iVOD / 163182

Field Value
IVOD_ID 163182
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163182
日期 2025-07-17
會議資料.會議代碼 委員會-11-3-26-21
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第21次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 21
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第21次全體委員會議
影片種類 Clip
開始時間 2025-07-17T09:56:15+08:00
結束時間 2025-07-17T10:13:54+08:00
影片長度 00:17:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/1404c3f0fc5b98571b5214e7a7b7a13d7e529aa6299d4c22ee40b7cd066593826e64d1a1634640805ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 09:56:15 - 10:13:54
會議時間 2025-07-17T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第21次全體委員會議(事由:邀請衛生福利部部長、勞動部部長、財政部部長、農業部針對「因應嚴重災情、緊急重大事件,醫療院所承擔救護量能困境及因應台美關稅談判對台灣食品安全相關影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.28346875
transcript.pyannote[0].end 5.66721875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 6.10596875
transcript.pyannote[1].end 6.94971875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 7.21971875
transcript.pyannote[2].end 8.29971875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 9.34596875
transcript.pyannote[3].end 9.36284375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 9.36284375
transcript.pyannote[4].end 10.99971875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 11.89409375
transcript.pyannote[5].end 13.34534375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 12.85596875
transcript.pyannote[6].end 13.46346875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 13.58159375
transcript.pyannote[7].end 13.80096875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 14.12159375
transcript.pyannote[8].end 14.98221875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.78784375
transcript.pyannote[9].end 17.95221875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 22.55909375
transcript.pyannote[10].end 23.33534375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 25.36034375
transcript.pyannote[11].end 25.84971875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 26.40659375
transcript.pyannote[12].end 28.46534375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 28.92096875
transcript.pyannote[13].end 30.03471875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 30.32159375
transcript.pyannote[14].end 34.42221875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 34.74284375
transcript.pyannote[15].end 47.97284375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 48.24284375
transcript.pyannote[16].end 58.43534375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 59.32971875
transcript.pyannote[17].end 71.12534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 71.39534375
transcript.pyannote[18].end 72.67784375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 73.84221875
transcript.pyannote[19].end 73.85909375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 73.85909375
transcript.pyannote[20].end 78.53346875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 79.05659375
transcript.pyannote[21].end 100.18409375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 100.18409375
transcript.pyannote[22].end 103.37346875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 102.51284375
transcript.pyannote[23].end 114.12284375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 112.14846875
transcript.pyannote[24].end 115.15221875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 115.15221875
transcript.pyannote[25].end 136.97159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 115.47284375
transcript.pyannote[26].end 116.89034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 136.97159375
transcript.pyannote[27].end 138.65909375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 139.41846875
transcript.pyannote[28].end 141.73034375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 142.54034375
transcript.pyannote[29].end 146.70846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 147.36659375
transcript.pyannote[30].end 151.92284375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 152.26034375
transcript.pyannote[31].end 162.68909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 163.56659375
transcript.pyannote[32].end 165.08534375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 165.40596875
transcript.pyannote[33].end 173.84346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 173.99534375
transcript.pyannote[34].end 174.73784375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 175.19346875
transcript.pyannote[35].end 180.03659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 182.01096875
transcript.pyannote[36].end 182.97284375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 183.64784375
transcript.pyannote[37].end 185.35221875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 186.58409375
transcript.pyannote[38].end 187.29284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 187.78221875
transcript.pyannote[39].end 188.45721875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 189.08159375
transcript.pyannote[40].end 192.16971875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 192.74346875
transcript.pyannote[41].end 193.65471875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 194.07659375
transcript.pyannote[42].end 195.76409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 196.16909375
transcript.pyannote[43].end 197.99159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 198.66659375
transcript.pyannote[44].end 200.08409375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 200.74221875
transcript.pyannote[45].end 201.56909375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 202.34534375
transcript.pyannote[46].end 203.96534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 204.94409375
transcript.pyannote[47].end 205.36596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 205.48409375
transcript.pyannote[48].end 208.52159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 209.26409375
transcript.pyannote[49].end 210.41159375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 210.58034375
transcript.pyannote[50].end 215.03534375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 215.67659375
transcript.pyannote[51].end 217.41471875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 217.65096875
transcript.pyannote[52].end 233.74971875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 235.47096875
transcript.pyannote[53].end 237.59721875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 238.10346875
transcript.pyannote[54].end 241.10721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 241.36034375
transcript.pyannote[55].end 248.29596875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 249.78096875
transcript.pyannote[56].end 249.83159375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 249.83159375
transcript.pyannote[57].end 249.88221875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 249.88221875
transcript.pyannote[58].end 250.00034375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 250.57409375
