你把這個權利讓地方政府去決定嗎
transcript.whisperx[48].start 1081.761
transcript.whisperx[48].end 1109.913
transcript.whisperx[48].text 所以我剛剛回答這個委員的想法是說這是我記得啦我記得應該是好像空污法之下包委員其實兩個一個是環評他們要興建的時候要通過環評的決定那他的承諾就變成是他一定要去照這個營運來遵守那空污法是相對的他如果是緊急備用機組就720個小時是空污法裡面規定的好 但是最重要的是剛才的3號跟4號機是備用機組嗎
transcript.whisperx[49].start 1112.683
transcript.whisperx[49].end 1130.894
transcript.whisperx[49].text 對嘛 商高市場是非常基礎那商高市場他必須到8%才用嘛 對不對8% 備轉容率在8%以下的時候才有可是剛才的 我剛才說9月17號就不是嘛還在綠燈嘛他們其實任何一個台電運轉的時候前一天就要預估今天的備轉容率多少你說的是實際上執行的多少這兩個意義是不一樣的
transcript.whisperx[50].start 1132.256
transcript.whisperx[50].end 1153.015
transcript.whisperx[50].text 對 所以我的才呈現出來我都要凸顯的我們現在台電的官網的用電資料並不是完全真正的實行你就把預測的部分要放進來了這樣是不對的才想說剛剛院長有承諾那就好了他的備轉就是希望說不要讓他降到安全數字以下所以他預估之後他認為我要提前作業這個沒有什麼不對
transcript.whisperx[51].start 1154.87
transcript.whisperx[51].end 1168.75
transcript.whisperx[51].text 終極目標在於穩定跟供電無虞你們這樣用預備的部分就是模糊大家的視聽的啦我跟你講這些部分我們因為部長承諾我們就必須再繼續再往下去看大家現在更重要想要就是針對的是
transcript.whisperx[52].start 1171.013
transcript.whisperx[52].end 1188.413
transcript.whisperx[52].text 院長你在做一個能源的一個行政院長嘛就在說非核家園政策我們知道看到的是有些的能源的再生能源的配比有事實上是有跳票嘛因為明年才要達到2020%對不對好那另外電力供需的部分的缺口也呈現喔包括這次的興達電廠的
transcript.whisperx[53].start 1191.735
transcript.whisperx[53].end 1200.153
transcript.whisperx[53].text 煤氣的部分也是就是因為他發生火災的他到明年才達到對不對但是還有供電的需求是不是也是一直到每年大概成長1.8
transcript.whisperx[54].start 1202.154
transcript.whisperx[54].end 1221.428
transcript.whisperx[54].text 以上的用電成長率對不對這是都是很大的一個需求喔還有排碳政策這部分國際趨勢我們看一下那政府呢他已經推動了2.0的這個政策是好事情但是呢想要跟的是院長你交換的意見是過去是R100可是這部分只是商業策略啊還有CFE
transcript.whisperx[55].start 1222.989
transcript.whisperx[55].end 1236.894
transcript.whisperx[55].text 24小時7天全時的武漢的這個一個國際政策部分啊這才是更重要因為他就是聯合國的而且是國際的企業當中最重要的部分的他在推動的你如果還要談到過去你只談到的
transcript.whisperx[56].start 1238.001
transcript.whisperx[56].end 1264.896
transcript.whisperx[56].text 在針對海灘政策你還只講到說再生能源事實上是不夠的我們再繼續往下看國際趨勢當中三十二兩百多個國家裡面三十二個國家是用核能 核綠一起在這邊的那我現在就是提供的一個重點說如果深境造成這樣一個缺電的情況之下其實是一種政治的作為因為我們走向反而家園了這種情況您還是目前民進黨政府還是推向的一個政治的作為才讓到現在的一個我剛才所說的9月17號那個部分的
transcript.whisperx[57].start 1265.756
transcript.whisperx[57].end 1283.285
transcript.whisperx[57].text 這種所謂這種的缺電的吃緊的用電吃緊就是呈現出來的所以特別希望跟他講左院長尤其在823的公投決定之後希望說你過去的1.0的政策的通通都是在修修補補東補一個西補一個那希望是說
transcript.whisperx[58].start 1284.586
transcript.whisperx[58].end 1299.28
transcript.whisperx[58].text 您有一個政治家或者是一個對全國的全世界在能源上面的一個重點呢就是說以那個我能夠呈現出佐隆大2.0的部分全新的去做一個系統性的政策能源的一個規劃您覺得你的方向上是可以進行的嗎
transcript.whisperx[59].start 1300.814
transcript.whisperx[59].end 1320.536
transcript.whisperx[59].text 我們在新的能源政策總統指示的2.0裡面剛剛委員已經把它秀出來了那個就是現在國家很具體的一個方向發展多元的綠能深度節能 科技儲能而且要加強電網韌性現在就是往這個方向在走我們也有政策 我們也有經費我們也有執行的期程都有至於您說的非核家園
