iVOD / 163810

Field Value
IVOD_ID 163810
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163810
日期 2025-10-03
會議資料.會議代碼 院會-11-4-3
會議資料.會議代碼:str 第11屆第4會期第3次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 院會
會議資料.標題 第11屆第4會期第3次會議
影片種類 Clip
開始時間 2025-10-03T15:50:05+08:00
結束時間 2025-10-03T16:05:56+08:00
影片長度 00:15:51
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/095f1cfadbf5b890004e6362ffda4172704543300bdabf028d97010e5f6ab85c44d40c79ee0f93675ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林德福
委員發言時間 15:50:05 - 16:05:56
會議時間 2025-10-03T09:00:00+08:00
會議名稱 第11屆第4會期第3次會議(事由:一、行政院院長、主計長、財政部部長、經濟部部長及相關部會首長列席報告「中央政府因應國際情勢強化經濟社會及民生國安韌性特別預算案」編製經過並備質詢(10月3日)。二、對行政院院長施政報告繼續質詢(10月7日)。三、10月3日上午9時至10時為國是論壇時間。四、10月7日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 17.46284375
transcript.pyannote[0].end 21.22596875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 21.81659375
transcript.pyannote[1].end 23.03159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 23.31846875
transcript.pyannote[2].end 26.49096875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 26.49096875
transcript.pyannote[3].end 27.85784375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 27.85784375
transcript.pyannote[4].end 27.89159375
transcript.pyannote[5].speaker SPEAKER_04
transcript.pyannote[5].start 35.50221875
transcript.pyannote[5].end 36.12659375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 36.12659375
transcript.pyannote[6].end 36.98721875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 37.74659375
transcript.pyannote[7].end 43.83846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 44.44596875
transcript.pyannote[8].end 46.97721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 47.51721875
transcript.pyannote[9].end 48.02346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 48.46221875
transcript.pyannote[10].end 55.68471875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 55.93784375
transcript.pyannote[11].end 56.49471875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 56.78159375
transcript.pyannote[12].end 57.47346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 57.92909375
transcript.pyannote[13].end 60.94971875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 61.47284375
transcript.pyannote[14].end 63.66659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 63.81846875
transcript.pyannote[15].end 66.53534375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 66.88971875
transcript.pyannote[16].end 69.11721875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 69.47159375
transcript.pyannote[17].end 70.51784375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 70.97346875
transcript.pyannote[18].end 72.00284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 72.37409375
transcript.pyannote[19].end 74.97284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 75.29346875
transcript.pyannote[20].end 83.14034375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 83.39346875
transcript.pyannote[21].end 84.60846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 85.08096875
transcript.pyannote[22].end 88.74284375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 89.04659375
transcript.pyannote[23].end 91.12221875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 91.52721875
transcript.pyannote[24].end 93.07971875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 93.75471875
transcript.pyannote[25].end 98.04096875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 98.10846875
transcript.pyannote[26].end 98.54721875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 98.78346875
transcript.pyannote[27].end 100.15034375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 100.42034375
transcript.pyannote[28].end 101.71971875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 102.63096875
transcript.pyannote[29].end 104.92596875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 106.63034375
transcript.pyannote[30].end 108.23346875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 108.89159375
transcript.pyannote[31].end 115.33784375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 115.67534375
transcript.pyannote[32].end 122.91471875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 123.20159375
transcript.pyannote[33].end 143.45159375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 144.09284375
transcript.pyannote[34].end 154.67346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 155.09534375
transcript.pyannote[35].end 162.09846875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 162.35159375