transcript.pyannote[59].end 256.09221875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 256.69971875
transcript.pyannote[60].end 285.89346875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 284.44221875
transcript.pyannote[61].end 294.19596875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 294.70221875
transcript.pyannote[62].end 300.91221875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 301.46909375
transcript.pyannote[63].end 302.56596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 302.88659375
transcript.pyannote[64].end 304.03409375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 304.45596875
transcript.pyannote[65].end 306.22784375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 306.76784375
transcript.pyannote[66].end 314.02409375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 314.02409375
transcript.pyannote[67].end 318.73221875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 319.20471875
transcript.pyannote[68].end 320.74034375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 319.91346875
transcript.pyannote[69].end 319.94721875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 320.23409375
transcript.pyannote[70].end 320.41971875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 320.94284375
transcript.pyannote[71].end 327.74346875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 321.90471875
transcript.pyannote[72].end 321.93846875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 323.37284375
transcript.pyannote[73].end 324.97596875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 327.94596875
transcript.pyannote[74].end 330.32534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 330.54471875
transcript.pyannote[75].end 344.34846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 344.98971875
transcript.pyannote[76].end 347.58846875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 347.99346875
transcript.pyannote[77].end 349.63034375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 349.63034375
transcript.pyannote[78].end 349.64721875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 349.95096875
transcript.pyannote[79].end 349.98471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 349.98471875
transcript.pyannote[80].end 350.03534375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 350.03534375
transcript.pyannote[81].end 351.01409375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 351.53721875
transcript.pyannote[82].end 357.88221875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 358.15221875
transcript.pyannote[83].end 359.11409375
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 359.55284375
transcript.pyannote[84].end 374.50409375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 373.94721875
transcript.pyannote[85].end 378.18284375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 378.85784375
transcript.pyannote[86].end 380.37659375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 381.00096875
transcript.pyannote[87].end 387.78471875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 387.88596875
transcript.pyannote[88].end 389.16846875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 389.75909375
transcript.pyannote[89].end 391.39596875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 392.07096875
transcript.pyannote[90].end 400.39034375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 400.76159375
transcript.pyannote[91].end 406.21221875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 406.81971875
transcript.pyannote[92].end 408.89534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 410.90346875
transcript.pyannote[93].end 412.01721875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 412.55721875
transcript.pyannote[94].end 415.15596875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 416.35409375
transcript.pyannote[95].end 420.60659375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 421.31534375
transcript.pyannote[96].end 428.03159375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 428.21721875
transcript.pyannote[97].end 431.01846875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 431.30534375
transcript.pyannote[98].end 436.45221875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 437.39721875
transcript.pyannote[99].end 438.24096875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 440.36721875
transcript.pyannote[100].end 448.43346875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 449.63159375
transcript.pyannote[101].end 461.42721875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 462.05159375
transcript.pyannote[102].end 463.23284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 464.32971875
transcript.pyannote[103].end 465.66284375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 466.21971875
transcript.pyannote[104].end 471.26534375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 471.46784375
transcript.pyannote[105].end 484.41096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 485.35596875
transcript.pyannote[106].end 486.53721875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 487.93784375
transcript.pyannote[107].end 502.06221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 502.31534375
transcript.pyannote[108].end 506.04471875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 506.73659375
transcript.pyannote[109].end 522.78471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 522.78471875
transcript.pyannote[110].end 523.22346875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 523.22346875
transcript.pyannote[111].end 525.53534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 523.25721875
transcript.pyannote[112].end 523.66221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 524.65784375
transcript.pyannote[113].end 535.81221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 535.94721875
transcript.pyannote[114].end 542.76471875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 543.22034375
transcript.pyannote[115].end 544.14846875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 544.14846875
transcript.pyannote[116].end 546.25784375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 544.16534375
transcript.pyannote[117].end 544.84034375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 545.27909375
transcript.pyannote[118].end 556.63596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 556.90596875
transcript.pyannote[119].end 567.04784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 566.49096875
transcript.pyannote[120].end 574.52346875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 567.25034375
transcript.pyannote[121].end 569.07284375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 575.02971875
transcript.pyannote[122].end 579.14721875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 579.55221875
transcript.pyannote[123].end 583.72034375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 583.99034375
transcript.pyannote[124].end 585.67784375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 586.08284375
transcript.pyannote[125].end 587.53409375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 588.22596875
