IVOD_ID |
162839 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162839 |
日期 |
2025-06-25 |
會議資料.會議代碼 |
委員會-11-3-19-17 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-25T11:41:31+08:00 |
結束時間 |
2025-06-25T11:55:03+08:00 |
影片長度 |
00:13:32 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3c0085a4689617f55ff1faaa431994d82e63c9c5beafd2002e30616ee03c0ffcda277b577d0128215ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
謝衣鳯 |
委員發言時間 |
11:41:31 - 11:55:03 |
會議時間 |
2025-06-25T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第17次全體委員會議(事由:邀請國家發展委員會主任委員、經濟部部長、農業部部長及中央銀行首長就「因應國際經貿情勢變化,如何協助我國產業面對台幣匯率及國際能源價格遽變」進行報告,並備質詢。【6月23日及6月25日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
0.08159375 |
transcript.pyannote[0].end |
0.82409375 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
0.92534375 |
transcript.pyannote[1].end |
1.19534375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
1.19534375 |
transcript.pyannote[2].end |
1.49909375 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
6.73034375 |
transcript.pyannote[3].end |
10.40909375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
20.16284375 |
transcript.pyannote[4].end |
20.80409375 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
23.55471875 |
transcript.pyannote[5].end |
26.32221875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
26.57534375 |
transcript.pyannote[6].end |
28.44846875 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
28.92096875 |
transcript.pyannote[7].end |
29.57909375 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
30.40596875 |
transcript.pyannote[8].end |
31.46909375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
32.97096875 |
transcript.pyannote[9].end |
34.27034375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
34.62471875 |
transcript.pyannote[10].end |
36.02534375 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
36.43034375 |
transcript.pyannote[11].end |
38.18534375 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
38.50596875 |
transcript.pyannote[12].end |
39.23159375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
39.77159375 |
transcript.pyannote[13].end |
42.45471875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
42.57284375 |
transcript.pyannote[14].end |
43.46721875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
44.42909375 |
transcript.pyannote[15].end |
44.76659375 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
45.32346875 |
transcript.pyannote[16].end |
47.12909375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
47.28096875 |
transcript.pyannote[17].end |
48.20909375 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
49.15409375 |
transcript.pyannote[18].end |
53.50784375 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
53.81159375 |
transcript.pyannote[19].end |
54.79034375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
55.34721875 |
transcript.pyannote[20].end |
57.10221875 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
57.62534375 |
transcript.pyannote[21].end |
59.88659375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
60.08909375 |
transcript.pyannote[22].end |
61.15221875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
61.54034375 |
transcript.pyannote[23].end |
64.49346875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
65.89409375 |
transcript.pyannote[24].end |
67.19346875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
67.91909375 |
transcript.pyannote[25].end |
76.91346875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
77.55471875 |
transcript.pyannote[26].end |
81.36846875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
81.67221875 |
transcript.pyannote[27].end |
82.87034375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
83.47784375 |
transcript.pyannote[28].end |
84.01784375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
84.25409375 |
transcript.pyannote[29].end |
85.78971875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
85.94159375 |
transcript.pyannote[30].end |
86.71784375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
87.03846875 |
transcript.pyannote[31].end |
