iVOD / 163544

Field Value
IVOD_ID 163544
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163544
日期 2025-08-19
會議資料.會議代碼 院會-11-3-25
會議資料.會議代碼:str 第11屆第3會期第25次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 25
會議資料.種類 院會
會議資料.標題 第11屆第3會期第25次會議
影片種類 Clip
開始時間 2025-08-19T09:15:46+08:00
結束時間 2025-08-19T09:32:09+08:00
影片長度 00:16:23
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/906c3280ae286f11d8d70e662bce9fab18ad07c9952a2a5306bd48d9366c8797fbc34bea683b19dc5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳昭姿
委員發言時間 09:15:46 - 09:32:09
會議時間 2025-08-19T09:00:00+08:00
會議名稱 第11屆第3會期第25次會議(事由:一、行政院院長提出「新世代打擊詐欺策略行動綱領2.0執行成效」專案報告並備質詢(8月15日)。二、行政院院長提出「全額撥付114年度對地方政府之一般性補助款及原住民族地區基本設施維持費等相關事宜」專案報告並備質詢(8月19日)。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 8.35034375
transcript.pyannote[0].end 10.18971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 10.72971875
transcript.pyannote[1].end 11.96159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 24.80346875
transcript.pyannote[2].end 25.44471875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 26.40659375
transcript.pyannote[3].end 29.47784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 29.83221875
transcript.pyannote[4].end 32.14409375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 32.54909375
transcript.pyannote[5].end 34.03409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.74284375
transcript.pyannote[6].end 35.77221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 36.05909375
transcript.pyannote[7].end 42.75846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 43.14659375
transcript.pyannote[8].end 65.70846875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 67.59846875
transcript.pyannote[9].end 77.53784375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 77.80784375
transcript.pyannote[10].end 101.75346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 102.79971875
transcript.pyannote[11].end 106.15784375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 106.78221875
transcript.pyannote[12].end 115.55721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 116.08034375
transcript.pyannote[13].end 120.50159375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 120.80534375
transcript.pyannote[14].end 132.39846875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 132.78659375
transcript.pyannote[15].end 134.06909375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 134.37284375
transcript.pyannote[16].end 136.76909375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 136.87034375
transcript.pyannote[17].end 148.63221875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 149.05409375
transcript.pyannote[18].end 151.85534375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 151.92284375
transcript.pyannote[19].end 153.22221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 153.91409375
transcript.pyannote[20].end 158.92596875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 159.21284375
transcript.pyannote[21].end 162.58784375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 163.14471875
transcript.pyannote[22].end 168.67971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 169.57409375
transcript.pyannote[23].end 173.13471875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 173.37096875
transcript.pyannote[24].end 175.80096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 176.25659375
transcript.pyannote[25].end 179.20971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 179.27721875
transcript.pyannote[26].end 179.91846875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 181.45409375
transcript.pyannote[27].end 187.61346875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 188.28846875
transcript.pyannote[28].end 189.40221875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 189.77346875
transcript.pyannote[29].end 194.65034375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 194.93721875
