IVOD_ID |
163545 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/163545 |
日期 |
2025-08-19 |
會議資料.會議代碼 |
院會-11-3-25 |
會議資料.會議代碼:str |
第11屆第3會期第25次會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
25 |
會議資料.種類 |
院會 |
會議資料.標題 |
第11屆第3會期第25次會議 |
影片種類 |
Clip |
開始時間 |
2025-08-19T09:32:34+08:00 |
結束時間 |
2025-08-19T09:48:20+08:00 |
影片長度 |
00:15:46 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/906c3280ae286f115fcb6f8d5323228d18ad07c9952a2a5306bd48d9366c8797a1c492a21a7eb66e5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
吳思瑤 |
委員發言時間 |
09:32:34 - 09:48:20 |
會議時間 |
2025-08-19T09:00:00+08:00 |
會議名稱 |
第11屆第3會期第25次會議(事由:一、行政院院長提出「新世代打擊詐欺策略行動綱領2.0執行成效」專案報告並備質詢(8月15日)。二、行政院院長提出「全額撥付114年度對地方政府之一般性補助款及原住民族地區基本設施維持費等相關事宜」專案報告並備質詢(8月19日)。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.56659375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
8.31659375 |
transcript.pyannote[1].end |
10.29096875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
10.44284375 |
transcript.pyannote[2].end |
11.87721875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
20.09534375 |
transcript.pyannote[3].end |
20.63534375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
20.97284375 |
transcript.pyannote[4].end |
22.84596875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
23.41971875 |
transcript.pyannote[5].end |
31.77284375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
32.09346875 |
transcript.pyannote[6].end |
37.96596875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
38.53971875 |
transcript.pyannote[7].end |
42.87659375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
43.28159375 |
transcript.pyannote[8].end |
52.07346875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
52.36034375 |
transcript.pyannote[9].end |
54.13221875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
54.72284375 |
transcript.pyannote[10].end |
71.88471875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
73.42034375 |
transcript.pyannote[11].end |
87.44346875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
87.78096875 |
transcript.pyannote[12].end |
88.72596875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
89.09721875 |
transcript.pyannote[13].end |
95.40846875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
95.89784375 |
transcript.pyannote[14].end |
103.17096875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
103.82909375 |
transcript.pyannote[15].end |
112.87409375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
113.16096875 |
transcript.pyannote[16].end |
126.07034375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
126.49221875 |
transcript.pyannote[17].end |
128.95596875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
129.49596875 |
transcript.pyannote[18].end |
138.77721875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
138.84471875 |
transcript.pyannote[19].end |
167.90346875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
168.30846875 |
transcript.pyannote[20].end |
169.45596875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
169.89471875 |
transcript.pyannote[21].end |
173.87721875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
174.13034375 |
transcript.pyannote[22].end |
179.78346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
179.83409375 |
transcript.pyannote[23].end |
181.30221875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
181.70721875 |
transcript.pyannote[24].end |
186.44909375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
185.38596875 |
transcript.pyannote[25].end |
185.70659375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
186.76971875 |
transcript.pyannote[26].end |