89.02971875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
89.70471875 |
transcript.pyannote[32].end |
94.37909375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
94.93596875 |
transcript.pyannote[33].end |
95.34096875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
95.47596875 |
transcript.pyannote[34].end |
97.39971875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
97.85534375 |
transcript.pyannote[35].end |
104.70659375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
106.15784375 |
transcript.pyannote[36].end |
106.42784375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
106.96784375 |
transcript.pyannote[37].end |
107.79471875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
108.75659375 |
transcript.pyannote[38].end |
113.51534375 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
114.02159375 |
transcript.pyannote[39].end |
116.73846875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
117.64971875 |
transcript.pyannote[40].end |
126.66096875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
127.30221875 |
transcript.pyannote[41].end |
127.99409375 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
128.33159375 |
transcript.pyannote[42].end |
138.54096875 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
139.30034375 |
transcript.pyannote[43].end |
141.10596875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
141.15659375 |
transcript.pyannote[44].end |
142.84409375 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
143.14784375 |
transcript.pyannote[45].end |
145.39221875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
146.37096875 |
transcript.pyannote[46].end |
148.07534375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
148.49721875 |
transcript.pyannote[47].end |
149.32409375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
149.54346875 |
transcript.pyannote[48].end |
152.46284375 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
153.50909375 |
transcript.pyannote[49].end |
160.56284375 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
161.00159375 |
transcript.pyannote[50].end |
163.29659375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
164.30909375 |
transcript.pyannote[51].end |
165.20346875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
166.04721875 |
transcript.pyannote[52].end |
166.95846875 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
167.31284375 |
transcript.pyannote[53].end |
171.64971875 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
172.07159375 |
transcript.pyannote[54].end |
174.94034375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
175.44659375 |
transcript.pyannote[55].end |
181.96034375 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
182.38221875 |
transcript.pyannote[56].end |
182.51721875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
183.63096875 |
transcript.pyannote[57].end |
184.69409375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
184.87971875 |
transcript.pyannote[58].end |
208.09971875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
208.55534375 |
transcript.pyannote[59].end |
210.91784375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
212.25096875 |
transcript.pyannote[60].end |
215.23784375 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
215.60909375 |
transcript.pyannote[61].end |
216.89159375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
217.24596875 |
transcript.pyannote[62].end |
218.10659375 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
219.37221875 |
transcript.pyannote[63].end |
220.46909375 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
220.94159375 |
transcript.pyannote[64].end |
222.34221875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
222.66284375 |
transcript.pyannote[65].end |
223.84409375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
223.99596875 |
transcript.pyannote[66].end |
230.54346875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
231.38721875 |
transcript.pyannote[67].end |
238.93034375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
238.94721875 |
transcript.pyannote[68].end |