transcript.pyannote[30].end 199.18971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 199.74659375
transcript.pyannote[31].end 203.03721875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 203.54346875
transcript.pyannote[32].end 215.06909375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 215.49096875
transcript.pyannote[33].end 216.52034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 216.89159375
transcript.pyannote[34].end 226.13909375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 227.15159375
transcript.pyannote[35].end 232.60221875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 233.86784375
transcript.pyannote[36].end 240.21284375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 240.53346875
transcript.pyannote[37].end 242.77784375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 243.31784375
transcript.pyannote[38].end 247.48596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 247.58721875
transcript.pyannote[39].end 248.68409375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 249.12284375
transcript.pyannote[40].end 253.79721875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 250.32096875
transcript.pyannote[41].end 250.69221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 253.47659375
transcript.pyannote[42].end 254.62409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 254.21909375
transcript.pyannote[43].end 258.20159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 255.61971875
transcript.pyannote[44].end 259.58534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 260.09159375
transcript.pyannote[45].end 260.98596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 261.37409375
transcript.pyannote[46].end 274.95846875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 267.58409375
transcript.pyannote[47].end 269.05221875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 274.95846875
transcript.pyannote[48].end 280.69596875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 275.22846875
transcript.pyannote[49].end 275.32971875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 281.21909375
transcript.pyannote[50].end 288.52596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 286.23096875
transcript.pyannote[51].end 287.39534375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 288.28971875
transcript.pyannote[52].end 292.55909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 292.74471875
transcript.pyannote[53].end 294.70221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 294.88784375
transcript.pyannote[54].end 298.36409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 298.54971875
transcript.pyannote[55].end 303.71346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 303.98346875
transcript.pyannote[56].end 307.07159375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 308.11784375
transcript.pyannote[57].end 309.67034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 309.53534375
transcript.pyannote[58].end 319.10346875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 309.83909375
transcript.pyannote[59].end 310.63221875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 319.15409375
transcript.pyannote[60].end 322.27596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 322.47846875
transcript.pyannote[61].end 324.30096875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 325.16159375
transcript.pyannote[62].end 331.28721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 331.50659375
transcript.pyannote[63].end 334.93221875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 335.23596875
transcript.pyannote[64].end 341.68221875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 341.81721875
transcript.pyannote[65].end 346.50846875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 346.67721875
transcript.pyannote[66].end 352.26284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 352.43159375
transcript.pyannote[67].end 353.89971875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 354.59159375