transcript.pyannote[36].end 166.72221875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 167.27909375
transcript.pyannote[37].end 171.29534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 171.58221875
transcript.pyannote[38].end 174.83909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 175.21034375
transcript.pyannote[39].end 182.77034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 183.05721875
transcript.pyannote[40].end 188.00159375
transcript.pyannote[41].speaker SPEAKER_04
transcript.pyannote[41].start 189.11534375
transcript.pyannote[41].end 194.76846875
transcript.pyannote[42].speaker SPEAKER_04
transcript.pyannote[42].start 195.15659375
transcript.pyannote[42].end 198.76784375
transcript.pyannote[43].speaker SPEAKER_04
transcript.pyannote[43].start 198.93659375
transcript.pyannote[43].end 200.18534375
transcript.pyannote[44].speaker SPEAKER_04
transcript.pyannote[44].start 200.48909375
transcript.pyannote[44].end 204.01596875
transcript.pyannote[45].speaker SPEAKER_04
transcript.pyannote[45].start 204.47159375
transcript.pyannote[45].end 206.31096875
transcript.pyannote[46].speaker SPEAKER_04
transcript.pyannote[46].start 206.47971875
transcript.pyannote[46].end 208.50471875
transcript.pyannote[47].speaker SPEAKER_04
transcript.pyannote[47].start 208.87596875
transcript.pyannote[47].end 210.22596875
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 210.66471875
transcript.pyannote[48].end 212.26784375
transcript.pyannote[49].speaker SPEAKER_04
transcript.pyannote[49].start 212.82471875
transcript.pyannote[49].end 213.82034375
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 213.95534375
transcript.pyannote[50].end 216.06471875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 214.73159375
transcript.pyannote[51].end 216.55409375
transcript.pyannote[52].speaker SPEAKER_04
transcript.pyannote[52].start 216.55409375
transcript.pyannote[52].end 219.20346875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 218.66346875
transcript.pyannote[53].end 234.07034375
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 233.95221875
transcript.pyannote[54].end 237.41159375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 235.75784375
transcript.pyannote[55].end 252.48096875
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 239.75721875
transcript.pyannote[56].end 242.72721875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 247.36784375
transcript.pyannote[57].end 247.38471875
transcript.pyannote[58].speaker SPEAKER_04
transcript.pyannote[58].start 247.38471875
transcript.pyannote[58].end 247.43534375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 247.43534375
transcript.pyannote[59].end 247.97534375
transcript.pyannote[60].speaker SPEAKER_04
transcript.pyannote[60].start 247.97534375
transcript.pyannote[60].end 248.02596875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 248.02596875
transcript.pyannote[61].end 248.41409375
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 248.41409375
transcript.pyannote[62].end 248.44784375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 248.44784375
transcript.pyannote[63].end 248.46471875
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 248.46471875
transcript.pyannote[64].end 248.48159375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 252.97034375
transcript.pyannote[65].end 253.59471875
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 253.59471875
transcript.pyannote[66].end 253.64534375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 253.64534375
transcript.pyannote[67].end 259.24784375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 259.46721875
transcript.pyannote[68].end 261.77909375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 261.96471875
transcript.pyannote[69].end 274.67159375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 274.80659375
transcript.pyannote[70].end 276.29159375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 276.56159375
transcript.pyannote[71].end 280.27409375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 280.34159375
transcript.pyannote[72].end 307.39221875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 300.25409375
transcript.pyannote[73].end 302.59971875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 306.43034375
transcript.pyannote[74].end 314.69909375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 312.55596875
transcript.pyannote[75].end 313.85534375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 313.93971875