transcript.whisperx[60].start 1321.477
transcript.whisperx[60].end 1334.41
transcript.whisperx[60].text 但當初修法之後我們已經沒有那個時間上的限制但是我們認為傳統的核能對未來的子孫還是很大的這個負擔所以有新式的核能你沒有展上實質上的居修啊32國家裡面包括日本包括南韓
transcript.whisperx[61].start 1336.892
transcript.whisperx[61].end 1365.075
transcript.whisperx[61].text 包括的是美國這邊都已經往這邊去進行了美國的核能部門還可以幫助我們去解決到我們今天的貿易逆差的問題所以請你好好在想著看起來您是不想要負政治責任啦2.0也不想做啦我們就看看未來在明年的時候看看總統在政府這邊的2.0政策能不能出現如果沒有我真的覺得你要負起你的政治責任了好現在這部分能源部議題我們告一個段落我們現在繼續往下看在部分在請的是教育部教育的議題請教育部長
transcript.whisperx[62].start 1367.163
transcript.whisperx[62].end 1381.012
transcript.whisperx[62].text 教育部長教育議題上面我們看到的是一個教師荒這部分請問院長您對於這個教師荒會帶來什麼樣的影響您有什麼看法我們當然最近幾年一直在充實
transcript.whisperx[63].start 1381.997
transcript.whisperx[63].end 1409.609
transcript.whisperx[63].text 整個教育的經費讓他達到我們憲法上的一個大家過去的要求那也因為如此我們對教師的福利也持續的在做一些有效的增進我們也強化整個校園的教學的品質跟環境那對教師的任用我想教育部也一直在做多項的努力是不是請部長來說明好 那當然我想問一下部長我就是也要請問鄭部長就在說您認為教師荒是什麼因素造成的
transcript.whisperx[64].start 1410.848
transcript.whisperx[64].end 1424.327
transcript.whisperx[64].text 我想感謝委員關心中小學老師確實因為少子化過去各縣市我進來的時候事實上幾年前大概各縣市因為擔心縣市的老師
transcript.whisperx[65].start 1425.822
transcript.whisperx[65].end 1447.953
transcript.whisperx[65].text 少子化以後減班所以老師要重新做一些所以你認為是少子化的影響而已嗎我是說這是一個原因當然另外一個是產業上的一些原因我們繼續再往下看因為時間上面有限你剛才講到少子化跟產業上面的需求是重要的不過我們看到的是
transcript.whisperx[66].start 1449.534
transcript.whisperx[66].end 1475.227
transcript.whisperx[66].text 暑假結束之前你們發了新聞稿當中說缺額本來是25號的時候2600人後來變成到1429人我們後來又變成說在開學前的時候僅剩下276人但是實際上面的情形我們看到了我自己在國教署的網站當中就看到是很多的缺額都還在這部分看起來是一個數字有美化都是可能把
transcript.whisperx[67].start 1476.107
transcript.whisperx[67].end 1502.562
transcript.whisperx[67].text 行政的這個責任教學的責任就給其他人去兼職了啦至少讓學生有做這可以考慮到是有這樣的情形那我們現在看到這個缺額這部分的都還有都還有這麼多齁這個情況實質上的缺額我們看到的是我自己都看到網站上到10月份都還在爭代理教師的這個或是正式教師的總共缺額是581名那現在怎麼樣解決這個問題呢跟委員報告全國中小學有超過20萬人
transcript.whisperx[68].start 1503.854
transcript.whisperx[68].end 1531.382
transcript.whisperx[68].text 那因為各縣市還是我剛才講為了他們自己各控管8%以8%來講這個銀額已經超過了81是非常少那我同意因為產業上的一個這個蓬勃的一個發展包含待遇所以有部分類科還有部分偏鄉的地方他確實在聘用老師是比較辛苦的那在這個8%的一個控管裡面
transcript.whisperx[69].start 1532.723
transcript.whisperx[69].end 1561.245
transcript.whisperx[69].text 你認為說這樣是可以的我就再繼續往下看去上個禮拜的時候其實全教總有提出五個字的訴求在五個訴求當中有部分我看到國教署也有在接見這部分的限時問題上面我想包括行政減量代理教師權益職務加急這部分還有校園單數的問題我上次也聽到您到辦公室來講單數的問題到年底或之前會解決對不對有一個方向校士會議我們會讓他能夠有一個更
transcript.whisperx[70].start 1561.966
transcript.whisperx[70].end 1586.322
transcript.whisperx[70].text 更好的一個這個整個這個運作的程序也就是說我們希望把爛數的這一塊能夠先取消能夠減少因為從我們過去真正能夠真正被進入到那些這個不是任教師的基本上他都是具名投訴的那我們以今年來看有1300多位大部分都是