246.62534375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
246.89534375 |
transcript.pyannote[69].end |
249.30846875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
249.73034375 |
transcript.pyannote[70].end |
253.17284375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
253.59471875 |
transcript.pyannote[71].end |
257.15534375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
257.32409375 |
transcript.pyannote[72].end |
263.21346875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
263.48346875 |
transcript.pyannote[73].end |
264.20909375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
264.96846875 |
transcript.pyannote[74].end |
265.33971875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
265.66034375 |
transcript.pyannote[75].end |
267.34784375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
268.09034375 |
transcript.pyannote[76].end |
286.60221875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
287.12534375 |
transcript.pyannote[77].end |
290.28096875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
290.41596875 |
transcript.pyannote[78].end |
294.66846875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
294.88784375 |
transcript.pyannote[79].end |
296.98034375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
297.35159375 |
transcript.pyannote[80].end |
298.66784375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
298.78596875 |
transcript.pyannote[81].end |
306.34596875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
307.13909375 |
transcript.pyannote[82].end |
308.05034375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
308.16846875 |
transcript.pyannote[83].end |
319.79534375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
320.47034375 |
transcript.pyannote[84].end |
322.69784375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
322.83284375 |
transcript.pyannote[85].end |
325.76909375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
326.29221875 |
transcript.pyannote[86].end |
326.68034375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
326.96721875 |
transcript.pyannote[87].end |
341.58096875 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
341.91846875 |
transcript.pyannote[88].end |
343.58909375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
344.17971875 |
transcript.pyannote[89].end |
348.07784375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
349.42784375 |
transcript.pyannote[90].end |
354.33846875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
356.29596875 |
transcript.pyannote[91].end |
357.32534375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
357.51096875 |
transcript.pyannote[92].end |
364.76721875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
362.42159375 |
transcript.pyannote[93].end |
362.57346875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
365.47596875 |
transcript.pyannote[94].end |
372.36096875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
372.88409375 |
transcript.pyannote[95].end |
377.55846875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
377.74409375 |
transcript.pyannote[96].end |
378.95909375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
378.06471875 |
transcript.pyannote[97].end |
381.86159375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
382.09784375 |
transcript.pyannote[98].end |
386.92409375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
387.17721875 |
transcript.pyannote[99].end |
405.31784375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
405.57096875 |
transcript.pyannote[100].end |
432.67221875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
433.09409375 |
transcript.pyannote[101].end |
470.30346875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
470.89409375 |
transcript.pyannote[102].end |
476.02409375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
476.59784375 |
transcript.pyannote[103].end |
497.69159375 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
497.75909375 |
transcript.pyannote[104].end |
499.56471875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
500.27346875 |
transcript.pyannote[105].end |
