iVOD / 16329

Field Value
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a685ff4632c590446426ad9f551ce5fa921fa82e37f9ba35fd77cd28c62fd96d6a4f5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-12-02T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境、經濟委員會第2次聯席會議(事由:繼續審查委員吳春城等42人擬具「壯世代政策與產業發展促進法草案」案。)
委員名稱 完整會議
影片長度 19125
委員發言時間 08:30:15 - 13:49:00
transcript.pyannote[0].speaker SPEAKER_26
transcript.pyannote[0].start 364.42971875
transcript.pyannote[0].end 364.53096875
transcript.pyannote[1].speaker SPEAKER_14
transcript.pyannote[1].start 2195.56971875
transcript.pyannote[1].end 2196.10971875
transcript.pyannote[2].speaker SPEAKER_15
transcript.pyannote[2].start 2199.58596875
transcript.pyannote[2].end 2200.14284375
transcript.pyannote[3].speaker SPEAKER_15
transcript.pyannote[3].start 2201.61096875
transcript.pyannote[3].end 2209.89659375
transcript.pyannote[4].speaker SPEAKER_07
transcript.pyannote[4].start 2210.23409375
transcript.pyannote[4].end 2309.27346875
transcript.pyannote[5].speaker SPEAKER_15
transcript.pyannote[5].start 2315.71971875
transcript.pyannote[5].end 2319.61784375
transcript.pyannote[6].speaker SPEAKER_15
transcript.pyannote[6].start 2321.00159375
transcript.pyannote[6].end 2336.02034375
transcript.pyannote[7].speaker SPEAKER_15
transcript.pyannote[7].start 2336.74596875
transcript.pyannote[7].end 2340.17159375
transcript.pyannote[8].speaker SPEAKER_15
transcript.pyannote[8].start 2340.39096875
transcript.pyannote[8].end 2350.66784375
transcript.pyannote[9].speaker SPEAKER_15
transcript.pyannote[9].start 2351.39346875
transcript.pyannote[9].end 2357.80596875
transcript.pyannote[10].speaker SPEAKER_15
transcript.pyannote[10].start 2358.44721875
transcript.pyannote[10].end 2362.81784375
transcript.pyannote[11].speaker SPEAKER_15
transcript.pyannote[11].start 2362.90221875
transcript.pyannote[11].end 2383.64159375
transcript.pyannote[12].speaker SPEAKER_15
transcript.pyannote[12].start 2383.97909375
transcript.pyannote[12].end 2391.26909375
transcript.pyannote[13].speaker SPEAKER_15
transcript.pyannote[13].start 2395.11659375
transcript.pyannote[13].end 2397.42846875
transcript.pyannote[14].speaker SPEAKER_15
transcript.pyannote[14].start 2397.78284375
transcript.pyannote[14].end 2399.45346875
transcript.pyannote[15].speaker SPEAKER_15
transcript.pyannote[15].start 2403.21659375
transcript.pyannote[15].end 2404.27971875
transcript.pyannote[16].speaker SPEAKER_15
transcript.pyannote[16].start 2407.19909375
transcript.pyannote[16].end 2408.34659375
transcript.pyannote[17].speaker SPEAKER_15
transcript.pyannote[17].start 2411.08034375
transcript.pyannote[17].end 2413.88159375
transcript.pyannote[18].speaker SPEAKER_15
transcript.pyannote[18].start 2414.26971875
transcript.pyannote[18].end 2414.40471875
transcript.pyannote[19].speaker SPEAKER_15
transcript.pyannote[19].start 2416.78409375
transcript.pyannote[19].end 2421.86346875
transcript.pyannote[20].speaker SPEAKER_15
transcript.pyannote[20].start 2421.91409375
transcript.pyannote[20].end 2422.43721875
transcript.pyannote[21].speaker SPEAKER_15
transcript.pyannote[21].start 2422.62284375
transcript.pyannote[21].end 2423.50034375
transcript.pyannote[22].speaker SPEAKER_15
transcript.pyannote[22].start 2423.95596875
transcript.pyannote[22].end 2424.51284375
transcript.pyannote[23].speaker SPEAKER_15
transcript.pyannote[23].start 2425.27221875
transcript.pyannote[23].end 2427.24659375
transcript.pyannote[24].speaker SPEAKER_15
transcript.pyannote[24].start 2427.71909375
transcript.pyannote[24].end 2430.68909375
transcript.pyannote[25].speaker SPEAKER_15
transcript.pyannote[25].start 2430.92534375
transcript.pyannote[25].end 2432.27534375
transcript.pyannote[26].speaker SPEAKER_15
transcript.pyannote[26].start 2435.27909375
transcript.pyannote[26].end 2437.42221875
transcript.pyannote[27].speaker SPEAKER_15
transcript.pyannote[27].start 2439.04221875
transcript.pyannote[27].end 2439.80159375
transcript.pyannote[28].speaker SPEAKER_15
transcript.pyannote[28].start 2440.42596875
transcript.pyannote[28].end 2443.27784375
transcript.pyannote[29].speaker SPEAKER_15
transcript.pyannote[29].start 2446.61909375
transcript.pyannote[29].end 2450.19659375
transcript.pyannote[30].speaker SPEAKER_15
transcript.pyannote[30].start 2453.28471875
transcript.pyannote[30].end 2457.55409375
transcript.pyannote[31].speaker SPEAKER_15
transcript.pyannote[31].start 2460.32159375
transcript.pyannote[31].end 2463.69659375
transcript.pyannote[32].speaker SPEAKER_15
transcript.pyannote[32].start 2464.74284375
transcript.pyannote[32].end 2467.42596875
transcript.pyannote[33].speaker SPEAKER_15
transcript.pyannote[33].start 2470.37909375
transcript.pyannote[33].end 2473.02846875
transcript.pyannote[34].speaker SPEAKER_15
transcript.pyannote[34].start 2473.24784375
transcript.pyannote[34].end 2474.37846875
transcript.pyannote[35].speaker SPEAKER_15
transcript.pyannote[35].start 2476.85909375
transcript.pyannote[35].end 2480.21721875
transcript.pyannote[36].speaker SPEAKER_15
transcript.pyannote[36].start 2481.48284375
transcript.pyannote[36].end 2487.52409375
transcript.pyannote[37].speaker SPEAKER_15
transcript.pyannote[37].start 2487.96284375
transcript.pyannote[37].end 2489.26221875
transcript.pyannote[38].speaker SPEAKER_15
transcript.pyannote[38].start 2490.74721875
transcript.pyannote[38].end 2494.52721875
transcript.pyannote[39].speaker SPEAKER_15
transcript.pyannote[39].start 2498.05409375
transcript.pyannote[39].end 2501.22659375
transcript.pyannote[40].speaker SPEAKER_15
transcript.pyannote[40].start 2503.01534375
transcript.pyannote[40].end 2504.02784375
transcript.pyannote[41].speaker SPEAKER_15
transcript.pyannote[41].start 2504.73659375
transcript.pyannote[41].end 2507.43659375
transcript.pyannote[42].speaker SPEAKER_15
transcript.pyannote[42].start 2507.90909375
transcript.pyannote[42].end 2508.80346875
transcript.pyannote[43].speaker SPEAKER_15
transcript.pyannote[43].start 2509.69784375
transcript.pyannote[43].end 2512.80284375
transcript.pyannote[44].speaker SPEAKER_15
transcript.pyannote[44].start 2513.76471875
transcript.pyannote[44].end 2514.65909375
transcript.pyannote[45].speaker SPEAKER_15
transcript.pyannote[45].start 2516.36346875
transcript.pyannote[45].end 2519.46846875
transcript.pyannote[46].speaker SPEAKER_15
transcript.pyannote[46].start 2519.70471875
transcript.pyannote[46].end 2527.29846875
transcript.pyannote[47].speaker SPEAKER_15
transcript.pyannote[47].start 2528.56409375
transcript.pyannote[47].end 2529.03659375
transcript.pyannote[48].speaker SPEAKER_15
transcript.pyannote[48].start 2530.77471875
transcript.pyannote[48].end 2533.05284375
transcript.pyannote[49].speaker SPEAKER_15
transcript.pyannote[49].start 2533.12034375
transcript.pyannote[49].end 2534.03159375
transcript.pyannote[50].speaker SPEAKER_15
transcript.pyannote[50].start 2536.54596875
transcript.pyannote[50].end 2540.98409375
transcript.pyannote[51].speaker SPEAKER_15
transcript.pyannote[51].start 2543.73471875
transcript.pyannote[51].end 2546.51909375
transcript.pyannote[52].speaker SPEAKER_15
transcript.pyannote[52].start 2549.62409375
transcript.pyannote[52].end 2553.52221875
transcript.pyannote[53].speaker SPEAKER_15
transcript.pyannote[53].start 2554.29846875
transcript.pyannote[53].end 2555.10846875
transcript.pyannote[54].speaker SPEAKER_15
transcript.pyannote[54].start 2555.73284375
transcript.pyannote[54].end 2560.59284375
transcript.pyannote[55].speaker SPEAKER_15
transcript.pyannote[55].start 2562.95534375
transcript.pyannote[55].end 2566.46534375
transcript.pyannote[56].speaker SPEAKER_15
transcript.pyannote[56].start 2568.84471875
transcript.pyannote[56].end 2570.90346875
transcript.pyannote[57].speaker SPEAKER_15
transcript.pyannote[57].start 2570.97096875
transcript.pyannote[57].end 2571.03846875
transcript.pyannote[58].speaker SPEAKER_15
transcript.pyannote[58].start 2571.08909375
transcript.pyannote[58].end 2572.03409375
transcript.pyannote[59].speaker SPEAKER_15
transcript.pyannote[59].start 2574.37971875
transcript.pyannote[59].end 2578.04159375
transcript.pyannote[60].speaker SPEAKER_15
transcript.pyannote[60].start 2578.95284375
transcript.pyannote[60].end 2579.79659375
transcript.pyannote[61].speaker SPEAKER_15
transcript.pyannote[61].start 2580.28596875
transcript.pyannote[61].end 2583.40784375
transcript.pyannote[62].speaker SPEAKER_15
transcript.pyannote[62].start 2585.17971875
transcript.pyannote[62].end 2585.55096875
transcript.pyannote[63].speaker SPEAKER_15
transcript.pyannote[63].start 2586.04034375
transcript.pyannote[63].end 2589.22971875
transcript.pyannote[64].speaker SPEAKER_15
transcript.pyannote[64].start 2590.68096875
transcript.pyannote[64].end 2591.79471875
transcript.pyannote[65].speaker SPEAKER_15
transcript.pyannote[65].start 2592.77346875
transcript.pyannote[65].end 2594.68034375
transcript.pyannote[66].speaker SPEAKER_15
transcript.pyannote[66].start 2595.38909375
transcript.pyannote[66].end 2597.80221875
transcript.pyannote[67].speaker SPEAKER_15
transcript.pyannote[67].start 2597.97096875
transcript.pyannote[67].end 2599.55721875
transcript.pyannote[68].speaker SPEAKER_15
transcript.pyannote[68].start 2600.70471875
transcript.pyannote[68].end 2601.09284375
transcript.pyannote[69].speaker SPEAKER_15
transcript.pyannote[69].start 2602.62846875
transcript.pyannote[69].end 2606.69534375
transcript.pyannote[70].speaker SPEAKER_15
transcript.pyannote[70].start 2609.37846875
transcript.pyannote[70].end 2611.57221875
transcript.pyannote[71].speaker SPEAKER_15
transcript.pyannote[71].start 2611.79159375
transcript.pyannote[71].end 2612.85471875
transcript.pyannote[72].speaker SPEAKER_15
transcript.pyannote[72].start 2615.58846875
transcript.pyannote[72].end 2621.34284375
transcript.pyannote[73].speaker SPEAKER_15
transcript.pyannote[73].start 2621.84909375
transcript.pyannote[73].end 2622.82784375
transcript.pyannote[74].speaker SPEAKER_15
transcript.pyannote[74].start 2623.72221875
transcript.pyannote[74].end 2624.63346875
transcript.pyannote[75].speaker SPEAKER_15
transcript.pyannote[75].start 2625.59534375
transcript.pyannote[75].end 2630.65784375
transcript.pyannote[76].speaker SPEAKER_15
transcript.pyannote[76].start 2633.49284375
transcript.pyannote[76].end 2637.74534375
transcript.pyannote[77].speaker SPEAKER_15
transcript.pyannote[77].start 2637.96471875
transcript.pyannote[77].end 2638.79159375
transcript.pyannote[78].speaker SPEAKER_15
transcript.pyannote[78].start 2638.92659375
transcript.pyannote[78].end 2639.29784375
transcript.pyannote[79].speaker SPEAKER_15
transcript.pyannote[79].start 2639.83784375
transcript.pyannote[79].end 2640.39471875
transcript.pyannote[80].speaker SPEAKER_15
transcript.pyannote[80].start 2641.13721875
transcript.pyannote[80].end 2644.51221875
transcript.pyannote[81].speaker SPEAKER_15
transcript.pyannote[81].start 2645.30534375
transcript.pyannote[81].end 2651.85284375
transcript.pyannote[82].speaker SPEAKER_15
transcript.pyannote[82].start 2652.62909375
transcript.pyannote[82].end 2653.33784375
transcript.pyannote[83].speaker SPEAKER_27
transcript.pyannote[83].start 2655.04221875
transcript.pyannote[83].end 2660.62784375
transcript.pyannote[84].speaker SPEAKER_15
transcript.pyannote[84].start 2660.62784375
transcript.pyannote[84].end 2661.03284375
transcript.pyannote[85].speaker SPEAKER_15
transcript.pyannote[85].start 2661.25221875
transcript.pyannote[85].end 2662.12971875
transcript.pyannote[86].speaker SPEAKER_15
transcript.pyannote[86].start 2663.68221875
transcript.pyannote[86].end 2664.25596875
transcript.pyannote[87].speaker SPEAKER_15
transcript.pyannote[87].start 2664.67784375
transcript.pyannote[87].end 2671.47846875
transcript.pyannote[88].speaker SPEAKER_21
transcript.pyannote[88].start 2675.84909375
transcript.pyannote[88].end 2715.40409375
transcript.pyannote[89].speaker SPEAKER_21
transcript.pyannote[89].start 2715.77534375
transcript.pyannote[89].end 2716.51784375
transcript.pyannote[90].speaker SPEAKER_15
transcript.pyannote[90].start 2728.63409375
transcript.pyannote[90].end 2738.15159375
transcript.pyannote[91].speaker SPEAKER_15
transcript.pyannote[91].start 2738.32034375
transcript.pyannote[91].end 2741.72909375
transcript.pyannote[92].speaker SPEAKER_15
transcript.pyannote[92].start 2742.13409375
transcript.pyannote[92].end 2746.74096875
transcript.pyannote[93].speaker SPEAKER_15
transcript.pyannote[93].start 2746.99409375
transcript.pyannote[93].end 2748.07409375
transcript.pyannote[94].speaker SPEAKER_15
transcript.pyannote[94].start 2748.69846875
transcript.pyannote[94].end 2754.84096875
transcript.pyannote[95].speaker SPEAKER_15
transcript.pyannote[95].start 2754.97596875
transcript.pyannote[95].end 2759.88659375
transcript.pyannote[96].speaker SPEAKER_15
transcript.pyannote[96].start 2769.18471875
transcript.pyannote[96].end 2789.55284375
transcript.pyannote[97].speaker SPEAKER_15
transcript.pyannote[97].start 2789.58659375
transcript.pyannote[97].end 2793.77159375
transcript.pyannote[98].speaker SPEAKER_26
transcript.pyannote[98].start 2793.77159375
transcript.pyannote[98].end 2794.05846875
transcript.pyannote[99].speaker SPEAKER_15
transcript.pyannote[99].start 2795.88096875
transcript.pyannote[99].end 2807.52471875
transcript.pyannote[100].speaker SPEAKER_07
transcript.pyannote[100].start 2808.14909375
transcript.pyannote[100].end 2818.88159375
transcript.pyannote[101].speaker SPEAKER_07
transcript.pyannote[101].start 2819.06721875
transcript.pyannote[101].end 2933.20971875
transcript.pyannote[102].speaker SPEAKER_07
transcript.pyannote[102].start 2934.12096875
transcript.pyannote[102].end 2970.82409375
transcript.pyannote[103].speaker SPEAKER_07
transcript.pyannote[103].start 2970.95909375
transcript.pyannote[103].end 3002.44784375
transcript.pyannote[104].speaker SPEAKER_07
transcript.pyannote[104].start 3002.78534375
transcript.pyannote[104].end 3041.80034375
transcript.pyannote[105].speaker SPEAKER_07
transcript.pyannote[105].start 3041.86784375
transcript.pyannote[105].end 3077.65971875
transcript.pyannote[106].speaker SPEAKER_07
transcript.pyannote[106].start 3078.57096875
transcript.pyannote[106].end 3122.34471875
transcript.pyannote[107].speaker SPEAKER_07
transcript.pyannote[107].start 3122.68221875
transcript.pyannote[107].end 3147.04971875
transcript.pyannote[108].speaker SPEAKER_07
transcript.pyannote[108].start 3147.20159375
transcript.pyannote[108].end 3148.56846875
transcript.pyannote[109].speaker SPEAKER_07
transcript.pyannote[109].start 3148.92284375
transcript.pyannote[109].end 3198.28221875
transcript.pyannote[110].speaker SPEAKER_07
transcript.pyannote[110].start 3198.53534375
transcript.pyannote[110].end 3220.97909375
transcript.pyannote[111].speaker SPEAKER_30
transcript.pyannote[111].start 3222.10971875
transcript.pyannote[111].end 3224.18534375
transcript.pyannote[112].speaker SPEAKER_30
transcript.pyannote[112].start 3224.64096875
transcript.pyannote[112].end 3225.99096875
transcript.pyannote[113].speaker SPEAKER_30
transcript.pyannote[113].start 3226.27784375
transcript.pyannote[113].end 3241.90409375
transcript.pyannote[114].speaker SPEAKER_30
transcript.pyannote[114].start 3242.15721875
transcript.pyannote[114].end 3244.31721875
transcript.pyannote[115].speaker SPEAKER_30
transcript.pyannote[115].start 3244.80659375
transcript.pyannote[115].end 3265.81596875
transcript.pyannote[116].speaker SPEAKER_30
transcript.pyannote[116].start 3267.09846875
transcript.pyannote[116].end 3269.35971875
transcript.pyannote[117].speaker SPEAKER_30
transcript.pyannote[117].start 3269.61284375
transcript.pyannote[117].end 3274.37159375
transcript.pyannote[118].speaker SPEAKER_30
transcript.pyannote[118].start 3274.81034375
transcript.pyannote[118].end 3281.62784375
transcript.pyannote[119].speaker SPEAKER_30
transcript.pyannote[119].start 3282.30284375
transcript.pyannote[119].end 3283.82159375
transcript.pyannote[120].speaker SPEAKER_30
transcript.pyannote[120].start 3284.02409375
transcript.pyannote[120].end 3287.77034375
transcript.pyannote[121].speaker SPEAKER_30
transcript.pyannote[121].start 3288.29346875
transcript.pyannote[121].end 3288.88409375
transcript.pyannote[122].speaker SPEAKER_30
transcript.pyannote[122].start 3289.33971875
transcript.pyannote[122].end 3290.57159375
transcript.pyannote[123].speaker SPEAKER_30
transcript.pyannote[123].start 3290.60534375
transcript.pyannote[123].end 3292.02284375
transcript.pyannote[124].speaker SPEAKER_30
transcript.pyannote[124].start 3292.37721875
transcript.pyannote[124].end 3312.81284375
transcript.pyannote[125].speaker SPEAKER_30
transcript.pyannote[125].start 3314.21346875
transcript.pyannote[125].end 3315.25971875
transcript.pyannote[126].speaker SPEAKER_30
transcript.pyannote[126].start 3316.08659375
transcript.pyannote[126].end 3318.48284375
transcript.pyannote[127].speaker SPEAKER_30
transcript.pyannote[127].start 3318.92159375
transcript.pyannote[127].end 3323.05596875
transcript.pyannote[128].speaker SPEAKER_30
transcript.pyannote[128].start 3323.42721875
transcript.pyannote[128].end 3327.54471875
transcript.pyannote[129].speaker SPEAKER_30
transcript.pyannote[129].start 3327.88221875
transcript.pyannote[129].end 3330.09284375
transcript.pyannote[130].speaker SPEAKER_30
transcript.pyannote[130].start 3330.48096875
transcript.pyannote[130].end 3338.07471875
transcript.pyannote[131].speaker SPEAKER_30
transcript.pyannote[131].start 3339.62721875
transcript.pyannote[131].end 3341.55096875
transcript.pyannote[132].speaker SPEAKER_30
transcript.pyannote[132].start 3342.10784375
transcript.pyannote[132].end 3342.95159375
transcript.pyannote[133].speaker SPEAKER_30
transcript.pyannote[133].start 3343.47471875
transcript.pyannote[133].end 3344.74034375
transcript.pyannote[134].speaker SPEAKER_30
transcript.pyannote[134].start 3345.11159375
transcript.pyannote[134].end 3345.76971875
transcript.pyannote[135].speaker SPEAKER_30
transcript.pyannote[135].start 3346.05659375
transcript.pyannote[135].end 3357.41346875
transcript.pyannote[136].speaker SPEAKER_30
transcript.pyannote[136].start 3358.30784375
transcript.pyannote[136].end 3374.49096875
transcript.pyannote[137].speaker SPEAKER_30
transcript.pyannote[137].start 3375.21659375
transcript.pyannote[137].end 3376.16159375
transcript.pyannote[138].speaker SPEAKER_30
transcript.pyannote[138].start 3376.51596875
transcript.pyannote[138].end 3383.43471875
transcript.pyannote[139].speaker SPEAKER_30
transcript.pyannote[139].start 3383.77221875
transcript.pyannote[139].end 3394.70721875
transcript.pyannote[140].speaker SPEAKER_30
transcript.pyannote[140].start 3395.53409375
transcript.pyannote[140].end 3397.30596875
transcript.pyannote[141].speaker SPEAKER_30
transcript.pyannote[141].start 3397.89659375
transcript.pyannote[141].end 3400.61346875
transcript.pyannote[142].speaker SPEAKER_30
transcript.pyannote[142].start 3401.67659375
transcript.pyannote[142].end 3402.90846875
transcript.pyannote[143].speaker SPEAKER_30
transcript.pyannote[143].start 3403.58346875
transcript.pyannote[143].end 3411.75096875
transcript.pyannote[144].speaker SPEAKER_30
transcript.pyannote[144].start 3413.57346875
transcript.pyannote[144].end 3414.33284375
transcript.pyannote[145].speaker SPEAKER_30
transcript.pyannote[145].start 3414.82221875
transcript.pyannote[145].end 3425.70659375
transcript.pyannote[146].speaker SPEAKER_30
transcript.pyannote[146].start 3425.84159375
transcript.pyannote[146].end 3426.61784375
transcript.pyannote[147].speaker SPEAKER_15
transcript.pyannote[147].start 3436.45596875
transcript.pyannote[147].end 3445.77096875
transcript.pyannote[148].speaker SPEAKER_15
transcript.pyannote[148].start 3445.88909375
transcript.pyannote[148].end 3453.26346875
transcript.pyannote[149].speaker SPEAKER_15
transcript.pyannote[149].start 3453.58409375
transcript.pyannote[149].end 3454.66409375
transcript.pyannote[150].speaker SPEAKER_15
transcript.pyannote[150].start 3456.89159375
transcript.pyannote[150].end 3456.90846875
transcript.pyannote[151].speaker SPEAKER_21
transcript.pyannote[151].start 3456.90846875
transcript.pyannote[151].end 3457.49909375
transcript.pyannote[152].speaker SPEAKER_21
transcript.pyannote[152].start 3459.43971875
transcript.pyannote[152].end 3459.74346875
transcript.pyannote[153].speaker SPEAKER_21
transcript.pyannote[153].start 3461.09346875
transcript.pyannote[153].end 3493.07159375
transcript.pyannote[154].speaker SPEAKER_21
transcript.pyannote[154].start 3493.18971875
transcript.pyannote[154].end 3494.87721875
transcript.pyannote[155].speaker SPEAKER_21
transcript.pyannote[155].start 3495.23159375
transcript.pyannote[155].end 3533.48721875
transcript.pyannote[156].speaker SPEAKER_21
transcript.pyannote[156].start 3533.85846875
transcript.pyannote[156].end 3539.74784375
transcript.pyannote[157].speaker SPEAKER_15
transcript.pyannote[157].start 3543.20721875
transcript.pyannote[157].end 3548.48909375
transcript.pyannote[158].speaker SPEAKER_15
transcript.pyannote[158].start 3552.77534375
transcript.pyannote[158].end 3553.95659375
transcript.pyannote[159].speaker SPEAKER_15
transcript.pyannote[159].start 3555.82971875
transcript.pyannote[159].end 3557.14596875
transcript.pyannote[160].speaker SPEAKER_26
transcript.pyannote[160].start 3557.48346875
transcript.pyannote[160].end 3557.75346875
transcript.pyannote[161].speaker SPEAKER_15
transcript.pyannote[161].start 3559.28909375
transcript.pyannote[161].end 3560.92596875
transcript.pyannote[162].speaker SPEAKER_15
transcript.pyannote[162].start 3562.19159375
transcript.pyannote[162].end 3563.94659375
transcript.pyannote[163].speaker SPEAKER_15
transcript.pyannote[163].start 3568.97534375
transcript.pyannote[163].end 3571.05096875
transcript.pyannote[164].speaker SPEAKER_29
transcript.pyannote[164].start 3576.61971875
transcript.pyannote[164].end 3589.95096875
transcript.pyannote[165].speaker SPEAKER_29
transcript.pyannote[165].start 3590.28846875
transcript.pyannote[165].end 3594.77721875
transcript.pyannote[166].speaker SPEAKER_29
transcript.pyannote[166].start 3595.21596875
transcript.pyannote[166].end 3595.75596875
transcript.pyannote[167].speaker SPEAKER_29
transcript.pyannote[167].start 3596.07659375
transcript.pyannote[167].end 3603.50159375
transcript.pyannote[168].speaker SPEAKER_29
transcript.pyannote[168].start 3603.82221875
transcript.pyannote[168].end 3606.40409375
transcript.pyannote[169].speaker SPEAKER_29
transcript.pyannote[169].start 3606.75846875
transcript.pyannote[169].end 3634.83846875
transcript.pyannote[170].speaker SPEAKER_29
transcript.pyannote[170].start 3635.22659375
transcript.pyannote[170].end 3648.94596875
transcript.pyannote[171].speaker SPEAKER_29
transcript.pyannote[171].start 3649.30034375
transcript.pyannote[171].end 3668.21721875
transcript.pyannote[172].speaker SPEAKER_29
transcript.pyannote[172].start 3668.38596875
transcript.pyannote[172].end 3688.87221875
transcript.pyannote[173].speaker SPEAKER_29
transcript.pyannote[173].start 3689.04096875
transcript.pyannote[173].end 3705.03846875
transcript.pyannote[174].speaker SPEAKER_14
transcript.pyannote[174].start 3710.18534375
transcript.pyannote[174].end 3712.27784375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 3721.66034375
transcript.pyannote[175].end 3726.16596875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 3726.41909375
transcript.pyannote[176].end 3733.67534375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 3733.87784375
transcript.pyannote[177].end 3743.17596875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 3743.44596875
transcript.pyannote[178].end 3768.26909375
transcript.pyannote[179].speaker SPEAKER_14
transcript.pyannote[179].start 3770.31096875
transcript.pyannote[179].end 3771.25596875
transcript.pyannote[180].speaker SPEAKER_14
transcript.pyannote[180].start 3771.54284375
transcript.pyannote[180].end 3772.75784375
transcript.pyannote[181].speaker SPEAKER_20
transcript.pyannote[181].start 3779.44034375
transcript.pyannote[181].end 3786.37596875
transcript.pyannote[182].speaker SPEAKER_20
transcript.pyannote[182].start 3786.51096875
transcript.pyannote[182].end 3787.16909375
transcript.pyannote[183].speaker SPEAKER_20
transcript.pyannote[183].start 3787.99596875
transcript.pyannote[183].end 3796.50096875
transcript.pyannote[184].speaker SPEAKER_20
transcript.pyannote[184].start 3796.92284375
transcript.pyannote[184].end 3801.90096875
transcript.pyannote[185].speaker SPEAKER_20
transcript.pyannote[185].start 3802.62659375
transcript.pyannote[185].end 3806.23784375
transcript.pyannote[186].speaker SPEAKER_20
transcript.pyannote[186].start 3806.89596875
transcript.pyannote[186].end 3814.99596875
transcript.pyannote[187].speaker SPEAKER_20
transcript.pyannote[187].start 3816.10971875
transcript.pyannote[187].end 3820.12596875
transcript.pyannote[188].speaker SPEAKER_20
transcript.pyannote[188].start 3820.51409375
transcript.pyannote[188].end 3823.39971875
transcript.pyannote[189].speaker SPEAKER_20
transcript.pyannote[189].start 3823.63596875
transcript.pyannote[189].end 3826.53846875
transcript.pyannote[190].speaker SPEAKER_20
transcript.pyannote[190].start 3827.04471875
transcript.pyannote[190].end 3836.78159375
transcript.pyannote[191].speaker SPEAKER_20
transcript.pyannote[191].start 3837.70971875
transcript.pyannote[191].end 3840.76409375
transcript.pyannote[192].speaker SPEAKER_20
transcript.pyannote[192].start 3841.27034375
transcript.pyannote[192].end 3842.73846875
transcript.pyannote[193].speaker SPEAKER_20
transcript.pyannote[193].start 3843.24471875
transcript.pyannote[193].end 3846.53534375
transcript.pyannote[194].speaker SPEAKER_20
transcript.pyannote[194].start 3847.24409375
transcript.pyannote[194].end 3855.69846875
transcript.pyannote[195].speaker SPEAKER_20
transcript.pyannote[195].start 3855.96846875
transcript.pyannote[195].end 3861.28409375
transcript.pyannote[196].speaker SPEAKER_20
transcript.pyannote[196].start 3861.84096875
transcript.pyannote[196].end 3865.08096875
transcript.pyannote[197].speaker SPEAKER_20
transcript.pyannote[197].start 3865.41846875
transcript.pyannote[197].end 3867.03846875
transcript.pyannote[198].speaker SPEAKER_20
transcript.pyannote[198].start 3867.79784375
transcript.pyannote[198].end 3876.37034375
transcript.pyannote[199].speaker SPEAKER_20
transcript.pyannote[199].start 3876.89346875
transcript.pyannote[199].end 3878.74971875
transcript.pyannote[200].speaker SPEAKER_20
transcript.pyannote[200].start 3879.20534375
transcript.pyannote[200].end 3883.79534375
transcript.pyannote[201].speaker SPEAKER_20
transcript.pyannote[201].start 3884.62221875
transcript.pyannote[201].end 3891.08534375
transcript.pyannote[202].speaker SPEAKER_20
transcript.pyannote[202].start 3891.67596875
transcript.pyannote[202].end 3894.12284375
transcript.pyannote[203].speaker SPEAKER_20
transcript.pyannote[203].start 3894.93284375
transcript.pyannote[203].end 3896.60346875
transcript.pyannote[204].speaker SPEAKER_20
transcript.pyannote[204].start 3897.05909375
transcript.pyannote[204].end 3922.06784375
transcript.pyannote[205].speaker SPEAKER_20
transcript.pyannote[205].start 3922.69221875
transcript.pyannote[205].end 3929.74596875
transcript.pyannote[206].speaker SPEAKER_20
transcript.pyannote[206].start 3930.53909375
transcript.pyannote[206].end 3947.11034375
transcript.pyannote[207].speaker SPEAKER_20
transcript.pyannote[207].start 3947.51534375
transcript.pyannote[207].end 3955.31159375
transcript.pyannote[208].speaker SPEAKER_20
transcript.pyannote[208].start 3955.69971875
transcript.pyannote[208].end 3958.04534375
transcript.pyannote[209].speaker SPEAKER_20
transcript.pyannote[209].start 3958.38284375
transcript.pyannote[209].end 3962.23034375
transcript.pyannote[210].speaker SPEAKER_20
transcript.pyannote[210].start 3962.88846875
transcript.pyannote[210].end 3966.53346875
transcript.pyannote[211].speaker SPEAKER_20
transcript.pyannote[211].start 3967.15784375
transcript.pyannote[211].end 3974.85284375
transcript.pyannote[212].speaker SPEAKER_20
transcript.pyannote[212].start 3974.90346875
transcript.pyannote[212].end 3990.02346875
transcript.pyannote[213].speaker SPEAKER_20
transcript.pyannote[213].start 3990.17534375
transcript.pyannote[213].end 3990.76596875
transcript.pyannote[214].speaker SPEAKER_20
transcript.pyannote[214].start 3992.04846875
transcript.pyannote[214].end 3992.82471875
transcript.pyannote[215].speaker SPEAKER_20
transcript.pyannote[215].start 3993.46596875
transcript.pyannote[215].end 3994.83284375
transcript.pyannote[216].speaker SPEAKER_20
transcript.pyannote[216].start 3995.37284375
transcript.pyannote[216].end 3998.35971875
transcript.pyannote[217].speaker SPEAKER_20
transcript.pyannote[217].start 3998.96721875
transcript.pyannote[217].end 4001.09346875
transcript.pyannote[218].speaker SPEAKER_20
transcript.pyannote[218].start 4001.21159375
transcript.pyannote[218].end 4002.34221875
transcript.pyannote[219].speaker SPEAKER_20
transcript.pyannote[219].start 4005.24471875
transcript.pyannote[219].end 4006.61159375
transcript.pyannote[220].speaker SPEAKER_20
transcript.pyannote[220].start 4007.21909375
transcript.pyannote[220].end 4007.65784375
transcript.pyannote[221].speaker SPEAKER_20
transcript.pyannote[221].start 4009.04159375
transcript.pyannote[221].end 4010.18909375
transcript.pyannote[222].speaker SPEAKER_20
transcript.pyannote[222].start 4010.86409375
transcript.pyannote[222].end 4027.11471875
transcript.pyannote[223].speaker SPEAKER_20
transcript.pyannote[223].start 4027.48596875
transcript.pyannote[223].end 4030.74284375
transcript.pyannote[224].speaker SPEAKER_20
transcript.pyannote[224].start 4031.13096875
transcript.pyannote[224].end 4035.06284375
transcript.pyannote[225].speaker SPEAKER_20
transcript.pyannote[225].start 4036.24409375
transcript.pyannote[225].end 4038.97784375
transcript.pyannote[226].speaker SPEAKER_20
transcript.pyannote[226].start 4040.32784375
transcript.pyannote[226].end 4047.78659375
transcript.pyannote[227].speaker SPEAKER_20
transcript.pyannote[227].start 4049.22096875
transcript.pyannote[227].end 4059.86909375
transcript.pyannote[228].speaker SPEAKER_20
transcript.pyannote[228].start 4060.81409375
transcript.pyannote[228].end 4072.30596875
transcript.pyannote[229].speaker SPEAKER_20
transcript.pyannote[229].start 4075.22534375
transcript.pyannote[229].end 4075.46159375
transcript.pyannote[230].speaker SPEAKER_20
transcript.pyannote[230].start 4076.54159375
transcript.pyannote[230].end 4076.96346875
transcript.pyannote[231].speaker SPEAKER_14
transcript.pyannote[231].start 4076.96346875
transcript.pyannote[231].end 4077.70596875
transcript.pyannote[232].speaker SPEAKER_08
transcript.pyannote[232].start 4077.95909375
transcript.pyannote[232].end 4078.56659375
transcript.pyannote[233].speaker SPEAKER_08
transcript.pyannote[233].start 4078.97159375
transcript.pyannote[233].end 4084.70909375
transcript.pyannote[234].speaker SPEAKER_08
transcript.pyannote[234].start 4084.94534375
transcript.pyannote[234].end 4086.07596875
transcript.pyannote[235].speaker SPEAKER_08
transcript.pyannote[235].start 4086.70034375
transcript.pyannote[235].end 4087.69596875
transcript.pyannote[236].speaker SPEAKER_14
transcript.pyannote[236].start 4087.69596875
transcript.pyannote[236].end 4088.21909375
transcript.pyannote[237].speaker SPEAKER_08
transcript.pyannote[237].start 4087.72971875
transcript.pyannote[237].end 4088.87721875
transcript.pyannote[238].speaker SPEAKER_08
transcript.pyannote[238].start 4089.21471875
transcript.pyannote[238].end 4093.43346875
transcript.pyannote[239].speaker SPEAKER_08
transcript.pyannote[239].start 4093.60221875
transcript.pyannote[239].end 4094.46284375
transcript.pyannote[240].speaker SPEAKER_15
transcript.pyannote[240].start 4103.25471875
transcript.pyannote[240].end 4104.06471875
transcript.pyannote[241].speaker SPEAKER_05
transcript.pyannote[241].start 4104.08159375
transcript.pyannote[241].end 4113.14346875
transcript.pyannote[242].speaker SPEAKER_05
transcript.pyannote[242].start 4113.37971875
transcript.pyannote[242].end 4115.62409375
transcript.pyannote[243].speaker SPEAKER_05
transcript.pyannote[243].start 4116.18096875
transcript.pyannote[243].end 4124.73659375
transcript.pyannote[244].speaker SPEAKER_05
transcript.pyannote[244].start 4125.00659375
transcript.pyannote[244].end 4138.03409375
transcript.pyannote[245].speaker SPEAKER_05
transcript.pyannote[245].start 4138.11846875
transcript.pyannote[245].end 4140.41346875
transcript.pyannote[246].speaker SPEAKER_05
transcript.pyannote[246].start 4140.95346875
transcript.pyannote[246].end 4141.57784375
transcript.pyannote[247].speaker SPEAKER_05
transcript.pyannote[247].start 4144.04159375
transcript.pyannote[247].end 4147.68659375
transcript.pyannote[248].speaker SPEAKER_05
transcript.pyannote[248].start 4147.87221875
transcript.pyannote[248].end 4162.18221875
transcript.pyannote[249].speaker SPEAKER_21
transcript.pyannote[249].start 4170.04596875
transcript.pyannote[249].end 4225.48034375
transcript.pyannote[250].speaker SPEAKER_21
transcript.pyannote[250].start 4225.86846875
transcript.pyannote[250].end 4385.94471875
transcript.pyannote[251].speaker SPEAKER_21
transcript.pyannote[251].start 4387.26096875
transcript.pyannote[251].end 4387.76721875
transcript.pyannote[252].speaker SPEAKER_21
transcript.pyannote[252].start 4388.47596875
transcript.pyannote[252].end 4388.96534375
transcript.pyannote[253].speaker SPEAKER_15
transcript.pyannote[253].start 4388.96534375
transcript.pyannote[253].end 4391.73284375
transcript.pyannote[254].speaker SPEAKER_03
transcript.pyannote[254].start 4401.03096875
transcript.pyannote[254].end 4408.72596875
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 4409.40096875
transcript.pyannote[255].end 4409.77221875
transcript.pyannote[256].speaker SPEAKER_03
transcript.pyannote[256].start 4410.19409375
transcript.pyannote[256].end 4411.35846875
transcript.pyannote[257].speaker SPEAKER_03
transcript.pyannote[257].start 4412.15159375
transcript.pyannote[257].end 4414.32846875
transcript.pyannote[258].speaker SPEAKER_03
transcript.pyannote[258].start 4414.85159375
transcript.pyannote[258].end 4416.28596875
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 4417.01159375
transcript.pyannote[259].end 4419.98159375
transcript.pyannote[260].speaker SPEAKER_03
transcript.pyannote[260].start 4420.23471875
transcript.pyannote[260].end 4441.44659375
transcript.pyannote[261].speaker SPEAKER_03
transcript.pyannote[261].start 4442.02034375
transcript.pyannote[261].end 4475.82096875
transcript.pyannote[262].speaker SPEAKER_03
transcript.pyannote[262].start 4476.83346875
transcript.pyannote[262].end 4478.30159375
transcript.pyannote[263].speaker SPEAKER_03
transcript.pyannote[263].start 4478.68971875
transcript.pyannote[263].end 4502.83784375
transcript.pyannote[264].speaker SPEAKER_03
transcript.pyannote[264].start 4503.47909375
transcript.pyannote[264].end 4506.78659375
transcript.pyannote[265].speaker SPEAKER_03
transcript.pyannote[265].start 4507.15784375
transcript.pyannote[265].end 4522.29471875
transcript.pyannote[266].speaker SPEAKER_03
transcript.pyannote[266].start 4522.71659375
transcript.pyannote[266].end 4542.19034375
transcript.pyannote[267].speaker SPEAKER_03
transcript.pyannote[267].start 4542.67971875
transcript.pyannote[267].end 4599.02534375
transcript.pyannote[268].speaker SPEAKER_03
transcript.pyannote[268].start 4599.04221875
transcript.pyannote[268].end 4604.18909375
transcript.pyannote[269].speaker SPEAKER_03
transcript.pyannote[269].start 4604.64471875
transcript.pyannote[269].end 4605.70784375
transcript.pyannote[270].speaker SPEAKER_03
transcript.pyannote[270].start 4606.11284375
transcript.pyannote[270].end 4614.38159375
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 4614.49971875
transcript.pyannote[271].end 4619.12346875
transcript.pyannote[272].speaker SPEAKER_03
transcript.pyannote[272].start 4619.25846875
transcript.pyannote[272].end 4654.88159375
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 4654.96596875
transcript.pyannote[273].end 4661.14221875
transcript.pyannote[274].speaker SPEAKER_14
transcript.pyannote[274].start 4663.15034375
transcript.pyannote[274].end 4666.03596875
transcript.pyannote[275].speaker SPEAKER_31
transcript.pyannote[275].start 4674.69284375
transcript.pyannote[275].end 4689.76221875
transcript.pyannote[276].speaker SPEAKER_31
transcript.pyannote[276].start 4689.96471875
transcript.pyannote[276].end 4699.36409375
transcript.pyannote[277].speaker SPEAKER_31
transcript.pyannote[277].start 4699.43159375
transcript.pyannote[277].end 4702.11471875
transcript.pyannote[278].speaker SPEAKER_31
transcript.pyannote[278].start 4702.51971875
transcript.pyannote[278].end 4706.24909375
transcript.pyannote[279].speaker SPEAKER_31
transcript.pyannote[279].start 4706.40096875
transcript.pyannote[279].end 4789.03784375
transcript.pyannote[280].speaker SPEAKER_31
transcript.pyannote[280].start 4789.25721875
transcript.pyannote[280].end 4806.08159375
transcript.pyannote[281].speaker SPEAKER_31
transcript.pyannote[281].start 4806.31784375
transcript.pyannote[281].end 4814.53596875
transcript.pyannote[282].speaker SPEAKER_31
transcript.pyannote[282].start 4814.72159375
transcript.pyannote[282].end 4823.49659375
transcript.pyannote[283].speaker SPEAKER_31
transcript.pyannote[283].start 4823.88471875
transcript.pyannote[283].end 4874.12159375
transcript.pyannote[284].speaker SPEAKER_31
transcript.pyannote[284].start 4874.27346875
transcript.pyannote[284].end 4875.04971875
transcript.pyannote[285].speaker SPEAKER_31
transcript.pyannote[285].start 4875.50534375
transcript.pyannote[285].end 4884.04409375
transcript.pyannote[286].speaker SPEAKER_14
transcript.pyannote[286].start 4888.43159375
transcript.pyannote[286].end 4888.49909375
transcript.pyannote[287].speaker SPEAKER_14
transcript.pyannote[287].start 4888.71846875
transcript.pyannote[287].end 4891.30034375
transcript.pyannote[288].speaker SPEAKER_05
transcript.pyannote[288].start 4893.62909375
transcript.pyannote[288].end 4895.65409375
transcript.pyannote[289].speaker SPEAKER_05
transcript.pyannote[289].start 4901.66159375
transcript.pyannote[289].end 4908.96846875
transcript.pyannote[290].speaker SPEAKER_05
transcript.pyannote[290].start 4909.23846875
transcript.pyannote[290].end 4923.71721875
transcript.pyannote[291].speaker SPEAKER_05
transcript.pyannote[291].start 4924.83096875
transcript.pyannote[291].end 4925.10096875
transcript.pyannote[292].speaker SPEAKER_05
transcript.pyannote[292].start 4925.67471875
transcript.pyannote[292].end 4931.46284375
transcript.pyannote[293].speaker SPEAKER_05
transcript.pyannote[293].start 4931.85096875
transcript.pyannote[293].end 4941.48659375
transcript.pyannote[294].speaker SPEAKER_05
transcript.pyannote[294].start 4942.02659375
transcript.pyannote[294].end 4942.06034375
transcript.pyannote[295].speaker SPEAKER_05
transcript.pyannote[295].start 4942.48221875
transcript.pyannote[295].end 4949.09721875
transcript.pyannote[296].speaker SPEAKER_05
transcript.pyannote[296].start 4949.21534375
transcript.pyannote[296].end 4949.60346875
transcript.pyannote[297].speaker SPEAKER_05
transcript.pyannote[297].start 4949.63721875
transcript.pyannote[297].end 4950.12659375
transcript.pyannote[298].speaker SPEAKER_15
transcript.pyannote[298].start 4952.64096875
transcript.pyannote[298].end 4953.82221875
transcript.pyannote[299].speaker SPEAKER_15
transcript.pyannote[299].start 4954.42971875
transcript.pyannote[299].end 4956.55596875
transcript.pyannote[300].speaker SPEAKER_09
transcript.pyannote[300].start 4964.04846875
transcript.pyannote[300].end 4965.44909375
transcript.pyannote[301].speaker SPEAKER_09
transcript.pyannote[301].start 4965.68534375
transcript.pyannote[301].end 4969.46534375
transcript.pyannote[302].speaker SPEAKER_09
transcript.pyannote[302].start 4970.02221875
transcript.pyannote[302].end 4974.89909375
transcript.pyannote[303].speaker SPEAKER_09
transcript.pyannote[303].start 4975.05096875
transcript.pyannote[303].end 4991.65596875
transcript.pyannote[304].speaker SPEAKER_09
transcript.pyannote[304].start 4992.19596875
transcript.pyannote[304].end 4998.08534375
transcript.pyannote[305].speaker SPEAKER_09
transcript.pyannote[305].start 4998.50721875
transcript.pyannote[305].end 5001.78096875
transcript.pyannote[306].speaker SPEAKER_09
transcript.pyannote[306].start 5002.16909375
transcript.pyannote[306].end 5006.21909375
transcript.pyannote[307].speaker SPEAKER_09
transcript.pyannote[307].start 5006.25284375
transcript.pyannote[307].end 5013.52596875
transcript.pyannote[308].speaker SPEAKER_09
transcript.pyannote[308].start 5014.13346875
transcript.pyannote[308].end 5018.31846875
transcript.pyannote[309].speaker SPEAKER_09
transcript.pyannote[309].start 5019.26346875
transcript.pyannote[309].end 5024.00534375
transcript.pyannote[310].speaker SPEAKER_09
transcript.pyannote[310].start 5024.52846875
transcript.pyannote[310].end 5038.34909375
transcript.pyannote[311].speaker SPEAKER_09
transcript.pyannote[311].start 5039.17596875
transcript.pyannote[311].end 5060.89409375
transcript.pyannote[312].speaker SPEAKER_09
transcript.pyannote[312].start 5061.38346875
transcript.pyannote[312].end 5070.25971875
transcript.pyannote[313].speaker SPEAKER_09
transcript.pyannote[313].start 5070.64784375
transcript.pyannote[313].end 5075.84534375
transcript.pyannote[314].speaker SPEAKER_09
transcript.pyannote[314].start 5076.58784375
transcript.pyannote[314].end 5088.80534375
transcript.pyannote[315].speaker SPEAKER_09
transcript.pyannote[315].start 5089.32846875
transcript.pyannote[315].end 5090.02034375
transcript.pyannote[316].speaker SPEAKER_09
transcript.pyannote[316].start 5090.32409375
transcript.pyannote[316].end 5097.29346875
transcript.pyannote[317].speaker SPEAKER_09
transcript.pyannote[317].start 5097.47909375
transcript.pyannote[317].end 5100.07784375
transcript.pyannote[318].speaker SPEAKER_09
transcript.pyannote[318].start 5100.16221875
transcript.pyannote[318].end 5102.08596875
transcript.pyannote[319].speaker SPEAKER_09
transcript.pyannote[319].start 5102.11971875
transcript.pyannote[319].end 5121.25596875
transcript.pyannote[320].speaker SPEAKER_09
transcript.pyannote[320].start 5122.06596875
transcript.pyannote[320].end 5128.90034375
transcript.pyannote[321].speaker SPEAKER_09
transcript.pyannote[321].start 5129.13659375
transcript.pyannote[321].end 5136.17346875
transcript.pyannote[322].speaker SPEAKER_09
transcript.pyannote[322].start 5136.46034375
transcript.pyannote[322].end 5163.37596875
transcript.pyannote[323].speaker SPEAKER_09
transcript.pyannote[323].start 5163.96659375
transcript.pyannote[323].end 5173.21409375
transcript.pyannote[324].speaker SPEAKER_15
transcript.pyannote[324].start 5174.19284375
transcript.pyannote[324].end 5177.26409375
transcript.pyannote[325].speaker SPEAKER_16
transcript.pyannote[325].start 5187.28784375
transcript.pyannote[325].end 5190.10596875
transcript.pyannote[326].speaker SPEAKER_16
transcript.pyannote[326].start 5193.26159375
transcript.pyannote[326].end 5200.56846875
transcript.pyannote[327].speaker SPEAKER_16
transcript.pyannote[327].start 5201.42909375
transcript.pyannote[327].end 5203.74096875
transcript.pyannote[328].speaker SPEAKER_16
transcript.pyannote[328].start 5204.07846875
transcript.pyannote[328].end 5207.06534375
transcript.pyannote[329].speaker SPEAKER_16
transcript.pyannote[329].start 5207.60534375
transcript.pyannote[329].end 5209.59659375
transcript.pyannote[330].speaker SPEAKER_16
transcript.pyannote[330].start 5210.45721875
transcript.pyannote[330].end 5231.93909375
transcript.pyannote[331].speaker SPEAKER_16
transcript.pyannote[331].start 5232.76596875
transcript.pyannote[331].end 5235.68534375
transcript.pyannote[332].speaker SPEAKER_16
transcript.pyannote[332].start 5235.83721875
transcript.pyannote[332].end 5248.42596875
transcript.pyannote[333].speaker SPEAKER_16
transcript.pyannote[333].start 5248.89846875
transcript.pyannote[333].end 5251.36221875
transcript.pyannote[334].speaker SPEAKER_16
transcript.pyannote[334].start 5251.75034375
transcript.pyannote[334].end 5254.73721875
transcript.pyannote[335].speaker SPEAKER_16
transcript.pyannote[335].start 5254.97346875
transcript.pyannote[335].end 5271.71346875
transcript.pyannote[336].speaker SPEAKER_16
transcript.pyannote[336].start 5271.94971875
transcript.pyannote[336].end 5274.83534375
transcript.pyannote[337].speaker SPEAKER_16
transcript.pyannote[337].start 5275.40909375
transcript.pyannote[337].end 5277.43409375
transcript.pyannote[338].speaker SPEAKER_16
transcript.pyannote[338].start 5278.12596875
transcript.pyannote[338].end 5278.75034375
transcript.pyannote[339].speaker SPEAKER_16
transcript.pyannote[339].start 5279.02034375
transcript.pyannote[339].end 5286.02346875
transcript.pyannote[340].speaker SPEAKER_16
transcript.pyannote[340].start 5286.42846875
transcript.pyannote[340].end 5300.63721875
transcript.pyannote[341].speaker SPEAKER_16
transcript.pyannote[341].start 5300.83971875
transcript.pyannote[341].end 5308.31534375
transcript.pyannote[342].speaker SPEAKER_16
transcript.pyannote[342].start 5308.55159375
transcript.pyannote[342].end 5319.48659375
transcript.pyannote[343].speaker SPEAKER_16
transcript.pyannote[343].start 5319.90846875
transcript.pyannote[343].end 5320.70159375
transcript.pyannote[344].speaker SPEAKER_16
transcript.pyannote[344].start 5320.93784375
transcript.pyannote[344].end 5320.95471875
transcript.pyannote[345].speaker SPEAKER_16
transcript.pyannote[345].start 5320.97159375
transcript.pyannote[345].end 5335.16346875
transcript.pyannote[346].speaker SPEAKER_16
transcript.pyannote[346].start 5335.72034375
transcript.pyannote[346].end 5337.54284375
transcript.pyannote[347].speaker SPEAKER_16
transcript.pyannote[347].start 5337.89721875
transcript.pyannote[347].end 5370.04409375
transcript.pyannote[348].speaker SPEAKER_16
transcript.pyannote[348].start 5370.38159375
transcript.pyannote[348].end 5370.39846875
transcript.pyannote[349].speaker SPEAKER_00
transcript.pyannote[349].start 5370.39846875
transcript.pyannote[349].end 5370.58409375
transcript.pyannote[350].speaker SPEAKER_16
transcript.pyannote[350].start 5370.58409375
transcript.pyannote[350].end 5370.60096875
transcript.pyannote[351].speaker SPEAKER_00
transcript.pyannote[351].start 5370.60096875
transcript.pyannote[351].end 5370.61784375
transcript.pyannote[352].speaker SPEAKER_16
transcript.pyannote[352].start 5370.88784375
transcript.pyannote[352].end 5371.76534375
transcript.pyannote[353].speaker SPEAKER_16
transcript.pyannote[353].start 5372.28846875
transcript.pyannote[353].end 5376.42284375
transcript.pyannote[354].speaker SPEAKER_16
transcript.pyannote[354].start 5377.36784375
transcript.pyannote[354].end 5378.53221875
transcript.pyannote[355].speaker SPEAKER_16
transcript.pyannote[355].start 5378.85284375
transcript.pyannote[355].end 5392.42034375
transcript.pyannote[356].speaker SPEAKER_16
transcript.pyannote[356].start 5392.52159375
transcript.pyannote[356].end 5396.40284375
transcript.pyannote[357].speaker SPEAKER_16
transcript.pyannote[357].start 5396.97659375
transcript.pyannote[357].end 5405.48159375
transcript.pyannote[358].speaker SPEAKER_16
transcript.pyannote[358].start 5406.05534375
transcript.pyannote[358].end 5410.54409375
transcript.pyannote[359].speaker SPEAKER_16
transcript.pyannote[359].start 5410.96596875
transcript.pyannote[359].end 5413.04159375
transcript.pyannote[360].speaker SPEAKER_16
transcript.pyannote[360].start 5413.05846875
transcript.pyannote[360].end 5414.61096875
transcript.pyannote[361].speaker SPEAKER_16
transcript.pyannote[361].start 5415.47159375
transcript.pyannote[361].end 5417.63159375
transcript.pyannote[362].speaker SPEAKER_16
transcript.pyannote[362].start 5418.89721875
transcript.pyannote[362].end 5476.93034375
transcript.pyannote[363].speaker SPEAKER_15
transcript.pyannote[363].start 5477.35221875
transcript.pyannote[363].end 5482.00971875
transcript.pyannote[364].speaker SPEAKER_15
transcript.pyannote[364].start 5482.51596875
transcript.pyannote[364].end 5485.09784375
transcript.pyannote[365].speaker SPEAKER_32
transcript.pyannote[365].start 5493.06284375
transcript.pyannote[365].end 5527.50471875
transcript.pyannote[366].speaker SPEAKER_32
transcript.pyannote[366].start 5527.75784375
transcript.pyannote[366].end 5562.79034375
transcript.pyannote[367].speaker SPEAKER_32
transcript.pyannote[367].start 5562.89159375
transcript.pyannote[367].end 5602.29471875
transcript.pyannote[368].speaker SPEAKER_32
transcript.pyannote[368].start 5602.78409375
transcript.pyannote[368].end 5609.97284375
transcript.pyannote[369].speaker SPEAKER_32
transcript.pyannote[369].start 5610.44534375
transcript.pyannote[369].end 5617.85346875
transcript.pyannote[370].speaker SPEAKER_32
transcript.pyannote[370].start 5618.25846875
transcript.pyannote[370].end 5618.83221875
transcript.pyannote[371].speaker SPEAKER_32
transcript.pyannote[371].start 5619.59159375
transcript.pyannote[371].end 5622.40971875
transcript.pyannote[372].speaker SPEAKER_32
transcript.pyannote[372].start 5622.91596875
transcript.pyannote[372].end 5630.93159375
transcript.pyannote[373].speaker SPEAKER_32
transcript.pyannote[373].start 5631.57284375
transcript.pyannote[373].end 5636.78721875
transcript.pyannote[374].speaker SPEAKER_32
transcript.pyannote[374].start 5636.90534375
transcript.pyannote[374].end 5641.79909375
transcript.pyannote[375].speaker SPEAKER_32
transcript.pyannote[375].start 5642.23784375
transcript.pyannote[375].end 5643.09846875
transcript.pyannote[376].speaker SPEAKER_32
transcript.pyannote[376].start 5643.38534375
transcript.pyannote[376].end 5647.21596875
transcript.pyannote[377].speaker SPEAKER_32
transcript.pyannote[377].start 5647.82346875
transcript.pyannote[377].end 5657.34096875
transcript.pyannote[378].speaker SPEAKER_32
transcript.pyannote[378].start 5657.44221875
transcript.pyannote[378].end 5660.61471875
transcript.pyannote[379].speaker SPEAKER_32
transcript.pyannote[379].start 5660.96909375
transcript.pyannote[379].end 5674.84034375
transcript.pyannote[380].speaker SPEAKER_32
transcript.pyannote[380].start 5675.00909375
transcript.pyannote[380].end 5675.02596875
transcript.pyannote[381].speaker SPEAKER_32
transcript.pyannote[381].start 5675.04284375
transcript.pyannote[381].end 5682.01221875
transcript.pyannote[382].speaker SPEAKER_15
transcript.pyannote[382].start 5685.04971875
transcript.pyannote[382].end 5686.85534375
transcript.pyannote[383].speaker SPEAKER_01
transcript.pyannote[383].start 5689.85909375
transcript.pyannote[383].end 5711.71221875
transcript.pyannote[384].speaker SPEAKER_26
transcript.pyannote[384].start 5711.83034375
transcript.pyannote[384].end 5712.20159375
transcript.pyannote[385].speaker SPEAKER_01
transcript.pyannote[385].start 5712.20159375
transcript.pyannote[385].end 5753.64659375
transcript.pyannote[386].speaker SPEAKER_01
transcript.pyannote[386].start 5753.91659375
transcript.pyannote[386].end 5768.05784375
transcript.pyannote[387].speaker SPEAKER_01
transcript.pyannote[387].start 5768.73284375
transcript.pyannote[387].end 5865.35909375
transcript.pyannote[388].speaker SPEAKER_15
transcript.pyannote[388].start 5867.97471875
transcript.pyannote[388].end 5870.35409375
transcript.pyannote[389].speaker SPEAKER_29
transcript.pyannote[389].start 5875.85534375
transcript.pyannote[389].end 5909.41971875
transcript.pyannote[390].speaker SPEAKER_29
transcript.pyannote[390].start 5909.65596875
transcript.pyannote[390].end 5918.51534375
transcript.pyannote[391].speaker SPEAKER_29
transcript.pyannote[391].start 5919.29159375
transcript.pyannote[391].end 5934.29346875
transcript.pyannote[392].speaker SPEAKER_29
transcript.pyannote[392].start 5934.37784375
transcript.pyannote[392].end 5942.10659375
transcript.pyannote[393].speaker SPEAKER_29
transcript.pyannote[393].start 5942.39346875
transcript.pyannote[393].end 5999.63346875
transcript.pyannote[394].speaker SPEAKER_29
transcript.pyannote[394].start 6000.07221875
transcript.pyannote[394].end 6027.96659375
transcript.pyannote[395].speaker SPEAKER_29
transcript.pyannote[395].start 6028.16909375
transcript.pyannote[395].end 6038.53034375
transcript.pyannote[396].speaker SPEAKER_15
transcript.pyannote[396].start 6040.08284375
transcript.pyannote[396].end 6041.06159375
transcript.pyannote[397].speaker SPEAKER_15
transcript.pyannote[397].start 6041.68596875
transcript.pyannote[397].end 6044.21721875
transcript.pyannote[398].speaker SPEAKER_14
transcript.pyannote[398].start 6044.21721875
transcript.pyannote[398].end 6044.28471875
transcript.pyannote[399].speaker SPEAKER_25
transcript.pyannote[399].start 6050.86596875
transcript.pyannote[399].end 6057.63284375
transcript.pyannote[400].speaker SPEAKER_25
transcript.pyannote[400].start 6058.13909375
transcript.pyannote[400].end 6058.76346875
transcript.pyannote[401].speaker SPEAKER_25
transcript.pyannote[401].start 6059.05034375
transcript.pyannote[401].end 6074.18721875
transcript.pyannote[402].speaker SPEAKER_25
transcript.pyannote[402].start 6074.52471875
transcript.pyannote[402].end 6078.57471875
transcript.pyannote[403].speaker SPEAKER_25
transcript.pyannote[403].start 6079.13159375
transcript.pyannote[403].end 6082.72596875
transcript.pyannote[404].speaker SPEAKER_25
transcript.pyannote[404].start 6083.08034375
transcript.pyannote[404].end 6083.38409375
transcript.pyannote[405].speaker SPEAKER_25
transcript.pyannote[405].start 6083.50221875
transcript.pyannote[405].end 6083.89034375
transcript.pyannote[406].speaker SPEAKER_25
transcript.pyannote[406].start 6084.19409375
transcript.pyannote[406].end 6086.38784375
transcript.pyannote[407].speaker SPEAKER_25
transcript.pyannote[407].start 6087.02909375
transcript.pyannote[407].end 6097.72784375
transcript.pyannote[408].speaker SPEAKER_25
transcript.pyannote[408].start 6098.16659375
transcript.pyannote[408].end 6100.00596875
transcript.pyannote[409].speaker SPEAKER_25
transcript.pyannote[409].start 6100.30971875
transcript.pyannote[409].end 6106.78971875
transcript.pyannote[410].speaker SPEAKER_25
transcript.pyannote[410].start 6107.41409375
transcript.pyannote[410].end 6107.88659375
transcript.pyannote[411].speaker SPEAKER_25
transcript.pyannote[411].start 6108.52784375
transcript.pyannote[411].end 6110.48534375
transcript.pyannote[412].speaker SPEAKER_25
transcript.pyannote[412].start 6110.82284375
transcript.pyannote[412].end 6114.40034375
transcript.pyannote[413].speaker SPEAKER_25
transcript.pyannote[413].start 6115.04159375
transcript.pyannote[413].end 6121.03221875
transcript.pyannote[414].speaker SPEAKER_25
transcript.pyannote[414].start 6121.48784375
transcript.pyannote[414].end 6124.67721875
transcript.pyannote[415].speaker SPEAKER_25
transcript.pyannote[415].start 6125.45346875
transcript.pyannote[415].end 6126.76971875
transcript.pyannote[416].speaker SPEAKER_25
transcript.pyannote[416].start 6127.17471875
transcript.pyannote[416].end 6134.24534375
transcript.pyannote[417].speaker SPEAKER_25
transcript.pyannote[417].start 6134.78534375
transcript.pyannote[417].end 6140.28659375
transcript.pyannote[418].speaker SPEAKER_25
transcript.pyannote[418].start 6140.48909375
transcript.pyannote[418].end 6144.94409375
transcript.pyannote[419].speaker SPEAKER_25
transcript.pyannote[419].start 6145.46721875
transcript.pyannote[419].end 6147.35721875
transcript.pyannote[420].speaker SPEAKER_25
transcript.pyannote[420].start 6147.59346875
transcript.pyannote[420].end 6152.45346875
transcript.pyannote[421].speaker SPEAKER_25
transcript.pyannote[421].start 6152.92596875
transcript.pyannote[421].end 6155.06909375
transcript.pyannote[422].speaker SPEAKER_25
transcript.pyannote[422].start 6155.28846875
transcript.pyannote[422].end 6158.66346875
transcript.pyannote[423].speaker SPEAKER_25
transcript.pyannote[423].start 6159.01784375
transcript.pyannote[423].end 6159.52409375
transcript.pyannote[424].speaker SPEAKER_25
transcript.pyannote[424].start 6159.89534375
transcript.pyannote[424].end 6164.11409375
transcript.pyannote[425].speaker SPEAKER_25
transcript.pyannote[425].start 6164.33346875
transcript.pyannote[425].end 6169.83471875
transcript.pyannote[426].speaker SPEAKER_25
transcript.pyannote[426].start 6171.08346875
transcript.pyannote[426].end 6176.29784375
transcript.pyannote[427].speaker SPEAKER_25
transcript.pyannote[427].start 6177.41159375
transcript.pyannote[427].end 6180.16221875
transcript.pyannote[428].speaker SPEAKER_25
transcript.pyannote[428].start 6180.46596875
transcript.pyannote[428].end 6181.54596875
transcript.pyannote[429].speaker SPEAKER_25
transcript.pyannote[429].start 6182.00159375
transcript.pyannote[429].end 6184.98846875
transcript.pyannote[430].speaker SPEAKER_25
transcript.pyannote[430].start 6185.39346875
transcript.pyannote[430].end 6186.05159375
transcript.pyannote[431].speaker SPEAKER_25
transcript.pyannote[431].start 6186.65909375
transcript.pyannote[431].end 6187.46909375
transcript.pyannote[432].speaker SPEAKER_25
transcript.pyannote[432].start 6187.99221875
transcript.pyannote[432].end 6190.64159375
transcript.pyannote[433].speaker SPEAKER_25
transcript.pyannote[433].start 6191.28284375
transcript.pyannote[433].end 6193.72971875
transcript.pyannote[434].speaker SPEAKER_25
transcript.pyannote[434].start 6194.01659375
transcript.pyannote[434].end 6200.37846875
transcript.pyannote[435].speaker SPEAKER_25
transcript.pyannote[435].start 6200.68221875
transcript.pyannote[435].end 6201.62721875
transcript.pyannote[436].speaker SPEAKER_25
transcript.pyannote[436].start 6201.99846875
transcript.pyannote[436].end 6220.20659375
transcript.pyannote[437].speaker SPEAKER_15
transcript.pyannote[437].start 6222.68721875
transcript.pyannote[437].end 6224.83034375
transcript.pyannote[438].speaker SPEAKER_15
transcript.pyannote[438].start 6225.58971875
transcript.pyannote[438].end 6226.12971875
transcript.pyannote[439].speaker SPEAKER_31
transcript.pyannote[439].start 6229.20096875
transcript.pyannote[439].end 6241.95846875
transcript.pyannote[440].speaker SPEAKER_31
transcript.pyannote[440].start 6242.68409375
transcript.pyannote[440].end 6257.80409375
transcript.pyannote[441].speaker SPEAKER_14
transcript.pyannote[441].start 6258.90096875
transcript.pyannote[441].end 6258.91784375
transcript.pyannote[442].speaker SPEAKER_31
transcript.pyannote[442].start 6258.91784375
transcript.pyannote[442].end 6259.03596875
transcript.pyannote[443].speaker SPEAKER_15
transcript.pyannote[443].start 6259.03596875
transcript.pyannote[443].end 6259.93034375
transcript.pyannote[444].speaker SPEAKER_31
transcript.pyannote[444].start 6259.93034375
transcript.pyannote[444].end 6259.96409375
transcript.pyannote[445].speaker SPEAKER_02
transcript.pyannote[445].start 6274.67909375
transcript.pyannote[445].end 6278.83034375
transcript.pyannote[446].speaker SPEAKER_02
transcript.pyannote[446].start 6279.35346875
transcript.pyannote[446].end 6286.66034375
transcript.pyannote[447].speaker SPEAKER_02
transcript.pyannote[447].start 6287.30159375
transcript.pyannote[447].end 6287.97659375
transcript.pyannote[448].speaker SPEAKER_02
transcript.pyannote[448].start 6288.36471875
transcript.pyannote[448].end 6291.28409375
transcript.pyannote[449].speaker SPEAKER_02
transcript.pyannote[449].start 6291.60471875
transcript.pyannote[449].end 6294.20346875
transcript.pyannote[450].speaker SPEAKER_02
transcript.pyannote[450].start 6294.84471875
transcript.pyannote[450].end 6299.38409375
transcript.pyannote[451].speaker SPEAKER_02
transcript.pyannote[451].start 6299.85659375
transcript.pyannote[451].end 6304.36221875
transcript.pyannote[452].speaker SPEAKER_02
transcript.pyannote[452].start 6304.68284375
transcript.pyannote[452].end 6316.71471875
transcript.pyannote[453].speaker SPEAKER_02
transcript.pyannote[453].start 6316.90034375
transcript.pyannote[453].end 6330.16409375
transcript.pyannote[454].speaker SPEAKER_02
transcript.pyannote[454].start 6330.70409375
transcript.pyannote[454].end 6355.44284375
transcript.pyannote[455].speaker SPEAKER_02
transcript.pyannote[455].start 6355.81409375
transcript.pyannote[455].end 6361.60221875
transcript.pyannote[456].speaker SPEAKER_02
transcript.pyannote[456].start 6362.14221875
transcript.pyannote[456].end 6376.75596875
transcript.pyannote[457].speaker SPEAKER_02
transcript.pyannote[457].start 6376.82346875
transcript.pyannote[457].end 6377.59971875
transcript.pyannote[458].speaker SPEAKER_02
transcript.pyannote[458].start 6378.98346875
transcript.pyannote[458].end 6382.98284375