transcript.pyannote[76].end 323.15346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 322.51221875
transcript.pyannote[77].end 325.56659375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 324.65534375
transcript.pyannote[78].end 337.34534375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 333.09284375
transcript.pyannote[79].end 335.18534375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 337.34534375
transcript.pyannote[80].end 337.48034375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 337.48034375
transcript.pyannote[81].end 338.35784375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 338.37471875
transcript.pyannote[82].end 338.39159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 338.39159375
transcript.pyannote[83].end 347.35221875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 347.72346875
transcript.pyannote[84].end 360.86909375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 361.08846875
transcript.pyannote[85].end 364.81784375
transcript.pyannote[86].speaker SPEAKER_04
transcript.pyannote[86].start 365.62784375
transcript.pyannote[86].end 370.18409375
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 370.31909375
transcript.pyannote[87].end 372.63096875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 371.87159375
transcript.pyannote[88].end 375.75284375
transcript.pyannote[89].speaker SPEAKER_04
transcript.pyannote[89].start 374.18346875
transcript.pyannote[89].end 380.22471875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 380.22471875
transcript.pyannote[90].end 380.61284375
transcript.pyannote[91].speaker SPEAKER_04
transcript.pyannote[91].start 380.61284375
transcript.pyannote[91].end 389.03346875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 380.71409375
transcript.pyannote[92].end 381.33846875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 389.03346875
transcript.pyannote[93].end 419.89784375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 420.45471875
transcript.pyannote[94].end 434.69721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 421.28159375
transcript.pyannote[95].end 421.46721875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 434.62971875
transcript.pyannote[96].end 434.95034375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 434.95034375
transcript.pyannote[97].end 434.96721875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 434.96721875
transcript.pyannote[98].end 437.78534375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 435.00096875
transcript.pyannote[99].end 435.20346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 438.59534375
transcript.pyannote[100].end 439.25346875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 439.97909375
transcript.pyannote[101].end 443.06721875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 443.32034375
transcript.pyannote[102].end 450.01971875
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 449.05784375
transcript.pyannote[103].end 449.96909375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 450.03659375
transcript.pyannote[104].end 452.58471875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 451.82534375
transcript.pyannote[105].end 452.65221875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 452.65221875
transcript.pyannote[106].end 452.68596875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 452.68596875
transcript.pyannote[107].end 452.70284375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 452.70284375
transcript.pyannote[108].end 453.37784375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 453.71534375
transcript.pyannote[109].end 455.18346875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 454.54221875
transcript.pyannote[110].end 455.38596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 455.90909375
transcript.pyannote[111].end 456.90471875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 457.32659375
transcript.pyannote[112].end 473.69534375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 473.37471875
transcript.pyannote[113].end 483.31409375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 483.95534375
transcript.pyannote[114].end 485.81159375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 485.27159375
transcript.pyannote[115].end 488.69721875
transcript.pyannote[116].speaker SPEAKER_04
transcript.pyannote[116].start 485.81159375
transcript.pyannote[116].end 485.82846875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 489.47346875
transcript.pyannote[117].end 489.84471875
transcript.pyannote[118].speaker SPEAKER_04