208.15034375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
208.69034375 |
transcript.pyannote[27].end |
210.27659375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
210.63096875 |
transcript.pyannote[28].end |
220.50284375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
221.39721875 |
transcript.pyannote[29].end |
223.52346875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
223.81034375 |
transcript.pyannote[30].end |
226.17284375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
226.42596875 |
transcript.pyannote[31].end |
227.52284375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
228.28221875 |
transcript.pyannote[32].end |
233.63159375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
234.28971875 |
transcript.pyannote[33].end |
236.17971875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
236.98971875 |
transcript.pyannote[34].end |
243.38534375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
244.14471875 |
transcript.pyannote[35].end |
253.64534375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
254.32034375 |
transcript.pyannote[36].end |
269.98034375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
270.19971875 |
transcript.pyannote[37].end |
273.18659375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
273.18659375 |
transcript.pyannote[38].end |
273.50721875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
273.50721875 |
transcript.pyannote[39].end |
277.15221875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
277.55721875 |
transcript.pyannote[40].end |
282.26534375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
283.02471875 |
transcript.pyannote[41].end |
289.25159375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
289.43721875 |
transcript.pyannote[42].end |
292.71096875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
293.14971875 |
transcript.pyannote[43].end |
302.27909375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
302.54909375 |
transcript.pyannote[44].end |
314.66534375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
315.01971875 |
transcript.pyannote[45].end |
316.48784375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
316.75784375 |
transcript.pyannote[46].end |
332.70471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
333.14346875 |
transcript.pyannote[47].end |
340.39971875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
340.97346875 |
transcript.pyannote[48].end |
347.90909375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
348.65159375 |
transcript.pyannote[49].end |
360.58221875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
360.95346875 |
transcript.pyannote[50].end |
365.62784375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
366.52221875 |
transcript.pyannote[51].end |
374.89221875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
375.02721875 |
transcript.pyannote[52].end |
375.19596875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
375.43221875 |
transcript.pyannote[53].end |
376.59659375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
377.22096875 |
transcript.pyannote[54].end |
378.16596875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
378.36846875 |
transcript.pyannote[55].end |
397.75784375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
397.90971875 |
transcript.pyannote[56].end |
400.10346875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
400.47471875 |
transcript.pyannote[57].end |
402.93846875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
403.86659375 |
transcript.pyannote[58].end |
416.77596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
417.72096875 |
transcript.pyannote[59].end |