transcript.pyannote[126].end 593.30534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 593.71034375
transcript.pyannote[127].end 599.80221875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 601.15221875
transcript.pyannote[128].end 601.16909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 601.16909375
transcript.pyannote[129].end 603.10971875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 603.19409375
transcript.pyannote[130].end 603.93659375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 604.22346875
transcript.pyannote[131].end 606.43409375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 604.69596875
transcript.pyannote[132].end 606.28221875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 606.95721875
transcript.pyannote[133].end 614.63534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 607.24409375
transcript.pyannote[134].end 607.44659375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 608.08784375
transcript.pyannote[135].end 608.81346875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 614.82096875
transcript.pyannote[136].end 629.38409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 615.81659375
transcript.pyannote[137].end 618.44909375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 628.62471875
transcript.pyannote[138].end 630.58221875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 630.24471875
transcript.pyannote[139].end 634.32846875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 632.97846875
transcript.pyannote[140].end 634.46346875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 635.07096875
transcript.pyannote[141].end 638.86784375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 635.72909375
transcript.pyannote[142].end 636.50534375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 640.35284375
transcript.pyannote[143].end 646.96784375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 643.55909375
transcript.pyannote[144].end 645.39846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 646.96784375
transcript.pyannote[145].end 651.72659375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 648.50346875
transcript.pyannote[146].end 652.97534375
transcript.pyannote[147].speaker SPEAKER_04
transcript.pyannote[147].start 652.97534375
transcript.pyannote[147].end 653.78534375
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 653.93721875
transcript.pyannote[148].end 669.20909375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 660.33284375
transcript.pyannote[149].end 661.66596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 662.45909375
transcript.pyannote[150].end 663.18471875
transcript.pyannote[151].speaker SPEAKER_04
transcript.pyannote[151].start 669.71534375
transcript.pyannote[151].end 672.66846875
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 672.80346875
transcript.pyannote[152].end 684.39659375
transcript.pyannote[153].speaker SPEAKER_04
transcript.pyannote[153].start 684.56534375
transcript.pyannote[153].end 687.02909375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 687.02909375
transcript.pyannote[154].end 688.34534375
transcript.pyannote[155].speaker SPEAKER_04
transcript.pyannote[155].start 688.34534375
transcript.pyannote[155].end 688.36221875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 688.36221875
transcript.pyannote[156].end 688.56471875
transcript.pyannote[157].speaker SPEAKER_04
transcript.pyannote[157].start 688.56471875
transcript.pyannote[157].end 689.20596875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 689.20596875
transcript.pyannote[158].end 702.75659375
transcript.pyannote[159].speaker SPEAKER_04
transcript.pyannote[159].start 689.40846875
transcript.pyannote[159].end 689.49284375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 702.82409375
transcript.pyannote[160].end 702.92534375
transcript.pyannote[161].speaker SPEAKER_04
transcript.pyannote[161].start 702.92534375
transcript.pyannote[161].end 709.01721875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 703.87034375
transcript.pyannote[162].end 704.39346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 708.96659375
transcript.pyannote[163].end 712.07159375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 713.37096875
transcript.pyannote[164].end 715.49721875
transcript.pyannote[165].speaker SPEAKER_04
transcript.pyannote[165].start 715.90221875
transcript.pyannote[165].end 717.23534375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 717.23534375
transcript.pyannote[166].end 717.67409375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 718.01159375
transcript.pyannote[167].end 734.07659375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 734.41409375
transcript.pyannote[168].end 737.11409375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 737.70471875
transcript.pyannote[169].end 739.94909375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 740.77596875
transcript.pyannote[170].end 741.87284375
transcript.pyannote[171].speaker SPEAKER_04
transcript.pyannote[171].start 741.82221875
transcript.pyannote[171].end 741.85596875
transcript.pyannote[172].speaker SPEAKER_04
transcript.pyannote[172].start 741.87284375
transcript.pyannote[172].end 745.26471875
transcript.pyannote[173].speaker SPEAKER_04
transcript.pyannote[173].start 745.93971875
transcript.pyannote[173].end 761.98784375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 759.67596875
transcript.pyannote[174].end 763.38846875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 763.75971875
transcript.pyannote[175].end 771.77534375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 772.68659375
transcript.pyannote[176].end 779.13284375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 779.13284375
transcript.pyannote[177].end 779.25096875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 779.25096875
transcript.pyannote[178].end 779.30159375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 779.30159375
transcript.pyannote[179].end 794.77596875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 793.51034375
transcript.pyannote[180].end 813.52409375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 807.12846875
transcript.pyannote[181].end 808.57971875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 808.95096875
transcript.pyannote[182].end 810.30096875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 810.58784375
transcript.pyannote[183].end 813.64221875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 814.16534375
transcript.pyannote[184].end 834.41534375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 834.04409375
transcript.pyannote[185].end 837.41909375
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 835.05659375
transcript.pyannote[186].end 838.00971875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 837.53721875
transcript.pyannote[187].end 837.55409375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 838.31346875
transcript.pyannote[188].end 838.36409375
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 838.95471875