transcript.pyannote[118].start 490.51971875
transcript.pyannote[118].end 494.65409375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 493.27034375
transcript.pyannote[119].end 494.56971875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 494.60346875
transcript.pyannote[120].end 494.62034375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 494.65409375
transcript.pyannote[121].end 497.10096875
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 497.10096875
transcript.pyannote[122].end 503.83409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 503.53034375
transcript.pyannote[123].end 504.32346875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 504.32346875
transcript.pyannote[124].end 506.41596875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 504.74534375
transcript.pyannote[125].end 505.69034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 506.63534375
transcript.pyannote[126].end 507.05721875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 507.32721875
transcript.pyannote[127].end 509.36909375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 509.89221875
transcript.pyannote[128].end 522.68346875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 522.83534375
transcript.pyannote[129].end 553.31159375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 554.91471875
transcript.pyannote[130].end 565.83284375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 566.64284375
transcript.pyannote[131].end 567.45284375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 568.11096875
transcript.pyannote[132].end 570.96284375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 571.19909375
transcript.pyannote[133].end 573.42659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 573.98346875
transcript.pyannote[134].end 576.04221875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 576.44721875
transcript.pyannote[135].end 577.12221875
transcript.pyannote[136].speaker SPEAKER_04
transcript.pyannote[136].start 577.47659375
transcript.pyannote[136].end 577.49346875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 577.49346875
transcript.pyannote[137].end 577.52721875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 577.52721875
transcript.pyannote[138].end 577.57784375
transcript.pyannote[139].speaker SPEAKER_04
transcript.pyannote[139].start 577.57784375
transcript.pyannote[139].end 577.61159375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 577.61159375
transcript.pyannote[140].end 577.76346875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 577.76346875
transcript.pyannote[141].end 577.79721875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 578.15159375
transcript.pyannote[142].end 578.62409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 579.23159375
transcript.pyannote[143].end 581.74596875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 582.52221875
transcript.pyannote[144].end 583.11284375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 583.34909375
transcript.pyannote[145].end 586.62284375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 587.04471875
transcript.pyannote[146].end 591.93846875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 592.54596875
transcript.pyannote[147].end 593.57534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 594.28409375
transcript.pyannote[148].end 595.16159375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 595.68471875
transcript.pyannote[149].end 600.10596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 598.26659375
transcript.pyannote[150].end 599.26221875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 600.40971875
transcript.pyannote[151].end 600.88221875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 600.42659375
transcript.pyannote[152].end 600.78096875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 601.62471875
transcript.pyannote[153].end 605.11784375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 601.81034375
transcript.pyannote[154].end 603.14346875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 605.40471875
transcript.pyannote[155].end 610.29846875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 610.83846875
transcript.pyannote[156].end 620.98034375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 610.90596875
transcript.pyannote[157].end 612.15471875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 614.11221875
transcript.pyannote[158].end 614.78721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 614.78721875