transcript.pyannote[459].speaker SPEAKER_02
transcript.pyannote[459].start 6383.01659375
transcript.pyannote[459].end 6409.07159375
transcript.pyannote[460].speaker SPEAKER_02
transcript.pyannote[460].start 6409.72971875
transcript.pyannote[460].end 6410.13471875
transcript.pyannote[461].speaker SPEAKER_02
transcript.pyannote[461].start 6410.30346875
transcript.pyannote[461].end 6430.01346875
transcript.pyannote[462].speaker SPEAKER_02
transcript.pyannote[462].start 6430.45221875
transcript.pyannote[462].end 6431.95409375
transcript.pyannote[463].speaker SPEAKER_02
transcript.pyannote[463].start 6432.40971875
transcript.pyannote[463].end 6441.65721875
transcript.pyannote[464].speaker SPEAKER_02
transcript.pyannote[464].start 6442.04534375
transcript.pyannote[464].end 6454.06034375
transcript.pyannote[465].speaker SPEAKER_02
transcript.pyannote[465].start 6454.29659375
transcript.pyannote[465].end 6456.65909375
transcript.pyannote[466].speaker SPEAKER_02
transcript.pyannote[466].start 6456.97971875
transcript.pyannote[466].end 6469.61909375
transcript.pyannote[467].speaker SPEAKER_02
transcript.pyannote[467].start 6469.68659375
transcript.pyannote[467].end 6476.31846875
transcript.pyannote[468].speaker SPEAKER_02
transcript.pyannote[468].start 6476.87534375
transcript.pyannote[468].end 6490.39221875
transcript.pyannote[469].speaker SPEAKER_02
transcript.pyannote[469].start 6490.93221875
transcript.pyannote[469].end 6492.95721875
transcript.pyannote[470].speaker SPEAKER_02
transcript.pyannote[470].start 6493.68284375
transcript.pyannote[470].end 6505.02284375
transcript.pyannote[471].speaker SPEAKER_02
transcript.pyannote[471].start 6505.37721875
transcript.pyannote[471].end 6516.05909375
transcript.pyannote[472].speaker SPEAKER_02
transcript.pyannote[472].start 6516.44721875
transcript.pyannote[472].end 6518.08409375
transcript.pyannote[473].speaker SPEAKER_02
transcript.pyannote[473].start 6518.97846875
transcript.pyannote[473].end 6571.24034375
transcript.pyannote[474].speaker SPEAKER_02
transcript.pyannote[474].start 6571.74659375
transcript.pyannote[474].end 6587.05221875
transcript.pyannote[475].speaker SPEAKER_02
transcript.pyannote[475].start 6587.89596875
transcript.pyannote[475].end 6589.70159375
transcript.pyannote[476].speaker SPEAKER_02
transcript.pyannote[476].start 6590.34284375
transcript.pyannote[476].end 6593.11034375
transcript.pyannote[477].speaker SPEAKER_02
transcript.pyannote[477].start 6594.02159375
transcript.pyannote[477].end 6608.28096875
transcript.pyannote[478].speaker SPEAKER_02
transcript.pyannote[478].start 6609.31034375
transcript.pyannote[478].end 6619.43534375
transcript.pyannote[479].speaker SPEAKER_02
transcript.pyannote[479].start 6619.75596875
transcript.pyannote[479].end 6624.16034375
transcript.pyannote[480].speaker SPEAKER_02
transcript.pyannote[480].start 6624.83534375
transcript.pyannote[480].end 6626.84346875
transcript.pyannote[481].speaker SPEAKER_02
transcript.pyannote[481].start 6627.01221875
transcript.pyannote[481].end 6631.58534375
transcript.pyannote[482].speaker SPEAKER_02
transcript.pyannote[482].start 6631.97346875
transcript.pyannote[482].end 6633.17159375
transcript.pyannote[483].speaker SPEAKER_02
transcript.pyannote[483].start 6633.77909375
transcript.pyannote[483].end 6648.42659375
transcript.pyannote[484].speaker SPEAKER_15
transcript.pyannote[484].start 6649.20284375
transcript.pyannote[484].end 6653.33721875
transcript.pyannote[485].speaker SPEAKER_15
transcript.pyannote[485].start 6653.55659375
transcript.pyannote[485].end 6655.39596875
transcript.pyannote[486].speaker SPEAKER_12
transcript.pyannote[486].start 6664.57596875
transcript.pyannote[486].end 6729.08909375
transcript.pyannote[487].speaker SPEAKER_15
transcript.pyannote[487].start 6730.82721875
transcript.pyannote[487].end 6734.35409375
transcript.pyannote[488].speaker SPEAKER_19
transcript.pyannote[488].start 6745.71096875
transcript.pyannote[488].end 6747.21284375
transcript.pyannote[489].speaker SPEAKER_19
transcript.pyannote[489].start 6748.63034375
transcript.pyannote[489].end 6750.19971875
transcript.pyannote[490].speaker SPEAKER_19
transcript.pyannote[490].start 6752.96721875
transcript.pyannote[490].end 6756.96659375
transcript.pyannote[491].speaker SPEAKER_19
transcript.pyannote[491].start 6757.67534375
transcript.pyannote[491].end 6759.97034375
transcript.pyannote[492].speaker SPEAKER_19
transcript.pyannote[492].start 6760.56096875
transcript.pyannote[492].end 6761.84346875
transcript.pyannote[493].speaker SPEAKER_19
transcript.pyannote[493].start 6762.87284375
transcript.pyannote[493].end 6767.49659375
transcript.pyannote[494].speaker SPEAKER_19
transcript.pyannote[494].start 6768.94784375
transcript.pyannote[494].end 6773.18346875
transcript.pyannote[495].speaker SPEAKER_19
transcript.pyannote[495].start 6774.17909375
transcript.pyannote[495].end 6778.56659375
transcript.pyannote[496].speaker SPEAKER_19
transcript.pyannote[496].start 6779.68034375
transcript.pyannote[496].end 6782.98784375
transcript.pyannote[497].speaker SPEAKER_19
transcript.pyannote[497].start 6784.20284375
transcript.pyannote[497].end 6785.55284375
transcript.pyannote[498].speaker SPEAKER_19
transcript.pyannote[498].start 6785.80596875
transcript.pyannote[498].end 6786.22784375
transcript.pyannote[499].speaker SPEAKER_19
transcript.pyannote[499].start 6786.78471875
transcript.pyannote[499].end 6788.25284375
transcript.pyannote[500].speaker SPEAKER_19
transcript.pyannote[500].start 6789.01221875
transcript.pyannote[500].end 6790.88534375
transcript.pyannote[501].speaker SPEAKER_19
transcript.pyannote[501].start 6792.33659375
transcript.pyannote[501].end 6793.78784375
transcript.pyannote[502].speaker SPEAKER_19
transcript.pyannote[502].start 6794.27721875
transcript.pyannote[502].end 6795.25596875
transcript.pyannote[503].speaker SPEAKER_19
transcript.pyannote[503].start 6796.63971875
transcript.pyannote[503].end 6797.77034375
transcript.pyannote[504].speaker SPEAKER_19
transcript.pyannote[504].start 6798.69846875
transcript.pyannote[504].end 6801.70221875
transcript.pyannote[505].speaker SPEAKER_19
transcript.pyannote[505].start 6802.66409375
transcript.pyannote[505].end 6806.19096875
transcript.pyannote[506].speaker SPEAKER_19
transcript.pyannote[506].start 6808.04721875
transcript.pyannote[506].end 6810.37596875
transcript.pyannote[507].speaker SPEAKER_19
transcript.pyannote[507].start 6811.16909375
transcript.pyannote[507].end 6812.31659375
transcript.pyannote[508].speaker SPEAKER_19
transcript.pyannote[508].start 6813.26159375
transcript.pyannote[508].end 6813.59909375
transcript.pyannote[509].speaker SPEAKER_19
transcript.pyannote[509].start 6814.08846875
transcript.pyannote[509].end 6816.67034375
transcript.pyannote[510].speaker SPEAKER_19
transcript.pyannote[510].start 6817.96971875
transcript.pyannote[510].end 6821.14221875
transcript.pyannote[511].speaker SPEAKER_19
transcript.pyannote[511].start 6822.57659375
transcript.pyannote[511].end 6823.33596875
transcript.pyannote[512].speaker SPEAKER_19
transcript.pyannote[512].start 6824.87159375
transcript.pyannote[512].end 6826.05284375
transcript.pyannote[513].speaker SPEAKER_19
transcript.pyannote[513].start 6826.66034375
transcript.pyannote[513].end 6827.09909375
transcript.pyannote[514].speaker SPEAKER_19
transcript.pyannote[514].start 6828.12846875
transcript.pyannote[514].end 6829.71471875
transcript.pyannote[515].speaker SPEAKER_19
transcript.pyannote[515].start 6832.44846875
transcript.pyannote[515].end 6834.82784375
transcript.pyannote[516].speaker SPEAKER_19
transcript.pyannote[516].start 6836.56596875
transcript.pyannote[516].end 6837.66284375
transcript.pyannote[517].speaker SPEAKER_19
transcript.pyannote[517].start 6837.84846875
transcript.pyannote[517].end 6839.70471875
transcript.pyannote[518].speaker SPEAKER_19
transcript.pyannote[518].start 6840.39659375
transcript.pyannote[518].end 6841.51034375
transcript.pyannote[519].speaker SPEAKER_19
transcript.pyannote[519].start 6842.35409375
transcript.pyannote[519].end 6846.42096875
transcript.pyannote[520].speaker SPEAKER_19
transcript.pyannote[520].start 6847.09596875
transcript.pyannote[520].end 6851.14596875
transcript.pyannote[521].speaker SPEAKER_19
transcript.pyannote[521].start 6852.36096875
transcript.pyannote[521].end 6854.03159375
transcript.pyannote[522].speaker SPEAKER_19
transcript.pyannote[522].start 6854.47034375
transcript.pyannote[522].end 6857.59221875
transcript.pyannote[523].speaker SPEAKER_19
transcript.pyannote[523].start 6858.55409375
transcript.pyannote[523].end 6859.19534375
transcript.pyannote[524].speaker SPEAKER_19
transcript.pyannote[524].start 6860.91659375
transcript.pyannote[524].end 6862.70534375
transcript.pyannote[525].speaker SPEAKER_19
transcript.pyannote[525].start 6863.43096875
transcript.pyannote[525].end 6865.55721875
transcript.pyannote[526].speaker SPEAKER_19
transcript.pyannote[526].start 6866.28284375
transcript.pyannote[526].end 6868.10534375
transcript.pyannote[527].speaker SPEAKER_19
transcript.pyannote[527].start 6869.67471875
transcript.pyannote[527].end 6870.70409375
transcript.pyannote[528].speaker SPEAKER_19
transcript.pyannote[528].start 6871.66596875
transcript.pyannote[528].end 6873.85971875
transcript.pyannote[529].speaker SPEAKER_19
transcript.pyannote[529].start 6874.93971875
transcript.pyannote[529].end 6876.62721875
transcript.pyannote[530].speaker SPEAKER_19
transcript.pyannote[530].start 6877.06596875
transcript.pyannote[530].end 6881.04846875
transcript.pyannote[531].speaker SPEAKER_19
transcript.pyannote[531].start 6882.51659375
transcript.pyannote[531].end 6883.68096875
transcript.pyannote[532].speaker SPEAKER_19
transcript.pyannote[532].start 6884.81159375
transcript.pyannote[532].end 6885.31784375
transcript.pyannote[533].speaker SPEAKER_19
transcript.pyannote[533].start 6885.90846875
transcript.pyannote[533].end 6886.53284375
transcript.pyannote[534].speaker SPEAKER_19
transcript.pyannote[534].start 6887.71409375
transcript.pyannote[534].end 6888.65909375
transcript.pyannote[535].speaker SPEAKER_19
transcript.pyannote[535].start 6889.43534375
transcript.pyannote[535].end 6891.20721875
transcript.pyannote[536].speaker SPEAKER_19
transcript.pyannote[536].start 6892.33784375
transcript.pyannote[536].end 6896.18534375
transcript.pyannote[537].speaker SPEAKER_19
transcript.pyannote[537].start 6897.38346875
transcript.pyannote[537].end 6899.83034375
transcript.pyannote[538].speaker SPEAKER_19
transcript.pyannote[538].start 6900.52221875
transcript.pyannote[538].end 6901.60221875
transcript.pyannote[539].speaker SPEAKER_19
transcript.pyannote[539].start 6902.29409375
transcript.pyannote[539].end 6904.28534375
transcript.pyannote[540].speaker SPEAKER_19
transcript.pyannote[540].start 6905.02784375
transcript.pyannote[540].end 6905.61846875
transcript.pyannote[541].speaker SPEAKER_19
transcript.pyannote[541].start 6906.14159375
transcript.pyannote[541].end 6908.36909375
transcript.pyannote[542].speaker SPEAKER_19
transcript.pyannote[542].start 6909.88784375
transcript.pyannote[542].end 6911.30534375
transcript.pyannote[543].speaker SPEAKER_19
transcript.pyannote[543].start 6912.04784375
transcript.pyannote[543].end 6913.26284375
transcript.pyannote[544].speaker SPEAKER_19
transcript.pyannote[544].start 6914.05596875
transcript.pyannote[544].end 6916.92471875
transcript.pyannote[545].speaker SPEAKER_19
transcript.pyannote[545].start 6917.54909375
transcript.pyannote[545].end 6918.76409375
transcript.pyannote[546].speaker SPEAKER_19
transcript.pyannote[546].start 6919.59096875
transcript.pyannote[546].end 6920.68784375
transcript.pyannote[547].speaker SPEAKER_19
transcript.pyannote[547].start 6921.53159375
transcript.pyannote[547].end 6922.44284375
transcript.pyannote[548].speaker SPEAKER_19
transcript.pyannote[548].start 6923.01659375
transcript.pyannote[548].end 6925.34534375
transcript.pyannote[549].speaker SPEAKER_19
transcript.pyannote[549].start 6926.23971875
transcript.pyannote[549].end 6931.18409375
transcript.pyannote[550].speaker SPEAKER_19
transcript.pyannote[550].start 6932.33159375
transcript.pyannote[550].end 6932.83784375
transcript.pyannote[551].speaker SPEAKER_19
transcript.pyannote[551].start 6933.46221875
transcript.pyannote[551].end 6934.91346875
transcript.pyannote[552].speaker SPEAKER_19
transcript.pyannote[552].start 6935.58846875
transcript.pyannote[552].end 6936.87096875
transcript.pyannote[553].speaker SPEAKER_19
transcript.pyannote[553].start 6937.51221875
transcript.pyannote[553].end 6942.18659375
transcript.pyannote[554].speaker SPEAKER_19
transcript.pyannote[554].start 6942.43971875
transcript.pyannote[554].end 6944.51534375
transcript.pyannote[555].speaker SPEAKER_19
transcript.pyannote[555].start 6944.93721875
transcript.pyannote[555].end 6957.28971875
transcript.pyannote[556].speaker SPEAKER_19
transcript.pyannote[556].start 6957.79596875
transcript.pyannote[556].end 6963.70221875
transcript.pyannote[557].speaker SPEAKER_15
transcript.pyannote[557].start 6964.61346875
transcript.pyannote[557].end 6965.92971875
transcript.pyannote[558].speaker SPEAKER_15
transcript.pyannote[558].start 6967.31346875
transcript.pyannote[558].end 6969.94596875
transcript.pyannote[559].speaker SPEAKER_15
transcript.pyannote[559].start 6969.96284375
transcript.pyannote[559].end 6970.09784375
transcript.pyannote[560].speaker SPEAKER_15
transcript.pyannote[560].start 6970.28346875
transcript.pyannote[560].end 6985.74096875
transcript.pyannote[561].speaker SPEAKER_15
transcript.pyannote[561].start 6987.46221875
transcript.pyannote[561].end 6995.83221875
transcript.pyannote[562].speaker SPEAKER_15
transcript.pyannote[562].start 6996.16971875
transcript.pyannote[562].end 7003.98284375
transcript.pyannote[563].speaker SPEAKER_15
transcript.pyannote[563].start 7004.47221875
transcript.pyannote[563].end 7012.82534375
transcript.pyannote[564].speaker SPEAKER_15
transcript.pyannote[564].start 7016.04846875
transcript.pyannote[564].end 7017.70221875
transcript.pyannote[565].speaker SPEAKER_15
transcript.pyannote[565].start 7019.06909375
transcript.pyannote[565].end 7019.37284375
transcript.pyannote[566].speaker SPEAKER_15
transcript.pyannote[566].start 7019.86221875
transcript.pyannote[566].end 7022.62971875
transcript.pyannote[567].speaker SPEAKER_15
transcript.pyannote[567].start 7043.41971875
transcript.pyannote[567].end 7051.60409375
transcript.pyannote[568].speaker SPEAKER_15
transcript.pyannote[568].start 7055.09721875
transcript.pyannote[568].end 7064.64846875
transcript.pyannote[569].speaker SPEAKER_15
transcript.pyannote[569].start 7065.67784375
transcript.pyannote[569].end 7066.90971875
transcript.pyannote[570].speaker SPEAKER_15
transcript.pyannote[570].start 7069.13721875
transcript.pyannote[570].end 7071.88784375
transcript.pyannote[571].speaker SPEAKER_15
transcript.pyannote[571].start 7071.97221875
transcript.pyannote[571].end 7074.04784375
transcript.pyannote[572].speaker SPEAKER_15
transcript.pyannote[572].start 7074.40221875
transcript.pyannote[572].end 7078.84034375
transcript.pyannote[573].speaker SPEAKER_15
transcript.pyannote[573].start 7082.78909375
transcript.pyannote[573].end 7083.48096875
transcript.pyannote[574].speaker SPEAKER_15
transcript.pyannote[574].start 7084.39221875
transcript.pyannote[574].end 7085.03346875
transcript.pyannote[575].speaker SPEAKER_15
transcript.pyannote[575].start 7085.86034375
transcript.pyannote[575].end 7087.09221875
transcript.pyannote[576].speaker SPEAKER_15
transcript.pyannote[576].start 7091.34471875
transcript.pyannote[576].end 7091.37846875
transcript.pyannote[577].speaker SPEAKER_14
transcript.pyannote[577].start 7091.37846875
transcript.pyannote[577].end 7091.86784375
transcript.pyannote[578].speaker SPEAKER_14
transcript.pyannote[578].start 7105.14846875
transcript.pyannote[578].end 7107.17346875
transcript.pyannote[579].speaker SPEAKER_14
transcript.pyannote[579].start 7115.88096875
transcript.pyannote[579].end 7116.53909375
transcript.pyannote[580].speaker SPEAKER_14
transcript.pyannote[580].start 7117.72034375
transcript.pyannote[580].end 7119.32346875
transcript.pyannote[581].speaker SPEAKER_00
transcript.pyannote[581].start 7131.11909375
transcript.pyannote[581].end 7132.21596875
transcript.pyannote[582].speaker SPEAKER_09
transcript.pyannote[582].start 7133.98784375
transcript.pyannote[582].end 7136.31659375
transcript.pyannote[583].speaker SPEAKER_09
transcript.pyannote[583].start 7137.68346875
transcript.pyannote[583].end 7144.53471875
transcript.pyannote[584].speaker SPEAKER_09
transcript.pyannote[584].start 7144.93971875
transcript.pyannote[584].end 7157.03909375
transcript.pyannote[585].speaker SPEAKER_09
transcript.pyannote[585].start 7157.61284375
transcript.pyannote[585].end 7160.80221875
transcript.pyannote[586].speaker SPEAKER_09
transcript.pyannote[586].start 7161.34221875
transcript.pyannote[586].end 7166.23596875
transcript.pyannote[587].speaker SPEAKER_09
transcript.pyannote[587].start 7166.57346875
transcript.pyannote[587].end 7167.13034375
transcript.pyannote[588].speaker SPEAKER_09
transcript.pyannote[588].start 7167.61971875
transcript.pyannote[588].end 7168.02471875
transcript.pyannote[589].speaker SPEAKER_09
transcript.pyannote[589].start 7168.53096875
transcript.pyannote[589].end 7171.85534375
transcript.pyannote[590].speaker SPEAKER_09
transcript.pyannote[590].start 7172.56409375
transcript.pyannote[590].end 7175.24721875
transcript.pyannote[591].speaker SPEAKER_09
transcript.pyannote[591].start 7175.92221875
transcript.pyannote[591].end 7176.58034375
transcript.pyannote[592].speaker SPEAKER_09
transcript.pyannote[592].start 7177.05284375
transcript.pyannote[592].end 7178.92596875
transcript.pyannote[593].speaker SPEAKER_09
transcript.pyannote[593].start 7179.43221875
transcript.pyannote[593].end 7185.50721875
transcript.pyannote[594].speaker SPEAKER_09
transcript.pyannote[594].start 7187.19471875
transcript.pyannote[594].end 7189.40534375
transcript.pyannote[595].speaker SPEAKER_09
transcript.pyannote[595].start 7189.89471875
transcript.pyannote[595].end 7191.44721875
transcript.pyannote[596].speaker SPEAKER_09
transcript.pyannote[596].start 7193.18534375
transcript.pyannote[596].end 7193.99534375
transcript.pyannote[597].speaker SPEAKER_09
transcript.pyannote[597].start 7194.51846875
transcript.pyannote[597].end 7195.14284375
transcript.pyannote[598].speaker SPEAKER_09
transcript.pyannote[598].start 7195.76721875
transcript.pyannote[598].end 7204.71096875
transcript.pyannote[599].speaker SPEAKER_09
transcript.pyannote[599].start 7205.09909375
transcript.pyannote[599].end 7208.69346875
transcript.pyannote[600].speaker SPEAKER_09
transcript.pyannote[600].start 7209.46971875
transcript.pyannote[600].end 7212.40596875
transcript.pyannote[601].speaker SPEAKER_09
transcript.pyannote[601].start 7212.59159375
transcript.pyannote[601].end 7218.71721875
transcript.pyannote[602].speaker SPEAKER_09
transcript.pyannote[602].start 7219.72971875
transcript.pyannote[602].end 7220.70846875
transcript.pyannote[603].speaker SPEAKER_14
transcript.pyannote[603].start 7220.84346875
transcript.pyannote[603].end 7221.58596875
transcript.pyannote[604].speaker SPEAKER_09
transcript.pyannote[604].start 7225.97346875
transcript.pyannote[604].end 7229.34846875
transcript.pyannote[605].speaker SPEAKER_09
transcript.pyannote[605].start 7230.15846875
transcript.pyannote[605].end 7234.63034375
transcript.pyannote[606].speaker SPEAKER_09
transcript.pyannote[606].start 7235.27159375
transcript.pyannote[606].end 7235.96346875
transcript.pyannote[607].speaker SPEAKER_09
transcript.pyannote[607].start 7236.28409375
transcript.pyannote[607].end 7239.67596875
transcript.pyannote[608].speaker SPEAKER_09
transcript.pyannote[608].start 7240.04721875
transcript.pyannote[608].end 7244.02971875
transcript.pyannote[609].speaker SPEAKER_09
transcript.pyannote[609].start 7244.23221875
transcript.pyannote[609].end 7244.94096875
transcript.pyannote[610].speaker SPEAKER_09
transcript.pyannote[610].start 7245.37971875
transcript.pyannote[610].end 7246.61159375
transcript.pyannote[611].speaker SPEAKER_09
transcript.pyannote[611].start 7247.16846875
transcript.pyannote[611].end 7247.99534375
transcript.pyannote[612].speaker SPEAKER_09
transcript.pyannote[612].start 7248.24846875
transcript.pyannote[612].end 7250.44221875
transcript.pyannote[613].speaker SPEAKER_20
transcript.pyannote[613].start 7255.04909375
transcript.pyannote[613].end 7256.28096875
transcript.pyannote[614].speaker SPEAKER_20
transcript.pyannote[614].start 7256.36534375
transcript.pyannote[614].end 7270.28721875
transcript.pyannote[615].speaker SPEAKER_20
transcript.pyannote[615].start 7270.40534375
transcript.pyannote[615].end 7270.43909375
transcript.pyannote[616].speaker SPEAKER_20
transcript.pyannote[616].start 7270.52346875
transcript.pyannote[616].end 7276.27784375
transcript.pyannote[617].speaker SPEAKER_20
transcript.pyannote[617].start 7276.75034375
transcript.pyannote[617].end 7282.72409375
transcript.pyannote[618].speaker SPEAKER_20
transcript.pyannote[618].start 7283.33159375
transcript.pyannote[618].end 7287.73596875
transcript.pyannote[619].speaker SPEAKER_20
transcript.pyannote[619].start 7287.97221875
transcript.pyannote[619].end 7290.18284375
transcript.pyannote[620].speaker SPEAKER_20
transcript.pyannote[620].start 7290.43596875
transcript.pyannote[620].end 7291.70159375
transcript.pyannote[621].speaker SPEAKER_20
transcript.pyannote[621].start 7291.88721875
transcript.pyannote[621].end 7292.57909375
transcript.pyannote[622].speaker SPEAKER_20
transcript.pyannote[622].start 7292.95034375
transcript.pyannote[622].end 7306.02846875
transcript.pyannote[623].speaker SPEAKER_20
transcript.pyannote[623].start 7306.09596875
transcript.pyannote[623].end 7308.61034375
transcript.pyannote[624].speaker SPEAKER_20
transcript.pyannote[624].start 7309.04909375
transcript.pyannote[624].end 7351.97909375
transcript.pyannote[625].speaker SPEAKER_20
transcript.pyannote[625].start 7352.55284375
transcript.pyannote[625].end 7364.73659375
transcript.pyannote[626].speaker SPEAKER_20
transcript.pyannote[626].start 7365.17534375
transcript.pyannote[626].end 7366.03596875
transcript.pyannote[627].speaker SPEAKER_09
transcript.pyannote[627].start 7366.86284375
transcript.pyannote[627].end 7367.74034375
transcript.pyannote[628].speaker SPEAKER_09
transcript.pyannote[628].start 7368.09471875
transcript.pyannote[628].end 7370.38971875
transcript.pyannote[629].speaker SPEAKER_20
transcript.pyannote[629].start 7370.38971875
transcript.pyannote[629].end 7371.03096875
transcript.pyannote[630].speaker SPEAKER_14
transcript.pyannote[630].start 7371.03096875
transcript.pyannote[630].end 7371.43596875
transcript.pyannote[631].speaker SPEAKER_14
transcript.pyannote[631].start 7376.86971875
transcript.pyannote[631].end 7376.88659375
transcript.pyannote[632].speaker SPEAKER_15
transcript.pyannote[632].start 7376.88659375
transcript.pyannote[632].end 7378.92846875
transcript.pyannote[633].speaker SPEAKER_09
transcript.pyannote[633].start 7378.92846875
transcript.pyannote[633].end 7379.24909375
transcript.pyannote[634].speaker SPEAKER_09
transcript.pyannote[634].start 7379.51909375
transcript.pyannote[634].end 7380.88596875
transcript.pyannote[635].speaker SPEAKER_15
transcript.pyannote[635].start 7380.88596875
transcript.pyannote[635].end 7381.61159375
transcript.pyannote[636].speaker SPEAKER_15
transcript.pyannote[636].start 7383.43409375
transcript.pyannote[636].end 7383.50159375
transcript.pyannote[637].speaker SPEAKER_14
transcript.pyannote[637].start 7383.50159375
transcript.pyannote[637].end 7383.83909375
transcript.pyannote[638].speaker SPEAKER_15
transcript.pyannote[638].start 7383.83909375
transcript.pyannote[638].end 7383.90659375
transcript.pyannote[639].speaker SPEAKER_15
transcript.pyannote[639].start 7384.98659375
transcript.pyannote[639].end 7385.00346875
transcript.pyannote[640].speaker SPEAKER_14
transcript.pyannote[640].start 7385.00346875
transcript.pyannote[640].end 7386.80909375
transcript.pyannote[641].speaker SPEAKER_09
transcript.pyannote[641].start 7385.61096875
transcript.pyannote[641].end 7385.79659375
transcript.pyannote[642].speaker SPEAKER_09
transcript.pyannote[642].start 7386.38721875
transcript.pyannote[642].end 7396.09034375
transcript.pyannote[643].speaker SPEAKER_09
transcript.pyannote[643].start 7396.41096875
transcript.pyannote[643].end 7397.42346875
transcript.pyannote[644].speaker SPEAKER_09
transcript.pyannote[644].start 7397.62596875
transcript.pyannote[644].end 7398.38534375
transcript.pyannote[645].speaker SPEAKER_09
transcript.pyannote[645].start 7398.82409375
transcript.pyannote[645].end 7400.00534375
transcript.pyannote[646].speaker SPEAKER_05
transcript.pyannote[646].start 7401.30471875
transcript.pyannote[646].end 7401.72659375
transcript.pyannote[647].speaker SPEAKER_09
transcript.pyannote[647].start 7401.72659375
transcript.pyannote[647].end 7402.84034375
transcript.pyannote[648].speaker SPEAKER_09
transcript.pyannote[648].start 7403.14409375
transcript.pyannote[648].end 7412.84721875
transcript.pyannote[649].speaker SPEAKER_09
transcript.pyannote[649].start 7413.45471875
transcript.pyannote[649].end 7414.21409375
transcript.pyannote[650].speaker SPEAKER_20
transcript.pyannote[650].start 7414.21409375
transcript.pyannote[650].end 7415.90159375
transcript.pyannote[651].speaker SPEAKER_09
transcript.pyannote[651].start 7415.85096875
transcript.pyannote[651].end 7416.96471875
transcript.pyannote[652].speaker SPEAKER_09
transcript.pyannote[652].start 7417.11659375
transcript.pyannote[652].end 7417.43721875
transcript.pyannote[653].speaker SPEAKER_09
transcript.pyannote[653].start 7417.69034375
transcript.pyannote[653].end 7419.88409375
transcript.pyannote[654].speaker SPEAKER_09
transcript.pyannote[654].start 7420.35659375
transcript.pyannote[654].end 7421.79096875
transcript.pyannote[655].speaker SPEAKER_20
transcript.pyannote[655].start 7422.73596875
transcript.pyannote[655].end 7422.95534375
transcript.pyannote[656].speaker SPEAKER_20
transcript.pyannote[656].start 7423.05659375
transcript.pyannote[656].end 7431.66284375
transcript.pyannote[657].speaker SPEAKER_20
transcript.pyannote[657].start 7431.93284375
transcript.pyannote[657].end 7434.66659375
transcript.pyannote[658].speaker SPEAKER_20
transcript.pyannote[658].start 7435.07159375
transcript.pyannote[658].end 7436.33721875
transcript.pyannote[659].speaker SPEAKER_20
transcript.pyannote[659].start 7436.40471875
transcript.pyannote[659].end 7454.32596875
transcript.pyannote[660].speaker SPEAKER_20
transcript.pyannote[660].start 7454.62971875
transcript.pyannote[660].end 7462.47659375
transcript.pyannote[661].speaker SPEAKER_20
transcript.pyannote[661].start 7462.76346875
transcript.pyannote[661].end 7463.99534375
transcript.pyannote[662].speaker SPEAKER_20
transcript.pyannote[662].start 7464.19784375
transcript.pyannote[662].end 7470.99846875
transcript.pyannote[663].speaker SPEAKER_20
transcript.pyannote[663].start 7471.23471875
transcript.pyannote[663].end 7473.44534375
transcript.pyannote[664].speaker SPEAKER_09
transcript.pyannote[664].start 7471.25159375
transcript.pyannote[664].end 7480.11096875
transcript.pyannote[665].speaker SPEAKER_09
transcript.pyannote[665].start 7480.85346875
transcript.pyannote[665].end 7482.16971875
transcript.pyannote[666].speaker SPEAKER_09
transcript.pyannote[666].start 7482.43971875
transcript.pyannote[666].end 7490.32034375
transcript.pyannote[667].speaker SPEAKER_20
transcript.pyannote[667].start 7490.32034375
transcript.pyannote[667].end 7498.60596875
transcript.pyannote[668].speaker SPEAKER_09
transcript.pyannote[668].start 7492.22721875
transcript.pyannote[668].end 7492.69971875
transcript.pyannote[669].speaker SPEAKER_09
transcript.pyannote[669].start 7496.69909375
transcript.pyannote[669].end 7502.47034375
transcript.pyannote[670].speaker SPEAKER_20
transcript.pyannote[670].start 7501.44096875
transcript.pyannote[670].end 7543.84784375
transcript.pyannote[671].speaker SPEAKER_30
transcript.pyannote[671].start 7534.14471875
transcript.pyannote[671].end 7535.61284375
transcript.pyannote[672].speaker SPEAKER_15
transcript.pyannote[672].start 7536.23721875
transcript.pyannote[672].end 7536.38909375
transcript.pyannote[673].speaker SPEAKER_15
transcript.pyannote[673].start 7537.26659375
transcript.pyannote[673].end 7537.68846875
transcript.pyannote[674].speaker SPEAKER_20
transcript.pyannote[674].start 7544.42159375
transcript.pyannote[674].end 7554.69846875
transcript.pyannote[675].speaker SPEAKER_20
transcript.pyannote[675].start 7556.13284375
transcript.pyannote[675].end 7558.07346875
transcript.pyannote[676].speaker SPEAKER_32
transcript.pyannote[676].start 7558.47846875
transcript.pyannote[676].end 7605.67784375
transcript.pyannote[677].speaker SPEAKER_20
transcript.pyannote[677].start 7559.69346875
transcript.pyannote[677].end 7559.72721875
transcript.pyannote[678].speaker SPEAKER_15
transcript.pyannote[678].start 7559.72721875
transcript.pyannote[678].end 7559.74409375
transcript.pyannote[679].speaker SPEAKER_20
transcript.pyannote[679].start 7559.74409375
transcript.pyannote[679].end 7560.04784375
transcript.pyannote[680].speaker SPEAKER_15
transcript.pyannote[680].start 7560.04784375
transcript.pyannote[680].end 7560.25034375
transcript.pyannote[681].speaker SPEAKER_15
transcript.pyannote[681].start 7608.07409375
transcript.pyannote[681].end 7608.73221875
transcript.pyannote[682].speaker SPEAKER_15
transcript.pyannote[682].start 7609.79534375
transcript.pyannote[682].end 7610.90909375
transcript.pyannote[683].speaker SPEAKER_32
transcript.pyannote[683].start 7611.41534375
transcript.pyannote[683].end 7612.17471875
transcript.pyannote[684].speaker SPEAKER_15
transcript.pyannote[684].start 7612.17471875
transcript.pyannote[684].end 7615.27971875
transcript.pyannote[685].speaker SPEAKER_15
transcript.pyannote[685].start 7616.96721875
transcript.pyannote[685].end 7619.71784375
transcript.pyannote[686].speaker SPEAKER_32
transcript.pyannote[686].start 7617.45659375
transcript.pyannote[686].end 7620.93284375
transcript.pyannote[687].speaker SPEAKER_32
transcript.pyannote[687].start 7620.96659375
transcript.pyannote[687].end 7635.95159375
transcript.pyannote[688].speaker SPEAKER_32
transcript.pyannote[688].start 7636.50846875
transcript.pyannote[688].end 7663.99784375
transcript.pyannote[689].speaker SPEAKER_15
transcript.pyannote[689].start 7665.07784375
transcript.pyannote[689].end 7669.53284375
transcript.pyannote[690].speaker SPEAKER_15
transcript.pyannote[690].start 7669.71846875
transcript.pyannote[690].end 7669.73534375
transcript.pyannote[691].speaker SPEAKER_32
transcript.pyannote[691].start 7669.73534375
transcript.pyannote[691].end 7669.83659375
transcript.pyannote[692].speaker SPEAKER_15
transcript.pyannote[692].start 7669.83659375
transcript.pyannote[692].end 7670.12346875
transcript.pyannote[693].speaker SPEAKER_32
transcript.pyannote[693].start 7670.12346875
transcript.pyannote[693].end 7670.14034375
transcript.pyannote[694].speaker SPEAKER_26
transcript.pyannote[694].start 7671.22034375
transcript.pyannote[694].end 7671.91221875
transcript.pyannote[695].speaker SPEAKER_26
transcript.pyannote[695].start 7671.96284375
transcript.pyannote[695].end 7672.03034375
transcript.pyannote[696].speaker SPEAKER_15
transcript.pyannote[696].start 7674.96659375
transcript.pyannote[696].end 7676.68784375
transcript.pyannote[697].speaker SPEAKER_02
transcript.pyannote[697].start 7677.24471875
transcript.pyannote[697].end 7677.81846875
transcript.pyannote[698].speaker SPEAKER_15
transcript.pyannote[698].start 7677.81846875
transcript.pyannote[698].end 7682.61096875
transcript.pyannote[699].speaker SPEAKER_02
transcript.pyannote[699].start 7682.61096875
transcript.pyannote[699].end 7683.91034375
transcript.pyannote[700].speaker SPEAKER_02
transcript.pyannote[700].start 7684.61909375
transcript.pyannote[700].end 7691.58846875
transcript.pyannote[701].speaker SPEAKER_02
transcript.pyannote[701].start 7692.28034375
transcript.pyannote[701].end 7703.56971875
transcript.pyannote[702].speaker SPEAKER_02
transcript.pyannote[702].start 7704.29534375
transcript.pyannote[702].end 7711.43346875
transcript.pyannote[703].speaker SPEAKER_32
transcript.pyannote[703].start 7712.98596875
transcript.pyannote[703].end 7713.00284375
transcript.pyannote[704].speaker SPEAKER_02
transcript.pyannote[704].start 7713.00284375
transcript.pyannote[704].end 7717.84596875
transcript.pyannote[705].speaker SPEAKER_02
transcript.pyannote[705].start 7719.31409375
transcript.pyannote[705].end 7738.77096875
transcript.pyannote[706].speaker SPEAKER_02
transcript.pyannote[706].start 7739.86784375
transcript.pyannote[706].end 7770.42846875
transcript.pyannote[707].speaker SPEAKER_02
transcript.pyannote[707].start 7771.47471875
transcript.pyannote[707].end 7779.76034375
transcript.pyannote[708].speaker SPEAKER_02
transcript.pyannote[708].start 7780.31721875
transcript.pyannote[708].end 7803.43596875
transcript.pyannote[709].speaker SPEAKER_02
transcript.pyannote[709].start 7804.09409375
transcript.pyannote[709].end 7809.88221875
transcript.pyannote[710].speaker SPEAKER_02
transcript.pyannote[710].start 7810.32096875
transcript.pyannote[710].end 7818.31971875
transcript.pyannote[711].speaker SPEAKER_02
transcript.pyannote[711].start 7819.80471875
transcript.pyannote[711].end 7826.53784375
transcript.pyannote[712].speaker SPEAKER_02
transcript.pyannote[712].start 7827.16221875
transcript.pyannote[712].end 7839.16034375
transcript.pyannote[713].speaker SPEAKER_14
transcript.pyannote[713].start 7840.44284375
transcript.pyannote[713].end 7841.86034375
transcript.pyannote[714].speaker SPEAKER_31
transcript.pyannote[714].start 7845.21846875
transcript.pyannote[714].end 7861.78971875
transcript.pyannote[715].speaker SPEAKER_31
transcript.pyannote[715].start 7862.02596875
transcript.pyannote[715].end 7863.03846875
transcript.pyannote[716].speaker SPEAKER_31
transcript.pyannote[716].start 7863.61221875
transcript.pyannote[716].end 7969.65471875
transcript.pyannote[717].speaker SPEAKER_15
transcript.pyannote[717].start 7972.82721875
transcript.pyannote[717].end 7973.08034375
transcript.pyannote[718].speaker SPEAKER_15
transcript.pyannote[718].start 7973.28284375
transcript.pyannote[718].end 7973.89034375
transcript.pyannote[719].speaker SPEAKER_15
transcript.pyannote[719].start 7974.31221875
transcript.pyannote[719].end 7975.94909375
transcript.pyannote[720].speaker SPEAKER_20
transcript.pyannote[720].start 7980.84284375
transcript.pyannote[720].end 7988.38596875
transcript.pyannote[721].speaker SPEAKER_20
transcript.pyannote[721].start 7988.85846875
transcript.pyannote[721].end 8016.88784375
transcript.pyannote[722].speaker SPEAKER_20
transcript.pyannote[722].start 8017.14096875
transcript.pyannote[722].end 8019.21659375
transcript.pyannote[723].speaker SPEAKER_20
transcript.pyannote[723].start 8019.80721875
transcript.pyannote[723].end 8065.28534375
transcript.pyannote[724].speaker SPEAKER_20
transcript.pyannote[724].start 8065.45409375
transcript.pyannote[724].end 8070.53346875
transcript.pyannote[725].speaker SPEAKER_20
transcript.pyannote[725].start 8070.83721875
transcript.pyannote[725].end 8081.23221875
transcript.pyannote[726].speaker SPEAKER_20
transcript.pyannote[726].start 8081.50221875
transcript.pyannote[726].end 8086.76721875
transcript.pyannote[727].speaker SPEAKER_20
transcript.pyannote[727].start 8087.47596875
transcript.pyannote[727].end 8143.97346875
transcript.pyannote[728].speaker SPEAKER_15
transcript.pyannote[728].start 8143.97346875
transcript.pyannote[728].end 8145.12096875
transcript.pyannote[729].speaker SPEAKER_15
transcript.pyannote[729].start 8147.82096875
transcript.pyannote[729].end 8147.98971875
transcript.pyannote[730].speaker SPEAKER_15
transcript.pyannote[730].start 8148.34409375
transcript.pyannote[730].end 8149.79534375
transcript.pyannote[731].speaker SPEAKER_15
transcript.pyannote[731].start 8151.11159375
transcript.pyannote[731].end 8153.84534375
transcript.pyannote[732].speaker SPEAKER_15
transcript.pyannote[732].start 8154.30096875
transcript.pyannote[732].end 8156.00534375
transcript.pyannote[733].speaker SPEAKER_15
transcript.pyannote[733].start 8158.13159375
transcript.pyannote[733].end 8158.89096875
transcript.pyannote[734].speaker SPEAKER_15
transcript.pyannote[734].start 8160.32534375
transcript.pyannote[734].end 8160.84846875
transcript.pyannote[735].speaker SPEAKER_15
transcript.pyannote[735].start 8161.38846875
transcript.pyannote[735].end 8162.01284375
transcript.pyannote[736].speaker SPEAKER_15
transcript.pyannote[736].start 8163.24471875
transcript.pyannote[736].end 8163.85221875
transcript.pyannote[737].speaker SPEAKER_14
transcript.pyannote[737].start 8163.85221875
transcript.pyannote[737].end 8164.12221875
transcript.pyannote[738].speaker SPEAKER_15
transcript.pyannote[738].start 8164.12221875
transcript.pyannote[738].end 8166.68721875
transcript.pyannote[739].speaker SPEAKER_14
transcript.pyannote[739].start 8166.68721875
transcript.pyannote[739].end 8166.73784375
transcript.pyannote[740].speaker SPEAKER_15
transcript.pyannote[740].start 8166.73784375
transcript.pyannote[740].end 8166.90659375
transcript.pyannote[741].speaker SPEAKER_15
transcript.pyannote[741].start 8824.52534375
transcript.pyannote[741].end 8827.56284375
transcript.pyannote[742].speaker SPEAKER_15
transcript.pyannote[742].start 8828.76096875
transcript.pyannote[742].end 8837.02971875
transcript.pyannote[743].speaker SPEAKER_13
transcript.pyannote[743].start 8832.99659375
transcript.pyannote[743].end 8833.03034375
transcript.pyannote[744].speaker SPEAKER_30
transcript.pyannote[744].start 8833.03034375
transcript.pyannote[744].end 8833.77284375
transcript.pyannote[745].speaker SPEAKER_18
transcript.pyannote[745].start 8837.02971875
transcript.pyannote[745].end 8840.03346875
transcript.pyannote[746].speaker SPEAKER_18
transcript.pyannote[746].start 8840.45534375
transcript.pyannote[746].end 8861.86971875
transcript.pyannote[747].speaker SPEAKER_18
transcript.pyannote[747].start 8862.24096875
transcript.pyannote[747].end 8869.88534375
transcript.pyannote[748].speaker SPEAKER_18
transcript.pyannote[748].start 8870.62784375
transcript.pyannote[748].end 8872.83846875
transcript.pyannote[749].speaker SPEAKER_18
transcript.pyannote[749].start 8873.66534375
transcript.pyannote[749].end 8874.34034375
transcript.pyannote[750].speaker SPEAKER_18
transcript.pyannote[750].start 8874.99846875
transcript.pyannote[750].end 8884.34721875
transcript.pyannote[751].speaker SPEAKER_18
transcript.pyannote[751].start 8884.71846875
transcript.pyannote[751].end 8889.25784375
transcript.pyannote[752].speaker SPEAKER_18
transcript.pyannote[752].start 8889.84846875
transcript.pyannote[752].end 8895.13034375
transcript.pyannote[753].speaker SPEAKER_18
transcript.pyannote[753].start 8895.73784375
transcript.pyannote[753].end 8900.02409375
transcript.pyannote[754].speaker SPEAKER_18
transcript.pyannote[754].start 8900.39534375
transcript.pyannote[754].end 8902.13346875
transcript.pyannote[755].speaker SPEAKER_18
transcript.pyannote[755].start 8902.70721875
transcript.pyannote[755].end 8903.77034375
transcript.pyannote[756].speaker SPEAKER_18
transcript.pyannote[756].start 8904.29346875
transcript.pyannote[756].end 8912.57909375
transcript.pyannote[757].speaker SPEAKER_18
transcript.pyannote[757].start 8912.96721875
transcript.pyannote[757].end 8914.55346875
transcript.pyannote[758].speaker SPEAKER_18
transcript.pyannote[758].start 8915.54909375
transcript.pyannote[758].end 8917.43909375
transcript.pyannote[759].speaker SPEAKER_18
transcript.pyannote[759].start 8917.92846875
transcript.pyannote[759].end 8925.72471875
transcript.pyannote[760].speaker SPEAKER_18
transcript.pyannote[760].start 8926.19721875
transcript.pyannote[760].end 8930.43284375
transcript.pyannote[761].speaker SPEAKER_18
transcript.pyannote[761].start 8932.10346875
transcript.pyannote[761].end 8934.95534375
transcript.pyannote[762].speaker SPEAKER_18
transcript.pyannote[762].start 8935.37721875
transcript.pyannote[762].end 8939.62971875
transcript.pyannote[763].speaker SPEAKER_18
transcript.pyannote[763].start 8939.89971875
transcript.pyannote[763].end 8940.96284375
transcript.pyannote[764].speaker SPEAKER_18
transcript.pyannote[764].start 8941.48596875
transcript.pyannote[764].end 8943.93284375
transcript.pyannote[765].speaker SPEAKER_18
transcript.pyannote[765].start 8944.42221875
transcript.pyannote[765].end 8945.89034375
transcript.pyannote[766].speaker SPEAKER_18
transcript.pyannote[766].start 8947.78034375
transcript.pyannote[766].end 8949.87284375
transcript.pyannote[767].speaker SPEAKER_18
transcript.pyannote[767].start 8949.99096875
transcript.pyannote[767].end 8959.01909375
transcript.pyannote[768].speaker SPEAKER_18
transcript.pyannote[768].start 8959.47471875
transcript.pyannote[768].end 8961.78659375
transcript.pyannote[769].speaker SPEAKER_18
transcript.pyannote[769].start 8962.29284375
transcript.pyannote[769].end 8963.44034375
transcript.pyannote[770].speaker SPEAKER_18
transcript.pyannote[770].start 8964.03096875
transcript.pyannote[770].end 8965.92096875
transcript.pyannote[771].speaker SPEAKER_18
transcript.pyannote[771].start 8966.35971875
transcript.pyannote[771].end 8968.30034375
transcript.pyannote[772].speaker SPEAKER_18
transcript.pyannote[772].start 8969.16096875
transcript.pyannote[772].end 8969.83596875
transcript.pyannote[773].speaker SPEAKER_18
transcript.pyannote[773].start 8971.10159375
transcript.pyannote[773].end 8972.36721875
transcript.pyannote[774].speaker SPEAKER_18
transcript.pyannote[774].start 8973.07596875
transcript.pyannote[774].end 8974.64534375
transcript.pyannote[775].speaker SPEAKER_18
transcript.pyannote[775].start 8975.87721875
transcript.pyannote[775].end 8976.26534375
transcript.pyannote[776].speaker SPEAKER_18
transcript.pyannote[776].start 8976.40034375
transcript.pyannote[776].end 8977.44659375
transcript.pyannote[777].speaker SPEAKER_18
transcript.pyannote[777].start 8978.66159375
transcript.pyannote[777].end 8979.23534375
transcript.pyannote[778].speaker SPEAKER_18
transcript.pyannote[778].start 8979.43784375
transcript.pyannote[778].end 8980.24784375
transcript.pyannote[779].speaker SPEAKER_18
transcript.pyannote[779].start 8982.30659375
transcript.pyannote[779].end 8983.01534375
transcript.pyannote[780].speaker SPEAKER_15
transcript.pyannote[780].start 8988.07784375
transcript.pyannote[780].end 8990.49096875
transcript.pyannote[781].speaker SPEAKER_15
transcript.pyannote[781].start 8990.96346875
transcript.pyannote[781].end 8993.74784375
transcript.pyannote[782].speaker SPEAKER_15
transcript.pyannote[782].start 8994.70971875
transcript.pyannote[782].end 8996.04284375
transcript.pyannote[783].speaker SPEAKER_01
transcript.pyannote[783].start 8999.87346875
transcript.pyannote[783].end 9008.00721875
transcript.pyannote[784].speaker SPEAKER_01
transcript.pyannote[784].start 9008.61471875
transcript.pyannote[784].end 9072.31784375
transcript.pyannote[785].speaker SPEAKER_18
transcript.pyannote[785].start 9075.50721875
transcript.pyannote[785].end 9084.58596875
transcript.pyannote[786].speaker SPEAKER_01
transcript.pyannote[786].start 9084.07971875
transcript.pyannote[786].end 9084.36659375
transcript.pyannote[787].speaker SPEAKER_01
transcript.pyannote[787].start 9084.78846875
transcript.pyannote[787].end 9090.17159375
transcript.pyannote[788].speaker SPEAKER_18
transcript.pyannote[788].start 9086.81346875
transcript.pyannote[788].end 9087.31971875
transcript.pyannote[789].speaker SPEAKER_18
transcript.pyannote[789].start 9089.46284375
transcript.pyannote[789].end 9092.11221875
transcript.pyannote[790].speaker SPEAKER_18
transcript.pyannote[790].start 9092.70284375
transcript.pyannote[790].end 9094.69409375
transcript.pyannote[791].speaker SPEAKER_18
transcript.pyannote[791].start 9095.95971875
transcript.pyannote[791].end 9096.63471875
transcript.pyannote[792].speaker SPEAKER_18
transcript.pyannote[792].start 9097.17471875
transcript.pyannote[792].end 9098.76096875
transcript.pyannote[793].speaker SPEAKER_18
transcript.pyannote[793].start 9099.25034375
transcript.pyannote[793].end 9100.11096875
transcript.pyannote[794].speaker SPEAKER_18
transcript.pyannote[794].start 9101.02221875
transcript.pyannote[794].end 9102.91221875
transcript.pyannote[795].speaker SPEAKER_18
transcript.pyannote[795].start 9103.23284375
transcript.pyannote[795].end 9104.51534375
transcript.pyannote[796].speaker SPEAKER_18
transcript.pyannote[796].start 9104.88659375
transcript.pyannote[796].end 9105.74721875
transcript.pyannote[797].speaker SPEAKER_18
transcript.pyannote[797].start 9106.03409375
transcript.pyannote[797].end 9108.49784375
transcript.pyannote[798].speaker SPEAKER_18
transcript.pyannote[798].start 9108.80159375
transcript.pyannote[798].end 9109.32471875
transcript.pyannote[799].speaker SPEAKER_18
transcript.pyannote[799].start 9109.51034375
transcript.pyannote[799].end 9110.48909375
transcript.pyannote[800].speaker SPEAKER_18
transcript.pyannote[800].start 9110.96159375
transcript.pyannote[800].end 9112.44659375
transcript.pyannote[801].speaker SPEAKER_18
transcript.pyannote[801].start 9112.53096875
transcript.pyannote[801].end 9116.86784375
transcript.pyannote[802].speaker SPEAKER_01
transcript.pyannote[802].start 9117.17159375
transcript.pyannote[802].end 9118.08284375
transcript.pyannote[803].speaker SPEAKER_18
transcript.pyannote[803].start 9117.49221875
transcript.pyannote[803].end 9120.29346875
transcript.pyannote[804].speaker SPEAKER_18
transcript.pyannote[804].start 9121.37346875
transcript.pyannote[804].end 9123.60096875
transcript.pyannote[805].speaker SPEAKER_18
transcript.pyannote[805].start 9124.00596875
transcript.pyannote[805].end 9125.13659375
transcript.pyannote[806].speaker SPEAKER_18
transcript.pyannote[806].start 9125.72721875
transcript.pyannote[806].end 9128.54534375
transcript.pyannote[807].speaker SPEAKER_01
transcript.pyannote[807].start 9129.13596875
transcript.pyannote[807].end 9129.42284375
transcript.pyannote[808].speaker SPEAKER_18
transcript.pyannote[808].start 9129.74346875
transcript.pyannote[808].end 9130.33409375
transcript.pyannote[809].speaker SPEAKER_18
transcript.pyannote[809].start 9130.75596875
transcript.pyannote[809].end 9132.84846875
transcript.pyannote[810].speaker SPEAKER_18
transcript.pyannote[810].start 9133.42221875
transcript.pyannote[810].end 9135.27846875
transcript.pyannote[811].speaker SPEAKER_18
transcript.pyannote[811].start 9135.83534375
transcript.pyannote[811].end 9139.86846875
transcript.pyannote[812].speaker SPEAKER_18
transcript.pyannote[812].start 9140.29034375
transcript.pyannote[812].end 9141.67409375
transcript.pyannote[813].speaker SPEAKER_18
transcript.pyannote[813].start 9142.16346875
transcript.pyannote[813].end 9144.61034375
transcript.pyannote[814].speaker SPEAKER_18
transcript.pyannote[814].start 9145.45409375
transcript.pyannote[814].end 9146.39909375
transcript.pyannote[815].speaker SPEAKER_01
transcript.pyannote[815].start 9146.39909375
transcript.pyannote[815].end 9203.82471875
transcript.pyannote[816].speaker SPEAKER_18
transcript.pyannote[816].start 9204.26346875
transcript.pyannote[816].end 9206.72721875
transcript.pyannote[817].speaker SPEAKER_18
transcript.pyannote[817].start 9206.99721875
transcript.pyannote[817].end 9208.41471875
transcript.pyannote[818].speaker SPEAKER_18
transcript.pyannote[818].start 9211.38471875
transcript.pyannote[818].end 9215.56971875
transcript.pyannote[819].speaker SPEAKER_18
transcript.pyannote[819].start 9216.17721875
transcript.pyannote[819].end 9221.57721875
transcript.pyannote[820].speaker SPEAKER_01
transcript.pyannote[820].start 9221.57721875
transcript.pyannote[820].end 9223.66971875
transcript.pyannote[821].speaker SPEAKER_18
transcript.pyannote[821].start 9222.08346875
transcript.pyannote[821].end 9222.74159375
transcript.pyannote[822].speaker SPEAKER_18
transcript.pyannote[822].start 9223.21409375
transcript.pyannote[822].end 9228.41159375
transcript.pyannote[823].speaker SPEAKER_18
transcript.pyannote[823].start 9229.27221875
transcript.pyannote[823].end 9230.82471875
transcript.pyannote[824].speaker SPEAKER_18
transcript.pyannote[824].start 9231.51659375
transcript.pyannote[824].end 9233.05221875
transcript.pyannote[825].speaker SPEAKER_18
transcript.pyannote[825].start 9233.72721875
transcript.pyannote[825].end 9234.60471875
transcript.pyannote[826].speaker SPEAKER_01
transcript.pyannote[826].start 9235.26284375
transcript.pyannote[826].end 9236.20784375
transcript.pyannote[827].speaker SPEAKER_01
transcript.pyannote[827].start 9236.32596875
transcript.pyannote[827].end 9247.76721875
transcript.pyannote[828].speaker SPEAKER_18
transcript.pyannote[828].start 9247.73346875
transcript.pyannote[828].end 9249.06659375
transcript.pyannote[829].speaker SPEAKER_01
transcript.pyannote[829].start 9249.06659375
transcript.pyannote[829].end 9249.92721875
transcript.pyannote[830].speaker SPEAKER_18
transcript.pyannote[830].start 9249.92721875
transcript.pyannote[830].end 9250.38284375
transcript.pyannote[831].speaker SPEAKER_01
transcript.pyannote[831].start 9250.38284375
transcript.pyannote[831].end 9272.37096875
transcript.pyannote[832].speaker SPEAKER_18
transcript.pyannote[832].start 9272.97846875
transcript.pyannote[832].end 9273.92346875
transcript.pyannote[833].speaker SPEAKER_18
transcript.pyannote[833].start 9274.49721875
transcript.pyannote[833].end 9275.79659375
transcript.pyannote[834].speaker SPEAKER_15
transcript.pyannote[834].start 9277.83846875
transcript.pyannote[834].end 9279.07034375
transcript.pyannote[835].speaker SPEAKER_15
transcript.pyannote[835].start 9280.84221875
transcript.pyannote[835].end 9282.44534375
transcript.pyannote[836].speaker SPEAKER_15
transcript.pyannote[836].start 9283.47471875
transcript.pyannote[836].end 9288.43596875
transcript.pyannote[837].speaker SPEAKER_20
transcript.pyannote[837].start 9288.67221875
transcript.pyannote[837].end 9299.23596875
transcript.pyannote[838].speaker SPEAKER_20
transcript.pyannote[838].start 9300.07971875
transcript.pyannote[838].end 9300.51846875
transcript.pyannote[839].speaker SPEAKER_15
transcript.pyannote[839].start 9302.07096875
transcript.pyannote[839].end 9302.08784375
transcript.pyannote[840].speaker SPEAKER_02
transcript.pyannote[840].start 9302.08784375
transcript.pyannote[840].end 9302.59409375
transcript.pyannote[841].speaker SPEAKER_15
transcript.pyannote[841].start 9302.59409375
transcript.pyannote[841].end 9302.69534375
transcript.pyannote[842].speaker SPEAKER_02
transcript.pyannote[842].start 9302.69534375
transcript.pyannote[842].end 9302.83034375
transcript.pyannote[843].speaker SPEAKER_15
transcript.pyannote[843].start 9302.83034375
transcript.pyannote[843].end 9302.86409375
transcript.pyannote[844].speaker SPEAKER_02
transcript.pyannote[844].start 9302.86409375
transcript.pyannote[844].end 9303.33659375
transcript.pyannote[845].speaker SPEAKER_02
transcript.pyannote[845].start 9305.14221875
transcript.pyannote[845].end 9314.82846875
transcript.pyannote[846].speaker SPEAKER_02
transcript.pyannote[846].start 9315.68909375
transcript.pyannote[846].end 9331.92284375
transcript.pyannote[847].speaker SPEAKER_02
transcript.pyannote[847].start 9332.64846875
transcript.pyannote[847].end 9344.68034375
transcript.pyannote[848].speaker SPEAKER_02
transcript.pyannote[848].start 9345.74346875
transcript.pyannote[848].end 9356.45909375
transcript.pyannote[849].speaker SPEAKER_02
transcript.pyannote[849].start 9357.06659375
transcript.pyannote[849].end 9366.66846875
transcript.pyannote[850].speaker SPEAKER_02
transcript.pyannote[850].start 9367.44471875
transcript.pyannote[850].end 9388.57221875
transcript.pyannote[851].speaker SPEAKER_02
transcript.pyannote[851].start 9388.90971875
transcript.pyannote[851].end 9390.49596875
transcript.pyannote[852].speaker SPEAKER_02
transcript.pyannote[852].start 9390.95159375
transcript.pyannote[852].end 9397.29659375
transcript.pyannote[853].speaker SPEAKER_02
transcript.pyannote[853].start 9398.51159375
transcript.pyannote[853].end 9428.80221875
transcript.pyannote[854].speaker SPEAKER_02
transcript.pyannote[854].start 9429.61221875
transcript.pyannote[854].end 9436.02471875
transcript.pyannote[855].speaker SPEAKER_02
transcript.pyannote[855].start 9436.56471875
transcript.pyannote[855].end 9438.13409375
transcript.pyannote[856].speaker SPEAKER_02
transcript.pyannote[856].start 9438.45471875
transcript.pyannote[856].end 9465.87659375
transcript.pyannote[857].speaker SPEAKER_02
transcript.pyannote[857].start 9466.09596875
transcript.pyannote[857].end 9472.27221875
transcript.pyannote[858].speaker SPEAKER_02
transcript.pyannote[858].start 9473.47034375
transcript.pyannote[858].end 9479.57909375
transcript.pyannote[859].speaker SPEAKER_14
transcript.pyannote[859].start 9483.76409375
transcript.pyannote[859].end 9484.99596875
transcript.pyannote[860].speaker SPEAKER_29
transcript.pyannote[860].start 9491.12159375
transcript.pyannote[860].end 9499.87971875
transcript.pyannote[861].speaker SPEAKER_29
transcript.pyannote[861].start 9500.06534375
transcript.pyannote[861].end 9512.09721875
transcript.pyannote[862].speaker SPEAKER_29
transcript.pyannote[862].start 9512.63721875
transcript.pyannote[862].end 9575.96909375
transcript.pyannote[863].speaker SPEAKER_29
transcript.pyannote[863].start 9576.42471875
transcript.pyannote[863].end 9578.31471875
transcript.pyannote[864].speaker SPEAKER_29
transcript.pyannote[864].start 9578.60159375
transcript.pyannote[864].end 9580.79534375
transcript.pyannote[865].speaker SPEAKER_29
transcript.pyannote[865].start 9581.23409375
transcript.pyannote[865].end 9581.77409375
transcript.pyannote[866].speaker SPEAKER_29
transcript.pyannote[866].start 9581.85846875
transcript.pyannote[866].end 9584.15346875
transcript.pyannote[867].speaker SPEAKER_29
transcript.pyannote[867].start 9584.60909375
transcript.pyannote[867].end 9587.88284375
transcript.pyannote[868].speaker SPEAKER_29
transcript.pyannote[868].start 9588.64221875
transcript.pyannote[868].end 9590.21159375
transcript.pyannote[869].speaker SPEAKER_29
transcript.pyannote[869].start 9591.05534375
transcript.pyannote[869].end 9591.61221875
transcript.pyannote[870].speaker SPEAKER_29
transcript.pyannote[870].start 9592.91159375
transcript.pyannote[870].end 9593.21534375
transcript.pyannote[871].speaker SPEAKER_29
transcript.pyannote[871].start 9594.21096875
transcript.pyannote[871].end 9618.27471875
transcript.pyannote[872].speaker SPEAKER_29
transcript.pyannote[872].start 9618.47721875
transcript.pyannote[872].end 9620.68784375
transcript.pyannote[873].speaker SPEAKER_29
transcript.pyannote[873].start 9620.77221875
transcript.pyannote[873].end 9650.35409375
transcript.pyannote[874].speaker SPEAKER_29
transcript.pyannote[874].start 9650.50596875
transcript.pyannote[874].end 9651.40034375
transcript.pyannote[875].speaker SPEAKER_15
transcript.pyannote[875].start 9653.22284375
transcript.pyannote[875].end 9653.98221875
transcript.pyannote[876].speaker SPEAKER_18
transcript.pyannote[876].start 9657.72846875
transcript.pyannote[876].end 9658.87596875
transcript.pyannote[877].speaker SPEAKER_15
transcript.pyannote[877].start 9660.24284375
transcript.pyannote[877].end 9665.03534375
transcript.pyannote[878].speaker SPEAKER_14
transcript.pyannote[878].start 9660.85034375
transcript.pyannote[878].end 9660.91784375
transcript.pyannote[879].speaker SPEAKER_00
transcript.pyannote[879].start 9660.91784375
transcript.pyannote[879].end 9662.92596875
transcript.pyannote[880].speaker SPEAKER_15
transcript.pyannote[880].start 9665.28846875
transcript.pyannote[880].end 9666.53721875
transcript.pyannote[881].speaker SPEAKER_15
transcript.pyannote[881].start 9668.07284375
transcript.pyannote[881].end 9671.56596875
transcript.pyannote[882].speaker SPEAKER_15
transcript.pyannote[882].start 9673.23659375
transcript.pyannote[882].end 9673.91159375
transcript.pyannote[883].speaker SPEAKER_15
transcript.pyannote[883].start 9676.34159375
transcript.pyannote[883].end 9677.37096875
transcript.pyannote[884].speaker SPEAKER_18
transcript.pyannote[884].start 9681.43784375
transcript.pyannote[884].end 9687.98534375
transcript.pyannote[885].speaker SPEAKER_18
transcript.pyannote[885].start 9688.32284375
transcript.pyannote[885].end 9691.03971875
transcript.pyannote[886].speaker SPEAKER_18
transcript.pyannote[886].start 9691.17471875
transcript.pyannote[886].end 9691.79909375
transcript.pyannote[887].speaker SPEAKER_18
transcript.pyannote[887].start 9692.11971875
transcript.pyannote[887].end 9694.22909375
transcript.pyannote[888].speaker SPEAKER_18
transcript.pyannote[888].start 9694.68471875
transcript.pyannote[888].end 9699.20721875
transcript.pyannote[889].speaker SPEAKER_18
transcript.pyannote[889].start 9699.56159375
transcript.pyannote[889].end 9713.19659375
transcript.pyannote[890].speaker SPEAKER_18
transcript.pyannote[890].start 9715.98096875
transcript.pyannote[890].end 9722.22471875
transcript.pyannote[891].speaker SPEAKER_18
transcript.pyannote[891].start 9723.01784375
transcript.pyannote[891].end 9739.28534375
transcript.pyannote[892].speaker SPEAKER_18
transcript.pyannote[892].start 9739.94346875
transcript.pyannote[892].end 9742.15409375
transcript.pyannote[893].speaker SPEAKER_18
transcript.pyannote[893].start 9742.82909375
transcript.pyannote[893].end 9745.84971875
transcript.pyannote[894].speaker SPEAKER_18
transcript.pyannote[894].start 9746.47409375
transcript.pyannote[894].end 9748.98846875
transcript.pyannote[895].speaker SPEAKER_18
transcript.pyannote[895].start 9750.01784375
transcript.pyannote[895].end 9753.59534375
transcript.pyannote[896].speaker SPEAKER_18
transcript.pyannote[896].start 9754.16909375
transcript.pyannote[896].end 9755.58659375
transcript.pyannote[897].speaker SPEAKER_18
transcript.pyannote[897].start 9756.19409375
transcript.pyannote[897].end 9763.75409375
transcript.pyannote[898].speaker SPEAKER_18
transcript.pyannote[898].start 9764.63159375
transcript.pyannote[898].end 9769.39034375
transcript.pyannote[899].speaker SPEAKER_18
transcript.pyannote[899].start 9769.71096875
transcript.pyannote[899].end 9770.45346875
transcript.pyannote[900].speaker SPEAKER_18
transcript.pyannote[900].start 9771.17909375
transcript.pyannote[900].end 9774.09846875
transcript.pyannote[901].speaker SPEAKER_18
transcript.pyannote[901].start 9774.70596875
transcript.pyannote[901].end 9780.76409375
transcript.pyannote[902].speaker SPEAKER_18
transcript.pyannote[902].start 9781.23659375
transcript.pyannote[902].end 9785.37096875
transcript.pyannote[903].speaker SPEAKER_20
transcript.pyannote[903].start 9792.10409375
transcript.pyannote[903].end 9798.53346875
transcript.pyannote[904].speaker SPEAKER_20
transcript.pyannote[904].start 9798.80346875
transcript.pyannote[904].end 9808.59096875
transcript.pyannote[905].speaker SPEAKER_00
transcript.pyannote[905].start 9806.48159375
transcript.pyannote[905].end 9806.58284375
transcript.pyannote[906].speaker SPEAKER_26
transcript.pyannote[906].start 9806.58284375
transcript.pyannote[906].end 9806.63346875
transcript.pyannote[907].speaker SPEAKER_00
transcript.pyannote[907].start 9806.63346875
transcript.pyannote[907].end 9806.66721875
transcript.pyannote[908].speaker SPEAKER_20
transcript.pyannote[908].start 9809.55284375
transcript.pyannote[908].end 9821.02784375
transcript.pyannote[909].speaker SPEAKER_20
transcript.pyannote[909].start 9821.36534375
transcript.pyannote[909].end 9824.67284375
transcript.pyannote[910].speaker SPEAKER_20
transcript.pyannote[910].start 9825.04409375
transcript.pyannote[910].end 9827.08596875
transcript.pyannote[911].speaker SPEAKER_20
transcript.pyannote[911].start 9827.15346875
transcript.pyannote[911].end 9845.78346875
transcript.pyannote[912].speaker SPEAKER_20
transcript.pyannote[912].start 9846.71159375
transcript.pyannote[912].end 9847.90971875
transcript.pyannote[913].speaker SPEAKER_20
transcript.pyannote[913].start 9848.61846875
transcript.pyannote[913].end 9893.75909375
transcript.pyannote[914].speaker SPEAKER_20
transcript.pyannote[914].start 9894.16409375
transcript.pyannote[914].end 9900.64409375
transcript.pyannote[915].speaker SPEAKER_20
transcript.pyannote[915].start 9901.08284375
transcript.pyannote[915].end 9938.74784375
transcript.pyannote[916].speaker SPEAKER_20
transcript.pyannote[916].start 9939.62534375
transcript.pyannote[916].end 9969.37596875