transcript.pyannote[189].end 839.96721875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 839.96721875
transcript.pyannote[190].end 840.10221875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 840.40596875
transcript.pyannote[191].end 840.96284375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 840.96284375
transcript.pyannote[192].end 847.37534375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 842.43096875
transcript.pyannote[193].end 844.84409375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 848.57346875
transcript.pyannote[194].end 858.79971875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 859.33971875
transcript.pyannote[195].end 866.96721875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 864.67221875
transcript.pyannote[196].end 866.81534375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 866.96721875
transcript.pyannote[197].end 872.87346875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 867.43971875
transcript.pyannote[198].end 869.24534375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 872.41784375
transcript.pyannote[199].end 876.01221875
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 874.52721875
transcript.pyannote[200].end 875.91096875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 876.01221875
transcript.pyannote[201].end 876.23159375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 876.23159375
transcript.pyannote[202].end 876.48471875
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 876.48471875
transcript.pyannote[203].end 876.63659375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 876.63659375
transcript.pyannote[204].end 877.58159375
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 877.58159375
transcript.pyannote[205].end 877.59846875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 878.07096875
transcript.pyannote[206].end 878.25659375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 878.99909375
transcript.pyannote[207].end 881.54721875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 882.25596875
transcript.pyannote[208].end 884.56784375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 885.96846875
transcript.pyannote[209].end 886.44096875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 886.89659375
transcript.pyannote[210].end 887.89221875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 888.11159375
transcript.pyannote[211].end 897.00471875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 897.56159375
transcript.pyannote[212].end 902.74221875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 903.51846875
transcript.pyannote[213].end 904.69971875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 903.56909375
transcript.pyannote[214].end 904.07534375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 904.81784375
transcript.pyannote[215].end 908.86784375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 908.86784375
transcript.pyannote[216].end 919.22909375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 919.80284375
transcript.pyannote[217].end 921.01784375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 921.72659375
transcript.pyannote[218].end 934.39971875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 934.75409375
transcript.pyannote[219].end 942.55034375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 942.55034375
transcript.pyannote[220].end 954.41346875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 955.22346875
transcript.pyannote[221].end 961.70346875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 961.99034375
transcript.pyannote[222].end 971.89596875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 972.16596875
transcript.pyannote[223].end 973.09409375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 972.23346875
transcript.pyannote[224].end 985.59846875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 983.80971875
transcript.pyannote[225].end 988.51784375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 988.92284375
transcript.pyannote[226].end 990.25596875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 990.50909375
transcript.pyannote[227].end 996.21284375
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 991.92659375
transcript.pyannote[228].end 992.34846875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 992.36534375
transcript.pyannote[229].end 992.60159375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 996.92159375
transcript.pyannote[230].end 997.47846875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 998.01846875
transcript.pyannote[231].end 999.03096875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 1000.12784375
transcript.pyannote[232].end 1006.67534375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 1006.97909375
transcript.pyannote[233].end 1011.82221875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 1012.26096875
transcript.pyannote[234].end 1019.02784375
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 1020.14159375
transcript.pyannote[235].end 1021.71096875
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 1022.26784375
transcript.pyannote[236].end 1026.53721875
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 1026.58784375
transcript.pyannote[237].end 1029.33846875
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 1029.05159375
transcript.pyannote[238].end 1034.67096875
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 1030.40159375
transcript.pyannote[239].end 1036.34159375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 1036.35846875
transcript.pyannote[240].end 1036.39221875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 1036.39221875
transcript.pyannote[241].end 1040.18909375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 1040.27346875
transcript.pyannote[242].end 1042.26471875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 1042.02846875
transcript.pyannote[243].end 1046.28096875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 1043.83409375
transcript.pyannote[244].end 1049.11596875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 1047.10784375
transcript.pyannote[245].end 1050.68534375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 1051.07346875
transcript.pyannote[246].end 1056.05159375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 1052.65971875
transcript.pyannote[247].end 1055.46096875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 1056.64221875
transcript.pyannote[248].end 1057.35096875
transcript.whisperx[0].start 5.059
transcript.whisperx[0].end 13.129
transcript.whisperx[0].text 謝謝主席我請保證部部長請部長財政部次長農業部次長兩位次長來 第一張
transcript.whisperx[1].start 26.768
transcript.whisperx[1].end 33.714
transcript.whisperx[1].text 部長 這個問題我上個禮拜醫院協會 區醫院協會都一直來反映
transcript.whisperx[2].start 34.864
transcript.whisperx[2].end 58.007
transcript.whisperx[2].text 那你們開會就這樣倉促的決定說醫協中心跟區議院要比照上市公司來管理只要違反勞基法就要加重處罰這個反彈非常大那我有找師長來做協調但是反正有1000個理由說一點被實施8月1號
transcript.whisperx[3].start 59.366
transcript.whisperx[3].end 72.315
transcript.whisperx[3].text 那這個是非常嚴重,我是覺得,我常常跟你電話聽說你是在中邪,你是怕今天事情不夠煩,不夠派出力,要跟火上加油,那你的看法怎麼樣?