435.70971875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
436.26659375 |
transcript.pyannote[60].end |
438.07221875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
438.17346875 |
transcript.pyannote[61].end |
438.20721875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
438.22409375 |
transcript.pyannote[62].end |
442.45971875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
442.79721875 |
transcript.pyannote[63].end |
445.27784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
446.25659375 |
transcript.pyannote[64].end |
449.02409375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
449.09159375 |
transcript.pyannote[65].end |
450.34034375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
450.84659375 |
transcript.pyannote[66].end |
454.32284375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
454.66034375 |
transcript.pyannote[67].end |
455.65596875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
455.74034375 |
transcript.pyannote[68].end |
457.73159375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
458.25471875 |
transcript.pyannote[69].end |
461.49471875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
461.61284375 |
transcript.pyannote[70].end |
462.86159375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
463.40159375 |
transcript.pyannote[71].end |
464.56596875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
464.43096875 |
transcript.pyannote[72].end |
469.72971875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
467.43471875 |
transcript.pyannote[73].end |
469.15596875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
469.72971875 |
transcript.pyannote[74].end |
482.70659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
473.23971875 |
transcript.pyannote[75].end |
473.59409375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
482.92596875 |
transcript.pyannote[76].end |
490.30034375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
489.35534375 |
transcript.pyannote[77].end |
491.90346875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
491.97096875 |
transcript.pyannote[78].end |
495.58221875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
496.79721875 |
transcript.pyannote[79].end |
499.88534375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
500.02034375 |
transcript.pyannote[80].end |
504.62721875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
504.93096875 |
transcript.pyannote[81].end |
522.27846875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
522.83534375 |
transcript.pyannote[82].end |
527.23971875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
528.04971875 |
transcript.pyannote[83].end |
541.07721875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
541.48221875 |
transcript.pyannote[84].end |
553.59846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
554.27346875 |
transcript.pyannote[85].end |
566.89596875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
567.60471875 |
transcript.pyannote[86].end |
572.11034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
572.61659375 |
transcript.pyannote[87].end |
573.93284375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
574.52346875 |
transcript.pyannote[88].end |
575.29971875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
575.80596875 |
transcript.pyannote[89].end |
593.06909375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
593.79471875 |
transcript.pyannote[90].end |
596.19096875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
596.88284375 |
transcript.pyannote[91].end |
597.81096875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
598.55346875 |
transcript.pyannote[92].end |