transcript.pyannote[159].end 614.82096875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 615.15846875
transcript.pyannote[160].end 615.91784375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 616.27221875
transcript.pyannote[161].end 616.66034375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 617.25096875
transcript.pyannote[162].end 617.95971875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 619.96784375
transcript.pyannote[163].end 621.65534375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 621.65534375
transcript.pyannote[164].end 622.26284375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 622.49909375
transcript.pyannote[165].end 622.54971875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 622.54971875
transcript.pyannote[166].end 624.28784375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 625.67159375
transcript.pyannote[167].end 656.95784375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 657.12659375
transcript.pyannote[168].end 657.51471875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 658.13909375
transcript.pyannote[169].end 659.77596875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 660.23159375
transcript.pyannote[170].end 660.90659375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 662.13846875
transcript.pyannote[171].end 663.30284375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 663.72471875
transcript.pyannote[172].end 673.19159375
transcript.pyannote[173].speaker SPEAKER_04
transcript.pyannote[173].start 673.68096875
transcript.pyannote[173].end 677.49471875
transcript.pyannote[174].speaker SPEAKER_04
transcript.pyannote[174].start 677.59596875
transcript.pyannote[174].end 678.33846875
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 678.55784375
transcript.pyannote[175].end 679.35096875
transcript.pyannote[176].speaker SPEAKER_04
transcript.pyannote[176].start 679.90784375
transcript.pyannote[176].end 680.44784375
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 680.71784375
transcript.pyannote[177].end 683.83971875
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 684.48096875
transcript.pyannote[178].end 685.22346875
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 685.74659375
transcript.pyannote[179].end 688.86846875
transcript.pyannote[180].speaker SPEAKER_04
transcript.pyannote[180].start 689.05409375
transcript.pyannote[180].end 691.01159375
transcript.pyannote[181].speaker SPEAKER_04
transcript.pyannote[181].start 691.19721875
transcript.pyannote[181].end 692.73284375
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 692.85096875
transcript.pyannote[182].end 694.60596875
transcript.pyannote[183].speaker SPEAKER_04
transcript.pyannote[183].start 694.87596875
transcript.pyannote[183].end 697.30596875
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 697.50846875
transcript.pyannote[184].end 699.02721875
transcript.pyannote[185].speaker SPEAKER_04
transcript.pyannote[185].start 699.43221875
transcript.pyannote[185].end 700.95096875
transcript.pyannote[186].speaker SPEAKER_04
transcript.pyannote[186].start 701.03534375
transcript.pyannote[186].end 706.84034375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 707.07659375
transcript.pyannote[187].end 711.09284375
transcript.pyannote[188].speaker SPEAKER_04
transcript.pyannote[188].start 710.51909375
transcript.pyannote[188].end 712.40909375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 711.12659375
transcript.pyannote[189].end 711.16034375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 711.29534375
transcript.pyannote[190].end 716.35784375
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 715.42971875
transcript.pyannote[191].end 715.88534375
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 716.35784375
transcript.pyannote[192].end 717.11721875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 716.42534375
transcript.pyannote[193].end 716.44221875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 716.50971875
transcript.pyannote[194].end 718.24784375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 718.65284375
transcript.pyannote[195].end 726.39846875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 727.00596875
transcript.pyannote[196].end 727.54596875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 728.06909375
transcript.pyannote[197].end 729.90846875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 730.31346875
transcript.pyannote[198].end 740.21909375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 741.16409375