transcript.pyannote[68].end 354.96284375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 355.43534375
transcript.pyannote[69].end 357.05534375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 357.67971875
transcript.pyannote[70].end 366.33659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 363.83909375
transcript.pyannote[71].end 364.29471875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 364.83471875
transcript.pyannote[72].end 370.04909375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 370.45409375
transcript.pyannote[73].end 387.21096875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 387.64971875
transcript.pyannote[74].end 392.07096875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 391.59846875
transcript.pyannote[75].end 393.21846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 394.18034375
transcript.pyannote[76].end 399.73221875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 398.06159375
transcript.pyannote[77].end 403.47846875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 412.94534375
transcript.pyannote[78].end 413.55284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 421.11284375
transcript.pyannote[79].end 422.22659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 422.58096875
transcript.pyannote[80].end 425.19659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 425.19659375
transcript.pyannote[81].end 425.23034375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 426.05721875
transcript.pyannote[82].end 426.42846875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 426.88409375
transcript.pyannote[83].end 427.45784375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 429.51659375
transcript.pyannote[84].end 430.51221875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 436.85721875
transcript.pyannote[85].end 438.03846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 449.37846875
transcript.pyannote[86].end 450.07034375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 451.23471875
transcript.pyannote[87].end 452.70284375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 463.01346875
transcript.pyannote[88].end 465.42659375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 463.97534375
transcript.pyannote[89].end 464.05971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 466.92846875
transcript.pyannote[90].end 491.75159375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 492.96659375
transcript.pyannote[91].end 497.97846875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 498.07971875
transcript.pyannote[92].end 500.69534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 500.99909375
transcript.pyannote[93].end 501.79221875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 503.00721875
transcript.pyannote[94].end 504.77909375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 505.77471875
transcript.pyannote[95].end 511.10721875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 511.41096875
transcript.pyannote[96].end 513.08159375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 512.76096875
transcript.pyannote[97].end 514.06034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 513.43596875
transcript.pyannote[98].end 515.73096875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 515.66346875
transcript.pyannote[99].end 531.74534375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 517.23284375
transcript.pyannote[100].end 518.58284375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 531.88034375
transcript.pyannote[101].end 546.64596875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 546.88221875
transcript.pyannote[102].end 566.15346875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 567.85784375
transcript.pyannote[103].end 570.18659375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 570.86159375
transcript.pyannote[104].end 575.58659375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 575.95784375