612.98159375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
612.98159375 |
transcript.pyannote[93].end |
613.25159375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
613.25159375 |
transcript.pyannote[94].end |
640.11659375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
640.63971875 |
transcript.pyannote[95].end |
641.56784375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
642.14159375 |
transcript.pyannote[96].end |
648.18284375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
648.43596875 |
transcript.pyannote[97].end |
649.70159375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
650.15721875 |
transcript.pyannote[98].end |
652.90784375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
653.65034375 |
transcript.pyannote[99].end |
655.81034375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
656.21534375 |
transcript.pyannote[100].end |
657.05909375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
657.44721875 |
transcript.pyannote[101].end |
659.16846875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
660.55221875 |
transcript.pyannote[102].end |
669.79971875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
670.93034375 |
transcript.pyannote[103].end |
675.52034375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
675.72284375 |
transcript.pyannote[104].end |
679.30034375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
680.12721875 |
transcript.pyannote[105].end |
689.59409375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
690.15096875 |
transcript.pyannote[106].end |
694.45409375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
695.43284375 |
transcript.pyannote[107].end |
721.50471875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
722.02784375 |
transcript.pyannote[108].end |
725.75721875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
726.26346875 |
transcript.pyannote[109].end |
730.31346875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
730.95471875 |
transcript.pyannote[110].end |
733.35096875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
733.90784375 |
transcript.pyannote[111].end |
737.90721875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
738.36284375 |
transcript.pyannote[112].end |
750.09096875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
750.44534375 |
transcript.pyannote[113].end |
754.27596875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
754.90034375 |
transcript.pyannote[114].end |
757.29659375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
757.33034375 |
transcript.pyannote[115].end |
766.78034375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
766.99971875 |
transcript.pyannote[116].end |
768.99096875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
769.88534375 |
transcript.pyannote[117].end |
775.26846875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
775.80846875 |
transcript.pyannote[118].end |
777.95159375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
776.65221875 |
transcript.pyannote[119].end |
776.90534375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
778.84596875 |
transcript.pyannote[120].end |
779.82471875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
780.29721875 |
transcript.pyannote[121].end |
781.47846875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
781.91721875 |
transcript.pyannote[122].end |
784.36409375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
784.71846875 |
transcript.pyannote[123].end |
788.39721875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
789.08909375 |
transcript.pyannote[124].end |
790.75971875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
790.89471875 |
transcript.pyannote[125].end |