502.88909375 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
503.31096875 |
transcript.pyannote[106].end |
507.12471875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
503.37846875 |
transcript.pyannote[107].end |
504.01971875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
507.24284375 |
transcript.pyannote[108].end |
519.62909375 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
520.01721875 |
transcript.pyannote[109].end |
520.48971875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
520.64159375 |
transcript.pyannote[110].end |
547.42221875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
547.65846875 |
transcript.pyannote[111].end |
548.51909375 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
549.02534375 |
transcript.pyannote[112].end |
550.27409375 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
550.59471875 |
transcript.pyannote[113].end |
552.23159375 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
552.80534375 |
transcript.pyannote[114].end |
553.17659375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
553.66596875 |
transcript.pyannote[115].end |
569.61284375 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
569.69721875 |
transcript.pyannote[116].end |
582.38721875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
583.09596875 |
transcript.pyannote[117].end |
638.34471875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
637.60221875 |
transcript.pyannote[118].end |
639.17159375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
638.61471875 |
transcript.pyannote[119].end |
642.56346875 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
642.56346875 |
transcript.pyannote[120].end |
642.63096875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
642.63096875 |
transcript.pyannote[121].end |
670.28909375 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
642.64784375 |
transcript.pyannote[122].end |
645.66846875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
670.52534375 |
transcript.pyannote[123].end |
703.09409375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
703.09409375 |
transcript.pyannote[124].end |
706.08096875 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
708.42659375 |
transcript.pyannote[125].end |
709.16909375 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
710.72159375 |
transcript.pyannote[126].end |
719.78346875 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
719.91846875 |
transcript.pyannote[127].end |
728.94659375 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
729.53721875 |
transcript.pyannote[128].end |
731.05596875 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
731.35971875 |
transcript.pyannote[129].end |
740.79284375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
741.50159375 |
transcript.pyannote[130].end |
748.40346875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
748.75784375 |
transcript.pyannote[131].end |
750.24284375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
750.74909375 |
transcript.pyannote[132].end |
752.36909375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
752.63909375 |
transcript.pyannote[133].end |
753.41534375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
754.12409375 |
transcript.pyannote[134].end |
759.00096875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
759.06846875 |
transcript.pyannote[135].end |
760.23284375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
760.63784375 |
transcript.pyannote[136].end |
763.69221875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
764.35034375 |
transcript.pyannote[137].end |
765.02534375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
765.49784375 |
transcript.pyannote[138].end |
777.32721875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
777.63096875 |
transcript.pyannote[139].end |
778.74471875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
778.82909375 |
transcript.pyannote[140].end |
781.17471875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
781.22534375 |
transcript.pyannote[141].end |
786.30471875 |
transcript.pyannote[142].speaker |
SPEAKER_02 |