transcript.pyannote[917].speaker SPEAKER_20
transcript.pyannote[917].start 9971.75534375
transcript.pyannote[917].end 9972.97034375
transcript.pyannote[918].speaker SPEAKER_22
transcript.pyannote[918].start 9972.97034375
transcript.pyannote[918].end 9973.51034375
transcript.pyannote[919].speaker SPEAKER_22
transcript.pyannote[919].start 9974.65784375
transcript.pyannote[919].end 9985.18784375
transcript.pyannote[920].speaker SPEAKER_22
transcript.pyannote[920].start 9985.87971875
transcript.pyannote[920].end 10014.65159375
transcript.pyannote[921].speaker SPEAKER_22
transcript.pyannote[921].start 10015.05659375
transcript.pyannote[921].end 10043.84534375
transcript.pyannote[922].speaker SPEAKER_22
transcript.pyannote[922].start 10044.55409375
transcript.pyannote[922].end 10046.20784375
transcript.pyannote[923].speaker SPEAKER_22
transcript.pyannote[923].start 10047.38909375
transcript.pyannote[923].end 10059.58971875
transcript.pyannote[924].speaker SPEAKER_22
transcript.pyannote[924].start 10062.55971875
transcript.pyannote[924].end 10066.32284375
transcript.pyannote[925].speaker SPEAKER_22
transcript.pyannote[925].start 10066.47471875
transcript.pyannote[925].end 10069.83284375
transcript.pyannote[926].speaker SPEAKER_22
transcript.pyannote[926].start 10069.91721875
transcript.pyannote[926].end 10074.47346875
transcript.pyannote[927].speaker SPEAKER_22
transcript.pyannote[927].start 10075.08096875
transcript.pyannote[927].end 10078.18596875
transcript.pyannote[928].speaker SPEAKER_22
transcript.pyannote[928].start 10078.60784375
transcript.pyannote[928].end 10084.10909375
transcript.pyannote[929].speaker SPEAKER_22
transcript.pyannote[929].start 10084.66596875
transcript.pyannote[929].end 10086.58971875
transcript.pyannote[930].speaker SPEAKER_22
transcript.pyannote[930].start 10086.67409375
transcript.pyannote[930].end 10114.07909375
transcript.pyannote[931].speaker SPEAKER_22
transcript.pyannote[931].start 10114.45034375
transcript.pyannote[931].end 10121.25096875
transcript.pyannote[932].speaker SPEAKER_22
transcript.pyannote[932].start 10122.11159375
transcript.pyannote[932].end 10124.60909375
transcript.pyannote[933].speaker SPEAKER_22
transcript.pyannote[933].start 10125.11534375
transcript.pyannote[933].end 10155.05159375
transcript.pyannote[934].speaker SPEAKER_22
transcript.pyannote[934].start 10155.81096875
transcript.pyannote[934].end 10184.83596875
transcript.pyannote[935].speaker SPEAKER_22
transcript.pyannote[935].start 10190.40471875
transcript.pyannote[935].end 10190.42159375
transcript.pyannote[936].speaker SPEAKER_32
transcript.pyannote[936].start 10190.42159375
transcript.pyannote[936].end 10190.45534375
transcript.pyannote[937].speaker SPEAKER_15
transcript.pyannote[937].start 10190.45534375
transcript.pyannote[937].end 10191.36659375
transcript.pyannote[938].speaker SPEAKER_32
transcript.pyannote[938].start 10191.36659375
transcript.pyannote[938].end 10255.47471875
transcript.pyannote[939].speaker SPEAKER_15
transcript.pyannote[939].start 10191.38346875
transcript.pyannote[939].end 10191.40034375
transcript.pyannote[940].speaker SPEAKER_32
transcript.pyannote[940].start 10255.99784375
transcript.pyannote[940].end 10352.53971875
transcript.pyannote[941].speaker SPEAKER_32
transcript.pyannote[941].start 10353.02909375
transcript.pyannote[941].end 10366.24221875
transcript.pyannote[942].speaker SPEAKER_32
transcript.pyannote[942].start 10366.68096875
transcript.pyannote[942].end 10392.55034375
transcript.pyannote[943].speaker SPEAKER_32
transcript.pyannote[943].start 10393.24221875
transcript.pyannote[943].end 10409.62784375
transcript.pyannote[944].speaker SPEAKER_15
transcript.pyannote[944].start 10411.29846875
transcript.pyannote[944].end 10415.12909375
transcript.pyannote[945].speaker SPEAKER_15
transcript.pyannote[945].start 10415.36534375
transcript.pyannote[945].end 10426.06409375
transcript.pyannote[946].speaker SPEAKER_15
transcript.pyannote[946].start 10426.62096875
transcript.pyannote[946].end 10431.48096875
transcript.pyannote[947].speaker SPEAKER_15
transcript.pyannote[947].start 10432.05471875
transcript.pyannote[947].end 10432.78034375
transcript.pyannote[948].speaker SPEAKER_15
transcript.pyannote[948].start 10433.60721875
transcript.pyannote[948].end 10439.63159375
transcript.pyannote[949].speaker SPEAKER_15
transcript.pyannote[949].start 10439.93534375
transcript.pyannote[949].end 10441.70721875
transcript.pyannote[950].speaker SPEAKER_15
transcript.pyannote[950].start 10441.97721875
transcript.pyannote[950].end 10449.16596875
transcript.pyannote[951].speaker SPEAKER_15
transcript.pyannote[951].start 10449.45284375
transcript.pyannote[951].end 10466.26034375
transcript.pyannote[952].speaker SPEAKER_15
transcript.pyannote[952].start 10467.03659375
transcript.pyannote[952].end 10476.75659375
transcript.pyannote[953].speaker SPEAKER_15
transcript.pyannote[953].start 10477.66784375
transcript.pyannote[953].end 10484.04659375
transcript.pyannote[954].speaker SPEAKER_15
transcript.pyannote[954].start 10484.60346875
transcript.pyannote[954].end 10489.68284375
transcript.pyannote[955].speaker SPEAKER_15
transcript.pyannote[955].start 10491.04971875
transcript.pyannote[955].end 10494.94784375
transcript.pyannote[956].speaker SPEAKER_19
transcript.pyannote[956].start 10493.15909375
transcript.pyannote[956].end 10494.25596875
transcript.pyannote[957].speaker SPEAKER_15
transcript.pyannote[957].start 10495.23471875
transcript.pyannote[957].end 10496.70284375
transcript.pyannote[958].speaker SPEAKER_15
transcript.pyannote[958].start 10497.19221875
transcript.pyannote[958].end 10500.95534375
transcript.pyannote[959].speaker SPEAKER_15
transcript.pyannote[959].start 10501.51221875
transcript.pyannote[959].end 10503.65534375
transcript.pyannote[960].speaker SPEAKER_15
transcript.pyannote[960].start 10505.54534375
transcript.pyannote[960].end 10506.30471875
transcript.pyannote[961].speaker SPEAKER_15
transcript.pyannote[961].start 10508.81909375
transcript.pyannote[961].end 10509.29159375
transcript.pyannote[962].speaker SPEAKER_15
transcript.pyannote[962].start 10510.47284375
transcript.pyannote[962].end 10511.53596875
transcript.pyannote[963].speaker SPEAKER_15
transcript.pyannote[963].start 10511.85659375
transcript.pyannote[963].end 10515.07971875
transcript.pyannote[964].speaker SPEAKER_02
transcript.pyannote[964].start 10514.11784375
transcript.pyannote[964].end 10515.97409375
transcript.pyannote[965].speaker SPEAKER_15
transcript.pyannote[965].start 10515.26534375
transcript.pyannote[965].end 10515.61971875
transcript.pyannote[966].speaker SPEAKER_15
transcript.pyannote[966].start 10516.27784375
transcript.pyannote[966].end 10520.17596875
transcript.pyannote[967].speaker SPEAKER_15
transcript.pyannote[967].start 10520.64846875
transcript.pyannote[967].end 10521.20534375
transcript.pyannote[968].speaker SPEAKER_18
transcript.pyannote[968].start 10521.20534375
transcript.pyannote[968].end 10521.23909375
transcript.pyannote[969].speaker SPEAKER_18
transcript.pyannote[969].start 10521.40784375
transcript.pyannote[969].end 10521.45846875
transcript.pyannote[970].speaker SPEAKER_15
transcript.pyannote[970].start 10521.45846875
transcript.pyannote[970].end 10522.03221875
transcript.pyannote[971].speaker SPEAKER_18
transcript.pyannote[971].start 10522.03221875
transcript.pyannote[971].end 10523.02784375
transcript.pyannote[972].speaker SPEAKER_15
transcript.pyannote[972].start 10523.70284375
transcript.pyannote[972].end 10523.71971875
transcript.pyannote[973].speaker SPEAKER_18
transcript.pyannote[973].start 10523.71971875
transcript.pyannote[973].end 10525.89659375
transcript.pyannote[974].speaker SPEAKER_18
transcript.pyannote[974].start 10526.63909375
transcript.pyannote[974].end 10528.22534375
transcript.pyannote[975].speaker SPEAKER_18
transcript.pyannote[975].start 10529.67659375
transcript.pyannote[975].end 10530.13221875
transcript.pyannote[976].speaker SPEAKER_18
transcript.pyannote[976].start 10531.16159375
transcript.pyannote[976].end 10536.15659375
transcript.pyannote[977].speaker SPEAKER_18
transcript.pyannote[977].start 10536.93284375
transcript.pyannote[977].end 10543.34534375
transcript.pyannote[978].speaker SPEAKER_18
transcript.pyannote[978].start 10544.02034375
transcript.pyannote[978].end 10544.98221875
transcript.pyannote[979].speaker SPEAKER_18
transcript.pyannote[979].start 10545.37034375
transcript.pyannote[979].end 10553.01471875
transcript.pyannote[980].speaker SPEAKER_18
transcript.pyannote[980].start 10553.95971875
transcript.pyannote[980].end 10558.68471875
transcript.pyannote[981].speaker SPEAKER_18
transcript.pyannote[981].start 10559.29221875
transcript.pyannote[981].end 10563.08909375
transcript.pyannote[982].speaker SPEAKER_18
transcript.pyannote[982].start 10563.91596875
transcript.pyannote[982].end 10565.78909375
transcript.pyannote[983].speaker SPEAKER_18
transcript.pyannote[983].start 10566.43034375
transcript.pyannote[983].end 10576.58909375
transcript.pyannote[984].speaker SPEAKER_18
transcript.pyannote[984].start 10577.24721875
transcript.pyannote[984].end 10591.70909375
transcript.pyannote[985].speaker SPEAKER_18
transcript.pyannote[985].start 10592.60346875
transcript.pyannote[985].end 10593.51471875
transcript.pyannote[986].speaker SPEAKER_18
transcript.pyannote[986].start 10593.97034375
transcript.pyannote[986].end 10597.00784375
transcript.pyannote[987].speaker SPEAKER_18
transcript.pyannote[987].start 10597.83471875
transcript.pyannote[987].end 10604.39909375
transcript.pyannote[988].speaker SPEAKER_18
transcript.pyannote[988].start 10605.10784375
transcript.pyannote[988].end 10627.06221875
transcript.pyannote[989].speaker SPEAKER_18
transcript.pyannote[989].start 10627.50096875
transcript.pyannote[989].end 10632.25971875
transcript.pyannote[990].speaker SPEAKER_05
transcript.pyannote[990].start 10632.79971875
transcript.pyannote[990].end 10633.37346875
transcript.pyannote[991].speaker SPEAKER_05
transcript.pyannote[991].start 10638.40221875
transcript.pyannote[991].end 10653.75846875
transcript.pyannote[992].speaker SPEAKER_05
transcript.pyannote[992].start 10653.80909375
transcript.pyannote[992].end 10688.75721875
transcript.pyannote[993].speaker SPEAKER_05
transcript.pyannote[993].start 10689.61784375
transcript.pyannote[993].end 10809.97034375
transcript.pyannote[994].speaker SPEAKER_05
transcript.pyannote[994].start 10810.37534375
transcript.pyannote[994].end 10822.82909375
transcript.pyannote[995].speaker SPEAKER_22
transcript.pyannote[995].start 10824.85409375
transcript.pyannote[995].end 10876.72784375
transcript.pyannote[996].speaker SPEAKER_22
transcript.pyannote[996].start 10877.80784375
transcript.pyannote[996].end 10890.39659375
transcript.pyannote[997].speaker SPEAKER_22
transcript.pyannote[997].start 10890.64971875
transcript.pyannote[997].end 10893.85596875
transcript.pyannote[998].speaker SPEAKER_22
transcript.pyannote[998].start 10894.75034375
transcript.pyannote[998].end 10898.71596875
transcript.pyannote[999].speaker SPEAKER_22
transcript.pyannote[999].start 10899.08721875
transcript.pyannote[999].end 10905.06096875
transcript.pyannote[1000].speaker SPEAKER_22
transcript.pyannote[1000].start 10905.68534375
transcript.pyannote[1000].end 10906.39409375
transcript.pyannote[1001].speaker SPEAKER_22
transcript.pyannote[1001].start 10906.64721875
transcript.pyannote[1001].end 10910.68034375
transcript.pyannote[1002].speaker SPEAKER_22
transcript.pyannote[1002].start 10910.95034375
transcript.pyannote[1002].end 10913.46471875
transcript.pyannote[1003].speaker SPEAKER_22
transcript.pyannote[1003].start 10913.71784375
transcript.pyannote[1003].end 10919.53971875
transcript.pyannote[1004].speaker SPEAKER_22
transcript.pyannote[1004].start 10920.85596875
transcript.pyannote[1004].end 10927.52159375
transcript.pyannote[1005].speaker SPEAKER_22
transcript.pyannote[1005].start 10927.65659375
transcript.pyannote[1005].end 10928.28096875
transcript.pyannote[1006].speaker SPEAKER_22
transcript.pyannote[1006].start 10928.68596875
transcript.pyannote[1006].end 10930.25534375
transcript.pyannote[1007].speaker SPEAKER_22
transcript.pyannote[1007].start 10931.23409375
transcript.pyannote[1007].end 10933.78221875
transcript.pyannote[1008].speaker SPEAKER_22
transcript.pyannote[1008].start 10934.10284375
transcript.pyannote[1008].end 10957.10346875
transcript.pyannote[1009].speaker SPEAKER_22
transcript.pyannote[1009].start 10957.35659375
transcript.pyannote[1009].end 10960.10721875
transcript.pyannote[1010].speaker SPEAKER_22
transcript.pyannote[1010].start 10961.52471875
transcript.pyannote[1010].end 10964.41034375
transcript.pyannote[1011].speaker SPEAKER_22
transcript.pyannote[1011].start 10964.59596875
transcript.pyannote[1011].end 10979.59784375
transcript.pyannote[1012].speaker SPEAKER_22
transcript.pyannote[1012].start 10981.67346875
transcript.pyannote[1012].end 10983.25971875
transcript.pyannote[1013].speaker SPEAKER_02
transcript.pyannote[1013].start 10983.25971875
transcript.pyannote[1013].end 10985.41971875
transcript.pyannote[1014].speaker SPEAKER_14
transcript.pyannote[1014].start 10986.12846875
transcript.pyannote[1014].end 10986.14534375
transcript.pyannote[1015].speaker SPEAKER_02
transcript.pyannote[1015].start 10986.14534375
transcript.pyannote[1015].end 10991.86596875
transcript.pyannote[1016].speaker SPEAKER_14
transcript.pyannote[1016].start 10986.60096875
transcript.pyannote[1016].end 10987.14096875
transcript.pyannote[1017].speaker SPEAKER_02
transcript.pyannote[1017].start 10994.58284375
transcript.pyannote[1017].end 11003.44221875
transcript.pyannote[1018].speaker SPEAKER_02
transcript.pyannote[1018].start 11005.60221875
transcript.pyannote[1018].end 11005.61909375
transcript.pyannote[1019].speaker SPEAKER_22
transcript.pyannote[1019].start 11005.61909375
transcript.pyannote[1019].end 11005.88909375
transcript.pyannote[1020].speaker SPEAKER_02
transcript.pyannote[1020].start 11005.88909375
transcript.pyannote[1020].end 11006.02409375
transcript.pyannote[1021].speaker SPEAKER_22
transcript.pyannote[1021].start 11006.02409375
transcript.pyannote[1021].end 11029.04159375
transcript.pyannote[1022].speaker SPEAKER_02
transcript.pyannote[1022].start 11006.07471875
transcript.pyannote[1022].end 11007.08721875
transcript.pyannote[1023].speaker SPEAKER_02
transcript.pyannote[1023].start 11026.17284375
transcript.pyannote[1023].end 11027.92784375
transcript.pyannote[1024].speaker SPEAKER_02
transcript.pyannote[1024].start 11029.14284375
transcript.pyannote[1024].end 11031.16784375
transcript.pyannote[1025].speaker SPEAKER_22
transcript.pyannote[1025].start 11030.67846875
transcript.pyannote[1025].end 11039.30159375
transcript.pyannote[1026].speaker SPEAKER_02
transcript.pyannote[1026].start 11033.24346875
transcript.pyannote[1026].end 11037.83346875
transcript.pyannote[1027].speaker SPEAKER_02
transcript.pyannote[1027].start 11039.30159375
transcript.pyannote[1027].end 11040.66846875
transcript.pyannote[1028].speaker SPEAKER_22
transcript.pyannote[1028].start 11040.66846875
transcript.pyannote[1028].end 11041.57971875
transcript.pyannote[1029].speaker SPEAKER_02
transcript.pyannote[1029].start 11041.32659375
transcript.pyannote[1029].end 11042.64284375
transcript.pyannote[1030].speaker SPEAKER_22
transcript.pyannote[1030].start 11043.33471875
transcript.pyannote[1030].end 11055.02909375
transcript.pyannote[1031].speaker SPEAKER_02
transcript.pyannote[1031].start 11044.49909375
transcript.pyannote[1031].end 11046.79409375
transcript.pyannote[1032].speaker SPEAKER_02
transcript.pyannote[1032].start 11047.14846875
transcript.pyannote[1032].end 11048.97096875
transcript.pyannote[1033].speaker SPEAKER_06
transcript.pyannote[1033].start 11048.97096875
transcript.pyannote[1033].end 11049.03846875
transcript.pyannote[1034].speaker SPEAKER_02
transcript.pyannote[1034].start 11049.03846875
transcript.pyannote[1034].end 11049.96659375
transcript.pyannote[1035].speaker SPEAKER_06
transcript.pyannote[1035].start 11049.96659375
transcript.pyannote[1035].end 11050.23659375
transcript.pyannote[1036].speaker SPEAKER_02
transcript.pyannote[1036].start 11050.23659375
transcript.pyannote[1036].end 11050.67534375
transcript.pyannote[1037].speaker SPEAKER_06
transcript.pyannote[1037].start 11050.67534375
transcript.pyannote[1037].end 11050.69221875
transcript.pyannote[1038].speaker SPEAKER_02
transcript.pyannote[1038].start 11050.69221875
transcript.pyannote[1038].end 11050.72596875
transcript.pyannote[1039].speaker SPEAKER_06
transcript.pyannote[1039].start 11053.20659375
transcript.pyannote[1039].end 11053.24034375
transcript.pyannote[1040].speaker SPEAKER_02
transcript.pyannote[1040].start 11053.24034375
transcript.pyannote[1040].end 11053.62846875
transcript.pyannote[1041].speaker SPEAKER_06
transcript.pyannote[1041].start 11053.62846875
transcript.pyannote[1041].end 11053.64534375
transcript.pyannote[1042].speaker SPEAKER_02
transcript.pyannote[1042].start 11053.64534375
transcript.pyannote[1042].end 11053.67909375
transcript.pyannote[1043].speaker SPEAKER_06
transcript.pyannote[1043].start 11053.67909375
transcript.pyannote[1043].end 11053.71284375
transcript.pyannote[1044].speaker SPEAKER_02
transcript.pyannote[1044].start 11053.71284375
transcript.pyannote[1044].end 11053.72971875
transcript.pyannote[1045].speaker SPEAKER_02
transcript.pyannote[1045].start 11053.88159375
transcript.pyannote[1045].end 11053.91534375
transcript.pyannote[1046].speaker SPEAKER_06
transcript.pyannote[1046].start 11053.91534375
transcript.pyannote[1046].end 11053.96596875
transcript.pyannote[1047].speaker SPEAKER_02
transcript.pyannote[1047].start 11053.96596875
transcript.pyannote[1047].end 11055.04596875
transcript.pyannote[1048].speaker SPEAKER_06
transcript.pyannote[1048].start 11055.02909375
transcript.pyannote[1048].end 11055.61971875
transcript.pyannote[1049].speaker SPEAKER_02
transcript.pyannote[1049].start 11055.53534375
transcript.pyannote[1049].end 11055.55221875
transcript.pyannote[1050].speaker SPEAKER_22
transcript.pyannote[1050].start 11055.55221875
transcript.pyannote[1050].end 11056.02471875
transcript.pyannote[1051].speaker SPEAKER_02
transcript.pyannote[1051].start 11055.61971875
transcript.pyannote[1051].end 11069.37284375
transcript.pyannote[1052].speaker SPEAKER_06
transcript.pyannote[1052].start 11056.02471875
transcript.pyannote[1052].end 11056.59846875
transcript.pyannote[1053].speaker SPEAKER_22
transcript.pyannote[1053].start 11056.59846875
transcript.pyannote[1053].end 11057.00346875
transcript.pyannote[1054].speaker SPEAKER_22
transcript.pyannote[1054].start 11058.01596875
transcript.pyannote[1054].end 11058.06659375
transcript.pyannote[1055].speaker SPEAKER_06
transcript.pyannote[1055].start 11058.06659375
transcript.pyannote[1055].end 11058.31971875
transcript.pyannote[1056].speaker SPEAKER_22
transcript.pyannote[1056].start 11058.31971875
transcript.pyannote[1056].end 11058.33659375
transcript.pyannote[1057].speaker SPEAKER_02
transcript.pyannote[1057].start 11069.69346875
transcript.pyannote[1057].end 11084.69534375
transcript.pyannote[1058].speaker SPEAKER_02
transcript.pyannote[1058].start 11085.67409375
transcript.pyannote[1058].end 11088.00284375
transcript.pyannote[1059].speaker SPEAKER_02
transcript.pyannote[1059].start 11088.22221875
transcript.pyannote[1059].end 11129.88659375
transcript.pyannote[1060].speaker SPEAKER_22
transcript.pyannote[1060].start 11130.08909375
transcript.pyannote[1060].end 11135.37096875
transcript.pyannote[1061].speaker SPEAKER_22
transcript.pyannote[1061].start 11135.99534375
transcript.pyannote[1061].end 11137.15971875
transcript.pyannote[1062].speaker SPEAKER_22
transcript.pyannote[1062].start 11137.56471875
transcript.pyannote[1062].end 11139.01596875
transcript.pyannote[1063].speaker SPEAKER_22
transcript.pyannote[1063].start 11139.70784375
transcript.pyannote[1063].end 11140.82159375
transcript.pyannote[1064].speaker SPEAKER_22
transcript.pyannote[1064].start 11141.12534375
transcript.pyannote[1064].end 11149.52909375
transcript.pyannote[1065].speaker SPEAKER_15
transcript.pyannote[1065].start 11149.52909375
transcript.pyannote[1065].end 11155.14846875
transcript.pyannote[1066].speaker SPEAKER_22
transcript.pyannote[1066].start 11149.54596875
transcript.pyannote[1066].end 11149.59659375
transcript.pyannote[1067].speaker SPEAKER_22
transcript.pyannote[1067].start 11149.71471875
transcript.pyannote[1067].end 11150.30534375
transcript.pyannote[1068].speaker SPEAKER_22
transcript.pyannote[1068].start 11153.08971875
transcript.pyannote[1068].end 11153.34284375
transcript.pyannote[1069].speaker SPEAKER_17
transcript.pyannote[1069].start 11163.19784375
transcript.pyannote[1069].end 11215.59471875
transcript.pyannote[1070].speaker SPEAKER_17
transcript.pyannote[1070].start 11215.83096875
transcript.pyannote[1070].end 11218.48034375
transcript.pyannote[1071].speaker SPEAKER_17
transcript.pyannote[1071].start 11219.32409375
transcript.pyannote[1071].end 11259.82409375
transcript.pyannote[1072].speaker SPEAKER_32
transcript.pyannote[1072].start 11259.94221875
transcript.pyannote[1072].end 11274.26909375
transcript.pyannote[1073].speaker SPEAKER_03
transcript.pyannote[1073].start 11269.40909375
transcript.pyannote[1073].end 11269.83096875
transcript.pyannote[1074].speaker SPEAKER_32
transcript.pyannote[1074].start 11274.52221875
transcript.pyannote[1074].end 11274.53909375
transcript.pyannote[1075].speaker SPEAKER_17
transcript.pyannote[1075].start 11274.53909375
transcript.pyannote[1075].end 11308.42409375
transcript.pyannote[1076].speaker SPEAKER_32
transcript.pyannote[1076].start 11307.85034375
transcript.pyannote[1076].end 11323.76346875
transcript.pyannote[1077].speaker SPEAKER_17
transcript.pyannote[1077].start 11311.47846875
transcript.pyannote[1077].end 11311.78221875
transcript.pyannote[1078].speaker SPEAKER_17
transcript.pyannote[1078].start 11315.91659375
transcript.pyannote[1078].end 11315.95034375
transcript.pyannote[1079].speaker SPEAKER_26
transcript.pyannote[1079].start 11315.95034375
transcript.pyannote[1079].end 11316.42284375
transcript.pyannote[1080].speaker SPEAKER_32
transcript.pyannote[1080].start 11324.70846875
transcript.pyannote[1080].end 11339.17034375
transcript.pyannote[1081].speaker SPEAKER_17
transcript.pyannote[1081].start 11327.29034375
transcript.pyannote[1081].end 11327.34096875
transcript.pyannote[1082].speaker SPEAKER_19
transcript.pyannote[1082].start 11327.34096875
transcript.pyannote[1082].end 11327.96534375
transcript.pyannote[1083].speaker SPEAKER_17
transcript.pyannote[1083].start 11327.96534375
transcript.pyannote[1083].end 11328.42096875
transcript.pyannote[1084].speaker SPEAKER_17
transcript.pyannote[1084].start 11329.02846875
transcript.pyannote[1084].end 11329.53471875
transcript.pyannote[1085].speaker SPEAKER_17
transcript.pyannote[1085].start 11339.17034375
transcript.pyannote[1085].end 11362.82909375
transcript.pyannote[1086].speaker SPEAKER_32
transcript.pyannote[1086].start 11360.06159375
transcript.pyannote[1086].end 11369.41034375
transcript.pyannote[1087].speaker SPEAKER_17
transcript.pyannote[1087].start 11368.19534375
transcript.pyannote[1087].end 11370.35534375
transcript.pyannote[1088].speaker SPEAKER_32
transcript.pyannote[1088].start 11369.81534375
transcript.pyannote[1088].end 11387.41596875
transcript.pyannote[1089].speaker SPEAKER_02
transcript.pyannote[1089].start 11383.50096875
transcript.pyannote[1089].end 11383.97346875
transcript.pyannote[1090].speaker SPEAKER_00
transcript.pyannote[1090].start 11383.97346875
transcript.pyannote[1090].end 11384.07471875
transcript.pyannote[1091].speaker SPEAKER_32
transcript.pyannote[1091].start 11387.58471875
transcript.pyannote[1091].end 11390.60534375
transcript.pyannote[1092].speaker SPEAKER_32
transcript.pyannote[1092].start 11391.76971875
transcript.pyannote[1092].end 11393.86221875
transcript.pyannote[1093].speaker SPEAKER_32
transcript.pyannote[1093].start 11394.03096875
transcript.pyannote[1093].end 11397.35534375
transcript.pyannote[1094].speaker SPEAKER_32
transcript.pyannote[1094].start 11397.91221875
transcript.pyannote[1094].end 11398.90784375
transcript.pyannote[1095].speaker SPEAKER_32
transcript.pyannote[1095].start 11399.61659375
transcript.pyannote[1095].end 11401.38846875
transcript.pyannote[1096].speaker SPEAKER_20
transcript.pyannote[1096].start 11401.69221875
transcript.pyannote[1096].end 11402.67096875
transcript.pyannote[1097].speaker SPEAKER_20
transcript.pyannote[1097].start 11403.56534375
transcript.pyannote[1097].end 11405.57346875
transcript.pyannote[1098].speaker SPEAKER_20
transcript.pyannote[1098].start 11406.09659375
transcript.pyannote[1098].end 11410.21409375
transcript.pyannote[1099].speaker SPEAKER_20
transcript.pyannote[1099].start 11410.78784375
transcript.pyannote[1099].end 11413.15034375
transcript.pyannote[1100].speaker SPEAKER_20
transcript.pyannote[1100].start 11414.04471875
transcript.pyannote[1100].end 11427.57846875
transcript.pyannote[1101].speaker SPEAKER_20
transcript.pyannote[1101].start 11427.89909375
transcript.pyannote[1101].end 11433.70409375
transcript.pyannote[1102].speaker SPEAKER_32
transcript.pyannote[1102].start 11431.27409375
transcript.pyannote[1102].end 11442.09096875
transcript.pyannote[1103].speaker SPEAKER_20
transcript.pyannote[1103].start 11441.50034375
transcript.pyannote[1103].end 11475.55409375
transcript.pyannote[1104].speaker SPEAKER_26
transcript.pyannote[1104].start 11465.81721875
transcript.pyannote[1104].end 11466.08721875
transcript.pyannote[1105].speaker SPEAKER_20
transcript.pyannote[1105].start 11476.04346875
transcript.pyannote[1105].end 11481.52784375
transcript.pyannote[1106].speaker SPEAKER_20
transcript.pyannote[1106].start 11481.98346875
transcript.pyannote[1106].end 11484.09284375
transcript.pyannote[1107].speaker SPEAKER_20
transcript.pyannote[1107].start 11484.78471875
transcript.pyannote[1107].end 11513.16846875
transcript.pyannote[1108].speaker SPEAKER_20
transcript.pyannote[1108].start 11513.65784375
transcript.pyannote[1108].end 11517.35346875
transcript.pyannote[1109].speaker SPEAKER_20
transcript.pyannote[1109].start 11517.92721875
transcript.pyannote[1109].end 11526.95534375
transcript.pyannote[1110].speaker SPEAKER_20
transcript.pyannote[1110].start 11527.10721875
transcript.pyannote[1110].end 11534.21159375
transcript.pyannote[1111].speaker SPEAKER_20
transcript.pyannote[1111].start 11534.66721875
transcript.pyannote[1111].end 11539.71284375
transcript.pyannote[1112].speaker SPEAKER_20
transcript.pyannote[1112].start 11540.26971875
transcript.pyannote[1112].end 11540.77596875
transcript.pyannote[1113].speaker SPEAKER_20
transcript.pyannote[1113].start 11541.78846875
transcript.pyannote[1113].end 11549.77034375
transcript.pyannote[1114].speaker SPEAKER_20
transcript.pyannote[1114].start 11550.39471875
transcript.pyannote[1114].end 11584.90409375
transcript.pyannote[1115].speaker SPEAKER_20
transcript.pyannote[1115].start 11585.41034375
transcript.pyannote[1115].end 11585.83221875
transcript.pyannote[1116].speaker SPEAKER_20
transcript.pyannote[1116].start 11590.87784375
transcript.pyannote[1116].end 11590.96221875
transcript.pyannote[1117].speaker SPEAKER_16
transcript.pyannote[1117].start 11590.96221875
transcript.pyannote[1117].end 11591.28284375
transcript.pyannote[1118].speaker SPEAKER_20
transcript.pyannote[1118].start 11591.28284375
transcript.pyannote[1118].end 11591.29971875
transcript.pyannote[1119].speaker SPEAKER_16
transcript.pyannote[1119].start 11591.29971875
transcript.pyannote[1119].end 11591.33346875
transcript.pyannote[1120].speaker SPEAKER_15
transcript.pyannote[1120].start 11591.60346875
transcript.pyannote[1120].end 11592.98721875
transcript.pyannote[1121].speaker SPEAKER_16
transcript.pyannote[1121].start 11592.90284375
transcript.pyannote[1121].end 11611.85346875
transcript.pyannote[1122].speaker SPEAKER_16
transcript.pyannote[1122].start 11612.30909375
transcript.pyannote[1122].end 11619.63284375
transcript.pyannote[1123].speaker SPEAKER_16
transcript.pyannote[1123].start 11620.17284375
transcript.pyannote[1123].end 11622.06284375
transcript.pyannote[1124].speaker SPEAKER_16
transcript.pyannote[1124].start 11622.29909375
transcript.pyannote[1124].end 11623.85159375
transcript.pyannote[1125].speaker SPEAKER_16
transcript.pyannote[1125].start 11624.30721875
transcript.pyannote[1125].end 11633.35221875
transcript.pyannote[1126].speaker SPEAKER_16
transcript.pyannote[1126].start 11633.79096875
transcript.pyannote[1126].end 11636.23784375
transcript.pyannote[1127].speaker SPEAKER_16
transcript.pyannote[1127].start 11636.77784375
transcript.pyannote[1127].end 11640.62534375
transcript.pyannote[1128].speaker SPEAKER_16
transcript.pyannote[1128].start 11641.09784375
transcript.pyannote[1128].end 11646.80159375
transcript.pyannote[1129].speaker SPEAKER_16
transcript.pyannote[1129].start 11647.17284375
transcript.pyannote[1129].end 11649.26534375
transcript.pyannote[1130].speaker SPEAKER_16
transcript.pyannote[1130].start 11649.28221875
transcript.pyannote[1130].end 11658.90096875
transcript.pyannote[1131].speaker SPEAKER_16
transcript.pyannote[1131].start 11659.25534375
transcript.pyannote[1131].end 11673.04221875
transcript.pyannote[1132].speaker SPEAKER_16
transcript.pyannote[1132].start 11673.93659375
transcript.pyannote[1132].end 11680.63596875
transcript.pyannote[1133].speaker SPEAKER_16
transcript.pyannote[1133].start 11681.05784375
transcript.pyannote[1133].end 11683.11659375
transcript.pyannote[1134].speaker SPEAKER_16
transcript.pyannote[1134].start 11683.57221875
transcript.pyannote[1134].end 11687.90909375
transcript.pyannote[1135].speaker SPEAKER_16
transcript.pyannote[1135].start 11688.90471875
transcript.pyannote[1135].end 11701.00409375
transcript.pyannote[1136].speaker SPEAKER_16
transcript.pyannote[1136].start 11701.72971875
transcript.pyannote[1136].end 11703.51846875
transcript.pyannote[1137].speaker SPEAKER_16
transcript.pyannote[1137].start 11703.82221875
transcript.pyannote[1137].end 11723.43096875
transcript.pyannote[1138].speaker SPEAKER_15
transcript.pyannote[1138].start 11725.65846875
transcript.pyannote[1138].end 11736.03659375
transcript.pyannote[1139].speaker SPEAKER_15
transcript.pyannote[1139].start 11737.89284375
transcript.pyannote[1139].end 11738.02784375
transcript.pyannote[1140].speaker SPEAKER_14
transcript.pyannote[1140].start 11738.02784375
transcript.pyannote[1140].end 11738.68596875
transcript.pyannote[1141].speaker SPEAKER_15
transcript.pyannote[1141].start 11738.68596875
transcript.pyannote[1141].end 11738.70284375
transcript.pyannote[1142].speaker SPEAKER_32
transcript.pyannote[1142].start 11743.78221875
transcript.pyannote[1142].end 11752.37159375
transcript.pyannote[1143].speaker SPEAKER_32
transcript.pyannote[1143].start 11752.65846875
transcript.pyannote[1143].end 11755.02096875
transcript.pyannote[1144].speaker SPEAKER_32
transcript.pyannote[1144].start 11755.45971875
transcript.pyannote[1144].end 11759.72909375
transcript.pyannote[1145].speaker SPEAKER_17
transcript.pyannote[1145].start 11761.31534375
transcript.pyannote[1145].end 11764.26846875
transcript.pyannote[1146].speaker SPEAKER_17
transcript.pyannote[1146].start 11764.40346875
transcript.pyannote[1146].end 11776.13159375
transcript.pyannote[1147].speaker SPEAKER_32
transcript.pyannote[1147].start 11774.19096875
transcript.pyannote[1147].end 11774.61284375
transcript.pyannote[1148].speaker SPEAKER_32
transcript.pyannote[1148].start 11776.31721875
transcript.pyannote[1148].end 11777.41409375
transcript.pyannote[1149].speaker SPEAKER_17
transcript.pyannote[1149].start 11776.63784375
transcript.pyannote[1149].end 11777.44784375
transcript.pyannote[1150].speaker SPEAKER_17
transcript.pyannote[1150].start 11777.81909375
transcript.pyannote[1150].end 11780.21534375
transcript.pyannote[1151].speaker SPEAKER_17
transcript.pyannote[1151].start 11780.78909375
transcript.pyannote[1151].end 11780.97471875
transcript.pyannote[1152].speaker SPEAKER_22
transcript.pyannote[1152].start 11780.97471875
transcript.pyannote[1152].end 11783.43846875
transcript.pyannote[1153].speaker SPEAKER_22
transcript.pyannote[1153].start 11784.26534375
transcript.pyannote[1153].end 11790.12096875
transcript.pyannote[1154].speaker SPEAKER_17
transcript.pyannote[1154].start 11790.12096875
transcript.pyannote[1154].end 11790.15471875
transcript.pyannote[1155].speaker SPEAKER_26
transcript.pyannote[1155].start 11790.15471875
transcript.pyannote[1155].end 11790.18846875
transcript.pyannote[1156].speaker SPEAKER_17
transcript.pyannote[1156].start 11790.18846875
transcript.pyannote[1156].end 11790.28971875
transcript.pyannote[1157].speaker SPEAKER_26
transcript.pyannote[1157].start 11790.28971875
transcript.pyannote[1157].end 11790.42471875
transcript.pyannote[1158].speaker SPEAKER_17
transcript.pyannote[1158].start 11790.42471875
transcript.pyannote[1158].end 11790.52596875
transcript.pyannote[1159].speaker SPEAKER_26
transcript.pyannote[1159].start 11790.52596875
transcript.pyannote[1159].end 11790.64409375
transcript.pyannote[1160].speaker SPEAKER_17
transcript.pyannote[1160].start 11790.64409375
transcript.pyannote[1160].end 11801.93346875
transcript.pyannote[1161].speaker SPEAKER_22
transcript.pyannote[1161].start 11791.26846875
transcript.pyannote[1161].end 11792.14596875
transcript.pyannote[1162].speaker SPEAKER_22
transcript.pyannote[1162].start 11798.77784375
transcript.pyannote[1162].end 11800.09409375
transcript.pyannote[1163].speaker SPEAKER_22
transcript.pyannote[1163].start 11801.44409375
transcript.pyannote[1163].end 11801.46096875
transcript.pyannote[1164].speaker SPEAKER_22
transcript.pyannote[1164].start 11801.49471875
transcript.pyannote[1164].end 11801.54534375
transcript.pyannote[1165].speaker SPEAKER_22
transcript.pyannote[1165].start 11802.22034375
transcript.pyannote[1165].end 11812.17659375
transcript.pyannote[1166].speaker SPEAKER_22
transcript.pyannote[1166].start 11812.76721875
transcript.pyannote[1166].end 11815.21409375
transcript.pyannote[1167].speaker SPEAKER_22
transcript.pyannote[1167].start 11815.55159375
transcript.pyannote[1167].end 11820.56346875
transcript.pyannote[1168].speaker SPEAKER_22
transcript.pyannote[1168].start 11821.12034375
transcript.pyannote[1168].end 11823.48284375
transcript.pyannote[1169].speaker SPEAKER_22
transcript.pyannote[1169].start 11824.25909375
transcript.pyannote[1169].end 11826.75659375
transcript.pyannote[1170].speaker SPEAKER_22
transcript.pyannote[1170].start 11827.31346875
transcript.pyannote[1170].end 11835.02534375
transcript.pyannote[1171].speaker SPEAKER_22
transcript.pyannote[1171].start 11835.32909375
transcript.pyannote[1171].end 11837.05034375
transcript.pyannote[1172].speaker SPEAKER_22
transcript.pyannote[1172].start 11837.67471875
transcript.pyannote[1172].end 11850.44909375
transcript.pyannote[1173].speaker SPEAKER_02
transcript.pyannote[1173].start 11849.31846875
transcript.pyannote[1173].end 11853.97596875
transcript.pyannote[1174].speaker SPEAKER_32
transcript.pyannote[1174].start 11850.44909375
transcript.pyannote[1174].end 11850.82034375
transcript.pyannote[1175].speaker SPEAKER_22
transcript.pyannote[1175].start 11850.82034375
transcript.pyannote[1175].end 11850.97221875
transcript.pyannote[1176].speaker SPEAKER_32
transcript.pyannote[1176].start 11850.97221875
transcript.pyannote[1176].end 11851.30971875
transcript.pyannote[1177].speaker SPEAKER_22
transcript.pyannote[1177].start 11851.30971875
transcript.pyannote[1177].end 11851.91721875
transcript.pyannote[1178].speaker SPEAKER_22
transcript.pyannote[1178].start 11852.65971875
transcript.pyannote[1178].end 11859.44346875
transcript.pyannote[1179].speaker SPEAKER_32
transcript.pyannote[1179].start 11853.97596875
transcript.pyannote[1179].end 11853.99284375
transcript.pyannote[1180].speaker SPEAKER_02
transcript.pyannote[1180].start 11853.99284375
transcript.pyannote[1180].end 11854.27971875
transcript.pyannote[1181].speaker SPEAKER_32
transcript.pyannote[1181].start 11854.27971875
transcript.pyannote[1181].end 11855.30909375
transcript.pyannote[1182].speaker SPEAKER_02
transcript.pyannote[1182].start 11855.30909375
transcript.pyannote[1182].end 11855.32596875
transcript.pyannote[1183].speaker SPEAKER_03
transcript.pyannote[1183].start 11855.32596875
transcript.pyannote[1183].end 11855.34284375
transcript.pyannote[1184].speaker SPEAKER_32
transcript.pyannote[1184].start 11858.81909375
transcript.pyannote[1184].end 11862.07596875
transcript.pyannote[1185].speaker SPEAKER_22
transcript.pyannote[1185].start 11859.51096875
transcript.pyannote[1185].end 11865.83909375
transcript.pyannote[1186].speaker SPEAKER_32
transcript.pyannote[1186].start 11863.34159375
transcript.pyannote[1186].end 11870.46284375
transcript.pyannote[1187].speaker SPEAKER_17
transcript.pyannote[1187].start 11871.25596875
transcript.pyannote[1187].end 11871.45846875
transcript.pyannote[1188].speaker SPEAKER_32
transcript.pyannote[1188].start 11871.45846875
transcript.pyannote[1188].end 11871.47534375
transcript.pyannote[1189].speaker SPEAKER_17
transcript.pyannote[1189].start 11871.47534375
transcript.pyannote[1189].end 11871.59346875
transcript.pyannote[1190].speaker SPEAKER_32
transcript.pyannote[1190].start 11871.59346875
transcript.pyannote[1190].end 11871.61034375
transcript.pyannote[1191].speaker SPEAKER_17
transcript.pyannote[1191].start 11871.61034375
transcript.pyannote[1191].end 11871.62721875
transcript.pyannote[1192].speaker SPEAKER_32
transcript.pyannote[1192].start 11871.62721875
transcript.pyannote[1192].end 11871.84659375
transcript.pyannote[1193].speaker SPEAKER_17
transcript.pyannote[1193].start 11871.84659375
transcript.pyannote[1193].end 11876.09909375
transcript.pyannote[1194].speaker SPEAKER_32
transcript.pyannote[1194].start 11874.09096875
transcript.pyannote[1194].end 11887.37159375
transcript.pyannote[1195].speaker SPEAKER_20
transcript.pyannote[1195].start 11885.17784375
transcript.pyannote[1195].end 11886.35909375
transcript.pyannote[1196].speaker SPEAKER_20
transcript.pyannote[1196].start 11887.57409375
transcript.pyannote[1196].end 11888.02971875
transcript.pyannote[1197].speaker SPEAKER_32
transcript.pyannote[1197].start 11887.69221875
transcript.pyannote[1197].end 11889.46409375
transcript.pyannote[1198].speaker SPEAKER_20
transcript.pyannote[1198].start 11889.53159375
transcript.pyannote[1198].end 11895.64034375
transcript.pyannote[1199].speaker SPEAKER_32
transcript.pyannote[1199].start 11890.02096875
transcript.pyannote[1199].end 11890.22346875
transcript.pyannote[1200].speaker SPEAKER_20
transcript.pyannote[1200].start 11896.14659375
transcript.pyannote[1200].end 11896.63596875
transcript.pyannote[1201].speaker SPEAKER_20
transcript.pyannote[1201].start 11896.97346875
transcript.pyannote[1201].end 11909.86596875
transcript.pyannote[1202].speaker SPEAKER_20
transcript.pyannote[1202].start 11910.13596875
transcript.pyannote[1202].end 11919.38346875
transcript.pyannote[1203].speaker SPEAKER_02
transcript.pyannote[1203].start 11918.47221875
transcript.pyannote[1203].end 11922.96096875
transcript.pyannote[1204].speaker SPEAKER_20
transcript.pyannote[1204].start 11920.31159375
transcript.pyannote[1204].end 11931.39846875
transcript.pyannote[1205].speaker SPEAKER_32
transcript.pyannote[1205].start 11932.15784375
transcript.pyannote[1205].end 11935.34721875
transcript.pyannote[1206].speaker SPEAKER_32
transcript.pyannote[1206].start 11937.03471875
transcript.pyannote[1206].end 11941.27034375
transcript.pyannote[1207].speaker SPEAKER_32
transcript.pyannote[1207].start 11941.37159375
transcript.pyannote[1207].end 11944.15596875
transcript.pyannote[1208].speaker SPEAKER_32
transcript.pyannote[1208].start 11944.78034375
transcript.pyannote[1208].end 11945.87721875
transcript.pyannote[1209].speaker SPEAKER_32
transcript.pyannote[1209].start 11946.34971875
transcript.pyannote[1209].end 11948.76284375
transcript.pyannote[1210].speaker SPEAKER_32
transcript.pyannote[1210].start 11949.45471875
transcript.pyannote[1210].end 11951.56409375
transcript.pyannote[1211].speaker SPEAKER_17
transcript.pyannote[1211].start 11951.56409375
transcript.pyannote[1211].end 12004.99034375
transcript.pyannote[1212].speaker SPEAKER_32
transcript.pyannote[1212].start 11951.58096875
transcript.pyannote[1212].end 11952.17159375
transcript.pyannote[1213].speaker SPEAKER_00
transcript.pyannote[1213].start 11969.16471875
transcript.pyannote[1213].end 11969.48534375
transcript.pyannote[1214].speaker SPEAKER_26
transcript.pyannote[1214].start 11970.85221875
transcript.pyannote[1214].end 11970.86909375
transcript.pyannote[1215].speaker SPEAKER_00
transcript.pyannote[1215].start 11970.86909375
transcript.pyannote[1215].end 11970.95346875
transcript.pyannote[1216].speaker SPEAKER_17
transcript.pyannote[1216].start 12005.88471875
transcript.pyannote[1216].end 12046.89096875
transcript.pyannote[1217].speaker SPEAKER_15
transcript.pyannote[1217].start 12049.77659375
transcript.pyannote[1217].end 12052.42596875
transcript.pyannote[1218].speaker SPEAKER_15
transcript.pyannote[1218].start 12054.14721875
transcript.pyannote[1218].end 12058.29846875
transcript.pyannote[1219].speaker SPEAKER_15
transcript.pyannote[1219].start 12059.53034375
transcript.pyannote[1219].end 12062.16284375
transcript.pyannote[1220].speaker SPEAKER_14
transcript.pyannote[1220].start 12062.16284375
transcript.pyannote[1220].end 12062.21346875
transcript.pyannote[1221].speaker SPEAKER_15
transcript.pyannote[1221].start 12062.21346875
transcript.pyannote[1221].end 12062.23034375
transcript.pyannote[1222].speaker SPEAKER_14
transcript.pyannote[1222].start 12062.23034375
transcript.pyannote[1222].end 12062.43284375
transcript.pyannote[1223].speaker SPEAKER_15
transcript.pyannote[1223].start 12062.43284375
transcript.pyannote[1223].end 12062.44971875
transcript.pyannote[1224].speaker SPEAKER_04
transcript.pyannote[1224].start 12062.97284375
transcript.pyannote[1224].end 12063.05721875
transcript.pyannote[1225].speaker SPEAKER_17
transcript.pyannote[1225].start 12069.18284375
transcript.pyannote[1225].end 12082.12596875
transcript.pyannote[1226].speaker SPEAKER_17
transcript.pyannote[1226].start 12082.44659375
transcript.pyannote[1226].end 12103.27034375
transcript.pyannote[1227].speaker SPEAKER_17
transcript.pyannote[1227].start 12107.30346875
transcript.pyannote[1227].end 12116.29784375
transcript.pyannote[1228].speaker SPEAKER_17
transcript.pyannote[1228].start 12116.48346875
transcript.pyannote[1228].end 12131.08034375
transcript.pyannote[1229].speaker SPEAKER_15
transcript.pyannote[1229].start 12136.76721875
transcript.pyannote[1229].end 12138.53909375
transcript.pyannote[1230].speaker SPEAKER_15
transcript.pyannote[1230].start 12139.23096875
transcript.pyannote[1230].end 12146.14971875
transcript.pyannote[1231].speaker SPEAKER_15
transcript.pyannote[1231].start 12147.06096875
transcript.pyannote[1231].end 12151.63409375
transcript.pyannote[1232].speaker SPEAKER_17
transcript.pyannote[1232].start 12151.63409375
transcript.pyannote[1232].end 12151.65096875
transcript.pyannote[1233].speaker SPEAKER_17
transcript.pyannote[1233].start 12154.97534375
transcript.pyannote[1233].end 12155.02596875
transcript.pyannote[1234].speaker SPEAKER_17
transcript.pyannote[1234].start 12156.96659375
transcript.pyannote[1234].end 12160.25721875
transcript.pyannote[1235].speaker SPEAKER_15
transcript.pyannote[1235].start 12158.63721875
transcript.pyannote[1235].end 12159.56534375
transcript.pyannote[1236].speaker SPEAKER_17
transcript.pyannote[1236].start 12162.40034375
transcript.pyannote[1236].end 12162.97409375
transcript.pyannote[1237].speaker SPEAKER_15
transcript.pyannote[1237].start 12162.97409375
transcript.pyannote[1237].end 12163.07534375
transcript.pyannote[1238].speaker SPEAKER_17
transcript.pyannote[1238].start 12163.07534375
transcript.pyannote[1238].end 12163.15971875
transcript.pyannote[1239].speaker SPEAKER_15
transcript.pyannote[1239].start 12163.15971875
transcript.pyannote[1239].end 12163.17659375
transcript.pyannote[1240].speaker SPEAKER_15
transcript.pyannote[1240].start 12165.70784375
transcript.pyannote[1240].end 12165.84284375
transcript.pyannote[1241].speaker SPEAKER_32
transcript.pyannote[1241].start 12176.38971875
transcript.pyannote[1241].end 12179.10659375
transcript.pyannote[1242].speaker SPEAKER_32
transcript.pyannote[1242].start 12179.61284375
transcript.pyannote[1242].end 12182.51534375
transcript.pyannote[1243].speaker SPEAKER_32
transcript.pyannote[1243].start 12183.67971875
transcript.pyannote[1243].end 12184.45596875
transcript.pyannote[1244].speaker SPEAKER_32
transcript.pyannote[1244].start 12193.75409375
transcript.pyannote[1244].end 12193.95659375
transcript.pyannote[1245].speaker SPEAKER_32
transcript.pyannote[1245].start 12193.97346875
transcript.pyannote[1245].end 12194.02409375
transcript.pyannote[1246].speaker SPEAKER_32
transcript.pyannote[1246].start 12194.17596875
transcript.pyannote[1246].end 12196.06596875
transcript.pyannote[1247].speaker SPEAKER_32
transcript.pyannote[1247].start 12196.20096875
transcript.pyannote[1247].end 12197.87159375
transcript.pyannote[1248].speaker SPEAKER_32
transcript.pyannote[1248].start 12198.54659375
transcript.pyannote[1248].end 12199.33971875
transcript.pyannote[1249].speaker SPEAKER_32
transcript.pyannote[1249].start 12199.60971875
transcript.pyannote[1249].end 12200.48721875
transcript.pyannote[1250].speaker SPEAKER_32
transcript.pyannote[1250].start 12201.43221875
transcript.pyannote[1250].end 12202.15784375
transcript.pyannote[1251].speaker SPEAKER_32
transcript.pyannote[1251].start 12202.54596875
transcript.pyannote[1251].end 12205.04346875
transcript.pyannote[1252].speaker SPEAKER_32
transcript.pyannote[1252].start 12205.41471875
transcript.pyannote[1252].end 12206.95034375
transcript.pyannote[1253].speaker SPEAKER_32
transcript.pyannote[1253].start 12208.53659375
transcript.pyannote[1253].end 12214.39221875
transcript.pyannote[1254].speaker SPEAKER_32
transcript.pyannote[1254].start 12215.18534375
transcript.pyannote[1254].end 12217.49721875
transcript.pyannote[1255].speaker SPEAKER_32
transcript.pyannote[1255].start 12217.90221875
transcript.pyannote[1255].end 12224.51721875
transcript.pyannote[1256].speaker SPEAKER_19
transcript.pyannote[1256].start 12228.33096875
transcript.pyannote[1256].end 12228.93846875
transcript.pyannote[1257].speaker SPEAKER_19
transcript.pyannote[1257].start 12230.01846875
transcript.pyannote[1257].end 12241.37534375
transcript.pyannote[1258].speaker SPEAKER_19
transcript.pyannote[1258].start 12242.16846875
transcript.pyannote[1258].end 12245.84721875
transcript.pyannote[1259].speaker SPEAKER_19
transcript.pyannote[1259].start 12245.96534375
transcript.pyannote[1259].end 12246.70784375
transcript.pyannote[1260].speaker SPEAKER_19
transcript.pyannote[1260].start 12247.58534375
transcript.pyannote[1260].end 12248.31096875
transcript.pyannote[1261].speaker SPEAKER_19
transcript.pyannote[1261].start 12250.96034375
transcript.pyannote[1261].end 12252.96846875
transcript.pyannote[1262].speaker SPEAKER_19
transcript.pyannote[1262].start 12253.71096875
transcript.pyannote[1262].end 12257.23784375
transcript.pyannote[1263].speaker SPEAKER_19
transcript.pyannote[1263].start 12257.79471875
transcript.pyannote[1263].end 12266.02971875
transcript.pyannote[1264].speaker SPEAKER_19
transcript.pyannote[1264].start 12266.56971875
transcript.pyannote[1264].end 12268.99971875
transcript.pyannote[1265].speaker SPEAKER_19
transcript.pyannote[1265].start 12269.33721875
transcript.pyannote[1265].end 12273.37034375
transcript.pyannote[1266].speaker SPEAKER_19
transcript.pyannote[1266].start 12273.70784375
transcript.pyannote[1266].end 12276.62721875
transcript.pyannote[1267].speaker SPEAKER_18
transcript.pyannote[1267].start 12276.05346875
transcript.pyannote[1267].end 12276.22221875
transcript.pyannote[1268].speaker SPEAKER_19
transcript.pyannote[1268].start 12277.13346875
transcript.pyannote[1268].end 12280.81221875
transcript.pyannote[1269].speaker SPEAKER_19
transcript.pyannote[1269].start 12281.52096875
transcript.pyannote[1269].end 12284.74409375
transcript.pyannote[1270].speaker SPEAKER_19
transcript.pyannote[1270].start 12285.60471875
transcript.pyannote[1270].end 12289.26659375
transcript.pyannote[1271].speaker SPEAKER_19
transcript.pyannote[1271].start 12289.75596875
transcript.pyannote[1271].end 12291.27471875
transcript.pyannote[1272].speaker SPEAKER_19
transcript.pyannote[1272].start 12291.57846875
transcript.pyannote[1272].end 12293.83971875
transcript.pyannote[1273].speaker SPEAKER_19
transcript.pyannote[1273].start 12293.97471875
transcript.pyannote[1273].end 12296.60721875
transcript.pyannote[1274].speaker SPEAKER_19
transcript.pyannote[1274].start 12296.96159375
transcript.pyannote[1274].end 12304.48784375
transcript.pyannote[1275].speaker SPEAKER_19
transcript.pyannote[1275].start 12304.63971875
transcript.pyannote[1275].end 12307.71096875
transcript.pyannote[1276].speaker SPEAKER_19
transcript.pyannote[1276].start 12308.38596875
transcript.pyannote[1276].end 12310.30971875
transcript.pyannote[1277].speaker SPEAKER_19
transcript.pyannote[1277].start 12310.56284375
transcript.pyannote[1277].end 12318.76409375
transcript.pyannote[1278].speaker SPEAKER_15
transcript.pyannote[1278].start 12318.76409375
transcript.pyannote[1278].end 12318.88221875
transcript.pyannote[1279].speaker SPEAKER_19
transcript.pyannote[1279].start 12318.88221875
transcript.pyannote[1279].end 12318.89909375
transcript.pyannote[1280].speaker SPEAKER_19
transcript.pyannote[1280].start 12320.09721875
transcript.pyannote[1280].end 12320.13096875
transcript.pyannote[1281].speaker SPEAKER_15
transcript.pyannote[1281].start 12320.13096875
transcript.pyannote[1281].end 12335.16659375
transcript.pyannote[1282].speaker SPEAKER_15
transcript.pyannote[1282].start 12337.49534375
transcript.pyannote[1282].end 12339.84096875
transcript.pyannote[1283].speaker SPEAKER_15
transcript.pyannote[1283].start 12345.81471875
transcript.pyannote[1283].end 12346.91159375
transcript.pyannote[1284].speaker SPEAKER_14
transcript.pyannote[1284].start 12348.86909375
transcript.pyannote[1284].end 12348.88596875
transcript.pyannote[1285].speaker SPEAKER_15
transcript.pyannote[1285].start 12348.88596875
transcript.pyannote[1285].end 12352.36221875
transcript.pyannote[1286].speaker SPEAKER_15
transcript.pyannote[1286].start 12354.06659375
transcript.pyannote[1286].end 12356.69909375
transcript.pyannote[1287].speaker SPEAKER_15
transcript.pyannote[1287].start 12359.61846875
transcript.pyannote[1287].end 12361.87971875
transcript.pyannote[1288].speaker SPEAKER_00
transcript.pyannote[1288].start 12361.55909375
transcript.pyannote[1288].end 12361.59284375
transcript.pyannote[1289].speaker SPEAKER_26
transcript.pyannote[1289].start 12361.59284375
transcript.pyannote[1289].end 12361.84596875
transcript.pyannote[1290].speaker SPEAKER_26
transcript.pyannote[1290].start 12361.87971875
transcript.pyannote[1290].end 12363.16221875
transcript.pyannote[1291].speaker SPEAKER_00
transcript.pyannote[1291].start 12363.16221875
transcript.pyannote[1291].end 12363.24659375
transcript.pyannote[1292].speaker SPEAKER_15
transcript.pyannote[1292].start 12363.28034375
transcript.pyannote[1292].end 12363.80346875
transcript.pyannote[1293].speaker SPEAKER_15
transcript.pyannote[1293].start 12365.10284375
transcript.pyannote[1293].end 12369.00096875
transcript.pyannote[1294].speaker SPEAKER_15
transcript.pyannote[1294].start 12370.16534375
transcript.pyannote[1294].end 12388.50846875
transcript.pyannote[1295].speaker SPEAKER_15
transcript.pyannote[1295].start 12390.82034375
transcript.pyannote[1295].end 12395.71409375
transcript.pyannote[1296].speaker SPEAKER_28
transcript.pyannote[1296].start 12395.35971875
transcript.pyannote[1296].end 12395.69721875
transcript.pyannote[1297].speaker SPEAKER_28
transcript.pyannote[1297].start 12395.71409375
transcript.pyannote[1297].end 12395.89971875
transcript.pyannote[1298].speaker SPEAKER_15
transcript.pyannote[1298].start 12397.46909375
transcript.pyannote[1298].end 12398.00909375
transcript.pyannote[1299].speaker SPEAKER_02
transcript.pyannote[1299].start 12404.50596875
transcript.pyannote[1299].end 12405.58596875
transcript.pyannote[1300].speaker SPEAKER_02
transcript.pyannote[1300].start 12406.27784375
transcript.pyannote[1300].end 12427.70909375
transcript.pyannote[1301].speaker SPEAKER_02
transcript.pyannote[1301].start 12428.11409375
transcript.pyannote[1301].end 12433.12596875
transcript.pyannote[1302].speaker SPEAKER_02
transcript.pyannote[1302].start 12433.21034375
transcript.pyannote[1302].end 12454.45596875
transcript.pyannote[1303].speaker SPEAKER_02
transcript.pyannote[1303].start 12454.91159375
transcript.pyannote[1303].end 12459.14721875
transcript.pyannote[1304].speaker SPEAKER_15
transcript.pyannote[1304].start 12469.52534375
transcript.pyannote[1304].end 12473.45721875
transcript.pyannote[1305].speaker SPEAKER_15
transcript.pyannote[1305].start 12474.68909375
transcript.pyannote[1305].end 12475.60034375
transcript.pyannote[1306].speaker SPEAKER_15
transcript.pyannote[1306].start 12475.83659375
transcript.pyannote[1306].end 12476.34284375
transcript.pyannote[1307].speaker SPEAKER_15
transcript.pyannote[1307].start 12477.11909375
transcript.pyannote[1307].end 12477.45659375
transcript.pyannote[1308].speaker SPEAKER_15
transcript.pyannote[1308].start 12478.11471875
transcript.pyannote[1308].end 12479.09346875
transcript.pyannote[1309].speaker SPEAKER_14
transcript.pyannote[1309].start 12479.09346875
transcript.pyannote[1309].end 12479.11034375
transcript.pyannote[1310].speaker SPEAKER_00
transcript.pyannote[1310].start 12501.97596875
transcript.pyannote[1310].end 12502.49909375
transcript.pyannote[1311].speaker SPEAKER_00
transcript.pyannote[1311].start 12502.97159375
transcript.pyannote[1311].end 12503.03909375
transcript.pyannote[1312].speaker SPEAKER_02
transcript.pyannote[1312].start 12504.00096875
transcript.pyannote[1312].end 12507.34221875
transcript.pyannote[1313].speaker SPEAKER_27
transcript.pyannote[1313].start 12508.13534375
transcript.pyannote[1313].end 12511.56096875
transcript.pyannote[1314].speaker SPEAKER_02
transcript.pyannote[1314].start 12512.96159375
transcript.pyannote[1314].end 12514.07534375
transcript.pyannote[1315].speaker SPEAKER_12
transcript.pyannote[1315].start 12517.61909375
transcript.pyannote[1315].end 12520.18409375
transcript.pyannote[1316].speaker SPEAKER_12
transcript.pyannote[1316].start 12521.16284375
transcript.pyannote[1316].end 12521.33159375
transcript.pyannote[1317].speaker SPEAKER_12
transcript.pyannote[1317].start 12523.74471875
transcript.pyannote[1317].end 12523.96409375
transcript.pyannote[1318].speaker SPEAKER_15
transcript.pyannote[1318].start 12524.95971875
transcript.pyannote[1318].end 12524.97659375
transcript.pyannote[1319].speaker SPEAKER_15
transcript.pyannote[1319].start 12524.99346875
transcript.pyannote[1319].end 12532.09784375
transcript.pyannote[1320].speaker SPEAKER_15
transcript.pyannote[1320].start 12536.78909375
transcript.pyannote[1320].end 12538.67909375
transcript.pyannote[1321].speaker SPEAKER_15
transcript.pyannote[1321].start 12539.64096875
transcript.pyannote[1321].end 12542.29034375
transcript.pyannote[1322].speaker SPEAKER_15
transcript.pyannote[1322].start 12542.71221875
transcript.pyannote[1322].end 12543.06659375
transcript.pyannote[1323].speaker SPEAKER_14
transcript.pyannote[1323].start 12543.06659375
transcript.pyannote[1323].end 12545.00721875
transcript.pyannote[1324].speaker SPEAKER_27
transcript.pyannote[1324].start 12546.25596875
transcript.pyannote[1324].end 12556.24596875
transcript.pyannote[1325].speaker SPEAKER_26
transcript.pyannote[1325].start 12551.38596875
transcript.pyannote[1325].end 12552.38159375
transcript.pyannote[1326].speaker SPEAKER_26
transcript.pyannote[1326].start 12552.49971875
transcript.pyannote[1326].end 12552.93846875
transcript.pyannote[1327].speaker SPEAKER_12
transcript.pyannote[1327].start 12552.93846875
transcript.pyannote[1327].end 12554.96346875
transcript.pyannote[1328].speaker SPEAKER_12
transcript.pyannote[1328].start 12556.24596875
transcript.pyannote[1328].end 12556.41471875
transcript.pyannote[1329].speaker SPEAKER_14
transcript.pyannote[1329].start 12556.83659375
transcript.pyannote[1329].end 12558.06846875
transcript.pyannote[1330].speaker SPEAKER_27
transcript.pyannote[1330].start 12557.46096875
transcript.pyannote[1330].end 12557.71409375
transcript.pyannote[1331].speaker SPEAKER_27
transcript.pyannote[1331].start 12558.06846875
transcript.pyannote[1331].end 12563.70471875
transcript.pyannote[1332].speaker SPEAKER_15
transcript.pyannote[1332].start 12562.13534375
transcript.pyannote[1332].end 12562.47284375
transcript.pyannote[1333].speaker SPEAKER_15
transcript.pyannote[1333].start 12564.07596875
transcript.pyannote[1333].end 12576.86721875
transcript.pyannote[1334].speaker SPEAKER_15
transcript.pyannote[1334].start 12576.96846875
transcript.pyannote[1334].end 12578.80784375
transcript.pyannote[1335].speaker SPEAKER_15
transcript.pyannote[1335].start 12581.01846875
transcript.pyannote[1335].end 12584.42721875
transcript.pyannote[1336].speaker SPEAKER_15
transcript.pyannote[1336].start 12585.33846875
transcript.pyannote[1336].end 12585.82784375
transcript.pyannote[1337].speaker SPEAKER_15
transcript.pyannote[1337].start 12585.96284375
transcript.pyannote[1337].end 12586.04721875
transcript.pyannote[1338].speaker SPEAKER_15
transcript.pyannote[1338].start 12586.40159375
transcript.pyannote[1338].end 12586.77284375
transcript.pyannote[1339].speaker SPEAKER_15
transcript.pyannote[1339].start 12588.96659375
transcript.pyannote[1339].end 12590.99159375
transcript.pyannote[1340].speaker SPEAKER_32
transcript.pyannote[1340].start 12590.77221875
transcript.pyannote[1340].end 12594.50159375
transcript.pyannote[1341].speaker SPEAKER_00
transcript.pyannote[1341].start 12591.43034375
transcript.pyannote[1341].end 12591.56534375
transcript.pyannote[1342].speaker SPEAKER_15
transcript.pyannote[1342].start 12591.56534375
transcript.pyannote[1342].end 12591.61596875
transcript.pyannote[1343].speaker SPEAKER_00
transcript.pyannote[1343].start 12591.61596875
transcript.pyannote[1343].end 12591.86909375
transcript.pyannote[1344].speaker SPEAKER_32
transcript.pyannote[1344].start 12595.09221875
transcript.pyannote[1344].end 12598.53471875
transcript.pyannote[1345].speaker SPEAKER_15
transcript.pyannote[1345].start 12595.44659375
transcript.pyannote[1345].end 12596.37471875
transcript.pyannote[1346].speaker SPEAKER_32
transcript.pyannote[1346].start 12599.27721875
transcript.pyannote[1346].end 12600.15471875
transcript.pyannote[1347].speaker SPEAKER_32
transcript.pyannote[1347].start 12600.61034375
transcript.pyannote[1347].end 12602.85471875
transcript.pyannote[1348].speaker SPEAKER_15
transcript.pyannote[1348].start 12601.69034375
transcript.pyannote[1348].end 12603.56346875
transcript.pyannote[1349].speaker SPEAKER_32
transcript.pyannote[1349].start 12602.95596875
transcript.pyannote[1349].end 12605.60534375
transcript.pyannote[1350].speaker SPEAKER_32
transcript.pyannote[1350].start 12606.41534375
transcript.pyannote[1350].end 12606.88784375
transcript.pyannote[1351].speaker SPEAKER_32
transcript.pyannote[1351].start 12607.22534375
transcript.pyannote[1351].end 12608.30534375
transcript.pyannote[1352].speaker SPEAKER_32
transcript.pyannote[1352].start 12608.77784375
transcript.pyannote[1352].end 12609.06471875
transcript.pyannote[1353].speaker SPEAKER_02
transcript.pyannote[1353].start 12609.06471875
transcript.pyannote[1353].end 12611.95034375
transcript.pyannote[1354].speaker SPEAKER_27
transcript.pyannote[1354].start 12610.60034375
transcript.pyannote[1354].end 12610.75221875
transcript.pyannote[1355].speaker SPEAKER_32
transcript.pyannote[1355].start 12610.75221875
transcript.pyannote[1355].end 12611.24159375
transcript.pyannote[1356].speaker SPEAKER_27
transcript.pyannote[1356].start 12611.24159375
transcript.pyannote[1356].end 12611.51159375
transcript.pyannote[1357].speaker SPEAKER_32
transcript.pyannote[1357].start 12611.51159375
transcript.pyannote[1357].end 12611.93346875
transcript.pyannote[1358].speaker SPEAKER_32
transcript.pyannote[1358].start 12611.95034375
transcript.pyannote[1358].end 12611.96721875
transcript.pyannote[1359].speaker SPEAKER_02
transcript.pyannote[1359].start 12611.96721875
transcript.pyannote[1359].end 12613.50284375