transcript.whisperx[4].start 73.911
transcript.whisperx[4].end 89.644
transcript.whisperx[4].text 跟素仁說明喔其實我想勞務在這一次這個這個處罰罰還的採處罰還的公共性原則的調整上面其實我們並沒有增加對醫院更多的管制性的要求其實只是針對
transcript.whisperx[5].start 92.346
transcript.whisperx[5].end 116.321
transcript.whisperx[5].text 這個財儲他的下限從原本是兩萬元到一百萬現在改成是五萬到一百萬其實我們上限也並沒有動薪資的部分我想是沒問題就是兩萬到 風時的問題對那我現在現在我的意思是說我們其實只是從兩萬提高到五萬喔這花款是吧對我們只把這個花款從兩萬提高到五萬一百五十萬啊沒有沒有我們上限還是一百啊
transcript.whisperx[6].start 117.782
transcript.whisperx[6].end 138.36
transcript.whisperx[6].text 上限還是一百萬上限是一百萬只是下限的部分從兩萬拉到五萬那這個我要強調的是我們並沒有提出更多的管制性的要求只要醫院能夠遵守法規把法規做好這個調整其實對醫院來說並沒有影響啊我跟部長講這個勞基網是霸王條款
transcript.whisperx[7].start 139.488
transcript.whisperx[7].end 159.718
transcript.whisperx[7].text 霸王,不是你做母天堂比霸王一向就是醫療院所碰到這個,大家都坐在等公家醫院也有約聘人員,他也是壓力都很大那我跟你剛剛陳昭志委員,一個好幾個委員在講台灣有韌性,台灣能夠發展台灣可以這樣,現在不錯,那是台灣24小時在碰
transcript.whisperx[8].start 163.638
transcript.whisperx[8].end 178.285
transcript.whisperx[8].text 所以晶片業者 他們三班坐 另外一班叫做On call所以是四班人在輪 那就是付出很高的代價那些人都是在賣肝啦 賣命啦那他的酬勞250年薪 300年薪 500年薪 應該的那醫療人員 剛剛陳昭書人講的值班 熬夜 現在我去某一個醫學中心的急診室
transcript.whisperx[9].start 192.796
transcript.whisperx[9].end 201.142
transcript.whisperx[9].text 我去看他結果小兒科的急診你知道看病的那個兒科醫師是幾歲嗎57歲他看著我就站到後腳
transcript.whisperx[10].start 205.638
transcript.whisperx[10].end 233.218
transcript.whisperx[10].text 說我做到腹瘦還要看急診還要加上尾巴加上尾巴是練不了的因為孩子大家都很緊張所以我要跟你報告現在醫院是全部人都納入勞基法包括住院醫師也納入勞基法住院醫師值班都有限制工時也限制反而是保護呢現在醫院的主力是主治醫師在值班看你有要求嗎
transcript.whisperx[11].start 235.712
transcript.whisperx[11].end 239.78
transcript.whisperx[11].text 釜山高平均要60歲啦麻醉高 我說現在開桌一開超過八點鐘、十點鐘要很多啦那都麻醉高 都醫生 外科醫生大家在那邊拚拚後
transcript.whisperx[12].start 250.735
transcript.whisperx[12].end 265.4
transcript.whisperx[12].text 對這是很嚴肅的問題那個跟文說明我們其實正是要來保護醫療人員跟醫護人員的勞動權益我們就是因為重視他們的勞動權益也是因為有很多的醫護人員來跟我們反映
transcript.whisperx[13].start 266.3
transcript.whisperx[13].end 293.899
transcript.whisperx[13].text 其實醫院如果違法其實有幾個相關的法規違反的話其實常常只是被罰兩萬元這個違法的成本真的太低了其實這正是很多的醫護人員來跟勞動部反映認為這個財儲過去的財儲不符合比例原則所以我們很怕現在醫學中心跟區醫院因為很多區醫院都是在各個縣市的偏遠地區尤其區醫院都是
transcript.whisperx[14].start 295.319
transcript.whisperx[14].end 318.388
transcript.whisperx[14].text 施仲良說東塔醫院啦,我看是碼頭醫院啦或是標桿醫院都沒關係,反正那些都很重要那些都是現在主治醫師級在撐耶那個醫院協會李慧朋他的兒子好像神經外科他兒子半夜要去開刀,這把小孩子丟給他他阿公在過分主治醫師其實現在是適用老計法的84條之一啊