transcript.pyannote[199].end 744.28596875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 744.72471875
transcript.pyannote[200].end 753.53346875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 753.93846875
transcript.pyannote[201].end 762.49409375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 762.49409375
transcript.pyannote[202].end 768.48471875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 762.57846875
transcript.pyannote[203].end 763.28721875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 768.48471875
transcript.pyannote[204].end 768.50159375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 768.50159375
transcript.pyannote[205].end 768.51846875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 768.51846875
transcript.pyannote[206].end 772.55159375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 772.29846875
transcript.pyannote[207].end 777.79971875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 776.41596875
transcript.pyannote[208].end 777.07409375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 777.79971875
transcript.pyannote[209].end 783.28409375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 777.96846875
transcript.pyannote[210].end 779.70659375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 783.63846875
transcript.pyannote[211].end 789.13971875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 784.16159375
transcript.pyannote[212].end 784.97159375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 784.97159375
transcript.pyannote[213].end 785.05596875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 788.49846875
transcript.pyannote[214].end 788.65034375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 789.13971875
transcript.pyannote[215].end 789.15659375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 790.13534375
transcript.pyannote[216].end 790.60784375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 790.60784375
transcript.pyannote[217].end 790.67534375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 790.99596875
transcript.pyannote[218].end 791.01284375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 791.01284375
transcript.pyannote[219].end 793.10534375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 793.35846875
transcript.pyannote[220].end 793.93221875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 795.09659375
transcript.pyannote[221].end 797.54346875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 797.98221875
transcript.pyannote[222].end 820.62846875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 821.10096875
transcript.pyannote[223].end 822.33284375
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 821.77596875
transcript.pyannote[224].end 831.20909375
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 826.45034375
transcript.pyannote[225].end 826.85534375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 827.36159375
transcript.pyannote[226].end 827.86784375
transcript.pyannote[227].speaker SPEAKER_04
transcript.pyannote[227].start 831.64784375
transcript.pyannote[227].end 832.59284375
transcript.pyannote[228].speaker SPEAKER_04
transcript.pyannote[228].start 832.67721875
transcript.pyannote[228].end 834.12846875
transcript.pyannote[229].speaker SPEAKER_04
transcript.pyannote[229].start 834.28034375
transcript.pyannote[229].end 835.44471875
transcript.pyannote[230].speaker SPEAKER_04
transcript.pyannote[230].start 835.63034375
transcript.pyannote[230].end 835.98471875
transcript.pyannote[231].speaker SPEAKER_04
transcript.pyannote[231].start 836.69346875
transcript.pyannote[231].end 838.97159375
transcript.pyannote[232].speaker SPEAKER_04
transcript.pyannote[232].start 839.79846875
transcript.pyannote[232].end 841.55346875
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 842.19471875
transcript.pyannote[233].end 844.32096875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 843.13971875
transcript.pyannote[234].end 855.67784375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 854.42909375
transcript.pyannote[235].end 857.97284375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 857.97284375
transcript.pyannote[236].end 880.70346875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 858.71534375
transcript.pyannote[237].end 859.44096875
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 880.78784375
transcript.pyannote[238].end 887.58846875
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 888.19596875
transcript.pyannote[239].end 888.61784375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 888.82034375