796.17659375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
796.61534375 |
transcript.pyannote[126].end |
797.35784375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
798.18471875 |
transcript.pyannote[127].end |
805.00221875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
805.15409375 |
transcript.pyannote[128].end |
815.71784375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
816.69659375 |
transcript.pyannote[129].end |
816.73034375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
816.73034375 |
transcript.pyannote[130].end |
816.79784375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
816.79784375 |
transcript.pyannote[131].end |
818.26596875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
816.89909375 |
transcript.pyannote[132].end |
823.80096875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
824.49284375 |
transcript.pyannote[133].end |
825.60659375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
826.50096875 |
transcript.pyannote[134].end |
828.82971875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
829.55534375 |
transcript.pyannote[135].end |
831.79971875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
832.32284375 |
transcript.pyannote[136].end |
838.31346875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
838.58346875 |
transcript.pyannote[137].end |
841.11471875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
841.48596875 |
transcript.pyannote[138].end |
842.76846875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
843.02159375 |
transcript.pyannote[139].end |
847.64534375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
848.15159375 |
transcript.pyannote[140].end |
852.74159375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
852.82596875 |
transcript.pyannote[141].end |
856.26846875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
856.69034375 |
transcript.pyannote[142].end |
884.82096875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
885.44534375 |
transcript.pyannote[143].end |
896.36346875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
896.98784375 |
transcript.pyannote[144].end |
924.54471875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
929.20221875 |
transcript.pyannote[145].end |
929.26971875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
930.43409375 |
transcript.pyannote[146].end |
931.27784375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
931.71659375 |
transcript.pyannote[147].end |
943.95096875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
944.98034375 |
transcript.pyannote[148].end |
945.97596875 |
transcript.whisperx[0].start |
0.229 |
transcript.whisperx[0].end |
11.158 |
transcript.whisperx[0].text |
與富坤齊委員請準備謝謝主席有請卓院長麻煩再請卓院長備詢委員好 |
transcript.whisperx[1].start |
21.261 |
transcript.whisperx[1].end |
37.432 |
transcript.whisperx[1].text |
主委院長大家都辛苦了過去立法院每一個會期平均依不同的主題特別都會邀請行政院院長進行專案報告行政院的態度也是國會認為有需要我們都面對監督我們也接受監督 |
transcript.whisperx[2].start |
38.593 |
transcript.whisperx[2].end |
54.066 |
transcript.whisperx[2].text |
只是過去平均每個會期大概是兩次至多三次但這個會期呢寧光上個禮拜跟這個禮拜已經來立法院針對三個主題進行三次專案報告我想大家真的辛苦了 |
transcript.whisperx[3].start |
54.901 |
transcript.whisperx[3].end |
70.789 |
transcript.whisperx[3].text |
這一個會期如果加總起來可能會有六七次以上的專案報告更不要說行政院已經宣示為了透明公開讓國人更放心低手的掌握訊息即便談判中的關稅 |
transcript.whisperx[4].start |
73.639 |
transcript.whisperx[4].end |
102.971 |
transcript.whisperx[4].text |
還在談判中但是國會邀請您還是願意來進行關稅的專案報告所以加總起來很有可能這個會期也是史上行政院長來立法院報告的新高大家辛苦了國會有需要必須向國人說明行政院配合但我也知道這個有個原因也是這次的國會是史上最長的會期所以要找很多的狀況報告來能夠讓會期進行的內容更充實一點 |
transcript.whisperx[5].start |
104.022 |
transcript.whisperx[5].end |
128.604 |
transcript.whisperx[5].text |