transcript.whisperx[15].start 319.284
transcript.whisperx[15].end 325.569
transcript.whisperx[15].text 主治醫師現在 住院醫師那是沒有問題主治醫師沒有公實規範我跟妳講喔 再過去啦 因為說一邊會走走那邊用檢疫 想要檢疫就都一邊所以那邊用檢疫 昨天沒人要開桌沒人要拒收 有人求像日本這樣一個產婦 去洗腳 救護車
transcript.whisperx[16].start 345.063
transcript.whisperx[16].end 371.489
transcript.whisperx[16].text 請問施加醫院沒有一間要收台灣如果變成這樣那一頓就停產這個跟委員說明我們其實正是很關注醫護人員的勞動的權益所以我們其實才做這個方面的調整那我們也覺得我們也看到現在醫護人員這個人才流財相關的困境所以我們也才覺得更需要院方把
transcript.whisperx[17].start 372.009
transcript.whisperx[17].end 376.857
transcript.whisperx[17].text 法尊給做好 這才有助於流程我們在熬夜 我們在值班我們在run 24小時
transcript.whisperx[18].start 378.908
transcript.whisperx[18].end 399.706
transcript.whisperx[18].text 熬夜是很累的,掉頭髮會掉的時候我就會掉,脖子也會掉皮膚會老化,免疫力會下降,那是會破壞的沒有人,我就會繼續動下去女性,我們婦女人員如果是大一班常常上,那連月經週期都會亂的那很嚴重的事啦,台灣的命運是在這,台灣的韌性在這所以這個案要實施
transcript.whisperx[19].start 407.032
transcript.whisperx[19].end 420.402
transcript.whisperx[19].text 來我們財政部處長我問你川普說加班費值班費都免稅我覺得他講得很好啊雖然川普常常亂講話但是他講這個非常好
transcript.whisperx[20].start 421.403
transcript.whisperx[20].end 429.989
transcript.whisperx[20].text 因為那都是在賣命 整個美國要進步也是這樣這的人為了台灣 不關是服務業 不關是醫療我們公家醫院的醫師 社團法人 財團法人的醫師都是這樣在碰這的人 極重任難的主治醫師他這樣賣命 哪個值班費 現在都要繳稅 而且稅都很重
transcript.whisperx[21].start 449.673
transcript.whisperx[21].end 475.219
transcript.whisperx[21].text 我們現在始終兩處長跟部長在推說這些家職班會不管公家醫院 不管私人醫院 不管財政法院都可以給免稅 美國就這樣幹啊我們能不能這樣幹啊不然的話 組織醫師 政策醫師全部跑光了都招來經受 因為經受可以執行業務所得嘛所以你這個事情非常嚴重 如果要修法 我跟
transcript.whisperx[22].start 476.22
transcript.whisperx[22].end 486.195
transcript.whisperx[22].text 財政委員會的人說要修法 給他免稅額啦什麼特別扣除 但是那都不太可行就是把夾環會 值班會直接認定你有這個Data嗎
transcript.whisperx[23].start 488.264
transcript.whisperx[23].end 504.759
transcript.whisperx[23].text 跟委員報告一下其實我們也了解我們中央健保署其實有在檢討這部分那其實我們財政部非常的積極已經有函詢衛福部在釐清這個延長工作時間的加班時數跟他的支付標準的問題那這個部分我們會持續的來跟衛福部來演繹
transcript.whisperx[24].start 506.778
transcript.whisperx[24].end 535.496
transcript.whisperx[24].text 你把他每個月的那個所得等下除以他的工時然後算出來每個小時那他如果超時的或者是時間外的就讓他免稅能夠報出來 這樣可行這個沒有多少錢嘛不然的話留不住人喔 我跟你講我覺得建議蠻好的這個部分我們來看看我們財政中心可不可以跑一下但是那個工作時數可能醫院才會有所以這個部分我們會持續的來跟衛福部
transcript.whisperx[25].start 535.996
transcript.whisperx[25].end 564.447
transcript.whisperx[25].text 你要積極來做 不然的話就很嚴重 被勞動部再K下去的話我告訴你 兩頭空連陳先生都不想值班了還是有受那個勞基法的一個加班時數規定的一個限制啦所以 對你們是用醫師法所以我們會持續的來跟衛福部那持續跟我們的醫療院所這邊衛福部看看他們有沒有這個我們的一些醫師的一個加班時數的規定