transcript.whisperx[71].start 1587.182
transcript.whisperx[71].end 1613.389
transcript.whisperx[71].text 非居民 也就是我們讓會非常多的一個部長 你在很多的教師的努力之下 抗議之下你有做這個方向學習我覺得這個是實在肯定的我想那不是教師的抗議是教育部本來我們在許多的這些相關法令我們也了解 也跟地方做許多的座談了解老師跟校長親家長的一個聲音我們做滾動式的修正修法這邊是不是年底的時候要確定可以出來
transcript.whisperx[72].start 1614.959
transcript.whisperx[72].end 1638.867
transcript.whisperx[72].text 關於在校士會議在高中老師以下的這個這個部分我們年底一定會我們事實上現在已經有初步的一個修訂了一個另外一個很重要的問題院長教育的問題是國本真的要考慮到的是在9月28日出現的那非常多的民眾因為連師培生涯也不願意去再繼續留在教育界當後輩的老師的有沒有考慮到要做開國師會議教育的國師會議
transcript.whisperx[73].start 1642.248
transcript.whisperx[73].end 1656.522
transcript.whisperx[73].text 我想教育的一個國師會議如果它只是一個大敗敗 那就看你的誠心誠意啦院長院長 我想要請院長回答一下院長 國師教育會議百年大計有沒有機會可能
transcript.whisperx[74].start 1657.783
transcript.whisperx[74].end 1676.507
transcript.whisperx[74].text 教育部如何跟地方政府一起跟民間的團體跟教育團體一起來商討一個現在這幾個問題解決的方式如果教育部能夠做這樣的工作我非常的支持但不必叫做什麼國事會議他只要能夠針對問題來解決就好就希望繼續再監督沒有到動搖國本的狀況您認為還是還沒有到動搖國本的狀況就對了是吧
transcript.whisperx[75].start 1684.721
transcript.whisperx[75].end 1691.964
transcript.whisperx[75].text 我們不會讓教育動搖那我現在請 謝謝教育部長那我現在請李洋運動部長上台 謝謝
transcript.whisperx[76].start 1702.649
transcript.whisperx[76].end 1719.158
transcript.whisperx[76].text 先請院長就先你回答一下好了啦這部分其實您請的李洋當部長我覺得是一個非常有遠見的一個做法啦這部分值得肯定那現在李洋部長來了就說部長您對於體育界你有六大具體措施您對體育界有什麼樣的改革規劃
transcript.whisperx[77].start 1720.305
transcript.whisperx[77].end 1738.978
transcript.whisperx[77].text 我們運動部最重要當然是全民運動落實多元平權以及永續發展的價值那當然我這邊要引用一下鄭麗君副院長我認為鄭麗君副院長說過步步都是文化部那我們認為步步都是運動部好 所以就是需要很多步步都需要互相的融合
transcript.whisperx[78].start 1739.798
transcript.whisperx[78].end 1751.685
transcript.whisperx[78].text 合作嘛對不對好那這樣子請問院長您對於新上任這個里昂部長的期許還有運動界的改革方向像全民的運動這部分還有國際的方向你有沒有什麼樣的期許
transcript.whisperx[79].start 1752.503
transcript.whisperx[79].end 1772.098
transcript.whisperx[79].text 全民運動全民體育運動競技國際事務以及未來舉辦大型的以台灣元素的國際比賽以及適應運動適應體育等等都是李洋部長我們在第一次交換過意見當中他所提出的種種的想法我認為李部長一個最大的優點是他來自體育界食物界他有
transcript.whisperx[80].start 1773.078
transcript.whisperx[80].end 1796.854
transcript.whisperx[80].text 現役國手最好的經驗他知道我們的訓練中心該怎麼改革他知道現在單項協會該怎麼改革他知道怎麼樣訓練更年輕的下一輩的國家的體育好手他知道怎麼樣推動到整個社區教育跟著全民運動上面去而且另外一個重點是他沒有包袱我也不要給他任何的包袱我讓他盡量發揮他的想像的空間用新的觀念來帶領這個新的運動部
transcript.whisperx[81].start 1798.971
transcript.whisperx[81].end 1827.824
transcript.whisperx[81].text 好 非常期待未來有繼續這樣的一個表現不過現在運動部的員還沒有徵補完那什麼時候會徵補完畢呢新成立一個部會都有這樣的一個過渡的時機那現在他已經徵補大概一半人接近到年底的話那個運動部有六成六成以上而已啊因為我們可以從各部調來我們可以外邊來招聘這個都需要有一點時間來討論但是主要的這幾個帶領運動部裡面的次長 司長 署長我們都已經訂
transcript.whisperx[82].start 1832.247
transcript.whisperx[82].end 1833.837
transcript.whisperx[82].text 好謝謝 謝謝劉淑彬委員執行