transcript.pyannote[1360].speaker SPEAKER_32
transcript.pyannote[1360].start 12612.55784375
transcript.pyannote[1360].end 12612.62534375
transcript.pyannote[1361].speaker SPEAKER_27
transcript.pyannote[1361].start 12612.62534375
transcript.pyannote[1361].end 12613.18221875
transcript.pyannote[1362].speaker SPEAKER_15
transcript.pyannote[1362].start 12613.18221875
transcript.pyannote[1362].end 12613.21596875
transcript.pyannote[1363].speaker SPEAKER_27
transcript.pyannote[1363].start 12613.21596875
transcript.pyannote[1363].end 12613.36784375
transcript.pyannote[1364].speaker SPEAKER_15
transcript.pyannote[1364].start 12613.36784375
transcript.pyannote[1364].end 12613.38471875
transcript.pyannote[1365].speaker SPEAKER_15
transcript.pyannote[1365].start 12613.50284375
transcript.pyannote[1365].end 12613.53659375
transcript.pyannote[1366].speaker SPEAKER_27
transcript.pyannote[1366].start 12614.51534375
transcript.pyannote[1366].end 12614.68409375
transcript.pyannote[1367].speaker SPEAKER_27
transcript.pyannote[1367].start 12615.30846875
transcript.pyannote[1367].end 12617.92409375
transcript.pyannote[1368].speaker SPEAKER_15
transcript.pyannote[1368].start 12617.78909375
transcript.pyannote[1368].end 12626.17596875
transcript.pyannote[1369].speaker SPEAKER_02
transcript.pyannote[1369].start 12628.31909375
transcript.pyannote[1369].end 12630.88409375
transcript.pyannote[1370].speaker SPEAKER_02
transcript.pyannote[1370].start 12631.72784375
transcript.pyannote[1370].end 12632.95971875
transcript.pyannote[1371].speaker SPEAKER_15
transcript.pyannote[1371].start 12635.06909375
transcript.pyannote[1371].end 12636.25034375
transcript.pyannote[1372].speaker SPEAKER_02
transcript.pyannote[1372].start 12637.39784375
transcript.pyannote[1372].end 12637.83659375
transcript.pyannote[1373].speaker SPEAKER_02
transcript.pyannote[1373].start 12639.23721875
transcript.pyannote[1373].end 12702.38346875
transcript.pyannote[1374].speaker SPEAKER_02
transcript.pyannote[1374].start 12703.04159375
transcript.pyannote[1374].end 12708.42471875
transcript.pyannote[1375].speaker SPEAKER_02
transcript.pyannote[1375].start 12709.03221875
transcript.pyannote[1375].end 12710.50034375
transcript.pyannote[1376].speaker SPEAKER_01
transcript.pyannote[1376].start 12711.79971875
transcript.pyannote[1376].end 12806.09721875
transcript.pyannote[1377].speaker SPEAKER_14
transcript.pyannote[1377].start 12812.83034375
transcript.pyannote[1377].end 12814.39971875
transcript.pyannote[1378].speaker SPEAKER_28
transcript.pyannote[1378].start 12815.83409375
transcript.pyannote[1378].end 12820.93034375
transcript.pyannote[1379].speaker SPEAKER_28
transcript.pyannote[1379].start 12820.96409375
transcript.pyannote[1379].end 12821.03159375
transcript.pyannote[1380].speaker SPEAKER_15
transcript.pyannote[1380].start 12822.43221875
transcript.pyannote[1380].end 12829.89096875
transcript.pyannote[1381].speaker SPEAKER_15
transcript.pyannote[1381].start 12830.32971875
transcript.pyannote[1381].end 12836.20221875
transcript.pyannote[1382].speaker SPEAKER_15
transcript.pyannote[1382].start 12841.18034375
transcript.pyannote[1382].end 12842.42909375
transcript.pyannote[1383].speaker SPEAKER_15
transcript.pyannote[1383].start 12844.04909375
transcript.pyannote[1383].end 12845.34846875
transcript.pyannote[1384].speaker SPEAKER_15
transcript.pyannote[1384].start 12847.49159375
transcript.pyannote[1384].end 12848.14971875
transcript.pyannote[1385].speaker SPEAKER_19
transcript.pyannote[1385].start 12848.14971875
transcript.pyannote[1385].end 12848.18346875
transcript.pyannote[1386].speaker SPEAKER_02
transcript.pyannote[1386].start 12849.51659375
transcript.pyannote[1386].end 12850.98471875
transcript.pyannote[1387].speaker SPEAKER_02
transcript.pyannote[1387].start 12851.00159375
transcript.pyannote[1387].end 12851.01846875
transcript.pyannote[1388].speaker SPEAKER_15
transcript.pyannote[1388].start 12862.08846875
transcript.pyannote[1388].end 12863.45534375
transcript.pyannote[1389].speaker SPEAKER_15
transcript.pyannote[1389].start 12865.29471875
transcript.pyannote[1389].end 12866.96534375
transcript.pyannote[1390].speaker SPEAKER_32
transcript.pyannote[1390].start 12866.96534375
transcript.pyannote[1390].end 12866.99909375
transcript.pyannote[1391].speaker SPEAKER_32
transcript.pyannote[1391].start 12867.10034375
transcript.pyannote[1391].end 12869.58096875
transcript.pyannote[1392].speaker SPEAKER_15
transcript.pyannote[1392].start 12868.55159375
transcript.pyannote[1392].end 12880.71846875
transcript.pyannote[1393].speaker SPEAKER_15
transcript.pyannote[1393].start 12881.68034375
transcript.pyannote[1393].end 12884.34659375
transcript.pyannote[1394].speaker SPEAKER_03
transcript.pyannote[1394].start 12884.29596875
transcript.pyannote[1394].end 12884.32971875
transcript.pyannote[1395].speaker SPEAKER_03
transcript.pyannote[1395].start 12884.34659375
transcript.pyannote[1395].end 12885.51096875
transcript.pyannote[1396].speaker SPEAKER_15
transcript.pyannote[1396].start 12886.32096875
transcript.pyannote[1396].end 12887.29971875
transcript.pyannote[1397].speaker SPEAKER_03
transcript.pyannote[1397].start 12887.50221875
transcript.pyannote[1397].end 12888.43034375
transcript.pyannote[1398].speaker SPEAKER_03
transcript.pyannote[1398].start 12889.24034375
transcript.pyannote[1398].end 12896.07471875
transcript.pyannote[1399].speaker SPEAKER_03
transcript.pyannote[1399].start 12896.69909375
transcript.pyannote[1399].end 12901.62659375
transcript.pyannote[1400].speaker SPEAKER_03
transcript.pyannote[1400].start 12902.35221875
transcript.pyannote[1400].end 12903.78659375
transcript.pyannote[1401].speaker SPEAKER_03
transcript.pyannote[1401].start 12904.14096875
transcript.pyannote[1401].end 12907.27971875
transcript.pyannote[1402].speaker SPEAKER_03
transcript.pyannote[1402].start 12907.56659375
transcript.pyannote[1402].end 12971.15159375
transcript.pyannote[1403].speaker SPEAKER_03
transcript.pyannote[1403].start 12971.25284375
transcript.pyannote[1403].end 13002.72471875
transcript.pyannote[1404].speaker SPEAKER_03
transcript.pyannote[1404].start 13003.24784375
transcript.pyannote[1404].end 13017.79409375
transcript.pyannote[1405].speaker SPEAKER_03
transcript.pyannote[1405].start 13018.77284375
transcript.pyannote[1405].end 13031.73284375
transcript.pyannote[1406].speaker SPEAKER_03
transcript.pyannote[1406].start 13032.12096875
transcript.pyannote[1406].end 13036.84596875
transcript.pyannote[1407].speaker SPEAKER_03
transcript.pyannote[1407].start 13037.14971875
transcript.pyannote[1407].end 13038.49971875
transcript.pyannote[1408].speaker SPEAKER_15
transcript.pyannote[1408].start 13037.79096875
transcript.pyannote[1408].end 13039.30971875
transcript.pyannote[1409].speaker SPEAKER_15
transcript.pyannote[1409].start 13040.59221875
transcript.pyannote[1409].end 13050.24471875
transcript.pyannote[1410].speaker SPEAKER_28
transcript.pyannote[1410].start 13051.84784375
transcript.pyannote[1410].end 13053.82221875
transcript.pyannote[1411].speaker SPEAKER_15
transcript.pyannote[1411].start 13053.65346875
transcript.pyannote[1411].end 13063.47471875
transcript.pyannote[1412].speaker SPEAKER_15
transcript.pyannote[1412].start 13064.04846875
transcript.pyannote[1412].end 13065.38159375
transcript.pyannote[1413].speaker SPEAKER_15
transcript.pyannote[1413].start 13066.00596875
transcript.pyannote[1413].end 13068.31784375
transcript.pyannote[1414].speaker SPEAKER_15
transcript.pyannote[1414].start 13071.15284375
transcript.pyannote[1414].end 13072.80659375
transcript.pyannote[1415].speaker SPEAKER_15
transcript.pyannote[1415].start 13073.41409375
transcript.pyannote[1415].end 13088.43284375
transcript.pyannote[1416].speaker SPEAKER_32
transcript.pyannote[1416].start 13084.58534375
transcript.pyannote[1416].end 13087.38659375
transcript.pyannote[1417].speaker SPEAKER_15
transcript.pyannote[1417].start 13088.63534375
transcript.pyannote[1417].end 13092.68534375
transcript.pyannote[1418].speaker SPEAKER_00
transcript.pyannote[1418].start 13088.90534375
transcript.pyannote[1418].end 13088.95596875
transcript.pyannote[1419].speaker SPEAKER_26
transcript.pyannote[1419].start 13088.95596875
transcript.pyannote[1419].end 13088.97284375
transcript.pyannote[1420].speaker SPEAKER_02
transcript.pyannote[1420].start 13088.97284375
transcript.pyannote[1420].end 13090.30596875
transcript.pyannote[1421].speaker SPEAKER_26
transcript.pyannote[1421].start 13091.28471875
transcript.pyannote[1421].end 13091.40284375
transcript.pyannote[1422].speaker SPEAKER_02
transcript.pyannote[1422].start 13091.40284375
transcript.pyannote[1422].end 13092.11159375
transcript.pyannote[1423].speaker SPEAKER_15
transcript.pyannote[1423].start 13093.19159375
transcript.pyannote[1423].end 13096.36409375
transcript.pyannote[1424].speaker SPEAKER_02
transcript.pyannote[1424].start 13096.78596875
transcript.pyannote[1424].end 13105.02096875
transcript.pyannote[1425].speaker SPEAKER_15
transcript.pyannote[1425].start 13102.84409375
transcript.pyannote[1425].end 13105.89846875
transcript.pyannote[1426].speaker SPEAKER_32
transcript.pyannote[1426].start 13105.02096875
transcript.pyannote[1426].end 13105.03784375
transcript.pyannote[1427].speaker SPEAKER_02
transcript.pyannote[1427].start 13105.59471875
transcript.pyannote[1427].end 13105.96596875
transcript.pyannote[1428].speaker SPEAKER_32
transcript.pyannote[1428].start 13105.89846875
transcript.pyannote[1428].end 13105.91534375
transcript.pyannote[1429].speaker SPEAKER_32
transcript.pyannote[1429].start 13105.96596875
transcript.pyannote[1429].end 13118.26784375
transcript.pyannote[1430].speaker SPEAKER_15
transcript.pyannote[1430].start 13110.74159375
transcript.pyannote[1430].end 13114.96034375
transcript.pyannote[1431].speaker SPEAKER_32
transcript.pyannote[1431].start 13118.74034375
transcript.pyannote[1431].end 13119.51659375
transcript.pyannote[1432].speaker SPEAKER_15
transcript.pyannote[1432].start 13119.01034375
transcript.pyannote[1432].end 13119.28034375
transcript.pyannote[1433].speaker SPEAKER_15
transcript.pyannote[1433].start 13119.48284375
transcript.pyannote[1433].end 13119.49971875
transcript.pyannote[1434].speaker SPEAKER_15
transcript.pyannote[1434].start 13119.51659375
transcript.pyannote[1434].end 13123.11096875
transcript.pyannote[1435].speaker SPEAKER_15
transcript.pyannote[1435].start 13123.61721875
transcript.pyannote[1435].end 13123.93784375
transcript.pyannote[1436].speaker SPEAKER_15
transcript.pyannote[1436].start 13124.52846875
transcript.pyannote[1436].end 13126.35096875
transcript.pyannote[1437].speaker SPEAKER_15
transcript.pyannote[1437].start 13126.46909375
transcript.pyannote[1437].end 13127.19471875
transcript.pyannote[1438].speaker SPEAKER_15
transcript.pyannote[1438].start 13128.17346875
transcript.pyannote[1438].end 13135.86846875
transcript.pyannote[1439].speaker SPEAKER_32
transcript.pyannote[1439].start 13134.75471875
transcript.pyannote[1439].end 13139.71596875
transcript.pyannote[1440].speaker SPEAKER_32
transcript.pyannote[1440].start 13140.17159375
transcript.pyannote[1440].end 13140.45846875
transcript.pyannote[1441].speaker SPEAKER_32
transcript.pyannote[1441].start 13141.01534375
transcript.pyannote[1441].end 13153.62096875
transcript.pyannote[1442].speaker SPEAKER_00
transcript.pyannote[1442].start 13146.73596875
transcript.pyannote[1442].end 13146.75284375
transcript.pyannote[1443].speaker SPEAKER_26
transcript.pyannote[1443].start 13146.75284375
transcript.pyannote[1443].end 13147.46159375
transcript.pyannote[1444].speaker SPEAKER_32
transcript.pyannote[1444].start 13154.54909375
transcript.pyannote[1444].end 13165.66971875
transcript.pyannote[1445].speaker SPEAKER_26
transcript.pyannote[1445].start 13154.58284375
transcript.pyannote[1445].end 13154.97096875
transcript.pyannote[1446].speaker SPEAKER_00
transcript.pyannote[1446].start 13154.97096875
transcript.pyannote[1446].end 13155.51096875
transcript.pyannote[1447].speaker SPEAKER_00
transcript.pyannote[1447].start 13155.71346875
transcript.pyannote[1447].end 13156.03409375
transcript.pyannote[1448].speaker SPEAKER_26
transcript.pyannote[1448].start 13156.03409375
transcript.pyannote[1448].end 13157.31659375
transcript.pyannote[1449].speaker SPEAKER_03
transcript.pyannote[1449].start 13157.31659375
transcript.pyannote[1449].end 13157.63721875
transcript.pyannote[1450].speaker SPEAKER_26
transcript.pyannote[1450].start 13157.63721875
transcript.pyannote[1450].end 13157.67096875
transcript.pyannote[1451].speaker SPEAKER_03
transcript.pyannote[1451].start 13162.58159375
transcript.pyannote[1451].end 13162.63221875
transcript.pyannote[1452].speaker SPEAKER_02
transcript.pyannote[1452].start 13162.63221875
transcript.pyannote[1452].end 13164.31971875
transcript.pyannote[1453].speaker SPEAKER_00
transcript.pyannote[1453].start 13164.31971875
transcript.pyannote[1453].end 13164.62346875
transcript.pyannote[1454].speaker SPEAKER_32
transcript.pyannote[1454].start 13167.17159375
transcript.pyannote[1454].end 13169.83784375
transcript.pyannote[1455].speaker SPEAKER_20
transcript.pyannote[1455].start 13167.72846875
transcript.pyannote[1455].end 13205.27534375
transcript.pyannote[1456].speaker SPEAKER_20
transcript.pyannote[1456].start 13206.08534375
transcript.pyannote[1456].end 13241.33721875
transcript.pyannote[1457].speaker SPEAKER_04
transcript.pyannote[1457].start 13274.71596875
transcript.pyannote[1457].end 13276.40346875
transcript.pyannote[1458].speaker SPEAKER_26
transcript.pyannote[1458].start 13276.40346875
transcript.pyannote[1458].end 13278.24284375
transcript.pyannote[1459].speaker SPEAKER_26
transcript.pyannote[1459].start 13278.27659375
transcript.pyannote[1459].end 13278.31034375
transcript.pyannote[1460].speaker SPEAKER_32
transcript.pyannote[1460].start 13282.27596875
transcript.pyannote[1460].end 13287.45659375
transcript.pyannote[1461].speaker SPEAKER_32
transcript.pyannote[1461].start 13288.06409375
transcript.pyannote[1461].end 13296.24846875
transcript.pyannote[1462].speaker SPEAKER_32
transcript.pyannote[1462].start 13298.72909375
transcript.pyannote[1462].end 13300.12971875
transcript.pyannote[1463].speaker SPEAKER_32
transcript.pyannote[1463].start 13302.44159375
transcript.pyannote[1463].end 13305.02346875
transcript.pyannote[1464].speaker SPEAKER_32
transcript.pyannote[1464].start 13305.25971875
transcript.pyannote[1464].end 13310.06909375
transcript.pyannote[1465].speaker SPEAKER_32
transcript.pyannote[1465].start 13312.44846875
transcript.pyannote[1465].end 13313.74784375
transcript.pyannote[1466].speaker SPEAKER_02
transcript.pyannote[1466].start 13316.36346875
transcript.pyannote[1466].end 13322.82659375
transcript.pyannote[1467].speaker SPEAKER_02
transcript.pyannote[1467].start 13323.34971875
transcript.pyannote[1467].end 13324.96971875
transcript.pyannote[1468].speaker SPEAKER_03
transcript.pyannote[1468].start 13324.96971875
transcript.pyannote[1468].end 13345.54034375
transcript.pyannote[1469].speaker SPEAKER_32
transcript.pyannote[1469].start 13343.07659375
transcript.pyannote[1469].end 13344.07221875
transcript.pyannote[1470].speaker SPEAKER_32
transcript.pyannote[1470].start 13344.08909375
transcript.pyannote[1470].end 13344.10596875
transcript.pyannote[1471].speaker SPEAKER_32
transcript.pyannote[1471].start 13344.12284375
transcript.pyannote[1471].end 13345.21971875
transcript.pyannote[1472].speaker SPEAKER_32
transcript.pyannote[1472].start 13345.54034375
transcript.pyannote[1472].end 13352.39159375
transcript.pyannote[1473].speaker SPEAKER_03
transcript.pyannote[1473].start 13349.20221875
transcript.pyannote[1473].end 13350.97409375
transcript.pyannote[1474].speaker SPEAKER_28
transcript.pyannote[1474].start 13355.34471875
transcript.pyannote[1474].end 13355.53034375
transcript.pyannote[1475].speaker SPEAKER_28
transcript.pyannote[1475].start 13356.20534375
transcript.pyannote[1475].end 13392.79034375
transcript.pyannote[1476].speaker SPEAKER_28
transcript.pyannote[1476].start 13393.27971875
transcript.pyannote[1476].end 13412.39909375
transcript.pyannote[1477].speaker SPEAKER_32
transcript.pyannote[1477].start 13411.31909375
transcript.pyannote[1477].end 13413.19221875
transcript.pyannote[1478].speaker SPEAKER_32
transcript.pyannote[1478].start 13413.47909375
transcript.pyannote[1478].end 13415.50409375
transcript.pyannote[1479].speaker SPEAKER_27
transcript.pyannote[1479].start 13450.40159375
transcript.pyannote[1479].end 13454.02971875
transcript.pyannote[1480].speaker SPEAKER_20
transcript.pyannote[1480].start 13456.76346875
transcript.pyannote[1480].end 13460.35784375
transcript.pyannote[1481].speaker SPEAKER_20
transcript.pyannote[1481].start 13460.89784375
transcript.pyannote[1481].end 13463.56409375
transcript.pyannote[1482].speaker SPEAKER_20
transcript.pyannote[1482].start 13463.95221875
transcript.pyannote[1482].end 13464.52596875
transcript.pyannote[1483].speaker SPEAKER_20
transcript.pyannote[1483].start 13465.08284375
transcript.pyannote[1483].end 13477.09784375
transcript.pyannote[1484].speaker SPEAKER_20
transcript.pyannote[1484].start 13477.48596875
transcript.pyannote[1484].end 13532.38034375
transcript.pyannote[1485].speaker SPEAKER_20
transcript.pyannote[1485].start 13533.02159375
transcript.pyannote[1485].end 13536.48096875
transcript.pyannote[1486].speaker SPEAKER_20
transcript.pyannote[1486].start 13536.86909375
transcript.pyannote[1486].end 13545.50909375
transcript.pyannote[1487].speaker SPEAKER_20
transcript.pyannote[1487].start 13545.82971875
transcript.pyannote[1487].end 13562.82284375
transcript.pyannote[1488].speaker SPEAKER_15
transcript.pyannote[1488].start 13568.15534375
transcript.pyannote[1488].end 13573.53846875
transcript.pyannote[1489].speaker SPEAKER_15
transcript.pyannote[1489].start 13574.02784375
transcript.pyannote[1489].end 13578.41534375
transcript.pyannote[1490].speaker SPEAKER_15
transcript.pyannote[1490].start 13578.51659375
transcript.pyannote[1490].end 13580.62596875
transcript.pyannote[1491].speaker SPEAKER_15
transcript.pyannote[1491].start 13580.92971875
transcript.pyannote[1491].end 13592.57346875
transcript.pyannote[1492].speaker SPEAKER_15
transcript.pyannote[1492].start 13593.33284375
transcript.pyannote[1492].end 13595.69534375
transcript.pyannote[1493].speaker SPEAKER_15
transcript.pyannote[1493].start 13596.45471875
transcript.pyannote[1493].end 13599.32346875
transcript.pyannote[1494].speaker SPEAKER_15
transcript.pyannote[1494].start 13599.98159375
transcript.pyannote[1494].end 13600.47096875
transcript.pyannote[1495].speaker SPEAKER_15
transcript.pyannote[1495].start 13600.74096875
transcript.pyannote[1495].end 13602.29346875
transcript.pyannote[1496].speaker SPEAKER_15
transcript.pyannote[1496].start 13603.00221875
transcript.pyannote[1496].end 13603.69409375
transcript.pyannote[1497].speaker SPEAKER_15
transcript.pyannote[1497].start 13603.96409375
transcript.pyannote[1497].end 13605.22971875
transcript.pyannote[1498].speaker SPEAKER_15
transcript.pyannote[1498].start 13605.53346875
transcript.pyannote[1498].end 13605.92159375
transcript.pyannote[1499].speaker SPEAKER_15
transcript.pyannote[1499].start 13606.17471875
transcript.pyannote[1499].end 13606.49534375
transcript.pyannote[1500].speaker SPEAKER_15
transcript.pyannote[1500].start 13610.64659375
transcript.pyannote[1500].end 13610.66346875
transcript.pyannote[1501].speaker SPEAKER_14
transcript.pyannote[1501].start 13610.66346875
transcript.pyannote[1501].end 13611.82784375
transcript.pyannote[1502].speaker SPEAKER_14
transcript.pyannote[1502].start 13616.75534375
transcript.pyannote[1502].end 13616.77221875
transcript.pyannote[1503].speaker SPEAKER_16
transcript.pyannote[1503].start 13616.77221875
transcript.pyannote[1503].end 13646.35409375
transcript.pyannote[1504].speaker SPEAKER_16
transcript.pyannote[1504].start 13646.43846875
transcript.pyannote[1504].end 13666.28346875
transcript.pyannote[1505].speaker SPEAKER_16
transcript.pyannote[1505].start 13666.78971875
transcript.pyannote[1505].end 13681.40346875
transcript.pyannote[1506].speaker SPEAKER_16
transcript.pyannote[1506].start 13682.51721875
transcript.pyannote[1506].end 13689.16596875
transcript.pyannote[1507].speaker SPEAKER_16
transcript.pyannote[1507].start 13689.73971875
transcript.pyannote[1507].end 13697.62034375
transcript.pyannote[1508].speaker SPEAKER_16
transcript.pyannote[1508].start 13698.34596875
transcript.pyannote[1508].end 13703.27346875
transcript.pyannote[1509].speaker SPEAKER_16
transcript.pyannote[1509].start 13703.72909375
transcript.pyannote[1509].end 13708.08284375
transcript.pyannote[1510].speaker SPEAKER_15
transcript.pyannote[1510].start 13719.89534375
transcript.pyannote[1510].end 13724.04659375
transcript.pyannote[1511].speaker SPEAKER_26
transcript.pyannote[1511].start 13732.04534375
transcript.pyannote[1511].end 13735.31909375
transcript.pyannote[1512].speaker SPEAKER_26
transcript.pyannote[1512].start 13737.09096875
transcript.pyannote[1512].end 13738.45784375
transcript.pyannote[1513].speaker SPEAKER_26
transcript.pyannote[1513].start 13738.74471875
transcript.pyannote[1513].end 13740.04409375
transcript.pyannote[1514].speaker SPEAKER_26
transcript.pyannote[1514].start 13742.81159375
transcript.pyannote[1514].end 13743.03096875
transcript.pyannote[1515].speaker SPEAKER_20
transcript.pyannote[1515].start 13747.77284375
transcript.pyannote[1515].end 13755.26534375
transcript.pyannote[1516].speaker SPEAKER_00
transcript.pyannote[1516].start 13747.95846875
transcript.pyannote[1516].end 13748.43096875
transcript.pyannote[1517].speaker SPEAKER_16
transcript.pyannote[1517].start 13774.13159375
transcript.pyannote[1517].end 13775.02596875
transcript.pyannote[1518].speaker SPEAKER_15
transcript.pyannote[1518].start 13775.44784375
transcript.pyannote[1518].end 13776.83159375
transcript.pyannote[1519].speaker SPEAKER_27
transcript.pyannote[1519].start 13780.59471875
transcript.pyannote[1519].end 13781.15159375
transcript.pyannote[1520].speaker SPEAKER_15
transcript.pyannote[1520].start 13782.75471875
transcript.pyannote[1520].end 13783.46346875
transcript.pyannote[1521].speaker SPEAKER_15
transcript.pyannote[1521].start 13786.36596875
transcript.pyannote[1521].end 13788.40784375
transcript.pyannote[1522].speaker SPEAKER_15
transcript.pyannote[1522].start 13789.47096875
transcript.pyannote[1522].end 13789.65659375
transcript.pyannote[1523].speaker SPEAKER_11
transcript.pyannote[1523].start 13798.95471875
transcript.pyannote[1523].end 13821.98909375
transcript.pyannote[1524].speaker SPEAKER_11
transcript.pyannote[1524].start 13822.57971875
transcript.pyannote[1524].end 13845.54659375
transcript.pyannote[1525].speaker SPEAKER_11
transcript.pyannote[1525].start 13845.91784375
transcript.pyannote[1525].end 13861.02096875
transcript.pyannote[1526].speaker SPEAKER_15
transcript.pyannote[1526].start 13863.18096875
transcript.pyannote[1526].end 13866.25221875
transcript.pyannote[1527].speaker SPEAKER_10
transcript.pyannote[1527].start 13883.12721875
transcript.pyannote[1527].end 13893.89346875
transcript.pyannote[1528].speaker SPEAKER_10
transcript.pyannote[1528].start 13894.12971875
transcript.pyannote[1528].end 13896.40784375
transcript.pyannote[1529].speaker SPEAKER_10
transcript.pyannote[1529].start 13896.82971875
transcript.pyannote[1529].end 13909.63784375
transcript.pyannote[1530].speaker SPEAKER_10
transcript.pyannote[1530].start 13909.85721875
transcript.pyannote[1530].end 13912.28721875
transcript.pyannote[1531].speaker SPEAKER_10
transcript.pyannote[1531].start 13912.37159375
transcript.pyannote[1531].end 13917.51846875
transcript.pyannote[1532].speaker SPEAKER_10
transcript.pyannote[1532].start 13917.77159375
transcript.pyannote[1532].end 13920.74159375
transcript.pyannote[1533].speaker SPEAKER_10
transcript.pyannote[1533].start 13921.06221875
transcript.pyannote[1533].end 13924.40346875
transcript.pyannote[1534].speaker SPEAKER_10
transcript.pyannote[1534].start 13924.47096875
transcript.pyannote[1534].end 13929.75284375
transcript.pyannote[1535].speaker SPEAKER_10
transcript.pyannote[1535].start 13931.08596875
transcript.pyannote[1535].end 13931.52471875
transcript.pyannote[1536].speaker SPEAKER_26
transcript.pyannote[1536].start 13935.01784375
transcript.pyannote[1536].end 13937.75159375
transcript.pyannote[1537].speaker SPEAKER_20
transcript.pyannote[1537].start 13938.08909375
transcript.pyannote[1537].end 13945.39596875
transcript.pyannote[1538].speaker SPEAKER_20
transcript.pyannote[1538].start 13945.81784375
transcript.pyannote[1538].end 13948.90596875
transcript.pyannote[1539].speaker SPEAKER_20
transcript.pyannote[1539].start 13949.37846875
transcript.pyannote[1539].end 13955.14971875
transcript.pyannote[1540].speaker SPEAKER_20
transcript.pyannote[1540].start 13955.16659375
transcript.pyannote[1540].end 13999.75034375
transcript.pyannote[1541].speaker SPEAKER_03
transcript.pyannote[1541].start 14000.98221875
transcript.pyannote[1541].end 14002.14659375
transcript.pyannote[1542].speaker SPEAKER_03
transcript.pyannote[1542].start 14002.70346875
transcript.pyannote[1542].end 14022.43034375
transcript.pyannote[1543].speaker SPEAKER_03
transcript.pyannote[1543].start 14022.78471875
transcript.pyannote[1543].end 14048.04659375
transcript.pyannote[1544].speaker SPEAKER_31
transcript.pyannote[1544].start 14052.97409375
transcript.pyannote[1544].end 14093.45721875
transcript.pyannote[1545].speaker SPEAKER_16
transcript.pyannote[1545].start 14103.12659375
transcript.pyannote[1545].end 14119.05659375
transcript.pyannote[1546].speaker SPEAKER_16
transcript.pyannote[1546].start 14119.29284375
transcript.pyannote[1546].end 14151.89534375
transcript.pyannote[1547].speaker SPEAKER_02
transcript.pyannote[1547].start 14160.29909375
transcript.pyannote[1547].end 14164.50096875
transcript.pyannote[1548].speaker SPEAKER_02
transcript.pyannote[1548].start 14165.32784375
transcript.pyannote[1548].end 14170.10346875
transcript.pyannote[1549].speaker SPEAKER_02
transcript.pyannote[1549].start 14170.67721875
transcript.pyannote[1549].end 14201.59221875
transcript.pyannote[1550].speaker SPEAKER_02
transcript.pyannote[1550].start 14201.79471875
transcript.pyannote[1550].end 14202.25034375
transcript.pyannote[1551].speaker SPEAKER_02
transcript.pyannote[1551].start 14202.89159375
transcript.pyannote[1551].end 14212.17284375
transcript.pyannote[1552].speaker SPEAKER_02
transcript.pyannote[1552].start 14212.78034375
transcript.pyannote[1552].end 14214.53534375
transcript.pyannote[1553].speaker SPEAKER_02
transcript.pyannote[1553].start 14214.65346875
transcript.pyannote[1553].end 14218.34909375
transcript.pyannote[1554].speaker SPEAKER_20
transcript.pyannote[1554].start 14223.61409375
transcript.pyannote[1554].end 14228.72721875
transcript.pyannote[1555].speaker SPEAKER_20
transcript.pyannote[1555].start 14229.25034375
transcript.pyannote[1555].end 14240.50596875
transcript.pyannote[1556].speaker SPEAKER_20
transcript.pyannote[1556].start 14240.86034375
transcript.pyannote[1556].end 14254.44471875
transcript.pyannote[1557].speaker SPEAKER_20
transcript.pyannote[1557].start 14255.77784375
transcript.pyannote[1557].end 14256.97596875
transcript.pyannote[1558].speaker SPEAKER_19
transcript.pyannote[1558].start 14256.97596875
transcript.pyannote[1558].end 14257.02659375
transcript.pyannote[1559].speaker SPEAKER_19
transcript.pyannote[1559].start 14258.08971875
transcript.pyannote[1559].end 14261.36346875
transcript.pyannote[1560].speaker SPEAKER_19
transcript.pyannote[1560].start 14262.10596875
transcript.pyannote[1560].end 14263.10159375
transcript.pyannote[1561].speaker SPEAKER_19
transcript.pyannote[1561].start 14264.13096875
transcript.pyannote[1561].end 14266.42596875
transcript.pyannote[1562].speaker SPEAKER_19
transcript.pyannote[1562].start 14267.28659375
transcript.pyannote[1562].end 14274.54284375
transcript.pyannote[1563].speaker SPEAKER_19
transcript.pyannote[1563].start 14274.94784375
transcript.pyannote[1563].end 14276.38221875
transcript.pyannote[1564].speaker SPEAKER_19
transcript.pyannote[1564].start 14276.97284375
transcript.pyannote[1564].end 14278.91346875
transcript.pyannote[1565].speaker SPEAKER_15
transcript.pyannote[1565].start 14282.38971875
transcript.pyannote[1565].end 14287.16534375
transcript.pyannote[1566].speaker SPEAKER_15
transcript.pyannote[1566].start 14287.70534375
transcript.pyannote[1566].end 14292.16034375
transcript.pyannote[1567].speaker SPEAKER_15
transcript.pyannote[1567].start 14292.48096875
transcript.pyannote[1567].end 14294.05034375
transcript.pyannote[1568].speaker SPEAKER_15
transcript.pyannote[1568].start 14295.33284375
transcript.pyannote[1568].end 14296.22721875
transcript.pyannote[1569].speaker SPEAKER_32
transcript.pyannote[1569].start 14296.22721875
transcript.pyannote[1569].end 14296.24409375
transcript.pyannote[1570].speaker SPEAKER_15
transcript.pyannote[1570].start 14296.76721875
transcript.pyannote[1570].end 14297.15534375
transcript.pyannote[1571].speaker SPEAKER_32
transcript.pyannote[1571].start 14297.15534375
transcript.pyannote[1571].end 14297.17221875
transcript.pyannote[1572].speaker SPEAKER_15
transcript.pyannote[1572].start 14298.55596875
transcript.pyannote[1572].end 14298.57284375
transcript.pyannote[1573].speaker SPEAKER_32
transcript.pyannote[1573].start 14298.57284375
transcript.pyannote[1573].end 14300.15909375
transcript.pyannote[1574].speaker SPEAKER_32
transcript.pyannote[1574].start 14301.84659375
transcript.pyannote[1574].end 14302.89284375
transcript.pyannote[1575].speaker SPEAKER_32
transcript.pyannote[1575].start 14303.41596875
transcript.pyannote[1575].end 14306.85846875
transcript.pyannote[1576].speaker SPEAKER_32
transcript.pyannote[1576].start 14307.71909375
transcript.pyannote[1576].end 14308.37721875
transcript.pyannote[1577].speaker SPEAKER_32
transcript.pyannote[1577].start 14309.69346875
transcript.pyannote[1577].end 14313.43971875
transcript.pyannote[1578].speaker SPEAKER_32
transcript.pyannote[1578].start 14313.47346875
transcript.pyannote[1578].end 14317.55721875
transcript.pyannote[1579].speaker SPEAKER_32
transcript.pyannote[1579].start 14318.62034375
transcript.pyannote[1579].end 14331.39471875
transcript.pyannote[1580].speaker SPEAKER_32
transcript.pyannote[1580].start 14332.01909375
transcript.pyannote[1580].end 14378.67846875
transcript.pyannote[1581].speaker SPEAKER_32
transcript.pyannote[1581].start 14379.31971875
transcript.pyannote[1581].end 14385.96846875
transcript.pyannote[1582].speaker SPEAKER_32
transcript.pyannote[1582].start 14386.35659375
transcript.pyannote[1582].end 14391.52034375
transcript.pyannote[1583].speaker SPEAKER_31
transcript.pyannote[1583].start 14396.26221875
transcript.pyannote[1583].end 14400.64971875
transcript.pyannote[1584].speaker SPEAKER_31
transcript.pyannote[1584].start 14400.93659375
transcript.pyannote[1584].end 14417.28846875
transcript.pyannote[1585].speaker SPEAKER_31
transcript.pyannote[1585].start 14417.47409375
transcript.pyannote[1585].end 14421.74346875
transcript.pyannote[1586].speaker SPEAKER_32
transcript.pyannote[1586].start 14422.90784375
transcript.pyannote[1586].end 14435.17596875
transcript.pyannote[1587].speaker SPEAKER_32
transcript.pyannote[1587].start 14435.54721875
transcript.pyannote[1587].end 14439.90096875
transcript.pyannote[1588].speaker SPEAKER_31
transcript.pyannote[1588].start 14440.17096875
transcript.pyannote[1588].end 14440.74471875
transcript.pyannote[1589].speaker SPEAKER_31
transcript.pyannote[1589].start 14441.26784375
transcript.pyannote[1589].end 14444.37284375
transcript.pyannote[1590].speaker SPEAKER_32
transcript.pyannote[1590].start 14443.68096875
transcript.pyannote[1590].end 14447.35971875
transcript.pyannote[1591].speaker SPEAKER_32
transcript.pyannote[1591].start 14447.81534375
transcript.pyannote[1591].end 14454.05909375
transcript.pyannote[1592].speaker SPEAKER_32
transcript.pyannote[1592].start 14454.54846875
transcript.pyannote[1592].end 14458.41284375
transcript.pyannote[1593].speaker SPEAKER_32
transcript.pyannote[1593].start 14458.73346875
transcript.pyannote[1593].end 14465.28096875
transcript.pyannote[1594].speaker SPEAKER_31
transcript.pyannote[1594].start 14466.00659375
transcript.pyannote[1594].end 14466.71534375
transcript.pyannote[1595].speaker SPEAKER_31
transcript.pyannote[1595].start 14467.15409375
transcript.pyannote[1595].end 14482.91534375
transcript.pyannote[1596].speaker SPEAKER_32
transcript.pyannote[1596].start 14482.83096875
transcript.pyannote[1596].end 14484.19784375
transcript.pyannote[1597].speaker SPEAKER_32
transcript.pyannote[1597].start 14484.26534375
transcript.pyannote[1597].end 14487.06659375
transcript.pyannote[1598].speaker SPEAKER_32
transcript.pyannote[1598].start 14487.60659375
transcript.pyannote[1598].end 14490.00284375
transcript.pyannote[1599].speaker SPEAKER_32
transcript.pyannote[1599].start 14490.76221875
transcript.pyannote[1599].end 14492.12909375
transcript.pyannote[1600].speaker SPEAKER_32
transcript.pyannote[1600].start 14492.24721875
transcript.pyannote[1600].end 14492.97284375
transcript.pyannote[1601].speaker SPEAKER_32
transcript.pyannote[1601].start 14495.97659375
transcript.pyannote[1601].end 14497.17471875
transcript.pyannote[1602].speaker SPEAKER_32
transcript.pyannote[1602].start 14498.06909375
transcript.pyannote[1602].end 14507.43471875
transcript.pyannote[1603].speaker SPEAKER_15
transcript.pyannote[1603].start 14515.73721875
transcript.pyannote[1603].end 14516.15909375
transcript.pyannote[1604].speaker SPEAKER_15
transcript.pyannote[1604].start 14517.64409375
transcript.pyannote[1604].end 14526.38534375
transcript.pyannote[1605].speaker SPEAKER_15
transcript.pyannote[1605].start 14527.14471875
transcript.pyannote[1605].end 14527.85346875
transcript.pyannote[1606].speaker SPEAKER_15
transcript.pyannote[1606].start 14529.27096875
transcript.pyannote[1606].end 14531.56596875
transcript.pyannote[1607].speaker SPEAKER_15
transcript.pyannote[1607].start 14532.52784375
transcript.pyannote[1607].end 14533.69221875
transcript.pyannote[1608].speaker SPEAKER_15
transcript.pyannote[1608].start 14534.55284375
transcript.pyannote[1608].end 14536.96596875
transcript.pyannote[1609].speaker SPEAKER_15
transcript.pyannote[1609].start 14538.21471875
transcript.pyannote[1609].end 14541.77534375
transcript.pyannote[1610].speaker SPEAKER_15
transcript.pyannote[1610].start 14542.34909375
transcript.pyannote[1610].end 14544.64409375
transcript.pyannote[1611].speaker SPEAKER_15
transcript.pyannote[1611].start 14546.06159375
transcript.pyannote[1611].end 14550.39846875
transcript.pyannote[1612].speaker SPEAKER_15
transcript.pyannote[1612].start 14551.42784375
transcript.pyannote[1612].end 14552.30534375
transcript.pyannote[1613].speaker SPEAKER_15
transcript.pyannote[1613].start 14553.21659375
transcript.pyannote[1613].end 14556.03471875
transcript.pyannote[1614].speaker SPEAKER_15
transcript.pyannote[1614].start 14556.49034375
transcript.pyannote[1614].end 14558.63346875
transcript.pyannote[1615].speaker SPEAKER_15
transcript.pyannote[1615].start 14559.52784375
transcript.pyannote[1615].end 14561.72159375
transcript.pyannote[1616].speaker SPEAKER_04
transcript.pyannote[1616].start 14593.32846875
transcript.pyannote[1616].end 14608.02659375
transcript.pyannote[1617].speaker SPEAKER_04
transcript.pyannote[1617].start 14608.95471875
transcript.pyannote[1617].end 14610.27096875
transcript.pyannote[1618].speaker SPEAKER_04
transcript.pyannote[1618].start 14612.16096875
transcript.pyannote[1618].end 14612.93721875
transcript.pyannote[1619].speaker SPEAKER_04
transcript.pyannote[1619].start 14612.97096875
transcript.pyannote[1619].end 14613.07221875
transcript.pyannote[1620].speaker SPEAKER_04
transcript.pyannote[1620].start 14613.96659375
transcript.pyannote[1620].end 14616.34596875
transcript.pyannote[1621].speaker SPEAKER_26
transcript.pyannote[1621].start 14616.34596875
transcript.pyannote[1621].end 14616.53159375
transcript.pyannote[1622].speaker SPEAKER_04
transcript.pyannote[1622].start 14616.53159375
transcript.pyannote[1622].end 14616.70034375
transcript.pyannote[1623].speaker SPEAKER_26
transcript.pyannote[1623].start 14616.70034375
transcript.pyannote[1623].end 14616.75096875
transcript.pyannote[1624].speaker SPEAKER_26
transcript.pyannote[1624].start 14616.76784375
transcript.pyannote[1624].end 14616.88596875
transcript.pyannote[1625].speaker SPEAKER_26
transcript.pyannote[1625].start 14618.74221875
transcript.pyannote[1625].end 14618.91096875
transcript.pyannote[1626].speaker SPEAKER_04
transcript.pyannote[1626].start 14618.91096875
transcript.pyannote[1626].end 14622.84284375
transcript.pyannote[1627].speaker SPEAKER_26
transcript.pyannote[1627].start 14618.96159375
transcript.pyannote[1627].end 14620.37909375
transcript.pyannote[1628].speaker SPEAKER_26
transcript.pyannote[1628].start 14620.46346875
transcript.pyannote[1628].end 14620.83471875
transcript.pyannote[1629].speaker SPEAKER_26
transcript.pyannote[1629].start 14620.86846875
transcript.pyannote[1629].end 14620.88534375
transcript.pyannote[1630].speaker SPEAKER_26
transcript.pyannote[1630].start 14620.90221875
transcript.pyannote[1630].end 14621.44221875
transcript.pyannote[1631].speaker SPEAKER_04
transcript.pyannote[1631].start 14623.38284375
transcript.pyannote[1631].end 14633.50784375
transcript.pyannote[1632].speaker SPEAKER_26
transcript.pyannote[1632].start 14626.80846875
transcript.pyannote[1632].end 14628.86721875
transcript.pyannote[1633].speaker SPEAKER_26
transcript.pyannote[1633].start 14629.62659375
transcript.pyannote[1633].end 14630.50409375
transcript.pyannote[1634].speaker SPEAKER_03
transcript.pyannote[1634].start 14630.50409375
transcript.pyannote[1634].end 14631.01034375
transcript.pyannote[1635].speaker SPEAKER_03
transcript.pyannote[1635].start 14632.15784375
transcript.pyannote[1635].end 14642.97471875
transcript.pyannote[1636].speaker SPEAKER_04
transcript.pyannote[1636].start 14633.77784375
transcript.pyannote[1636].end 14634.50346875
transcript.pyannote[1637].speaker SPEAKER_04
transcript.pyannote[1637].start 14635.66784375
transcript.pyannote[1637].end 14635.68471875
transcript.pyannote[1638].speaker SPEAKER_26
transcript.pyannote[1638].start 14640.44346875
transcript.pyannote[1638].end 14640.46034375
transcript.pyannote[1639].speaker SPEAKER_04
transcript.pyannote[1639].start 14640.46034375
transcript.pyannote[1639].end 14641.03409375
transcript.pyannote[1640].speaker SPEAKER_32
transcript.pyannote[1640].start 14641.03409375
transcript.pyannote[1640].end 14641.57409375
transcript.pyannote[1641].speaker SPEAKER_04
transcript.pyannote[1641].start 14641.57409375
transcript.pyannote[1641].end 14642.63721875
transcript.pyannote[1642].speaker SPEAKER_04
transcript.pyannote[1642].start 14642.97471875
transcript.pyannote[1642].end 14643.66659375
transcript.pyannote[1643].speaker SPEAKER_01
transcript.pyannote[1643].start 14643.66659375
transcript.pyannote[1643].end 14643.68346875
transcript.pyannote[1644].speaker SPEAKER_04
transcript.pyannote[1644].start 14643.68346875
transcript.pyannote[1644].end 14643.71721875
transcript.pyannote[1645].speaker SPEAKER_01
transcript.pyannote[1645].start 14643.71721875
transcript.pyannote[1645].end 14646.14721875
transcript.pyannote[1646].speaker SPEAKER_01
transcript.pyannote[1646].start 14646.34971875
transcript.pyannote[1646].end 14648.39159375
transcript.pyannote[1647].speaker SPEAKER_04
transcript.pyannote[1647].start 14646.95721875
transcript.pyannote[1647].end 14646.99096875
transcript.pyannote[1648].speaker SPEAKER_04
transcript.pyannote[1648].start 14647.64909375
transcript.pyannote[1648].end 14650.45034375
transcript.pyannote[1649].speaker SPEAKER_20
transcript.pyannote[1649].start 15792.04409375
transcript.pyannote[1649].end 15797.03909375
transcript.pyannote[1650].speaker SPEAKER_20
transcript.pyannote[1650].start 15797.49471875
transcript.pyannote[1650].end 15797.78159375
transcript.pyannote[1651].speaker SPEAKER_15
transcript.pyannote[1651].start 15797.78159375
transcript.pyannote[1651].end 15804.58221875
transcript.pyannote[1652].speaker SPEAKER_03
transcript.pyannote[1652].start 15807.33284375
transcript.pyannote[1652].end 15818.90909375
transcript.pyannote[1653].speaker SPEAKER_03
transcript.pyannote[1653].start 15818.92596875
transcript.pyannote[1653].end 15880.36784375
transcript.pyannote[1654].speaker SPEAKER_03
transcript.pyannote[1654].start 15880.89096875
transcript.pyannote[1654].end 15889.71659375
transcript.pyannote[1655].speaker SPEAKER_15
transcript.pyannote[1655].start 15893.37846875
transcript.pyannote[1655].end 15897.47909375
transcript.pyannote[1656].speaker SPEAKER_32
transcript.pyannote[1656].start 15902.72721875
transcript.pyannote[1656].end 15969.38346875
transcript.pyannote[1657].speaker SPEAKER_03
transcript.pyannote[1657].start 15986.19096875
transcript.pyannote[1657].end 15996.80534375
transcript.pyannote[1658].speaker SPEAKER_03
transcript.pyannote[1658].start 15997.37909375
transcript.pyannote[1658].end 16016.04284375
transcript.pyannote[1659].speaker SPEAKER_03
transcript.pyannote[1659].start 16016.83596875
transcript.pyannote[1659].end 16024.61534375
transcript.pyannote[1660].speaker SPEAKER_03
transcript.pyannote[1660].start 16025.45909375
transcript.pyannote[1660].end 16026.28596875
transcript.pyannote[1661].speaker SPEAKER_03
transcript.pyannote[1661].start 16027.45034375
transcript.pyannote[1661].end 16044.08909375
transcript.pyannote[1662].speaker SPEAKER_03
transcript.pyannote[1662].start 16044.30846875
transcript.pyannote[1662].end 16045.42221875
transcript.pyannote[1663].speaker SPEAKER_03
transcript.pyannote[1663].start 16045.84409375
transcript.pyannote[1663].end 16049.59034375
transcript.pyannote[1664].speaker SPEAKER_32
transcript.pyannote[1664].start 16049.52284375
transcript.pyannote[1664].end 16054.51784375
transcript.pyannote[1665].speaker SPEAKER_03
transcript.pyannote[1665].start 16054.51784375
transcript.pyannote[1665].end 16064.40659375
transcript.pyannote[1666].speaker SPEAKER_32
transcript.pyannote[1666].start 16054.55159375
transcript.pyannote[1666].end 16055.96909375
transcript.pyannote[1667].speaker SPEAKER_32
transcript.pyannote[1667].start 16056.03659375
transcript.pyannote[1667].end 16056.37409375
transcript.pyannote[1668].speaker SPEAKER_32
transcript.pyannote[1668].start 16062.71909375
transcript.pyannote[1668].end 16065.58784375
transcript.pyannote[1669].speaker SPEAKER_03
transcript.pyannote[1669].start 16065.58784375
transcript.pyannote[1669].end 16093.24596875
transcript.pyannote[1670].speaker SPEAKER_32
transcript.pyannote[1670].start 16065.79034375
transcript.pyannote[1670].end 16067.14034375
transcript.pyannote[1671].speaker SPEAKER_32
transcript.pyannote[1671].start 16071.03846875
transcript.pyannote[1671].end 16075.66221875
transcript.pyannote[1672].speaker SPEAKER_32
transcript.pyannote[1672].start 16076.57346875
transcript.pyannote[1672].end 16077.14721875
transcript.pyannote[1673].speaker SPEAKER_03
transcript.pyannote[1673].start 16093.43159375
transcript.pyannote[1673].end 16099.06784375
transcript.pyannote[1674].speaker SPEAKER_32
transcript.pyannote[1674].start 16098.02159375
transcript.pyannote[1674].end 16099.77659375
transcript.pyannote[1675].speaker SPEAKER_03
transcript.pyannote[1675].start 16099.77659375
transcript.pyannote[1675].end 16104.83909375
transcript.pyannote[1676].speaker SPEAKER_32
transcript.pyannote[1676].start 16099.81034375
transcript.pyannote[1676].end 16104.60284375
transcript.pyannote[1677].speaker SPEAKER_32
transcript.pyannote[1677].start 16104.83909375
transcript.pyannote[1677].end 16105.58159375
transcript.pyannote[1678].speaker SPEAKER_03
transcript.pyannote[1678].start 16105.58159375
transcript.pyannote[1678].end 16122.79409375
transcript.pyannote[1679].speaker SPEAKER_32
transcript.pyannote[1679].start 16105.59846875
transcript.pyannote[1679].end 16110.12096875
transcript.pyannote[1680].speaker SPEAKER_15
transcript.pyannote[1680].start 16125.71346875
transcript.pyannote[1680].end 16127.46846875
transcript.pyannote[1681].speaker SPEAKER_13
transcript.pyannote[1681].start 16133.44221875
transcript.pyannote[1681].end 16138.50471875
transcript.pyannote[1682].speaker SPEAKER_13
transcript.pyannote[1682].start 16138.82534375
transcript.pyannote[1682].end 16155.24471875
transcript.pyannote[1683].speaker SPEAKER_13
transcript.pyannote[1683].start 16155.41346875
transcript.pyannote[1683].end 16179.54471875
transcript.pyannote[1684].speaker SPEAKER_13
transcript.pyannote[1684].start 16180.00034375
transcript.pyannote[1684].end 16188.70784375
transcript.pyannote[1685].speaker SPEAKER_15
transcript.pyannote[1685].start 16189.02846875
transcript.pyannote[1685].end 16190.00721875
transcript.pyannote[1686].speaker SPEAKER_15
transcript.pyannote[1686].start 16191.00284375
transcript.pyannote[1686].end 16193.71971875
transcript.pyannote[1687].speaker SPEAKER_26
transcript.pyannote[1687].start 16197.29721875
transcript.pyannote[1687].end 16197.51659375
transcript.pyannote[1688].speaker SPEAKER_26
transcript.pyannote[1688].start 16197.68534375
transcript.pyannote[1688].end 16197.70221875
transcript.pyannote[1689].speaker SPEAKER_26
transcript.pyannote[1689].start 16197.71909375
transcript.pyannote[1689].end 16197.76971875
transcript.pyannote[1690].speaker SPEAKER_26
transcript.pyannote[1690].start 16198.42784375
transcript.pyannote[1690].end 16199.69346875
transcript.pyannote[1691].speaker SPEAKER_26
transcript.pyannote[1691].start 16200.62159375
transcript.pyannote[1691].end 16201.73534375
transcript.pyannote[1692].speaker SPEAKER_26
transcript.pyannote[1692].start 16201.93784375
transcript.pyannote[1692].end 16202.27534375
transcript.pyannote[1693].speaker SPEAKER_23
transcript.pyannote[1693].start 16207.69221875
transcript.pyannote[1693].end 16233.12284375
transcript.pyannote[1694].speaker SPEAKER_23
transcript.pyannote[1694].start 16233.22409375
transcript.pyannote[1694].end 16259.76846875
transcript.pyannote[1695].speaker SPEAKER_32
transcript.pyannote[1695].start 16258.40159375
transcript.pyannote[1695].end 16261.35471875
transcript.pyannote[1696].speaker SPEAKER_23
transcript.pyannote[1696].start 16259.90346875
transcript.pyannote[1696].end 16269.43784375
transcript.pyannote[1697].speaker SPEAKER_32
transcript.pyannote[1697].start 16265.03346875
transcript.pyannote[1697].end 16267.12596875
transcript.pyannote[1698].speaker SPEAKER_26
transcript.pyannote[1698].start 16267.12596875
transcript.pyannote[1698].end 16267.19346875
transcript.pyannote[1699].speaker SPEAKER_23
transcript.pyannote[1699].start 16270.09596875
transcript.pyannote[1699].end 16274.36534375
transcript.pyannote[1700].speaker SPEAKER_23
transcript.pyannote[1700].start 16274.95596875
transcript.pyannote[1700].end 16292.74221875
transcript.pyannote[1701].speaker SPEAKER_04
transcript.pyannote[1701].start 16277.06534375
transcript.pyannote[1701].end 16278.21284375
transcript.pyannote[1702].speaker SPEAKER_15
transcript.pyannote[1702].start 16293.65346875
transcript.pyannote[1702].end 16295.12159375
transcript.pyannote[1703].speaker SPEAKER_15
transcript.pyannote[1703].start 16296.28596875
transcript.pyannote[1703].end 16296.53909375
transcript.pyannote[1704].speaker SPEAKER_15
transcript.pyannote[1704].start 16297.36596875
transcript.pyannote[1704].end 16299.79596875
transcript.pyannote[1705].speaker SPEAKER_08
transcript.pyannote[1705].start 16303.37346875
transcript.pyannote[1705].end 16356.59721875
transcript.pyannote[1706].speaker SPEAKER_08
transcript.pyannote[1706].start 16357.23846875
transcript.pyannote[1706].end 16371.00846875
transcript.pyannote[1707].speaker SPEAKER_15
transcript.pyannote[1707].start 16373.57346875
transcript.pyannote[1707].end 16374.21471875
transcript.pyannote[1708].speaker SPEAKER_15
transcript.pyannote[1708].start 16374.45096875
transcript.pyannote[1708].end 16375.10909375
transcript.pyannote[1709].speaker SPEAKER_15
transcript.pyannote[1709].start 16375.15971875
transcript.pyannote[1709].end 16376.56034375
transcript.pyannote[1710].speaker SPEAKER_08
transcript.pyannote[1710].start 16376.57721875
transcript.pyannote[1710].end 16376.61096875
transcript.pyannote[1711].speaker SPEAKER_32
transcript.pyannote[1711].start 16376.61096875
transcript.pyannote[1711].end 16395.08909375
transcript.pyannote[1712].speaker SPEAKER_32
transcript.pyannote[1712].start 16395.67971875
transcript.pyannote[1712].end 16408.45409375
transcript.pyannote[1713].speaker SPEAKER_32
transcript.pyannote[1713].start 16409.06159375
transcript.pyannote[1713].end 16423.82721875
transcript.pyannote[1714].speaker SPEAKER_32
transcript.pyannote[1714].start 16424.21534375
transcript.pyannote[1714].end 16424.99159375
transcript.pyannote[1715].speaker SPEAKER_32
transcript.pyannote[1715].start 16425.53159375
transcript.pyannote[1715].end 16426.35846875
transcript.pyannote[1716].speaker SPEAKER_32
transcript.pyannote[1716].start 16427.28659375
transcript.pyannote[1716].end 16430.93159375
transcript.pyannote[1717].speaker SPEAKER_00
transcript.pyannote[1717].start 16427.50596875
transcript.pyannote[1717].end 16427.53971875
transcript.pyannote[1718].speaker SPEAKER_14
transcript.pyannote[1718].start 16427.53971875
transcript.pyannote[1718].end 16427.97846875
transcript.pyannote[1719].speaker SPEAKER_00
transcript.pyannote[1719].start 16427.97846875
transcript.pyannote[1719].end 16428.19784375
transcript.pyannote[1720].speaker SPEAKER_00
transcript.pyannote[1720].start 16428.43409375
transcript.pyannote[1720].end 16428.95721875
transcript.pyannote[1721].speaker SPEAKER_32
transcript.pyannote[1721].start 16431.72471875
transcript.pyannote[1721].end 16433.02409375
transcript.pyannote[1722].speaker SPEAKER_32
transcript.pyannote[1722].start 16434.37409375
transcript.pyannote[1722].end 16438.25534375
transcript.pyannote[1723].speaker SPEAKER_32
transcript.pyannote[1723].start 16438.79534375
transcript.pyannote[1723].end 16439.33534375
transcript.pyannote[1724].speaker SPEAKER_32
transcript.pyannote[1724].start 16440.71909375
transcript.pyannote[1724].end 16441.22534375
transcript.pyannote[1725].speaker SPEAKER_15
transcript.pyannote[1725].start 16441.69784375
transcript.pyannote[1725].end 16447.58721875
transcript.pyannote[1726].speaker SPEAKER_15
transcript.pyannote[1726].start 16450.16909375
transcript.pyannote[1726].end 16452.00846875
transcript.pyannote[1727].speaker SPEAKER_15
transcript.pyannote[1727].start 16452.36284375
transcript.pyannote[1727].end 16457.05409375
transcript.pyannote[1728].speaker SPEAKER_15
transcript.pyannote[1728].start 16459.02846875
transcript.pyannote[1728].end 16461.12096875
transcript.pyannote[1729].speaker SPEAKER_15
transcript.pyannote[1729].start 16462.30221875
transcript.pyannote[1729].end 16466.67284375
transcript.pyannote[1730].speaker SPEAKER_15
transcript.pyannote[1730].start 16467.11159375
transcript.pyannote[1730].end 16470.40221875
transcript.pyannote[1731].speaker SPEAKER_15
transcript.pyannote[1731].start 16470.79034375
transcript.pyannote[1731].end 16473.97971875
transcript.pyannote[1732].speaker SPEAKER_15
transcript.pyannote[1732].start 16474.68846875
transcript.pyannote[1732].end 16478.02971875
transcript.pyannote[1733].speaker SPEAKER_15
transcript.pyannote[1733].start 16478.23221875
transcript.pyannote[1733].end 16483.36221875
transcript.pyannote[1734].speaker SPEAKER_15
transcript.pyannote[1734].start 16484.96534375
transcript.pyannote[1734].end 16493.87534375
transcript.pyannote[1735].speaker SPEAKER_15
transcript.pyannote[1735].start 16494.38159375
transcript.pyannote[1735].end 16495.78221875
transcript.pyannote[1736].speaker SPEAKER_15
transcript.pyannote[1736].start 16496.99721875
transcript.pyannote[1736].end 16497.94221875
transcript.pyannote[1737].speaker SPEAKER_32
transcript.pyannote[1737].start 16497.67221875
transcript.pyannote[1737].end 16498.19534375
transcript.pyannote[1738].speaker SPEAKER_32
transcript.pyannote[1738].start 16499.32596875
transcript.pyannote[1738].end 16499.56221875
transcript.pyannote[1739].speaker SPEAKER_32
transcript.pyannote[1739].start 16499.86596875
transcript.pyannote[1739].end 16502.95409375
transcript.pyannote[1740].speaker SPEAKER_32
transcript.pyannote[1740].start 16503.15659375
transcript.pyannote[1740].end 16505.38409375
transcript.pyannote[1741].speaker SPEAKER_15
transcript.pyannote[1741].start 16506.88596875
transcript.pyannote[1741].end 16508.23596875
transcript.pyannote[1742].speaker SPEAKER_32
transcript.pyannote[1742].start 16508.28659375
transcript.pyannote[1742].end 16508.32034375
transcript.pyannote[1743].speaker SPEAKER_32
transcript.pyannote[1743].start 16509.55221875
transcript.pyannote[1743].end 16510.39596875
transcript.pyannote[1744].speaker SPEAKER_32
transcript.pyannote[1744].start 16510.44659375
transcript.pyannote[1744].end 16510.46346875
transcript.pyannote[1745].speaker SPEAKER_15
transcript.pyannote[1745].start 16510.46346875
transcript.pyannote[1745].end 16510.90221875
transcript.pyannote[1746].speaker SPEAKER_15
transcript.pyannote[1746].start 16515.07034375
transcript.pyannote[1746].end 16516.45409375
transcript.pyannote[1747].speaker SPEAKER_15
transcript.pyannote[1747].start 16516.84221875
transcript.pyannote[1747].end 16520.18346875
transcript.pyannote[1748].speaker SPEAKER_15
transcript.pyannote[1748].start 16520.58846875
transcript.pyannote[1748].end 16521.66846875
transcript.pyannote[1749].speaker SPEAKER_15
transcript.pyannote[1749].start 16523.54159375
transcript.pyannote[1749].end 16529.02596875
transcript.pyannote[1750].speaker SPEAKER_14
transcript.pyannote[1750].start 16529.53221875
transcript.pyannote[1750].end 16529.83596875
transcript.pyannote[1751].speaker SPEAKER_15
transcript.pyannote[1751].start 16533.71721875
transcript.pyannote[1751].end 16534.03784375
transcript.pyannote[1752].speaker SPEAKER_14
transcript.pyannote[1752].start 16534.03784375
transcript.pyannote[1752].end 16534.57784375
transcript.pyannote[1753].speaker SPEAKER_14
transcript.pyannote[1753].start 16534.93221875
transcript.pyannote[1753].end 16535.82659375
transcript.pyannote[1754].speaker SPEAKER_23
transcript.pyannote[1754].start 16536.07971875
transcript.pyannote[1754].end 16548.02721875
transcript.pyannote[1755].speaker SPEAKER_23
transcript.pyannote[1755].start 16548.21284375
transcript.pyannote[1755].end 16548.68534375
transcript.pyannote[1756].speaker SPEAKER_23
transcript.pyannote[1756].start 16550.35596875
transcript.pyannote[1756].end 16552.53284375
transcript.pyannote[1757].speaker SPEAKER_08
transcript.pyannote[1757].start 16552.53284375
transcript.pyannote[1757].end 16552.54971875
transcript.pyannote[1758].speaker SPEAKER_23
transcript.pyannote[1758].start 16553.29221875
transcript.pyannote[1758].end 16553.73096875
transcript.pyannote[1759].speaker SPEAKER_08
transcript.pyannote[1759].start 16553.73096875
transcript.pyannote[1759].end 16554.05159375
transcript.pyannote[1760].speaker SPEAKER_23
transcript.pyannote[1760].start 16554.05159375
transcript.pyannote[1760].end 16554.89534375
transcript.pyannote[1761].speaker SPEAKER_08
transcript.pyannote[1761].start 16554.13596875
transcript.pyannote[1761].end 16565.05409375
transcript.pyannote[1762].speaker SPEAKER_23
transcript.pyannote[1762].start 16555.01346875
transcript.pyannote[1762].end 16555.03034375
transcript.pyannote[1763].speaker SPEAKER_26
transcript.pyannote[1763].start 16555.03034375
transcript.pyannote[1763].end 16555.04721875
transcript.pyannote[1764].speaker SPEAKER_23
transcript.pyannote[1764].start 16555.04721875
transcript.pyannote[1764].end 16555.26659375
transcript.pyannote[1765].speaker SPEAKER_08
transcript.pyannote[1765].start 16565.52659375
transcript.pyannote[1765].end 16571.66909375
transcript.pyannote[1766].speaker SPEAKER_15
transcript.pyannote[1766].start 16572.69846875
transcript.pyannote[1766].end 16580.08971875
transcript.pyannote[1767].speaker SPEAKER_26
transcript.pyannote[1767].start 16575.68534375
transcript.pyannote[1767].end 16577.03534375
transcript.pyannote[1768].speaker SPEAKER_26
transcript.pyannote[1768].start 16577.33909375
transcript.pyannote[1768].end 16578.26721875
transcript.pyannote[1769].speaker SPEAKER_26
transcript.pyannote[1769].start 16578.82409375
transcript.pyannote[1769].end 16579.63409375
transcript.pyannote[1770].speaker SPEAKER_26
transcript.pyannote[1770].start 16580.61284375
transcript.pyannote[1770].end 16580.81534375
transcript.pyannote[1771].speaker SPEAKER_15
transcript.pyannote[1771].start 16580.81534375
transcript.pyannote[1771].end 16581.65909375
transcript.pyannote[1772].speaker SPEAKER_15
transcript.pyannote[1772].start 16581.94596875
transcript.pyannote[1772].end 16585.72596875
transcript.pyannote[1773].speaker SPEAKER_16
transcript.pyannote[1773].start 16585.72596875
transcript.pyannote[1773].end 16589.52284375
transcript.pyannote[1774].speaker SPEAKER_16
transcript.pyannote[1774].start 16591.66596875
transcript.pyannote[1774].end 16594.24784375
transcript.pyannote[1775].speaker SPEAKER_16
transcript.pyannote[1775].start 16595.71596875
transcript.pyannote[1775].end 16608.96284375
transcript.pyannote[1776].speaker SPEAKER_16
transcript.pyannote[1776].start 16609.73909375
transcript.pyannote[1776].end 16615.17284375
transcript.pyannote[1777].speaker SPEAKER_16
transcript.pyannote[1777].start 16617.87284375
transcript.pyannote[1777].end 16617.97409375
transcript.pyannote[1778].speaker SPEAKER_26
transcript.pyannote[1778].start 16617.97409375
transcript.pyannote[1778].end 16618.04159375
transcript.pyannote[1779].speaker SPEAKER_16
transcript.pyannote[1779].start 16618.04159375
transcript.pyannote[1779].end 16618.09221875
transcript.pyannote[1780].speaker SPEAKER_16
transcript.pyannote[1780].start 16621.78784375
transcript.pyannote[1780].end 16641.34596875
transcript.pyannote[1781].speaker SPEAKER_15
transcript.pyannote[1781].start 16640.87346875
transcript.pyannote[1781].end 16644.13034375
transcript.pyannote[1782].speaker SPEAKER_15
transcript.pyannote[1782].start 16645.85159375
transcript.pyannote[1782].end 16655.99346875
transcript.pyannote[1783].speaker SPEAKER_15
transcript.pyannote[1783].start 16656.41534375
transcript.pyannote[1783].end 16658.33909375
transcript.pyannote[1784].speaker SPEAKER_15
transcript.pyannote[1784].start 16658.62596875
transcript.pyannote[1784].end 16658.92971875
transcript.pyannote[1785].speaker SPEAKER_15
transcript.pyannote[1785].start 16659.99284375
transcript.pyannote[1785].end 16660.27971875
transcript.pyannote[1786].speaker SPEAKER_15
transcript.pyannote[1786].start 16660.49909375
transcript.pyannote[1786].end 16661.37659375
transcript.pyannote[1787].speaker SPEAKER_15
transcript.pyannote[1787].start 16663.55346875
transcript.pyannote[1787].end 16664.32971875
transcript.pyannote[1788].speaker SPEAKER_15
transcript.pyannote[1788].start 16665.79784375
transcript.pyannote[1788].end 16667.36721875
transcript.pyannote[1789].speaker SPEAKER_15
transcript.pyannote[1789].start 16667.67096875
transcript.pyannote[1789].end 16669.07159375
transcript.pyannote[1790].speaker SPEAKER_15
transcript.pyannote[1790].start 16669.94909375
transcript.pyannote[1790].end 16670.82659375
transcript.pyannote[1791].speaker SPEAKER_15
transcript.pyannote[1791].start 16671.60284375
transcript.pyannote[1791].end 16673.35784375
transcript.pyannote[1792].speaker SPEAKER_15
transcript.pyannote[1792].start 16714.19534375
transcript.pyannote[1792].end 16714.61721875
transcript.pyannote[1793].speaker SPEAKER_15
transcript.pyannote[1793].start 16715.57909375
transcript.pyannote[1793].end 16718.93721875
transcript.pyannote[1794].speaker SPEAKER_15
transcript.pyannote[1794].start 16718.97096875
transcript.pyannote[1794].end 16726.85159375
transcript.pyannote[1795].speaker SPEAKER_15
transcript.pyannote[1795].start 16727.52659375
transcript.pyannote[1795].end 16728.25221875
transcript.pyannote[1796].speaker SPEAKER_15
transcript.pyannote[1796].start 16728.55596875
transcript.pyannote[1796].end 16730.47971875
transcript.pyannote[1797].speaker SPEAKER_15
transcript.pyannote[1797].start 16733.17971875
transcript.pyannote[1797].end 16733.53409375
transcript.pyannote[1798].speaker SPEAKER_15
transcript.pyannote[1798].start 16734.25971875
transcript.pyannote[1798].end 16735.87971875
transcript.pyannote[1799].speaker SPEAKER_15
transcript.pyannote[1799].start 16736.63909375
transcript.pyannote[1799].end 16738.37721875
transcript.pyannote[1800].speaker SPEAKER_15
transcript.pyannote[1800].start 16739.94659375
transcript.pyannote[1800].end 16745.02596875
transcript.pyannote[1801].speaker SPEAKER_15