transcript.whisperx[26].start 565.828
transcript.whisperx[26].end 585.54
transcript.whisperx[26].text 然後我們來學衛生部一起研究我希望衛生部還有那個石署長跟家政部在那邊積極啦這個公家醫院的意思也是一樣那你如果沒有的話這個社團法院醫院、私人醫院把這個拉高把這個有加值班費免稅我要跟國家賠的多少料料?跟賠的多少我沒辦法
transcript.whisperx[27].start 588.274
transcript.whisperx[27].end 599.102
transcript.whisperx[27].text 那是很嚴重的問題 你現在值班的人都五六十歲 六十幾歲值班我們屏東有婦產科醫師 八十五歲 還在控案 還在值班一個八十五歲 一個六十五歲 請問委員 其實我們都去過議院所以這個你們財政部不要說到財政部 說到婦稅層 大家都拖著走 拖著頂角角不 委員我們你現在幾歲是長命性的
transcript.whisperx[28].start 617.996
transcript.whisperx[28].end 633.95
transcript.whisperx[28].text 我們還是必須考慮租稅的中立性跟公平性啦但是我們了解醫療院所的我們的醫生的一些他工作的一個特殊性所以我們會來檢討這個合理性你的多久可以討論出來這個我們會看跟衛福部一起合作兩禮拜一個月應該是沒辦法這麼快一個月也不太快
transcript.whisperx[29].start 640.455
transcript.whisperx[29].end 651.058
transcript.whisperx[29].text 我們會積極來處理兩個聯席會一直來跟你K我們可能也需要一些Data來研究看怎麼樣的加班時數比較合理報告一下 這個衛福部我們有請建保署這位很會心會心還是會心很會心的去做很多的討論很會心的做的討論也很用心的跟
transcript.whisperx[30].start 670.124
transcript.whisperx[30].end 686.475
transcript.whisperx[30].text 現在是請醫院協會因為這個科別有它的複雜不同性所以我們用最快的適度所以我想也拜託財政部能夠用最快的適度因為希望在今年能夠完成這樣的一個制度那明年就可以來
transcript.whisperx[31].start 699.984
transcript.whisperx[31].end 711.76
transcript.whisperx[31].text 現在他就看一半安全跟那些醫院是救人的單位啦所以我們開刀絕對不會開到一半就停因為他的想法跟你就不一樣啦
transcript.whisperx[32].start 713.407
transcript.whisperx[32].end 726.317
transcript.whisperx[32].text 他是算不太年輕 他很年輕他的生活就跟我們不一樣 你們常常說的理想 為了賠人 救人什麼的說那些五四三的 現在都沒在聽 我們那個時代真的是要有這樣站在內地 但是現在不一樣所以 現在都很很很spatical的所以所以這 施主長你趕緊啦一位一位一位
transcript.whisperx[33].start 741.956
transcript.whisperx[33].end 768.906
transcript.whisperx[33].text 我們會要求臺灣醫院協會盡快希望在幾天之內就能夠提出來提出來以後就請負稅署能夠財政部能夠做然後我們這邊相關的成績衛護部的高階會議也一直在討論怎麼樣把它落實那最重要的就是財政部這邊我自己都吵死了對不起啊因為部長你這個案對的前往是要執行你往是要執行就對了
transcript.whisperx[34].start 770.166
transcript.whisperx[34].end 770.949
transcript.whisperx[34].text 啊你就要看要怎麼
transcript.whisperx[35].start 772.862
transcript.whisperx[35].end 798.52
transcript.whisperx[35].text 實行上的那個態度有很多很多嘛你不要在火上加油讓我們這個這個已經很慘了會不會說明我們願意來跟醫院來協助他們相關的法尊的輔導我想這我們都願意做但是我們做這件事情正是我想大家都很在意醫護人員的勞動權益我們真的是因為重視醫護人員的勞動權益到時候醫院就一句話就都吵死了現在在開刀開刀棒已經滿載了
transcript.whisperx[36].start 800.982
transcript.whisperx[36].end 801.843
transcript.whisperx[36].text 我們其實針對緊急性的連續手術其實是我們有開了一個這個牢記法的