transcript.pyannote[105].end 593.00159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 593.33909375
transcript.pyannote[106].end 619.41096875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 619.98471875
transcript.pyannote[107].end 630.24471875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 630.64971875
transcript.pyannote[108].end 631.67909375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 632.80971875
transcript.pyannote[109].end 635.42534375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 635.44221875
transcript.pyannote[110].end 635.79659375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 635.99909375
transcript.pyannote[111].end 637.66971875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 637.95659375
transcript.pyannote[112].end 643.91346875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 644.40284375
transcript.pyannote[113].end 655.50659375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 648.04784375
transcript.pyannote[114].end 649.65096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 650.89971875
transcript.pyannote[115].end 651.79409375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 654.35909375
transcript.pyannote[116].end 667.28534375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 667.65659375
transcript.pyannote[117].end 676.00971875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 675.79034375
transcript.pyannote[118].end 682.74284375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 683.26596875
transcript.pyannote[119].end 686.05034375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 684.24471875
transcript.pyannote[120].end 701.20409375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 701.92971875
transcript.pyannote[121].end 703.36409375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 702.08159375
transcript.pyannote[122].end 702.53721875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 703.58346875
transcript.pyannote[123].end 706.33409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 706.68846875
transcript.pyannote[124].end 707.85284375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 707.95409375
transcript.pyannote[125].end 708.42659375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 709.01721875
transcript.pyannote[126].end 712.98284375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 713.40471875
transcript.pyannote[127].end 719.19284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 718.55159375
transcript.pyannote[128].end 720.55971875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 719.44596875
transcript.pyannote[129].end 732.38909375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 721.52159375
transcript.pyannote[130].end 722.26409375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 724.76159375
transcript.pyannote[131].end 725.09909375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 732.37221875
transcript.pyannote[132].end 748.42034375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 749.34846875
transcript.pyannote[133].end 754.09034375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 754.25909375
transcript.pyannote[134].end 760.36784375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 761.09346875
transcript.pyannote[135].end 762.74721875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 763.16909375
transcript.pyannote[136].end 763.54034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 765.04221875
transcript.pyannote[137].end 770.05409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 770.34096875
transcript.pyannote[138].end 770.61096875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 771.15096875
transcript.pyannote[139].end 778.71096875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 775.18409375
transcript.pyannote[140].end 775.63971875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 777.07409375