transcript.pyannote[142].start |
787.31721875 |
transcript.pyannote[142].end |
808.69784375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
804.74909375 |
transcript.pyannote[143].end |
804.83346875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
804.83346875 |
transcript.pyannote[144].end |
804.90096875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
804.90096875 |
transcript.pyannote[145].end |
804.95159375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
808.96784375 |
transcript.pyannote[146].end |
809.17034375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
811.97159375 |
transcript.pyannote[147].end |
812.88284375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
812.95034375 |
transcript.pyannote[148].end |
812.96721875 |
transcript.whisperx[0].start |
7.052 |
transcript.whisperx[0].end |
20.559 |
transcript.whisperx[0].text |
謝謝主席我想要請央行的副總裁副總裁 |
transcript.whisperx[1].start |
23.918 |
transcript.whisperx[1].end |
45.835 |
transcript.whisperx[1].text |
楊總裁跟我講說 你跟他一樣優秀今天都沒有給你發揮 是不是大家都沒有問你大家最關心的 現在就是4月30號 台幣對美元是32.017元那今天呢 29.46 |
transcript.whisperx[2].start |
49.212 |
transcript.whisperx[2].end |
64.372 |
transcript.whisperx[2].text |
我想要請教你的美國銀行BOA他預測年底的匯率是28.8元到明年底是27.6元你怎麼看 |
transcript.whisperx[3].start |
65.933 |
transcript.whisperx[3].end |
82.482 |
transcript.whisperx[3].text |
那個報告我也因為不管是美國銀行或其他的外資的機構其實他們經常都會對他的客戶做台幣或其他國家貨幣的匯率預測那我們通常也會看一下他的分析的理由但是我們不能夠 |
transcript.whisperx[4].start |
84.562 |
transcript.whisperx[4].end |
104.409 |
transcript.whisperx[4].text |
因為我們自己在成為一個外匯市場參與者我們不願意對他們的評論他們的預測有任何的評論因為匯率我剛才也回答陳委員講的匯率其實影響的因素是很多也不完全是我們看國內或國外因素能夠主導的 |
transcript.whisperx[5].start |
106.206 |
transcript.whisperx[5].end |
116.457 |
transcript.whisperx[5].text |
对但是当台币美元一直升值的这样子的情况对于国内的产业 |
transcript.whisperx[6].start |
117.697 |
transcript.whisperx[6].end |
144.862 |
transcript.whisperx[6].text |
我們不知道說為什麼會在兩個月的期間升值這麼多當然是國際的因素但是4月30當美國的對等關稅發生的時候我們去跟我們去工業區跟中小企業來座談那時候我記得有一個廠商我印象非常深刻他說 |
transcript.whisperx[7].start |
146.457 |
transcript.whisperx[7].end |
165.182 |
transcript.whisperx[7].text |
美國的客戶跟他說我們來簽一年的契約訂單他說一年的訂單我完全給你他說他沒有辦法跟他簽一年的訂單他只要跟他簽到三個月而已 |
transcript.whisperx[8].start |
166.118 |
transcript.whisperx[8].end |
181.448 |
transcript.whisperx[8].text |
代表了他已經預估了不管是關稅的因素不管當然那時候我們不知道匯率的因素對於中小企業能產生這麼大的影響 |
transcript.whisperx[9].start |
183.68 |
transcript.whisperx[9].end |
210.014 |
transcript.whisperx[9].text |
我們升值了那會對他的成本有造成重大影響他的成本在短期間之內有辦法降低7%來因應我們台幣升值8% 7%這樣子的影響嗎所以當我們的匯率因素這麼嚴峻的情況下我想請教你第二個問題的是 |
transcript.whisperx[10].start |
212.298 |
transcript.whisperx[10].end |
230.158 |
transcript.whisperx[10].text |
未來你認為國際的情勢的這樣子的變化到底是匯率因素還是關稅因素還是能源的因素對於台灣的產業會造成最重大的影響 |
transcript.whisperx[11].start |
232.008 |
transcript.whisperx[11].end |
248.98 |
transcript.whisperx[11].text |
因為台灣是一個出口導向的國家那影響我們出口有兩大因素一個是國外的需求一個是我們的價格因素價格因素裡面就包含了匯率因素包含我們的物價這些相關的因素在後面 |
transcript.whisperx[12].start |
249.801 |
transcript.whisperx[12].end |
266.722 |
transcript.whisperx[12].text |
那當然這個除了價格因素之外我們看到我們的出口的過去的出口表現裡面我們還呈現了一塊就是我們的出口品質的提升我們的科技創新的那種附加價值在後面所以你看我們最近這幾 |
transcript.whisperx[13].start |
268.14 |
transcript.whisperx[13].end |
286.135 |
transcript.whisperx[13].text |
最近以来我们的台币升值在我们的报告里面也提到它其实是有经济面的基础在支持的包括我们的出口成长相较于其他国家来的有很多我们的经济成长率表现也非常的好这个也就是说明了我们有它的经济的 |
transcript.whisperx[14].start |
287.176 |
transcript.whisperx[14].end |
305.99 |
transcript.whisperx[14].text |
基礎在後面支持台幣近期的升值但是我們也知道就是說台幣升值對於企業短期間快速升值對不利於企業經營所以我們也一直嘗試的在維持匯率的相對穩定所以各位可以看到我們的在報告裡面的表 |
transcript.whisperx[15].start |
307.522 |
transcript.whisperx[15].end |
325.635 |
transcript.whisperx[15].text |
圖八第五頁我們可以明顯看到台灣其實我們過去一直以來我們相對我們要維持一個匯率的穩定其實是有它的用意的因為我們知道匯率穩定對於產業的出口是有很大的重要的影響因素的 |
transcript.whisperx[16].start |
327.126 |
transcript.whisperx[16].end |
354.068 |
transcript.whisperx[16].text |
對 所以我看到了總裁在記者會上面有說要協助中小企業面對這個匯率的 因應這個匯率的我想要請 我也要同時請郭部長喔怎麼樣子我們要怎麼樣子協助中小企業副總裁 你們總裁是希望怎麼樣協助中小企業是給郭部長做還是怎樣 |
transcript.whisperx[17].start |
356.68 |
transcript.whisperx[17].end |
371.852 |
transcript.whisperx[17].text |
謝謝委員我們協助中小企業大概分成四個方向剛才我想副總裁也有講出口的部分其實是我們希望能夠讓這個廠商提升它的價值 |
transcript.whisperx[18].start |
372.93 |
transcript.whisperx[18].end |
391.588 |