transcript.pyannote[1801].start 16745.36346875
transcript.pyannote[1801].end 16746.47721875
transcript.pyannote[1802].speaker SPEAKER_15
transcript.pyannote[1802].start 16746.67971875
transcript.pyannote[1802].end 16747.96221875
transcript.pyannote[1803].speaker SPEAKER_15
transcript.pyannote[1803].start 16749.53159375
transcript.pyannote[1803].end 16750.18971875
transcript.pyannote[1804].speaker SPEAKER_15
transcript.pyannote[1804].start 16756.02846875
transcript.pyannote[1804].end 16758.47534375
transcript.pyannote[1805].speaker SPEAKER_15
transcript.pyannote[1805].start 16759.28534375
transcript.pyannote[1805].end 16761.05721875
transcript.pyannote[1806].speaker SPEAKER_15
transcript.pyannote[1806].start 16762.00221875
transcript.pyannote[1806].end 16764.51659375
transcript.pyannote[1807].speaker SPEAKER_15
transcript.pyannote[1807].start 16765.56284375
transcript.pyannote[1807].end 16765.57971875
transcript.pyannote[1808].speaker SPEAKER_02
transcript.pyannote[1808].start 16765.57971875
transcript.pyannote[1808].end 16766.67659375
transcript.pyannote[1809].speaker SPEAKER_02
transcript.pyannote[1809].start 16767.36846875
transcript.pyannote[1809].end 16768.33034375
transcript.pyannote[1810].speaker SPEAKER_02
transcript.pyannote[1810].start 16769.61284375
transcript.pyannote[1810].end 16779.60284375
transcript.pyannote[1811].speaker SPEAKER_15
transcript.pyannote[1811].start 16824.54096875
transcript.pyannote[1811].end 16834.17659375
transcript.pyannote[1812].speaker SPEAKER_15
transcript.pyannote[1812].start 16836.62346875
transcript.pyannote[1812].end 16836.64034375
transcript.pyannote[1813].speaker SPEAKER_02
transcript.pyannote[1813].start 16836.64034375
transcript.pyannote[1813].end 16837.01159375
transcript.pyannote[1814].speaker SPEAKER_15
transcript.pyannote[1814].start 16837.01159375
transcript.pyannote[1814].end 16837.02846875
transcript.pyannote[1815].speaker SPEAKER_02
transcript.pyannote[1815].start 16837.02846875
transcript.pyannote[1815].end 16837.06221875
transcript.pyannote[1816].speaker SPEAKER_02
transcript.pyannote[1816].start 16837.61909375
transcript.pyannote[1816].end 16839.27284375
transcript.pyannote[1817].speaker SPEAKER_02
transcript.pyannote[1817].start 16839.89721875
transcript.pyannote[1817].end 16841.55096875
transcript.pyannote[1818].speaker SPEAKER_02
transcript.pyannote[1818].start 16841.85471875
transcript.pyannote[1818].end 16849.49909375
transcript.pyannote[1819].speaker SPEAKER_02
transcript.pyannote[1819].start 16849.97159375
transcript.pyannote[1819].end 16853.12721875
transcript.pyannote[1820].speaker SPEAKER_02
transcript.pyannote[1820].start 16855.91159375
transcript.pyannote[1820].end 16861.48034375
transcript.pyannote[1821].speaker SPEAKER_02
transcript.pyannote[1821].start 16861.91909375
transcript.pyannote[1821].end 16862.47596875
transcript.pyannote[1822].speaker SPEAKER_02
transcript.pyannote[1822].start 16863.18471875
transcript.pyannote[1822].end 16863.50534375
transcript.pyannote[1823].speaker SPEAKER_02
transcript.pyannote[1823].start 16863.75846875
transcript.pyannote[1823].end 16864.31534375
transcript.pyannote[1824].speaker SPEAKER_02
transcript.pyannote[1824].start 16864.72034375
transcript.pyannote[1824].end 16865.64846875
transcript.pyannote[1825].speaker SPEAKER_02
transcript.pyannote[1825].start 16865.95221875
transcript.pyannote[1825].end 16871.03159375
transcript.pyannote[1826].speaker SPEAKER_02
transcript.pyannote[1826].start 16871.58846875
transcript.pyannote[1826].end 16874.98034375
transcript.pyannote[1827].speaker SPEAKER_20
transcript.pyannote[1827].start 16871.62221875
transcript.pyannote[1827].end 16881.29159375
transcript.pyannote[1828].speaker SPEAKER_20
transcript.pyannote[1828].start 16881.71346875
transcript.pyannote[1828].end 16885.78034375
transcript.pyannote[1829].speaker SPEAKER_20
transcript.pyannote[1829].start 16886.20221875
transcript.pyannote[1829].end 16901.50784375
transcript.pyannote[1830].speaker SPEAKER_20
transcript.pyannote[1830].start 16901.59221875
transcript.pyannote[1830].end 16922.51721875
transcript.pyannote[1831].speaker SPEAKER_20
transcript.pyannote[1831].start 16922.97284375
transcript.pyannote[1831].end 16929.43596875
transcript.pyannote[1832].speaker SPEAKER_20
transcript.pyannote[1832].start 16929.52034375
transcript.pyannote[1832].end 16932.76034375
transcript.pyannote[1833].speaker SPEAKER_20
transcript.pyannote[1833].start 16933.62096875
transcript.pyannote[1833].end 16936.99596875
transcript.pyannote[1834].speaker SPEAKER_20
transcript.pyannote[1834].start 16937.60346875
transcript.pyannote[1834].end 16950.00659375
transcript.pyannote[1835].speaker SPEAKER_14
transcript.pyannote[1835].start 16947.93096875
transcript.pyannote[1835].end 16948.16721875
transcript.pyannote[1836].speaker SPEAKER_14
transcript.pyannote[1836].start 16948.89284375
transcript.pyannote[1836].end 16949.92221875
transcript.pyannote[1837].speaker SPEAKER_20
transcript.pyannote[1837].start 16950.61409375
transcript.pyannote[1837].end 16950.98534375
transcript.pyannote[1838].speaker SPEAKER_14
transcript.pyannote[1838].start 16950.98534375
transcript.pyannote[1838].end 16951.76159375
transcript.pyannote[1839].speaker SPEAKER_24
transcript.pyannote[1839].start 16955.45721875
transcript.pyannote[1839].end 16981.41096875
transcript.pyannote[1840].speaker SPEAKER_24
transcript.pyannote[1840].start 16981.79909375
transcript.pyannote[1840].end 17003.06159375
transcript.pyannote[1841].speaker SPEAKER_24
transcript.pyannote[1841].start 17004.05721875
transcript.pyannote[1841].end 17005.05284375
transcript.pyannote[1842].speaker SPEAKER_24
transcript.pyannote[1842].start 17006.18346875
transcript.pyannote[1842].end 17012.78159375
transcript.pyannote[1843].speaker SPEAKER_15
transcript.pyannote[1843].start 17014.19909375
transcript.pyannote[1843].end 17018.70471875
transcript.pyannote[1844].speaker SPEAKER_24
transcript.pyannote[1844].start 17016.69659375
transcript.pyannote[1844].end 17016.73034375
transcript.pyannote[1845].speaker SPEAKER_15
transcript.pyannote[1845].start 17019.61596875
transcript.pyannote[1845].end 17019.91971875
transcript.pyannote[1846].speaker SPEAKER_15
transcript.pyannote[1846].start 17020.47659375
transcript.pyannote[1846].end 17020.94909375
transcript.pyannote[1847].speaker SPEAKER_23
transcript.pyannote[1847].start 17021.75909375
transcript.pyannote[1847].end 17025.21846875
transcript.pyannote[1848].speaker SPEAKER_23
transcript.pyannote[1848].start 17025.43784375
transcript.pyannote[1848].end 17031.85034375
transcript.pyannote[1849].speaker SPEAKER_23
transcript.pyannote[1849].start 17032.59284375
transcript.pyannote[1849].end 17034.44909375
transcript.pyannote[1850].speaker SPEAKER_23
transcript.pyannote[1850].start 17034.65159375
transcript.pyannote[1850].end 17048.75909375
transcript.pyannote[1851].speaker SPEAKER_23
transcript.pyannote[1851].start 17049.11346875
transcript.pyannote[1851].end 17069.76846875
transcript.pyannote[1852].speaker SPEAKER_14
transcript.pyannote[1852].start 17071.69221875
transcript.pyannote[1852].end 17072.29971875
transcript.pyannote[1853].speaker SPEAKER_23
transcript.pyannote[1853].start 17072.29971875
transcript.pyannote[1853].end 17072.31659375
transcript.pyannote[1854].speaker SPEAKER_13
transcript.pyannote[1854].start 17072.31659375
transcript.pyannote[1854].end 17106.96096875
transcript.pyannote[1855].speaker SPEAKER_13
transcript.pyannote[1855].start 17107.65284375
transcript.pyannote[1855].end 17152.16909375
transcript.pyannote[1856].speaker SPEAKER_32
transcript.pyannote[1856].start 17153.56971875
transcript.pyannote[1856].end 17234.23221875
transcript.pyannote[1857].speaker SPEAKER_23
transcript.pyannote[1857].start 17237.70846875
transcript.pyannote[1857].end 17279.49096875
transcript.pyannote[1858].speaker SPEAKER_13
transcript.pyannote[1858].start 17281.95471875
transcript.pyannote[1858].end 17335.44846875
transcript.pyannote[1859].speaker SPEAKER_15
transcript.pyannote[1859].start 17335.22909375
transcript.pyannote[1859].end 17371.24034375
transcript.pyannote[1860].speaker SPEAKER_13
transcript.pyannote[1860].start 17335.54971875
transcript.pyannote[1860].end 17336.12346875
transcript.pyannote[1861].speaker SPEAKER_13
transcript.pyannote[1861].start 17336.51159375
transcript.pyannote[1861].end 17338.48596875
transcript.pyannote[1862].speaker SPEAKER_32
transcript.pyannote[1862].start 17345.06721875
transcript.pyannote[1862].end 17345.33721875
transcript.pyannote[1863].speaker SPEAKER_32
transcript.pyannote[1863].start 17348.59409375
transcript.pyannote[1863].end 17351.98596875
transcript.pyannote[1864].speaker SPEAKER_15
transcript.pyannote[1864].start 17373.04596875
transcript.pyannote[1864].end 17373.97409375
transcript.pyannote[1865].speaker SPEAKER_15
transcript.pyannote[1865].start 17374.51409375
transcript.pyannote[1865].end 17375.98221875
transcript.pyannote[1866].speaker SPEAKER_15
transcript.pyannote[1866].start 17378.80034375
transcript.pyannote[1866].end 17380.52159375
transcript.pyannote[1867].speaker SPEAKER_15
transcript.pyannote[1867].start 17384.18346875
transcript.pyannote[1867].end 17385.71909375
transcript.pyannote[1868].speaker SPEAKER_20
transcript.pyannote[1868].start 17385.71909375
transcript.pyannote[1868].end 17385.75284375
transcript.pyannote[1869].speaker SPEAKER_15
transcript.pyannote[1869].start 17385.75284375
transcript.pyannote[1869].end 17385.78659375
transcript.pyannote[1870].speaker SPEAKER_20
transcript.pyannote[1870].start 17385.78659375
transcript.pyannote[1870].end 17385.90471875
transcript.pyannote[1871].speaker SPEAKER_15
transcript.pyannote[1871].start 17385.90471875
transcript.pyannote[1871].end 17385.95534375
transcript.pyannote[1872].speaker SPEAKER_20
transcript.pyannote[1872].start 17385.95534375
transcript.pyannote[1872].end 17385.98909375
transcript.pyannote[1873].speaker SPEAKER_15
transcript.pyannote[1873].start 17385.98909375
transcript.pyannote[1873].end 17386.02284375
transcript.pyannote[1874].speaker SPEAKER_20
transcript.pyannote[1874].start 17386.02284375
transcript.pyannote[1874].end 17392.70534375
transcript.pyannote[1875].speaker SPEAKER_20
transcript.pyannote[1875].start 17393.34659375
transcript.pyannote[1875].end 17394.15659375
transcript.pyannote[1876].speaker SPEAKER_20
transcript.pyannote[1876].start 17394.52784375
transcript.pyannote[1876].end 17397.09284375
transcript.pyannote[1877].speaker SPEAKER_20
transcript.pyannote[1877].start 17397.31221875
transcript.pyannote[1877].end 17397.76784375
transcript.pyannote[1878].speaker SPEAKER_22
transcript.pyannote[1878].start 17397.93659375
transcript.pyannote[1878].end 17398.51034375
transcript.pyannote[1879].speaker SPEAKER_22
transcript.pyannote[1879].start 17399.03346875
transcript.pyannote[1879].end 17399.06721875
transcript.pyannote[1880].speaker SPEAKER_20
transcript.pyannote[1880].start 17399.06721875
transcript.pyannote[1880].end 17399.75909375
transcript.pyannote[1881].speaker SPEAKER_15
transcript.pyannote[1881].start 17399.75909375
transcript.pyannote[1881].end 17399.82659375
transcript.pyannote[1882].speaker SPEAKER_15
transcript.pyannote[1882].start 17399.97846875
transcript.pyannote[1882].end 17400.07971875
transcript.pyannote[1883].speaker SPEAKER_20
transcript.pyannote[1883].start 17400.07971875
transcript.pyannote[1883].end 17400.97409375
transcript.pyannote[1884].speaker SPEAKER_15
transcript.pyannote[1884].start 17400.97409375
transcript.pyannote[1884].end 17401.58159375
transcript.pyannote[1885].speaker SPEAKER_15
transcript.pyannote[1885].start 17401.81784375
transcript.pyannote[1885].end 17401.88534375
transcript.pyannote[1886].speaker SPEAKER_15
transcript.pyannote[1886].start 17401.93596875
transcript.pyannote[1886].end 17402.03721875
transcript.pyannote[1887].speaker SPEAKER_15
transcript.pyannote[1887].start 17402.10471875
transcript.pyannote[1887].end 17408.41596875
transcript.pyannote[1888].speaker SPEAKER_15
transcript.pyannote[1888].start 17410.81221875
transcript.pyannote[1888].end 17411.14971875
transcript.pyannote[1889].speaker SPEAKER_15
transcript.pyannote[1889].start 17411.48721875
transcript.pyannote[1889].end 17413.57971875
transcript.pyannote[1890].speaker SPEAKER_15
transcript.pyannote[1890].start 17414.55846875
transcript.pyannote[1890].end 17415.84096875
transcript.pyannote[1891].speaker SPEAKER_15
transcript.pyannote[1891].start 17418.57471875
transcript.pyannote[1891].end 17419.03034375
transcript.pyannote[1892].speaker SPEAKER_14
transcript.pyannote[1892].start 17419.03034375
transcript.pyannote[1892].end 17419.26659375
transcript.pyannote[1893].speaker SPEAKER_23
transcript.pyannote[1893].start 17428.76721875
transcript.pyannote[1893].end 17430.75846875
transcript.pyannote[1894].speaker SPEAKER_15
transcript.pyannote[1894].start 17428.96971875
transcript.pyannote[1894].end 17432.19284375
transcript.pyannote[1895].speaker SPEAKER_23
transcript.pyannote[1895].start 17431.19721875
transcript.pyannote[1895].end 17432.12534375
transcript.pyannote[1896].speaker SPEAKER_23
transcript.pyannote[1896].start 17432.19284375
transcript.pyannote[1896].end 17436.88409375
transcript.pyannote[1897].speaker SPEAKER_23
transcript.pyannote[1897].start 17438.50409375
transcript.pyannote[1897].end 17439.61784375
transcript.pyannote[1898].speaker SPEAKER_14
transcript.pyannote[1898].start 17439.61784375
transcript.pyannote[1898].end 17439.95534375
transcript.pyannote[1899].speaker SPEAKER_23
transcript.pyannote[1899].start 17439.95534375
transcript.pyannote[1899].end 17439.97221875
transcript.pyannote[1900].speaker SPEAKER_14
transcript.pyannote[1900].start 17439.97221875
transcript.pyannote[1900].end 17440.00596875
transcript.pyannote[1901].speaker SPEAKER_23
transcript.pyannote[1901].start 17440.00596875
transcript.pyannote[1901].end 17450.94096875
transcript.pyannote[1902].speaker SPEAKER_14
transcript.pyannote[1902].start 17440.19159375
transcript.pyannote[1902].end 17440.57971875
transcript.pyannote[1903].speaker SPEAKER_23
transcript.pyannote[1903].start 17451.37971875
transcript.pyannote[1903].end 17461.82534375
transcript.pyannote[1904].speaker SPEAKER_14
transcript.pyannote[1904].start 17462.06159375
transcript.pyannote[1904].end 17462.36534375
transcript.pyannote[1905].speaker SPEAKER_02
transcript.pyannote[1905].start 17470.39784375
transcript.pyannote[1905].end 17473.55346875
transcript.pyannote[1906].speaker SPEAKER_23
transcript.pyannote[1906].start 17478.12659375
transcript.pyannote[1906].end 17501.14409375
transcript.pyannote[1907].speaker SPEAKER_16
transcript.pyannote[1907].start 17479.13909375
transcript.pyannote[1907].end 17479.15596875
transcript.pyannote[1908].speaker SPEAKER_02
transcript.pyannote[1908].start 17479.15596875
transcript.pyannote[1908].end 17479.17284375
transcript.pyannote[1909].speaker SPEAKER_27
transcript.pyannote[1909].start 17479.17284375
transcript.pyannote[1909].end 17479.76346875
transcript.pyannote[1910].speaker SPEAKER_15
transcript.pyannote[1910].start 17502.29159375
transcript.pyannote[1910].end 17510.05409375
transcript.pyannote[1911].speaker SPEAKER_15
transcript.pyannote[1911].start 17511.79221875
transcript.pyannote[1911].end 17518.47471875
transcript.pyannote[1912].speaker SPEAKER_23
transcript.pyannote[1912].start 17517.71534375
transcript.pyannote[1912].end 17535.82221875
transcript.pyannote[1913].speaker SPEAKER_15
transcript.pyannote[1913].start 17518.98096875
transcript.pyannote[1913].end 17520.11159375
transcript.pyannote[1914].speaker SPEAKER_23
transcript.pyannote[1914].start 17537.57721875
transcript.pyannote[1914].end 17540.34471875
transcript.pyannote[1915].speaker SPEAKER_23
transcript.pyannote[1915].start 17540.64846875
transcript.pyannote[1915].end 17540.96909375
transcript.pyannote[1916].speaker SPEAKER_15
transcript.pyannote[1916].start 17541.94784375
transcript.pyannote[1916].end 17544.09096875
transcript.pyannote[1917].speaker SPEAKER_15
transcript.pyannote[1917].start 17544.52971875
transcript.pyannote[1917].end 17548.29284375
transcript.pyannote[1918].speaker SPEAKER_15
transcript.pyannote[1918].start 17549.45721875
transcript.pyannote[1918].end 17551.41471875
transcript.pyannote[1919].speaker SPEAKER_15
transcript.pyannote[1919].start 17551.97159375
transcript.pyannote[1919].end 17552.03909375
transcript.pyannote[1920].speaker SPEAKER_15
transcript.pyannote[1920].start 17552.05596875
transcript.pyannote[1920].end 17552.86596875
transcript.pyannote[1921].speaker SPEAKER_15
transcript.pyannote[1921].start 17554.23284375
transcript.pyannote[1921].end 17554.26659375
transcript.pyannote[1922].speaker SPEAKER_02
transcript.pyannote[1922].start 17554.26659375
transcript.pyannote[1922].end 17554.70534375
transcript.pyannote[1923].speaker SPEAKER_15
transcript.pyannote[1923].start 17554.36784375
transcript.pyannote[1923].end 17554.67159375
transcript.pyannote[1924].speaker SPEAKER_15
transcript.pyannote[1924].start 17554.70534375
transcript.pyannote[1924].end 17555.17784375
transcript.pyannote[1925].speaker SPEAKER_14
transcript.pyannote[1925].start 17555.17784375
transcript.pyannote[1925].end 17555.21159375
transcript.pyannote[1926].speaker SPEAKER_02
transcript.pyannote[1926].start 17555.59971875
transcript.pyannote[1926].end 17556.54471875
transcript.pyannote[1927].speaker SPEAKER_02
transcript.pyannote[1927].start 17556.98346875
transcript.pyannote[1927].end 17558.55284375
transcript.pyannote[1928].speaker SPEAKER_02
transcript.pyannote[1928].start 17559.81846875
transcript.pyannote[1928].end 17562.06284375
transcript.pyannote[1929].speaker SPEAKER_02
transcript.pyannote[1929].start 17564.62784375
transcript.pyannote[1929].end 17565.35346875
transcript.pyannote[1930].speaker SPEAKER_02
transcript.pyannote[1930].start 17567.63159375
transcript.pyannote[1930].end 17572.54221875
transcript.pyannote[1931].speaker SPEAKER_15
transcript.pyannote[1931].start 17569.85909375
transcript.pyannote[1931].end 17569.97721875
transcript.pyannote[1932].speaker SPEAKER_15
transcript.pyannote[1932].start 17570.02784375
transcript.pyannote[1932].end 17570.90534375
transcript.pyannote[1933].speaker SPEAKER_02
transcript.pyannote[1933].start 17573.89221875
transcript.pyannote[1933].end 17577.36846875
transcript.pyannote[1934].speaker SPEAKER_15
transcript.pyannote[1934].start 17575.17471875
transcript.pyannote[1934].end 17576.67659375
transcript.pyannote[1935].speaker SPEAKER_29
transcript.pyannote[1935].start 17577.92534375
transcript.pyannote[1935].end 17584.20284375
transcript.pyannote[1936].speaker SPEAKER_06
transcript.pyannote[1936].start 17585.48534375
transcript.pyannote[1936].end 17586.16034375
transcript.pyannote[1937].speaker SPEAKER_06
transcript.pyannote[1937].start 17586.97034375
transcript.pyannote[1937].end 17587.78034375
transcript.pyannote[1938].speaker SPEAKER_06
transcript.pyannote[1938].start 17588.05034375
transcript.pyannote[1938].end 17612.06346875
transcript.pyannote[1939].speaker SPEAKER_06
transcript.pyannote[1939].start 17612.55284375
transcript.pyannote[1939].end 17624.16284375
transcript.pyannote[1940].speaker SPEAKER_15
transcript.pyannote[1940].start 17622.44159375
transcript.pyannote[1940].end 17626.67721875
transcript.pyannote[1941].speaker SPEAKER_06
transcript.pyannote[1941].start 17627.74034375
transcript.pyannote[1941].end 17629.39409375
transcript.pyannote[1942].speaker SPEAKER_15
transcript.pyannote[1942].start 17630.52471875
transcript.pyannote[1942].end 17631.99284375
transcript.pyannote[1943].speaker SPEAKER_15
transcript.pyannote[1943].start 17633.83221875
transcript.pyannote[1943].end 17634.37221875
transcript.pyannote[1944].speaker SPEAKER_15
transcript.pyannote[1944].start 17635.46909375
transcript.pyannote[1944].end 17636.12721875
transcript.pyannote[1945].speaker SPEAKER_15
transcript.pyannote[1945].start 17638.99596875
transcript.pyannote[1945].end 17644.90221875
transcript.pyannote[1946].speaker SPEAKER_23
transcript.pyannote[1946].start 17644.10909375
transcript.pyannote[1946].end 17644.19346875
transcript.pyannote[1947].speaker SPEAKER_23
transcript.pyannote[1947].start 17644.34534375
transcript.pyannote[1947].end 17644.39596875
transcript.pyannote[1948].speaker SPEAKER_23
transcript.pyannote[1948].start 17644.90221875
transcript.pyannote[1948].end 17645.03721875
transcript.pyannote[1949].speaker SPEAKER_23
transcript.pyannote[1949].start 17645.18909375
transcript.pyannote[1949].end 17651.48346875
transcript.pyannote[1950].speaker SPEAKER_15
transcript.pyannote[1950].start 17649.89721875
transcript.pyannote[1950].end 17655.87096875
transcript.pyannote[1951].speaker SPEAKER_23
transcript.pyannote[1951].start 17653.77846875
transcript.pyannote[1951].end 17655.39846875
transcript.pyannote[1952].speaker SPEAKER_23
transcript.pyannote[1952].start 17655.87096875
transcript.pyannote[1952].end 17655.93846875
transcript.pyannote[1953].speaker SPEAKER_15
transcript.pyannote[1953].start 17655.93846875
transcript.pyannote[1953].end 17655.95534375
transcript.pyannote[1954].speaker SPEAKER_23
transcript.pyannote[1954].start 17655.95534375
transcript.pyannote[1954].end 17655.97221875
transcript.pyannote[1955].speaker SPEAKER_15
transcript.pyannote[1955].start 17655.97221875
transcript.pyannote[1955].end 17656.02284375
transcript.pyannote[1956].speaker SPEAKER_23
transcript.pyannote[1956].start 17656.02284375
transcript.pyannote[1956].end 17656.05659375
transcript.pyannote[1957].speaker SPEAKER_15
transcript.pyannote[1957].start 17656.05659375
transcript.pyannote[1957].end 17656.12409375
transcript.pyannote[1958].speaker SPEAKER_23
transcript.pyannote[1958].start 17656.12409375
transcript.pyannote[1958].end 17656.25909375
transcript.pyannote[1959].speaker SPEAKER_15
transcript.pyannote[1959].start 17656.25909375
transcript.pyannote[1959].end 17656.49534375
transcript.pyannote[1960].speaker SPEAKER_23
transcript.pyannote[1960].start 17656.49534375
transcript.pyannote[1960].end 17656.56284375
transcript.pyannote[1961].speaker SPEAKER_15
transcript.pyannote[1961].start 17656.56284375
transcript.pyannote[1961].end 17656.74846875
transcript.pyannote[1962].speaker SPEAKER_23
transcript.pyannote[1962].start 17656.74846875
transcript.pyannote[1962].end 17656.79909375
transcript.pyannote[1963].speaker SPEAKER_23
transcript.pyannote[1963].start 17656.84971875
transcript.pyannote[1963].end 17700.64034375
transcript.pyannote[1964].speaker SPEAKER_15
transcript.pyannote[1964].start 17701.19721875
transcript.pyannote[1964].end 17703.08721875
transcript.pyannote[1965].speaker SPEAKER_15
transcript.pyannote[1965].start 17706.17534375
transcript.pyannote[1965].end 17709.92159375
transcript.pyannote[1966].speaker SPEAKER_15
transcript.pyannote[1966].start 17710.83284375
transcript.pyannote[1966].end 17719.11846875
transcript.pyannote[1967].speaker SPEAKER_15
transcript.pyannote[1967].start 17720.26596875
transcript.pyannote[1967].end 17722.08846875
transcript.pyannote[1968].speaker SPEAKER_15
transcript.pyannote[1968].start 17723.32034375
transcript.pyannote[1968].end 17724.24846875
transcript.pyannote[1969].speaker SPEAKER_15
transcript.pyannote[1969].start 17724.45096875
transcript.pyannote[1969].end 17725.36221875
transcript.pyannote[1970].speaker SPEAKER_26
transcript.pyannote[1970].start 17725.56471875
transcript.pyannote[1970].end 17725.90221875
transcript.pyannote[1971].speaker SPEAKER_15
transcript.pyannote[1971].start 17726.56034375
transcript.pyannote[1971].end 17726.88096875
transcript.pyannote[1972].speaker SPEAKER_15
transcript.pyannote[1972].start 17727.89346875
transcript.pyannote[1972].end 17730.44159375
transcript.pyannote[1973].speaker SPEAKER_15
transcript.pyannote[1973].start 17731.40346875
transcript.pyannote[1973].end 17732.63534375
transcript.pyannote[1974].speaker SPEAKER_27
transcript.pyannote[1974].start 17733.96846875
transcript.pyannote[1974].end 17734.03596875
transcript.pyannote[1975].speaker SPEAKER_26
transcript.pyannote[1975].start 17734.03596875
transcript.pyannote[1975].end 17734.06971875
transcript.pyannote[1976].speaker SPEAKER_26
transcript.pyannote[1976].start 17734.30596875
transcript.pyannote[1976].end 17735.03159375
transcript.pyannote[1977].speaker SPEAKER_26
transcript.pyannote[1977].start 17735.09909375
transcript.pyannote[1977].end 17735.11596875
transcript.pyannote[1978].speaker SPEAKER_15
transcript.pyannote[1978].start 17735.11596875
transcript.pyannote[1978].end 17738.89596875
transcript.pyannote[1979].speaker SPEAKER_15
transcript.pyannote[1979].start 17740.11096875
transcript.pyannote[1979].end 17742.37221875
transcript.pyannote[1980].speaker SPEAKER_15
transcript.pyannote[1980].start 17742.92909375
transcript.pyannote[1980].end 17743.26659375
transcript.pyannote[1981].speaker SPEAKER_15
transcript.pyannote[1981].start 17745.13971875
transcript.pyannote[1981].end 17745.84846875
transcript.pyannote[1982].speaker SPEAKER_15
transcript.pyannote[1982].start 17746.87784375
transcript.pyannote[1982].end 17749.74659375
transcript.pyannote[1983].speaker SPEAKER_15
transcript.pyannote[1983].start 17751.56909375
transcript.pyannote[1983].end 17753.03721875
transcript.pyannote[1984].speaker SPEAKER_29
transcript.pyannote[1984].start 17753.03721875
transcript.pyannote[1984].end 17754.28596875
transcript.pyannote[1985].speaker SPEAKER_29
transcript.pyannote[1985].start 17754.62346875
transcript.pyannote[1985].end 17759.07846875
transcript.pyannote[1986].speaker SPEAKER_29
transcript.pyannote[1986].start 17759.43284375
transcript.pyannote[1986].end 17763.53346875
transcript.pyannote[1987].speaker SPEAKER_29
transcript.pyannote[1987].start 17763.78659375
transcript.pyannote[1987].end 17768.78159375
transcript.pyannote[1988].speaker SPEAKER_29
transcript.pyannote[1988].start 17769.05159375
transcript.pyannote[1988].end 17772.98346875
transcript.pyannote[1989].speaker SPEAKER_29
transcript.pyannote[1989].start 17773.55721875
transcript.pyannote[1989].end 17778.21471875
transcript.pyannote[1990].speaker SPEAKER_29
transcript.pyannote[1990].start 17779.17659375
transcript.pyannote[1990].end 17791.44471875
transcript.pyannote[1991].speaker SPEAKER_29
transcript.pyannote[1991].start 17791.96784375
transcript.pyannote[1991].end 17795.14034375
transcript.pyannote[1992].speaker SPEAKER_29
transcript.pyannote[1992].start 17795.56221875
transcript.pyannote[1992].end 17800.84409375
transcript.pyannote[1993].speaker SPEAKER_29
transcript.pyannote[1993].start 17801.82284375
transcript.pyannote[1993].end 17806.73346875
transcript.pyannote[1994].speaker SPEAKER_29
transcript.pyannote[1994].start 17806.91909375
transcript.pyannote[1994].end 17807.47596875
transcript.pyannote[1995].speaker SPEAKER_29
transcript.pyannote[1995].start 17808.11721875
transcript.pyannote[1995].end 17810.64846875
transcript.pyannote[1996].speaker SPEAKER_29
transcript.pyannote[1996].start 17811.17159375
transcript.pyannote[1996].end 17811.99846875
transcript.pyannote[1997].speaker SPEAKER_29
transcript.pyannote[1997].start 17812.25159375
transcript.pyannote[1997].end 17812.85909375
transcript.pyannote[1998].speaker SPEAKER_29
transcript.pyannote[1998].start 17813.33159375
transcript.pyannote[1998].end 17818.17471875
transcript.pyannote[1999].speaker SPEAKER_29
transcript.pyannote[1999].start 17818.44471875
transcript.pyannote[1999].end 17818.98471875
transcript.pyannote[2000].speaker SPEAKER_29
transcript.pyannote[2000].start 17819.18721875
transcript.pyannote[2000].end 17824.95846875
transcript.pyannote[2001].speaker SPEAKER_29
transcript.pyannote[2001].start 17825.32971875
transcript.pyannote[2001].end 17829.02534375
transcript.pyannote[2002].speaker SPEAKER_29
transcript.pyannote[2002].start 17829.39659375
transcript.pyannote[2002].end 17832.68721875
transcript.pyannote[2003].speaker SPEAKER_29
transcript.pyannote[2003].start 17832.77159375
transcript.pyannote[2003].end 17851.16534375
transcript.pyannote[2004].speaker SPEAKER_29
transcript.pyannote[2004].start 17851.70534375
transcript.pyannote[2004].end 17856.48096875
transcript.pyannote[2005].speaker SPEAKER_29
transcript.pyannote[2005].start 17857.08846875
transcript.pyannote[2005].end 17861.18909375
transcript.pyannote[2006].speaker SPEAKER_20
transcript.pyannote[2006].start 17862.96096875
transcript.pyannote[2006].end 17864.36159375
transcript.pyannote[2007].speaker SPEAKER_20
transcript.pyannote[2007].start 17864.39534375
transcript.pyannote[2007].end 17868.24284375
transcript.pyannote[2008].speaker SPEAKER_20
transcript.pyannote[2008].start 17868.73221875
transcript.pyannote[2008].end 17870.23409375
transcript.pyannote[2009].speaker SPEAKER_20
transcript.pyannote[2009].start 17871.93846875
transcript.pyannote[2009].end 17875.83659375
transcript.pyannote[2010].speaker SPEAKER_20
transcript.pyannote[2010].start 17876.19096875
transcript.pyannote[2010].end 17899.71471875
transcript.pyannote[2011].speaker SPEAKER_20
transcript.pyannote[2011].start 17900.15346875
transcript.pyannote[2011].end 17915.98221875
transcript.pyannote[2012].speaker SPEAKER_20
transcript.pyannote[2012].start 17916.55596875
transcript.pyannote[2012].end 17928.55409375
transcript.pyannote[2013].speaker SPEAKER_20
transcript.pyannote[2013].start 17929.11096875
transcript.pyannote[2013].end 17939.62409375
transcript.pyannote[2014].speaker SPEAKER_20
transcript.pyannote[2014].start 17940.06284375
transcript.pyannote[2014].end 17963.53596875
transcript.pyannote[2015].speaker SPEAKER_20
transcript.pyannote[2015].start 17963.95784375
transcript.pyannote[2015].end 17967.77159375
transcript.pyannote[2016].speaker SPEAKER_20
transcript.pyannote[2016].start 17968.15971875
transcript.pyannote[2016].end 17971.97346875
transcript.pyannote[2017].speaker SPEAKER_20
transcript.pyannote[2017].start 17972.56409375
transcript.pyannote[2017].end 17974.82534375
transcript.pyannote[2018].speaker SPEAKER_15
transcript.pyannote[2018].start 17974.55534375
transcript.pyannote[2018].end 17974.77471875
transcript.pyannote[2019].speaker SPEAKER_15
transcript.pyannote[2019].start 17974.82534375
transcript.pyannote[2019].end 17976.95159375
transcript.pyannote[2020].speaker SPEAKER_23
transcript.pyannote[2020].start 17975.68596875
transcript.pyannote[2020].end 17975.95596875
transcript.pyannote[2021].speaker SPEAKER_20
transcript.pyannote[2021].start 17978.82471875
transcript.pyannote[2021].end 17978.97659375
transcript.pyannote[2022].speaker SPEAKER_15
transcript.pyannote[2022].start 17978.97659375
transcript.pyannote[2022].end 17979.31409375
transcript.pyannote[2023].speaker SPEAKER_20
transcript.pyannote[2023].start 17979.31409375
transcript.pyannote[2023].end 17979.36471875
transcript.pyannote[2024].speaker SPEAKER_15
transcript.pyannote[2024].start 17979.36471875
transcript.pyannote[2024].end 17979.38159375
transcript.pyannote[2025].speaker SPEAKER_23
transcript.pyannote[2025].start 17979.38159375
transcript.pyannote[2025].end 17981.87909375
transcript.pyannote[2026].speaker SPEAKER_23
transcript.pyannote[2026].start 17982.50346875
transcript.pyannote[2026].end 17989.30409375
transcript.pyannote[2027].speaker SPEAKER_23
transcript.pyannote[2027].start 17989.69221875
transcript.pyannote[2027].end 17994.83909375
transcript.pyannote[2028].speaker SPEAKER_23
transcript.pyannote[2028].start 17995.17659375
transcript.pyannote[2028].end 18004.35659375
transcript.pyannote[2029].speaker SPEAKER_23
transcript.pyannote[2029].start 18005.04846875
transcript.pyannote[2029].end 18016.35471875
transcript.pyannote[2030].speaker SPEAKER_23
transcript.pyannote[2030].start 18017.24909375
transcript.pyannote[2030].end 18037.60034375
transcript.pyannote[2031].speaker SPEAKER_23
transcript.pyannote[2031].start 18037.90409375
transcript.pyannote[2031].end 18110.31471875
transcript.pyannote[2032].speaker SPEAKER_15
transcript.pyannote[2032].start 18111.51284375
transcript.pyannote[2032].end 18112.81221875
transcript.pyannote[2033].speaker SPEAKER_15
transcript.pyannote[2033].start 18113.35221875
transcript.pyannote[2033].end 18114.73596875
transcript.pyannote[2034].speaker SPEAKER_31
transcript.pyannote[2034].start 18114.73596875
transcript.pyannote[2034].end 18114.75284375
transcript.pyannote[2035].speaker SPEAKER_15
transcript.pyannote[2035].start 18115.84971875
transcript.pyannote[2035].end 18115.86659375
transcript.pyannote[2036].speaker SPEAKER_31
transcript.pyannote[2036].start 18115.86659375
transcript.pyannote[2036].end 18180.61596875
transcript.pyannote[2037].speaker SPEAKER_13
transcript.pyannote[2037].start 18186.06659375
transcript.pyannote[2037].end 18188.44596875
transcript.pyannote[2038].speaker SPEAKER_13
transcript.pyannote[2038].start 18189.52596875
transcript.pyannote[2038].end 18196.29284375
transcript.pyannote[2039].speaker SPEAKER_13
transcript.pyannote[2039].start 18196.69784375
transcript.pyannote[2039].end 18201.77721875
transcript.pyannote[2040].speaker SPEAKER_13
transcript.pyannote[2040].start 18202.26659375
transcript.pyannote[2040].end 18221.38596875
transcript.pyannote[2041].speaker SPEAKER_13
transcript.pyannote[2041].start 18221.84159375
transcript.pyannote[2041].end 18234.53159375
transcript.pyannote[2042].speaker SPEAKER_29
transcript.pyannote[2042].start 18234.71721875
transcript.pyannote[2042].end 18238.34534375
transcript.pyannote[2043].speaker SPEAKER_29
transcript.pyannote[2043].start 18238.64909375
transcript.pyannote[2043].end 18244.75784375
transcript.pyannote[2044].speaker SPEAKER_29
transcript.pyannote[2044].start 18245.07846875
transcript.pyannote[2044].end 18250.29284375
transcript.pyannote[2045].speaker SPEAKER_13
transcript.pyannote[2045].start 18249.11159375
transcript.pyannote[2045].end 18254.07284375
transcript.pyannote[2046].speaker SPEAKER_29
transcript.pyannote[2046].start 18252.13221875
transcript.pyannote[2046].end 18259.23659375
transcript.pyannote[2047].speaker SPEAKER_13
transcript.pyannote[2047].start 18256.38471875
transcript.pyannote[2047].end 18280.75221875
transcript.pyannote[2048].speaker SPEAKER_29
transcript.pyannote[2048].start 18261.24471875
transcript.pyannote[2048].end 18263.89409375
transcript.pyannote[2049].speaker SPEAKER_29
transcript.pyannote[2049].start 18280.75221875
transcript.pyannote[2049].end 18290.08409375
transcript.pyannote[2050].speaker SPEAKER_29
transcript.pyannote[2050].start 18290.57346875
transcript.pyannote[2050].end 18294.47159375
transcript.pyannote[2051].speaker SPEAKER_13
transcript.pyannote[2051].start 18291.50159375
transcript.pyannote[2051].end 18298.40346875
transcript.pyannote[2052].speaker SPEAKER_29
transcript.pyannote[2052].start 18297.01971875
transcript.pyannote[2052].end 18299.19659375
transcript.pyannote[2053].speaker SPEAKER_13
transcript.pyannote[2053].start 18299.19659375
transcript.pyannote[2053].end 18320.44221875
transcript.pyannote[2054].speaker SPEAKER_11
transcript.pyannote[2054].start 18304.84971875
transcript.pyannote[2054].end 18305.71034375
transcript.pyannote[2055].speaker SPEAKER_13
transcript.pyannote[2055].start 18320.81346875
transcript.pyannote[2055].end 18321.57284375
transcript.pyannote[2056].speaker SPEAKER_15
transcript.pyannote[2056].start 18323.59784375
transcript.pyannote[2056].end 18325.99409375
transcript.pyannote[2057].speaker SPEAKER_15
transcript.pyannote[2057].start 18326.98971875
transcript.pyannote[2057].end 18327.88409375
transcript.pyannote[2058].speaker SPEAKER_05
transcript.pyannote[2058].start 18328.98096875
transcript.pyannote[2058].end 18331.49534375
transcript.pyannote[2059].speaker SPEAKER_05
transcript.pyannote[2059].start 18331.69784375
transcript.pyannote[2059].end 18333.04784375
transcript.pyannote[2060].speaker SPEAKER_05
transcript.pyannote[2060].start 18333.45284375
transcript.pyannote[2060].end 18340.74284375
transcript.pyannote[2061].speaker SPEAKER_05
transcript.pyannote[2061].start 18346.31159375
transcript.pyannote[2061].end 18348.69096875
transcript.pyannote[2062].speaker SPEAKER_05
transcript.pyannote[2062].start 18348.87659375
transcript.pyannote[2062].end 18350.05784375
transcript.pyannote[2063].speaker SPEAKER_05
transcript.pyannote[2063].start 18350.64846875
transcript.pyannote[2063].end 18356.53784375
transcript.pyannote[2064].speaker SPEAKER_05
transcript.pyannote[2064].start 18357.38159375
transcript.pyannote[2064].end 18360.95909375
transcript.pyannote[2065].speaker SPEAKER_05
transcript.pyannote[2065].start 18363.27096875
transcript.pyannote[2065].end 18363.96284375
transcript.pyannote[2066].speaker SPEAKER_05
transcript.pyannote[2066].start 18365.11034375
transcript.pyannote[2066].end 18368.18159375
transcript.pyannote[2067].speaker SPEAKER_05
transcript.pyannote[2067].start 18368.38409375
transcript.pyannote[2067].end 18370.57784375
transcript.pyannote[2068].speaker SPEAKER_05
transcript.pyannote[2068].start 18371.42159375
transcript.pyannote[2068].end 18372.29909375
transcript.pyannote[2069].speaker SPEAKER_05
transcript.pyannote[2069].start 18376.85534375
transcript.pyannote[2069].end 18377.53034375
transcript.pyannote[2070].speaker SPEAKER_05
transcript.pyannote[2070].start 18379.31909375
transcript.pyannote[2070].end 18389.24159375
transcript.pyannote[2071].speaker SPEAKER_05
transcript.pyannote[2071].start 18390.33846875
transcript.pyannote[2071].end 18391.24971875
transcript.pyannote[2072].speaker SPEAKER_05
transcript.pyannote[2072].start 18392.73471875
transcript.pyannote[2072].end 18394.27034375
transcript.pyannote[2073].speaker SPEAKER_05
transcript.pyannote[2073].start 18395.77221875
transcript.pyannote[2073].end 18402.58971875
transcript.pyannote[2074].speaker SPEAKER_05
transcript.pyannote[2074].start 18402.85971875
transcript.pyannote[2074].end 18403.83846875
transcript.pyannote[2075].speaker SPEAKER_05
transcript.pyannote[2075].start 18405.91409375
transcript.pyannote[2075].end 18407.24721875
transcript.pyannote[2076].speaker SPEAKER_05
transcript.pyannote[2076].start 18409.01909375
transcript.pyannote[2076].end 18419.29596875
transcript.pyannote[2077].speaker SPEAKER_05
transcript.pyannote[2077].start 18420.07221875
transcript.pyannote[2077].end 18427.80096875
transcript.pyannote[2078].speaker SPEAKER_05
transcript.pyannote[2078].start 18428.91471875
transcript.pyannote[2078].end 18445.09784375
transcript.pyannote[2079].speaker SPEAKER_29
transcript.pyannote[2079].start 18453.45096875
transcript.pyannote[2079].end 18453.50159375
transcript.pyannote[2080].speaker SPEAKER_29
transcript.pyannote[2080].start 18453.97409375
transcript.pyannote[2080].end 18454.02471875
transcript.pyannote[2081].speaker SPEAKER_05
transcript.pyannote[2081].start 18457.66971875
transcript.pyannote[2081].end 18468.85784375
transcript.pyannote[2082].speaker SPEAKER_05
transcript.pyannote[2082].start 18469.53284375
transcript.pyannote[2082].end 18472.65471875
transcript.pyannote[2083].speaker SPEAKER_05
transcript.pyannote[2083].start 18473.63346875
transcript.pyannote[2083].end 18476.06346875
transcript.pyannote[2084].speaker SPEAKER_20
transcript.pyannote[2084].start 18475.60784375
transcript.pyannote[2084].end 18484.66971875
transcript.pyannote[2085].speaker SPEAKER_20
transcript.pyannote[2085].start 18485.36159375
transcript.pyannote[2085].end 18487.38659375
transcript.pyannote[2086].speaker SPEAKER_20
transcript.pyannote[2086].start 18487.58909375
transcript.pyannote[2086].end 18495.43596875
transcript.pyannote[2087].speaker SPEAKER_00
transcript.pyannote[2087].start 18489.71534375
transcript.pyannote[2087].end 18489.78284375
transcript.pyannote[2088].speaker SPEAKER_26
transcript.pyannote[2088].start 18489.78284375
transcript.pyannote[2088].end 18489.81659375
transcript.pyannote[2089].speaker SPEAKER_00
transcript.pyannote[2089].start 18489.81659375
transcript.pyannote[2089].end 18489.85034375
transcript.pyannote[2090].speaker SPEAKER_26
transcript.pyannote[2090].start 18489.85034375
transcript.pyannote[2090].end 18491.90909375
transcript.pyannote[2091].speaker SPEAKER_00
transcript.pyannote[2091].start 18491.90909375
transcript.pyannote[2091].end 18491.99346875
transcript.pyannote[2092].speaker SPEAKER_20
transcript.pyannote[2092].start 18495.52034375
transcript.pyannote[2092].end 18500.56596875
transcript.pyannote[2093].speaker SPEAKER_20
transcript.pyannote[2093].start 18501.10596875
transcript.pyannote[2093].end 18504.21096875
transcript.pyannote[2094].speaker SPEAKER_20
transcript.pyannote[2094].start 18504.70034375
transcript.pyannote[2094].end 18506.23596875
transcript.pyannote[2095].speaker SPEAKER_20
transcript.pyannote[2095].start 18506.79284375
transcript.pyannote[2095].end 18507.67034375
transcript.pyannote[2096].speaker SPEAKER_20
transcript.pyannote[2096].start 18507.77159375
transcript.pyannote[2096].end 18509.05409375
transcript.pyannote[2097].speaker SPEAKER_20
transcript.pyannote[2097].start 18509.27346875
transcript.pyannote[2097].end 18510.94409375
transcript.pyannote[2098].speaker SPEAKER_20
transcript.pyannote[2098].start 18512.04096875
transcript.pyannote[2098].end 18515.17971875
transcript.pyannote[2099].speaker SPEAKER_20
transcript.pyannote[2099].start 18516.15846875
transcript.pyannote[2099].end 18518.75721875
transcript.pyannote[2100].speaker SPEAKER_20
transcript.pyannote[2100].start 18519.68534375
transcript.pyannote[2100].end 18523.26284375
transcript.pyannote[2101].speaker SPEAKER_20
transcript.pyannote[2101].start 18523.56659375
transcript.pyannote[2101].end 18526.57034375
transcript.pyannote[2102].speaker SPEAKER_20
transcript.pyannote[2102].start 18526.72221875
transcript.pyannote[2102].end 18552.03471875
transcript.pyannote[2103].speaker SPEAKER_20
transcript.pyannote[2103].start 18552.23721875
transcript.pyannote[2103].end 18554.53221875
transcript.pyannote[2104].speaker SPEAKER_20
transcript.pyannote[2104].start 18554.86971875
transcript.pyannote[2104].end 18576.45284375
transcript.pyannote[2105].speaker SPEAKER_20
transcript.pyannote[2105].start 18577.88721875
transcript.pyannote[2105].end 18578.88284375
transcript.pyannote[2106].speaker SPEAKER_32
transcript.pyannote[2106].start 18579.28784375
transcript.pyannote[2106].end 18663.25784375
transcript.pyannote[2107].speaker SPEAKER_32
transcript.pyannote[2107].start 18663.81471875
transcript.pyannote[2107].end 18691.99596875
transcript.pyannote[2108].speaker SPEAKER_15
transcript.pyannote[2108].start 18691.94534375
transcript.pyannote[2108].end 18695.80971875
transcript.pyannote[2109].speaker SPEAKER_15
transcript.pyannote[2109].start 18696.53534375
transcript.pyannote[2109].end 18697.39596875
transcript.pyannote[2110].speaker SPEAKER_15
transcript.pyannote[2110].start 18697.64909375
transcript.pyannote[2110].end 18699.25221875
transcript.pyannote[2111].speaker SPEAKER_15
transcript.pyannote[2111].start 18703.84221875
transcript.pyannote[2111].end 18705.14159375
transcript.pyannote[2112].speaker SPEAKER_00
transcript.pyannote[2112].start 18707.48721875
transcript.pyannote[2112].end 18708.36471875
transcript.pyannote[2113].speaker SPEAKER_00
transcript.pyannote[2113].start 18710.01846875
transcript.pyannote[2113].end 18710.52471875
transcript.pyannote[2114].speaker SPEAKER_00
transcript.pyannote[2114].start 18712.17846875
transcript.pyannote[2114].end 18714.13596875
transcript.pyannote[2115].speaker SPEAKER_19
transcript.pyannote[2115].start 18714.64221875
transcript.pyannote[2115].end 18716.81909375
transcript.pyannote[2116].speaker SPEAKER_19
transcript.pyannote[2116].start 18718.27034375
transcript.pyannote[2116].end 18720.29534375
transcript.pyannote[2117].speaker SPEAKER_19
transcript.pyannote[2117].start 18720.66659375
transcript.pyannote[2117].end 18725.91471875
transcript.pyannote[2118].speaker SPEAKER_15
transcript.pyannote[2118].start 18721.32471875
transcript.pyannote[2118].end 18721.34159375
transcript.pyannote[2119].speaker SPEAKER_14
transcript.pyannote[2119].start 18721.34159375
transcript.pyannote[2119].end 18721.35846875
transcript.pyannote[2120].speaker SPEAKER_15
transcript.pyannote[2120].start 18721.35846875
transcript.pyannote[2120].end 18721.39221875
transcript.pyannote[2121].speaker SPEAKER_14
transcript.pyannote[2121].start 18721.39221875
transcript.pyannote[2121].end 18721.94909375
transcript.pyannote[2122].speaker SPEAKER_19
transcript.pyannote[2122].start 18726.84284375
transcript.pyannote[2122].end 18728.74971875
transcript.pyannote[2123].speaker SPEAKER_19
transcript.pyannote[2123].start 18730.08284375
transcript.pyannote[2123].end 18730.84221875
transcript.pyannote[2124].speaker SPEAKER_19
transcript.pyannote[2124].start 18731.53409375
transcript.pyannote[2124].end 18733.47471875
transcript.pyannote[2125].speaker SPEAKER_19
transcript.pyannote[2125].start 18734.03159375
transcript.pyannote[2125].end 18735.58409375
transcript.pyannote[2126].speaker SPEAKER_19
transcript.pyannote[2126].start 18736.49534375
transcript.pyannote[2126].end 18738.50346875
transcript.pyannote[2127].speaker SPEAKER_19
transcript.pyannote[2127].start 18739.36409375
transcript.pyannote[2127].end 18740.66346875
transcript.pyannote[2128].speaker SPEAKER_19
transcript.pyannote[2128].start 18741.05159375
transcript.pyannote[2128].end 18745.57409375
transcript.pyannote[2129].speaker SPEAKER_19
transcript.pyannote[2129].start 18746.06346875
transcript.pyannote[2129].end 18747.75096875
transcript.pyannote[2130].speaker SPEAKER_19
transcript.pyannote[2130].start 18748.00409375
transcript.pyannote[2130].end 18751.17659375
transcript.pyannote[2131].speaker SPEAKER_19
transcript.pyannote[2131].start 18751.63221875
transcript.pyannote[2131].end 18757.52159375
transcript.pyannote[2132].speaker SPEAKER_19
transcript.pyannote[2132].start 18758.29784375
transcript.pyannote[2132].end 18759.22596875
transcript.pyannote[2133].speaker SPEAKER_19
transcript.pyannote[2133].start 18759.76596875
transcript.pyannote[2133].end 18761.41971875
transcript.pyannote[2134].speaker SPEAKER_19
transcript.pyannote[2134].start 18762.04409375
transcript.pyannote[2134].end 18767.79846875
transcript.pyannote[2135].speaker SPEAKER_20
transcript.pyannote[2135].start 18772.21971875
transcript.pyannote[2135].end 18773.75534375
transcript.pyannote[2136].speaker SPEAKER_20
transcript.pyannote[2136].start 18774.36284375
transcript.pyannote[2136].end 18778.24409375
transcript.pyannote[2137].speaker SPEAKER_20
transcript.pyannote[2137].start 18778.42971875
transcript.pyannote[2137].end 18783.61034375
transcript.pyannote[2138].speaker SPEAKER_20
transcript.pyannote[2138].start 18783.99846875
transcript.pyannote[2138].end 18793.06034375
transcript.pyannote[2139].speaker SPEAKER_20
transcript.pyannote[2139].start 18795.72659375
transcript.pyannote[2139].end 18796.38471875
transcript.pyannote[2140].speaker SPEAKER_02
transcript.pyannote[2140].start 18795.82784375
transcript.pyannote[2140].end 18796.67159375
transcript.pyannote[2141].speaker SPEAKER_02
transcript.pyannote[2141].start 18798.44346875
transcript.pyannote[2141].end 18802.93221875
transcript.pyannote[2142].speaker SPEAKER_02
transcript.pyannote[2142].start 18803.57346875
transcript.pyannote[2142].end 18807.99471875
transcript.pyannote[2143].speaker SPEAKER_02
transcript.pyannote[2143].start 18808.73721875
transcript.pyannote[2143].end 18822.82784375
transcript.pyannote[2144].speaker SPEAKER_02
transcript.pyannote[2144].start 18823.01346875
transcript.pyannote[2144].end 18828.56534375
transcript.pyannote[2145].speaker SPEAKER_02
transcript.pyannote[2145].start 18829.15596875
transcript.pyannote[2145].end 18830.28659375
transcript.pyannote[2146].speaker SPEAKER_20
transcript.pyannote[2146].start 18833.32409375
transcript.pyannote[2146].end 18834.57284375
transcript.pyannote[2147].speaker SPEAKER_20
transcript.pyannote[2147].start 18835.07909375
transcript.pyannote[2147].end 18838.43721875
transcript.pyannote[2148].speaker SPEAKER_20
transcript.pyannote[2148].start 18838.89284375
transcript.pyannote[2148].end 18848.49471875
transcript.pyannote[2149].speaker SPEAKER_20
transcript.pyannote[2149].start 18848.56221875
transcript.pyannote[2149].end 18849.00096875
transcript.pyannote[2150].speaker SPEAKER_20
transcript.pyannote[2150].start 18849.25409375
transcript.pyannote[2150].end 18891.23909375
transcript.pyannote[2151].speaker SPEAKER_20
transcript.pyannote[2151].start 18891.59346875
transcript.pyannote[2151].end 18896.80784375
transcript.pyannote[2152].speaker SPEAKER_02
transcript.pyannote[2152].start 18896.33534375
transcript.pyannote[2152].end 18900.67221875
transcript.pyannote[2153].speaker SPEAKER_02
transcript.pyannote[2153].start 18900.95909375
transcript.pyannote[2153].end 18910.96596875
transcript.pyannote[2154].speaker SPEAKER_20
transcript.pyannote[2154].start 18903.77721875
transcript.pyannote[2154].end 18903.82784375
transcript.pyannote[2155].speaker SPEAKER_26
transcript.pyannote[2155].start 18903.82784375
transcript.pyannote[2155].end 18904.33409375
transcript.pyannote[2156].speaker SPEAKER_20
transcript.pyannote[2156].start 18904.33409375
transcript.pyannote[2156].end 18904.36784375
transcript.pyannote[2157].speaker SPEAKER_02
transcript.pyannote[2157].start 18911.47221875
transcript.pyannote[2157].end 18916.36596875
transcript.pyannote[2158].speaker SPEAKER_02
transcript.pyannote[2158].start 18917.15909375
transcript.pyannote[2158].end 18918.82971875
transcript.pyannote[2159].speaker SPEAKER_02
transcript.pyannote[2159].start 18919.30221875
transcript.pyannote[2159].end 18924.26346875
transcript.pyannote[2160].speaker SPEAKER_02
transcript.pyannote[2160].start 18924.63471875
transcript.pyannote[2160].end 18926.42346875
transcript.pyannote[2161].speaker SPEAKER_02
transcript.pyannote[2161].start 18927.40221875
transcript.pyannote[2161].end 18931.51971875
transcript.pyannote[2162].speaker SPEAKER_02
transcript.pyannote[2162].start 18931.95846875
transcript.pyannote[2162].end 18932.97096875
transcript.pyannote[2163].speaker SPEAKER_02
transcript.pyannote[2163].start 18933.44346875
transcript.pyannote[2163].end 18936.21096875
transcript.pyannote[2164].speaker SPEAKER_20
transcript.pyannote[2164].start 18936.21096875
transcript.pyannote[2164].end 18950.68971875
transcript.pyannote[2165].speaker SPEAKER_02
transcript.pyannote[2165].start 18936.26159375
transcript.pyannote[2165].end 18936.32909375
transcript.pyannote[2166].speaker SPEAKER_02
transcript.pyannote[2166].start 18936.39659375
transcript.pyannote[2166].end 18936.51471875
transcript.pyannote[2167].speaker SPEAKER_02
transcript.pyannote[2167].start 18939.34971875
transcript.pyannote[2167].end 18941.83034375
transcript.pyannote[2168].speaker SPEAKER_02
transcript.pyannote[2168].start 18951.87096875
transcript.pyannote[2168].end 18966.65346875
transcript.pyannote[2169].speaker SPEAKER_20
transcript.pyannote[2169].start 18969.64034375
transcript.pyannote[2169].end 18975.81659375
transcript.pyannote[2170].speaker SPEAKER_20
transcript.pyannote[2170].start 18975.95159375
transcript.pyannote[2170].end 18990.27846875
transcript.pyannote[2171].speaker SPEAKER_20
transcript.pyannote[2171].start 18990.68346875
transcript.pyannote[2171].end 18992.25284375
transcript.pyannote[2172].speaker SPEAKER_20
transcript.pyannote[2172].start 18992.75909375
transcript.pyannote[2172].end 19008.04784375
transcript.pyannote[2173].speaker SPEAKER_20
transcript.pyannote[2173].start 19008.28409375
transcript.pyannote[2173].end 19008.73971875
transcript.pyannote[2174].speaker SPEAKER_20
transcript.pyannote[2174].start 19009.26284375
transcript.pyannote[2174].end 19010.46096875
transcript.pyannote[2175].speaker SPEAKER_20
transcript.pyannote[2175].start 19010.69721875
transcript.pyannote[2175].end 19016.31659375
transcript.pyannote[2176].speaker SPEAKER_20
transcript.pyannote[2176].start 19016.51909375
transcript.pyannote[2176].end 19023.84284375
transcript.pyannote[2177].speaker SPEAKER_17
transcript.pyannote[2177].start 19018.57784375
transcript.pyannote[2177].end 19019.26971875
transcript.pyannote[2178].speaker SPEAKER_17
transcript.pyannote[2178].start 19020.29909375
transcript.pyannote[2178].end 19021.85159375
transcript.pyannote[2179].speaker SPEAKER_20
transcript.pyannote[2179].start 19024.34909375
transcript.pyannote[2179].end 19027.70721875
transcript.pyannote[2180].speaker SPEAKER_20
transcript.pyannote[2180].start 19028.17971875
transcript.pyannote[2180].end 19032.82034375
transcript.pyannote[2181].speaker SPEAKER_20
transcript.pyannote[2181].start 19033.95096875
transcript.pyannote[2181].end 19034.49096875
transcript.pyannote[2182].speaker SPEAKER_20
transcript.pyannote[2182].start 19034.94659375
transcript.pyannote[2182].end 19036.97159375
transcript.pyannote[2183].speaker SPEAKER_15
transcript.pyannote[2183].start 19036.97159375
transcript.pyannote[2183].end 19037.41034375
transcript.pyannote[2184].speaker SPEAKER_15
transcript.pyannote[2184].start 19040.21159375
transcript.pyannote[2184].end 19044.58221875
transcript.pyannote[2185].speaker SPEAKER_15
transcript.pyannote[2185].start 19045.56096875
transcript.pyannote[2185].end 19049.89784375
transcript.pyannote[2186].speaker SPEAKER_15
transcript.pyannote[2186].start 19052.37846875
transcript.pyannote[2186].end 19053.15471875
transcript.pyannote[2187].speaker SPEAKER_14
transcript.pyannote[2187].start 19053.15471875
transcript.pyannote[2187].end 19053.18846875
transcript.pyannote[2188].speaker SPEAKER_14
transcript.pyannote[2188].start 19056.74909375
transcript.pyannote[2188].end 19057.33971875
transcript.pyannote[2189].speaker SPEAKER_14
transcript.pyannote[2189].start 19059.55034375
transcript.pyannote[2189].end 19061.57534375
transcript.pyannote[2190].speaker SPEAKER_15
transcript.pyannote[2190].start 19067.44784375
transcript.pyannote[2190].end 19069.03409375
transcript.pyannote[2191].speaker SPEAKER_15
transcript.pyannote[2191].start 19070.08034375
transcript.pyannote[2191].end 19082.11221875
transcript.pyannote[2192].speaker SPEAKER_15
transcript.pyannote[2192].start 19089.40221875
transcript.pyannote[2192].end 19093.78971875
transcript.pyannote[2193].speaker SPEAKER_15
transcript.pyannote[2193].start 19100.77596875
transcript.pyannote[2193].end 19101.40034375
transcript.pyannote[2194].speaker SPEAKER_15
transcript.pyannote[2194].start 19101.83909375
transcript.pyannote[2194].end 19103.99909375
transcript.pyannote[2195].speaker SPEAKER_15
transcript.pyannote[2195].start 19105.04534375
transcript.pyannote[2195].end 19105.06221875
transcript.pyannote[2196].speaker SPEAKER_14
transcript.pyannote[2196].start 19105.06221875
transcript.pyannote[2196].end 19105.18034375
transcript.pyannote[2197].speaker SPEAKER_15
transcript.pyannote[2197].start 19105.18034375
transcript.pyannote[2197].end 19105.38284375
transcript.pyannote[2198].speaker SPEAKER_14
transcript.pyannote[2198].start 19105.38284375
transcript.pyannote[2198].end 19105.50096875
transcript.pyannote[2199].speaker SPEAKER_15
transcript.pyannote[2199].start 19105.50096875
transcript.pyannote[2199].end 19105.53471875
transcript.pyannote[2200].speaker SPEAKER_15
transcript.pyannote[2200].start 19105.77096875
transcript.pyannote[2200].end 19106.66534375
transcript.pyannote[2201].speaker SPEAKER_15
transcript.pyannote[2201].start 19107.86346875
transcript.pyannote[2201].end 19108.94346875
transcript.pyannote[2202].speaker SPEAKER_15
transcript.pyannote[2202].start 19108.97721875
transcript.pyannote[2202].end 19109.02784375
transcript.pyannote[2203].speaker SPEAKER_15
transcript.pyannote[2203].start 19111.55909375
transcript.pyannote[2203].end 19117.65096875
transcript.pyannote[2204].speaker SPEAKER_15
transcript.pyannote[2204].start 19118.62971875
transcript.pyannote[2204].end 19119.28784375
transcript.pyannote[2205].speaker SPEAKER_15
transcript.pyannote[2205].start 19120.40159375
transcript.pyannote[2205].end 19123.35471875
transcript.pyannote[2206].speaker SPEAKER_15
transcript.pyannote[2206].start 19124.63721875
transcript.pyannote[2206].end 19126.56096875
transcript.pyannote[2207].speaker SPEAKER_15
transcript.pyannote[2207].start 19126.84784375
transcript.pyannote[2207].end 19133.29409375
transcript.pyannote[2208].speaker SPEAKER_15
transcript.pyannote[2208].start 19133.85096875
transcript.pyannote[2208].end 19142.37284375
transcript.pyannote[2209].speaker SPEAKER_15
transcript.pyannote[2209].start 19143.63846875
transcript.pyannote[2209].end 19160.69909375
transcript.pyannote[2210].speaker SPEAKER_15
transcript.pyannote[2210].start 19161.13784375
transcript.pyannote[2210].end 19163.24721875
transcript.pyannote[2211].speaker SPEAKER_15
transcript.pyannote[2211].start 19164.07409375
transcript.pyannote[2211].end 19168.57971875
transcript.pyannote[2212].speaker SPEAKER_15
transcript.pyannote[2212].start 19170.11534375
transcript.pyannote[2212].end 19173.32159375
transcript.pyannote[2213].speaker SPEAKER_27
transcript.pyannote[2213].start 19199.96721875
transcript.pyannote[2213].end 19200.03471875
transcript.pyannote[2214].speaker SPEAKER_31
transcript.pyannote[2214].start 19200.03471875
transcript.pyannote[2214].end 19201.18221875
transcript.pyannote[2215].speaker SPEAKER_31
transcript.pyannote[2215].start 19202.88659375
transcript.pyannote[2215].end 19203.84846875
transcript.pyannote[2216].speaker SPEAKER_31
transcript.pyannote[2216].start 19208.42159375
transcript.pyannote[2216].end 19210.10909375
transcript.pyannote[2217].speaker SPEAKER_20
transcript.pyannote[2217].start 19221.63471875
transcript.pyannote[2217].end 19222.17471875
transcript.pyannote[2218].speaker SPEAKER_20
transcript.pyannote[2218].start 19222.79909375
transcript.pyannote[2218].end 19223.22096875
transcript.whisperx[0].start 2201.691
transcript.whisperx[0].end 2208.634
transcript.whisperx[0].text 出席委員已足法定人數現在開會請議事人員宣讀上次會議議事錄
transcript.whisperx[1].start 2210.325
transcript.whisperx[1].end 2213.707
transcript.whisperx[1].text 立法院第11屆第2會期社會福利及衛生環境、經濟委員會第1次聯席會議.事由.時間113年10月24日星期四,9時至14時39分,地點群賢樓801會議室,出席委員陳委員昭姿等28人,列席委員賴委員會員等22人,
transcript.whisperx[2].start 2227.637
transcript.whisperx[2].end 2231.54
transcript.whisperx[2].text 列席官員、行政院內政衛福勞動處處長蘇永富、勞動部部長何佩珊、衛生福利部政務次長呂建德等相關人員、主席蘇召集委員清泉、討論事項、審查委員吳春城等42人擬具
transcript.whisperx[3].start 2246.191
transcript.whisperx[3].end 2265.627
transcript.whisperx[3].text 本次會議經委員吳春城說明提案指去,由勞動部部長何佩珊說明後,委員陳昭芝等28人提出質詢,均經勞動部部長何佩珊、國家發展委員會副主任委員彭麗佩、經濟部常務次長連錦章、衛生福利部政務次長呂建德、金融監督管理委員會法律事務處處長林志憲、行政院內政衛福勞動處處長蘇永富、
transcript.whisperx[4].start 2270.991
transcript.whisperx[4].end 2289.213
transcript.whisperx[4].text 數位發展部數位產業署副署長陳惠敏、教育部中生教育司司長梁學正及文化部綜合規劃司副司長陳怡靜及各相關主管等及習達富、委員盧憲一、張家俊、陳超明、林益君、邱義營、邱志偉及謝一鳳所提書面質詢列入紀錄刊登公報
transcript.whisperx[5].start 2290.114
transcript.whisperx[5].end 2291.555
transcript.whisperx[5].text 請問委員會,上次議事錄有無錯誤或遺漏之處
transcript.whisperx[6].start 2321.035
transcript.whisperx[6].end 2328.384
transcript.whisperx[6].text 沒有,那我們議事錄確定那本日的會議的議程為繼續審查委員吳春城等42人擬具《壯世代政策與產業發展促進法草案》
transcript.whisperx[7].start 2336.82
transcript.whisperx[7].end 2353.075
transcript.whisperx[7].text 那這裡我跟大家報告一下,這個法本身是經過三個黨都有委員連署,非常踴躍那第二個這一段時間一直在溝通,那也修正了,我們把條文從22條改成為13條
transcript.whisperx[8].start 2358.533
transcript.whisperx[8].end 2382.15
transcript.whisperx[8].text 第3個所有的要求權力的部分全部刪掉了第4個就是大家也都有默契原則上我們今天主條然後我們出委員會然後政黨協商政黨協商然後再交大院會那原則上我們行政院可能會再提一個版本在政黨協商的時候一起來審查
transcript.whisperx[9].start 2384.073
transcript.whisperx[9].end 2403.742
transcript.whisperx[9].text 好,我們現在介紹現場的委員及列席官員第一個陳慶威委員廖惟祥委員王一鳴委員張祺凱委員
transcript.whisperx[10].start 2411.244
transcript.whisperx[10].end 2431.409
transcript.whisperx[10].text 今天的苦主吳春城委員如主苦主都可以黃國昌委員跑掉了好那我們現在介紹列席的行政官員第一個行政院內政衛福勞動處蘇勇副處長勞動部常務次長陳明仁
transcript.whisperx[11].start 2439.073
transcript.whisperx[11].end 2466.298
transcript.whisperx[11].text 好 謝謝勞動力發展署代理署長陳世昌勞動福祉退休司副司長陳慧榮勞動條件及就業平等司副司長王金榮我們勞動部大家加油這一陣子大家辛苦了衛生福利部政府司長呂健德
transcript.whisperx[12].start 2470.47
transcript.whisperx[12].end 2486.839
transcript.whisperx[12].text 社會及家庭署組長 呂育穎心理健康師專門委員 洪家基口腔健康師檢證記者 陳少卿長期照顧師專門委員 王林宇
transcript.whisperx[13].start 2498.226
transcript.whisperx[13].end 2526.018
transcript.whisperx[13].text 護理及健康照護師科長蔡明翰國健署研究員黃巧文中央健康保險署參議員黃佩珊中央健康保險署衛務部現在正在風暴當中大家也辛苦了經濟部產業發展署署長楊志欽
transcript.whisperx[14].start 2530.861
transcript.whisperx[14].end 2539.611
transcript.whisperx[14].text 商業發展署副組長熊立恆中小及新創企業署專門委員王思文國際貿易署科長鄭惠琳
transcript.whisperx[15].start 2550.179
transcript.whisperx[15].end 2574.988
transcript.whisperx[15].text 產業技術師科長何彥慶金融監督管理委員會法律事務處處長林志憲教育部終身教育師副司長嚴寶月高等教育師專門委員郭嘉英技術及職業教育師專門委員陳育君
transcript.whisperx[16].start 2580.388
transcript.whisperx[16].end 2604.576
transcript.whisperx[16].text 文化部中俄規劃師副司長陳怡靜社會發展部社會發展署副署長陳惠敏社會政府司科長林菊穗國家發展委員會社會發展處處長張富林
transcript.whisperx[17].start 2609.44
transcript.whisperx[17].end 2624.151
transcript.whisperx[17].text 人力發展處專門委員柔玉梅國家科學及技術委員會生命科學研究發展處副處長涂鈞宇農業部農民輔導師副處長陳怡仁
transcript.whisperx[18].start 2633.79
transcript.whisperx[18].end 2646.16
transcript.whisperx[18].text 農村發展及水土保持署科長羅光節交通部觀光署副署長周庭章公共運輸及監理師檢證記者王濟周你要寫什麼?