transcript.pyannote[141].end 777.64784375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 778.54221875
transcript.pyannote[142].end 779.62221875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 781.22534375
transcript.pyannote[143].end 782.11971875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 782.69346875
transcript.pyannote[144].end 783.87471875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 784.02659375
transcript.pyannote[145].end 784.04346875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 784.06034375
transcript.pyannote[146].end 786.08534375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 787.23284375
transcript.pyannote[147].end 788.43096875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 788.85284375
transcript.pyannote[148].end 790.97909375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 792.43034375
transcript.pyannote[149].end 795.26534375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 795.26534375
transcript.pyannote[150].end 795.33284375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 795.33284375
transcript.pyannote[151].end 797.05409375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 797.29034375
transcript.pyannote[152].end 806.55471875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 802.48784375
transcript.pyannote[153].end 803.19659375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 806.55471875
transcript.pyannote[154].end 806.94284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 806.94284375
transcript.pyannote[155].end 831.64784375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 831.29346875
transcript.pyannote[156].end 834.55034375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 834.90471875
transcript.pyannote[157].end 842.93721875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 841.40159375
transcript.pyannote[158].end 853.50096875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 853.92284375
transcript.pyannote[159].end 870.25784375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 870.37596875
transcript.pyannote[160].end 879.23534375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 879.96096875
transcript.pyannote[161].end 889.02284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 889.74846875
transcript.pyannote[162].end 892.22909375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 891.03096875
transcript.pyannote[163].end 931.27784375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 931.81784375
transcript.pyannote[164].end 933.57284375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 934.14659375
transcript.pyannote[165].end 937.55534375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 937.96034375
transcript.pyannote[166].end 939.56346875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 939.90096875
transcript.pyannote[167].end 948.38909375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 945.94221875
transcript.pyannote[168].end 946.16159375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 947.37659375
transcript.pyannote[169].end 947.93346875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 948.37221875
transcript.pyannote[170].end 963.13784375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 959.47596875
transcript.pyannote[171].end 964.62284375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 965.09534375
transcript.pyannote[172].end 968.03159375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 967.33971875
transcript.pyannote[173].end 972.09846875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 982.67909375
transcript.pyannote[174].end 983.47221875
transcript.whisperx[0].start 8.736
transcript.whisperx[0].end 33.147
transcript.whisperx[0].text 謝謝主席 有請卓院長麻煩請卓院長備詢蔡委員好卓院長好我今天聲音有點傻眼 敬請包容但是我今天還是要跟您討論因為行政院這個
transcript.whisperx[1].start 35.095
transcript.whisperx[1].end 51.63
transcript.whisperx[1].text 違法大砍或苛扣一般性的地方補助款這件事情造成地方政府在面對關稅衝擊的時候其實有很大的影響稍後我會跟院長分析跟說明為什麼地方補助款
transcript.whisperx[2].start 52.49
transcript.whisperx[2].end 65.209