transcript.whisperx[18].text |
提升它的价值那提升它的价值呢事实上是从品质上面着手所以我们会帮助中小微企业来打练它的竞争力这是第一个第二个呢我们降低它的成本降低它的成本是从两个部分一个是从它的设备支出的成本 |
transcript.whisperx[19].start |
392.108 |
transcript.whisperx[19].end |
413.673 |
transcript.whisperx[19].text |
那政府有這個EXCO的這個這樣的一個輔導機制所以我們從這個地方來降低它的成本太舊煥新 設備太舊煥新第二個就是它的成本裡面有一大部分是材料成本所以它在購料的部分我們盡量讓它採取共同性的部分由經濟部來協助它能夠統購 |
transcript.whisperx[20].start |
415.033 |
transcript.whisperx[20].end |
431.82 |
transcript.whisperx[20].text |
通過這些材料然後透過我們的法人機構再分配下去事實上這是不會影響到所謂的經濟的秩序但是對於這些小微公司中小微的公司它事實上可以拿到大概3%到5%的降低材料成本的機會 |
transcript.whisperx[21].start |
433.2 |
transcript.whisperx[21].end |
455.368 |
transcript.whisperx[21].text |
那麼第三個來講的話我們可以幫助他打造這個國外的這個市場但是國外的市場牽扯到所謂的這個匯率的問題所以我們轉而向希望能夠以大代小也就是說國內的大型的公司或者中型的公司我們建議他能夠我們幫這些小微公司 |
transcript.whisperx[22].start |
455.968 |
transcript.whisperx[22].end |
469.438 |
transcript.whisperx[22].text |
進步它的這個方式以後我想對它來講採用這個國產的這些設備最近我們又發現我們在談關稅以後發現因為美國有一個非常大的要求是在非紅供應鏈 |
transcript.whisperx[23].start |
470.999 |
transcript.whisperx[23].end |
493.378 |
transcript.whisperx[23].text |
所以我們發現我們有半導體有AI有一些資通訊的這些產品可能會有把這些機會讓台灣的這個廠商拿到這樣的一個機會這一些都是他們有增加市場然後我們幫他打造他的競爭力以後我相信這個會改善他自己目前的這個困境所以這個是這個經濟部現在極力在推動的這個行為問題是 |
transcript.whisperx[24].start |
500.342 |
transcript.whisperx[24].end |
519.073 |
transcript.whisperx[24].text |
你要多久才會有成效我們現在面對的就是匯率在短期間內造成這麼樣子重大的甚至國際的金融機構都預測台幣未來還是持續走升值的情況 |
transcript.whisperx[25].start |
521.315 |
transcript.whisperx[25].end |
548.012 |
transcript.whisperx[25].text |
這對於我們的中小企業會產生影響總裁在這裡對金融業也產生了重大的影響當我們要求金融業對於企業進行放貸進行紓困的時候但是如果企業面對不確定性的風險剛才前面也有非常多的委員提到了中小企業不敢接單 |
transcript.whisperx[26].start |
549.073 |
transcript.whisperx[26].end |
569.218 |
transcript.whisperx[26].text |
不敢接單不敢從事生產那雖然今年的經濟成長因為這幾個月關稅宣布前我們的搶單的情況但是對於明年開始整個市場不確定的因素 |
transcript.whisperx[27].start |
569.938 |
transcript.whisperx[27].end |
582.434 |
transcript.whisperx[27].text |
那我們的中小企業怎麼做他們不敢接單 不敢投資 不敢借錢那我們給予的貸款優惠就沒有政策的效果了 |
transcript.whisperx[28].start |
583.834 |
transcript.whisperx[28].end |
608.02 |
transcript.whisperx[28].text |
我想我們不是只有在這個財務上面的措施來支持他們我們事實上這一波利用這樣的一個機會來打造我們國內中小微企業的競爭力所以我們是多面的來提升它的競爭力那您剛剛在講說這個匯率的問題主要還是大型跟中型公司它才有做這個出口 |
transcript.whisperx[29].start |
608.9 |
transcript.whisperx[29].end |
632.478 |
transcript.whisperx[29].text |
那但是這些大型中型的公司大概佔我們七成的這個出口的部分呢我相信他們對這個匯率避險他們是都有採取這樣的一個方式所以我們真正的比較擔心就像委員所指正的這些比較中小微的企業所以我們有另外一個方法就是對接台灣的這些大型跟中型的企業我們希望他們以大代小 |
transcript.whisperx[30].start |
633.218 |
transcript.whisperx[30].end |
650.289 |
transcript.whisperx[30].text |
那盡量來協助我們這個所推動的這樣的一個措施的什麼時候會有具體的措施我們現在就是在現在一直在進行現在一直在進行因為這面臨的變化是非常的快速我現在透過AI的市產線這個是過去都沒有的做法 |
transcript.whisperx[31].start |
650.509 |
transcript.whisperx[31].end |
669.485 |
transcript.whisperx[31].text |
我們現在已經建立了53條市產線來協助這些中小微企業接著到年底之前我們會擴增到100條線然後經濟部當了接手了這個其他的科技大學的這個學校措施以後我們會在學校裡面建立服務業的市產線 |
transcript.whisperx[32].start |
670.726 |
transcript.whisperx[32].end |
679.276 |
transcript.whisperx[32].text |
服務業的市產業服務業占台灣七成所以我們會創造那個環境建立那個產業來訓練在職的這個業者也會訓練未來參與這個產業的這個業者我們相信我們一年至少可以幫國內 |
transcript.whisperx[33].start |
689.267 |
transcript.whisperx[33].end |
706.031 |
transcript.whisperx[33].text |
從訓練在職的人最起碼有兩萬五千人另外我們會從畢業生裡面在訓練兩萬五千人最少一年我們會提供五萬人在所謂的這個AI的這個環境裡面然後來打造他的競爭力好我再想要請問我們副總裁的目前 |
transcript.whisperx[34].start |
710.782 |
transcript.whisperx[34].end |
728.719 |
transcript.whisperx[34].text |
中東的地緣的因素造成了國際能源價格巨幅的波動未來會不會對於我們國內的物價就是CPI造成巨大的影響我們現在目前預估都是 |
transcript.whisperx[35].start |
729.6 |
transcript.whisperx[35].end |
740.715 |
transcript.whisperx[35].text |
都是在2以內但是如果未來能源價格的上升我們在高度仰賴能源進口的情況下CPI的情況是如何的 |
transcript.whisperx[36].start |
741.53 |
transcript.whisperx[36].end |
763.048 |
transcript.whisperx[36].text |
那個報告委員我們最近也是根據當前的國際油價或者當前的台灣的物價的發展情形我們認為今年下半年那個服務類國內的服務類的價格他還是會持續走低因為也走低了一陣子加上我們預期今年的原油的價格 |
transcript.whisperx[37].start |
764.403 |
transcript.whisperx[37].end |
785.297 |
transcript.whisperx[37].text |
即使是目前的資料顯示我們還是認為它會比去年低所以我們整體來講我們下修了我們對今年的物價的預測本來是1.89我們現在是1.81所以我們基本上從目前資料去看我們對今年的整個國內的物價還是覺得它是能夠維持在2%以下 |
transcript.whisperx[38].start |
787.666 |
transcript.whisperx[38].end |
807.959 |
transcript.whisperx[38].text |
對 可是我認為說在某一些部分像食物類別啦就是外食族群等等的這種的大家對於物價的那種敏銳度CPI的就是還是非常敏感所以在這個部分希望政府在就這個部分還是要做具體的研究好不好我們主席已經站起來了好 謝謝 |