transcript.pyannote[240].end 891.89159375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 890.60909375
transcript.pyannote[241].end 893.47784375
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 893.66346875
transcript.pyannote[242].end 915.95534375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 915.43221875
transcript.pyannote[243].end 923.24534375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 922.28346875
transcript.pyannote[244].end 934.97346875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 925.03409375
transcript.pyannote[245].end 925.84409375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 934.50096875
transcript.pyannote[246].end 935.80034375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 936.23909375
transcript.pyannote[247].end 938.63534375
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 938.83784375
transcript.pyannote[248].end 940.13721875
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 944.87909375
transcript.pyannote[249].end 945.43596875
transcript.pyannote[250].speaker SPEAKER_03
transcript.pyannote[250].start 946.66784375
transcript.pyannote[250].end 950.97096875
transcript.whisperx[0].start 18.489
transcript.whisperx[0].end 45.077
transcript.whisperx[0].text 主席也是我們的副院長還有卓院長還有行政院的團隊是不是請卓院長請卓院長備詢林委員好卓院長你好因應國際形勢強化經濟社會及國土安全韌性特別預算整個總額高達5500億元
transcript.whisperx[1].start 48.552
transcript.whisperx[1].end 73.569
transcript.whisperx[1].text 本來該特別預算主要因應就是美國總統川普的關稅戰而起但是行政院預算內容預算的整個內容裡面包山包海當行政院不斷以特別之名來行日常之時一般民眾已看不出和年度預算有什麼兩樣
transcript.whisperx[2].start 75.393
transcript.whisperx[2].end 103.616
transcript.whisperx[2].text 那不少學者也警告濫用特別預算將使整個年度預算審查變成空洞化造成整個國家資源的挫折這是蔡英文時代以前瞻預算來要挾這個地方和國會的一個老伎倆那譬如此次國防部爭取特別預算針對
transcript.whisperx[3].start 106.687
transcript.whisperx[3].end 134.127
transcript.whisperx[3].text 就是彈藥庫儲的設施還有精品保修工廠庫儲的設施這些相關改善立法院預算中心這個也質疑必須使用特別預算嗎有這樣的迫切性嗎本來國防部應該在年度預算裡面來編列那況且現在馬上就在就要省年度的預算
transcript.whisperx[4].start 136.388
transcript.whisperx[4].end 142.131
transcript.whisperx[4].text 這個在年度預算裡面編列來改善現在卻挪到特別預算來搭便車
transcript.whisperx[5].start 144.161
transcript.whisperx[5].end 166.203
transcript.whisperx[5].text 本席是不希望也不樂見行政院得不到想要的預算資源就製作圖卡釋出具有殺傷力這些消息來結合這些側翼打擊審查特別預算的這些委員那本席也呼籲卓院長你應該公開承諾
transcript.whisperx[6].start 167.684
transcript.whisperx[6].end 187.714
transcript.whisperx[6].text 參考立法院預算中心以及審計部的意見不要讓特別預算變成常態化逐年來減少使用特別預算的比重限縮特別預算適用的範圍回歸常態的預算編列這樣的機制 院長你的看法
transcript.whisperx[7].start 189.361
transcript.whisperx[7].end 203.917
transcript.whisperx[7].text 報告委員我們當然希望能夠透過年度預算來表現出整個政府施政的重點跟方向但委員剛剛有提到前瞻基礎建設的這個特別預算我想到今天為止很多的委員包括地方的民意代表地方的各級政府
transcript.whisperx[8].start 204.517
transcript.whisperx[8].end 232.447
transcript.whisperx[8].text 都覺得前瞻基礎建設對地方有很大的注意很多的委員有爭取過只要預算編的合理執行的合理都應該是對於 但是你變成一個常態化啊對不對所以我們我剛剛我早上有說 年度預算應該要編他就列了很多的項目但是他如果 所謂前瞻跟這個對這邊的預算你應該是你要是說特別預算針對要是有災害發生我相信
transcript.whisperx[9].start 233.868
transcript.whisperx[9].end 254.581
transcript.whisperx[9].text 不要符合預算法的特別預算但是你們現在就是有一點變成巧立名目而且很多的不應該編載這次的預算裡面巧立名目來包山包海的納進去所以說剛剛有很多的委員他們也是有提出這樣的看法跟委員報告以115年為例作業為止會是編列在廣播的部分是1990億
transcript.whisperx[10].start 262.242
transcript.whisperx[10].end 289.43
transcript.whisperx[10].text 就這個部分它要優先維持裝備的妥善所以資源的配置上來看的話只能夠維持設置的堪用所以預算中心的報告我們有看但是要請委員能夠了解的就是說如果你以我們要整間彈藥庫庫值的設置來看的話這些彈藥庫民國90年以前完成現在都老舊了如果你以作業維持會近三年的比例來看的話每年大概只能夠便宜一億多
transcript.whisperx[11].start 290.27
transcript.whisperx[11].end 312.611
transcript.whisperx[11].text 這個只能夠維持基本的庫儲設施的修繕但是沒有辦法來因應我們現在要籌購的大量的新式武器要入庫 然後彈藥要囤儲的需求所以我們一次性的在兩年內把它做一個大量的整建之後你不能編在今年的正常預算裡面嗎為什麼一定要編在這一次裡面讓人家感覺
transcript.whisperx[12].start 313.291
transcript.whisperx[12].end 334.927
transcript.whisperx[12].text 就是有這種感覺啊如果我們把它編在這個今年年度預算裡面的話我們的裝備的頭上的這個部分就幾乎沒有辦法能夠維持到那所以我們庫儲的這個所以說你就巧立名目來把它納在這次裡面庫儲設施的這個部分我們快速的集中資源在短時間裡面在兩年我們就能夠把它強化這個存在已經很久的時間這個就能夠強化我們的戰備的一個力量
transcript.whisperx[13].start 338.77
transcript.whisperx[13].end 364.25
transcript.whisperx[13].text 這個存在已經很久的時間為什麼一定要在這一次納進來你為什麼不能先前你像這個有變正常預算的時候你納進去對不對你不要講讓人家感覺就是包山包海所以說我們立法院預算中心啊才特別的針對這一點來質疑甚至於審計室審計部他們也有這樣的看法我認為說你們該改則改主委長你認為該不該改
transcript.whisperx[14].start 365.646
transcript.whisperx[14].end 378.683
transcript.whisperx[14].text 我認為我們每一筆預算包括這次的強化韌性的特別條例跟特別預算都有它跟編制的根據剛剛部長也說過了它急迫性需要在短時間內把這些庫儲設備給它完成起來
transcript.whisperx[15].start 380.786
transcript.whisperx[15].end 401.088
transcript.whisperx[15].text 如果是在年度預算他一定排擠到目前他現在國防預算裡面相關的設備訓練等等的預算跟委員報告我想任何的作戰要靠後勤假設我們籌貨大量的武器裝備到了我們事實上沒有足夠的後勤來支撐的話這個武器裝備的維持是很困難的
transcript.whisperx[16].start 401.568
transcript.whisperx[16].end 418.92
transcript.whisperx[16].text 所以我們庫儲設施先要迅速的來整建那我們這一次提就是只是說在兩年的時間之內我們大量的來整建這些相關的庫儲的設施跟這些訓場讓我們的後備戰力一無一的訓練讓我們的這些新式彈藥的武器能夠有一個
transcript.whisperx[17].start 420.921