transcript.whisperx[19].start 2663.735
transcript.whisperx[19].end 2667.945
transcript.whisperx[19].text 好 我們現在賴樂隆委員他要先詢問這是什麼
transcript.whisperx[20].start 2676.863
transcript.whisperx[20].end 2705.582
transcript.whisperx[20].text 主席啦 各位我先進行會議詢問啦謝謝啦 會議詢問的這個是最優先的啦我想問一下啦 因為今天大概也可能看主席或請主秘回答一下今天其實立法院有在進行大法官的全院委員會啦那其實也在進行那樣程序那其實各個委員會其實都沒有開我可以請教一下主席跟主秘啦在這個程序上面今天來召開這樣的會議程序上有沒有問題那另外是他會不會影響到大家委員們的權益這是請主席跟主秘
transcript.whisperx[21].start 2706.303
transcript.whisperx[21].end 2715.281
transcript.whisperx[21].text 答覆一下好不好因為其他委員會都沒有開啦那今天好像獨獨只有衛房跟經濟來聯席是不是請主秘回答或者請這個主席會議詢問
transcript.whisperx[22].start 2728.909
transcript.whisperx[22].end 2747.711
transcript.whisperx[22].text 根據過去的案例,在前院委員會的時候還是有各個委員會在召開,那我們有在上禮拜也詢問了,詢問了我們院本部這邊還有詢問說可以不可以排,回答是可以,所以
transcript.whisperx[23].start 2748.792
transcript.whisperx[23].end 2759.139
transcript.whisperx[23].text 法律上是OK但是有說沒有讓委員可以暢所欲言這可能會有一點影響以上報告
transcript.whisperx[24].start 2769.395
transcript.whisperx[24].end 2793.511
transcript.whisperx[24].text 我再跟賴委員報告一下剛剛我有報告過就是說今天如果出委員會的話我們是會送政黨協商那我們各個黨還三個黨還要在政黨協商當然我不排除我們行政院會補送資料補送版本然後在政黨協商就一併討論我們不會直接送大院會在這裡跟大家報告
transcript.whisperx[25].start 2796.377
transcript.whisperx[25].end 2805.608
transcript.whisperx[25].text 有關本次會議各項書面資料均列入紀錄及刊登公報現在宣讀提案條文內容還有修正動議請一併宣讀
transcript.whisperx[26].start 2808.188
transcript.whisperx[26].end 2818.254
transcript.whisperx[26].text 委員吳春城等42人擬具《壯世代政策與產業發展促進法草案》案。第一條,為促使國家政策制定與產業發展能因應人口變遷所生的新社會與市場結構,翻轉銀髮海嘯轉為國家發展動力,降低年輕世代負擔,實現世代經濟循環目標,維護壯世代人權與尊嚴,創造跨鄰共榮,韌性永續之目標,特制定本法。第二條,本法用詞定義如下,一,壯世代,指55歲以上之國民,二,壯世代政策,
transcript.whisperx[27].start 2838.126
transcript.whisperx[27].end 2846.029
transcript.whisperx[27].text 指促進社會與個人重新認知高齡者實為高壽者並協助壯世代持續成為生產者、消費者提升壯世代於各領域生活品質並降低社會福利負擔之政策方針及計劃。三、壯世代產業指活化壯世代資產、發展長壽經濟協助壯世代持續成為生產者、消費者之各行業所為技術、產品、服務、知識或措施之開發、生產、使用、銷售、投資等經濟行為
transcript.whisperx[28].start 2865.517
transcript.whisperx[28].end 2893.032
transcript.whisperx[28].text 4.壯世代就業,指消除社會與個人對壯世代之就業歧視,並以壯世代具工作能力及就業意願者為對象,協助續留職場或再回職場之勞動行為。第3條,行政院應設壯世代政策辦公室統籌整合各目的事業主管機關設壯世代之權責,共同推動壯世代政策。壯世代政策辦公室設置召集人一人由行政院院長兼任,委員若干人由行政院院長就政務委員,有關機關首長,
transcript.whisperx[29].start 2895.214
transcript.whisperx[29].end 2913.616
transcript.whisperx[29].text 據壯世代發展經驗之專家學者及壯世代民間代表派遣或聘兼之,壯世代政策辦公室每年應制定國家年度壯世代政策與產業發展計畫,並審核計畫目標、預算及成效。壯世代政策辦公室推動之壯世代政策事務應包含但不限於壯世代經濟發展
transcript.whisperx[30].start 2914.577
transcript.whisperx[30].end 2927.153
transcript.whisperx[30].text 金融、生態系、科技發展、學術及產業研究、就業環境、健康生活與環境、教育體制、數位落差彌平、消費、文化、行促等政策面向。政府應積極推動、輔助壯世代產業之發展,並結合財稅及金融制度、土地及建築物活用。
transcript.whisperx[31].start 2934.161
transcript.whisperx[31].end 2950.184
transcript.whisperx[31].text 及建物活用提供壯世代產業發展政策培植新創及產業鏈促成長壽經濟之發展。第5條政府應建立超高齡社會金融行動方案與指標提供相關金融商品或投資鼓勵措施建構壯世代金融生態系
transcript.whisperx[32].start 2950.925
transcript.whisperx[32].end 2969.847
transcript.whisperx[32].text 同時積極提供壯世代普及公正的金融教育,強化金融勢能,促進財富公平與安全。政府應促成公司部門與學術機構合作,增進壯世代研究資源應用,並成立或指定壯世代生活需求長期性、應用性、基礎性之調查研究專責單位。
transcript.whisperx[33].start 2971.209
transcript.whisperx[33].end 2979.579
transcript.whisperx[33].text 第7條政府應積極推動壯世代就業建立合宜媒合執培訓機制在尊重及反歧視原則下創造壯世代適性就業環境並積極推動彈性工作高齡友善職場指標與退休準備第8條政府應從預防老化觀點
transcript.whisperx[34].start 2988.55
transcript.whisperx[34].end 3000.893
transcript.whisperx[34].text 藉醫療投資、增進智慧精準醫療以維護壯世代身心健康,並就預防保健、心理衛生、醫療復健與連續性照護之規劃,推動及監督等事項保障壯世代權益。政府應與大學合作,整合相關教學資源、培訓機構或團體,協助建立以行速良好環境、宣傳推廣原夢及滿足第三人生需求之理念,
transcript.whisperx[35].start 3014.717
transcript.whisperx[35].end 3042.811
transcript.whisperx[35].text 普及終身學習之目的壯世代教育。第10條政府應協助壯世代積極參與數位社會創造數位平權環境以使壯世代智慧資產有效貢獻社會。第11條政府應建立壯世代新形象藉由合一機制尊重維護世代共存共融之新文化並積極建立相關文化產業。第12條政府應推動壯世代觀光發展建立壯世代旅遊行銷品牌媒合在地組織與產業界
transcript.whisperx[36].start 3044.272
transcript.whisperx[36].end 3050.56
transcript.whisperx[36].text 鼓勵壯世代提出或參與觀光旅遊相關提案,促成壯世代產業對優質壯世代旅遊規劃之共識。第13條政府應針對壯世代農民或跨域從農者提升農業技術及農業經營,結合青壯年留農或返農,
transcript.whisperx[37].start 3062.495
transcript.whisperx[37].end 3065.919
transcript.whisperx[37].text 增加農業及農村經濟產值,並建立壯世代農民與在地親農交流及服務平台機制,促進農村再生與農業永續發展。第14條鼓勵壯世代參與地方創生,透過媒合機制建立壯世代
transcript.whisperx[38].start 3079.065
transcript.whisperx[38].end 3091.538
transcript.whisperx[38].text 在地團體創新組織合作提供技術及知識等投入地方創新事業創造地方共好發展第15條政府應建立壯世代國家資料庫並每年統計並公布健康預期壽命前項之壯世代國家資料庫應建立資訊系統及共享平台會診公司部門及學術機構之資訊
transcript.whisperx[39].start 3100.367
transcript.whisperx[39].end 3114.193
transcript.whisperx[39].text 善加運用,以促進壯世代政策產業就業之研究與法規嚴定。第16條各級政府應以首長或其指定之人為召集人,邀集相關學者、專家、民間機構、團體代表及壯世代族群代表,並其召開會議或論壇、協調、諮詢、審議及規劃推動與其主管業務相關之壯世代政策。
transcript.whisperx[40].start 3122.816
transcript.whisperx[40].end 3148.305
transcript.whisperx[40].text 各級政府應鼓勵企業及社會團體善盡社會責任,共同推動壯世代政策。第17條政府應寬列壯世代事務預算,採取必要措施,合理分配及運用,確保經費符合政策所需。政府應依實際需要合理分配,益助資源補助表彰相關學術機構、產業界、民間團體與個人等,共同推動壯世代政策及措施。
transcript.whisperx[41].start 3149.005
transcript.whisperx[41].end 3167.405
transcript.whisperx[41].text 中央政府得設立壯世代發展基金,辦理壯世代政策發展相關事項。第18條,政府應以本法施行後一年內發布國家壯世代人口政策白皮書,並每四年依其績效及國內外情勢發展定期檢討修正之。各級政府應配合國家壯世代人口政策白皮書,
transcript.whisperx[42].start 3168.385
transcript.whisperx[42].end 3192.797
transcript.whisperx[42].text 檢討所主管之政策與行政措施,又不符其規定者,應定定修正其相關政策及行政措施,並推動執行。第19條,各級政府應因應壯世代事務需求充實相關人力,並建立人員專業資格制度,辦理人員教育訓練提升工作品質。中央壯世代專責機關及各目的事業主管機關得依壯世代事務之需要,建立其專業人員之資格,
transcript.whisperx[43].start 3194.879
transcript.whisperx[43].end 3220.658
transcript.whisperx[43].text 認證登錄訓練及督導管理制度。第二十條本法施行後兩年內,各級政府應依本法之規定檢討所主管之法規,有不符合本法規定者,應制、訂定、修正或廢止相關法規。前項法規制、訂定、修正或廢止前,由行政院會同中央目的事業主管機關依本法規定解釋適用之。第二十一條本法自公佈日施行
transcript.whisperx[44].start 3222.482
transcript.whisperx[44].end 3243.867
transcript.whisperx[44].text 繼續宣讀修正動議第一案第4條第二項前項之財稅及金融制度政府應提供相關金融商品或投資鼓勵措施建構壯世代金融生態系同時積極提供壯世代普及公正的金融教育強化金融世人促進財富公平與安全
transcript.whisperx[45].start 3244.907
transcript.whisperx[45].end 3264.861
transcript.whisperx[45].text 政府應基於第一項之壯世代產業發展,積極推動壯世代就業,建立合營媒合及培訓機制,在尊重及反歧視原則下,創造壯世代適性就業環境,並積極推動彈性工作,高齡友善職場指標與退休準備。第5條刪除
transcript.whisperx[46].start 3267.145
transcript.whisperx[46].end 3281.283
transcript.whisperx[46].text 第5條第2項修正為前項之研究專責單位因建立《壯世代國家資料庫及資訊系統共享平台》促成公司部門及學術機構之合作
transcript.whisperx[47].start 3282.364
transcript.whisperx[47].end 3297.325
transcript.whisperx[47].text 以促進壯世代政策產業就業之研究與法規嚴定第7條刪除第6條修正為政府應從壯世代作為國家發展動力之觀點藉醫療投資增進智慧
transcript.whisperx[48].start 3299.628
transcript.whisperx[48].end 3314.428
transcript.whisperx[48].text 精準醫療以維護壯世代身心健康並就涉及壯世代政策之預防、保健、心理衛生、醫療、復健與連續性照護進行規劃、推動及監督等事項。第7條第一項
transcript.whisperx[49].start 3316.141
transcript.whisperx[49].end 3337.754
transcript.whisperx[49].text 政府應建立壯世代新形象,藉由合一機制尊重,創造數位平權環境,維護世代共存共榮之新文化,並積極建立相關文化產業及智慧資產。第二項第二句修正為政府應基於世代共存共榮之新文化
transcript.whisperx[50].start 3339.653
transcript.whisperx[50].end 3348.777
transcript.whisperx[50].text 第10條刪除、第11條刪除、第8條、第2項修正為針列前項之在地組織與產業為農業相關者政府應針對壯世代農民或跨域從農者提升農業技術及農業經營
transcript.whisperx[51].start 3358.561
transcript.whisperx[51].end 3372.945
transcript.whisperx[51].text 結合青鑽聯、流農或返農,增加農業及農村經濟產值,並建立鑽世代農民與在地青農交流及服務平台機制,促進農村再生與農業永續發展。
transcript.whisperx[52].start 3375.273
transcript.whisperx[52].end 3398.17
transcript.whisperx[52].text 第一項之在地組織與產業為地方創生相關者,鼓勵壯世代參與地方創生,透過媒合機制建立壯世代與在地團體創生組織合作,提供技術及知識等投入地方創生事業,創造地方共好發展。第13條刪除,第14條刪除。
transcript.whisperx[53].start 3401.738
transcript.whisperx[53].end 3426.143
transcript.whisperx[53].text 第15條刪除提案人委員蘇清泉、楊瓊英、張祺凱、陳昭芝、徒權吉、陳金輝、吳春城、傅坤祺第二案第一條實現世代經濟循環目標修正為實現世代資源共享目標提案人委員陳金輝、連署人廖偉祥、蘇清泉宣讀完畢
transcript.whisperx[54].start 3436.702
transcript.whisperx[54].end 3451.487
transcript.whisperx[54].text 我們現在進行《壯世代政策與產業發展促進法草案》主條審查。每條條文先請行政單位說明,接著請委員表示意見。我們請法案的名稱開始討論。
transcript.whisperx[55].start 3461.461
transcript.whisperx[55].end 3483.148
transcript.whisperx[55].text 我先問一下好不好 因為其實從名稱開始到前面幾個條文其實一直都會牽扯到壯世代這件事情那我第一個想要詢問的請問包括看提案委員或是請問行政機關都可以一起說明就是壯世代什麼樣認定是壯世代那現在我看他的定義在第二條寫的是55歲以上的國民
transcript.whisperx[56].start 3483.948
transcript.whisperx[56].end 3511.256
transcript.whisperx[56].text 那如果照這樣的定義的話,他有可能到,我們現在都希望讓大家開心吃百日,有的人吃到百日也叫壯世代嗎?100歲也是壯世代,110歲也叫壯世代,120也叫壯世代就是說這個部分的定義的部分,是不是請包括提案員或者提案行政機關能不能也提出一些說明好不好?第二個我想請教的是,看起來很多都是一些比較宣示性或者原則性,應該怎麼樣應該怎麼樣應該怎麼樣
transcript.whisperx[57].start 3513.797
transcript.whisperx[57].end 3538.816
transcript.whisperx[57].text 但是他又在最後面又提到政府在兩年內要依相關的規定來檢討所有的法規不符本法規的命令要來修訂或廢止那其實我並不是那麼了解因為看起來裡面都是鼓勵性質或者是這個宣誓性質的那有哪一個會特定去違反到相關的法規我是不是也請教一下行政部門的意見好不好這兩個問題請教一下
transcript.whisperx[58].start 3543.363
transcript.whisperx[58].end 3562.611
transcript.whisperx[58].text 我先補充介紹我們到場的委員黃秀安召委林業勤委員王振旭委員邱盈瑩委員賴樂榮委員請行政官員先報告
transcript.whisperx[59].start 3577.151
transcript.whisperx[59].end 3594.292
transcript.whisperx[59].text 主席以及各位委員 大家早安我在這邊我想先做兩點說明 誠如剛剛賴慧蓉所說的我想現在目前就整個這一個定義上來說這一個出現三個問題第一個就是您剛剛所說的年齡上的問題
transcript.whisperx[60].start 3596.414
transcript.whisperx[60].end 3613.786
transcript.whisperx[60].text 國際就整個聯合國對於所謂高齡者是65歲這是國際International Standard第二個就整個所謂中高齡國際勞工組織的明確定義就是45所以45跟65這是全世界International的那現在有一個所謂的55這個50或55這個恐怕在國際到目前為止恐怕
transcript.whisperx[61].start 3618.309
transcript.whisperx[61].end 3618.469
transcript.whisperx[61].text 李卓人議員
transcript.whisperx[62].start 3644.196
transcript.whisperx[62].end 3669.571
transcript.whisperx[62].text 在這裡面其實內容很多事實上是屬於遜色性而且草案的對象太過廣泛條文都是原則性跟概念性的描述對於受規範的民眾難以由條文來理解具體的內容第三點剛剛委員及有提到其實在這裡面我們一般來說呢其實立法體力恐怕也有問題因為它的內容涵蓋了基本法、作用法以及組織法
transcript.whisperx[63].start 3671.032
transcript.whisperx[63].end 3693.798
transcript.whisperx[63].text 與基本法不涵蓋行政作用條文以及行政作用法不訂定行政組織這一立法原則基本上都通例不符而且最重要的其實事實上我們的任何的法律制定其實事實上牽涉到民眾的他的整個權利義務相關的規定那你一個不確定的一個法律概念我想可能確實是會有問題而且同時最重要的我們現在目前行政院其實已經有高齡社會白皮書
transcript.whisperx[64].start 3694.718
transcript.whisperx[64].end 3695.439
transcript.whisperx[64].text 長東部要不要補充說明
transcript.whisperx[65].start 3721.704
transcript.whisperx[65].end 3742.83
transcript.whisperx[65].text 主席各位委員大家早有關於剛才賴委員所垂詢的事項衛福部正式已經做相關的說明了就勞動部夜館的部分我們其實是比較關切的是中高齡高齡者的就業促進我們在勞動部這邊夜館的部分有一個專法在推動當中那它對於中高齡和高齡者有一些明確的定義
transcript.whisperx[66].start 3743.69
transcript.whisperx[66].end 3772.452
transcript.whisperx[66].text 中高齡者就是45歲以上到65歲中間高齡者就是65歲以上我們對於中高齡者或高齡者在就業促進方面我們大概都有些相應的支持和步驟方法在進行依照法令的規定在進行當中至於剛才所講到的壯世代各方面的意見之前公聽會大家有一些充分的討論學業專家有一些意見我們都儘表尊重謝謝好 謝謝次長 吳委員你要不要補充
transcript.whisperx[67].start 3780.45
transcript.whisperx[67].end 3785.621
transcript.whisperx[67].text 謝謝各位出席的委員還有我們行政部各部會的出席
transcript.whisperx[68].start 3789.132
transcript.whisperx[68].end 3814.5
transcript.whisperx[68].text 對於這一個今天是歷史性的一刻再過29天臺灣就進入超高齡社會了未來50年臺灣將減少近900萬人口整個的社會結構從以青少年青年為主的金字塔社會快速的轉向以高齡者為主的到金字塔型的社會
transcript.whisperx[69].start 3816.138
transcript.whisperx[69].end 3834.079
transcript.whisperx[69].text 那過去50年臺灣快速的增加900萬人口我們習慣人口大紅利的時代但是到了2028年人口紅利就不見了所以這是一場天翻地覆的大革命如果我們今天還在爭辯舊思維未來我們必須為歷史負責
transcript.whisperx[70].start 3837.779
transcript.whisperx[70].end 3866.711
transcript.whisperx[70].text 那關於名稱的問題關於名稱的問題這個要應付這個天翻地覆的社會結構我們現在都是從科技的技術創新高齡科技想要來解決這個問題卻沒有從文化、思想、制度、法規的創新來翻轉這龐大的高齡者這高齡者現在臥床平均8年所以呢
transcript.whisperx[71].start 3868.041
transcript.whisperx[71].end 3893.06
transcript.whisperx[71].text 現在可以看的目前所用的措施是無法去阻擋這場所謂的引發大海嘯所以為什麼要稱為壯世代因為它的本質就是一場社會運動社會運動的第一件事就叫做證明你要給它一個正確的身份、正確的名稱所以目前我們稱高齡者
transcript.whisperx[72].start 3894.963
transcript.whisperx[72].end 3921.021
transcript.whisperx[72].text 不外乎是老人、銀髮族、樂齡族如果大家用大數據去輸入這幾個名詞你可以看出來依附過來的都是負面相關的連結所以我們要不要改變一下對這一群人這造成我們社會嚴重的高齡歧視我們的政策還有產業為什麼都發展不起來這就是人設的錯誤
transcript.whisperx[73].start 3922.802
transcript.whisperx[73].end 3929.288
transcript.whisperx[73].text 所有的新的事物都必須賦予新的意義是理所當然之事像AI
transcript.whisperx[74].start 3930.612
transcript.whisperx[74].end 3957.469
transcript.whisperx[74].text 在之前沒有,當他出來的時候,大家排懼他嗎?外送專法以前沒有外送,那外送一出來不是需要一個新名詞來形容他嗎?接避者,接避者之前沒有問題,現在是不是要給他一個接避者的一個名稱呢?共享、經濟,以前沒有這種問題,出來的時候這樣的名詞我們要懷疑他嗎?這都不是新的名詞嗎?長照之前也是一個新的名詞,
transcript.whisperx[75].start 3958.45
transcript.whisperx[75].end 3972.571
transcript.whisperx[75].text 當他出來的時候 大家懷疑他嗎 甚至連新北市 這個也是沒有多久之前才 以前叫台北縣所以呢 現在社會日新月異 所以創造新的名詞 並不足為奇
transcript.whisperx[76].start 3975.074
transcript.whisperx[76].end 4001.67
transcript.whisperx[76].text 特別是根據國發會我們不要一直講說聯合國沒有怎麼樣然後臺灣國際沒有怎麼樣大家真的是不去看國發會所做的資料國發會所顯示的資料裡面臺灣的人口我講一個數據我們現在我們明年進入超高齡社會我們明年進入超高齡社會人口結構
transcript.whisperx[77].start 4005.902
transcript.whisperx[77].end 4007.295
transcript.whisperx[77].text 人口 拍誰
transcript.whisperx[78].start 4011.497
transcript.whisperx[78].end 4030.285
transcript.whisperx[78].text 就是人口結構當中我們現在要進入65%這個20%其實在世界各國當中還不算高很多歐洲國家都現在都已經到了25%左右的但是各位到了2070年我們的65歲上將佔人口的46%
transcript.whisperx[79].start 4036.311
transcript.whisperx[79].end 4059.491
transcript.whisperx[79].text 日本那時候才佔35%各位可以想像我們會比日本很老老很多歐美各國到時候還28%我們已經46%了我們走在世界老化最嚴重的我們跟南韓並列為全世界最快速老化的國家
transcript.whisperx[80].start 4060.908
transcript.whisperx[80].end 4071.836
transcript.whisperx[80].text 所以這個政策當中我們要尾隨國際在後面嗎?我們要領先各國,我們要有新的觀念,我們要有新的倡議以上的意見請大家支持,謝謝
transcript.whisperx[81].start 4076.594
transcript.whisperx[81].end 4093.24
transcript.whisperx[81].text 主席,如果我們因為討論年紀的定義而一直僵持在目前這個狀態的話,覺得有點,有點,所以我是建議是不是就直接往下走,然後繼續討論?
transcript.whisperx[82].start 4103.434
transcript.whisperx[82].end 4115.281
transcript.whisperx[82].text 陳昭志先生謝謝主席剛剛呂次長在談到這個定義不明、定義不清麻煩呂次長回家做功課在2024年2月17號勞動部自己推動的55Plus壯世代就業促進措施講得非常清楚
transcript.whisperx[83].start 4125.126
transcript.whisperx[83].end 4141.248
transcript.whisperx[83].text 年滿55歲以上以及45歲以上依法退休者為適用對象如果大家要執著在定義的部分那請勞動部回去查自己曾經做的定義然後
transcript.whisperx[84].start 4144.073
transcript.whisperx[84].end 4161.225
transcript.whisperx[84].text 不要再談年紀了你直接打臉許明春部長嘛理事長你沒有做功課喔請你們現在馬上Google2024年2月17號勞動部推動55Plus壯世代就業促進措施協助壯世代勞工重返職場謝謝主席
transcript.whisperx[85].start 4171.323
transcript.whisperx[85].end 4191.531
transcript.whisperx[85].text 主席各位我還是要再提醒一下因為其實立法院所有的法每個出去都要很嚴謹那我建議因為立出來的法都代表著立法院的品質那我認為前面的部分花一點時間把這些釐清清楚然後也讓官員能夠一起把疫情進來我認為是很值得的那因為從題目到前面幾條幾乎都是一樣的前面這個解決了後面其實很快的
transcript.whisperx[86].start 4192.472
transcript.whisperx[86].end 4209.472
transcript.whisperx[86].text 我還是要呼應跟提醒的就是說我認為壯世代如果要定義那要想辦法至少要跟國際能夠接軌的上同時間也要想清楚把這個定義定清楚我認為其實是一個高的立法品質讓壯世代因為如果單就現在這個草案上寫55歲以上我覺得還是
transcript.whisperx[87].start 4211.414
transcript.whisperx[87].end 4237.025
transcript.whisperx[87].text 稍微太寬了一點廣了一點 要再訂得更清楚一點那我看到這個法其實我的感覺主要是為了要協助壯世代的一些就業壯世代的一些產業發展甚至壯世代的一些政策上面等等那我認為相關部門也可以再說得更清楚既有的政策上能不能達到這個目的還是說需要另外訂這個法才能夠達成如果既有的法可以達成的話就不一定要跌床駕屋再來訂出這個法
transcript.whisperx[88].start 4238.686
transcript.whisperx[88].end 4261.088
transcript.whisperx[88].text 那這個部分我覺得待會也可以再請行政部門做更詳細的說明那另外是這個法的部分它叫做促進法但是從看起來它帶有相當高的基本法的味道有些因怎麼作為而且是有一些因的作為同時間這第三條它又帶有組織法的味道有設置辦公室有院長兼任然後有若干人
transcript.whisperx[89].start 4261.508
transcript.whisperx[89].end 4276.844
transcript.whisperx[89].text 那這些人要做什麼事情 這個我覺得恐怕都要把它定得更清楚不要產生了跌床駕屋或者產生有些人設定的位置但是他的職務或者他的任務其實並不明確的我覺得反而會造成一些資源的一些配置上的可惜
transcript.whisperx[90].start 4277.965
transcript.whisperx[90].end 4293.92
transcript.whisperx[90].text 另外還有就是在包括第17條的部分裡面有提到了包括寬列壯世代一些事務的預算的經費那當你要去寬列經費的時候恐怕就要更清楚的去訂清楚那到底你要去處理的是什麼事項
transcript.whisperx[91].start 4294.94
transcript.whisperx[91].end 4317.385
transcript.whisperx[91].text 我認為這個部分都應該在委員會內更好好的討論把它定清楚然後再到草椅協商或再到院會去我認為這個立法品質會來得比較高包括裡面甚至有提到17條的第二項有提到政府應該依照實際的合理的分配甚至挹注補助到民間團體等等那這個恐怕都不需要更清楚的界定不然將來
transcript.whisperx[92].start 4319.105
transcript.whisperx[92].end 4342.694
transcript.whisperx[92].text 中央執政誰執政恐怕有很大的空間可以去做這件事情那我認為這個對於國家的整個資源的配置不見得是好事每一黨都可能當執政黨但是有可能這個資源配置上面有可能會有很大的操作空間我認為這個都應該再更嚴謹一點另外他還有一個叫做德設立壯世代的發展基金德設立當然可能設也可能不設但是設了之後
transcript.whisperx[93].start 4343.274
transcript.whisperx[93].end 4369.455
transcript.whisperx[93].text 他要做什麼使用?能夠扮演什麼樣的角色?我認為都應該把他定的再更清楚一點這個才能夠讓整個這個法能夠達到一個好的目的那我還是要再回來強調如果各行政部門本來就可以做的事情那說明清楚那到底要不要立這個法就可以充分的討論那另外如果真的要立一定要把那個範圍跟職責跟權益相關的目的確認清楚才能達到這個法
transcript.whisperx[94].start 4370.536
transcript.whisperx[94].end 4385.381
transcript.whisperx[94].text 我們還是要再次強調這個法會是在第11屆的立委萬一完成了三讀的話會是從這邊出去這都留下歷史紀錄我們希望這個法是一個嚴謹而具有必要性而必備性的一個法律再三的跟委員跟主席們說明
transcript.whisperx[95].start 4401.335
transcript.whisperx[95].end 4415.635
transcript.whisperx[95].text 主席大家好我想今天討論這個壯世代政策與產業發展促進法這樣的一個草案我要先問政府單位你們今天是要針對主條
transcript.whisperx[96].start 4417.057
transcript.whisperx[96].end 4439.655
transcript.whisperx[96].text 提出你們的修法意見還是你們是反對所以你們都沒有備案比如說名稱你們覺得應該要修比較好你們若對於壯世代這個年齡55歲有意見那你們到底是贊成和平到中高齡從45歲為起點還是什麼我比較希望是這樣的討論可能才會有實質的成效要不然大家其實是沒有對焦就是
transcript.whisperx[97].start 4442.677
transcript.whisperx[97].end 4452.421
transcript.whisperx[97].text 剛剛聽了兩位次長看起來是好像沒有贊成這個法所以也沒有準備這個具體的名稱到底要怎麼修那因為其實在委員會已經開過公聽會然後也詢答過今天就是主條我覺得這個基本上大家態度要拿出來如果你們有負案你們對名稱有意見譬如說壯世代政策與產業發展促進法草案你們對這個名稱有疑慮你們建議應該要怎麼樣修正或者是你要保留
transcript.whisperx[98].start 4471.149
transcript.whisperx[98].end 4475.409
transcript.whisperx[98].text 我覺得這樣的一個討論今天才會有進度要不然大家都不對焦啊
transcript.whisperx[99].start 4476.872
transcript.whisperx[99].end 4477.132
transcript.whisperx[99].text 吳春城委員
transcript.whisperx[100].start 4507.693
transcript.whisperx[100].end 4529.111
transcript.whisperx[100].text 這一個高齡化世代的來臨的確觀念是要翻轉所以我個人是很贊成就是應該要用一個發展性的一個觀點我們來看待這樣的法案那我也同意剛剛賴瑞恩委員講的就是說這個法我們可能要有從一個基本法的概念我們是去翻轉各部會應該要做什麼樣的調整應該要進到什麼樣的責任
transcript.whisperx[101].start 4532.034
transcript.whisperx[101].end 4548.535
transcript.whisperx[101].text 的確修法的過程也應該要嚴謹所以我就很納悶今天為什麼沒有法務部的代表修法也應該要嚴謹所有的法律用語定義它可能必須是明確的因為畢竟是立法院產出來的法案
transcript.whisperx[102].start 4549.232
transcript.whisperx[102].end 4562.545
transcript.whisperx[102].text 所以這兩者應該都是要兼顧今天聯合報或是社論都還在指出我們現在面對高齡社會這一些失能的家庭然後居福源不夠的問題這個都是已經到了後端
transcript.whisperx[103].start 4565.388
transcript.whisperx[103].end 4569.492
transcript.whisperx[103].text 我們開始去處理問題但是這個法案我個人認為如果從一個更前端從一個怎麼樣進入到這樣的一個高齡從前面就讓他可以社會參與我們各項的政策用一個發展性的觀點然後讓我們的高齡人力可以成為我們社會的這個生產力而不會完全是負擔這個的確是我們應該要超前部署我們應該要這樣的思維
transcript.whisperx[104].start 4590.349
transcript.whisperx[104].end 4591.51
transcript.whisperx[104].text 各部會應該去思考
transcript.whisperx[105].start 4606.261
transcript.whisperx[105].end 4628.597
transcript.whisperx[105].text 吳委員 我想他就不會提出這樣的一個草案 如果都有 那或許待會市長也可以說 比如說你有的是什麼 就講出來就是已經在做的是什麼 因為我覺得今天吳委員提出來這個版本他最大的注意是 他提到各個領域應該做什麼 而且是用一個比較是發展性的觀點來看待我們面臨這個超高齡社會這樣的一個問題
transcript.whisperx[106].start 4631.263
transcript.whisperx[106].end 4631.383
transcript.whisperx[106].text 主席
transcript.whisperx[107].start 4649.963
transcript.whisperx[107].end 4650.043
transcript.whisperx[107].text 聶偉強委員請發言
transcript.whisperx[108].start 4674.844
transcript.whisperx[108].end 4696.788
transcript.whisperx[108].text 其實我也是要呼應一下王委員講的其實究竟我們行政部門到底是什麼態度那我想要說的是再從頭來重申有幾個主要的壯世代希望達到的觀點第一個是希望促進社會參與跟經濟貢獻所以這個壯世代法案是在促進中高齡人口的社會參與跟經濟貢獻不僅是要解決一些年金財務的問題還要激發這一代人的潛能讓他們繼續為我們的社會做出貢獻
transcript.whisperx[109].start 4702.589
transcript.whisperx[109].end 4703.169
transcript.whisperx[109].text 臺灣即將進入超高齡化的社會
transcript.whisperx[110].start 4732.449
transcript.whisperx[110].end 4753.438
transcript.whisperx[110].text 各自一千多億,比如少子化辦公室一千多億,那這個超高齡的相關的照護偵測也是一千多億,可是究竟成效如何,我想行政部門自己數字都很清楚吧,不然我們之前在勞動部這個常常在答詢的時候也不會說這怎麼消除中高齡者的歧視,讓他們重新投入職場等等的問題。
transcript.whisperx[111].start 4754.478
transcript.whisperx[111].end 4771.008
transcript.whisperx[111].text 所以我想他是一個我想全球也在面對那事實上你說跟國際接軌嗎其實國際上面大家也都在面對這個問題那有沒有很好的解方也不知道目前也沒看到因為如果有很好我們可以直接抄襲複製來推行就可以解決
transcript.whisperx[112].start 4771.608
transcript.whisperx[112].end 4771.628
transcript.whisperx[112].text 韓國瑜議員
transcript.whisperx[113].start 4791.643
transcript.whisperx[113].end 4801.991
transcript.whisperx[113].text 3.消除年齡歧視法案的推行是有助於消除職場中的年齡歧視,讓中高齡者可以創造更好的就業環境,這對於提升勞動參與和促進社會公平也有重要意義。
transcript.whisperx[114].start 4806.474
transcript.whisperx[114].end 4829.474
transcript.whisperx[114].text 那第4個剛剛也有討論到所謂疊床架屋的問題其實整合現有的政策雖然有意見認為法案可能跟一些法律有重疊但我想壯世代法案可以作為一個整合性的框架協調各部會的政策反而有機會避免資源浪費和政策碎片化為什麼這樣講剛剛我們陳昭志委員有提到過去勞動部其實有在推動55plus的這個這個就業這個壯世代就業的相關的活動
transcript.whisperx[115].start 4833.437
transcript.whisperx[115].end 4850.052
transcript.whisperx[115].text 相關的推廣所以事實上這個問題應該是一個跨部會的問題反而應該可以用一個發展性的政策來讓大家可以共同的往同一個目標前進我想這個大家都不會否認大家都需要解決這個少子化和這個超高齡社會帶來對社會的衝擊
transcript.whisperx[116].start 4852.114
transcript.whisperx[116].end 4874.761
transcript.whisperx[116].text 第5個長期政策規劃,因為壯世代法案希望是提供一個長期的政策規劃,我想這主要是要應對未來人口結構的變化跟社會發展要有前瞻性的意義,要能夠引導政府跟社會資源有效的配置。所以我想以上五點的主要在壯世代可能帶來的效應上面,那我想
transcript.whisperx[117].start 4875.581
transcript.whisperx[117].end 4883.564
transcript.whisperx[117].text 重點就是說是不是應該進一步的來討論每一條行政部門有什麼意見這樣比較有實質性的推動那以上謝謝
transcript.whisperx[118].start 4901.967
transcript.whisperx[118].end 4905.989
transcript.whisperx[118].text 謝謝主席剛剛賴瑞榮委員他說要接軌國際所以他對於55歲這個定義這個壯世代定義是有意見的他認為這樣子是沒有接軌國際那我想請教的是賴瑞榮委員你現在是藉機打臉一樣想爭取民進黨推派選高雄市長的許民春前部長嗎
transcript.whisperx[119].start 4925.733
transcript.whisperx[119].end 4946.112
transcript.whisperx[119].text 我剛剛已經說了,許部長在擔任部長的時候,勞動部就推出了55個plus,55plus壯世代就業促進措施,就明確的定義,那現在內委員是要指責許明春前部長他沒有接軌國際嗎?互相爭取高雄市長我想是好事,但是請不要把自己黨內內部的內鬥帶到衛環委員會來,謝謝
transcript.whisperx[120].start 4952.994
transcript.whisperx[120].end 4955.879
transcript.whisperx[120].text 邱銀委員.續王振旭委員
transcript.whisperx[121].start 4964.096
transcript.whisperx[121].end 4987.634
transcript.whisperx[121].text 好 謝謝主席我想第一個我還是不知道陳昭芝委員剛剛在講什麼這個這跟許民春部長有什麼關係然後這跟民進黨的選舉也沒有關係喔把民進黨選舉帶到衛環委員會來是您不是賴瑞榮第二個我想還是要請教一下我一直對於所謂的壯世代政策跟產業發展促進法的立法目的跟
transcript.whisperx[122].start 4988.234
transcript.whisperx[122].end 5013.195
transcript.whisperx[122].text 基準其實是不太理解的就是說我們可以提到有一個壯世代我想如果依照現在這個定義我很快就會進入壯世代可是等到我可能如果我能夠活到90歲的話我還可以叫自己壯世代的我覺得會有點不好意思就像我20歲的時候被大家叫漂亮寶貝現在50幾歲你們叫我漂亮寶貝我都會覺得不好意思是一樣的道理
transcript.whisperx[123].start 5014.216
transcript.whisperx[123].end 5038.125
transcript.whisperx[123].text 那第三個我想看一下這個條文比如說這個條文第三條就要求要成立一個壯世代政策辦公室那過去行政院有很多各個不同向下的政策辦公室都會被在野黨指責這個是黑機關、跌床架屋那現在我們是明定在法裡面就要求行政院要設一個壯世代辦公室
transcript.whisperx[124].start 5039.245
transcript.whisperx[124].end 5042.927
transcript.whisperx[124].text 政府要積極推動、輔助壯世代產業的發展,結合財稅、金融制度等等。所以如果依照第4條的這個寫法的話,我想未來我們可能還會有一條叫做壯世代經濟發展條例。
transcript.whisperx[125].start 5061.357
transcript.whisperx[125].end 5062.859
transcript.whisperx[125].text 第5條建立超高齡社會金融行動方案指標
transcript.whisperx[126].start 5076.796
transcript.whisperx[126].end 5093.271
transcript.whisperx[126].text 我其實是不太懂整個立基點到底是要談什麼東西如果他只是一個宣誓性的動作但是所以那我覺得可以不用再特別立一個所謂的壯世代法案應該是讓行政部門在各個
transcript.whisperx[127].start 5094.091
transcript.whisperx[127].end 5094.711
transcript.whisperx[127].text 委員吳春城等42人擬具
transcript.whisperx[128].start 5122.533
transcript.whisperx[128].end 5148.499
transcript.whisperx[128].text 這個未來都還需要有執法的配合比如說你要有公司部門的學術機構要成立這個專責單位那這個專責單位要在哪裡個像安得在哪一個單位底下那你一定還要有執法去做配合第5條超高齡的金融行動方案一定也要有執法去做配合所以你現在立的這些法你剛剛講說不會影響到其他的相關的規定我其實是看不太出來
transcript.whisperx[129].start 5149.119
transcript.whisperx[129].end 5149.499
transcript.whisperx[129].text 王振旭委員
transcript.whisperx[130].start 5187.892
transcript.whisperx[130].end 5208.86
transcript.whisperx[130].text 謝謝主席來做今天會議的討論我真的很佩服吳春城吳委員這本書我真的看了好幾次感受很多我覺得在精神上在理念上真的非常非常的贊同因為我在這個年紀
transcript.whisperx[131].start 5210.541
transcript.whisperx[131].end 5210.861
transcript.whisperx[131].text 李卓人議員
transcript.whisperx[132].start 5232.822
transcript.whisperx[132].end 5235.183
transcript.whisperx[132].text 彼此世代之間做更好的交流。
transcript.whisperx[133].start 5260.214
transcript.whisperx[133].end 5272.901
transcript.whisperx[133].text 因為我們知道第二條現在是把壯世代定於55歲以上這個年齡看起來是也能夠滿符合這個世代的一個進入到這個年齡的過程不過這個他剛才說是臃腫的世代
transcript.whisperx[134].start 5275.622
transcript.whisperx[134].end 5295.843
transcript.whisperx[134].text 萬一他身體違和怎麼辦?如果因為我長期在照顧這些癌症病人,還有在接觸臨床過程當中,我想所有人也是一樣喔,在年紀這麼長之後,他的身體可能各方面就會出現不如我們每一個人對自己身體的期待,這就是為什麼要稱作壯世代。
transcript.whisperx[135].start 5296.523
transcript.whisperx[135].end 5321.379
transcript.whisperx[135].text 好像有一點辛苦啦因為我已經受到相當的影響或者是他有一些身體上或者是他本身是寒病到這個年紀以後事實上失明的機會就高很多所以如果在年齡層我們只是定義55歲以上然後用年輕年紀大沒有去關係到他的這個身體的不管是身體的
transcript.whisperx[136].start 5322.339
transcript.whisperx[136].end 5322.519
transcript.whisperx[136].text 李卓人議員
transcript.whisperx[137].start 5337.975
transcript.whisperx[137].end 5361.662
transcript.whisperx[137].text 如何能夠讓產業發展可是當他這個身體老化的時候帶來的影響當然就會很大那在第8條裡面要從預防老化的觀點那如果我們壯世代來預防老化是OK的不過他如果已經是身體不好這個就不是預防老化的問題而是他直接需要接受整個醫療或者是整個社會照顧的問題所以我們將來在討論的時候那這邊如何能夠
transcript.whisperx[138].start 5365.203
transcript.whisperx[138].end 5383.736
transcript.whisperx[138].text 有效的去把這個第8條也做一些比較好的一些規範另外第15條因為我們希望在這個法案裡面政府要建立壯世代國家資料庫並每一年統計並公佈健康預期壽命
transcript.whisperx[139].start 5386.578
transcript.whisperx[139].end 5396.267
transcript.whisperx[139].text 這個真的是對台灣的民眾有非常重要的需求不管達到健康台灣或者是相關的部分這些數據都一定要建立好
transcript.whisperx[140].start 5397.011
transcript.whisperx[140].end 5417.307
transcript.whisperx[140].text 那如果我們根據壯世代的需求來建立這樣的治療室那如果國家都已經有適當的治療庫那需不需要在這個法案裡面再特別的去強調它那我等一下也麻煩這個主管機關能不能針對這個部分因為我們知道其實我們台灣民眾的不健康理念真的是
transcript.whisperx[141].start 5419.142
transcript.whisperx[141].end 5444.277
transcript.whisperx[141].text 臺在很不好的地方因為我們平均人命是80歲有十分之一的生命是屬於不健康人命我們本來以為新加坡是很讓我們值得學習的不健康人命可以達到很好的目標的地方那前兩天新加坡的一個醫師來臺灣做相關的報告跟演講他們說新加坡也是一樣他們不健康人命也將近10年
transcript.whisperx[142].start 5445.958
transcript.whisperx[142].end 5472.523
transcript.whisperx[142].text 聽了是有一點不是說這樣啦起碼好像這個都是共同的問題那如果這是共同的問題的話那我們在這個第15條這個部分未來如何能夠跟現在現有的國家的資料庫做銜接而不是因為有了這個壯世代的需求而去另外做這個資料庫的處理這個我想這個細節的部分在討論的時候也希望都能夠有機會
transcript.whisperx[143].start 5473.624
transcript.whisperx[143].end 5476.628
transcript.whisperx[143].text 來做更多的一些想法上面的處理以上
transcript.whisperx[144].start 5493.363
transcript.whisperx[144].end 5516.545
transcript.whisperx[144].text 謝謝主席,那我就今天的這個法案的第一條,其實我看了之後我不知道說這個法的主責單位是誰,今天這個行政單位也來了這麼多人,那這個法的主責單位到底是誰?到底是衛福部或者是勞動部,或者是更高層級行政院這邊?
transcript.whisperx[145].start 5519.066
transcript.whisperx[145].end 5529.03
transcript.whisperx[145].text 主責單位到底是誰,也不是那麼明確。我看了所有的法條,宣誓性成分比較大。我不知道衛福部跟勞動部應該原本就中高齡或高齡
transcript.whisperx[146].start 5543.175
transcript.whisperx[146].end 5543.536
transcript.whisperx[146].text 委員吳春城
transcript.whisperx[147].start 5563.078
transcript.whisperx[147].end 5581.146
transcript.whisperx[147].text 後面這個第20條有說本法施行後兩年內各級政府應依本法之規定檢討所主管之法規有不符合本法規定者應制定修正或廢止相關法規所以這個牽涉的很廣所以我覺得這個應該要好好的去
transcript.whisperx[148].start 5587.909
transcript.whisperx[148].end 5588.069
transcript.whisperx[148].text 衛福部勞動部
transcript.whisperx[149].start 5613.383
transcript.whisperx[149].end 5630.515
transcript.whisperx[149].text 主責單位你們就要去統籌嘛吼那另外就是說這個每一條每一條其實我看了每一條也都很有道理啊也都很有道理問題是如果這個要怎麼做
transcript.whisperx[150].start 5631.616
transcript.whisperx[150].end 5633.599
transcript.whisperx[150].text 政府應建立超高齡社會金融行動方案與指標
transcript.whisperx[151].start 5647.879
transcript.whisperx[151].end 5674.256
transcript.whisperx[151].text 那第6條就是政府應促成公司部門還有學術機構的合作而增進壯世代研究資源應用那其實這個部分應該我覺得這個行政部門也許這個教育部或其他單位是不是已經有這樣或者是勞動部也有這樣的一個這個在職進修啊或者是什麼樣的一個一個
transcript.whisperx[152].start 5675.197
transcript.whisperx[152].end 5675.217
transcript.whisperx[152].text 陳事長
transcript.whisperx[153].start 5690.553
transcript.whisperx[153].end 5704.951
transcript.whisperx[153].text 謝謝各位委員的指教我請代表勞動部說明以下各點第一個部分就是其實針對中高齡高齡者就是45歲到65歲或65歲以上其實大院有通過
transcript.whisperx[154].start 5705.993
transcript.whisperx[154].end 5723.636
transcript.whisperx[154].text 109年有通過《中高齡及高齡者就業促進法》,勞動部依照這個法令也在執行當中吳委員過去對於壯世代這邊給勞動部很多的指教,所以我們也發現55歲以上有一些過早退出勞動市場確實是相對的是可惜的
transcript.whisperx[155].start 5724.256
transcript.whisperx[155].end 5753.451
transcript.whisperx[155].text 我們在中高齡和高齡者就業促進法大院也通過了相關修正的條文在12月4日就業實施包括要擬定3年的就業計畫包括要每2年推出職場指引包括要針對符合退休年齡的部分提供調試退休準備或再就業等等所以勞動部在這部分針對壯世代這部分很佩服吳委員的意見我們也相應的都做了很多的支持
transcript.whisperx[156].start 5754.392
transcript.whisperx[156].end 5767.486
transcript.whisperx[156].text 這部分因為在勞動部的夜館他一定是要有就業能力跟就業意願所以我們沒有天花板的問題我們對年齡歧視有做了一些相應的處理那在這個案子裡面
transcript.whisperx[157].start 5768.848
transcript.whisperx[157].end 5783.184
transcript.whisperx[157].text 就涉及勞動部的條文只有一條那現在整併成一項那看起來跟我們的就業中高齡及高齡者就業促進法的方向是一致的所以我們其實是沒有特別的意見
transcript.whisperx[158].start 5783.865
transcript.whisperx[158].end 5811.369
transcript.whisperx[158].text 我們未來在處理方向包括在職者的穩定就業包括失業者的重返職場包括退休者的再就業以致於擴大相關的服務網絡開發勞動力這部分我們既有的依照相關的法規都會持續去進行這第一點做說明那第二點的部分就是行政院整體有社會福利推動委員會那過去也有修正高齡社會白皮書也有因應超高齡社會的對策方案
transcript.whisperx[159].start 5812.85
transcript.whisperx[159].end 5835.781
transcript.whisperx[159].text 應吳委員的一個指教,院長也請陳時中、陳政委督導,我們勞動部也彙整了14個部會、76項的措施,有一個壯世代社會參與的促進就業方案,所以相關的部份行政部門都有在積極處理當中,那確實是一個跨
transcript.whisperx[160].start 5836.641
transcript.whisperx[160].end 5838.601
transcript.whisperx[160].text 這部分大概簡單跟各位委員做報告,謝謝
transcript.whisperx[161].start 5867.944
transcript.whisperx[161].end 5870.246
transcript.whisperx[161].text 理事長要不要補充OK感謝主席以及委員的垂詢那我想我在這邊大概衛福部有三個重點第一個就是剛剛我想王詠敏王委員還有很多委員也基本上大概很關心我們有沒有跌床架屋的問題那我跟各位報告
transcript.whisperx[162].start 5893.271
transcript.whisperx[162].end 5893.471
transcript.whisperx[162].text 本會議的主席
transcript.whisperx[163].start 5919.349
transcript.whisperx[163].end 5941.791
transcript.whisperx[163].text 第一是剛剛我想陳市長也代表勞動部有報告的中高齡以及高齡者就業促進法我再強調一次中高齡是45歲高齡者是65這是International Standard第二個經濟部有推動中小企業發展條例第三衛福部負責老人福利法以及長期照顧服務法
transcript.whisperx[164].start 5942.552
transcript.whisperx[164].end 5965.061
transcript.whisperx[164].text 以及《全民健康保險法》還有《營養及健康飲食促進法》還有《精神衛生法》教育部則是負責《中生學習法》還有這個經濟部推動除了中考企業發展條例之外其實很多也針對我們剛剛這一個這個所謂的一般所謂的定力的壯世代有很多很多相當產業推動的一個方案那麼從重複規範的話確實
transcript.whisperx[165].start 5967.222
transcript.whisperx[165].end 5967.382
transcript.whisperx[165].text 主席
transcript.whisperx[166].start 5985.061
transcript.whisperx[166].end 6009.547
transcript.whisperx[166].text 我想我也個人非常非常欽佩這一個吳春城委員他所推動的這一個這個壯世代的這個運動但是而且這個部分確實也是我們共同大家非常關心有關於超高齡社會的問題但是現在有問題倡議是一回事具體立法因為這裡面會牽涉到有關於對於人民權利義務的相關的問題那我想整個立法上面務必
transcript.whisperx[167].start 6009.867
transcript.whisperx[167].end 6009.987
transcript.whisperx[167].text 以上,謝謝
transcript.whisperx[168].start 6040.161
transcript.whisperx[168].end 6040.703
transcript.whisperx[168].text 謝謝次長 蘇勇副處長你要補充一下
transcript.whisperx[169].start 6051.062
transcript.whisperx[169].end 6078.51
transcript.whisperx[169].text 主席 各位委員我想再做一個 兩個市長剛才有說明我再做一個補充第一個因應明年就要進入超高齡社會所以行政院在110年跟111年也分別訂定了這個高齡社會白皮書還有這個因應超高齡社會的對策方案然後對於這個壯世代這個議題的部分行政院事實上是相當重視的所以
transcript.whisperx[170].start 6079.73
transcript.whisperx[170].end 6106.425
transcript.whisperx[170].text 委員長也指示了深思中政委也召開了3次的會議那在11月12號院長主持的社會福利推動委員會也通過了勞動部剛才所提的會整的14個部會所提的這個壯世代的社會參與促進方案所以在整體的政策來講行政院事實上是對於整個高齡社會的部分已經有一個相當具體的一個對策方案在做處理
transcript.whisperx[171].start 6107.486
transcript.whisperx[171].end 6134.118
transcript.whisperx[171].text 第二,已經有既定的政策方案在推的時候,在定義一個法例,恐怕要斟酌。因為法例的部分來講,剛才各位所提的部分,可能重點會在兩個部分。第一個,壯世代的定義。因為壯世代定義的部分來講,現在是用一個法例名詞定義,而且這個壯世代的部分在國際上是沒有定義的。
transcript.whisperx[172].start 6134.838
transcript.whisperx[172].end 6134.878
transcript.whisperx[172].text 吳春城議員
transcript.whisperx[173].start 6152.972
transcript.whisperx[173].end 6153.412
transcript.whisperx[173].text 中央行政機關組織基準法第5條第3項規定
transcript.whisperx[174].start 6177.264
transcript.whisperx[174].end 6201.114
transcript.whisperx[174].text 不得以作用法或其他法規規定這個機關的組織明顯的這個草案第3條的部分跟這個法律是有違背的第二個部分來講對整個高齡社會的部分的行政政策的部分來講已經由院長主持的社會福利推動委員會那在下設院長指示的政務委員有一個專案小組也做了一個應用處理現在在
transcript.whisperx[175].start 6202.074
transcript.whisperx[175].end 6202.474
transcript.whisperx[175].text 再請廖維祥委員發言
transcript.whisperx[176].start 6229.212
transcript.whisperx[176].end 6256.012
transcript.whisperx[176].text 我只是簡單表達一下剛剛邱盈盈委員有說那個她現在覺得被叫這個漂亮寶貝很奇怪但是我覺得對我來講我可以叫她漂亮姐姐所以不會很奇怪那另外就是其實剛剛大家在討論的都有針對裡面的一條一條去做討論和去做合理不合理所以我認為現在是不是還是應該實質的進入逐條的去看每一條到底哪裡有問題大家可以提出來好好討論對不對好謝謝
transcript.whisperx[177].start 6258.899
transcript.whisperx[177].end 6260.4
transcript.whisperx[177].text 好你也請委員我想公聽會也開過了那一樣都有幾個問題到底真的是誰是主責今天真的各部會都來了那到底是要行政院還是誰這是我第一個第二個
transcript.whisperx[178].start 6288.43
transcript.whisperx[178].end 6316.033
transcript.whisperx[178].text 我一直在查相關的訊息因為我本來在學校就教所謂的在社工也有家庭人類學裡邊講到人類發展那我們嘗試去看有兒童發展有少年發展有所謂的青年發展也有所謂的中老年然後老年期所以我就查不到說我們有兒童福利法有少年福利法後來兒少合併
transcript.whisperx[179].start 6317.314
transcript.whisperx[179].end 6317.475
transcript.whisperx[179].text 李慧琼議員
transcript.whisperx[180].start 6330.725
transcript.whisperx[180].end 6331.525
transcript.whisperx[180].text 而通福利法、少年福利法
transcript.whisperx[181].start 6358.698
transcript.whisperx[181].end 6377.486
transcript.whisperx[181].text 老人福利法現在多了一個壯世代那我們是不是也要來立個婦女或立個什麼就是我不知道去創這樣的名詞上的用意還有一個就是說用55歲到底有沒有有根有據尤其50後來我去看中高齡的發展裡邊50歲大概勢力上已經事實上是減少
transcript.whisperx[182].start 6383.14
transcript.whisperx[182].end 6392.383
transcript.whisperx[182].text 這兩個事實上對我來講是叫我一直去賺錢然後一直去消費嗎那我本來如果事實上是可以好好休息的反而又變成叫我要做生產者又要做消費者這個我也不太理解
transcript.whisperx[183].start 6406.226
transcript.whisperx[183].end 6420.717
transcript.whisperx[183].text 在法裏邊有蠻多的衝突的這是而且本來我們就有中高齡跟高齡者就業促進法如果你叫我要去工作那有啦有這個法啦而且它規定就是55歲以上那我當然就要問問我們的勞動部就是說如果今天這個法通過我有點疑慮的是到底這法裏邊
transcript.whisperx[184].start 6432.873
transcript.whisperx[184].end 6447.711
transcript.whisperx[184].text 本來特別法就優先於普通法新法優於舊法所以如果這個法通過的話中高齡及高齡者的就業促進法以後是不是就應該會不會這樣子法律效果就會不會造成了除了本法第2條、第1項、第7條、第13條、第14條與中高齡就業
transcript.whisperx[185].start 6452.576
transcript.whisperx[185].end 6475.868
transcript.whisperx[185].text 專法相似的部分適用是架空中高齡就業的相關規定嗎?所以我們為什麼一直前面在公聽會的時候就講跌床駕屋跌床駕屋好像似乎也沒有也沒有人去做這個回應那還是說要把直接那個勞動政策的這幾條通通都拿掉那本法內容就少掉20%不過要把這邊我們的壯世代的這個法拿掉的話
transcript.whisperx[186].start 6476.926
transcript.whisperx[186].end 6503.44
transcript.whisperx[186].text 那我不知道勞動部到底有沒有什麼樣的一個建議剛剛我講說除了叫我們去生產以外又叫我們說要去消費那我就要來問消費的這樣子想問經濟部你怎麼去理解叫做壯世代產業因為我現在到現在讀完條文我還是沒有理解那個壯世代產業意指的是什麼還有什麼叫做長壽經濟
transcript.whisperx[187].start 6506.742
transcript.whisperx[187].end 6534.083
transcript.whisperx[187].text 這又是意思是什麼因為法律如果定義不清楚的話通常去執行的人事實上是有困難的像這個產業創生到底這個力量是要來自市場的創意還是來自政府如果這個叫人家去創生創業如果55歲他經濟已經走到高峰要往下走的時候那你如果造成他的失敗的時候到底是叫政府負責嗎還是要誰
transcript.whisperx[188].start 6535.757
transcript.whisperx[188].end 6536.177
transcript.whisperx[188].text 所以我就不太了解說
transcript.whisperx[189].start 6565.077
transcript.whisperx[189].end 6565.477
transcript.whisperx[189].text 委員吳春城
transcript.whisperx[190].start 6594.039
transcript.whisperx[190].end 6594.259
transcript.whisperx[190].text 李慧琼議員
transcript.whisperx[191].start 6610.05
transcript.whisperx[191].end 6630.192
transcript.whisperx[191].text 45歲會不會比55歲更是壯世代可是這要定義55歲所以我才說一直認為說沒有學理根據的時候要我們硬要去定這樣子的一個法令的話那我們也很擔心在這邊同意的人會不會被後代笑還有這個壯世代的人員專業資格到底是什麼意思
transcript.whisperx[192].start 6630.772
transcript.whisperx[192].end 6631.133
transcript.whisperx[192].text 菁姐再請鄭天才委員
transcript.whisperx[193].start 6664.988
transcript.whisperx[193].end 6681.835
transcript.whisperx[193].text 謝謝委員的指導那經濟部這邊有3點來做報告第一點就是臺灣要進入超高齡的社會所以勞動力呢看起來是要有所補充那未來55歲以上的這一些我們現在定義叫壯世代的族群他可以是勞動力市場的一部分這是第一點
transcript.whisperx[194].start 6682.515
transcript.whisperx[194].end 6710.149
transcript.whisperx[194].text 那第二點這個壯世代的這些55歲以上的族群相對的他的健康的狀況以及對休閒的注重我們都必須要來加以關心所以他所對應的健康醫療產業以及他的休閒這一部分呢都是可以來關注的這是第二點報告所以後續我們是可以利用智慧化的科技那鼓勵業者針對壯世代的族群相關的服務休閒產業等等的來做推廣
transcript.whisperx[195].start 6710.589
transcript.whisperx[195].end 6711.269
transcript.whisperx[195].text 主席主席主席
transcript.whisperx[196].start 6746.008
transcript.whisperx[196].end 6772.822
transcript.whisperx[196].text 主席、各位委員,我想這個提案人之所以會提這個法,絕對有他的一個非常重要的一個目的。剛才聽了這個我們行政部門的這個發言,尤其是我們衛福部的次長、政務次長,
transcript.whisperx[197].start 6774.546
transcript.whisperx[197].end 6801.072
transcript.whisperx[197].text 這個法就是要立法所以才不要影響到人民的權益就是要透過法律的制定剛剛提到了幾個行政部門一直提到行政院已經訂了什麼方案行政院已經訂了什麼排比書這個都沒有法現在就是要立法讓你有所依據
transcript.whisperx[198].start 6802.708
transcript.whisperx[198].end 6829.529
transcript.whisperx[198].text 才能夠不要影響到人民的權益這麼重要的事情你說我們已經有訂了方案還沒有法律的依據你說我們做了排批書訂了排批書沒有法律的依據我們現在立法給你們依據這是對的所以這個部分第一個什麼是叫壯世代
transcript.whisperx[199].start 6832.469
transcript.whisperx[199].end 6859.017
transcript.whisperx[199].text 不是這個草案的第一個發明的啦勞動部在今年的2月就訂了什麼呢就訂了壯世代就業促進獎勵實施要點這裡面就有壯世代是幾歲以上就有啊就訂了等於我們今天討論這個法到底寫55歲是不是當大家可以討論是不是要
transcript.whisperx[200].start 6860.953
transcript.whisperx[200].end 6888.367
transcript.whisperx[200].text 往下45歲以上可以討論而不是整個就否決所以這個勞動部就已經訂了壯世代沒有法律的依據我們透過法律給他明文規定什麼叫壯世代不是很好嗎對不對所以另外
transcript.whisperx[201].start 6890.025
transcript.whisperx[201].end 6918.401
transcript.whisperx[201].text 講到辦公室這個沒有違反中央行政機關組織基準法中央行政機關組織基準法所明定的是針對機關機關現在不是這個只是辦公室現在設了很多辦公室啊也沒有法的依據啊我們現在立法授權給你依據不是更合法嗎
transcript.whisperx[202].start 6919.916
transcript.whisperx[202].end 6934.717
transcript.whisperx[202].text 所以這個部分這個名稱法律的名稱大家可以討論如果從第一條到最後一條這樣看這個條文可能改為基本法
transcript.whisperx[203].start 6935.606
transcript.whisperx[203].end 6963.482
transcript.whisperx[203].text 可能是比較適當的這是我的建議所以我認為這樣的一個法律的提出絕對有它的一個非常需要達成的一個如果我們從各條條文來看那我們怎麼樣讓這個條文能夠更符合我們目前台灣社會的一個需要我想只有這樣的一個建議以上
transcript.whisperx[204].start 6965.557
transcript.whisperx[204].end 6985.41
transcript.whisperx[204].text 謝謝 謝謝鄭委員再一次的跟我們委員會報告齁那今天他這個有提出修正把21條已經容收為13條就是裡面有一些重疊的我本身也有意見的他們都協商之後都改了齁那第二個這個案子
transcript.whisperx[205].start 6987.515
transcript.whisperx[205].end 7012.464
transcript.whisperx[205].text 出委員會之後會送政黨協商政黨協商我們會再請陳時中政治政務委員來作會作會跟行政委員會的想法跟版本都可以修改所以我們現在今天就來把主條唸第一個我們壯世代政策產業發展促進草案這個名稱有沒有意見
transcript.whisperx[206].start 7016.058
transcript.whisperx[206].end 7017.361
transcript.whisperx[206].text 有意見嗎?有意見沒有?那我們就要保留啦那我們從第一條開始
transcript.whisperx[207].start 7043.464
transcript.whisperx[207].end 7051.12
transcript.whisperx[207].text 第一條我們陳清威委員有修正齁修正他是跑到那裡去了
transcript.whisperx[208].start 7055.151
transcript.whisperx[208].end 7077.844
transcript.whisperx[208].text 第一條他實現世代資源共享他改成世代經濟循環目標行政單位有沒有意見世代改成資源共享對不起念環了
transcript.whisperx[209].start 7084.471
transcript.whisperx[209].end 7086.893
transcript.whisperx[209].text 經濟循環或資源共享。
transcript.whisperx[210].start 7115.913
transcript.whisperx[210].end 7116.073
transcript.whisperx[210].text 那個...剛剛有...