你說出了一個大家應該面對但不敢面對的真相史上最長的會期委員會拿考察來電檔院會就拿卓院長的專案報告來塞時間但沒有問題我們還是讓每一個專案報告發揮它必要的正面論述的功能向社會清楚說明我們的政策我今天的主題中央財政 |
transcript.whisperx[6].start |
129.765 |
transcript.whisperx[6].end |
149.215 |
transcript.whisperx[6].text |
進入了史上最黑暗的階段中央財政的黑暗期唯有朝野其心才能夠解僵局這一次的中央政府總預算案是史上審查最亂刪減最多凍結最嚴的一次是前所未有 |
transcript.whisperx[7].start |
149.875 |
transcript.whisperx[7].end |
167.367 |
transcript.whisperx[7].text |
所以對於國家人民的衝擊也是前所未見您剛剛的專案報告裡頭不斷的提到行政院情非得已中央政府迫不得已實在是情勢所逼 |
transcript.whisperx[8].start |
168.368 |
transcript.whisperx[8].end |
186.185 |
transcript.whisperx[8].text |
我在這裡說我們想方設法的要讓摯愛難行成為可行吳思瑤支持民進黨團會支持三大預算案第一今天提出來的專案報告的主題追加預算我們要支持 |
transcript.whisperx[9].start |
186.846 |
transcript.whisperx[9].end |
213.351 |
transcript.whisperx[9].text |
第二任性特別條例擴大對於關稅衝擊產業的支持安定社會補發現金民進黨團全力支持立法院趕快來審議修正案第三個支持也就是現在正在籌編馬上要送進立法院來年的中央政府總預算案絕對不能重蹈覆轍所以我們民進黨團負責任的做好執政黨的角色 |
transcript.whisperx[10].start |
213.931 |
transcript.whisperx[10].end |
220.202 |
transcript.whisperx[10].text |
合理的審議嚴格的監督但也要理性的面對下一頁 |
transcript.whisperx[11].start |
221.468 |
transcript.whisperx[11].end |
243.122 |
transcript.whisperx[11].text |
菩薩為因眾生為果今天為什麼有這個專案報告為什麼讓我們的中央政府總預算1月通過現在已經8月底剩下最後一季了這一個大幅的刪減就來自於這一張啊所有的惡果都來自於這個惡因啊 |
transcript.whisperx[12].start |
244.361 |
transcript.whisperx[12].end |
271.557 |
transcript.whisperx[12].text |
國民黨民眾黨聯手通刪939億的中央政府總預算案他創下了三個前所未見第一個自己要通刪939億但是刪不滿所以反過頭來要求行政院自行刪減636億我從議員到立委從來沒有看過立法部門刪預算要行政部門你自己來刪滿前所未見636億就是這樣來 |
transcript.whisperx[13].start |
273.658 |
transcript.whisperx[13].end |
290.181 |
transcript.whisperx[13].text |
第二個前所未見這過去的大半年來加害者讓中央地方政府國家人民都受害在野黨以為他懲罰的是執政黨事實上是讓國家人民都受害這一年 |
transcript.whisperx[14].start |
291.162 |
transcript.whisperx[14].end |
314.211 |
transcript.whisperx[14].text |
將近半年多的時間依舊讓這些受害者不斷的譴責加害對不起這些加害人不斷的譴責受害者在這半年多的總預算的攻防這些二刪二砍預算的在野黨的委員們一再的譴責受害人行政部門而且還要你們提解方 |
transcript.whisperx[15].start |
315.091 |
transcript.whisperx[15].end |
332.217 |
transcript.whisperx[15].text |
第二個前所未見第三個前所未見就是1月審查完畢的總預算是一個相當有效率的總預算案的審查居然可以在七八月再用一個決議案來推翻總預算的審查 |
transcript.whisperx[16].start |
333.237 |
transcript.whisperx[16].end |
347.416 |
transcript.whisperx[16].text |
自己推翻自己刪減的額度自己打臉自己這是第三個前所未見但無論如何我們負責任的用追加預算來提出解放下業 |
transcript.whisperx[17].start |
348.718 |
transcript.whisperx[17].end |
365.09 |
transcript.whisperx[17].text |
我在這裡要替行政部門來還原為了今年度的總預算案我們努力的窮盡一切的努力讓延宕49天的總預算負為審查您邀集了朝野的黨團包括韓院長我們吃了和解飯 |
transcript.whisperx[18].start |
366.684 |
transcript.whisperx[18].end |
394.441 |
transcript.whisperx[18].text |
希望能夠讓總預算趕快合理的騎乘排入審查然後大家有更餘裕的空間可以嚴格監督和解飯吃了然後呢最後是附委了可是卻壓縮史上最短的審查期間然後做了最高額度的刪減之後為了解決這個僵局總統破例的召開中華民國憲政史上第一次的院紀協調就是希望為總預算 |
transcript.whisperx[19].start |
396.262 |
transcript.whisperx[19].end |
416.209 |
transcript.whisperx[19].text |
來化解僵局也是總統的高度韓院長也在會議上在院計協調之後就如您所說的也是韓院長當時也就已經拋出的讓內閣用追加預算的方式來進行所謂 |
transcript.whisperx[20].start |
417.805 |
transcript.whisperx[20].end |
445.026 |
transcript.whisperx[20].text |
山過頭中央難以推動政務地方可能也蒙受其害所以追加預算早在院紀協調二月份的時候連韓院長都這樣拋出所以今天我們依據地方縣市首長的共同訴求也也回應了韓院長的訴求我們負責任的提入追加預算提出來你要不要再次對在野黨的委員喊話一下 |
transcript.whisperx[21].start |
446.394 |
transcript.whisperx[21].end |
462.519 |
transcript.whisperx[21].text |
這是唯一的解方也是行政院現在唯一能做的事情我剛剛說過只要把這些最佳預算回到中央政府總預算我們就如數如期的儘快解決中央部會跟地方政府共同在現在預算執行上的困難 |
transcript.whisperx[22].start |
463.642 |
transcript.whisperx[22].end |
489.231 |
transcript.whisperx[22].text |
國人也期待這個樣子就是唯一的解方也是最好的解方也沒有其他解方如果不是這樣的話地方政府他只有一用稅計證明這只有舉債他只有準決支出但像苗栗他就沒有辦法舉債但中央政府看到了也已經率先事先就把9.3億電交給這個苗栗縣政府我們也會衡量但是我希望終究的解方就是追加預算能夠成功 |
transcript.whisperx[23].start |
489.431 |
transcript.whisperx[23].end |
495.263 |
transcript.whisperx[23].text |
所以這個唯一的解方也是最好的解方無論如何下一頁希望 |
transcript.whisperx[24].start |
496.823 |
transcript.whisperx[24].end |
519.194 |
transcript.whisperx[24].text |