transcript.whisperx[2].text 跟面對應對關稅的衝擊是有相關的所以我今天的質詢內容會稍微提到關稅的部分那還麻煩院長您能夠認真看待誠懇的回答好嗎
transcript.whisperx[3].start 67.882
transcript.whisperx[3].end 85.897
transcript.whisperx[3].text 因為行政院假借立法院刪減預算之名對一般性補助款行大砍之實 苛扣之實我一直在研究到底砍了哪些項目我也在推敲思考行政院到底是
transcript.whisperx[4].start 86.718
transcript.whisperx[4].end 100.958
transcript.whisperx[4].text 什麼樣的心態那我去分析之後我的解釋是說行政院終究是為了一個選票為了大罷免大成功可以說是非常的高明那為什麼我會這樣說我麻煩院長看一下這張圖表
transcript.whisperx[5].start 103.004
transcript.whisperx[5].end 122.132
transcript.whisperx[5].text 這是來自主計總處的資料關於近三年來行政院撥補地方補助款的情形其中教育補助最左邊那一欄是用來支應學校教育人事費教育設施補助費退休給付等然後另外一項第四欄
transcript.whisperx[6].start 123.132
transcript.whisperx[6].end 150.939
transcript.whisperx[6].text 其他基本的支出補助是補助各地方政府的公務員警察還有消防人員的人事費辦公費及退休金等那這兩個項目這兩個項目其實砍得非常少那相對去持平的我的解讀是就不去得罪公教人員就不去得罪這個學生家長所以幾乎都沒有去動他但是相較之下院長
transcript.whisperx[7].start 152.119
transcript.whisperx[7].end 176.944
transcript.whisperx[7].text 人民最有感也最能大做文章的社會福利補助砍了不少還有基本設施的補助也砍了不少但是砍得最多的那一項明顯大幅減少的是平衡預算補助是在第五欄的地方平衡預算補助2024年這筆數字是520億
transcript.whisperx[8].start 181.496
transcript.whisperx[8].end 198.724
transcript.whisperx[8].text 但是今年砍了一大半以上剩下249億這個數字砍了這麼多是匪夷所思當然我也可以說是居心叵測我想要請問院長您知不知道透過地方補助
transcript.whisperx[9].start 199.804
transcript.whisperx[9].end 222.91
transcript.whisperx[9].text 再去補助給中小企業的各種獎勵包括創業補助包括研發補助包括獎勵等等是放在哪個項目足記總長麻煩您直播我想請教院長院長您知道這個部分透過地方政府去補助這個中小企業的一個獎勵 研發 創業是放在哪個項目嗎
transcript.whisperx[10].start 227.379
transcript.whisperx[10].end 242.422
transcript.whisperx[10].text 中央對地方的補助其中有一項在一般性補助裡面叫做爭域裁員爭域裁員就是地方政府如果他裁員有不足的時候我們用平衡的精神來爭域他的裁員我剛剛在報告當中說明過
transcript.whisperx[11].start 243.556
transcript.whisperx[11].end 255.051
transcript.whisperx[11].text 過去這幾年中央與地方通力的合作中央大力協助地方政府的財政結構已經有所改善從愚促轉為盈餘有這個剩餘的時候你提到平衡運轉補助可是你們砍得最多的
transcript.whisperx[12].start 260.157
transcript.whisperx[12].end 279.622
transcript.whisperx[12].text 也是這一項你們把透過地方的手要去補助中小企業的部分都砍了所以我為什麼一開始就說地方補助款跟面對關稅的衝擊其實是有影響的你們砍了最多砍了一半以上我們並不是砍這樣的預算是爭域裁員爭域裁員是他本身財政困難
transcript.whisperx[13].start 280.402
transcript.whisperx[13].end 306.373
transcript.whisperx[13].text 有漁錯的時候我們想辦法來補食他他如果沒有了那這個爭域財源就是地方財政自主健康的一個條件4月7號您邀請立院黨團朝野黨團到行政院針對關稅的議題我們有共商國事那對行政院合定的因應美國的關稅提出了880億院長您還記得我提出什麼建議我講了什麼話嗎
transcript.whisperx[14].start 308.649
transcript.whisperx[14].end 322.085
transcript.whisperx[14].text 請委員再提點一下當然院長你日理千機啦您不記得是很正常的我是要告訴院長我這個人從來不講場面話而且我講話也不講多餘的話我是直接講的那天我一發言輪到我發言我就跟院長說880億是不夠的
transcript.whisperx[15].start 325.202
transcript.whisperx[15].end 353.732
transcript.whisperx[15].text 我也提到根據幾位產業專家講的就說這個影響評估至少是三個百分點的GDP一個百分點的GDP是兩千多億行政院根本沒有做好衝擊評估所以我們也沒有資料可以做參考那天你也很客氣的請在野黨要配合特別條例你也提到說有關非關稅壁壘的部分可能要涉及法規的鬆綁所以你也請大家配合
transcript.whisperx[16].start 354.656
transcript.whisperx[16].end 382.607
transcript.whisperx[16].text 我 您記得我怎麼回應您嗎我記得那天在草野的氣氛底下是相當針對那個議題對行政院提出的看法是採取支持的我當時有請教您 有提醒您就是說那請你是不是約束你的行政官員不要上大罷免的選講台 為什麼呢因為你一方面請在野黨來幫助你能夠通過配合這個預算 特別的條例等等但一方面又要罷免人家
transcript.whisperx[17].start 383.647
transcript.whisperx[17].end 403.137
transcript.whisperx[17].text 我是這樣子提醒院長但是院長您當天停格了您沒有回答我這句話您沒有回答我因為這兩個不是同樣的公民團體的行動跟國家面對關稅的衝擊稍後我有時間再跟院長討論這個部分院長我想請你先看一段20幾秒的影片
transcript.whisperx[18].start 413.238
transcript.whisperx[18].end 425.087
transcript.whisperx[18].text 聲音請時間暫停請時間暫停時間暫停我們再播放一下沒有聲音重新開始播一下
transcript.whisperx[19].start 449.403
transcript.whisperx[19].end 452.387
transcript.whisperx[19].text 再試試看請問為什麼沒有聲音
transcript.whisperx[20].start 467.217
transcript.whisperx[20].end 490.676
transcript.whisperx[20].text 在很多必要守住的關頭他都也沒有守住一直節節敗退我們真的想問總統你在急什麼難道這麼重大的事情臺灣社會不應該參與國會不應該監督嗎所以我也要在這裡呼籲我們的國會一定要強力的監督當政府已經喪失了替人民把關的功能的時候我們就期待國會要扮演這個角色
transcript.whisperx[21].start 493.095
transcript.whisperx[21].end 519.752
transcript.whisperx[21].text 因為您認為當時蔡英文主席在說哪一位總統很急在急什麼呢他說國會要監督監督的對象是誰您記得嗎總統講這段話他的用意當然是希望說國會發揮正常而強力的監督行政院行政院在做任何談判工作的時候要守住國家的立場這是2013年蔡英文主席對馬英九總統那個時候就說這個福馬黑箱的受訪
transcript.whisperx[22].start 522.714
transcript.whisperx[22].end 538.602
transcript.whisperx[22].text 當年我們一起來反對這個福馬黑箱主張台灣社會應該參與主張國會應該要監督結果現在賴政府跟您的團隊都是以說跟美方簽有這個秘密協定唯有相關資訊都引領所以我才放這張影片讓
transcript.whisperx[23].start 540.683
transcript.whisperx[23].end 563.218