transcript.whisperx[211].start 7137.865
transcript.whisperx[211].end 7139.607
transcript.whisperx[211].text 請教吳委員經濟循環的概念也有參考循環經濟的概念循環經濟
transcript.whisperx[212].start 7158.168
transcript.whisperx[212].end 7171.411
transcript.whisperx[212].text 一個很重要的概念就是沒有垃圾的概念所以套在這邊的話呢因為是人所以變成不能沒有應該是說不能有沒有用的人所以壯世代每個人必須要會賺錢會花錢而且還要身體健康
transcript.whisperx[213].start 7187.407
transcript.whisperx[213].end 7190.833
transcript.whisperx[213].text 所以我這樣講吳委員都同意
transcript.whisperx[214].start 7193.24
transcript.whisperx[214].end 7193.42
transcript.whisperx[214].text 主席主席
transcript.whisperx[215].start 7226.461
transcript.whisperx[215].end 7250.303
transcript.whisperx[215].text 謝謝主席,對不起我中文不太好我可不可以請提案委員說明一下什麼叫做實現世代經濟循環目標然後維護壯世代人權與尊嚴因為我中文實在是看不懂啦可以請提案委員說明一下好不好
transcript.whisperx[216].start 7255.063
transcript.whisperx[216].end 7277.521
transcript.whisperx[216].text 好 謝謝這個可能是壯世代跟我們一般傳統在講長照啦社福的觀念很重要的差異一點差異一點就是我們也覺得老人就是就是被我們像在撫養比是被撫養的但事實上我們主計處裡面的統計資料我們的稅55%是壯世代提供的
transcript.whisperx[217].start 7283.905
transcript.whisperx[217].end 7305.098
transcript.whisperx[217].text 我們三分之二的財富是在壯世代的手上的那因為這些呢如果而且我們現在只想到他們要倒下來要長照這個會造成我們現在扶養比已經3.6比1啊3.6個年輕人要扶養一個老人那這個2040年會變成2比12070年會變成1比1
transcript.whisperx[218].start 7308.32
transcript.whisperx[218].end 7335.85
transcript.whisperx[218].text 那這個就是叫做大量的高齡化倒進之塔型的時代來臨我們有什麼解決的方式壯世代有解決方式就是把分子壯起來拉下來當分母一起成為生產者、消費者、勞動者這個不僅是對壯世代第三人生他會有方向他會不會倒下來我們現在的高齡者臥床平均已經超過8年所以呢當他把這些帶出來以後
transcript.whisperx[219].start 7336.63
transcript.whisperx[219].end 7336.79
transcript.whisperx[219].text 以上 謝謝
transcript.whisperx[220].start 7366.869
transcript.whisperx[220].end 7369.664
transcript.whisperx[220].text 不好意思那主席我可以再繼續提問嗎好你也請問
transcript.whisperx[221].start 7376.894
transcript.whisperx[221].end 7387.156
transcript.whisperx[221].text 我可不可以請教一下因為剛剛按照吳委員的解釋就是這個循環到讓年輕世代可以有這個壯大這個
transcript.whisperx[222].start 7401.94
transcript.whisperx[222].end 7416.605
transcript.whisperx[222].text 創造市場所以這個年輕人他們去解決了他們的這個經濟會可以改善他們的經濟狀況那這樣子這些他就敢結婚敢生小孩對然後那
transcript.whisperx[223].start 7417.785
transcript.whisperx[223].end 7434.096
transcript.whisperx[223].text 那這些壯世代的就會變好了壯世代過著他創造他的市場我們現在掌握他三分之的財富但是我們對高齡者的產業現在就養生養病養老其實
transcript.whisperx[224].start 7435.717
transcript.whisperx[224].end 7453.93
transcript.whisperx[224].text 他以前為什麼會這樣子因為以前我們都因法思維就把人認為退休以後來歷不多其實現在如果你到60歲退休以後現在會有30年很多的到90歲這30年竟然沒有產業只剩下養生養病養老他不臥床才奇怪
transcript.whisperx[225].start 7455.39
transcript.whisperx[225].end 7479.784
transcript.whisperx[225].text 所以如果發展這個整個的完整的長壽經濟十一住行娛樂各方面高齡者想看什麼電影高齡者想聽什麼音樂時尚的衣服這就是經濟部在談的大健康產業大健康產業委員不好意思因為我想我們這邊的連結是斷掉的是因為我不知道我們這個年輕世代賺的這些
transcript.whisperx[226].start 7481.526
transcript.whisperx[226].end 7496.16
transcript.whisperx[226].text 說賺錢好了吼怎麼樣跑到這個壯世代那邊去因為你說要壯世代要穿漂亮的衣服要去看電影要去玩嗎年輕人就會去研發他要去研究那個壯世代需要什麼他有什麼
transcript.whisperx[227].start 7496.681
transcript.whisperx[227].end 7502.926
transcript.whisperx[227].text 有些人有錢但是他沒有東西可以買,這就是創造長壽經濟有些人有錢但是都被鎖在保險這個就是金管會要釋放他們的財務自由
transcript.whisperx[228].start 7519.4
transcript.whisperx[228].end 7543.562
transcript.whisperx[228].text 有些人需要缺錢他需要繼續的工作或者他想貢獻社會這就是勞動部的要創造的最後這些人都撐住了我們才有辦法去照顧那社福體系這些目前是15%的這些私人的當這些人我們現在只有把老人當作社福的角度
transcript.whisperx[229].start 7544.743
transcript.whisperx[229].end 7554.429
transcript.whisperx[229].text 這個只佔80萬的人,我們有800萬的高齡者,你沒有政策沒有產業的話,這會造成人口土石流,整個崩下來以後我們社福體系也同樣崩潰。好,請黃學芳委員發言
transcript.whisperx[230].start 7558.527
transcript.whisperx[230].end 7580.066
transcript.whisperx[230].text 好,謝謝主席。那我剛剛就那個我們今天的這個草案,《壯世代政策與產業發展促進法草案》。那我想請教啦,如果我們把壯世代改成中高齡及高齡政策與產業發展促進法草案,
transcript.whisperx[231].start 7580.886
transcript.whisperx[231].end 7605.445
transcript.whisperx[231].text 這樣是不是可以那另外就是說我們在譬如說在我們第一條的部分吼這個維護壯世代人權與尊嚴那我們是把它改成就是說維護中高齡及高齡者人權與尊嚴那這樣就可以呼應到我們勞動部以及各單位以及衛福部這邊原本就有的一些政策是不是可以這樣子做一個修改
transcript.whisperx[232].start 7613.727
transcript.whisperx[232].end 7635.044
transcript.whisperx[232].text 吳春城委員你自己的意見原本壯世代大家都很有意見就這個名稱而且這個定義底下那個壯世代的定義是說指55歲以上的國民那如果我們這個草案把它改成中高齡及高齡政策與產業發展促進法草案
transcript.whisperx[233].start 7636.585
transcript.whisperx[233].end 7663.882
transcript.whisperx[233].text 第一條這個壯世代就改成這個中高齡及高齡人權與尊嚴那第二的部分第二條就是壯世代這個年齡的這個壯世代定義改成中高齡的定義是什麼高齡的定義是什麼那這個也可以呼應目前我們這個勞動部或衛福部其他單位目前做的那如果做的不足的部分我們可以再逐條再來補充這樣是不是可以
transcript.whisperx[234].start 7665.881
transcript.whisperx[234].end 7668.885
transcript.whisperx[234].text 請林業勤文、花園丸就吳春城委員回答
transcript.whisperx[235].start 7677.87
transcript.whisperx[235].end 7703.019
transcript.whisperx[235].text 你也許委員發言完請廖瑋祥,廖瑋祥要請吳春城發言好,所以我現在可以發言齁張偉下次可不可以幫我們我們也來寫一個叫做首女產業相關的促進法為什麼,因為我覺得剛剛我聽吳委員講完就是說只要我們喊口號講壯世代壯世代我們真的就變壯世代嗎我剛剛已經提過一直叫我們又要消費
transcript.whisperx[236].start 7704.309
transcript.whisperx[236].end 7704.469
transcript.whisperx[236].text 李慧琼議員
transcript.whisperx[237].start 7719.403
transcript.whisperx[237].end 7736.457
transcript.whisperx[237].text 所以我覺得剛吳春城講的我不知道到底吳春城委員講的到底有沒有真的背後的他說50%的我們的中高齡都非常有錢我真的也要向我問先他是不是用我們台北市會用他自己的狀況去看因為學歷上
transcript.whisperx[238].start 7739.912
transcript.whisperx[238].end 7756.055
transcript.whisperx[238].text 我們看臺灣事實上有時候就有現在已經事實上有貧富不均的社會現象二分之一的老人他的二分之一的人他老年給付的時候落在兩萬塊以下至少四分之一的人是在二到三萬
transcript.whisperx[239].start 7757.077
transcript.whisperx[239].end 7768.233
transcript.whisperx[239].text 對照今年的每月必要生活費用支出是1萬7到2萬4所以還有四分之三的人是這樣維持小康而且現在五十幾歲的人他可能要撫養阿公阿嬤還要撫養爸爸媽媽
transcript.whisperx[240].start 7771.516
transcript.whisperx[240].end 7798.099
transcript.whisperx[240].text 一個事實上是輕度那個失智兩個事實上是重度的那你說還要孩子可能大學畢業剛離手這都是沉重的負擔的時候那今天要談這個的時候不要一直覺得說那要從五十幾歲的人那挖錢出來或者是叫他們他們已經努力工作他要去撫養上邊的所以我們還是希望定義講清楚否則的話你如果用五十五歲我真的也是不太同意齁等下第二條要討論
transcript.whisperx[241].start 7799.12
transcript.whisperx[241].end 7808.67
transcript.whisperx[241].text 前面我還是聽不懂還是我的中文理解能力有問題我真的聽不懂說要翻轉銀髮那這時候為什麼不講壯世代呢因為翻轉銀髮海嘯轉為國家發展的動力反正就是要讓人一直做到死就對了
transcript.whisperx[242].start 7819.804
transcript.whisperx[242].end 7819.944
transcript.whisperx[242].text 廖維強委員歡迎
transcript.whisperx[243].start 7845.436
transcript.whisperx[243].end 7861.271
transcript.whisperx[243].text 首先回復一下我看了我查了一下資料所謂55歲plus掌握台灣大部分財富他其實引用的是中研院我們台灣中研院社會所的林宗鴻研究員跟各學者合作做出來的結果這第一件事情
transcript.whisperx[244].start 7862.072
transcript.whisperx[244].end 7879.901
transcript.whisperx[244].text 那第二件事情就是所謂的就業再就業然後再花錢這件事情我覺得比較片面解讀我認為他在做的事情是做創造一個社會結構讓他有的選擇那因為我們在想區域立委我常常在跑的時候常常會經過會去跑這個所謂關懷據點關懷據點的這種地方
transcript.whisperx[245].start 7884.863
transcript.whisperx[245].end 7901.428
transcript.whisperx[245].text 其實我覺得他壯世代為什麼剛剛有委員說那是不是就叫中高齡和高齡就業促進法就好我覺得他就是呼應了為什麼要改叫壯世代他要改變的是觀念的概念因為還是如果你要這樣講的話其實我們上次才在跟勞動部質詢
transcript.whisperx[246].start 7902.888
transcript.whisperx[246].end 7932.391
transcript.whisperx[246].text 為什麼現在有這個就業促進法可是我們的職場上面感受到被年齡歧視的居然高達6、70%反正很高啊那這樣子究竟到底哪裡出了狀況所以我想這個是為什麼現在今天要改交壯世代的部分當然大家可能對於壯世代有沒有被激勵到不一定啊但是我自己在一線在跑地方行程的時候我有跟他們講這個概念其實他們認為他們是很認同的因為他覺得他退休之後很多人看到他就是
transcript.whisperx[247].start 7934.111
transcript.whisperx[247].end 7952.298
transcript.whisperx[247].text 引髮族、伴白老翁講一講後來都懶得出來真的會在關懷據點的是社會上非常少數的一部分人還是很多人就覺得我要撈我就不出來我既不就業可能我也擔心我後來人生未來要留下這些很多的資產那我也不想要花費
transcript.whisperx[248].start 7954.379
transcript.whisperx[248].end 7969.165
transcript.whisperx[248].text 他要選擇他要就業或者不就業他還是可以選擇他要消費或不消費而不是說你叫他就業然後又要叫他消費你只是創造出一個社會結構是讓這樣子的經濟比較有活水那這是我的看法那以上分享謝謝
transcript.whisperx[249].start 7981.286
transcript.whisperx[249].end 8003.825
transcript.whisperx[249].text 其實現在其實行政院我們院長其實是很喜歡壯世代的所以才會成立了行政院的壯世代部委小組一開始我是請求6個部委會加入後來行政院自己擴充到14個部委會
transcript.whisperx[250].start 8006.187
transcript.whisperx[250].end 8018.877
transcript.whisperx[250].text 因為每一個部會都覺得這個對他們幫助很大現在不僅是勞動部高舉壯世代重返職場成效良好包括教育部
transcript.whisperx[251].start 8020.041
transcript.whisperx[251].end 8041.449
transcript.whisperx[251].text 也響應就是要明年1月份開始推動第三人生大學不是社區大學是有學位的大學不是都在大學18歲進入現在有些大學已經而且熱烈現在已經有40所大學報名這都是在壯世代的觀念啟發之下包括兩個禮拜前諮詢月
transcript.whisperx[252].start 8042.989
transcript.whisperx[252].end 8064.405
transcript.whisperx[252].text 書發部過去都是用樂齡資訊都沒有人這一次用壯世代懂資的樂園、懂資訊的樂園創造了萬能因法族進來那所以呢剛才為什麼壯世代為什麼不用中高齡其實中高齡跟老齡這個稱呼現在在世界當中的定義也正在搖擺
transcript.whisperx[253].start 8065.666
transcript.whisperx[253].end 8083.096
transcript.whisperx[253].text 正在搖擺快要崩潰了45歲為什麼就稱為中高齡你出國念書回來就已經40歲工作5年就開始輔導帶退嘛這都是過去農業社會的觀念到現在都沒有更新啦連勞動部都覺得好笑啦但是也沒有改我們要捍衛這個嗎65歲被稱為法定老人
transcript.whisperx[254].start 8087.658
transcript.whisperx[254].end 8110.919
transcript.whisperx[254].text 像我就已經快要領敬老卡了我也覺得我不甘願啊我的朋友周邊都覺得很奇怪啊這個東西是不是應該要檢討日本都已經延後到70了所以這些都不確定的東西嘛所以為什麼一定要這個那基本上我也跟大家講說行政院現在基本上是接受
transcript.whisperx[255].start 8111.559
transcript.whisperx[255].end 8111.619
transcript.whisperx[255].text 以上 謝謝
transcript.whisperx[256].start 8141.328
transcript.whisperx[256].end 8155.26
transcript.whisperx[256].text 好,那第一條大家有沒有意見?要不要保留還是要通過?好,那第一條保留,第二條?第二條主要是年齡的問題啦,55歲,這是怎麼來?第二條?要保留?要不要保留?保留?好,那我們現在休息10分鐘
transcript.whisperx[257].start 8824.605
transcript.whisperx[257].end 8831.139
transcript.whisperx[257].text 好,我們現在繼續開會第一條保留,第二條保留
transcript.whisperx[258].start 8832.199
transcript.whisperx[258].end 8860.197
transcript.whisperx[258].text 第三條我們楊耀文要先發言我覺得我們第二條直接保留那我先說就是確實目前的中高齡我們的定義是是太年輕了我覺得45歲因為明年以後就45歲的占整人口數的50%以上所以提出壯世代的概念我是覺得很好
transcript.whisperx[259].start 8862.559
transcript.whisperx[259].end 8883.087
transcript.whisperx[259].text 為什麼是55歲這個我們我們我們要不要討論一下還有就是在第二條的定義裡面有關壯世代的政策產業跟就業其實都沒有都沒有界定的非常的清楚就是就是都都概念概念還蠻模糊的
transcript.whisperx[260].start 8884.953
transcript.whisperx[260].end 8914.144
transcript.whisperx[260].text 因為我們總管整個草案呢就是大概都是要求政府做宣誓性的東西他整個草案裡面大概就連要不要設基金都只是得設而不是應設也就是說我們整部草案看起來就是除了要求國家每年應制定
transcript.whisperx[261].start 8915.612
transcript.whisperx[261].end 8930.203
transcript.whisperx[261].text 年度壯世代的政策跟產業發展計畫,除了這個是比較硬性的規定以外,大概都是比較一般性、遜式性的規定。
transcript.whisperx[262].start 8932.15
transcript.whisperx[262].end 8945.644
transcript.whisperx[262].text 也就是我們從整部草案來看假如說我們第二條就直接保留那後面的可能就會全部保留
transcript.whisperx[263].start 8948.033
transcript.whisperx[263].end 8973.268
transcript.whisperx[263].text 所以我可能還是要問一下因為吳春城委員的定義是55歲那我想要讓行政機關表達你們覺得第2條就是包括壯世代的定義包括壯世代的政策跟產業跟就業
transcript.whisperx[264].start 8975.942
transcript.whisperx[264].end 8979.883
transcript.whisperx[264].text 在這個草案裡面你們有沒有意見?
transcript.whisperx[265].start 9000.636
transcript.whisperx[265].end 9023.272
transcript.whisperx[265].text 謝謝楊委員的指教其實在剛開始的時候勞動部也跟各位報告過勞動部對於目前有一個中高齡及高齡者就業促進法那中高齡的定義就是45到65那高齡者就是65以上我們對於那一邊有一個相應的法規在處理那有一些條文在12月4號也會繼續推動包括
transcript.whisperx[266].start 9027.055
transcript.whisperx[266].end 9049.812
transcript.whisperx[266].text 每3年有一個就業計畫每2年必須要更新我們的職場指引包括我們相應的符合退休資格也必須要有一些政府部門必須要或僱主需要相應的提供調試或者是退休準備或者是在就業的準備所以其實在中高年級高齡者就業促進法其實有一些相應的規定就在處理當中
transcript.whisperx[267].start 9051.073
transcript.whisperx[267].end 9071.963
transcript.whisperx[267].text 那目前這個本法的版本裡面有關於壯世代的就業只消除社會對壯世代就業歧視然後具有工作能力或對象協助、蓄留職商、在位者這邊也符合我們對於中高齡及高齡者就業促進法現在的做法還有未來的精進作為所以關於這個條文我們其實是沒有特別的意見
transcript.whisperx[268].start 9075.586
transcript.whisperx[268].end 9099.532
transcript.whisperx[268].text 所以次長的意思是說就是整個中高齡的就業保障已經在在中高齡及高齡者就業促進法已經都有相應的規定在那一邊可是呢可是我想會有這樣子的草案產生我覺得第一就是中高齡
transcript.whisperx[269].start 9101.235
transcript.whisperx[269].end 9103.296
transcript.whisperx[269].text 市長我們現在是討論這個壯世代政策跟產業發展的促進法
transcript.whisperx[270].start 9131.58
transcript.whisperx[270].end 9144.128
transcript.whisperx[270].text 我覺得我覺得這個法討論過了以後通過以後相關的法律應該要怎麼修訂那是另外一回事就是說我們應該要先聚焦在這裡
transcript.whisperx[271].start 9146.973
transcript.whisperx[271].end 9169.763
transcript.whisperx[271].text 跟委員報告,其實在過去中高年級、高年級的就業促進法的過程,我們發現年齡歧視是一個重要問題。那55歲以後找退職場,或者是沒有辦法再續留職場,或失業者沒有辦法重返職場,或退休者沒有辦法再就業都是一個問題。所以我們之前在吳委員的協助底下,我們對
transcript.whisperx[272].start 9171.584
transcript.whisperx[272].end 9198.462
transcript.whisperx[272].text 55歲以上的這部分尤其勞參率雪崩式的下降我們對這一塊其實跟吳委員有充分的討論我們也推出了一些相應的計畫和重要的做法所以這部分我們在中高齡和高齡者就業促進法的架構底下針對55歲以上都有一些特別的計劃和措施在做展開所以我才會特別報告說有關於這個第二條的第四款的部分我們其實是沒有特別意見
transcript.whisperx[273].start 9199.182
transcript.whisperx[273].end 9206.375
transcript.whisperx[273].text 我們在中高齡就業促進法底下已經有相應的計畫內容在做處理所以次長的回答就是
transcript.whisperx[274].start 9211.397
transcript.whisperx[274].end 9234.319
transcript.whisperx[274].text 很明白的表示其實45歲到55歲跟55歲以上其實他在職場上面臨的問題是天差地遠會有很大的不對那就是你的回答呢其實就是彰顯壯世代獨立立法的需求性你懂我的意思嗎
transcript.whisperx[275].start 9235.906
transcript.whisperx[275].end 9248.837
transcript.whisperx[275].text 我好像也不是這樣應該這樣講說我們在中高年級高齡者就會促進法他其實有很多的規定在那原來的區分是中高齡者一塊高齡者一塊高齡者是幾歲以上65歲對
transcript.whisperx[276].start 9250.658
transcript.whisperx[276].end 9275.638
transcript.whisperx[276].text 對阿我們跟吳委員這邊在相關的議題的討論還有概念的翻轉上面我們針對55歲以上這一塊勞動力快速的流失這一塊我們有推了相關的其他的法案再去做其他的措施和計畫再做處理這邊在中高齡者就會促進法並不相違背阿好謝謝主席聽起來是
transcript.whisperx[277].start 9281.688
transcript.whisperx[277].end 9302.138
transcript.whisperx[277].text 45歲叫做中高齡然後65歲叫高齡55歲這樣叫壯世代我們今年已經有一半人口已經有一半人口超過45歲了所以我們現在一半的人是叫做中高齡我們台灣一半的人叫做中高齡一半因為
transcript.whisperx[278].start 9305.157
transcript.whisperx[278].end 9331.611
transcript.whisperx[278].text 我還是反對啦吼因為我覺得難怪是吳春城委員提的啦吼因為這個狀就充滿的男性主義沙文主義吼所以我覺得這個而且只是55歲以上的國民所以這個我不太接受所以我覺得如果這邊沒有修因為這跟名稱有關聯性嘛所以如果跟他講保留所以跟他換姚耀偉以後再講所以我還是期待
transcript.whisperx[279].start 9332.551
transcript.whisperx[279].end 9332.671
transcript.whisperx[279].text 主席
transcript.whisperx[280].start 9345.94
transcript.whisperx[280].end 9366.494
transcript.whisperx[280].text 少年福利法、兒童福利法、少年福利法、老人福利法現在跳出來又一個擺脫掉發展的那樣子的概念裡邊突然來的壯世代我還是不太贊成是說這樣子的名稱如果你說今天像剛剛秀芳委員講的如果改成是中高齡第一個也符合學齡然後有事實
transcript.whisperx[281].start 9369.381
transcript.whisperx[281].end 9369.961
transcript.whisperx[281].text 委員會委員會委員會委員會
transcript.whisperx[282].start 9398.781
transcript.whisperx[282].end 9413.239
transcript.whisperx[282].text 這樣界定下去在政府的資源分配上會不會造成什麼效果因為我始終不知道這55歲定義哪來的如果真的這個壯世代只是為了講要講口號我沒有意見可是如果要定在法律上
transcript.whisperx[283].start 9414.246
transcript.whisperx[283].end 9417.969
transcript.whisperx[283].text 中高齡及高齡者就業促進法,當時是為了促進45歲以上的中高齡者和65歲以上的高齡者就業,來達到健康參與和安全。
transcript.whisperx[284].start 9438.827
transcript.whisperx[284].end 9441.669
transcript.whisperx[284].text 立法院第11屆第2會期社會福利及衛生環境、經濟委員吳春城等42人擬具
transcript.whisperx[285].start 9463.926
transcript.whisperx[285].end 9464.167
transcript.whisperx[285].text 委員會員沒有?好來
transcript.whisperx[286].start 9491.678
transcript.whisperx[286].end 9511.525
transcript.whisperx[286].text 感謝委員的垂詢我想就做兩點的這一個的說明第一個確實就整個這一個發展那個人類發展還有就整個這一個相關心理學方面的研究林業勤委員也是這方面的專家就學理上還有國際上其實基本上大概都有明確的定義比如說對於所謂青少年大概10到19
transcript.whisperx[287].start 9512.705
transcript.whisperx[287].end 9536.704
transcript.whisperx[287].text 然後對於這個所謂的青年是20以上45就是所謂中高齡65就是所謂的高齡這個是學理還有這個基本上就整個心理學還有整個這一個相關的這個認知認知法案等等這些相關的這個學科綜合現在目前國際的一個通用所以基本上我想這個是在這個情況之下是不是對於55有一個有一個定義我想
transcript.whisperx[288].start 9537.524
transcript.whisperx[288].end 9558.724
transcript.whisperx[288].text 這個到目前為止真的在國際上面真的是比較有比較大的大概應該是我我是1993年到德國讀書的基本上我的有限的 limited knowledge告訴我應該是不存在這是第一點另外第二點確實現在目前因為已經存在我們現在目前已經有各項的這一個政策都在推動那這個現在目前又另外再多出來這個部分
transcript.whisperx[289].start 9559.925
transcript.whisperx[289].end 9560.665
transcript.whisperx[289].text 臨終紅教授臨終紅教授臨終紅教授
transcript.whisperx[290].start 9589.063
transcript.whisperx[290].end 9613.648
transcript.whisperx[290].text 就財富而言都是最高的一群那經濟學人6月22號有一個整個special report他有談到就是說就整個全世界戰後因爲草案現在為什麼不消費其實最主要是兩個原因第一個事實上他們害怕就是說整個退休之後他們的整個這一個長照上面恐怕沒辦法有效cover所以他們現在不想把錢把它keep住另外第二個其實事實上
transcript.whisperx[291].start 9614.048
transcript.whisperx[291].end 9632.405
transcript.whisperx[291].text 是因為他們覺得就是說他們下一代的這個教育成本提高那這個兩個部分事實上政府現在目前都在做啊我們有關長照部分我們現在目前在推到2.0準備進入到3.0另外第二個有關有關青年部分我們現在目前對於整個這個私校的部分我們現在目前已經有教育上面的這個都補貼政府都已經在做來減輕他們的這個負擔我想這個現有已經有這個機制在進行
transcript.whisperx[292].start 9637.79
transcript.whisperx[292].end 9637.93
transcript.whisperx[292].text 主席
transcript.whisperx[293].start 9660.29
transcript.whisperx[293].end 9671.462
transcript.whisperx[293].text 沒有啦,我剛才說第二條保留阿第三條你意見沒有啦,我意見就要通過這樣其實你第三條嗎?第二條保留,來,第三條有沒有意見?沒有的話就...瑤瑤快點,快說
transcript.whisperx[294].start 9681.485
transcript.whisperx[294].end 9703.591
transcript.whisperx[294].text 第三條大概就是我剛剛講的就是這個草案的提出很少有比較具體的法律效果的這第三條倒是有要求要設立壯世代政策的辦公室
transcript.whisperx[295].start 9705.053
transcript.whisperx[295].end 9710.587
transcript.whisperx[295].text 那我也知道好像行政院現在已經有了相關的機制
transcript.whisperx[296].start 9716.021
transcript.whisperx[296].end 9735.372
transcript.whisperx[296].text 可是呢假如說第三條他第三項有規定說壯世代政策辦公室每年應該要制定國家年度壯世代政策跟產業發展計畫到這裡呢我個人是支持的因為我不覺得45歲到55歲跟55歲以上
transcript.whisperx[297].start 9738.574
transcript.whisperx[297].end 9759.601
transcript.whisperx[297].text 是一個是一個是一個急劇就因為其實他真的差差距很大的我也我也不大不大不大欸贊同市長剛剛講的就是就是就是早期的分類我覺得特別是在就業市場裡面45歲到55歲跟55歲以上那個絕對是不一樣的
transcript.whisperx[298].start 9765.531
transcript.whisperx[298].end 9784.724
transcript.whisperx[298].text 第三項後來又有講說並審核計畫目標跟預算及成效是不是表示這個辦公室必須要有獨立的預算這個我可能要請教一下提案的委員
transcript.whisperx[299].start 9798.937
transcript.whisperx[299].end 9808.307
transcript.whisperx[299].text 行政院在今年6月份的時候就成立了壯世代跨部委小組都有運作,也提出了
transcript.whisperx[300].start 9810.609
transcript.whisperx[300].end 9826.141
transcript.whisperx[300].text 現在有70幾項的一個計畫在兩個禮拜前的行政院的社會福利委員會當中卓院長也有針對壯世代的促進方案也都提出了蠻完整的規劃
transcript.whisperx[301].start 9827.282
transcript.whisperx[301].end 9841.927
transcript.whisperx[301].text 基本上行政院現在是在推動這一個的但是是不是行政院推動呢然後我們就不用立法呢事實上各部會我都在接觸他們今年所114年所編的預算有關壯世代專門項目當中呢
transcript.whisperx[302].start 9846.752
transcript.whisperx[302].end 9868.84
transcript.whisperx[302].text 都是幾乎是零因為沒有法源與法無拒然後大家因為這個是陳時中政委當召集人行政院這個他也很無奈因為他只有一個秘書他唯一能做的事情現在只有14個部會找來然後大家提一提勉強跟壯實在有關的會總又會編叫做會編
transcript.whisperx[303].start 9873.662
transcript.whisperx[303].end 9888.761
transcript.whisperx[303].text 所提的東西其實跟都是現行措施、樂齡、活動然後各方面的事實上並沒有辦法解決剛才所提出來這樣子一個人口天翻地覆的問題所以為什麼
transcript.whisperx[304].start 9890.703
transcript.whisperx[304].end 9908.773
transcript.whisperx[304].text 所以這個事實上不是跌床加烏其實我剛才講的其實大家都已經提到了這就是一個雙軌制對於高齡的這部分雙軌制這樣才有辦法一邊就是照護的措施一邊就是發展性的措施
transcript.whisperx[305].start 9909.833
transcript.whisperx[305].end 9932.226
transcript.whisperx[305].text 那壯世代做一個發展性措施這個一定是必然的一定要做的事情不然無法解決我們如果繼續照舊的方式那至於提辦公室其實辦公室這個沒有餘法所以為什麼要有一個統合的單位那其實像行政院有很多委員會
transcript.whisperx[306].start 9933.827
transcript.whisperx[306].end 9959.554
transcript.whisperx[306].text 很多委員會其實都一樣就是像文件會的行政院文化會報一樣也是跨部會小組消費者保護的會報檢探辦公室的會報其實都是這樣子因為它不是一個部會能解決的問題所以為什麼沒有指定一個部會其實是尊重行政院由行政院來裁量
transcript.whisperx[307].start 9960.094
transcript.whisperx[307].end 9973.985
transcript.whisperx[307].text 張祺凱為
transcript.whisperx[308].start 9974.97
transcript.whisperx[308].end 9993.057
transcript.whisperx[308].text 今天很高興今天討論看起來蠻熱烈的我看剛開始春城這個提案一共有42位委員共同提三個黨都有那春城在總執行跟委員會也提了好幾次我看連這個總代總院長也都是贊成的
transcript.whisperx[309].start 9994.017
transcript.whisperx[309].end 10013.262
transcript.whisperx[309].text 那我剛剛這樣一路聽下來正能量的聲音比較多啦正能量聲音比較多可是現在民進黨的委員這樣比較質疑的可能是壯世代這個名字從名稱一直到會不會跌穿家屋有些指證可是我要提醒齁那個二十九天齁這29天就進入這個超高齡社會了那也沒有錯到目前為止我們面對那個掃紙化跟這個
transcript.whisperx[310].start 10015.163
transcript.whisperx[310].end 10043.455
transcript.whisperx[310].text 少子化跟高齡化這個問題看起來社會上你去做個民調包括民進黨可以去做個民調社會上確實有很多的質疑聲也做得不夠好那我覺得春城很有心他很花了很多的心思去提了這個案子看起來他是比較積極面的包括就是說目前我們有中高齡就業法這個服務法都可以去做那可是相對我們現在應該有個專法針對比較年長者而且這裡面有一個非常重要這個法裡面有一個非常重要我們都不喜歡人家叫我們老人家嘛對不對
transcript.whisperx[311].start 10045.569
transcript.whisperx[311].end 10059.421
transcript.whisperx[311].text 老人家以前連銀髮竹坑某些人都覺得說好像這個名詞都該更好一點點我覺得現在變成壯世代而且針對他裡面的整個產業發展說他的就業剛講的不是只有說叫連長的人去就業啦
transcript.whisperx[312].start 10062.594
transcript.whisperx[312].end 10089.725
transcript.whisperx[312].text 也可以啊當然90對為什麼不能壯世代我認識的一些年長者八九十的現在運動的都都都非常的好啊你可是沒有啦葉請你不喜歡他叫壯世代你要叫他你要叫他什麼你要叫他你你有時候稱他太老的人名稱他又不喜歡啊這壯世代是一個非常中性而且是一個更正面的啦好對不對葉請那個你不喜歡如果不喜歡壯世代那你要提出個更好的名詞嘛
transcript.whisperx[313].start 10090.185
transcript.whisperx[313].end 10113.807
transcript.whisperx[313].text 目前看起來是最...抱歉我不要再講太多了抱歉因為今天是經濟跟衛福聯席我是經濟委員會今天我不是只有我一個人我們台灣民眾黨全力支持這個案子每次說這個法案對台灣社會是非常正面的那我剛剛特別強調這個案子是朝野的立委包括民進黨立委是有連署的然後在總執行跟各個委員會的時候
transcript.whisperx[314].start 10114.548
transcript.whisperx[314].end 10137.125
transcript.whisperx[314].text 包括行政官員、左院長都是比較正面的看待這個事情所以我期待今天我們用比較正能量的然後講今天如果再這樣耗下去這樣耗下去沒有錯就是每一條都保留嘛那結果是什麼送到朝野學生、政黨學生啊那因為每個人都朝野都有簽名已經42個了嘛對不對那民政黨全力支持國民黨也支持民進黨裡面也有些人支持這個案子還是一定是會三讀通過的
transcript.whisperx[315].start 10138.126
transcript.whisperx[315].end 10154.846
transcript.whisperx[315].text 那是不是在三讀通過前我們用比較正面的來看這個案子好不好 把它做得更好 照顧我們所有的人特別我剛剛要提醒 超高齡都來了 像我們在座的像剛剛陳穎比較年輕啊 她沒辦法體會 她說什麼這個壯世代的這個產業經濟 像我們這些年老的我們現在都需要啊
transcript.whisperx[316].start 10156.488
transcript.whisperx[316].end 10184.343
transcript.whisperx[316].text 對不只是連長者有經驗的傳承或那些年輕人在這個在這個壯世代產業裡面他們會盡很多心力都照顧一下我們這些壯世代好不好一起努力希望今天啦一方面可以速度可以快一點點啦那第二個我剛提醒很重要再這樣下去一直有某些的意見然後到後來都是保留到後來這山頭一定要過所以我們今天要做的事情比較要比較正面就是說針對兩個地方要修的趕快去補強這個是比較重要的我們盡快往前跨一步好不好共同來努力謝謝
transcript.whisperx[317].start 10191.024
transcript.whisperx[317].end 10191.184
transcript.whisperx[317].text 黃靜雯委員
transcript.whisperx[318].start 10217.577
transcript.whisperx[318].end 10230.755
transcript.whisperx[318].text 那如果不足的部分就可以再來做一個修正那我剛剛提的就是說對於這個壯世代的定義是不是可以更明確那另外就是說剛剛那個
transcript.whisperx[319].start 10234.619
transcript.whisperx[319].end 10254.964
transcript.whisperx[319].text 張綺楷委員有特別提到就是說我覺得會有這麼多委員聯署當然對於這個每一條的內容當然覺得說這個沒有什麼問題可是問題就是說我們對於一個法案是不明確定義不明確的你叫行政機關要怎麼去執行
transcript.whisperx[320].start 10256.324
transcript.whisperx[320].end 10283.913
transcript.whisperx[320].text 完全不明確那主責單位也不明確主責單位到底是衛福部、勞動部、教育部、經濟部各部會或者是更高的這個層級行政院到底是誰要來主責這個完全都不明確的情況之下你就要把這個條文就直接這樣子通過其實我覺得這樣也不太好另外我們可以保留在委員會如果今天大家有一些意見的話
transcript.whisperx[321].start 10285.113
transcript.whisperx[321].end 10298.67
transcript.whisperx[321].text 就保留在委員會不一定要出委員會嗎就保留在委員會我們可以再來討論那如果說這麼草率就讓他出去其實我覺得不好的我也認為就是說目前
transcript.whisperx[322].start 10302.094
transcript.whisperx[322].end 10316.768
transcript.whisperx[322].text 這個45歲或者是更高45歲到64歲這個中高齡或65歲這個高齡其實65歲以上很多長者其實他們現在都還在工作甚至我爸爸現在八十幾歲他也還在工作
transcript.whisperx[323].start 10317.569
transcript.whisperx[323].end 10342.191
transcript.whisperx[323].text 他也還在工作啊所以我覺得說只要我們現在勞動部或衛福部這邊我們有一些政策的一個配套或者是鼓勵這個企業鼓勵讓這些這個中高齡或高齡者有這樣一個就業的機會其實我覺得這個都很好不一定要侷限在一個名稱如果說這個名稱你定義都不清楚的話其實我覺得你
transcript.whisperx[324].start 10343.732
transcript.whisperx[324].end 10365.303
transcript.whisperx[324].text 即使讓他出委員會然後到最後表決好照吳委員的這個版本通過那行政單位沒辦法執行我覺得這樣也很奇怪我們在我們今天這麼多委員在這邊這個立法或者是要修法其實最主要就是要讓這個法更完備更完整那行政單位也要能夠執行
transcript.whisperx[325].start 10366.744
transcript.whisperx[325].end 10391.562
transcript.whisperx[325].text 好,如果完全不能執行,你就一個法放在那邊,那到最後,後面的人在追說,啊為什麼這已經通過了,啊然後沒有設辦公室,或者是沒有設基金,或者是,啊這個這個要怎麼怎麼做,那行政單位也許跟你講說,啊現在我們就已經有在做了,好,已經中高齡或高齡的這個就業什麼都已經有在做了,啊你要怎麼說,對吧,所以我覺得說我們要
transcript.whisperx[326].start 10393.523
transcript.whisperx[326].end 10394.084
transcript.whisperx[326].text 海洋委員會第8屆立委
transcript.whisperx[327].start 10415.56
transcript.whisperx[327].end 10441.261
transcript.whisperx[327].text 那個時候要成立的時候就是一個邱文彥委員還有一個田秋晴委員兩個人就一個民進黨一個國民黨非常非常非常堅持楊耀文你應該有印象吧然後一直搞搞到最後是真的通過了三讀啦哇大事啊現在行政機關說我們大家要怎麼處理所以那個海洋委員會那個法通過之後過了好幾年
transcript.whisperx[328].start 10442.122
transcript.whisperx[328].end 10465.958
transcript.whisperx[328].text 海洋委員才成立所以那個就是先立法然後後來成立成立到現在廣媽在當主委所以這個是有權力不過大家如果對這個很有意見的話我還是認為因為民進黨黨團的意見是到要做那個政黨協商所以我們也希望
transcript.whisperx[329].start 10467.096
transcript.whisperx[329].end 10487.826
transcript.whisperx[329].text 因為放在委員會本身有一個問題就是沒有人沒了啦因為大家委員的意見是南沿北側所以我還是今天希望把它一條一條都處理完保留也可以都可以所以大家盡量發言盡量把它釐清
transcript.whisperx[330].start 10491.407
transcript.whisperx[330].end 10499.631
transcript.whisperx[330].text 那第3條大家有意見就保留保留保留那第4條第5條有修正動議我們來處理兩條變成一條
transcript.whisperx[331].start 10508.857
transcript.whisperx[331].end 10512.139
transcript.whisperx[331].text 我覺得我並不反對創立新壯世代的相關規定
transcript.whisperx[332].start 10536.972
transcript.whisperx[332].end 10562.524
transcript.whisperx[332].text 可是我覺得這一部法律就是大概幾乎所有的條文都是訓示性的規定甚至於都是現在已經在推動的政策我比較有問題我比較有意見的是這個部分我倒不覺得說中高齡
transcript.whisperx[333].start 10564.236
transcript.whisperx[333].end 10591.418
transcript.whisperx[333].text 這樣的定義是不能打破的因為我再強調45到55跟55以上就業消費產業的投入絕對不一樣可是比較有問題的是我們看了這個草案的內容其實它並沒有任何幾乎沒有一項是強制性要行政機關去做什麼
transcript.whisperx[334].start 10592.662
transcript.whisperx[334].end 10614.672
transcript.whisperx[334].text 沒有強制性然後呢再看目前行政機關在因為還是回到源頭因為我們有中高齡的界線所以他本來就已經有很多在推動我我我我最大的意見在這裡我都到其他我都都是沒有我我甚至於是比較贊成真的必須要區分出來裝事態
transcript.whisperx[335].start 10616.15
transcript.whisperx[335].end 10628.596
transcript.whisperx[335].text 因為我們可以很明確的感知到55歲以上就業、消費包括他的經濟力跟45到55確實有差別這個是我的意見
transcript.whisperx[336].start 10638.767
transcript.whisperx[336].end 10653.261
transcript.whisperx[336].text 楊耀委員的一個說法我想基本上這個法案本來就比較是框架性的立法因為他的目的就是讓大家現在有做一點有做一點就放在一起是方便這個行政機關做一個整合因為他不是個權益法案
transcript.whisperx[337].start 10653.982
transcript.whisperx[337].end 10654.502
transcript.whisperx[337].text 促進法案 促進法案 促進法案
transcript.whisperx[338].start 10678.776
transcript.whisperx[338].end 10678.896
transcript.whisperx[338].text 李慧琼議員
transcript.whisperx[339].start 10703.027
transcript.whisperx[339].end 10703.147
transcript.whisperx[339].text 李慧琼議員
transcript.whisperx[340].start 10723.467
transcript.whisperx[340].end 10744.582
transcript.whisperx[340].text 那另外一方面這個就是照護政策衛福部在努力的這些長照照護政策是照顧所謂的不管是中度、輕度、失能、失智等等這個照護政策是存在的但是有一群也許年齡也是相當或是更年紀更大但是他還在具有這樣的一個不管是生產消費能力我認為生產跟消費能力是不會有抵觸的本來我們就鼓勵賺錢然後鼓勵來花錢的
transcript.whisperx[341].start 10749.945
transcript.whisperx[341].end 10754.508
transcript.whisperx[341].text 所以如果說用這樣的來思考是不是請大家能夠想想說這個立法的重要性那這個立法基本上有些人覺得說很陌生可是有時候有時候一個人其實他努力了很久當然過幾天我的人工生殖法案很多人認為很陌生但是我努力了30年
transcript.whisperx[342].start 10768.317
transcript.whisperx[342].end 10773.7
transcript.whisperx[342].text 所以是不是說他們有長期在耕耘這個題目的人讓他是不是能夠聽他說清楚這個講明白那另外當然你說壯世代是負面名詞嗎那我其實剛聽的時候我都沒有因為我也是女性啊我比你年紀更大我應該更接近其實如果他是一個strong我們都希望人說我們strong而不是weak而且你是老師你在保護別人你在教導別人
transcript.whisperx[343].start 10794.471
transcript.whisperx[343].end 10822.074
transcript.whisperx[343].text 其實你是被視為所謂的相對強者因為你要照顧的會照顧弱勢人就是視為相對的強者所以我想這個壯世代本身的意義真不論說他是不是他根本沒有他不是個男性或歸屬女性而是一個正面的比老啦高啦這個是更positive的是一個更正面的那如果你用這樣的態度跟觀點思考每一題的時候也許你會可以做一些修正跟接受謝謝
transcript.whisperx[344].start 10828.721
transcript.whisperx[344].end 10847.795
transcript.whisperx[344].text 第4條跟第5條請大家看一下那個條文非常非常的正面而且明確嘛我實在想不出來什麼理由第4第5條必須要反對我討伐大家聽第4條政府應該積極推動、輔助壯世代產業的發展並結合財稅跟金融制度、土地跟建物活化
transcript.whisperx[345].start 10848.536
transcript.whisperx[345].end 10876.437
transcript.whisperx[345].text 提供壯世代產業的發展政策培植新創及產業鏈促進長壽經濟式發展這怎麼會有人反對呢?第5條政府應該建立超高齡社會的金融行動方案跟指標提供相關金融商品或投資鼓勵措施建立壯世代的金融生態同時積極提供壯世代普及的公正的金融教育強化金融勢能促進財富公平與安全
transcript.whisperx[346].start 10877.844
transcript.whisperx[346].end 10893.695
transcript.whisperx[346].text 我覺得這兩條就剛剛主席才是合併嘛就通過這種條文在保留會變成笑啦那另外齁我們剛剛這樣討論下來有兩個點齁大家可能會認為說好像是一個新的法案然後覺得有點陌生剛剛朱協工那真好啊
transcript.whisperx[347].start 10894.793
transcript.whisperx[347].end 10916.454
transcript.whisperx[347].text 海洋委員會當初也是這樣對不對你倡議完之後要一段時間形成更多的這個共識現在海洋委員會不是也運作得非常好嗎那你如果從全世界去看日本啊日本在1995年他進入這個超高齡社會前面他們就通過一個法叫做高齡社會對策基本法他們是由誰由他們首相親自去領導協調這個高齡的對策會議
transcript.whisperx[348].start 10920.905
transcript.whisperx[348].end 10930.056
transcript.whisperx[348].text 你從國內有海洋委員會的這個例子在全世界有像日本還有很多先進國家都是針對這個高齡的來臨那現在臺灣民眾黨提出的壯世代
transcript.whisperx[349].start 10931.274
transcript.whisperx[349].end 10958.4
transcript.whisperx[349].text 他有潛力可行在國外也有在世界也有啦我是希望說今天趕快把這個案子速度可以加快然後如果說真的民進黨某些人還有意見就到政黨去協商可是更重要的我們要去面對超高齡社會的來臨然後我們要提出一個有效的這個政策那至於王永遠剛才在說的你基本上也是贊成這個嘛那你說覺得說某些東西還不過具體我請有兩個解決方案你看一下喔你看剛剛被我們那個保留的你說包括你說他沒有組織架構嗎他裡面的那個
transcript.whisperx[350].start 10961.921
transcript.whisperx[350].end 10983.078
transcript.whisperx[350].text 第二條的定義到第三條第三條他那個組織架構他都基本上都已經定的蠻細的了如果只有不足的地方可以再做部分的補強可是我希望說那個速度是往前走的好不好今天不要好像變成每一條都保留那感覺也是怪怪的能不能例如說第四第五就讓他通過第四第五的這個你接著要補
transcript.whisperx[351].start 10986.795
transcript.whisperx[351].end 11003.164
transcript.whisperx[351].text 我不知道到底在擠什麼,為什麼不能讓我們在委員會好好討論那你如果講這樣子,那我問你,壯世代產業指的什麼,還長壽經濟,請我們的青海委員給我們定義一下
transcript.whisperx[352].start 11007.87
transcript.whisperx[352].end 11026.555
transcript.whisperx[352].text 這在第二條我們的提案裡面就講到壯世代的這個產業指的是什麼?活化壯世代的資產、發展長壽經濟、協助壯世代持續成為生產者、消費者之各行業所謂的技術、產品、服務、知識跟措施的開發、生產、使用、銷售跟投資
transcript.whisperx[353].start 11029.176
transcript.whisperx[353].end 11029.216
transcript.whisperx[353].text 長壽經濟是什麼?
transcript.whisperx[354].start 11043.616
transcript.whisperx[354].end 11068.454
transcript.whisperx[354].text 這裏面都已經有定義你為什麼把每個東西都很細分因為我們過去都沒有聽過這個名詞本來就是一個比較結果性的解釋因為我覺得這個法裏面如果把它講清楚你長久推那麼多的活動把它講清楚我們不會有太多意見就是有很多東西不是這麼清楚的時候你們如果今天要來判這個法我們也沒有特別有意見
transcript.whisperx[355].start 11069.875
transcript.whisperx[355].end 11084.504
transcript.whisperx[355].text 像名詞上壯世代如果只是一個口號沒有問題本來就有中高齡我說從學理上面找不出來如果你把那個假設真的很喜歡喊這個口號的話就把中高齡跟高齡促進法就會促進法把它改成壯世代
transcript.whisperx[356].start 11085.731
transcript.whisperx[356].end 11086.171
transcript.whisperx[356].text 立法院第11屆第2會議
transcript.whisperx[357].start 11103.684
transcript.whisperx[357].end 11103.784
transcript.whisperx[357].text 李慧琼議員
transcript.whisperx[358].start 11130.592
transcript.whisperx[358].end 11132.813
transcript.whisperx[358].text 好 我們現在請那個我們金管會林志憲處長用法律的陳述來表達一下
transcript.whisperx[359].start 11163.643
transcript.whisperx[359].end 11190.453
transcript.whisperx[359].text 謝謝主席各位委員好那事實上這個這個關於金融部我們事實上常常到那個委員辦公室去做良善的溝通那因為這條文的部分我還是跟各位長官報告一下因為如果按照修正動議是把第5條刪除拿到第4條第2項嘛那跟各位報告現在第4條的文字裡面有一個財稅加了一個財稅啦但財稅夜間財政部沒來我也不知道財政部到時候會不會有什麼問題這個我不知道那就針對我們金管會有說明一下啦就是說
transcript.whisperx[360].start 11190.973
transcript.whisperx[360].end 11218.376
transcript.whisperx[360].text 因為這裏面的話就是文字的部分的話金融商品或投資也跟各位委員報告我們不大適合建議你要去投資什麼啦所以這方面改成服務比較好因為我們大部分都說金融商品跟服務嘛金融商品服務那後面有兩個文字的部分像建構壯世代金融生態系還有所謂的提供壯世代的一個普及跟公正的一個教育其實金融教育跟金融教育這部分沒問題但是各位委員報告我們金融教育是整面性在提供的
transcript.whisperx[361].start 11219.366
transcript.whisperx[361].end 11238.261
transcript.whisperx[361].text 但是我之前有跟委員辦公室也跟大家討論過我們可以針對壯世代這個議題大家多去多關注多關注但是我很難把它接說這個是壯世代金融教育而且這裡面寫說是一個公正因為我們金融教育本來就是要符合整個商業的一個邏輯可能是文字那還有
transcript.whisperx[362].start 11238.841
transcript.whisperx[362].end 11241.162
transcript.whisperx[362].text 也跟委員報告建構《壯世代》的金融世代體系
transcript.whisperx[363].start 11260.286
transcript.whisperx[363].end 11285.552
transcript.whisperx[363].text 我可不可以問一下就是說這個第4條的修正動議上面有寫一個那個金融商品投資鼓勵措施那壯世代的金融商品是什麼跟我們報告其實事實上我們之前也在討論的目前我們有好幾個其實那個不是完全就是它是整體性的我簡格最簡單的信用商業像我們一個之前不是說保單
transcript.whisperx[364].start 11286.212
transcript.whisperx[364].end 11286.572
transcript.whisperx[364].text 中文字幕提供
transcript.whisperx[365].start 11314.517
transcript.whisperx[365].end 11323.428
transcript.whisperx[365].text 那你要有一個定義啊你壯世代的金融商品你是什麼樣的商品那是壯世代好55歲以上的金融商品
transcript.whisperx[366].start 11324.841
transcript.whisperx[366].end 11349.1
transcript.whisperx[366].text 我其他的金融商品我就不可以嗎?對啊我覺得那你壯世代的這個金融服務又是什麼?跟一般的不是壯世代的金融服務又是什麼?那你們有什麼樣的差別?跟委員報告所以說當初我才建議說這個要建構整個那個所謂的壯世代的那個生活金融太陽要拿掉就是這個理由啦就委員就這個理由因為我沒辦法去切割
transcript.whisperx[367].start 11349.961
transcript.whisperx[367].end 11350.282
transcript.whisperx[367].text 施政委員
transcript.whisperx[368].start 11365.038
transcript.whisperx[368].end 11389.447
transcript.whisperx[368].text 你立這個壯世代你就沒辦法執行啊所以我剛剛講的啊我們要立法就是我們立了之後完備讓行政單位可以去執行或是其他金融單位可以執行那你今天立了這個法完全沒辦法你剛剛講了沒辦法這樣一刀切沒辦法這樣去執行的話那你立一個法就是給大家沒辦法去執行的一個法我感覺說立這個法
transcript.whisperx[369].start 11391.806
transcript.whisperx[369].end 11392.887
transcript.whisperx[369].text 其實就像檢探辦公室一樣我想在幾年前沒有檢探這個觀念
transcript.whisperx[370].start 11414.413
transcript.whisperx[370].end 11441.856
transcript.whisperx[370].text 沒有減碳這個觀念現在碳都還可以拿來買賣這不是一個很新的觀念嗎所以其實人口的危機不會比環境危機來得更小這個叫做天翻地覆不會更小所以我同意吳委員我剛剛同意就是說壯世代現在行政單位已經有在做的中高齡及高齡我覺得定義更清楚其實也不是不好
transcript.whisperx[371].start 11442.096
transcript.whisperx[371].end 11465.834
transcript.whisperx[371].text 那為什麼現在就是剛才一開始就提過了現在用老人用引法族用中高齡這一些都已經被高度污名化那所以呢現在我講說這個污名化會產生什麼問題我們現在中高齡是法定的名字叫45歲那我可以講現在台灣已經有一半的人是中高齡了
transcript.whisperx[372].start 11466.514
transcript.whisperx[372].end 11483.837
transcript.whisperx[372].text 臺灣現在今年平均年齡超過45歲也就一半的人是中高齡65歲是法定老人但是呢到2070年我們臺灣會有一半的人超過65歲臺灣就是一半老人
transcript.whisperx[373].start 11484.858
transcript.whisperx[373].end 11512.863
transcript.whisperx[373].text 然後這個會產生一名想剛才金管會一樣金管會很多最近包括解除了說期貨你知道70歲不可以買賣不可以開期貨賬戶你知道嗎我們很多的金融商品有很多的年齡限制的你超過幾歲不能買什麼保險層層的限制包括上市櫃公司也是金管會在管轄上市櫃公司現在幾乎不太聘用45歲以上的員工
transcript.whisperx[374].start 11513.743
transcript.whisperx[374].end 11538.858
transcript.whisperx[374].text 也就是我們一半的人是不被聘用的然後另外交通部要沒收75歲以上的你要重新考駕照這不是年齡歧視嗎教育部對於終身教育師對於600萬的現在60歲以上的教育預算一年就是6億平均每個人一年的教育費用只有100塊台幣
transcript.whisperx[375].start 11542.658
transcript.whisperx[375].end 11558.911
transcript.whisperx[375].text 數位部完全不管高齡者的數位落差達到60%包括臺北市中心一樣我們跟消極會的一個調查80%的50歲以上的人在消費過程當中有感受到被歧視
transcript.whisperx[376].start 11560.052
transcript.whisperx[376].end 11580.704
transcript.whisperx[376].text 所以這個一直在講說為什麼我們現在的現行措施是不足的是不夠的不能只有這樣子的方式是無法解決這個問題的不是說行政單位有在做因為有在做的方法你沒有翻轉你沒有大幅的改變沒有把從引法作為的改變改變從人設的改變轉翻轉到壯世代的改變是一條無法解決的問題謝謝
transcript.whisperx[377].start 11590.888
transcript.whisperx[377].end 11618.927
transcript.whisperx[377].text 好 王委員 王振旭委員好 我先跟大家報告一下我想針對第4條跟第5條合併看起來是一個方向而且比較有一致性那不過剛剛大家有引用那個林宗鴻就是中央研究院社研所的研究員他有一份報告大家也都非常清楚他裡面有提到其實他針對壯世代的另外一個族群比較年輕的
transcript.whisperx[378].start 11620.228
transcript.whisperx[378].end 11646.416
transcript.whisperx[378].text 他把它稱為崩世代崩就是崩結了崩就是說另外一群事實上是相對是弱勢弱勢是指經濟的弱勢因為從那個數據分析來看那目前在所講的壯世代是臺灣所得最高啦最高賺錢的擁有的資產我相信大家的感受應該差不多多少因為我們曾經很努力
transcript.whisperx[379].start 11647.516
transcript.whisperx[379].end 11672.299
transcript.whisperx[379].text 現在還在努力當中所以有付出有所得是應該的而且也實質得到回饋可是我們年輕人是不是就崩世代就不努力了這個當然要有待研究可是相對來講他們的確是比較弱勢我現在比較擔心就是說如果從不同的世代來看這個問題如果我們今天入法直接在第4條跟第5條
transcript.whisperx[380].start 11673.996
transcript.whisperx[380].end 11703.108
transcript.whisperx[380].text 透過這種方式來呈現的話到時候對於另外一個族群也應該說那是不是因為有了這個入法以後剛才他剛才講到下來不管是金融的啦或者是其他的一些希望真的壯世代有更好的輔助或是更好的一些產業的發展另外來講相對般若感會不會更讓他們感受到臺灣未來照顧全民的時候
transcript.whisperx[381].start 11703.988
transcript.whisperx[381].end 11723.102
transcript.whisperx[381].text 除了我們要透過這個法來照顧壯世代的同時那會對於我們的崩世代如何又有效的去規範或者是引導他們對台灣的整體的經濟或整體的幸福感是有一致性的所以這部分可能在文字上也要多琢磨以上
transcript.whisperx[382].start 11725.7
transcript.whisperx[382].end 11738.489
transcript.whisperx[382].text 那個金管委,這第4條,第5條要合併齁,你看看怎麼改,我想這條改改會通過啦,不然每條都保留到老闆的,我就改不?
transcript.whisperx[383].start 11743.86
transcript.whisperx[383].end 11759.267
transcript.whisperx[383].text 那你要怎麼改?壯世代的金融生態、壯世代的服務,那你跟一般人的那個55歲以下的那個金融服務是差別在哪裡?
transcript.whisperx[384].start 11761.257
transcript.whisperx[384].end 11781.713
transcript.whisperx[384].text 其實文報其實剛剛也跟我們報告說事實上是一致的啦只是說因為《壯世代》剛才我跟文報上是一致的所以說沒辦法退一切但是事實上只能夠針對《壯世代》多去做一些總括但是如果條文來看要單獨去提個《壯世代》這部分確實我們有作業上的困難對啊那所以那個相關的問題才剛才有一些建議啊抱歉抱歉這有點邏輯的問題事實上
transcript.whisperx[385].start 11784.315
transcript.whisperx[385].end 11811.682
transcript.whisperx[385].text 你終究沒有定壯世代這個事實上這個目前你有在做嘛你中高齡你經過這個就有在做嘛對不對有嘛你現在不是我現在做的包括金融偶舉金因為這裡有寫一個說要針對壯世代做所謂的公正跟公正的對啦我意思就是說我現在急著要釐清啦現在不是說用壯世代這個名詞好像是一個新創的東西這個新創然後以前的這個保險或產業就不見了不是這樣啦
transcript.whisperx[386].start 11812.942
transcript.whisperx[386].end 11818.566
transcript.whisperx[386].text 其實都在做嘛這是第一個點邏輯這個要更清楚第二個沒有什麼一刀切的問題你說這個壯世代這個產業只有那個壯世代才能做嗎聽我說聽我說這個年輕人更應該做啊所以才不會變成剛剛那個王委員講的變成崩世代啊他是全民受惠的嘛對不對
transcript.whisperx[387].start 11837.757
transcript.whisperx[387].end 11854.67
transcript.whisperx[387].text 整個你說就是例如說女性的這個產業或者是青少年就規定只有青少年在做嗎女性只有女女性的錢女性有做到現在壯世代裡面有一個很重要的所以我只有兩個邏輯很重要第一個就是他目前已經有在做他是一個先試性跟整合的那第二個不是所謂的一刀切也不是只有老
transcript.whisperx[388].start 11862.577
transcript.whisperx[388].end 11870.253
transcript.whisperx[388].text 這壯世代在做這個壯世代產業是年輕人要一起做你現在在做的是中高齡或者是高齡的金融商品
transcript.whisperx[389].start 11871.277
transcript.whisperx[389].end 11873.379
transcript.whisperx[389].text 現在壯世代金融,像我們有綠色金融,什麼叫綠色金融?
transcript.whisperx[390].start 11897.081
transcript.whisperx[390].end 11918.447
transcript.whisperx[390].text 就是說有重視環境保護的公司的一種經濟嘛有重視壯世代這種讓他活絡的就是他是一個表示一個對這種精神企業文化CSR的一個重視的一個金融的一個方向嘛不會有一個產品就叫做什麼壯世代產品
transcript.whisperx[391].start 11918.527
transcript.whisperx[391].end 11933.824
transcript.whisperx[391].text 可是你這邊就寫壯世代金融生態系啊到底是什麼綠色金融生態系這完全是模仿那個我們的綠色金融的一個的寫法那綠色金融不是更奇怪不是啦那你們有針對壯世代
transcript.whisperx[392].start 11937.299
transcript.whisperx[392].end 11960.393
transcript.whisperx[392].text 壯世代我現在是要知道說你現在已經在做的是中高齡及高齡的金融商品及金融服務那未來如果改成壯世代壯世代這樣會有什麼不一樣我這樣說明金融商品跟服務這在我們那個金保法也有類似的文字他概念裡面是金融商品跟服務是我們本來就要做
transcript.whisperx[393].start 11961.313
transcript.whisperx[393].end 11982.462
transcript.whisperx[393].text 很多商品的發展都是其實我們各業法的部分包括金融保險都是一樣金融商業跟服務是我們一個推動的方向我剛要報告的是說因為現在這個文字裡面特別針對就是說單獨列出來就比如說要我鑽世代一個所謂圈或是說針對一個教育但是我很難去外面在宣導說我今天這個金融教育
transcript.whisperx[394].start 11982.822
transcript.whisperx[394].end 12004.911
transcript.whisperx[394].text 只有55歲就是壯世代才能夠來進來這樣我可能也沒辦法做啊一定是整體性來做之下那針對就剛剛吳委員講的綠色金融是一個很大的一個範圍嘛對不對那我是針對這一塊的部分又特別去做關注但是我沒辦法就是另外把它弄出來啦對對所以我才剛給跟委員報告說這部分我們才會有一些意見跟疑議啊
transcript.whisperx[395].start 12005.931
transcript.whisperx[395].end 12019.223
transcript.whisperx[395].text 是這個概念那還有一個是財稅那個跟主席報告還有一個財稅你財稅的部分我因為我特別有拜登財稅會加給一個公平但是你財稅要做什麼這部分可能也要跟財務部做討論因為那個當初的那個版本的話第5條並沒有財稅的文字那現在修正東西現在都有一個財稅
transcript.whisperx[396].start 12027.611
transcript.whisperx[396].end 12028.112
transcript.whisperx[396].text 是不是把那個財稅拿掉
transcript.whisperx[397].start 12054.195
transcript.whisperx[397].end 12060.999
transcript.whisperx[397].text 全項之金融制度就財稅級三個字拿掉這樣拿掉可能會比較順吧
transcript.whisperx[398].start 12069.989
transcript.whisperx[398].end 12098.219
transcript.whisperx[398].text 如果從現況來看的話那個所謂的一個商品跟投資要變成服務啦因為我們現在不可能建議說任何的年齡程序做投資啊那還有那個建構壯世代的金融生態系這個文是建議刪除啦因為確實剛剛有報告過還有那個提供就是就是只要寫同時積極那個提供金融這樣那個所謂的壯世代的普及跟公正這文字也建議刪除掉
transcript.whisperx[399].start 12098.559
transcript.whisperx[399].end 12116.211
transcript.whisperx[399].text 那最後面那個促進財務安全跟公平這部分可能要拿掉,因為財稅已經拿掉了。那你全部都拿掉刪掉,那你要直接來,你講一下。好,我們會比較厲害啦,只是說我們是從我們的文字上面表現,其實我剛剛講,我們一定要想辦法能夠做啦。
transcript.whisperx[400].start 12116.753
transcript.whisperx[400].end 12117.173
transcript.whisperx[400].text 我覺得處長講得非常好
transcript.whisperx[401].start 12139.624
transcript.whisperx[401].end 12162.897
transcript.whisperx[401].text 這個第4條,第5條合併喔,你又一套又打到沒打到,全教你了,先通過這條沒什麼爭議啦,這沒什麼爭議,你不要壯世代,你要拿掉就拿掉嘛這條裡面涉及三項,那我經管會其中是一項啦,那我剛才有表...柴水已經拿掉啦其他還有什麼?
transcript.whisperx[402].start 12176.457
transcript.whisperx[402].end 12200.235
transcript.whisperx[402].text 現在這樣子跟你目前的那個中高齡你現在在做的中高齡的有有什麼差別沒有差別對啊沒差別為什麼還要再弄一個壯世代金融商品
transcript.whisperx[403].start 12201.668
transcript.whisperx[403].end 12224.245
transcript.whisperx[403].text 這樣不是就為了改成壯世代而改嗎?我都覺得這樣真的所以我從一開始講的壯世代的定義把它定義為中高齡及高齡其實我覺得這樣子也是可以就壯世代原本在做的然後做的不完備的然後再做一個修正我覺得這是可以的
transcript.whisperx[404].start 12228.525
transcript.whisperx[404].end 12256.924
transcript.whisperx[404].text 主席因為這個大家討論很久了第4條跟第5條到底應該要怎麼樣基本上這個行政機關要考量的是說這個其實都是原則性的原則性的所以這個然後跟第二條趙偉因為這個跟第二條第二條是保留嘛
transcript.whisperx[405].start 12258.767
transcript.whisperx[405].end 12283.877
transcript.whisperx[405].text 會有連帶的會有互動會有連帶的是不是大家也討論了是不是這個就先一樣先保留了那行政機關我是覺得說行政機關這個你們回去之後再去實際的去考量因為這個很新的東西我們不要去去這個阻擋這個新的東西我們應該是說
transcript.whisperx[406].start 12285.7
transcript.whisperx[406].end 12307.135
transcript.whisperx[406].text 有這樣的一個方向我們怎麼樣把它立得更好然後因為這個是這個原則性的所以當然法律名稱我們現在是保留嘛未來也可以考量基本法的這樣的一個名稱所以這個部分那因為這個壯世代一直在
transcript.whisperx[407].start 12308.856
transcript.whisperx[407].end 12334.693
transcript.whisperx[407].text 這幾年一直在很多的專家協議者都在推動所以我們這個做行政機關的也不要落後以上謝謝現在是第一個連名稱都有疑慮啦帶來就是壯世代的年齡你要保留所以來第4條第5條還有修正動議的第4條保留那我們現在看第6條
transcript.whisperx[408].start 12337.549
transcript.whisperx[408].end 12339.212
transcript.whisperx[408].text 第6條這又一件我沒辦法第6條沒意見這應該好...沒有...沒有那個啦沒有真理吧
transcript.whisperx[409].start 12354.096
transcript.whisperx[409].end 12361.178
transcript.whisperx[409].text 好第6條通過了來第7條第6條變成第5條修正動議嗎?第6條又修正動議嗎?
transcript.whisperx[410].start 12370.213
transcript.whisperx[410].end 12397.553
transcript.whisperx[410].text 好 這個修正動議是前項是研究專責單位應建立壯世代國家資料庫及資訊系統共享平台促成公私力部門及協助機構之合作以促進壯世代政策產業就業之研究與法規原定沒見
transcript.whisperx[411].start 12404.602
transcript.whisperx[411].end 12427.399
transcript.whisperx[411].text 委員這邊要成立專責的研究單位因為涉及到政院的組織人力經費的整體規劃剛應該跟第三條一起討論嘛可是第三條保留的話你放在這邊說要通過不是也很怪嗎所以我想問行政院你怎麼去理解而且這有個名詞我也不太懂就壯世代研究資源指的是什麼意思
transcript.whisperx[412].start 12428.18
transcript.whisperx[412].end 12454.012
transcript.whisperx[412].text 否則就要請我們的吳委員解釋就那個研究這因為現在好像每一這法裡面每一部分都要掛如果掛壯世代可是第二條壯世代這個定義就不清楚了然後我們現在每一條現在要討論那前面都沒有辦法解決然後要討論後面可是每一條都會掛壯世代這三個字可是前面又定義不清楚啊所以想問一下好 另外一個我剛剛講第三條就已經保留的
transcript.whisperx[413].start 12455.772
transcript.whisperx[413].end 12458.853
transcript.whisperx[413].text 第6條跟第5條的修正動議都一起保留再來第7條
transcript.whisperx[414].start 12495.312
transcript.whisperx[414].end 12496.073
transcript.whisperx[414].text 對阿這期阿
transcript.whisperx[415].start 12525.037
transcript.whisperx[415].end 12530.942
transcript.whisperx[415].text 你第7條修正動議是要刪除併到第6條第7條修正動議是刪掉併到第6
transcript.whisperx[416].start 12546.358
transcript.whisperx[416].end 12546.799
transcript.whisperx[416].text 委員會主席
transcript.whisperx[417].start 12565.44
transcript.whisperx[417].end 12582.265
transcript.whisperx[417].text 因為第7條他修正東西是刪除那有併到第4條但是第4條我們已經保留了所以這個第7條就刪除大家有沒有意見就是你原來的第7條第7條刪除
transcript.whisperx[418].start 12588.968
transcript.whisperx[418].end 12591.811
transcript.whisperx[418].text 第7條保留還是刪除?第7條併入第4條那第4條是保留所以這個也保留
transcript.whisperx[419].start 12607.309
transcript.whisperx[419].end 12632.786
transcript.whisperx[419].text 現在是這樣嗎?那保留是不是還是,如果要放到第4條還是要讓我們發言啊?沒有啦,他第7條已經整個內容移到第4條啊,第4條我沒保留,那這個第7條就給他刪掉了啦,保留也沒意思啊。整個全部的內容都移到第4條嗎?那就要讓我們發言啊?