立法院能夠來快速審查來合理的監督來通過這追加預算878億包括了幾筆也是在野黨委員非常關切的原住民族進法補償的預算也包括賴總統為國軍提高了待遇包括我們要強化外交的量能還有這一次和三公投的11億的預算罷免的4億的預算還有 |
transcript.whisperx[25].start |
522.836 |
transcript.whisperx[25].end |
540.615 |
transcript.whisperx[25].text |
各縣市政府需求的六五六億六三六億下業而除了六三六億之外各個部會這一次因為扼砍扼山預算而蒙受的摯愛難情的業務我們一併把它提出我們再一次希望在野黨 |
transcript.whisperx[26].start |
541.556 |
transcript.whisperx[26].end |
565.382 |
transcript.whisperx[26].text |
合理的監督不要再為反對而反對因為這也是韓國瑜院長跟地方縣市首長共同提出來追加預算的解方下一頁您剛剛在報告的時候有提到如果說總預算史上新高就要刪減史上新高這完全是不合理的事情我來進一步來論述下一頁 |
transcript.whisperx[27].start |
567.983 |
transcript.whisperx[27].end |
592.752 |
transcript.whisperx[27].text |
總預算之所以會史上新高是因為經濟表現亮眼人民拚經濟有新購所以我們把財政的紅利來全民共享中央地方都共享所以確實今年的中央政府總預算案是成長了8.6%這都是正向的拼經濟的成果大家共同的成就下一頁 |
transcript.whisperx[28].start |
593.832 |
transcript.whisperx[28].end |
612.001 |
transcript.whisperx[28].text |
同樣的地方縣市也是史上新高的預算兩個原因第一個同樣的經濟成長地方也有稅收本身地方的稅收也成長第二個中央因為富起來我們擴大對於地方的補助碼 |
transcript.whisperx[29].start |
613.321 |
transcript.whisperx[29].end |
637.811 |
transcript.whisperx[29].text |
對所以受惠於經濟發展跟中央撥補地方也是史上新高讓各縣市的總預算一樣的成長以我這裡的整理114年度的總預算案各縣市政府平均成長8.2%剛剛中央是8.6%一樣都8%以上而六都我來自於首都台北市六都的成長也是高達8.03% |
transcript.whisperx[30].start |
640.952 |
transcript.whisperx[30].end |
666.266 |
transcript.whisperx[30].text |
換言之經濟有成稅收增加中央地方的財政預算都成長下一頁但您說的非常好合理的監督地方議會有大砍地方政府史上最高的預算嗎並沒有我整理出來的數據因為我來自首都我就用六都的數字來說六都這114年總預算的成長來到810億 |
transcript.whisperx[31].start |
671.207 |
transcript.whisperx[31].end |
685.311 |
transcript.whisperx[31].text |
總成長來到8.03%跟中央的水平幾乎是一樣但是各個縣市議會合理監督沒有過當的審查各縣市議會total在增加810億的預算當中只刪減了14.09億刪減數是0.12% |
transcript.whisperx[32].start |
695.492 |
transcript.whisperx[32].end |
716.725 |
transcript.whisperx[32].text |
如果說表現好的稅收成長的政府他應當是優等生反而要受懲罰這完全不合理啊我們各個地方縣市議會就非常的理性啊不論是誰多數所以地方政府刪減今年度的總預算在合理審查之下只刪減了14.09億只刪減了0.12%我們要讓國人知道 |
transcript.whisperx[33].start |
722.168 |
transcript.whisperx[33].end |
737.779 |
transcript.whisperx[33].text |
史上最高的預算他應當是被肯定的而不是成為他被大幅刪減預算成為元兇成為一個原罪下一頁我們再自己比一比剛剛是比地方政府現在比中央政府 |
transcript.whisperx[34].start |
738.659 |
transcript.whisperx[34].end |
747.99 |
transcript.whisperx[34].text |
過去馬英九執政 蔡英文總統執政16年來立法院的合理監督預算平均每年刪減的預算是247億年均刪減的數字是1.189% |
transcript.whisperx[35].start |
754.938 |
transcript.whisperx[35].end |
774.018 |
transcript.whisperx[35].text |
但今年藍白聯手之下我們刪減的預算的幅度來到6.6%是過去的5.5倍這是中央比中央但如果中央比地方藍白聯手的立法院刪減的預算數是各地方議會刪減預算數的55倍 |
transcript.whisperx[36].start |
778.911 |
transcript.whisperx[36].end |
796.97 |
transcript.whisperx[36].text |
哪裡合理哪裡正當他們以為懲罰的是民進黨結果加害了整個國家跟人民我的主張論述您同意吧非常感謝吳委員做這麼詳細的歸納有些數字過去我們都表示過 |
transcript.whisperx[37].start |
798.2 |
transcript.whisperx[37].end |
823.479 |
transcript.whisperx[37].text |
我們也一直認為我們也希望地方政府能夠多做一些地方建設需要的時候中央跟地方一起來合作但中央如果這個裁員都發生困難連自己部會的預算都那麼拮据的話我們如何再把這些錢拿去補助給地方所以這就是一個自然這就是您剛說的說的大水庫這就是菩薩為因眾生為果下一頁 |
transcript.whisperx[38].start |
824.56 |
transcript.whisperx[38].end |
847.296 |
transcript.whisperx[38].text |
如果說中央因為這636億的不得已暫時的調整了可是現在也用追加預算補回但到底要說清楚講明白我們中央政府對於地方的照顧有縮水嗎有讓中央富起來地方苦哈哈嗎下一頁 |
transcript.whisperx[39].start |
848.337 |
transcript.whisperx[39].end |
866.488 |
transcript.whisperx[39].text |
這是我整理從馬英九總統到賴清德總統看到這個幅度這是中央政府對於地方政府的各種補助款的一個成長的趨勢到賴清德總統上任的2025年的這一年中央對於地方的各項補助來到一兆 |
transcript.whisperx[40].start |
868.289 |
transcript.whisperx[40].end |
887.258 |
transcript.whisperx[40].text |
151億是史上新高即便扣除了636億暫時被調整的也是高達9495億是史上新高所以中央沒有虧待地方政府反而幫助地方富起來下一頁總體來講如果636億當時刪減的話我們挹注地方依舊高出549億成長6.1%下一頁 |
transcript.whisperx[41].start |
897.063 |
transcript.whisperx[41].end |
924.078 |
transcript.whisperx[41].text |
各個縣市台北市成長8.9%桃園成長8.2%新北台中都是讓我們看到中央照顧地方是加倍跟加碼所以最後時間到了我們再一次要澄清事實預算最高是全民拼經濟有成他不應當成為刪減預算的原罪第二個中央地方都受害的我們用追加預算來 |
transcript.whisperx[42].start |
945.062 |
transcript.whisperx[42].end |
945.082 |
transcript.whisperx[42].text |
好謝謝 |