transcript.whisperx[17].end 437.353
transcript.whisperx[17].text 囤儲的一個地點這個部分的話有它的一個急迫性存在那如果你一年一年編那這樣的話我們可能要搞個十幾年可是我們沒有辦法等待這樣子的一個慢慢的來做所以我們希望能夠快速的提升我們的能力我就再進一步請教 顧部長
transcript.whisperx[18].start 438.666
transcript.whisperx[18].end 456.367
transcript.whisperx[18].text 那你像那個我們現在還有多少錢這個預算在美國武器沒有來已經那麼久了多少錢你告訴全國全國的民眾跟委員報告我想這一個所有武器還沒來
transcript.whisperx[19].start 457.392
transcript.whisperx[19].end 482.727
transcript.whisperx[19].text 所有的現在相關的這些不管是我們一般的軍購的程序或者是用特別條例所一般的這樣子的一個軍購他確實是有一些武器是遲延的但我們現在都盡力的在跟美方協作你不要講現在我是要求說有多少錢還在美國武器沒有來時間已經拖拉那麼長了你告訴全國的民眾
transcript.whisperx[20].start 484.442
transcript.whisperx[20].end 508.414
transcript.whisperx[20].text 這個一定要清清楚楚啊這個沒有什麼好隱瞞的啊對不對這個再把詳細資料跟委員做報告啦不是認為喔 牽扯到很多事情不要刻意去隱瞞啦不是隱瞞 這牽扯到雙方之間還有一些目前契約在存在的過程當中我們也期待趕快來實現錢給好久 武器別來對不對 大家信誓渡命來 那個
transcript.whisperx[21].start 509.975
transcript.whisperx[21].end 536.796
transcript.whisperx[21].text 那個美國商務部說美國不能再過度來依賴台灣半導體必須推動這個美台的晶片產能那五五分案 五五分的這種方案成就美國版的一個戲盾美國已經把話講白美國對台積電的要求已經不只是投資美國的廠甚至要將一半以上的產能移往美國
transcript.whisperx[22].start 538.618
transcript.whisperx[22].end 565.514
transcript.whisperx[22].text 台灣半導體整個產業鏈勢必要跟著台積電一起去美國過去幾個月許多政府官員包括民進黨人士一再駁斥台積電不會變成美積電本席也希望政府堅守立場不能同意如此離譜的條件讓企業跟流台灣避免台灣的半導體產業被美國給掏空
transcript.whisperx[23].start 567.004
transcript.whisperx[23].end 591.409
transcript.whisperx[23].text 剛剛那個龔部長你講的我都聽過我也瞭解但是啊現在最嚴重就是他要求你把那些整個產業鏈移過去對不對那你要跟著去台灣就是掏空了啊不會啦 巴委員我剛才提到過就是說即便他1635億真的完成那個也要好幾年才完成他是六個廠
transcript.whisperx[24].start 592.768
transcript.whisperx[24].end 622.078
transcript.whisperx[24].text 六個晶圓廠我們單單剛剛公布的中科就會有四個廠那個我剛剛都有聽過 部長最重要 把握當下所以我們量遠遠超過美國而且技術也是最先進 會在台灣不要美國 講一句話我們什麼都配合啦沒有這樣的事 這就是這樣的想法我們政府院長就明確的提這個不可能答應我是希望說該堅持要堅持啦
transcript.whisperx[25].start 626.772
transcript.whisperx[25].end 639.676
transcript.whisperx[25].text 經濟部前部長郭志輝6月10日說他對台灣談判的結果有高度信心不至於談出比日本南韓更差的關稅結果到了8月 豬羊變色
transcript.whisperx[26].start 640.916
transcript.whisperx[26].end 654.864
transcript.whisperx[26].text 除了原本的關稅外台灣還要再疊加20%的關稅美國總統川普9月簽下行政命令確定日本商品試用15%跟韓國不疊加對等關稅的特例
transcript.whisperx[27].start 662.199
transcript.whisperx[27].end 672.832
transcript.whisperx[27].text 那我請問卓院長以經濟部對美國關稅談判目標是我為之已經取得以日本韓國同樣的這些關稅的條件我們有嗎
transcript.whisperx[28].start 673.995
transcript.whisperx[28].end 697.743
transcript.whisperx[28].text 報告委員8月7號所暫時實施的台灣跟美國的對等關稅我們是在最惠國待遇上面再加上20%的關稅但是美方也談到將來只要談判最後協定達成的時候這都可以再發生任何的變化我們要爭取的就是把這個對等關稅再合理的往下降同時不要再疊加最惠國的待遇同時對232的
transcript.whisperx[29].start 699.943
transcript.whisperx[29].end 726.112
transcript.whisperx[29].text 這種優惠以及我們整個供應鏈的合作方式我們盡量把它爭取到對我國最有利的這個方向來我希望那個左院長該堅持還是要堅持我們會很堅持國家利益產業利益你要是不堅持的話 國人都看在眼裡因為那些產業界 他們沒有辦法生存啦對不對 大家心知肚明對不對 你換了 美國換了川普總統難道我們那些原來的產業全部都要收掉嗎 對不對
transcript.whisperx[30].start 728.832
transcript.whisperx[30].end 737.16
transcript.whisperx[30].text 該堅持還是要堅持如果對美關稅談判最終的結果比主要競爭對手關稅來得多等於是讓國內這些廠商的起跑點
transcript.whisperx[31].start 741.203
transcript.whisperx[31].end 745.186
transcript.whisperx[31].text 我們現在是用你升級轉型或者是金融上的支持或者是你要拓銷多元市場那全部都有一些補助
transcript.whisperx[32].start 761.86
transcript.whisperx[32].end 788.442
transcript.whisperx[32].text 有補助他們可以撐嗎那為什麼有補助他們很多要失業他們沒辦法繼續生存我們現在很多的收的案件已經超過一千件不是件的問題啦當下就是那些人就失業啦沒有辦法生存啊老闆根本沒辦法營運啊那個無薪不是叫無薪假這個減班休息是有增加一點但是失業是沒有明顯增加
transcript.whisperx[33].start 791.07
transcript.whisperx[33].end 791.432
transcript.whisperx[33].text 譬如說機械設備
transcript.whisperx[34].start 795.391
transcript.whisperx[34].end 816.395
transcript.whisperx[34].text 製造業受到美國關稅影響由產業工會同業工會提出一些影響的數據只要每賣多少產品我們就補助他一些這個關稅的一些差額那這個根據出口時機來這個核銷補助減少美國關稅負面的因素以維護這些產業的競爭力以確保勞工的生計
transcript.whisperx[35].start 823.396
transcript.whisperx[35].end 838.8
transcript.whisperx[35].text 我們是支持產業啦我們通常不講補貼啦我們是支持產業那現在我們就是我們兩院趕快來合作把這個特別預算通過了讓經濟部 農業部所有的部會我們所有的力道就可以一次的放下去
transcript.whisperx[36].start 840.064
transcript.whisperx[36].end 858.289
transcript.whisperx[36].text 滿身的設備就可以一直用到我是希望能夠把它解決掉啦不要說這個讓他們沒有辦法生存然後那些要變成到最後事業多要裁員等等造成很多社會問題現在失業率沒有明顯的提升還是持平
transcript.whisperx[37].start 858.749
transcript.whisperx[37].end 887.151
transcript.whisperx[37].text 另外我再請教民眾也很關心普發現金何時能夠發放日前有一些領退休金奉的這些退伍老兵向本席反映希望請退伍費在今年普發一萬元的時候可以直接入帳到他退伍老兵領退休奉的郵局帳戶中那財政部在此次普發現金對象與方式是不是要跟一二年有不同嗎
transcript.whisperx[38].start 888.22
transcript.whisperx[38].end 916.85
transcript.whisperx[38].text 有沒有對象沒有不同沒有不同那我剛剛講的可不可以您剛剛講那個其實我們之前已經研究過因為有所謂的直接入帳就直接進到他的帳戶但是這個資料要非常的完整跟正確才可以那至於這有關退休過去有所謂的退休軍公教的同仁們也反映希望能夠直接入帳但是那個退休金他的方式有各種不同所以沒有辦法完全對上要他簽個欠缺書好了啦
transcript.whisperx[39].start 917.29
transcript.whisperx[39].end 936.662
transcript.whisperx[39].text 對不對 你只要簽結結書進到帳戶有就沒有再花了嘛如果簽結結書的話他就可以到網站去登記或去ATM或去郵局也可以領我們郵局有1294個支局都可以去領其實領的方式有非常多 都很方便我是認為啦 比較簡潔一點讓這些人他們不要好
transcript.whisperx[40].start 946.789
transcript.whisperx[40].end 947.453
transcript.whisperx[40].text 好,我們時間到,謝謝