transcript.whisperx[23].text 讓您還有民進黨政府能夠回想到底在急什麼為什麼國會不能監督院長美國他先是宣布日本的關稅是15%後來又宣布台灣的關稅是20%那當然賴總統跟談判團隊一直在告訴我們這個是暫時性的稅率但是我想請教院長你認為20%跟15%差距是大還是不大
transcript.whisperx[24].start 568.207
transcript.whisperx[24].end 590.254
transcript.whisperx[24].text 15跟20這兩個數字本來就有差距其實是對產業有重大的影響可是當日本政府知道說這個5%是疊加上去的時候他們立刻跟美方溝通最後美方承認川普總統他簽署這個對等關稅行政命令的時候不精確這個跟這個他們7月22日兩國商談的結果是不一樣的所以後來
transcript.whisperx[25].start 595.476
transcript.whisperx[25].end 623.097
transcript.whisperx[25].text 後來日本消美的商品跟歐洲歐盟一樣不會在既有的關稅上再疊加再疊加這個15%可是反觀台灣呢我們在最基本的最惠國這個關稅稅率上又疊加了20%所以我們是20加4是24%啦這是以工具機為例工具機為例是24%那國人剛開始以為我們跟日本只是差了5%
transcript.whisperx[26].start 624.438
transcript.whisperx[26].end 643.49
transcript.whisperx[26].text 現在差了百分之九那我再來請問院長請問這個百分之五跟百分之九的差距大不大呢就數字來看當然他是數字是不同的那院長請問官方有整理這個我們消滅產品的稅率跟日本的差距嗎有整理這些資料嗎
transcript.whisperx[27].start 644.428
transcript.whisperx[27].end 660.677
transcript.whisperx[27].text 我們跟美國的消美的各項的農工產品我們都有詳細的數字跟其他主要國家的主要產品我們也會做出比較我相信你們是有做比較但是我奇怪的是為什麼7月26號之前不公開呢因為7月23號
transcript.whisperx[28].start 661.718
transcript.whisperx[28].end 682.539
transcript.whisperx[28].text 就知道日本是15%那8月11日行政會開記者會之前我們都看不到官方數字我們只看到民間整理的數字我不相信這個是屬於這個保密這個協議的範圍陳委員一句話那個記者會政府院長記者會裡面寫得很清楚4月我們對外公開就已經講到過這一段我們只是
transcript.whisperx[29].start 683.3
transcript.whisperx[29].end 700.917
transcript.whisperx[29].text 行政院在過去一段時間沒有一直重複我覺得是個別產業所受到的衝擊因為那天8月11號有提了一些我先請教8月11號的行政院記者會有說他們要爭取不要疊加關稅請問又過好多天了有沒有進度呢
transcript.whisperx[30].start 701.977
transcript.whisperx[30].end 718.496
transcript.whisperx[30].text 有沒有進度這件事我是上次的報告有說過歐盟日本他們可以爭取到不疊加是因為他們簽了所謂的協議協議簽了之後他們爭取不疊加像日本也是簽了之後才知道原來他們是疊加
transcript.whisperx[31].start 720.799
transcript.whisperx[31].end 741.396
transcript.whisperx[31].text 台灣跟美國之間還沒有談到協議的內容跟定案簽訂之後 照政府院長所講的我們現在第一個爭取降到合理的稅率第二個爭取不疊價謝謝院長那8月11號行政院召開記者會的時候鞏明星秘書長他就是以工具機產業這張圖表的個別產業影響評估說明他說台灣跟主要的競爭國的關稅差距9%
transcript.whisperx[32].start 749.443
transcript.whisperx[32].end 762.271
transcript.whisperx[32].text 所以中高階的工具機可能會被日本及德國取代你看行政院配合民進黨的大罷免搞了一年多現在終於講實話了會被取代
transcript.whisperx[33].start 765.26
transcript.whisperx[33].end 790.792
transcript.whisperx[33].text 為什麼這個資訊在過去幾個月都不能跟國人好好溝通不能跟國會報告這個一直到被質疑說是黑箱的怒火炎上加上726大罷免大失敗之後才要公開呢過去幾個月您不知道日本的關稅多少台灣的關稅多少我也不知道談判代表也不知道我們怎麼跟你講我們跟日本差多少
transcript.whisperx[34].start 792.572
transcript.whisperx[34].end 812.422
transcript.whisperx[34].text 難道你過去就知道日本是15 台灣是20嗎也不知道啊 沒有人知道啊院長 我提醒的重點是說其實國人給你的壓力或國會給你的壓力其實是你們對美談判的籌碼就是說你要把國內的壓力轉化成談判的助力別的國家就是這麼做的啊
transcript.whisperx[35].start 812.862
transcript.whisperx[35].end 834.398
transcript.whisperx[35].text 別的國家就是這麼做啦當然你看到日本 韓國都這麼做但是民進黨卻一直擔心大罷免大成功會破功啊那又擔心說如果我先公布了衝擊評估那又影響選情啊所以一直就沒有就是一直保持這個隱瞞啊所以我們的感受是如此啊歐盟日本跟美國談好也是在之後的事情
transcript.whisperx[36].start 834.978
transcript.whisperx[36].end 852.297
transcript.whisperx[36].text 在過去你說的民進黨支持大罷免這個前提是不存在即使在那個時段裡面也沒有人知道談判出來最後的結果是如何我今天也許沒有提那個部分但是我們再回到這張簡報我還發現就是韓國工具機它的最惠國關稅是零喔也是疊加上去也是15%
transcript.whisperx[37].start 853.979
transcript.whisperx[37].end 877.694
transcript.whisperx[37].text 而台灣最惠國關稅是4%再加上去24%所以還是差距很大那你們在簡報上提出來的因應措施很多業者跟我們反映說杯水車型毫無幫助因為他沒有辦法降低成本就沒有辦法跟對手有競爭力這是很現實的問題我想請你看一下這篇聯合報的報導標題是
transcript.whisperx[38].start 880.015
transcript.whisperx[38].end 907.253
transcript.whisperx[38].text 美關稅20%已經是仁慈工具機大佬直指關鍵因素在這裡 請問院長您看過這篇報導嗎你有看過這篇報導嗎我約略有看過工具機大佬也就是台灣工具機暨領組建工會的這個名譽理事長許文憲以下都是他說的話美國關稅的真正意圖是要圍堵中國製造要各國去去除紅色供應鏈結果台灣是連
transcript.whisperx[39].start 908.113
transcript.whisperx[39].end 929.594
transcript.whisperx[39].text 工具機的產業都是大量利用中國製造的零組件來降低成本對美國來說台灣就是紅色供應鏈的參與者跟獲利者只要沒有斷掉紅色供應鏈美國對台灣藉由關稅的制度是不會停止的送再多的台積電給美國也沒有用這是他講的話 請問您認同嗎
transcript.whisperx[40].start 931.817
transcript.whisperx[40].end 948.207
transcript.whisperx[40].text 台灣就是這樣子我們更應該立即快速的強調我們的整個供應鏈的經濟安全建立起我們的民主供應鏈在過去這段時間累積下來的我們現在就要強烈的來改所以請委員支持我們把今年的預算恢復過來我們可以做更多的事情
transcript.whisperx[41].start 948.447
transcript.whisperx[41].end 971.998
transcript.whisperx[41].text 那我就是說你剛剛的對應的政策有四項但完全沒有提到去除這個紅色供應鏈嘛所以應該趕快補上嘛所以當你這個地方補助款你把刪掉透過地方政府給企業的總統實際上國安策略裡面就有清楚的這一項我沒有辦法一次的講話把所有的你刪除了地方政府對企業界的補助跟獎勵這個怎麼能夠有辦法
transcript.whisperx[42].start 982.785
transcript.whisperx[42].end 983.146
transcript.whisperx[42].text 好 谢谢