transcript.whisperx[420].start 12635.1
transcript.whisperx[420].end 12635.46
transcript.whisperx[420].text 立議結束 花園
transcript.whisperx[421].start 12655.464
transcript.whisperx[421].end 12681.395
transcript.whisperx[421].text 第2章禁止聯名歧視,第4章促進失業者就業重疊,第13條、14條跟專法的第10條跟第34條重疊,所以這兩部法律都是特別法。所以想問一下,特別法優先於普通法的時候,新法優於舊法,那本法通過,假設這個法正通過的話,在中高齡及高齡者就業促進法之後,透過之後的法律效果會不會造成
transcript.whisperx[422].start 12681.875
transcript.whisperx[422].end 12708.36
transcript.whisperx[422].text 除了本法的第2條、第1項、第7條、第13條、第14條與《中高齡就業專法》相似的部分適用還是架空《中高齡就業專法》的相關規定。第二個是要問的是直接拿掉勞動政策這幾條本法的內容就少掉20%那勞動部有什麼處理的建議那第三個要問的是請問就業促進手段是不是只有媒合培訓機制所以請勞動部這邊回答
transcript.whisperx[423].start 12711.837
transcript.whisperx[423].end 12740.515
transcript.whisperx[423].text 跟委員報告,就是一開始勞動部在這個案子有跟各位報告過,就是我們在大院的治理下在109年有通過了中高齡及高齡者就業促進法,針對45歲以上到65歲以及65歲以上都有一些相應的措施在進行,不管是就業歧視,不管是在職者的穩定就業,或者失業者的重返職場,或者是退休者的在就業,都有一些相應的規定在做。
transcript.whisperx[424].start 12741.095
transcript.whisperx[424].end 12764.677
transcript.whisperx[424].text 那確實在55歲以上的部分有一些特殊的狀況所以我們針對55歲也推出了一些相關的措施那目前這樣一部法律其實在就業的部分寫的是相對是比較概括的規定但我們最終還是會回到中高齡及高齡者就業促進法相應的措施去做所以不會有漢格的情形
transcript.whisperx[425].start 12765.217
transcript.whisperx[425].end 12793.862
transcript.whisperx[425].text 那至於其他的部分會涉及到其他的面向那因為相關部會都在那部分就不是勞動部可以處理的我們只是在表達在就業的部分確實55歲以上需要做一些處理我們在中高年級高齡者就業促進法之前在大院還有相關委員的指導下我們也做了相應的處理那有關於在這裡把它提綱竊領加一個條文去寫其實只是對我們來講沒有什麼特別的罕格和困難
transcript.whisperx[426].start 12794.522
transcript.whisperx[426].end 12796.523
transcript.whisperx[426].text 這部分就不是勞動部可以說明的以上報告
transcript.whisperx[427].start 12822.529
transcript.whisperx[427].end 12850.524
transcript.whisperx[427].text 原來的第7條齁,那我們剛剛講刪除是不對啊,要不予採納,因為這個是新的法,舊的法才要刪除這個名稱齁所以第7條不予採納,那我們進入第8條原來的第8條來,鄭天才維那個先釐清一下
transcript.whisperx[428].start 12855.971
transcript.whisperx[428].end 12856.491
transcript.whisperx[428].text 主席我有意見
transcript.whisperx[429].start 12886.523
transcript.whisperx[429].end 12906.52
transcript.whisperx[429].text 有什麼意見?修正動議的人提出來他就是要合併他根本沒有需要那在保留那個意義是什麼?不要只是為了保留而保留就是說今天的修法若要一些進度的話我覺得剛剛那個勞動部的市長講得非常好今天這個法
transcript.whisperx[430].start 12907.662
transcript.whisperx[430].end 12925.735
transcript.whisperx[430].text 基本上它所謂壯世代它的確有一些涵蓋了我們原本的這個中高齡還有高齡就業這一些層次的問題那你應該把它視為它是一個更上位它是一個基本法它的輻射的面向其實就是更廣泛所以剛剛社長講得很好它沒有漢格的問題
transcript.whisperx[431].start 12926.656
transcript.whisperx[431].end 12940.762
transcript.whisperx[431].text 是一個更上位的概念有些基本的原則本來就是這邊強調然後他落實到我們中高齡就業的相關的法令裡面去所以這個是沒有衝突的那在這樣一個情況底下大家應該比較理性的來看待麥公從頭到尾反對到底
transcript.whisperx[432].start 12944.504
transcript.whisperx[432].end 12951.25
transcript.whisperx[432].text 有一些可以的我覺得我們是不是有共識的行政機關也不反對的那我們是不是就讓他通過那的確立法也要審慎有疑義的我們再保留要不然從頭保留到完那我就不曉得這部法案從名稱到每一條然後連他們主張修正動議的要喊保留我不知道在保留什麼意思的啦就是大家
transcript.whisperx[433].start 12968.484
transcript.whisperx[433].end 12992.019
transcript.whisperx[433].text 委員提出這樣的法案,也是的確他講了一個很重要,我們就是要翻轉為未來做準備嘛,坦白講如果我們大家可以有建立起這樣的共識,未來勞動部也更好推,他們現在推中高齡就業坦白講很辛苦啊,因為你沒有去傳播,你沒有去把這個概念推出去的時候,很多企業還是覺得太勇啦,這中高齡買啊,被他笑人,就是那個
transcript.whisperx[434].start 12992.799
transcript.whisperx[434].end 13017.602
transcript.whisperx[434].text 很刻板的意象其實還在那這個法如果通過一個很重大的意義就是說我們社會的觀念去做一個真的是大的翻轉跟改變我早上也講過就是從一個發展性的觀點來看那剛剛那個秀芳委也有講一句我覺得認同啊就是說有一些我們是用補充性的就現在還做不到的在這個法裡面它涵蓋面向可以是最完整
transcript.whisperx[435].start 13018.823
transcript.whisperx[435].end 13037.713
transcript.whisperx[435].text 最完整然後再落實到各部會你現在現有的再去強化不夠的再來補強那這樣子通過這個法我覺得他基本上是有意義的從早上到現在已經三個多鐘頭看中間大家那個討論就還是是沒有建立起一個共識了那這樣變成主席你要從頭保留到最後
transcript.whisperx[436].start 13040.609
transcript.whisperx[436].end 13068.076
transcript.whisperx[436].text 好啦我現在跟大家跟委員報告齁我們原來的第5條他併到第4條了那第7條他併到第...也併到第4條了齁所以我們可以把原來的第5條跟原來的第7條都不宜採納這樣就比較簡單啦好不好大家有沒有意見?這樣也記得有出於事情啊
transcript.whisperx[437].start 13071.195
transcript.whisperx[437].end 13090.349
transcript.whisperx[437].text 第4條,沒有啦,他說過意見啦。你併入了,你就原來的條,嗯,把它刪掉,就叫做不予採納啦,不予採納。好,原來的第5跟第7條不予採納。好,那來,不要再有意見了啦。不予採納那個不進去啦,你要去炒,你要去炒。
transcript.whisperx[438].start 13093.131
transcript.whisperx[438].end 13093.932
transcript.whisperx[438].text 主席你剛才也說要看回事實
transcript.whisperx[439].start 13119.655
transcript.whisperx[439].end 13135.961
transcript.whisperx[439].text 這就是因為我們的協商是順功,裡面可能有重複的,所以叫原始提案的人把它併,所以才併成13條,是這樣來的。你怎麼併,然後你整個法條到底是怎樣?
transcript.whisperx[440].start 13141.323
transcript.whisperx[440].end 13165.124
transcript.whisperx[440].text 變成說你怎麼併來併去到底是你文字到底是怎樣我們根本都不清楚你剛剛主席只有講說第5條併到第4條第7條併到第4條原本第7條屬於採納文字到底是什麼主席你自己知道那可不可以請醫事人員念一下你怎麼併
transcript.whisperx[441].start 13167.199
transcript.whisperx[441].end 13170.061
transcript.whisperx[441].text 這一個其實原條文都沒有變動只是現在把原來條文的4、5、7這都是關於經濟金融就業的並在一起成為修訂版的第4條
transcript.whisperx[442].start 13189.332
transcript.whisperx[442].end 13200.605
transcript.whisperx[442].text 然後原條文的第6跟15條這是把它併在這裡第5條修正完了的第5條那第6條就是講那個醫療的這個是原條文沒有動
transcript.whisperx[443].start 13206.147
transcript.whisperx[443].end 13232.493
transcript.whisperx[443].text 那第7條是併了原來的9、10、11有關教育、數位、文化的這三個本來的條文把它併在第7條因為它同性質那第8條就是併了原來的12、13、14有關觀光、農業還有地方創生的這個呢因為他們本來都各單獨一項把它併成一條
transcript.whisperx[444].start 13234.913
transcript.whisperx[444].end 13240.637
transcript.whisperx[444].text 陳偉現在第8條主要的就是這樣子其他的內容沒有改變
transcript.whisperx[445].start 13282.306
transcript.whisperx[445].end 13295.814
transcript.whisperx[445].text 那個醫事人員我可不可以問一下可以這樣子嗎可以這樣子嗎那個醫事人員是不是回答一下我的問題可以這樣子病來病去啊病了我們都搞不清楚你現在到底在病什麼
transcript.whisperx[446].start 13299.089
transcript.whisperx[446].end 13299.71
transcript.whisperx[446].text 主管單位
transcript.whisperx[447].start 13316.574
transcript.whisperx[447].end 13340.013
transcript.whisperx[447].text 不是要讓我們用院會的這個先做討論然後併到時候是不是那兩條全部都拿掉了是這樣嗎我想問我建議一下啦就是因為本來就有這個委員會就是吳春城委員版本嘛應該是以這個版本為主嘛那有修正動議本來就是遇到修正動議就是併進來討論啦委員會審查原則本來就是這樣子啊本來修正動議就是可以併進來討論但是併完之後
transcript.whisperx[448].start 13342.655
transcript.whisperx[448].end 13343.415
transcript.whisperx[448].text 委員會主席
transcript.whisperx[449].start 13356.52
transcript.whisperx[449].end 13377.729
transcript.whisperx[449].text 公務委員會報告我們法案在審查的時候當然是以原提案版本為主修正動議的時候修正動議是會並進來一起討論今天這個版本吳春城委員他們提的是針對他們自己原本的版本提修正的版本那內容上剛才我們說第4條
transcript.whisperx[450].start 13378.609
transcript.whisperx[450].end 13378.789
transcript.whisperx[450].text 委員吳春城
transcript.whisperx[451].start 13398.636
transcript.whisperx[451].end 13415.295
transcript.whisperx[451].text 把他併起來的話沒有影響到他原本的提案的時候呢那是可以先就併這個部分來做一個共識啊如果說大家有共識的話那就可以就是把這個保留的部分就把它用併的條文沒有共識所以就先保留啊
transcript.whisperx[452].start 13425.043
transcript.whisperx[452].end 13439.36
transcript.whisperx[452].text 響鐘
transcript.whisperx[453].start 13456.809
transcript.whisperx[453].end 13476.605
transcript.whisperx[453].text 我可不可以再跟大家說明一下其實這個可以看得出行政單位基本上都是接受這個法案的壯世代大部分都已經在配合跟執行行政單位沒有太大的問題跟干擱包括行政院現在都在推動
transcript.whisperx[454].start 13477.566
transcript.whisperx[454].end 13499.098
transcript.whisperx[454].text 包括跟大家講的一個其實在民間壯世代不是一個新名詞現在你去Google已經非常龐大的包括這種週刊所有都在採用壯世代然後在民眾當中的反應是很迴響我也希望這一個法案是分黨派的其中
transcript.whisperx[455].start 13500.419
transcript.whisperx[455].end 13514.895
transcript.whisperx[455].text 我們的民進黨的我們的書記長、幹事長蔡依、書記長跟副書記長、蔡依、李昆城他們都是連署包括我們這一次在座也有好幾位民進黨的連署
transcript.whisperx[456].start 13516.497
transcript.whisperx[456].end 13529.396
transcript.whisperx[456].text 那所以呢我覺得這個是一個新的時代來臨我們現在舊的措施的確是沒辦法解決這問題的所以大家呢要攜手努力共同來推過來能夠
transcript.whisperx[457].start 13533.046
transcript.whisperx[457].end 13535.387
transcript.whisperx[457].text 臺灣在29天進入超高零社會的時候能夠給大家一個一個積極的回應一個表示我們有能力來處理這個超高零社會的問題以上謝謝
transcript.whisperx[458].start 13568.211
transcript.whisperx[458].end 13590.686
transcript.whisperx[458].text 如果併案的話委員也有意見那我們就全數保留啦那就是原來的提案跟修正東西的提案全部都保留然後我們繼續往下走到最後每一條都保留我也會給他送出宴會送到宴會跟政黨協商我們在這邊拗拗拗拗不完再再再就像林業齊講的再兩年也沒辦法
transcript.whisperx[459].start 13593.528
transcript.whisperx[459].end 13606.291
transcript.whisperx[459].text 這你講的嘛 你講兩次 你想講延宕兩年 在這好好討論好啦 那我們現在就討論原來的第8條好不好 來來 王委員
transcript.whisperx[460].start 13616.835
transcript.whisperx[460].end 13623.538
transcript.whisperx[460].text 政府應從壯世代作為國家發展動力之觀點藉醫療投資增進智慧精準醫療以維護壯世代身心健康並涉及壯世代政策之預防、保健、心理衛生、醫療、復健
transcript.whisperx[461].start 13644.128
transcript.whisperx[461].end 13666.048
transcript.whisperx[461].text 與連續性招募進行規劃、推動及監督等事項。﹖這個的確是對於壯世代來講有別於其他的年齡層可能有他特殊的需要現在我們知道那五十五歲以上當然身體他們進程會不太一樣所以他的確是需要有一些處理模式不過其實我們衛福部國健署
transcript.whisperx[462].start 13666.949
transcript.whisperx[462].end 13680.884
transcript.whisperx[462].text 這方面也做很多所以將來如果能夠有效的去做整合也的確要考驗我們這個衛福主管機關這方面的努力比較特別要提醒的就是醫療跟復健
transcript.whisperx[463].start 13683.227
transcript.whisperx[463].end 13707.547
transcript.whisperx[463].text 這個基本上這是一種需求啦人一定是有感覺我們都要去看醫療復健就是因為當中有哪一些器官或者是功能輸去影響以後他才會做復健所以這部分如果把它放在這邊的話也許監督好像有一點點道理不過我們要監督什麼東西這不是搞得很清楚這部分是不是大家再討論一下以上
transcript.whisperx[464].start 13719.929
transcript.whisperx[464].end 13723.09
transcript.whisperx[464].text 好,那這一條就保留,那第9條,原來的第9條
transcript.whisperx[465].start 13747.899
transcript.whisperx[465].end 13754.74
transcript.whisperx[465].text 現在的9、10、11談的是教育、數位、文化我們把它併為一條現在就第7條9、10、11喔
transcript.whisperx[466].start 13782.853
transcript.whisperx[466].end 13782.873
transcript.whisperx[466].text 暫停會議
transcript.whisperx[467].start 13799.173
transcript.whisperx[467].end 13820.682
transcript.whisperx[467].text 主席、各位委員,因為教育部在推動55歲的族群,我們是依據《終身學習法》的一個規定去規劃相關有關於高齡者的一個活動。然後第二個部分,其實我們有訂定了高齡教育終成計畫,那也是依據在行政院的政策白皮書還有我們《終身學習法》的部分去推動有關這方面的一個
transcript.whisperx[468].start 13823.824
transcript.whisperx[468].end 13844.784
transcript.whisperx[468].text 業務第三部分是其實我們依據這樣的中學學習法推動的學習那他其實主要的一個族群跟委員所提到的壯世代55歲其實是一致的那所以現在部裡面已經在課證研擬有關於第三人生大學的一個示範計畫來滿足他第三人生的一個需求那至於說
transcript.whisperx[469].start 13846.025
transcript.whisperx[469].end 13861.154
transcript.whisperx[469].text 第7條裏面有談到的一個數位平權跟有關於信用化部分,我想應該這是要相關部會的共同處理,這個就可能要請相關部會來做一下說明以上。數位部的陳副署長
transcript.whisperx[470].start 13883.648
transcript.whisperx[470].end 13912.08
transcript.whisperx[470].text 委員好就是有關那個數位發展部的部分就是我們針對數位平權的部分我們一直持續在進行一些數位的經用調查還有訂定一些網路的一些無障礙的一些數位平權的作業那至於是數位落差的部分我們其實是有搭配就是各個部會包含交易部還有那個衛福部我們其實都有
transcript.whisperx[471].start 13912.84
transcript.whisperx[471].end 13913.081
transcript.whisperx[471].text 主席
transcript.whisperx[472].start 13938.297
transcript.whisperx[472].end 13954.595
transcript.whisperx[472].text 有關這個地條有談到教育跟數位的這部分這就是讓第三人生積極參與那其實這兩個部會現在都很積極跟壯世代在合作教育部已經要事辦第三人生大學
transcript.whisperx[473].start 13955.917
transcript.whisperx[473].end 13979.175
transcript.whisperx[473].text 蘇發部因為我們現在的數位落差不在城鄉而是在年齡年齡的落差到60%那我們看了蘇發部原來過去所推定的什麼熱領好幫手幾乎效率很差但是一旦採用了壯世代的這種新的概念之後事實上是很受歡迎的那這些實際的效果都看得出來
transcript.whisperx[474].start 13980.456
transcript.whisperx[474].end 13999.106
transcript.whisperx[474].text 所以大家既然在落實,落實之中沒有問題,是不是我們立法部門也應該要助一臂之力,我們立法部門反而比行政部門還要保守,還要保守一直要把他拉回過去,而不是推向未來。
transcript.whisperx[475].start 14000.967
transcript.whisperx[475].end 14002.808
transcript.whisperx[475].text 教育與數位平權是非常重要的
transcript.whisperx[476].start 14020.64
transcript.whisperx[476].end 14047.836
transcript.whisperx[476].text 就是大家不要就是全盤民進黨的委員不要全盤否定這部法事實上他所宣示的或者是想要引領的方向我個人認為還是一個進步的方向那這個部分應該是要共同來支持而且如果我們在法上面有這樣子去定的話那未來更可以督促包括像數位部跟教育部在這個部分可以更加大力道就是全力來推展
transcript.whisperx[477].start 14052.95
transcript.whisperx[477].end 14081.416
transcript.whisperx[477].text 我也是想要呼應這一條其實我也在講我們在地方上去這個關懷據點有一次我非常的訝異他有各種的課程的英文課程、日文課程甚至跳舞、打鼓什麼的可是我有一次去參加了一個課程他在教用ChatGPT怎麼寫父親節的卡片這一堂課非常多人上我很訝異所以我認為這個東西我想身為一個年輕世代我們常常也遇到的問題都是需要幫就是稍微年長一點的要幫他處理這個數位的問題
transcript.whisperx[478].start 14082.356
transcript.whisperx[478].end 14092.951
transcript.whisperx[478].text 那我想現在既然行政部門也都有在做包含教育或者速發部那這一條我們是不是就給他通過因為看起來也沒有任何應該不會有任何的爭議性那以上謝謝
transcript.whisperx[479].start 14103.474
transcript.whisperx[479].end 14121.312
transcript.whisperx[479].text 主席針對第7條我這邊可不可以再確認一下因為在上個禮拜有跟吳春城委員去參加遠見及抗建雜誌他們推一個白皮書是有關超高齡社會該社會整體應該有的一個白皮書
transcript.whisperx[480].start 14122.413
transcript.whisperx[480].end 14150.887
transcript.whisperx[480].text 那其中有提到第三人聲第三人聲大家覺得是非常重要而且是爭奪於即將進入到有機會有第三人聲不管是之前因為沒有受過好的教育或者是希望他能夠有更多的教育機會的親民下屬提出來的我的問題是說目前我們所有法案裡面有沒有第三人聲這樣的一個名詞如果沒有的話那這邊是不是也需要真的第三人聲做比較清楚的立法說明
transcript.whisperx[481].start 14160.925
transcript.whisperx[481].end 14161.045
transcript.whisperx[481].text 民進黨委員
transcript.whisperx[482].start 14184.475
transcript.whisperx[482].end 14212.002
transcript.whisperx[482].text 實行部門沒辦法執行的話我覺得這大概後來那定制法也沒有什麼很大的用意在所以如果沒有把名詞像什麼長壽經濟什麼一堆這種名詞甚至我說壯世代這個連這個名詞都已經跟學理上不符合的時候那這樣整個法裡面都會一直在提到壯世代壯世代甚至現在又創造出一個新名詞叫做第三人生我也不知道這個名詞代表有沒有定義講清楚
transcript.whisperx[483].start 14213.142
transcript.whisperx[483].end 14240.173
transcript.whisperx[483].text 講清楚的話我們才能夠繼續走下去說到底未來要怎麼執行以上剛好講到現在這個社會當中像比如說綠色經濟、比特幣這都是時代演進都有很多的新名詞現在太多這種名詞了那如果我們現在要每一個都去質疑第三人生
transcript.whisperx[484].start 14241.253
transcript.whisperx[484].end 14266.226
transcript.whisperx[484].text 幾乎已經是一個通常性的沒有人會質疑的已經到了常識的成績了包括教育部都已經要成立第三人生大學了我們是不是要糾葛在這裡以上第三人生呢民法第729條就有了第三人生然後還有其他相關的法例
transcript.whisperx[485].start 14267.618
transcript.whisperx[485].end 14296.867
transcript.whisperx[485].text 所以我們自己也可以去查一下其他法律不只這條不只民法729條其他的法律也有第三人審以上那我們原來條文的第9條第10條第11條併入第7條的修正動議的第7條併進去大家有沒有意見沒有意見好那
transcript.whisperx[486].start 14299.499
transcript.whisperx[486].end 14317.071
transcript.whisperx[486].text 主席,剛剛委員你講的民法729條,第三人生存期內,不是什麼第三人沒有這樣的啦
transcript.whisperx[487].start 14318.86
transcript.whisperx[487].end 14346.402
transcript.whisperx[487].text 對啦 不要亂講啊所以主席主席我今天要講的就是說我們立法委員立法就是要真的非常的完備不要說立一個法結果沒辦法執行我今天這一句話已經講了好幾次了立一個法然後定義不明沒辦法執行其實這個不是人民之福啊所以我還是希望就是說大家充分的討論
transcript.whisperx[488].start 14347.984
transcript.whisperx[488].end 14359.039
transcript.whisperx[488].text 那剛剛就是很多條併來併去啊好幾條都這樣子併在一起其實我也看回什麼什麼只是我們希望就是說大家要充分的討論啦
transcript.whisperx[489].start 14361.354
transcript.whisperx[489].end 14378.401
transcript.whisperx[489].text 我當然我也很佩服我們那個吳委員他在推動這個壯世代那我也認同就是壯世代可是如果壯世代定義都不清楚的話而且大家都有意見的話我覺得真的是要再討論那我剛剛提的壯世代如果可以更清楚
transcript.whisperx[490].start 14379.582
transcript.whisperx[490].end 14391.404
transcript.whisperx[490].text 壯世代的定義如果今天包含中高齡及高齡然後中高齡也有定義45歲以上高齡65歲以上全部把他納在壯世代其實我覺得這樣也很好啊
transcript.whisperx[491].start 14397.018
transcript.whisperx[491].end 14420.813
transcript.whisperx[491].text 各位學長姐,雖然這是我第一屆第一年了,但是我還記得在前陣子衛福部的質詢上面,其實這也不是沒有潛力精神衛生法的心理健康促進,在一開始立法的時候也沒有把它定義清楚那後面這個行政機關認為說可以用實行細則去把它定義清楚所以我想這也不是有潛力,這也不是沒有潛力的那所以以上補充,謝謝
transcript.whisperx[492].start 14422.927
transcript.whisperx[492].end 14439.45
transcript.whisperx[492].text 如果每一條都要用這樣子再說明,那就表示這個法不是那麼完備啊。你看我們今天從這樣才幾條而已,如果這樣照看才8條而已嘛。如果剛剛修正動議到第8條,那我不知道後面還會再併嘛。
transcript.whisperx[493].start 14441.532
transcript.whisperx[493].end 14464.752
transcript.whisperx[493].text 我反過來說,其實短短的十幾條而已,如果這樣子併來併去,然後大家都很多的疑義,我覺得真的要三思啦,不要真的立一個法,然後大家後面覺得沒辦法執行,然後定義不清,其實我覺得這樣真的,我們是立法委員,我們是在立法,立一個法大家沒辦法執行,你覺得這樣好嗎?
transcript.whisperx[494].start 14467.764
transcript.whisperx[494].end 14492.691
transcript.whisperx[494].text 謝謝黃昭偉因為剛剛其實有提到所以沒有再講一次那回答你的問題我剛剛聽到的是說現在教育部他們剛剛也說有在執行所謂第三人生大選嘛這不是在實行上面已經在做的事情嗎所以這個東西我想應該是沒有什麼爭議才對啊所以我剛剛講的已經在做的都是在中高齡及高齡這個政策底下嘛對不對是那個教育部是不是
transcript.whisperx[495].start 14495.981
transcript.whisperx[495].end 14496.361
transcript.whisperx[495].text 主席主席
transcript.whisperx[496].start 14517.717
transcript.whisperx[496].end 14544.432
transcript.whisperx[496].text 那我們原條文的第9條、第10條、第11條還有修正綜藝的第7條文都保留那接續等一下發便當我們休息20分鐘要吃這個嗎?不然有人說霸凌耶發便當、備用便吃,大家輕鬆一點發了齁,那我們行政單位不敢吃啊
transcript.whisperx[497].start 14546.107
transcript.whisperx[497].end 14557.477
transcript.whisperx[497].text 行政單位我估計要吃一頓飯差不多要15分鐘啦我們休息20分鐘好了啦讓他吃便當啦不然等一下要被檢舉欸謝謝20分鐘吃便當
transcript.whisperx[498].start 14581.261
transcript.whisperx[498].end 14586.745
transcript.whisperx[498].text 立法院第11屆第2會期社會福利及衛生環境、經濟委員吳春城等42人擬具
transcript.whisperx[499].start 14608.703
transcript.whisperx[499].end 14616.913
transcript.whisperx[499].text 沒有沒有,連跟委員會跟局長去看,就是,可以這樣子,這個委員會,你給我什麼話,我原諒你。這個事情只要經過委員通,也至少委員會,那就這樣,都是在,
transcript.whisperx[500].start 14624.622
transcript.whisperx[500].end 14625.062
transcript.whisperx[500].text 委員會主席
transcript.whisperx[501].start 15797.822
transcript.whisperx[501].end 15804.085
transcript.whisperx[501].text 好 我們現在繼續開會 王一鳴委員也要程序發言 現在都亂了 現在在程序發言
transcript.whisperx[502].start 15807.749
transcript.whisperx[502].end 15822.019
transcript.whisperx[502].text 主席我先程序發言一下我要請教一下那個我們的預算處理因為那個黃秀芳召委她在下個禮拜一她要排勞動部的預算的詢答然後下個禮拜一就要截止收案我想這個違反了過去
transcript.whisperx[503].start 15823.84
transcript.whisperx[503].end 15823.9
transcript.whisperx[503].text 處理預算慣例
transcript.whisperx[504].start 15840.721
transcript.whisperx[504].end 15860.775
transcript.whisperx[504].text 這是一個合理的程序但是當天質詢當天就截止收案我想這個有剝奪這個各委員辦公室再深入去探究這一些透過質詢當中去發掘到的新問題然後再提案的這樣的一個權利所以我在這邊建議希望黃秀芳召委可以從善如流這個部分是不是在給委員們彈性的時間
transcript.whisperx[505].start 15863.956
transcript.whisperx[505].end 15888.861
transcript.whisperx[505].text 就是再多一個禮拜的時間再收完因為基本上這不影響任何這個預算的審查排案因為下禮拜是黃修芳委員再下禮拜是蘇清泉委員他要下下個禮拜才會輪到這個實質的預算審查所以我特別因為今天有蠻多我們衛環委員會的委員在這邊因為今天才收到這一個我覺得這個是相對在處理上可能不夠周延希望朝委可以調整謝謝
transcript.whisperx[506].start 15893.774
transcript.whisperx[506].end 15896.297
transcript.whisperx[506].text 說不定他們倆在互相執行,不錯
transcript.whisperx[507].start 15903.265
transcript.whisperx[507].end 15925.481
transcript.whisperx[507].text 謝謝那個王委員有特別提到其實在第10屆第8會期勞動部的預算巡打也有這樣就是112年11月16號那當天巡打也是在當天就截止收案那內政委員會在今年11月13號在會議當中也是就是
transcript.whisperx[508].start 15927.202
transcript.whisperx[508].end 15942.316
transcript.whisperx[508].text 11月27日才詢答,11月22日就截止收案,因為我們也是依循往例,一方面也是議事人員的作業程序,當然就是說議事人員那時候我們排的時候,議事人員也沒有說不行。
transcript.whisperx[509].start 15943.157
transcript.whisperx[509].end 15943.337
transcript.whisperx[509].text 主席
transcript.whisperx[510].start 15986.226
transcript.whisperx[510].end 16015.786
transcript.whisperx[510].text 立法院有處理預算的程序跟原則我覺得我們應該要依照一般正常的原則剛剛黃昭偉提到的那個都是比較特殊的情況我剛已經強調了為什麼要不然立法院也可以不用安排這個詢答就直接提案嗎就是說這個其實是在審查預算過程當中要走的SOP一定像我們蘇昭偉安排的就很好對不對你先衛福部的詢答完之後你給大家充分的時間到下個禮拜喔
transcript.whisperx[511].start 16016.887
transcript.whisperx[511].end 16024.214
transcript.whisperx[511].text 那個蘇清泉文同樣的審衛福部的預算你看人家是怎麼做的他是巡打完之後截止日是什麼時候12月5號
transcript.whisperx[512].start 16027.469
transcript.whisperx[512].end 16028.789
transcript.whisperx[512].text 王委員我在上禮拜開會通知就已經發出去了啦不是說
transcript.whisperx[513].start 16054.597
transcript.whisperx[513].end 16064.866
transcript.whisperx[513].text 不是用開會通知處理我覺得你只舉第10屆的某一次這個完全違反我也不是新進的委員我第8屆第9屆都帶過未換委員會按照慣例就是應該先尋答尋答當天召委再宣告而且召委的宣告也必須尊重所有委員
transcript.whisperx[514].start 16075.816
transcript.whisperx[514].end 16075.876
transcript.whisperx[514].text 姜蕾娜議員
transcript.whisperx[515].start 16093.573
transcript.whisperx[515].end 16122.586
transcript.whisperx[515].text 大家是達成這樣的共識這件事情真的沒有必要吵我只是在講一個合理而已對那我現在要反應我就覺得你們應該善意的回應啊就是這樣子你那個不是慣例嗎慣例就是像我們蘇清泉委員這樣的做法嗎我們以前都擔任過召委召委就是要尊重所有的委員先詢答當天在說 收案截止的時間這個就是正常的做法你剛剛舉的那個不是慣例啦
transcript.whisperx[516].start 16133.477
transcript.whisperx[516].end 16147.249
transcript.whisperx[516].text 我的建議因為立法委員大家其實都是希望互相尊重我們其實不要花很多的時間在這裡萬一莊委你那天排了這個事情現場如果不順利的話質詢給你帶來很多的刁難其實你也很困難
transcript.whisperx[517].start 16150.251
transcript.whisperx[517].end 16179.033
transcript.whisperx[517].text 所以我的建議因為剛剛那個委員有講到我們內政委員會的確是如此然後但是呢我們也私底下跟召委談了就是說是不是這個問題可以不要弄得那麼樣的這個針鋒相對所以我的建議大家和諧可能討論一下是不是就不要對就不要用的那麼樣的硬性的規定其實呢在議事的這個運作下面那麼樣的意思這麼樣的硬性規定
transcript.whisperx[518].start 16180.054
transcript.whisperx[518].end 16187.796
transcript.whisperx[518].text 不利於未來要草野協商或審理預算,其實對召委來講會更辛苦。以上建議,謝謝。
transcript.whisperx[519].start 16207.728
transcript.whisperx[519].end 16231.195
transcript.whisperx[519].text 我充分建議因為今天主要是在審查壯世代的這個法案那如果依照我們經驗分享就是剛剛我非常贊同高經所說的是以和諧為主因為這個也沒有硬性什麼規定但是就是以不影響到這個召委在排成他的排成就是說呢他要決
transcript.whisperx[520].start 16233.936
transcript.whisperx[520].end 16258.753
transcript.whisperx[520].text 質詢完、詢答完那要下一次要審查預算的時候不影響這個那這個時間都可以融通我是覺得應當是如此那一般一般我們的經驗分享就是說當召委的他都會在主席台來做宣布什麼時候我們的收案會收到什麼時候大概都會這樣子然後我是用經驗跟他分享因為宣布委員也是很溫柔的會很溫柔
transcript.whisperx[521].start 16260.874
transcript.whisperx[521].end 16261.314
transcript.whisperx[521].text 藍綠牌都很和諧
transcript.whisperx[522].start 16284.011
transcript.whisperx[522].end 16291.92
transcript.whisperx[522].text 那大概就是一個原則不影響到審查預算的排程這個時間點都是彈性處理這以上我建言
transcript.whisperx[523].start 16303.527
transcript.whisperx[523].end 16328.407
transcript.whisperx[523].text 我在這邊也是很希望黃昭瑋可以再多給我們一點彈性的時間因為其實有很多勞動部的預算是民進黨委員很關心的要不是看到這兩週有一些新聞比如說我們新任的紅部長去考察以前勞發署署長的辦公室才發現電費是到3萬度一個月3萬度做了一些職災還有洋藥委員質詢的啊就業安定基金花了多少錢在辦演唱會結果下個禮拜一紅部長來
transcript.whisperx[524].start 16333.05
transcript.whisperx[524].end 16351.015
transcript.whisperx[524].text 報告這個預算審查那我們都還沒有問他問題他這個詳細的報告也都還沒出我們什麼譜都還沒看到然後我們就要開始審查預算就要close掉了那我認為我剛看了一下勞動部114年的就業安定基金又預計要花280億台幣勞動部公務預算預計要花2859億元
transcript.whisperx[525].start 16357.296
transcript.whisperx[525].end 16370.591
transcript.whisperx[525].text 那很多民進黨委員其實也很關心以前這些錢是怎麼用的所以我們應該要在這個場域好好的給我們一點時間審查預算才可以避免未來你們很不想看到這種事又再發生嘛不是嗎
transcript.whisperx[526].start 16373.624
transcript.whisperx[526].end 16379.766
transcript.whisperx[526].text 我講一個,因為我是12月9號排詢答那我在下一週是12月18、19是排預算審查那像這樣子的話,因為勞動部他們也要去溝通
transcript.whisperx[527].start 16395.952
transcript.whisperx[527].end 16424.488
transcript.whisperx[527].text 不是說委員提出來然後都沒有一定要去溝通啊所以這樣子議事人員把那個所有的提案整理完之後然後勞動部又去溝通其實我是我再說一次我是12月9號尋答那我上禮拜我已經把文發出去那12月9號的下午截止收案齁那隔一個禮拜18、19排那個預算的審查是這樣子
transcript.whisperx[528].start 16425.709
transcript.whisperx[528].end 16447.259
transcript.whisperx[528].text 對啦 阿水也要給人家公佈 阿不然就是隔天 阿不然就是隔天對阿 我沒有時間阿 我覺得是八十九阿 對啦所以 今年 今年的院會是延到1月21號啦 對啦 不急啦 不急啦
transcript.whisperx[529].start 16450.239
transcript.whisperx[529].end 16453.641
transcript.whisperx[529].text 尊敬的黃昭蕙,我聽我說,我沒有說話,尊敬的黃昭蕙,我給大家
transcript.whisperx[530].start 16462.461
transcript.whisperx[530].end 16482.61
transcript.whisperx[530].text 對啦對啦 立法院大家都變大啦 立法院一百十三個都變大印度也都變大而已 只不過是我們選理所做印度所以搞清楚大家都 職權是一樣的所以 薛芳姐妳就下個禮拜再主席在那邊宣告 再辦一禮拜 大家集中起來我們就好了
transcript.whisperx[531].start 16485.234
transcript.whisperx[531].end 16485.915
transcript.whisperx[531].text 議事委員有夠衰
transcript.whisperx[532].start 16515.143
transcript.whisperx[532].end 16515.583
transcript.whisperx[532].text 法定人數不足
transcript.whisperx[533].start 16537.119
transcript.whisperx[533].end 16548.611
transcript.whisperx[533].text 他收件就是說你18是實際審查預算嘛那下禮拜一直是巡達那你就是18號之前看你要15、16截止安就好了啊對不對那是召委的權利這是我們建議啦
transcript.whisperx[534].start 16554.24
transcript.whisperx[534].end 16570.831
transcript.whisperx[534].text 主席我也想提醒一下黃昭薇因為我們之前這個陳素月委員在上一屆的時候她的同仁也因為熬夜寫預算而不幸倒下之前有發生過所以我們也希望給助理不管是議事員助理都再多一點時間
transcript.whisperx[535].start 16572.762
transcript.whisperx[535].end 16589.213
transcript.whisperx[535].text 我們現在都不能對我們的助理太過苛刻晚上9點之後不能隨便打LINE打LINE算加班公務員都沒有加班費啊其實對不起那個主席有可以發言嗎其實我們秀芳招委的用意就在這裡啊
transcript.whisperx[536].start 16596.048
transcript.whisperx[536].end 16614.667
transcript.whisperx[536].text 因為意思就是說假設我們今天排定審查日期的話他就必須要請大家早一點處理這個提案嘛阿如果能夠往後順延當然是沒有問題阿順延的意思就是說如果不是4849而是在其他地方的話
transcript.whisperx[537].start 16622.286
transcript.whisperx[537].end 16640.663
transcript.whisperx[537].text 因為到時候可能還有什麼其他的協商等等的問題啊所以關鍵在於說如果我們不希望讓這些行政人員需要加班去處理這些流程的話這個是主要的考量而不是在於說為什麼一定要在那一天或者是那幾天要處理這個不再討論了
transcript.whisperx[538].start 16646.365
transcript.whisperx[538].end 16661.236
transcript.whisperx[538].text 9號巡達然後18號要處理預算18、19處理預算那你就在在這中間抓個時間點讓大家有充裕一點點啊就不會灰啊就結束啦好不要再講了啦我們接續處理第12條我們待會還可以請你們處理原來的第12條來
transcript.whisperx[539].start 16714.249
transcript.whisperx[539].end 16726.4
transcript.whisperx[539].text 好 原來的12、13、14那吳春城委員跟我們委員溝通之後他們認為沒有病沒問題病起來反而有問題那最後大家的意見怎麼樣那12 有沒有意見
transcript.whisperx[540].start 16741.26
transcript.whisperx[540].end 16741.48
transcript.whisperx[540].text 主席
transcript.whisperx[541].start 16769.759
transcript.whisperx[541].end 16769.919
transcript.whisperx[541].text 主席
transcript.whisperx[542].start 16806.933
transcript.whisperx[542].end 16808.074
transcript.whisperx[542].text 委員會主席
transcript.whisperx[543].start 16824.531
transcript.whisperx[543].end 16832.734
transcript.whisperx[543].text 主席我講因為第一個原來我們的第二條對壯世代那個定義就還不清楚然後你現在因為這幾條剛好都寫到這個名字這第一個第二個想問今天交通部有來吧
transcript.whisperx[544].start 16855.976
transcript.whisperx[544].end 16870.656
transcript.whisperx[544].text 想問一下什麼叫壯世代的就是將不怎麼去理解這個壯世代觀光發展還有旅行就是旅遊的行銷品牌壯世代旅遊行銷品牌
transcript.whisperx[545].start 16875.41
transcript.whisperx[545].end 16900.266
transcript.whisperx[545].text 現在行政院已經有14個部會都在推動壯世代政策他們都沒有這個疑義他們都對壯世代都沒有疑義所以剛才提到的現在很多的新事物包括剛才以前什麼AI以前沒有這個比特幣也沒有然後什麼外送也沒有共享經濟也沒有現在就是要解決的一個
transcript.whisperx[546].start 16901.827
transcript.whisperx[546].end 16922.206
transcript.whisperx[546].text 就是稱呼這些不要就是老人陰法這些都要汙名化我們要給他們一個正一個正確的身份來符合他就叫做壯世代所以呢這一個為什麼所有的部會都在歧視老人因為他們心中就是把他們當作老人
transcript.whisperx[547].start 16923.027
transcript.whisperx[547].end 16951.08
transcript.whisperx[547].text 你不改變這個身份他就剛才已經舉過太多的例子當他改做壯世代的時候他們就知道方向了他們就知道政策的方向了然後各個部位就好一一的就知道該做什麼事情了你如果一直把它定義在他就是陰法族他就是老人高齡者他就會一直往那個方向弱勢的然後需要照顧需要福利的方向去擬定政策我們請觀光署
transcript.whisperx[548].start 16955.755
transcript.whisperx[548].end 16980.496
transcript.whisperx[548].text 主席各位,那交通部公關署報告,那目前交通部在推動樂齡旅遊,那也是著重在中高齡及無障礙的一個旅路線,那也同時建置這個長者啦,更友善的這個旅遊環境,那也擴大這個身心障礙的一個兒童啊,或者是婦女的一個服務,那可以提供更友善的一個空間跟旅遊環境,那另外
transcript.whisperx[549].start 16981.877
transcript.whisperx[549].end 17002.904
transcript.whisperx[549].text 江部觀光署目前也在推動樂齡旅遊的認證也辦理觀光產業人才的培訓也透過職遣跟職務的再訓練鼓勵更多的中高齡長者能夠來投入觀光產業目前是江部在辦理的事項以上
transcript.whisperx[550].start 17006.206
transcript.whisperx[550].end 17031.665
transcript.whisperx[550].text 而目前是沒有針對這個名稱做一個定義那我們推動的這個觀光品牌叫做是樂嶺的一個旅遊一下子樂嶺,一下子銀淮,一下子長青我都不知道你在說什麼來我想真的要很感謝交通部觀光單位所提出的說明就是在這個法案裡頭可以更精準的
transcript.whisperx[551].start 17032.625
transcript.whisperx[551].end 17032.685
transcript.whisperx[551].text 主席
transcript.whisperx[552].start 17049.138
transcript.whisperx[552].end 17049.298
transcript.whisperx[552].text 以上建議
transcript.whisperx[553].start 17071.984
transcript.whisperx[553].end 17072.004
transcript.whisperx[553].text 韜靜雯
transcript.whisperx[554].start 17091.656
transcript.whisperx[554].end 17093.518
transcript.whisperx[554].text 中高齡勞工的定義以45歲為分水嶺本調查沿用勞動部定義,將45歲以上通稱為壯世代
transcript.whisperx[555].start 17107.714
transcript.whisperx[555].end 17119.5
transcript.whisperx[555].text 已經有在開會很多的公聽會了幾個部會他都去大概可能資料都在這邊我再念一下壯世代就業促進獎勵實施要點勞動部從113年2月1號已經生效了發佈的單位勞動部勞動力發展署身心障礙者及特定對象就業主然後他自113年2月1號起生效適用
transcript.whisperx[556].start 17135.547
transcript.whisperx[556].end 17141.491
transcript.whisperx[556].text 身適用的對象是年滿55歲以上或年滿45歲以上依法退休者下稱壯世代勞工
transcript.whisperx[557].start 17154.956
transcript.whisperx[557].end 17155.236
transcript.whisperx[557].text 中高齡45歲以上高齡65歲以上
transcript.whisperx[558].start 17184.016
transcript.whisperx[558].end 17184.556
transcript.whisperx[558].text 壯世代農民或跨域從農者
transcript.whisperx[559].start 17200.174
transcript.whisperx[559].end 17200.534
transcript.whisperx[559].text 提升農業技術、農業經營
transcript.whisperx[560].start 17217.449
transcript.whisperx[560].end 17233.705
transcript.whisperx[560].text 在這個中間的,比如說45歲到55歲,那我們這個要怎麼去定義,所以我是認為就是說一步法還是要讓他更完整更完備,讓其他的這個單位可以去執行,我覺得這樣是比較好
transcript.whisperx[561].start 17237.728
transcript.whisperx[561].end 17238.149
transcript.whisperx[561].text 青壯年流氓
transcript.whisperx[562].start 17253.468
transcript.whisperx[562].end 17277.281
transcript.whisperx[562].text 其實這個本來就是他在年齡方面政府部門已經設定的很清楚不管你是這個中高齡高齡或者是我們現在所稱的壯世代他這個都很清楚的在他的年紀年齡方面都很清楚的說明那結盟的我們的青年這是加成作用啊這是加成作用啊所以我個人認為這沒有疑慮啊以上見言
transcript.whisperx[563].start 17281.957
transcript.whisperx[563].end 17285.739
transcript.whisperx[563].text 政府應針對壯世代農民或跨域從農者提升農業技術及農業經營結合青壯年或留農或返農增加農他兩個是合作的他根本沒有抵觸啊我覺得這個有什麼
transcript.whisperx[564].start 17305.569
transcript.whisperx[564].end 17305.729
transcript.whisperx[564].text 委員吳春城
transcript.whisperx[565].start 17337.51
transcript.whisperx[565].end 17359.278
transcript.whisperx[565].text 黃學芳委員我從早上聽到現在黃學芳委員最關切的就是中高齡是45歲以上高齡是65歲以上那他一直希望把這個壯世代包含這兩組人都包含在內你的意思就是這樣嘛所以你是希望他的45
transcript.whisperx[566].start 17363.621
transcript.whisperx[566].end 17379.256
transcript.whisperx[566].text 他沒有那麼多理解就是說這個55歲是他帶來的啦,結果剛才高津里里阿妹就是55歲,但是現在還有勞動部勞動部是說,是說55歲喔那也有45,那也有45,那到底是
transcript.whisperx[567].start 17384.252
transcript.whisperx[567].end 17385.773
transcript.whisperx[567].text 中高齡及55歲的壯世代都符合
transcript.whisperx[568].start 17414.565
transcript.whisperx[568].end 17429.068
transcript.whisperx[568].text 13條就大家原則都同意了還要保留什麼?
transcript.whisperx[569].start 17438.767
transcript.whisperx[569].end 17456.733
transcript.whisperx[569].text 主席你可以這樣宣告本席建議也就是說如果在第二條你們的協商怎麼樣我們後面的條文按照第二條的協商答案這樣子去推就好啦定定之就好啦我們不要浪費時間從第二條到現在還是在討論這個問題啊我們已經在實質討論內容啦
transcript.whisperx[570].start 17471.029
transcript.whisperx[570].end 17473.274
transcript.whisperx[570].text 應該保留啊 沒有這樣子的啦
transcript.whisperx[571].start 17478.44
transcript.whisperx[571].end 17495.991
transcript.whisperx[571].text 這兩個方案啊,第一個就是第二條如果依照名稱是怎麼樣,那後面的條序就依照你們第二條協商的結果依序去做調整,這第一個方案。阿第二個方案,第13條大家都沒意見,各單位都素息啊,但內容都一樣啊,那為什麼要保留?阿如果說還是因為爭議還要保留,那這個會議很奇怪囉。
transcript.whisperx[572].start 17502.335
transcript.whisperx[572].end 17503.88
transcript.whisperx[572].text 我是覺得這個壯世代這個名稱他們現在遛在這裡而已啦年齡啦定義啦涵蓋啦
transcript.whisperx[573].start 17511.923
transcript.whisperx[573].end 17531.376
transcript.whisperx[573].text 對啦 現在他就跟你說這後面都出了《壯世代》《壯世代》看到《壯世代》就起火了就是我們醫療的貴命了還有我覺得這樣子充分討論也很好至少在第13條大家內容都沒有意見只是《壯世代》它的定義是到底是45歲、55歲、65歲這一個定義而已對不對 至少我們充分討論已經知道內容對 內容沒問題嘛 那就等第二條那就保留吧
transcript.whisperx[574].start 17541.994
transcript.whisperx[574].end 17544.815
transcript.whisperx[574].text 主席主席確定一下那12條所以12 13 14確定一下是保留保留
transcript.whisperx[575].start 17567.954
transcript.whisperx[575].end 17576.338
transcript.whisperx[575].text 沒有人讓 因為前面定義不清楚 只有這個壯世代這個名稱就是沒有對啊 就是沒有辦法理清 你們就回到第二條去討論啊
transcript.whisperx[576].start 17585.543
transcript.whisperx[576].end 17610.364
transcript.whisperx[576].text 主席不好意思我們覺得就是跟我們新住民基本法一樣大家都不同意不同意這樣子也沒辦法去討論我覺得是12、13我們是這個內容我們是同意的那個名字我們再來去討論是這個就是對就是讓他過不能是每一條都是壯世代每一條都不同意這個名字就不用討論了嘛後面就不用討論啦這樣就是對啊
transcript.whisperx[577].start 17613.067
transcript.whisperx[577].end 17630.984
transcript.whisperx[577].text 所以我覺得不是對討論內容同不同意那個名字我們改天再來就是來協商再來討論以上建議麥委員的那個中文素養我很欽佩謝謝謝謝謝謝非常欽佩真的阿飛勒那就
transcript.whisperx[578].start 17638.985
transcript.whisperx[578].end 17639.365
transcript.whisperx[578].text 我從早上忍耐到現在都是和諧為要
transcript.whisperx[579].start 17657.884
transcript.whisperx[579].end 17673.96
transcript.whisperx[579].text 吳主席我是充分建議啦因為今天的會議很有意義大家針對每一條的內容好好的去討論那比如說第13條大家針對內容都沒有意見那所以但是在你的壯世代裡頭這個名稱所以我具體建議第二條因為已經保留所以呢我們以下的條文因為每一條都有壯世代
transcript.whisperx[580].start 17680.606
transcript.whisperx[580].end 17702.797
transcript.whisperx[580].text 那如果依照這樣子那這每一條要保留但是我是覺得建議也就是內容我們可以讓他通過但是你的名稱就隨著你第二條最後草野協商結果隨這個結果去調整你各條的一個名稱我就覺得主席台可以這麼宣布看大家寶貴的意見這樣黃秀慧你意見沒有這樣可以啦好啦好啦好啦來拍拍拍拍
transcript.whisperx[581].start 17710.936
transcript.whisperx[581].end 17728.631
transcript.whisperx[581].text 就是隨著第一條第二條的定義他有什麼決定那往後的就跟著前面的協商結果好太好了太好了第12條通過那13條13條通過啦13條沒有異議通過第14條一樣嘛齁
transcript.whisperx[582].start 17740.094
transcript.whisperx[582].end 17740.614
transcript.whisperx[582].text 法定人數不足
transcript.whisperx[583].start 17754.949
transcript.whisperx[583].end 17776.82
transcript.whisperx[583].text 主席以及各位委員大家好衛福部對於本條是保留的因為最主要的原因在於我要跟各位報告目前這個資料庫在我們國建署的TESA資料裡面就已經有了臺灣地區中老年身心社會生活狀況長期調查臺灣National Study in Aging理念針對家戶狀況
transcript.whisperx[584].start 17779.249
transcript.whisperx[584].end 17799.528
transcript.whisperx[584].text 居住安排、社會支持、工作以及經濟狀況、衛生行為、醫療保健等等都已經有做好相關的準備了而且我跟各位報告這是50歲以上的而且這個資料庫是從民國78年就開始我們從85年開始我個人我在中中大學教書這部分我已經發表過研究了
transcript.whisperx[585].start 17801.894
transcript.whisperx[585].end 17817.949
transcript.whisperx[585].text 做這個東西在我看來不光是疊床架屋而且是業務重疊我相信各位委員基本上也都是站在這個站在那個把握民眾的這個預算上面我認為這個部分事實上是有意義的
transcript.whisperx[586].start 17818.59
transcript.whisperx[586].end 17833.672
transcript.whisperx[586].text 所以衛福部在這邊基本上要表示我們的立場另外第二個其實剛剛委員有提到就是說第二條的那部分我要跟各位委員報告這個在整個國際上面來說確實事實上是有問題的我剛剛再說一次
transcript.whisperx[587].start 17834.093
transcript.whisperx[587].end 17835.173
transcript.whisperx[587].text 內容形式不對內容就不對
transcript.whisperx[588].start 17862.91
transcript.whisperx[588].end 17869.54
transcript.whisperx[588].text 我可以表示一下衛福部的資料絕對沒有問題但是他只有健康資料這就是我們現在
transcript.whisperx[589].start 17871.98
transcript.whisperx[589].end 17898.901
transcript.whisperx[589].text 那個差太多了我跟大家報告我跟大家報告因為我是做行銷廣告的我非常的清楚我們的社會連我們的企業當中對於50歲55家以上的投入的行銷費用的廣告費用只占到那行銷的5%也就是怎麼樣大家都不會做大家為什麼不會做因為都沒有數據
transcript.whisperx[590].start 17900.282
transcript.whisperx[590].end 17926.493
transcript.whisperx[590].text 我們現在所有的我剛講食衣住行、娛樂你那裡有知道壯世代喜歡看什麼電影嗎你知道壯世代的消費行為是什麼嗎因為我們這個為什麼叫長壽經濟壯世代喜歡開什麼車子嗎壯世代喜歡吃什麼東西嗎喜歡穿什麼衣服嗎你有這些數據嗎你現在有的數據都只是把高齡者認為就是只要有養生養病養老的數據而已嘛
transcript.whisperx[591].start 17929.341
transcript.whisperx[591].end 17951.514
transcript.whisperx[591].text 這就是我們現在重要要翻轉就是我們的整個政府包括去年2023年行政院提出的高齡高齡社會白皮書出來的就是養生養病養老國科會所規規劃出來的高齡政策所有就是要去醫院以及要如何去使用醫院如何方便而已我們的政府對高齡的想像
transcript.whisperx[592].start 17951.974
transcript.whisperx[592].end 17971.736
transcript.whisperx[592].text 就是只有這些而已其他的一片空白文化部沒有高齡政策教育部沒有高齡政策金融沒有高齡、數位沒有通通都沒有認為這些人就是要準備報銷的人這就是我們現在為什麼需要壯世代的一個原因因為你們都覺得他是老人他就是銀髮族他就是高齡者
transcript.whisperx[593].start 17972.637
transcript.whisperx[593].end 17973.237
transcript.whisperx[593].text 我覺得我們設立這個所謂的壯世代國家資料庫
transcript.whisperx[594].start 17989.807
transcript.whisperx[594].end 18015.887
transcript.whisperx[594].text 不管你所謂的高齡中高齡這是非常非常非常的重要因為我們的平均餘命不健康的已經達到世界超高已經是第8已經是8年8年不健康的平均餘命這個政府有責任要怎麼樣協助人民啊十一住行育樂這些人你把他照顧好我們的國家就給力
transcript.whisperx[595].start 18017.288
transcript.whisperx[595].end 18017.348
transcript.whisperx[595].text 委員吳春城
transcript.whisperx[596].start 18038.061
transcript.whisperx[596].end 18042.203
transcript.whisperx[596].text 我們現在已經有160萬我們日日在增加160萬的什麼的會員我們使用的有183萬多我們日日在增加這一次臺中公務節過了我們的APP絕對會超過200萬人裡面包括什麼食衣住行娛樂包括你的繳稅全部會在那裡所以我們已經是AI的世界了要跟國際接軌我們如果有這些資料庫
transcript.whisperx[597].start 18067.016
transcript.whisperx[597].end 18082.06
transcript.whisperx[597].text 讓大家在整個政策決策以及執行能夠更加的有效能他不是只有效率他是要有效能這個才是真正的幫助我們的人民啊沒有一個國家的政府說要成立這個國家資料庫是反對的這個邏輯太奇怪了今天我們討論的第二條也就是45歲、55歲、65歲我們現在目前國家的資料庫裡頭沒有45歲你要不要去做啊
transcript.whisperx[598].start 18095.783
transcript.whisperx[598].end 18096.063
transcript.whisperx[598].text 謝謝,謝謝楊卓英。那個高晉你要先講嗎?
transcript.whisperx[599].start 18116.905
transcript.whisperx[599].end 18144.673
transcript.whisperx[599].text 好我想要舉例一下真的不用站在太反對立場其實內政部我那天才跟他開居住正義的會我要怎麼定定定居住正義的政策居住住宅政策其實我們的政府是沒有做充分的行為研究甚至很被動所以其實民間團體有一直要求內政部應該要透過你去登記社會住宅或是你登記任何相關的福利政策你要去做行為研究這些年輕人究竟多少
transcript.whisperx[600].start 18145.273
transcript.whisperx[600].end 18157.157
transcript.whisperx[600].text 多少年多少歲要住這個社會住宅他家有多少人口他的行為是什麼然後去訂定一個符合整個國家方針或者是解決居住政策的問題那相對的放到這裡來看也是同樣的概念如果我們認為這個解決高齡超高齡社會少子化等等問題我想這個的確是一個很重要的資料庫那反過來剛剛衛福部做的資料是很棒都是可以健康相關可是我想在這個部分
transcript.whisperx[601].start 18171.442
transcript.whisperx[601].end 18171.782
transcript.whisperx[601].text 剛剛是衛福部的政務次長嗎?
transcript.whisperx[602].start 18189.557
transcript.whisperx[602].end 18209.634
transcript.whisperx[602].text 我剛看你的態度我好像以為是您的那個屬下的人那聲音講起來有點被霸凌的感覺希望以後你們到立法院的態度好一點你沒有看到嗎在場我們委員態度都很好對你剛剛在台上那個態度甚至你走下來要跟委員那個在這爭辯的態度希望你以後改變一下這個態度好不好謝謝
transcript.whisperx[603].start 18210.615
transcript.whisperx[603].end 18234.047
transcript.whisperx[603].text 我覺得政府建立壯世代的國家資料庫是對的我同意瓊英委員所說的那個部分那你們覺得有什麼自然難行嗎你可以來去發言一下你除了告訴我們說之前你已經有一些資料存在了那現在在這裡請你建立壯世代的國家資料庫你覺得困難度在哪裡
transcript.whisperx[604].start 18235.268
transcript.whisperx[604].end 18256.847
transcript.whisperx[604].text 報告委員我想有兩個重點第一個我想剛剛從早上到現在我想最重要的一個部分事實上就是說我們要去正當化到底55歲這一條線牽下去的意義在什麼地方現在已經不是談這個了第二條已經過去了現在跟你談的是第15條這個基本上原則沒有確認的話基本上我們就很難再說下來
transcript.whisperx[605].start 18259.689
transcript.whisperx[605].end 18263.091
transcript.whisperx[605].text 第15條政府應建立壯世代國家資料庫並每年統計並公布健康預期的壽命,你覺得這有什麼自愛難行不能做的?
transcript.whisperx[606].start 18280.979
transcript.whisperx[606].end 18303.144
transcript.whisperx[606].text 包括委員我們現在目前就是說 最重要就是說我剛剛已經說了全民健保我們一定是cover全民的我們不可能只是切某一個年齡特別年齡層那你說你現在目前上位置的部分上位置的部分沒有那你已經有了這個資料庫然後再把它弄你再把它切出來不是更好嗎那你這個你會需要一個正當理由啊什麼叫正當理由 現在就在立法啊好 我的問題已經問完了所以趙偉偉今天我覺得
transcript.whisperx[607].start 18305.985
transcript.whisperx[607].end 18306.225
transcript.whisperx[607].text 今天氣溫都還不錯
transcript.whisperx[608].start 18329.008
transcript.whisperx[608].end 18340.59
transcript.whisperx[608].text 主席我剛剛也覺得李次講話非常奇怪什麼民國78年什麼健保開辦那一年你知道健保開辦那一年台灣出生人口多少人嗎你現在立刻回答那時候你知道台灣會這麼老化嗎你知道台灣健保會崩潰嗎我們需要討論62條嗎需要討論點數嗎需要討論分級醫療崩潰嗎
transcript.whisperx[609].start 18357.458
transcript.whisperx[609].end 18372.27
transcript.whisperx[609].text 你拿幾十年前的東西你怎麼可能有這個完整的資料庫呢好我考你建保開辦那一年比你研究的還要更晚了好幾年民國84年台灣出生多少人口老化率多少現在呢
transcript.whisperx[610].start 18379.506
transcript.whisperx[610].end 18388.569
transcript.whisperx[610].text 對阿說我們今天要面對的是現在阿你當初設計健保的時候有想到今天會崩潰成這個樣子嗎你有想到我們的一切的醫療指數全部都輸給韓國嗎你會想到嗎那個資料怎麼會管用呢你疫情的事情怎麼30年40年設計完全當時建立老保年紀現在是不是要變成崩潰破產你一站就麻人了
transcript.whisperx[611].start 18409.039
transcript.whisperx[611].end 18427.565
transcript.whisperx[611].text 沒有沒有沒有你剛剛上來真的是罵人你剛剛連高金這麼溫和的委員你一上來就一副理直氣壯弄錯啦是你們沒有在監督立委立委在監督你們健保的東西我很清楚你的數字我很清楚健保裡面塞了什麼資料我都很清楚愛塞不塞自費的全部沒有
transcript.whisperx[612].start 18428.976
transcript.whisperx[612].end 18432.077
transcript.whisperx[612].text 你知道現在台灣的自費醫療占多少嗎?你的資料是完整的嗎?我們光光控制一個藥品,他知道說病人怎麼用,對醫生都叫苦了,誰要來輸入這個資料?沒有!不要拿健保資料庫來做什麼,而且這本資料庫還拿去賣錢,很有問題的!
transcript.whisperx[613].start 18457.711
transcript.whisperx[613].end 18472.206
transcript.whisperx[613].text 我們現在要的東西是什麼,要往未來的資料,你當年40年前設計的東西你居然覺得是可以管用的,我們現在要的東西居然是管用的,不然你執事長要我回去重新做功課
transcript.whisperx[614].start 18473.683
transcript.whisperx[614].end 18479.224
transcript.whisperx[614].text 工研院10年前說我們的銀髮產業2025年會有3.6兆工研院有沒有在這裡去年改稱只有3000億剩下10分之1為什麼差那麼多呢?為什麼90%都不見呢?
transcript.whisperx[615].start 18501.169
transcript.whisperx[615].end 18518.581
transcript.whisperx[615].text 因為就是沒有資料庫大家都用猜的什麼叫做引髮產業什麼想像方向都做錯大家都憑想像的在做整個沒有研究整個沒有所以所以呢最後用3000億交代3000億還不一定做得到
transcript.whisperx[616].start 18519.741
transcript.whisperx[616].end 18533.717
transcript.whisperx[616].text 那時候說3.6兆10年前工研院說的這就是為什麼因為我們現在整個的政府對高齡化的想像就是非常的狹隘非常的狹窄今天壯世代所講
transcript.whisperx[617].start 18535.279
transcript.whisperx[617].end 18554.36
transcript.whisperx[617].text 所在談的是一個未來倒三角形的一個社會我們要如何去建構它你們還在正三角形的把老人當少數當弱者當什麼樣的這樣的一個想像人做的都是非常微小的那你能夠解決這些危機嗎目前所現行的方法
transcript.whisperx[618].start 18554.961
transcript.whisperx[618].end 18555.201
transcript.whisperx[618].text 黃夏旺委
transcript.whisperx[619].start 18579.364
transcript.whisperx[619].end 18592.555
transcript.whisperx[619].text 我講一下,我不認同說中高齡就是弱者。其實中高齡很多都是我們這個產業界的精英。我剛剛有舉我爸爸80幾歲,他現在還在做工作。
transcript.whisperx[620].start 18594.617
transcript.whisperx[620].end 18607.473
transcript.whisperx[620].text 所以我也很佩服就是說中高齡是我們社會的寶那目前我們不論是勞動部或是衛福部如果在中高齡就業這個區塊或中高齡產業這個區塊做得不足我覺得應該要再加強
transcript.whisperx[621].start 18611.678
transcript.whisperx[621].end 18632.685
transcript.whisperx[621].text 那另外就是說剛剛呂氏有特別提到就是說我們現在有這個國家的資料庫目前國建署這邊有那可能就是針對那個健康可能國人健康的這一部分那如果剛剛這個我們吳委員所提的可能是比較針對譬如說產業或消費行為譬如說這個那個壯世代如果說以壯世代55歲以上
transcript.whisperx[622].start 18639.907
transcript.whisperx[622].end 18662.842
transcript.whisperx[622].text 他喜歡看什麼電影他喜歡做什麼樣的運動做什麼樣的活動那這個也許是一個消費行為或者是一個產業那我我覺得當然就是說如果目前衛福部有的這個國家的資料庫有的話這個如果在其他單位或者是可以有更完善的
transcript.whisperx[623].start 18664.283
transcript.whisperx[623].end 18688.646
transcript.whisperx[623].text 這個收集資料的地方我覺得當然是可以可是如果說這個目前衛福部已經有的這個部分如果說還要再疊床架屋然後再去設一個這個國家資料庫其實我覺得然後來那個統計公布健康預期壽命如果原本就有了有需要還要再設嗎
transcript.whisperx[624].start 18690.007
transcript.whisperx[624].end 18694.828
transcript.whisperx[624].text 這是我比較疑問的地方好,那我們第15條不要,第15條我保留不要討論了來再來,第16條16條應該還好吧16、17、18
transcript.whisperx[625].start 18718.311
transcript.whisperx[625].end 18735.326
transcript.whisperx[625].text 我趁這個大家還在看的時候我來跟這個行政機關做建議以剛才的第15條就看你們如果這個法律通過了你們有什麼困難應該是針對這個來發言
transcript.whisperx[626].start 18739.961
transcript.whisperx[626].end 18767.003
transcript.whisperx[626].text 應該是針對說,如果是已經有了,那不更好嗎?法律制定有什麼關係呢?所以各自,因為在這,以剛才的第15條,也不是只有衛福部的事啦還有別的部會的資料也要建立,所以那各部會有什麼困難沒有困難,就應該要支持啦所以這個部分,我剛聽了也是有點奇怪啦,我們就回到第16條
transcript.whisperx[627].start 18772.236
transcript.whisperx[627].end 18773.297
transcript.whisperx[627].text 第16條有沒有什麼意見?
transcript.whisperx[628].start 18798.482
transcript.whisperx[628].end 18822.415
transcript.whisperx[628].text 我想問一下,因為55歲以上到120都可以的話,那個壯世代族群要怎麼去選出來?因為這第16條講的是民間機構我們知道嘛,一定要正式立案的嘛,團體代表,專家也知道嘛,學者一定要有在學校教書的,或是某一個領域專家,我想問一下這個,是不是可以請我們的吳委員
transcript.whisperx[629].start 18824.496
transcript.whisperx[629].end 18848.137
transcript.whisperx[629].text 這代表群怎麼去產生這個代表?那個基本上我們已經進入一個高齡化的社會都是高齡所以我們應該在這些年齡當中其實大家都想要都在進行重新的定義剛才提了
transcript.whisperx[630].start 18849.358
transcript.whisperx[630].end 18868.248
transcript.whisperx[630].text 提了一個就是65歲也不叫做老人了啦然後45歲不叫中高齡這些都要禁所以呢壯世代很重要大家在思考這個問題的時候都從權益法的角度就是好像定幾歲定一個什麼的話都可以有什麼福利大家從頭看到尾到現在這裡
transcript.whisperx[631].start 18869.369
transcript.whisperx[631].end 18883.697
transcript.whisperx[631].text 都沒有任何的權益沒有任何一個利益的分配所以大家他是一個倡議倡議的話就是各部會應該朝這個方向朝這個光明的方向朝這個美麗的未來去方向
transcript.whisperx[632].start 18885.899
transcript.whisperx[632].end 18905.474
transcript.whisperx[632].text 去規劃他的政策跟產業政策所以呢沒有沒有影響大家一直擔憂的那些事情都不在這個地方我是問的說這怎麼選出來壯世代的族群代表這到底是55歲要一個60歲要一個我不知道你這邊因為開會嘛
transcript.whisperx[633].start 18911.719
transcript.whisperx[633].end 18926.167
transcript.whisperx[633].text 總是要有一個你既然能寫出來應該你有你的想像嘛就是這個族群代表要選55歲的還是選65歲還是選80歲的因為你說要有一個壯世代族群代表那要多少人呢
transcript.whisperx[634].start 18927.798
transcript.whisperx[634].end 18950.053
transcript.whisperx[634].text 我也不知道還是到時候這個就是每一個年齡層有一個我就不太懂啊所以要請教因為當初是你這邊寫的嘛現在這裡就定義55加以上嘛是要每一個年齡層都有一個嗎這些細則當然到規定的時候就會在行政院成立這一些部會的時候再去討論嘛施行細則嘛
transcript.whisperx[635].start 18951.926
transcript.whisperx[635].end 18953.648
transcript.whisperx[635].text 民間機構是合法立案的民間組織嗎?這個壯世代的族群代表是什麼意思?
transcript.whisperx[636].start 18970.376
transcript.whisperx[636].end 18995.432
transcript.whisperx[636].text 所以現在壯世代的族群當然就是我們沒有必要再去劃分什麼叫做初老、中老、老老或者是怎麼樣以後應該講的我們對於高齡是一種很正式的你過了55歲以上然後就是一個進入我們所謂的高齡的社會這個所過程
transcript.whisperx[637].start 18997.333
transcript.whisperx[637].end 19007.549
transcript.whisperx[637].text 我們現在整個社會是為55歲以前所打造的社會55歲以後的社會是一片沙漠一片空白我們現在努力的就是要去建構這一些
transcript.whisperx[638].start 19009.318
transcript.whisperx[638].end 19031.95
transcript.whisperx[638].text 建構這一些 其實所謂的壯世代 包括年輕人也是壯世代以後所有的年齡都是壯世代 都要壯起來不是每一個當中 因為它不涉及到權益的分配它不涉及到你所定義當中的權益的分配好像某一種身份 某一種年齡 然後就具備什麼樣的權益
transcript.whisperx[639].start 19033.991
transcript.whisperx[639].end 19049.075
transcript.whisperx[639].text 好不要討論這條保留第17條這個有涉基金這個更麻煩第17條就保留啦不要討論啦第18條保留第18條保留好第19條
transcript.whisperx[640].start 19067.475
transcript.whisperx[640].end 19092.172
transcript.whisperx[640].text 好第4條要保留我覺得這個吳委員你自己要思考一下就是說黃毓民他堅持的就是中高齡跟高齡如果能把他涵蓋進來剛剛吳委員講的全部都是壯世代那就0到100你說的45歲以上中高齡嘛那65歲高齡
transcript.whisperx[641].start 19100.814
transcript.whisperx[641].end 19118.802
transcript.whisperx[641].text 好啦好啦第20條這這這保留要保留喔好算了21條21條這被公布算了也是保留啦好啦好啦
transcript.whisperx[642].start 19120.512
transcript.whisperx[642].end 19127.575
transcript.whisperx[642].text 委員吳春城等42人擬具的《壯世代政策與產業發展促進法草案》審查一大堆保留有保留的部分
transcript.whisperx[643].start 19143.683
transcript.whisperx[643].end 19168.388
transcript.whisperx[643].text 照樣審查完略,擬具審查報告提報院會討論,院會討論本案時由書招紀委員親前補充說明,必須交由黨團協商。本次會議議事錄授權由主席核定後確定。
transcript.whisperx[644].start 19170.148
transcript.whisperx[644].end 19173.007
transcript.whisperx[644].text 本次會議到此結束現在散會
transcript.whisperx[645].start 19196.425
transcript.whisperx[645].end 19204.462
transcript.whisperx[645].text 響鐘
transcript.whisperx[646].start 19215.641
transcript.whisperx[646].end 19216.481
transcript.whisperx[646].text 委員會主席
transcript.whisperx[647].start 19241.318
transcript.whisperx[647].end 19242.239
transcript.whisperx[647].text 委員會主席
IVOD_ID 16329
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16329
日期 2024-12-02
會議資料.會議代碼 聯席會議-11-2-26,19-2
會議資料.屆 11
會議資料.會期 2
會議資料.會次 2
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 19
會議資料.標題 第11屆第2會期社會福利及衛生環境、經濟委員會第2次聯席會議
影片種類 Full
開始時間 2024-12-02T08:30:15+08:00
結束時間 2024-12-02T13:49:00+08:00
支援功能[0] ai-transcript