transcript.whisperx[37].start 820.345
transcript.whisperx[37].end 846.982
transcript.whisperx[37].text 相對應的這個彈性其實如果是因為緊急手術他沒有辦法如時間的下班的話其實在這邊是有彈性的所以沒有那個問題其實我們現在看到最多違反的問題就是不給加班費這個我們要不給加班費這有助於流財嗎不給加班費難道我們就是應該沒有沒有醫療案者醫療案者的薪資的調整我在這裡也跟你承諾
transcript.whisperx[38].start 848.818
transcript.whisperx[38].end 858.124
transcript.whisperx[38].text 衛福給我們的錢 健保提供員的錢我們大部分都用在改善勞動條件 增加薪資這個我們可以承諾 我們也可以責成醫院協會跟區域醫學院協會
transcript.whisperx[39].start 859.417
transcript.whisperx[39].end 868.979
transcript.whisperx[39].text 每一張碼放在一起都在改善 市場已經改善 大家都變變變從現在從數據上面 統計上面看到最多的就是沒有如實給加班費 這個我們來努力這個難道不給加班費 勞動部可以放鬆嗎好 來來來 農業部 來來來我還有30秒 30秒就好委員好
transcript.whisperx[40].start 887.08
transcript.whisperx[40].end 895.082
transcript.whisperx[40].text 現在很多市街市地的在陳情陳情都是我跟張嘉軒在接我平常都在市地市街市街兩個我們現在榮譽木美國進來的這些產品我們的關稅是多少
transcript.whisperx[41].start 903.63
transcript.whisperx[41].end 912.557
transcript.whisperx[41].text 差不多6.5我們的平均關稅是16.6我們去美國是平均5.幾那我們像豬肉進來的關稅是12.5我們給他收12.5現在如果他全部要求我們都領關稅像那個越南像印尼這樣全部領那我們會不會崩盤
transcript.whisperx[42].start 921.772
transcript.whisperx[42].end 931.478
transcript.whisperx[42].text 應該是這樣說啦 其實美國跟我們的農產品貿易本來就是互相大家有來有去譬如說我們的黃小玉大部分都從美國來我們這裡去美國的也有我們的譬如說我們蘭花啦 這裡的花卉 水產品所以本來就是互相在搭的啊 但是當然是臺灣的過程當中一定是大家在那我也要替我們臺灣的農業顧 啊他也相當希望他的農產品來臺灣民關稅的話 那個譬如豬肉 牛肉本來就進來很多啦
transcript.whisperx[43].start 949.289
transcript.whisperx[43].end 971.161
transcript.whisperx[43].text 那豬肉的話,現在進來的,如果是零關稅,這樣大舉入侵進來到30%的話,我們的豬籠是會崩潰的喔?你們要怎麼補貨,你們有配套嗎?我們特別預算上禮拜通過5000多億,裡面有一部要給農業的,夠不夠?沒有的話它是沒有屋頂的喔,我們是打開屋頂
transcript.whisperx[44].start 972.262
transcript.whisperx[44].end 974.383
transcript.whisperx[44].text 我們台灣的豬肉一公斤是95塊成本美國進來是差不多60塊如果在12.5%的關稅拿掉剩下50塊不到
transcript.whisperx[45].start 996.983
transcript.whisperx[45].end 1018.641
transcript.whisperx[45].text 省一半 那個地板很細那牛肉 阿賴 雞肉 蚵仔 蚵仔我都拖拖所以稻米 稻米現在美國每年出口320萬噸比台灣出產的還多那這個我們稻米現在一公斤也是50塊嘛那美國進來的才35塊如果要零關稅的話
transcript.whisperx[46].start 1020.168
transcript.whisperx[46].end 1032.677
transcript.whisperx[46].text 所以我賺了20幾塊 30塊我們台灣人賺的錢跟賣的錢 日本傢伙要賺的錢賺的錢嘛 對不對坦白說我昨天站在我們台灣人都站不住了今天你站不住啦 站不住要怎麼補貨啦站不住啦 站不住啦 拜託大家支持啦
transcript.whisperx[47].start 1036.92
transcript.whisperx[47].end 1046.744
transcript.whisperx[47].text 那個萊克多巴胺那個也要堅持一下你們也要國內的萊克多巴胺不使用所以萊克多巴胺不可以在美國進來0.4 0.9這個要有好的配套啦這個很重要很重要很重要謝謝委員謝謝